Ly —

Using Artificial Intelligence for .
turbulent combustion modelling: r
= Simplifying . the conventional

- -

rocess and Energy Department






Using Artificial Intelligence for
turbulent combustion modelling:
Simplifying the conventional lookup
tables

by

CRISTOPHER MORALES UBAL

to obtain the degree of
Master of Science in Mechanical Engineering
at the Delft University of Technology;,
to be defended publicly on Thursday August 26, 2021 at 09:00 AM

Student Number: 4892356

Thesis Committee: Prof.Dr.Dirk Roekaerts TU Delft, Supervisor
Dr. Ivan Langella TU Delft
Dr. ir. M. J. Tummers TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Delft
e t University of
Technology

Faculty of Mechanical, Maritime and Materials Engineering (3mE) - Delft University of
Technology






Abstract

In reacting flows, detailed chemistry computations are usually avoided precomputing the
thermochemical quantities as functions of a reduced set of variables such as the Flamelet
Generated Manifold (FGM) approach[34]. Although it mitigates the calculations of detailed
chemical mechanism, the memory requirement associated to store the lookup table and re-
trieve the information during numerical simulations is usually large (order of Gigabytes).
Thereby, extending the FGM approach in order to include other conditions requires to add
other independent variables which will inevitable lead to increase the size of the lookup ta-
ble. This will generate that Large Eddy Simulations (LES) cannot be performed such as is
the case of the Diluted Air FGM (DA-FGM) approach developed by Xu Huang[9], limiting
the simulations to Reynolds Average Navier-Stokes (RANS) approach. In this master thesis,
the goal is to use Artificial Intelligence (AI)-Machine Learning (ML) techniques in order to
reduce substantially the computational cost of storing lookup tables. In order to achieve this,
the Artificial Neural Network (ANN) technique is used. First, a 4D FGM lookup table for
hydrogen flames is simplified using the aforementioned AI technique. Then, this technique
is used to replace a 6D lookup table generated using the DA-FGM approach. The accuracy
and stability of the models provided by ANNs is measured by statistical indicators, providing
high accurate and stable AI models. Finally, in the middle of this project, unexpected issues
regarding the 4D lookup table were encountered, which lead to recreate the 4D lookup table.
After studying carefully how the 4D lookup table was created, a new 4D lookup table is
generated, providing excellent results and improving the AI models obtained.
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Chapter 1

Introduction

Currently, we are experiencing huge advances in science which have allowed us to solve and
simulate numerical problems that years ago would have been impossible to perform. Unfor-
tunately, in some areas such as turbulent combustion there are still issues that prohibit us
to perform numerical simulations with high accuracy. One of these issues is the chemical
representation provided by lookup tables. Although they allow to avoid integrating chemical
mechanisms to numerical simulations, the memory requirement of them (order of Gigabytes)
can still be a bottleneck. The present master thesis project will try to address this issue using
Artificial Intelligence (AI) in order to replace the traditional lookup tables.

1.1 Motivation

Nowadays, advances on computer technology have allowed us to perform numerical simula-
tions that would have been impossible to achieve in the past decades. These improvements
have allowed solving numerically the Navier-Stokes equations (NS) for some turbulent flows
(for some specific geometries) for the whole spectrum of temporal and spatial scales involved
in such problems (Direct Numerical simulations (DNS)). Nevertheless, DNS are still lim-
ited due to computational resources, and an alternative approach is employed: Large Eddy
Simulations (LES) which solves the largest scales and models the smallest scales involved in
turbulent flows.

This computational limitation is much stronger when computing numerical predictions of
turbulent reactive flows where fuel is involved. This is due to the fact that the chemical
mechanisms that depict the interaction between flows (fuel and oxidizer) need to be added.
As many chemical reactions and species occur in the combustion process, adding detailed
chemistry mechanisms into the simulations are currently prohibited due to computational
constraints for simulation in 3D[12],[22]. One way of avoiding the addition of detailed chem-
istry mechanisms is to use precomputed thermochemical quantities that depend on specific
reaction coordinates[3]. These thermochemical variables are computed using different models,
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2 Introduction

one of them is the Flamelet Generated Manifold (FGM)[34], where it is assumed there is a
fixed flame structure (flamelet) and the evolution of a scalar quantity in a turbulent flame can
be locally represented by the evolution in a laminar flame. In order to address this, flamelets
for premixed and non-premixed laminar flames are computed and stored in a lookup table as
a function of a reduced set of independent variables. Although using this approach helps to
overcome the problem of adding detailed chemistry mechanisms, the storage requirement of
lookup tables is large[12]. This is because the main chemical processes in combustion takes
place in a thin area. Thus, a high resolution in composition space and physical space is
required to capture these main chemical processes. As a result of this, the memory used by
high-resolution lookup tables can be of the order of Gigabytes [12],[3].

Therefore, lookup tables can represent a bottleneck in turbulent combustion simulations and
simplifying them would help to reduce computational resources.

Here is where Artificial Intelligence (AI)-Machine Learning (ML) enters to the game: Cur-
rently, we are experiencing a Fourth Industrial Revolution, which is based on the Third one
and is powered by technologies such as computers and communications (internet). The third
one was mainly based on the replacement of manual skills by machines and, on the current
one, we are experiencing the replacement of mental skills by machines[32]. In this way, Al
embraces all techniques that aim to automate different processes such as industrial, sales and
others. At the center of this Fourth Industrial revolution is ML which is a part of Al that aims
to learn from examples or, in other words, to learn from experience. ML (formerly known
as Pattern Recognition) was mainly applied in classification problems in the past decades.
However, Recently the use of ML has been extended to regression problems and to other dis-
ciplines thanks to the fact that new open source platforms and programming interfaces made
the AI-ML more user-friendly outside the data science field. Additionally, new methodologies
and better computer technologies have made the training of ML methods easier and faster.
In general, ML tries to address the following question: given a data set, is it possible to find
out/recognize underlying structures that the data set might have?

In this master thesis project, we are going to apply a ML technique called Artificial Neural
Network (ANN) in order to find high-dimensional mappings that will allow replacing the
lookup tables. As it will be further elaborated in chapter 3, this technique provides the main
advantage of reducing the memory requirement of storing the look-up tables while, at the
same time, learning the underlying structure of them.

1.2 Research Questions
The goal of this master thesis project is to address the following questions:

1. Is it possible to use an AI model to replace the chemistry representation provided by a
lookup table with four independent variables?

2. Is it possible to use an Al model to replace the chemistry representation provided by a
lookup table with six independent variables?

3. Is it possible to obtain highly accurate and stable models that can effectively replace
the lookup tables?

Delft University of Technology Master of Science Thesis



1.3 Thesis Outline 3

4. Is it possible to substantially reduce the memory requirement of look-up tables with the
help of Al models?

In the original plan of this master thesis project, the following question was also intended to
be addressed:

5. Is it possible to couple these Al models to a Computational Fluid Dynamics (CFD)
solver in order to reduce computational resources and be able to perform 3D LES in
turbulent combustion problems?

This, however, was not possible to be answered as in the middle of this research project,
unexpected issues regarding the 4D lookup table were discovered. This will be discussed in
more detail in chapter 6, section 6.1.1. Hence, there were two options to follow: 1) address
the original question without fixing the issues found out in the 4D look-up table or 2) address
the issues presented in the 4D look-up table and improve the results obtained using ANN.
The second direction was chosen, which in the end provided good results.

1.3 Thesis Outline

This report is structured as follows: the next chapter presents a literature review that summa-
rizes previous research related to this master thesis project, analysing and pointing out what
advances have been achieved and what problems still need to be addressed (chapter 2). Sub-
sequently, the AI-ML technique used in this project(ANN) is described in chapter 3. Chapter
4 introduces the FGM approach and the lookup tables considered in this project. Chapter 5
provides the numerical setup and software used in this project. Chapter 6 presents and dis-
cusses the results obtained using Al. Finally, chapter 7 contains the findings and conclusions
of this research project and proposes further recommendations for future research.

Master of Science Thesis Delft University of Technology
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Chapter 2

Literature Review

In this section, we are going to depict how Machine Learning (ML) - Artificial Intelligence (AI)
has been applied in the combustion community and what has been demonstrated through its
use.

2.1 What has been done by the combustion community using Al

In the past decades, the combustion community has applied ML-AI to different problems. As
it is reported in [13], ML-AI techniques have been applied to problems that can be classified
in two main areas within the combustion field: Combustion systems and internal combustion
engines. Likewise, these problems have been addressed using five ML-AI techniques: Expert
systems, Artificial Neural Network (ANN), Genetic algorithms, Fuzzy logic and hybrid sys-
tems. From [13], we can observe that the main technique used by researchers is ANN, which
accounts for 36 out of 69 applications reviewed.

Within combustion systems applications, one of the first works using ANNs in order to avoid
numerical computations of including thermochemical equations in the simulations was devel-
oped by Blasco et al.[2]. In this work, the authors proposed to model the time evolution
of a chemical system using ANNs. In order to achieve this goal, two ML techniques are
used : Self-Organizing Map (SOM) and ANN. The first technique was implemented in order
to split the thermochemical space in different areas where points are closer between each
other (similar idea to clustering techniques) and, once each area is completely determined,
an ANN is trained for the data points (thermochemical quantities) that belong to a specific
area. Likewise, they obtained the thermochemical points for training the ANNs using a chem-
ical mechanism of five-step and nine-species for air-methane. These were computed using a
partially stirred reactor (PaSR) where a transport equation for the joint probability distri-
butions of the scalars is solved. Although, the approach considered in this work differs from
the Flamelet Generated Manifold (FGM) approach for creating the lookup tables adopted in
this master thesis project, promising results were reported regarding the CPU reduction and
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6 Literature Review

accurate results achieved by using both ML techniques. Additionally, in this work is pointed
out a probably issue that could occur using an ANN which is that an ANN could not be able
to capture with high accuracy the chemical processes in thin areas. Therefore, also the idea
of SOM seems promising for the current project.

In an approach closer to the one adopted in this master thesis project, Thme et al.[12] de-
veloped Optimal artificial neural networks(OANNSs) for replacing the traditional chemistry
representation(Look-up table). It is claimed in this paper that it was the first time that it
was possible to use this alternative chemistry representation (OANN) in LES of turbulent
reactive flows[12]. In this work, the flamelet/progress variable(FPV) is used in order to build
a lookup table. The FPV is based on the steady laminar flamelet equations where the ther-
mochemical quantities are parametrized by a reduced set of 3 independent variables: mean
mixture fraction, mixture fraction variance and progress variable. In this way, lookup tables
with different sizes (different number of nodes used for the independent variables) were gen-
erated and compared their memory requirements with respect to memory requirement of an
ANN. They are summarized in the following table 2-1:

Table 2-1: Comparison of memory requirements between lookup tables with different resolutions
and OANN. Adapted from [12].

Table size Memory (MB)
100 x 13 x 100 7
200 x 25 x 200 53
400 x 50 x 400 427
800 x 100 x 800 3417
OANN 0.1

From table 2-1, we can observe that the memory requirement of the highest resolution look up
tables is around 30000 times bigger than the memory requirement of an OANN. Additionally,
it is also reported that the time required for retrieving information from the ANN is 3 times
bigger that the look up table of size 400 x 50 x 400. Nevertheless, it is also pointed out that
in LES the time used in retrieval the thermochemical quantities represents less than 3% of
the total computational time[12]. Therefore, we can conclude that the increase of time in
retrieval information using an ANN would not cause a substantially increase on the overall
computational time spent on LES. Furthermore, they performed LES of the Sidney bluff-
body swirl-stabilized methane-hydrogen flame using the OANN and the conventional lookup
table. From the computations of the temporal spectra of chemical source term and tem-
perature, it is reported that the temporal spectra obtained using a lookup tables converges
to the temporal spectra obtained using an OANN when increasing the table resolution[12].
This can be explained as a consequence of the smooth representation of the thermochemical
quantities provided by the OANN. Likewise, they concluded that both chemical representa-
tions (Look-up table and OANN) provide results that are in agreement with the experimental
data. Whereas, in areas where there were disagreements with the experimental data, they
concluded that these differences cannot be attributed to a poor performance of the OANN.
Finally, it is also pointed out in this work that taking into account heat loss effects, as the
Diluted Air FGM (DA-FGM) table created by Xu Huang includes[9], may improve the nu-
merical predictions in turbulent combustion problems. In summary, from this work, we can
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conclude that replacing the conventional 3-dimensional lookup table created using FPV by
an ANN shows promising results with respect to accuracy and memory requirements.

Recently, at the ERCOFTAC course in December 2019, Heinz Pitsch [24] provided dif-
ferent ML techniques for different applications in combustion modelling such as Bayesian
method and polynomial chaos expansion for uncertainty quantification in chemical models,
data-driven feature extraction and others. Regarding to the ML technique considered in this
master thesis project, he used ANNs for improving the fidelity of turbulent combustion sim-
ulations. In this presentation, he explained with more details how ANN works and provided
some insight of how to select the number of inputs for training an ANN. Additionally, two
ML techniques for Feature extraction were given: Principal Component Analysis (PCA) and
Kernel PCA. Although, the mathematical explanation of these two techniques are out of the
scope of this report, a general idea of them is to map the inputs into a lower dimensional
space in order to reduce the input dimensionality. These techniques may be useful in order to
improve the Power of generalization of the model when the size of the data set is small and
the number of inputs is large (this phenomena is called Curse of Dimensionality). Notwith-
standing, for the current size of the lookup tables considered in this master thesis project
(order of millions of points), this issue may not be expected.

At the same course, Cuoci [5] presented a detailed overview of ML models for combustion
problems with detailed kinetics. In this lecture, it is shown how ML models can be used for
acceleration of chemistry with respect to ordinary differential equation system solutions, local
reduction of chemical complexity and reducing the number of detailed chemistry calculations
per iteration. For the purpose of the current project, it is explained how ANNs can be applied
for reducing memory storage with keeping accuracy and computational cost. In this way, a
review is given of the work of Thme et al.[12] explained previously and two important issues
were pointed out that could eventually occur in the implementation of this master thesis
project:

e Complex ANN’s architectures are required in order to capture more complex chemical
behaviours when minor and pollutant species are considered

e A more complex ANN’s architecture will imply higher retrieval times with respect to
conventional lookup tables. Therefore, the use of ANNs in numerical simulations of
multidimensional turbulent reacting flow could increase considerably the computational
time.

In relation to this, it is also suggested the idea used by Blasco et al.(SOM technique)[2] of
training localized ANNs in order to avoid the issue of slowness that a complex ANN could
cause.

Following this idea, Ranade et al.[27] proposed to combine ANNs and SOM to replace a
lookup table in order to address the computational efficiency issues that could result from us-
ing complex ANNSs. In this approach, the lookup table is created using the Laminar flamelet
approach where the thermochemical quantities (density, temperature, mass fractions and oth-
ers) are parameterized by four independent variables: mean mixture fraction, mixture fraction
variance, mean dissipation rate and total specific enthalpy. In this work is reported that par-
titioning the thermochemical space in areas (SOM technique) results in reducing more than
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half the training time for ANNs. Similarly, a reduction of the network complexity is reported,
where at each hidden layer fewer neurons need to be considered in order to achieve the same
accuracy. Likewise, retrieval times between complex ANNs and ANNs +SOM are compared
showing faster results using both ML techniques. Finally, RANS and LES are conducted in a
DLR-A turbulent jet flame in Ansys Fluent 19.0. A comparison between retrieval times using
linear interpolations from the lookup table and ANN+SOM model is reported showing that
retrieval times of both approaches are in the same order (ratio 1:1.2, approximately) opposite
to the increase of retrieval times reported by Thme et al.[12] (3 times higher using OANN
than conventional lookup table). Although this is an issue that could eventually occur during
the implementation of this master thesis project, it must be pointed out that the activation
functions that will be used in this master thesis, Rectified Linear (RELU) and Sigmoid (see
section 3.1, expressions (3-1) and (3-3) respectively), are simpler than the Hyperbolic Tan-
gent (see equation (3-4)) used in the work of Ranade et Al[27]. Therefore, their use may be
expected not to increase considerably the retrieval time spent using linear interpolations in
the conventional lookup tables.

One of the most recent works regarding simplification of the chemistry representation in tur-
bulent combustion problems has been proposed by Zhang et al.[35]. In this work, the authors
generated a two-dimensional lookup table using the FGM approach, the two independent
variables considered in this work are: mixture fraction and progress variable. Subsequently,
the generated lookup table is used in order to train an ANN where the authors adopt the
following criterion: Species which mass fraction error is lower than 5% between the pre-
diction obtained by an ANN and the value provided by the lookup table are retrieved in
Computational Fluid Dynamics (CFD) simulations using ANNs. Meanwhile species which
error larger than 5% are retrieved from the conventional lookup table. Thus, Reynolds Aver-
age Navier-Stokes (RANS) and Large Eddy Simulations (LES) with the combined use of FGM
table (for some species) and ANNs (for the rest species), which authors have denominated
FGM-ANN, are performed in the Engine Combustion Network (ECN) Spray H flames. In
this way, high accuracy and efficiency are reported comparing the LES results and the exper-
imental data. Although a memory reduction of more than 8 times is reported with respect to
the storage of a complete lookup table, the retrieval time of using FGM-ANN is three times
longer than the FGM table. This results was also found by Ihme et al.[12].

2.2 Conclusions about previous works

Previous works using ML-AI by the combustion community have been reviewed. From this
review, we can conclude the following:

e ML-AI has been reported to have good capability and performance in turbulent com-
bustion problems.

e For the goal of this master thesis, the replacement of conventional lookup tables reported
by Thme et Al[12] shows promising results in terms of accuracy and computational
memory savings.

e Nonetheless, it must be carefully checked whether an ANN can effectively capture highly
nonlinear process in thin areas which are expected in combustion problems. As it has
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been reported in [2], using SOM technique could be useful for tackling this probably
issue.

e Although the SOM technique has been reported to be very useful in reducing the re-
trieval time, it is not straightforward how to partition the thermochemical space for
the lookup tables that we aim to simplify in this project. This is because the numer-
ical representation of the manifolds created using the FGM approach are quite struc-
tured(points are equidistant between each other in each direction) . Hence, the partition
would be mainly based on the outputs. However, this would imply making decisions on
how to treat points that would be in the boundaries of the areas obtained by the SOM
technique. Thus, while it would reduce the retrieval time, it could cause an additional
problem of how to define points in the boundaries.

e As reported by [5],[12], the computational cost for retrieving information from ANNs
is more expensive than the usual linear interpolations made by conventional lookup
tables. Therefore, this could become an essential impediment in order to effectively
replace lookup tables by ANNs. Consequently, it might be studied when the preliminary
simulations of this project are completed.

e Likewise, the network architecture must be chosen with care in order to reduce the
interpolations overhead and training time as it is mentioned in [5] and [27].

e As in [27] this higher retrieval time is mainly attributed to the activation function used
in that work (Hyperbolic tangent), the use of a much simpler activation function such
as RELU may alleviate that computational cost.

e Promising results of using an intermediate solution that combines part of the lookup
table and ANNs for replacing a two-Dimensional lookup table have been reported in
[35]. Although this intermediate approach may be a suitable solution for small lookup
tables (2-3 independent variables), for higher dimensional lookup tables (four or more
independent variables) the memory requirement of partially store a lookup table may
still prohibit numerical simulations of multidimensional turbulent combustion problems.

e Finally, from the previous results of considering 2, 3 and 4 independent variables, it
may be expected that replacing four and six-dimensional lookup tables that incorporate
additional physical processes (differential diffusion and dilution effects, respectively)
by ANNs may provide more accurate results in LES and RANS in multidimensional
turbulent combustion problems.
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Chapter 3

Artificial Neural Networks

This section, we are going to explain what an Artificial Neural Network (ANN) is and how
it works. Finally, advantages of using ANN will be listed. These notes are based on books
[15],[1] and [32].

3.1 Main idea

An Artificial Neural Network (ANN) also known as Multilayer Perceptron (MP) is depicted
as an attempt to represent the information processing in biological systems in a mathematical
way. In Figure 3-1, we can observe a schematic representation of a biological neuron.

A general description of how it works is as follows: Dendrites transmit the signals received
from input neurons to the cell body of the receiving neuron. Before arriving at the cell
body, this information is pre-processed in a process called Synapsis, which can be seen as a
weighted connection [28]. Once the weighted information has arrived to the cell body, this is
transformed at the nucleus. After being transformed at the nucleus, the transformed signal
is transmitted to other neurons through the Azon.

Dendrite

Node of

Cell body Ranvier

Schwann cell

Myelin sheath
Nucleus

Figure 3-1: Schematic representation of a biological Neuron.
(taken from [28])

This biological mechanism is captured in the Perceptron concept which is shown in the fol-
lowing Figure 3-2:
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Figure 3-2: Schematic representation of a Perceptron.

From Figure 3-2, we have the following:

- x; : Inputs (signals/information) transmitted to the neurons.

- w; : Weights or Adaptive parameters that mimic the synapsis process in the dendrites.
They can also be thought as how much important is an input x; for a neuron.

b : Bias or Threshold is a term that shifts the activation function. It is also an Adaptive
parameter.

f(z) : Activation function which is responsible of transforming the weighted information
in the neuron.

In principle, any function can be used as an activation function. However, the choice
of the activation function depends on the data and target variables. The most common
activation functions, due to their simplicity and for other reasons that are out of the
scope of this report (for more details, see chapters 3 and 4 of [15],[33]), are the following:

. ‘ z ,ifx>0
Rectified Linear(RELU) : f(z) = 0 Lifz<0 (3-1)
Linear : f(z) == (3-2)
1
igmoid : S ;
Sigmoid : f(x) T+ oxp(—2) (3-3)
Hyperbolic Tangent : f(z) = tanhx (3-4)

The output of the information transformed by the activation function is denoted as:
n
z = f <b + Z ZUZ'SUZ) (3—5)
i=1

Thus, if we arrange more than one neuron in series and parallel and fully connect them in a
layered way (it means that each neuron in any layer is directly connected to every neuron in
the previous layer), we create an ANN as it can be seen in the following Figure 3-3:
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Simple Neural Network Deep Learning Neural Network

@ nput Layer () Hidden Layer @ Output Layer

Figure 3-3: Single Neural Network (also known as Shallow ANN) and Deep Learning Neural
Network (DL)

From Figure 3-3, we have that the first layer is called the input layer where inputs feed the
network, these inputs are transmitted to the hidden layers which are the hidden neurons
that transform the inputs (mapping to a higher dimensional space) and the last layer called
Output layer where the prediction value is computed. At each neuron in the hidden layers,
the activation function is evaluated using the signals from the neurons at the previous layer,
this can be seen as a Forward propagation of the inputs through the network.

In this way, the output of each neuron at each hidden layer in an ANN is given by a compo-
sition of functions as follow:

n
Output of k — th neuron at First hidden layer : z} = f (b}C + Z wllkxz> (3-6)
i=1
kr—l
Output of k — th neuron at r — th hidden layer : 2z, = f | b}, + Z wh, 277! (3-7)
i=1

For regression problems, Rectified linear and linear are the most commonly used activation
functions in the hidden and output layers, respectively. Therefore, in this report, Rectified
Linear (RELU) will be used. Likewise, Sigmoid will be employed in the Hidden and Output
layers, and it will be shown which one provides the best fitting in terms of accuracy and
stability:.

3.2 How to define the number of neurons per layer and the number
of hidden layers?

In order to define the architecture of our ANN, we can consider the Universal approximation
theorem (UAT) that states the following: A single hidden layer can approximate any con-
tinuous function from a finite-dimensional space to another with any desired non zero error
providing enough hidden neurons[8].

In other words, this theorem states that there exists a mapping where inputs can be trans-
formed, and the regression problem can be successfully solved. Nevertheless, this theorem
does not provide what conditions are needed in order to obtain a good approximation (for
instance, how much data and how many hidden neurons). Therefore, an ANN with One single
hidden layer is not the unique solution to all problems.
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Additionally, in order to achieve that the ANN can effectively learn and generalize from a
given data set, the number of hidden neurons must grow when the data set grows|7].

On the other hand, there exists a theorem obtained by Kolmogorov and adapted to Neural
Networks that states the following: any continuous mapping from d input variables z; to an
output variable y can be represented exactly using two hidden layers having d(2d+ 1) neurons
in the first hidden layer and (2d + 1) neurons in the second hidden layer[1]. Notwithstanding,
this theorem does not state the activation function needed in order to achieve that perfect
representation. Additionally, it cannot be expected to represent with a fixed number of acti-
vation functions an output function y(x) which has infinite degrees of freedom/[1].

Therefore, acknowledging the previous considerations, the choice of the number of layers and
neurons per layer will be made using an iterative procedure . This procedure will be explained
in the chapter 5.

3.3 Training an ANN

We aim to obtain prediction values that can be very close to the real values. Thus, in order to
achieve it, the goal is to minimize the sum-of-squares error E (w) (also called Loss Function)
given by:

E(w) = *ZII.‘?(XuW) —y () [I” (3-8)

Where:

- ¥ (x4, w) is the predicted value computed for an input x; by the ANN.
- y (x;) is the real value for an input z;.

- w the adaptive parameters that are adjusted in order to minimize E. For simplicity,
the bias term b is included in w.

Thus, given a training set {(x;,y;), , ¢ = 1,...,n}, we train our ANN with this data set in
order to minimize F. Note that inputs x; and outputs y; can be vectors of any dimension.
We will come back to this point in the final chapter of this report.

3.4 Optimization of adaptive parameters

As we are trying to minimize the loss function (3-8), the goal is to find w such as E(w) is
the smallest value possible. It means where its gradient vanishes:

VE(w) =0 (3-9)

We can get closer to that minimum moving in the direction of —V E(w) which allows reducing
the Loss function. We can achieve (3-9) using an iterative numerical scheme where the
adaptive parameters w are updated at each iteration using the gradient information as follows:

w Tl =w" — uVE(wW") (3-10)
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Where p is called learning rate and can be thought as the rate of how the ANN learns a
specific task. Additionally, it can be thought as a way of keeping the neural network alerts to
sudden changes while it is being trained. The numerical scheme (3-10) is known as Gradient
Descent (GD).

Other variations of the GD scheme exist, such as Nesterov’s Momentum, AdaGrad, RMSProp,
Adam and others. However, discussing these numerical schemes is out of the scope of this
report. For more details see [32], chapter 18.

3.5 Error back propagation

In (3-10) a gradient of the error needs to be evaluated at each step. This is done by sending
back through the network the error at the output layer. This process is known as Error Back
Propagation (EBP). From (3-8), we aim to compute the derivative of E at the output layer
for a specific input x, with respect to the weights of the k-th neuron at the r-th layer wj,. If
we previously define the argument of the k-th neuron at the r-th layer as follows:

0 = bt +szkr i (3-11)

We can prove using the chain rule that:

OE _ OE 00;

= = 6TZT_1 3—12
owy o0y wi O F (3-12)
—~—
=57
where z" ! = (1, zf_l, . 721:T_1> is a vector of the outputs of the neurons at the r-th layer.

Note that 1 is included in the first component because it is related to the bias bj,. The d;’s are
known as errors for the reason that will be explained as follows. The next task is to compute
1., for the last output layer, r = L, it can be proven that:

0 = (U — wx) J'(6F) (3-13)

where ey, is the error associated with the k-th output predicted by the ANN, this is the reason
of the name given before. For the hidden layers, using the chain rule, the ;s can be computed
recursively using the following expression:

51 = (Zékwlk) (9;*1) Ck=1,2,... ke (3-14)

In summary, the training procedure can be depicted as follows:

1. Randomly initialize the adaptive parameters w;, at each neuron in the network.

2. Feed the network with the training inputs x; and forward propagate them through the
network computing 2, at each neuron using the activation function (3-5) and equations
(3-6)-(3-7).
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3. Compute the errors 6,% ’s at the output layer between the predicted value and the real
value (3-13).

4. Backpropagate them through the network using (3-13)-(3-14) and update the adaptive
parameters using (3-12) and (3-10).

Once this process of feed-forward and backpropagation has been applied to the whole training
set, it is said that an Epoch has been completed. In general, more than one epoch needs to
be completed in order to obtain the desired error and accurate predictions.

3.6 Preventing E to get stuck in local optima

The process of updating the adaptive parameters can be done after the neural network has
been fed with the whole training set and computing (3-12) as the mean value of the errors
after one epoch has been completed. This approach is called Batch or offline GD.
Nevertheless, as F in (3-8) can be highly non-linear on w, it can have many local minima
and/or saddle where we will have (3-9), but we will not have found a global minimum (the
smallest value of E). This is depicted in the following Figure 3-4:

Local minimum

N '
1 4 P2 |

un (105} w

Figure 3-4: Local minima, saddle point and global minimum.(Adapted from [32])

The Offline approach has been found not robust to those points. In other words, training the
ANN with the whole training data at once will cause the method will be more susceptible to
find a local minima and stay there.

On the other hand, we can update w for each data point at time. It means, for each data point
we make the feed-forward and back propagation process and update (3-10). This approach
is called Stochastic or Online Gradient Descent (SGD). This approach has been found very
robust for escaping local minima. Notwithstanding, using the SGD approach could increase
the training time of an ANN sharply.

Thus, an intermediate approach is usually taken where the training set is split into smaller
groups of data points, and the process of feedforward and backpropagation is applied to these
subgroups. This approach is called Mini-Batch GD. This approach is a trade-off between
faster convergence and keeping the algorithm fairly robust to escape a local minima.

In this report, the last approach is used.
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3.7 Generalization and Overfitting

In section 3.2 it was stated that an ANN can represent a nonlinear function with a desired
accuracy provided enough neurons using just one hidden layer. Nevertheless, experience has
shown that a model can be more complex(in this case, it can have more neurons) only if the
data set is larger. This is illustrated by the Learning Curve in the following Figure 3-5:

More complex model:

- lower training error

- higher test error

- lower asymptotic error

error

apparent error €4

number of training objects

Figure 3-5: Empirical relation between error,model complexity and size of the data set.(Adapted
from [32])

From the above Figure 3-5, we have that if the model is too complex(blue line) and the number
of training objects (size of the dataset) is small, the error of the model for a test set(unseen
data for the model) will be higher than the error of the training set(data which was used in
order to train the model). In other words, the model will try to fit the training data almost
perfectly(biased to the training set), which will diminish their power of generalization for
unseen data(high variability). This phenomenon is called Ouverfitting, and it is illustrated by
Figure 3-6:

10 10

linear regression

regression of degree 10

e training examples e training examples

-10 04—l
=10 55 Xpw O 5 10 210 Xnew =5 0 5 10

Figure 3-6: Examples of good fitting (at the left figure) and Overfitting due to a complex model
(at the right figure).(Adapted from [4])

From Figure 3-6, we have at the left figure that the data points (blue dots) have a linear
behaviour and a linear regression causes a higher sum-of-squares error (not perfect fitting),
but the model captures the underlying structure of the data points. Conversely, in the figure
at the right, the sum-of-squares error is decreased (almost perfect fitting), but the model is
unable to capture the behaviour of the system (more variability). This occurs because, in
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the second case, the model is too complex (polynomial of degree 10) for the number of data
points (10 data points).

Thus, in order to prevent this undesired behaviour, the data set is usually split into three
subsets: training, validation and test set. The first one is used to fit the model, the second is
used while the model is being fitted in order to check if our model is suffering overfitting and
the third one is used to test our model after the training procedure has been completed.
Additionally, there are some techniques in order to avoid overfitting. One of the most common
approach is called Early Stopping, which is based on the idea of training our model until the
error in the validation test (also called wvalidation or generalization error) starts increasing.
This is because the number of epochs that must be completed in order to achieve a desired
error is a priori unknown (it is, in fact, a user-defined parameter), training the ANN over
many epochs can lead to very small error which can be a sign of overfitting as it can be seen
in the following Figure 3-7:

Error

Underfitting zone Overfitting zons

generalization
arror

training : optimism
srror :

A 4

Early stopping epochs

Figure 3-7: Schematic description of Early Stopping.(Adapted from [8])

Although there are other useful techniques such as dropout, batch normalization, adding
artificial noise and other in order to avoid owerfitting, the Farly Stopping technique will be
used in this report.

3.8 Advantages of using ANN

From the previous sections, we can observe the following advantages of using ANN for the
current project, which are given as follows:

e Low memory requirement: This is because, after the training process of an ANN, only
the architecture structure and the adaptive parameters need to be stored. Other ma-
chine learning methods must store part of the training data, making them unfeasible for
the enormous amount of data points store in the lookup tables(order of millions points).
Additionally, this will avoid storing computational expensive lookup tables.

e Smooth representation: This is due to the use of neurons and hidden layers, which, in
principle, may allow approximating any continuous function from a finite-dimensional
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space to another with any desired non zero error providing enough hidden neurons (see
section 3.2).

e Great capability to handle large data sets: During the training process of an ANN,
there is no need to compute and store any matrix and its inverse. The Feedforward
and Backpropagation algorithms (section 3.5) are based on addition , subtraction and
computation of inner products between vectors. This way of learning is the major advan-
tage of an ANN with respect to other Machine Learning (ML) techniques. Additionally,
this is why it is so popular its use in many problems.
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Chapter 4

Look-Up tables

In this chapter, it will be explained the Flamelet Generated Manifold (FGM) approach used
in order to generated the look-up tables. Additionally, the look-up tables that we aim to
simplify in the current project will be introduced.

4.1 Flamelet Generated Manifolds approach(FGM)

The FGM approach proposed by Van Oijen et al.[21] relies on the assumptions that there
is a fixed flame structure (flamelet) and the evolution of a scalar quantity in a turbulent
flame can be locally represented by the evolution in a laminar flame. Thus, it shares the idea
of the flamelet approach that a multidimensional flame can be modeled as an ensemble of
one-dimensional flames[21]. In this way, a flamelet is defined by the set of equations given as
follows [29]:

dp  Opu

o " ow P (+1)
opY;  OpuY; O oY . 4
ot ox - 871: (pDzmax> + w; pK}/zv (4'2)

oph  Opuh 0 [ xon & A\ oY
ok _ O Ao D — 2 | 02 | = pich, +
o " or " ow lcpax+izl<p Z c,,)hax] PR (43

OpK  OpuK 0 ( oK

o " ow oa\Mow
Where K = %Z represents the stretch term. Likewise Y;, h, p, Djm, w;, A, Cp and p denote
the mass fraction of species, the specific enthalpy of the mixture, the density, the mixture
mass diffusion coefficient, the reaction rate, the thermal conductivity, the heat capacity and
the viscosity, respectively. Finally, a and p,, are the applied strain rate and the density at
the oxidizer side.
Note that these flamelet equations include the effect of differential diffusion which will be
discussed in section 4.2. When the effect of differential diffusion is not important, it can be

) + poxa2 - PK27 (4'4)
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assumed that all species have the same diffusivity (equal Lewis number), then we have that
D;y, = D for all species and the energy equation 4-3 becomes in:

dph  Opuh o [ X\ oh
ETIAT a:;;()‘f’Kh’ (4-5)

Commercial and open source one-dimensional flame codes which use the ideal gas equation of
state have been developed in the last years, such as CHEM1D[30] developed by TU Eindhoven
which is used in this research.

Thus, in the FGM approach a low dimensional manifold is constructed from one-dimensional
steady and unsteady flamelets|[21] where they are expressed as functions of the mixture frac-
tion Z and the scaled progress variable C. The mixture fraction is defined as the fraction
of mass present locally that originally comes from the fuel stream (it measures the local
fuel/oxidizer ratio [25]). Thus, the mixture fraction is a key variable to depict mixing in non-
premixed (diffusion) flames. Likewise, the scaled progress variable depicts the combustion
process because it goes from 0 in the urburnt gases to 1 in the fully burnt gases. Thereby, the
choice of the progress variable is crucial in this approach because it must provide a unique
mapping for all species Y;(C) [34]. Hence, it must be a monotonously increasing or decreasing
function[34]. In this way, the unscaled progress variable Yo is defined as a linear combina-
tion of a subset of species mass fraction and the scaled progress variable C are given by the
following expressions:

Ns
1

YC - YC,min
C =
YC,max - YC,min

(4-7)

where the subscripts min and max represent the minimum and maximum values of the Y¢,
respectively. In order to ensure that C' is monotonously increasing, Ramaekers[26] proposed
to define «; as the inverse of the molar mass of the species ¢, which is used in the creation of
the lookup tables considered in this work.

In the turbulent flames, the influence of statistical fluctuations is included considering the
variance of the mixture fraction Z2 and the variance of the scaled progress variable 2.
These are included as independent variable in order to characterise a joint Probability Density
Function (PDF) where C' and Z are assumed to be statistically independent. A standard
PDF choice for mixture fraction and the scaled progress variable is a S-distribution. Other
independent variables can be also added in the manifolds in order to take into account other
effects such as heat loss (Non-adiabatic flame), dilution and other, as will be the explained in
section 4.3.

In sum, a look-up table is built where dependent variables (reactions rates, mass fractions,
temperature and others) are stored as a function of a set of reduced independent variables
(mean mixture fraction, mean scaled progress variable their respective variances and others).
It must be noted that for each independent variable, a transport equation is solved during
Computational Fluid Dynamics (CFD) simulations and the information stored in the look-up
tables is retrieved during the simulations.

Finally, this approach has been demonstrated to depict the behaviour of low temperature areas
in a better way than the Intrinsic Low Dimensional Manifold (ILDM) approach proposed in
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[16]-[17], due to the fact that it takes into account transport processes which are not included
by the aforementioned approach[34]. Although for many steady flames this drawback does not
cause issues because chemical processes are principally controlled by the highest temperatures
[25], for other problems such as ignition, transient and diffusion phenomena it may cause
difficulties[25].

4.2 4D hydrogen look-up table

In the current context of climate change, searching for fuels that have low carbon emissions has
become important in order to achieve a sustainable growth in the future. That is the reason
why hydrogen seems a promising fuel. However, in order to be able to use hydrogen in a wide
range of applications, models must be more accurate in order to obtain better and reliable
predictions. In turbulent combustion, a unit Lewis number (which compares the speeds
between thermal and species diffusivity[25]) is commonly adopted due to the fact that species
have similar diffusivities. This relies on the assumption that molecular diffusion is negligible
with respect to turbulent mixing. However, that is no longer valid in the case of hydrogen
where its Lewis number is around 0.2. Thus, it has been been reported in [6] that the effects
of differential diffusion are important close to the nozzle while Large Eddy Simulations (LES)
in H3 flame were conducted. Similarly, its effects on maximum flame temperature , flame
position and stability were reported in [18]. Thereby, differential diffusion must be taking
into account in hydrogen flames.

This was done by Myra Nelissen [20] during her master thesis project at TU Delft where she
included differential diffusion in the FGM approach. In her project, the unscaled progress
variable was defined as the mass fraction of water (Yo = Yp,0) and the mixture fraction Z
was defined using the Bilger’s mixture fraction based on H and O given as follows:

7 Fun T Fun2 (4-8)
Zun,1 — Zun,2
Zun = 0.5M ' Yy — M5'Yo (4-9)

Where My, Mo and Yy, Yo are the molar mass and mass fraction of hydrogen and oxygen,
respectively. Likewise, the subscripts un denotes unscaled mixture fraction and 1 and 2
represents the fuel and oxidizer side, respectively.

Finally, the chemical mechanism for Ha/O2 proposed by Li et al.[14] consisting in 19 reversible
reactions, 9 species and nitrogen as dilutant was considered. Thus, 4D Lookup tables for
turbulent flames were created, where the 4D independent variables are: mean scaled progress

variable (C'), mean mixture fraction (Z) and their respective variances (C"2 ,Z"2). Note that
~ denotes the Favre Averaging.

4.3 6D Diluted-Air Flamelet generated Manifolds table(DA-FGM)

Although we are experiencing a transition into hydrogen technology, fossil fuels will still be
mainly used in the coming decades. Hence, better models are needed in order to optimize their
use and reduce their emissions. In this way, the FGM approach can be extended to Moderate
or Intense Low Oxygen Dilution (MILD) combustion as long as the flamelets consider the
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effects of strong dilution by products. This was done by Xu Huang[9] during his PhD project
at TU Delft and the accepted article[10]. In them was developed an extension of the FGM
approach called Diluted Air FGM (DA-FGM) which includes recirculation of burnt gases to
the reaction zone (dilution) and was validated by experimental data obtained using Dutch
natural gas in a lab-scale furnace. This six-dimensional lookup table had not been studied
before and calculations on spectral radiative heat transfer were performed in specific profiles
along lines, finding spectral effects to be important. This suggest that in the case of spectral
treatment more variables have to be stored in the tables, making them unfeasible in CFD
simulations due to lack of memory, which is directly linked with the goal of the current project
to reduce substantially the memory requirement. Although it was only possible to compute
RANS numerical simulations using it due to the large memory requirement of this table, high
accuracy was achieved employing the lookup table generated by DA-FGM.

Now, we will proceed to explain the main assumptions and definitions that underlies in the
DA-FGM approach.

First, in MILD combustion the reacting flow structure is assumed to be a mixture between
fuel, air and burnt gases. Considering a global equivalence ratio of ¢ = 1 and a long residence
time in the furnace, the recirculated burnt gases can be assumed as products at Zs and being
in chemical equilibrium. Therefore, the diluent is defined as products of combustion of fuel
and air at stoichiometric conditions (without excess).

Subsequently, in order to introduce the effect of dilution in the flamelets, two variables are
defined:

e Second mixture fraction £ which is the mixture fraction related to the fuel-diluted air
mixing. In the DA-FGM model, the mixture is based on fuel and diluted air streams
instead of the regular mixture fraction Z defined by fuel and air streams. Hence, as the
diluent is at stochiometric mixture fraction, £ is defined as follows:

E=Z—-aZy=(1—a)Zy (4-10)

where Zj is the mixture fraction of fuel-air mixture. Additionally, « is called dilution level
which represents the fraction of diluent in the mixture. This is defined by:

Yy

a

where Yy is the mass fraction of recirculated products in fully burnt condition. Thus,
Y, is defined by
Y, = Y002 + YHQO (4—12)

and YdD i denotes the mass fraction of recirculated products at stoichiometric condition.

e Air dilution level 4 which is the mass fraction of diluent in the diluent/air mixture.
This is computed by the following expression:

M 413)

It must be noted that £ = 1 and & = 0 imply pure fuel state and diluted air state, respectively.
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For Non-adiabatic flamelets, an additional variable is introduced in order to reflect the heat
loss effects. So, the enthalpy loss factor 7 is introduced. Due to radiation and heat transfer
to cold walls losses, the diluent has an enthalpy loss with respect to the adiabatic case. Thus,
7 is defined by:

n = CIZ _ hadd (4_14)
o (hioy = hi)
where hyq is the adiabatic enthalpy at local mixture fraction given by:
haa = Zhy + (1 — Z)hoy (4-15)

where the subscripts f and ox denotes fuel and oxidizer side. Additionally, hgzl and h;‘;zo are
the enthalpy of diluent in the case of maximum and minimum enthalpy loss, respectively.
Finally, the unscaled progress variable Yo used in this model is given by :

Yo =Yco, +Yco + Ym0 + Y, (4-16)

and the scaled progress variable C' is computed as follows:

Yo — Y& (€m:7)
Y& (&m,y) = YE(En,7)

(4-17)

where u and b denote unburnt and burnt state, respectively. It must be noted that the mini-
mum and maximum values of the unscaled progress variable (Y4 and YCQ, respectively) depend
on the local conditions in the flamelets. Therefore, they depend on &, 7 and . Thereby, they
are also precomputed and stored in a 3D lookup table.

In sum, in the laminar case we have four independent variables given by equations (4-10),(4-13),
(4-14) and (4-17).

On the other hand, for turbulent flames the variance of the second mixture fraction £"2 and

the variance of the scaled progress variable C"? are introduced as additional independent
variables assuming a [-PDF for mixture fraction and scaled progress variable. Then, they
are normalized as follows:

- (4-18)
€(1-¢)
67/2
Sc = m (4-19)

So, the thermochemical quantities such as temperature, source term of the progress variable
and others are stored as function of the following six independent variables: § C, 5S¢, Se, 1
and 7.

According to the standard procedure, to use this 6D lookup table transport equations are

solved for the variables Z , }7&, 17};, 71, Z"? and Y(';'Q. Subsequently, the six independent variables
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are computed using the following expressions:

6//2 — Z//2 (4_20)
iy —~\ 2 ~
Y- (Vo) - (e -0 Ve - 0]
C"? = — —C? (4-21)
(v -2)
E=7—aZy (4-22)
a
F=_2 4-23
=12 (4-23)
_ h—h,
M= (4-24)
- Yo-Yy
0=-X"-"¢ (4-25)
Y6 -4

— . —~\2 — N —_—
Where, the quantities Yg, Y4, (YC> , (Yé‘)2 and Yé‘YCIZ are precomputed in a 4D-lookup table

as a function of the variables 5 , S¢, 1 and 7.
Likewise, it must be pointed out that no fluctuations in the dilution level « are considered,
so it is computed as follows:
T

YdDzl
Additionally, the DA-FGM approach includes radiation using a Weighted-Sum-of-Grey-Gases
(WSGG) model in order to study Turbulent Radiation Interaction (TRI). The main as-
sumptions behind this model choice are that absorption and emissions must be taken into
account in gas fired furnaces, meanwhile scattering can be neglected. In this way, the grey gas
absorption coefficient x is obtained by using the WSGG model considering four grey gases
and one clear gas. This coefficient is used in order to solve the mean Radiative Transfer
Equation (RTE) given as follows:

(4-26)

m

% =—k-I™+ &l (4-27)
Where I and I, denotes the radiative intensity and blackbody radiation intensity, respectively.
Aditionally, m refers to spectral band. The terms k and &I, depends on local conditions of
the flames. Therefore, they are stored in the 6D lookup table. Solving equation (4-27) allows
coupling radiation with combustion in the transport equation solved for enthalpy h. For more
details, see [9] and [10].
Finally, the GRI-Mech 3.0 reaction mechanism, which models natural gas combustion, is used
in the generation of the 6D lookup table for Dutch natural gas. This consists of 325 reactions
and 53 species.
As a final remark, from the previous equations (in particular, equation (4-23)), it can be ob-
served that the six independent variables in this lookup table are not completely independent
between each other.
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Chapter 5

Data and Numerical setup

This chapter will explain the data that will be used, the numerical setup and the software
that have been used in order to develop the Artificial Neural Network (ANN).

5.1 Data

The data used in the research consists of the 4D and 6D lookup tables. The tables are gen-
erated as follows: First, steady and unsteady flamelets are generated using CHEM1D[30].
Subsequently, a FGM table is created using a Matlab code. Finally, PDF-integration is
performed, and a FGM-PDF table is created using a Matlab code, where separate files are
creating for storing different variables (outputs). The Matlab codes were developed by Meng-
meng Ren, Likun Ma and Xu Huang.

The information contained in each file is tabulated in a regular grid as a function of the
independent variables (four and six independent variables for the 4D and 6D lookup table,
respectively). The variables and number of nodes in each direction for the 4D and 6D lookup
tables are given in the following tables 5-1 and 5-2:

Table 5-1: Independent variables and number of nodes in each direction in the 4D lookup table.

Variable Number of Nodes
Mean mixture fraction 101
Variance of the mixture fraction 11
Mean scaled progress variable 101
Variance of the scaled progress variable 11
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Table 5-2: Independent variables and number of nodes in each direction in the 6D lookup table.

Variable Number of Nodes
Mean mixture fraction 51
Variance of the mixture fraction 11
Mean scaled progress variable 51
Variance of the scaled progress variable 11
Scaled enthalpy loss factor 13
Scaled dilution variable 11

Then, a single Comma Separated Value (CSV) file for each lookup table is created, containing
the inputs in a regular grid. For the 4D lookup table, the input file contains 11-101-11-101 =
1234321 nodes. Similarly, for the 6D lookup table, the input file contains 51-11-51-11-13-11 =
45005103 nodes.

Additionally, each output file, which is in text format, is brought in CSV format. The CSV
format is required because Pandas library for handling large data sets will be used, and the
files must be in that specific format. The CSV files are created using a Python routine.

5.2 Pre-processing data

First of all, the inputs (z;) in each table are in the interval [0, 1]. Therefore, they do not
require to be rescaled. Outputs (y;) have to be rescaled using the following expressions:

@\Z — yl - ymin (5_1)

Ymax — Ymin
Where 4,in and ymqz correspond to the minimum and maximum value in the look-up table
for each output. This is done in order that inputs and targets have the same scale, in this
way the adaptive parameters (w) can capture successfully the importance of each feature for
the target (output) y;.

5.3 ANN architectures

As it was explained in section 3.2, there is no rule of how to choose the number of hidden
layers and the number of neurons per hidden layer. Hence, we are going to make this decision
using the following procedure:

1. In [32], it is strongly recommended to review what others have done in similar projects
(learning through experience). Similarly, although the Universal approximation theorem
(UAT) states that with one single hidden should be enough for regression problems, it
is well-known from mathematics theorems (theorem of change of variables, chain rule
and others) that using successive mappings may make a problem much easier to solve.
Therefore, it is adviced to use more than one single layer. Additionally, using more than
one hidden layer may reduce the memory requirement of the ANNs.

Delft University of Technology Master of Science Thesis



5.3 ANN architectures 29

2. Similarly, following the Kolmogorov theorem, it would be enough to use an ANN with
two hidden layers, the first layer with 2-(2-4+ 1) = 18 neurons and the second hidden
layer with 2 -4 4+ 1 = 9 neurons, in the case of the 4D Look-up table d = 4 (Similar
for the 6D Diluted Air FGM (DA-FGM) look-up table for which d = 6). Nevertheless,
from previous works [11],[35] and [27], it can be concluded that two hidden layers are
not enough for representing the look-up tables with high accuracy.

3. As the UAT and Kolmogorov theorem are valid for a one-dimensional output function
(see section 3.2), they implicitly suggest that using one ANN per output would provide
better results. Therefore, that approach is considered in this project.

4. Thus, as [11] and [27] considered in their works 4 hidden layers and other even more
hidden layers [35], we start using 4 hidden layers.

5. Additionally, in the projects aforementioned, they used between 8 and 10 neurons per
layers. As our data set is larger than the ones considered in those projects and, as the
input dimensionality is higher than the works of [11] and [35], we increase the number of
neurons per hidden layer. For most of the species in the 4D table, we found out that the
following architecture provides good results: 32-16-8-4 (865 parameters). Where each
number represents the number of neurons in each layer (32 neurons in the first hidden
layer and so on). This architecture was chosen in order to have a common architecture
for most of the species and thermochemical quantities. Likewise, it provides accurate
results and stability as it will be shown in section 6.1.

6. For the source term of the progress variable, the architecture used was 16-16-16-16 (913
parameters).

7. In the 6D DA-FGM look-up tables, the data size is higher than the 4D case. Similarly,
the input dimensionality is higher (6 independents variables). Hence, the number of
neurons per layer must be increased in order to obtain high accurate and stable results[7].

8. Thus, in the 6D case, we start training an ANN for the source term of the Progress
variable in the 6D lookup table because it is well-known that it is a highly non-linear
function. With the knowledge gained from the 4D lookup table. First an ANN ar-
chitecture with 20 neurons per layer (1421 parameters) is used, then this number is
increased by 4, and an ANN with 24 neurons per layer (1993 parameters) is trained. As
the data set is large, the number of neurons is increased to 30 neurons per layer (3031
parameters), which provides the most accurate and stable results.

9. Considering that the rest of the thermochemical quantities should be, in principle, easier
to represent using ANNs than the source term of the progress variable. We reduce the
number of neurons per hidden layer to 26, which provides accurate and stable results
for these outputs.

Additionally, as we are using an ANN for regression, we first consider in the hidden layers
Rectified Linear (RELU) as the activation function and Sigmoid as the activation function
at the output layer (see section 3.1, expressions (3-1),(3-3)). Nonetheless, as the preliminary
results using this activation function are unstable, we consider Sigmoid(equation (3-3)) as
activation function in the hidden and output layers. This choice provides stable results and,
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at the same time, force the ANN to respect the physics (predictions will not be bigger than
the biggest values in the tables and they will not be negative).

5.4 Training Procedure

The training procedure is explained as follows: For each architecture, we will train the ANN
using the mini-batch GD with size of 16 and 128 data points for the 4D and 6D look-up
tables, respectively.

Likewise, for each architecture, 200 epochs will be completed in order to obtain accurate
results.

Furthermore, as machine learning methods are susceptible to overfitting(see section 3.7), we
split the data set into three subsets: training set, validation test and test set. There is no rule
about in which way the data set must be split. In this report, we split randomly the data set
as follows: 70% as training set, 15% as validation set and 15% as test set with entries put in
these subsets by random selection.

Equally important is the choice of the learning rate (1) because it is a hyper-parameter of the
model that controls how the models are learning a specific task. Hence, it must be chosen
carefully. Notwithstanding, it is very difficult to know apriori which value of p is the most
accurate for a given data set. Therefore, an adaptive learning rate is used instead of a fixed
learning rate. This adaptive learning rate works as follows: First, we consider an initial
learning of p = 0.005, and it is checked the model improvement observing the value of the
loss function (the Mean Squared Error (MSE)) in the validation set. If the loss function in
the validation set does not improve after 5 epochs, the learning rate will be reduced by a
factor of f = 0.5. This approach is also known as ReduceLROnPlateau.

Subsequently, each time that there is an improvement of the loss function in the validation
set, the model is saved (best model). Finally, if after 30 epochs the model does not improve
in the validation set (a sign of overfitting), the iteration will be stopped (Early Stopping, see
section 3.7).

5.5 Software

The ANNs have been developed using Python 3.8.5. The environment used is Jupyter lab.
Additionally, scikit-learn[23], numpy, pandas, and others libraries available in Python have
been used. Finally, Keras which is a deep learning application programming interface (API)
has been used to build the ANN . This is running on the open-source platform for machine
learning TensorFlow[31].
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Chapter 6

Results and Discussions

In this chapter, the results of this project will be presented. First, results regarding the choice
of the activation function used in the ANN (see section 3.1) will be discussed. Subsequently,
preliminary results of using ANNs for the 4D hydrogen lookup table will be presented and
the unexpected issues encountered in this table will be pointed out. Then, a solution to these
issues is proposed, and the final ANN models for the 4D lookup table will be shown. Finally,
the results of ANNs applied for the 6D DA-FGM table will be analysed.

6.1 4D Hydrogen Table

We follow the procedure explained in the previous chapter 5. As the 4D lookup table is smaller
in size than the 6D lookup table, we begin with this case and make preliminary simulations
in order to apply the knowledge gained for the easier case into the 6D lookup table, which in
principle is more difficult than the previous one.

6.1.1 Preliminary Results

First, we start studying the most suitable choice concerning ANN architecture for the current
project.

6.1.1.1 Activation function choice

From the literature review (2.1), we observe that Pitsch et al.[11] and Zhang et al.[35] used as
activation function RELU (equation (3-1)) in the hidden layers and Sigmoid (equation (3-3))
in the output layer. Thus, in order to study the more suitable choice of activation functions
for this project, we run a preliminary case where an ANN for the following output is trained:
Source term of the progress variable (SourcePV). This output is chosen as a preliminary
case because it is highly non-linear and it is, in principle, the most difficult output to be
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represented by ANNs.

Then, the ANN architecture for this preliminary case consists of 4

hidden layers and 10 neurons per layer. Finally, in order to visualise the results, we plot three
different cases:

- Case 1: Case without fluctuation - the output varies with respect to the mean scaled

progress variable C, for different values of mean mixture fraction Z, considering Cc"2 =
7" = .

Case 2: Stoichiometric mixtures with fluctuations in mixture fraction - the output varies
with respect to the variance of mixture fraction 7”2 at stoichiometric mixture fraction
7 = st for different and high values of the mean scaled progress variable C and
considering C” C"2 — 0.

Case 3: Stoichiometric mixtures with fluctuation in the scaled progress variable - the
output varies with respect to the variance of the scaled progress variable C"2 at stoi-
chiometric mixture fraction Z = Z/t,/@r different and high values of the mean scaled
progress variable C' and considering Z"2 = 0.

Hence, we train the ANN for the SourcePV using the activation functions used in the papers
mentioned above and considering Sigmoid in the output and hidden layers. In this way, we

obtain the following results:

e RELU in hidden layers and Sigmoid in the output layer:
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Figure 6-1: Case 1: Source term of the progress variable with respect to mean scaled progress
variable for different values of mean mixture fraction, using RELU and Sigmoid as activation
functions in hidden and output layers, respectively.
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Figure 6-2: Case 2: Source term of the progress variable with respect to variance of mixture

fraction for different values of mean scaled progress variable, using RELU and Sigmoid as activation
functions in hidden and output layers, respectively.
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Figure 6-3: Case 3: Source term of the progress variable with respect to variance of the scaled
progress variable for different values of mean scaled progress variable. Using RELU and Sigmoid
as activation functions in hidden and output layers,respectively.
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e Sigmoid as activation function in hidden and output layers:
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Figure 6-4: Case 1: Source term of the progress variable with respect to mean scaled progress
variable for different values of mean mixture fraction, using Sigmoid as activation function in

hidden and output layers.

Table 6-1: Comparison of memory requirement and prediction(retrieval) times between two
cases: RELU and Sigmoid as activation function in hidden and output layers, respectively, and

Sigmoid as activation function in hidden and output layers. MSE;,.qin and R?

-ain, denote the

mean squared error and coefficient of determination for the training set, respectively.

Case Memory (kB) | Prediction timels] | M.SFEqin Rivain
RELU-Sigmoid 27 0.09794 0.000045 | 0.9908
Sigmoid 959 0.078287 0.000037 | 0.9924

From table 6-1, we can observe that both choices provide similar statistical indicators: Mean
squared error M SFE}4in of order 1075 and coefficient of determination RZ.;, around 0.99.
Similarly, the prediction/retrieval times using both choices are roughly equal. Hence, based
purely on statistics, both choices are acceptable. Nevertheless, from figure 6-1, we can observe
that using RELU-Sigmoid as it is done in [11] and [35] provides a model that is becoming
more unstable for higher values of the mean mixture fraction. Moreover, we can see from
figures 6-2 and 6-3 that the ANN model develops wiggles for higher values of the progress
variable. Conversely, the previous instabilities are not observed when using Sigmoid as acti-
vation function, as shown in figures 6-4, 6-5 and 6-6. It also preserves the underlying physical
behaviour of the source term of the progress variable as shown in figure 6-4. Therefore, for
this project, we can conclude that the best choice in terms of stability and physical behaviour
is to use Sigmoid as activation function in each layer.
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Figure 6-5: Case 2: Source term of the progress variable with respect to the variance of mixture

fraction for different values of mean scaled progress variable, using Sigmoid as activation function
in hidden and output layers.
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Figure 6-6: Case 3: Source term of the progress variable with respect to variance of the scaled

progress variable for different values of mean scaled progress variable, using Sigmoid as activation
function in hidden and output layers.
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Although from table 6-1 we can observe that the memory requirement of using Sigmoid is
more than twice the memory requirement of using RELU-Sigmoid, this memory requirement
is still around 2.5 order of magnitude less than the lookup table(26.649 MB). Finally, in [27]
hyperbolic tangent (equation (3-4)) is used due to its high non-linearity. However, using
hyperbolic tangent would require rescaling the independent variables into the interval [-1,1]
which is not the case with Sigmoid. This is because the Sigmoid is in the same range as
the inputs (independent variables) [0, 1]. This makes it a better choice than the hyperbolic
tangent because it would alleviate the task of coupling the ANNs models in a CFD solver,
since only outputs would need to be rescaled not inputs.

6.1.1.2 ANN models for different outputs

From the analysis made in the previous section 6.1.1.1, we proceed using Sigmoid as activation
function in hidden and output layer. Then, in order to train the ANN,we follow the procedure
explained in section 5.4, and we find out that the best ANN architectures are: 16-16-16-16
for the Source term of the progress variable and 32-16-8-4 for the rest of the thermochemical
quantities. In order to avoid a large amount of figures, we will show the results for the following
outputs: Source term of the progress variable, temperature, heat capacity and mean molar
mass of the mixture. Thus, training the ANN model for the outputs mentioned above, we
obtain the following results where we have considered the cases 1,2 and 3 mentioned in section
6.1.1.1:
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Figure 6-7: Case 1: Source term of the progress variable with respect to mean scaled progress
variable for different values of mean mixture fraction. Preliminary results.
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Figure 6-8: Case 2: Source term of the progress variable with respect to the variance of mixture
fraction for different values of mean scaled progress variable. Preliminary results.
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Figure 6-9: Case 3: Source term of the progress variable with respect to the variance of the
scaled progress variable for different values of mean scaled progress variable. Preliminary results.
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e Temperature[K]:
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Figure 6-10: Case 1: Temperature with respect to scaled progress variable for different values
of mean mixture fraction. Preliminary results.
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Figure 6-11: Case 2: Temperature with respect to the variance of mixture fraction for different
values of mean scaled progress variable. Preliminary results.
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Figure 6-12: Case 3: Temperature with respect to the variance of the scaled progress variable
for different values of mean scaled progress variable. Preliminary results.

o CplJ/(kg K)J:
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Figure 6-13: Case 1: C, with respect to scaled progress variable for different values of mean
mixture fraction. Preliminary results.

Master of Science Thesis Delft University of Technology



40

Results and Discussions

Results ANN Cp case c=0.8

1600

Results ANMN Cp case c=0.85

& fmble ® fable
= predictions = predictions
1530 1550
1500 1500
8‘ 1450 1450
1400 1400
1330 1350
1300 1300
o0 02 04 06 08 1.0 0o 02 04 06 0.8 1.0
variance z[-] variance z[-]
Results ANN Cp case c=0.9 Results ANN Cp case c=0.95
1850
1600 & f@ble s fable
— predictions 1600 —— predictions
1530
1550
1500
1500
& 1450 1450
1400 1400
1350 1350
1300 1300
o0 02 04 06 08 1.0 oo 0.2 04 06 0.8 1.0

variance z[-]

variance z[-]

Figure 6-14: Case 2: C, with respect to the variance of mixture fraction for different values of
mean scaled progress variable. Preliminary results.
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e Mean molar mass of the mixture[g/mol]
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Figure 6-16: Case 1: Mean Molar mass of the mixture with respect to mean scaled progress
variable for different values of mean mixture fraction. Preliminary results.
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Figure 6-17: Case 2: Mean Molar mass of the mixture with respect to the variance of mixture
fraction for different values of mean scaled progress variable. Preliminary results.
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Figure 6-18: Case 3: Mean Molar mass of the mixture with respect to the variance of the scaled
progress variable for different values of of mean scaled progress variable. Preliminary Results.
Additionally, we obtain the statistical measures given in the following table 6-2:

Table 6-2: Statistical indicators, training and prediction time, memory requirement for ANN
models for different outputs.

Output tirain(s] | tpred[s] MSE;4in MSE;.q RZ in RZ2 ., | memory [kb]
SourcePV 9030.021 | 0.25346 | 1.0128 - 10~% | 1.0204 - 10=° | 0.99979 | 0.99979 55
Temperature | 6223.883 | 0.12528 | 8.7518 - 107 | 8.9343-10~7 | 0.99995 | 0.99995 54
Cp 6153.125 | 0.42465 | 1.6589-107% | 1.6643 - 1075 | 0.99997 | 0.99997 54
Mean mass | 9821.582 | 0.15941 | 9.3244 - 10~ 7 | 9.2964 - 107 | 0.99998 | 0.99998 54

Where t4r4in and ty,¢q, denote the training time and prediction (retrieval) time, respectively.
Likewise, M SFErqin, MSFE;est, R?rain and Rfest denote the mean squared error(MSE) and
coefficient of determination (R?) of the training (train) and test set, respectively.

From figure 6-7 and 6-10, we can observe that the ANNs are able to capture the underlying
physical behaviour of the 4D Lookup table. Furthermore, from figures 6-8,6-9,6-11 and 6-12,

we can observe that ANNs are very well capable to represent the behaviour of the source term

of the progress variable and temperature over fluctuations in mixture fraction(Z"2) and scaled

progress variable (C”2). This is also confirmed by the statistical measures shown in table 6-2,
where the Mean Squared Error (MSE), which compares the values of the 4D lookup table and
the predictions obtained using the ANN models are order of 1076 and 10~7 in training and test
set for the source term of the progress variable and temperature, respectively. The fact that
both MSE in training and test set are roughly equal shows that overfitting is not present. This
is also verified by the coefficient of determination in both data sets that are approximately
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equal and close to 1. This implies that a very accurate fitting has been achieved. Although
the flamelet data shows some irregularities at high progress variable in case of rich mixture
(high mixture fraction) as it can be seen from figures 6-7 and 6-10. In principle, it would not
be so important for applications since this is a very small region in physical space and also
because in that range the unscaled progress variable is rarely changing.

Nevertheless, from the results obtained for the outputs, mean molar mass of the mixture
and heat capacity, we can observe that there are sharp discontinuities in the case of no
fluctuations in mixture fraction and progress variable. These unexpected discontinuities grow
for richer mixtures at high progress variable, as it can be seen in figures 6-13 and 6-16. The
statistical indicators in table 6-2 do not reflect this nonphysical behaviour in 6-2, where both
the MSE and R?’s reflect that the ANNs have done a good job understanding the flamelet
data. Therefore, we can conclude that although statistics provides powerful techniques in
order to guide us to make a firm conclusion regarding whether a model is accurate, it is
always a useful tool to plot the results in order to check effectively if the models are stable or
if the data set has some issues as is the case in this project.

In order to figure out where these issues come from, we must come back to the generation of
the lookup table. From figures 6-14,6-15,6-17 and 6-15, we can observe that these nonphysical
behaviours are not present when fluctuations in mixture fraction and scaled progress variable
are considered. Hence, we can conclude that the issues in the lookup table have no relation to
the PDF integration. Thereby, the issues may occur in the generation of steady and unsteady
flamelets in the FGM approach. This issue will be further elaborated on the next section.

6.1.1.3 Issue 4D Table: flamelets computation

In the FGM approach, a manifold is created by steady flamelets which fill the table for
high progress variable and unsteady flamelets which covers the low values of the progress
variable (colder zones) where convection and diffusion are simultaneously important. Thus,
the steady flamelets are computed for different strain rates from low values (close to zero) until
the extinction strain rate. Subsequently, considering the last burning steady flamelet as initial
condition, unsteady flamelets at a fixed strain rate set slightly above the extinction strain rate
are calculated and reported at different times. In [20], the extinction strain rate considered
was 9110[s~!], and unsteady flamelets were calculated using a strain rate of 9120[s~!]. In
this way, the following steady and unsteady flamelets shown in figure 6-19 were obtained .

From figure 6-19, we can see that, at first glance, there is no sign of any issue. Nevertheless,
as we mentioned in the previous section 6.1.1, the issues presented in some outputs may occur
before integrating the fluctuations in mixture fraction and unscaled progress variable. Thus,
looking closer at the boundary of the steady and unsteady flamelets (right side figure 6-19),
we can observe an overlap at the beginning of unsteady flamelets. This is not expected to
occur in the case that the extinction strain rate is chosen correctly. At the right extinction
strain rate, the unsteady flamelets at different times must converge to different solutions.
Therefore, in the next section, we will depict how to choose the right extinction strain rate,
and the new steady and unsteady flamelets for the new extinction strain rate encountered
will be shown.
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Figure 6-19: Schematic description of issues regarding the generation of steady and unsteady
flamelets. Adapted from [20] where Y is the progress variable and FBLGR is the Bilger's mixture
fraction.

6.1.2 Final Results

In this section, we will present the final results once the issue presented in the 4D FGM lookup
tables has been fixed.

6.1.2.1 Solution 4D table

As it was explained in the previous section 6.1.1.3, the extinction strain rate may not have
been chosen correctly in [20]. In this way, as the strain used in [20] was 9110[s™], we take
this as previous knowledge and we proceed as follows: we recompute the steady flamelet
but considering an extinction strain rate far from the previous extinction strain rate, in this
case 9300[s~!]. This higher strain rate is based on the following assumption: for strain rates
smaller than the extinction strain rate, the solution should converge at few numerical itera-
tions. However, when the strain rate is higher than the extinction strain rate, the numerical
computations should take much more time because the solution should not converge even
considering a very high number of iterations. Thus, we compute steady flamelets at every
increment of 10[s~!] of the strain rate in the range 9000[s~!] to 9300[s~1]. While the com-
putations were carried out, it was encountered that at 9190[s~!] the steady flamelet was not
converging even though the maximum number of iterations was reached. Therefore, the pre-
vious strain rate 9180[s~!] should correspond to the extinction strain rate for this hydrogen
flame.
Thus, we compute steady flamelets from a strain rate of 10[s~!] until the extinction strain
rate of 9180[s~!] and unsteady flamelets at strain rate 9190[s~!] considering the last burning
steady flamelet(at strain rate 9180[s~!]) as initial condition for the unsteady flamelets. In
this way, 136 and 144 steady and unsteady flamelets are computed, respectively, and a new
4D FGM table is created where steady and unsteady flamelets are plotted in 6-20.
Comparing 6-19 and 6-20, we can observe that both show a peak of the progress vari-
able at approximately Z = 0.2 and have the same shape. However the problem related to
the boundary between steady and unsteady flamelets has disappeared(right side figure 6-20).
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Steady and Unsteady flamelets
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Y
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Figure 6-20: New steady and unsteady flamelets generated using a new extinction strain rate of
9180[s~1].

Additionally, we compare the new table with the experimental data reported in [19], which is
shown in figure 6-21.

From figure 6-21, we can observe that the new 4D lookup table is in agreement with the

Data Steady and Unsteady flamelets

steady
unsteady

Progress Variable(Yy,0)

0 0.1 02 03 04 05 06 07 08 09 1 00 02 04 06 08 10
FBLGR 7]

Figure 6-21: Comparison between experimental data(left) and the new 4D lookup ta-
ble(right).(experimental data adapted from [20])

shape and the maximum of the experimental data. Nevertheless the peak is predicted around
7 = 0.2 instead of Z = 0.31 shown in the experimental data. Although the experiment also
includes the effects of differential diffusion, this difference related to the peak position may
be because flamelets are sufficiently disturbed by the flow to supress the effects of differential
diffusion. This must be understood in future research.

Hence, we can conclude that a better choice of the extinction strain rate in the calculations
of steady and unsteady flamelets has fixed the unexpected issues encountered in this project.
In the following section, we will train the ANN models again with the new 4D lookup table.
Furthermore, we will see how these models show better performance.

6.1.2.2 ANN models for different outputs
Using the new 4D Lookup table, we train the Artificial Neural Network (ANN)s keeping the

architecture and procedure used previously(see sections 6.1.1 and 5.4). Thus, considering the
aforementioned cases 1-2-3 explained in section 6.1.1.1, we obtain the following results:
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Figure 6-22: Case 1: Source term of the progress variable with respect to mean scaled progress
variable for different values of mean mixture fraction. Final results.
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Figure 6-23: Case 2: Source term of the progress variable with respect to the variance of mixture
fraction for different values of mean scaled progress variable. Final results.

Delft University of Technology

Master of Science Thesis



6.1 4D Hydrogen Table

47

2500

2000

o
=
=

SourcePVikal(ms)]
=]
[=]
]

2
=

2000

1750

1500

1250

1000
T30

SourcePVkg/(m’s)]

500
250

Results ANM SourcePV case c=0.8, Z = Zz, var 2=0

Results ANN SourcePV case c=0.9, Z = Zg, var z=0

02

02

04

06

variance c[-]

04

06

variance cl-]

table

— predictions

08

table

1.0

— predictions

08

10

2500

2000

1500

1000

SourcePVika/(ms)]

500

1200

1000

800

600

400

SourcePVkg/(m>s)]

200

Results ANMN SourcePV case c=0.85, Z= Zz, var z=0

® fable
— predictions

oo 0z 04 06 0.8 1.0
variance c-]

Results ANN SourcePV case ©=0.93, Z= Zy, var z=0

« fable
— predictions

o0 02 04 (111 08 10
variance cl-]

Figure 6-24: Case 3: Source term of the progress variable with respect to the variance of progress
variable for different values of mean scaled progress variable. Final results.
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Figure 6-25: Case 1: Temperature with respect to mean scaled progress variable for different
values of mean mixture fraction. Final results.
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Figure 6-26: Case 2: Temperature with respect to
values of mean scaled progress variable. Final results.
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Figure 6-27: Case 3: Temperature with respect to variance of the scaled progress variable for

different values of mean scaled progress variable. Final results.
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Figure 6-28: Case 1: C, with respect to mean scaled progress variable for different values of

mean mixture fraction. Final results.
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Figure 6-29: Case 2: (), with respect to variance of mixture fraction for different values of mean

scaled progress variable. Final results.
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Figure 6-30: Case 3: (), with respect to variance of the scaled progress variable for different
values of mean scaled progress variable. Final results.

e Mean molar mass of the mixture[g/mol]

Results ANN MeanMass case z=0.2, var z=0, var c=0

& fmble
= predictions

BB ¥

MeanMass[g/mol]
BB B
[T

0.0 0.2 04

o

06

08

Results ANN MeanMass case z=0.8, var z=0, var c=0

& fable
18.1 = predictions

MeanMass[g/mol]
=
=)

=
~

~
@

0.0 0.2 04

ol

06

08

20.6

204

20.2

MeanMass[g/mol]

MeanMass[g/mol]

0.0

= predictions

0.0

Results ANN MeanMass case z=0.5, var z=0, var c=0

table

predictions

02

04

o

06 0.8 1.0

Results ANN MeanMass case z=0.9, var z=0, var c=0

table

Figure 6-31: Case 1: Mean Molar mass of the mixture with respect to mean scaled progress

variable for different values of mean mixture fraction. Final results.
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The statistical measures and training and prediction time are summarised in the following
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table 6-3:

Table 6-3: Statistical indicators, training and prediction time, memory requirement for ANN
models for different outputs of the new 4D lookup table.

Output M S Eirain MSEcqs R?rain RtZest ttrain [S} tp?"ed [S]
Cy 1.24428-107 [ 1.23859-10% | 0.999980 | 0.999980 | 9683.374 | 0.050987
Density 2.90148-1076 | 2.92510-107° | 0.999928 | 0.999928 | 9300.986 | 0.067274
H>0, 1.89499-107° | 2.39758-10~° | 0.998569 | 0.998193 | 7534.424 | 0.15825
H>0 2.84964-10~7 | 2.81689-10~7 | 0.999988 | 0.999989 | 7061.082 | 0.12892
H, 6.64536-10~" | 6.66804-10~" | 0.999991 | 0.999991 | 6678.862 | 0.062501
HO, 5.71510-107° | 5.50952-10~° | 0.997193 | 0.997295 | 2919.26 | 0.124999
H 6.21589-1076 | 6.08647-1075 | 0.999521 | 0.999531 | 6388.448 | 0.162355
Mean Mass | 8.33418.10~7 | 8.27341-10~" | 0.999988 | 0.999988 | 10058.70 | 0.071956
N 4.94074-10~7 | 5.10637-10~7 | 0.999994 | 0.999994 | 5152.653 | 0.117927
05 2.49793-10~7 | 2.47302-10~7 | 0.999997 | 0.999997 | 4931.536 | 0.092883
OH 2.73983-1076 | 2.68629-10~° | 0.999020 | 0.999061 | 5201.218 | 0.124088
§) 2.72881-107° | 2.89858-107° | 0.998567 | 0.998472 | 5011.494 | 0.0625
SourcePV | 1.87124-107° | 1.81386-107% | 0.999617 | 0.999628 | 6011.434 | 0.123022
Temperature | 1.88581-107° | 1.90657-10=% | 0.999902 | 0.999902 | 8647.162 | 0.207926

From figure 6-22, we can see that at high mixture fractions, the issues mentioned in section
6.1.1 have been solved. Additionally, from figures 6-23 and 6-24, we can observe that the
ANN is well capable to represent the flamelet data for turbulent flames. The statistical mea-
sures also reflect this in table 6-3, where the error is order 1076 in both training and test set.
Likewise, the coefficient of determination are 0.999617 and 0.999628 in training and test data
set, respectively, which implies that a very accurate fitting has been achieved. Although for
richer mixture (bottom plots in figure 6-22) it seems at first glance that the ANN has a worse
performance in that area, it must be noted that the vertical scale is smaller in comparison to
the other plots in the same figure (from 0 to 80 in comparison to the other scales that are in
the range 0 to 4000). So, it cannot be concluded that the ANN performs better or worse in
some areas. In fact, we can conclude that the ANN model has a good performance in each
area of the table.

Similar conclusions can be made in the case of temperature. From figure 6-25, we can ob-
serve that the ANN makes an excellent job capturing the higher temperatures closer to the
stoichiometric state. This can also be observed where fluctuations in mixture and progress
variable are considered (figures 6-26 and 6-27). From the bottom right plot at figure 6-25, we
can observe that at high unscaled progress variable, the temperature is not strictly increasing.
This could be a consequence of particular chemical reactions that may be occurring in that
area of the physical space. This behaviour is also present in the 6D lookup table as will be
explained in the section 6.2.1. From this particular trend, we can conclude that temperature
cannot depict a combustion process unambiguously, in other words, temperature should not
be used as a progress variable.

On the other hand, figures 6-28 and 6-31 show that the nonphysical behaviour has been al-
most completely solved. The new results show a good match between steady and unsteady
flamelets. However, we can observe in figure 6-28 that at C = 0, the heat capacity has a
discontinuity which becomes larger at high values of mixture fraction. This could be a con-
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sequence of a round off error while the flamelets were generated, which may induce the error
in Cp. This must be understood in future research.

Regarding the ANNs for heat capacity, it seems from figure 6-28 that C), might be very diffi-
cult to represent by ANN. However, from the same figure, we can see that where it seems that
ANN has a poor performance, the scale is very small (the range is 5). Thus, the error made
in rich mixtures is very small. This can be confirmed by the statistical behaviour for the C,
(table 6-3), where the error is order 1075 and the coefficient of determination is 0.999980 in
both training and test sets. Therefore, as it was concluded for the source term of the progress
variable, the ANN performs quite good along the whole area in the 4D lookup table.
Furthermore, from table 6-3, we can conclude that the ANNs are able to represent each output
with high accuracy . Additionally, we can observe different training times for thermochemical
quantities that have the same ANN architecture. This difference is explained as a consequence
of using Early Stopping technique.

Finally, in the following table 6-4, we compare the memory requirement of a lookup table
(single output) with respect to the memory requirement of the ANN models obtained:

Table 6-4: Comparison of memory requirements between 4D lookup table(Single output) with
ANN models obtained in the current project.

Table size Memory requirement
4D Lookup table (one output) 26.5MB
ANN 54 — 55kB

From table 6-4, we can observe a substantial memory reduction of around 500 times. This
memory saving could be used for performing more detailed numerical simulation in parallel
computing mode using more cores. Although it was not possible to perform a numerical
simulation in a CFD solver during the current project, a larger retrieval time may be expected
using ANNs in comparison to retrieving the information from the lookup table. This is
expected due to the simple fact that an ANN is a much more complex model than the usual
linear interpolation used for retrieving the information from the lookup tables. Nevertheless,
the majority of time in CFD simulation is usually spent on solving the transport equations
rather than retrieving information from the lookup tables[11]. Therefore the expected increase
in retrieving information using ANNs may not increase substantially the overall time usually
spent on CFD simulations.

6.2 6D Diluted Air FGM (DA-FGM) Dutch natural gas table

Using the knowledge gained on training ANNs for the 4D lookup table, we proceed to extend
the use of ANNSs for the 6D lookup table generated using the DA-FGM approach for the case
of dutch natural gas. Then, we follow the procedure explained in section 5.4, finding out
that the most suitable ANN architectures are: 30-30-30-30 for the source term of the progress
variable and 26-26-26-26 neurons for the rest of the thermochemical quantities stored in the
lookup table. As this table extends the Flamelet Generated Manifold (FGM) approach to
diluted and Non-adiabatic flames, we consider the three cases mentioned in section 6.1.1.1
and added a fourth case including heat loss. These cases are described as follows:
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Case 1: Case without fluctuations, adiabatic and no dilution - the output varies with
respect to the mean scaled progress variable C, for different values of mean mixture

fraction Z, considering C"2 = Z"2 = jj =7 = 0.

Case 2: Stoichiometric mixtures with fluctuations in mixture fraction, without heat
losses and no dilution - the output varies with respect to the variance of mixture fraction
Zs, for different and high values of the mean
7 =0.

7”2 at stoichiometric mixture fraction Z —
scaled progress variable C' and considering C"2 = 7j =

Case 3: Stoichiometric mixtures with fluctuation in the scaled progress variable without
heat loss and no dilution - the output varies with respect to the variance of scaled

progress variable C”'2 at stoichiometric mixture fraction 7 = Es/t, for different and high

values of the mean scaled progress variable C and considering Z"2 =7 =7 =0.

Case 4: Diluted stoichiometric mixtures with heat losses without fluctuations in mix-
ture fraction and scaled progress variable - the output varies with respect to the mean
enthalpy loss factor 1 at stoichiometric mixture fraction Z = Zst and at a given mean
dilution level 7, for different and high values of the mean scaled progress variable C and

considering Z"2 = C"2 = 0.

6.2.1 Results

First, we show the results obtained for the most difficult output to be represented by an ANN
which is the source term of the progress variable. The results are shown as follows:
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Figure 6-34: Case 1: Source term of the progress variable with respect to mean scaled progress
variable for different values of mean mixture fraction. 6D Table.
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Figure 6-35: Case 2: Source term of the progress variable with respect to the variance of mixture
fraction for different values of mean scaled progress variable. 6D Table.
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Figure 6-36: Case 3: Source term of the progress variable with respect to the variance of the
scaled progress variable for different values of mean scaled progress variable. 6D Table.
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Figure 6-37: Case 4. Source term of the progress variable with respect to enthalpy loss factor
for different values of the scaled progress variable. 6D table.

From figure 6-34, we can observe that the source term of the progress variable reaches the
higher values for lean mixtures. Additionally, we can observe that the ANN is able to capture
the peak of this output successfully. Moreover, the model is stable in the case of no fluctuations
in mixture fraction and progress variable. Although, when the mixture fraction is higher, we
can observe some deviations between the prediction given by the ANN and the value stored
in the table (plots at the top right, bottom left and right in figure 6-34), we must note the
following: for E = 0.2, the largest deviations between the prediction made by the ANN and
the value store in the lookup table is around 2.5 when C ~ 0.8. The same observation can
be made for richer mixtures when the deviations between the predictions and the true values
are smaller than 0.25. The ANN may have been made similar errors for lean mixtures but
due to the large scale of the source term of the progress variable in those cases(intervals of
hundreds), these errors cannot be observed in the plot. Therefore, we can conclude that the
ANN have the same accuracy and stability along laminar-adiabatic and non-diluted flamelets.
Similar conclusions can be made in the case 3 and 4 from figures 6-36 and 6-37, respectively,
where the ANN is well capable to represent the fluctuations in progress variable and when
diluted-non adiabatic effects are taking into account. Although some wiggles are developed
for higher values of the progress variable (figure 6-36) at small fluctuations in the progress
variable (closer to zero), they are very small in size and disappear almost immediately when
fluctuation in the progress variable increases. Therefore, we can conclude that the model can
represent fluctuations in progress variable successfully and when heat losses and dilution are
considered.

However, in case 2 of fluctuation in mixture fraction (figure 6-35), we can observe nonphysical
peaks for smaller fluctuation in mixture fraction (closer to zero). Although they are confined
in a narrow area closer to zero (no fluctuations), these peaks are large (order of hundreds)
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for C = 0.8 and C' = 0.86, and becomes smaller until they disappear for higher values of C.
In order to study whether these nonphysical peaks are present along the table, we plot case 2
but considering non-adiabatic(7 ~ 0.5) and diluted flamelets (7 = 0.5). Thus, we obtain the
results shown in figure 6-38:
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Figure 6-38: Case 2: Source term of the progress variable with respect to the variance of mixture
fraction for different values of mean progress variable considering ¥ = 0.5 and 77 = 0.5. 6D Table.

In figure 6-38, the sharp peaks at low variance as observed in figure 6-35 are absent. Although
fo the case C = 0.96 a wiggle is developed, its magnitude is very small (less than 4 in size).
Hence, we can conclude that non-physical sharp peaks are localized closer to non diluted-
adiabatic flames and when fluctuations in mixture fraction are small (closer to zero). In order
to address this issues, other ANN architectures are considered: 1) increasing the number of
neurons per hidden layer to 36 and 2) adding an additionally hidden layer and reducing the
neurons per layer to 16. The first option is based on the assumption that increasing the num-
ber of neurons would allow the model fitting better the data and, at the same time, forcing
the model to lower the undesired peaks. The second option is based on the assumption that
adding an additional hidden layer would allow mapping the data into another high dimen-
sional space where the regression problem would be, in principle, easier to achieve. In order to
avoid large amount of figures, the results for these architectures can be found in the appendix
A of this report. Contrary to our expectation, these two strategies cause the opposite effect:
Non-physical peaks become larger and more wiggles are developed. As possible explanation,
it can be pointed out that these sharp peaks present in the ANN arise in areas where the
ANN cannot compare its predictions with the true values of the table. As it can be seen in
figure 6-35, these peaks appear in the interval of fluctuations in mixture fraction of [0, 0.1]
and the table only contains the values of the source term of the progress variable at 0 and 0.1.
Therefore, the model is unable to know whether its predictions are accurate within this range.
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Hence, we can conclude that a refinement of the mesh in the variance of mixture fraction in
the range [0,0.1] would be required in order to inform the ANN about the true values in that
area and, indirectly, force the model to eliminate the non-physical peaks present in that range.

On the other hand, for the rest of the thermochemical quantities stored in the 6D lookup
table, we here show only the results of temperature, kinematic viscosity and grey absorption
coeflicient. Moreover, the following table 6-5 summarizes the statistical measures for the most

important outputs in the 6D lookup table:

Table 6-5: Statistical indicators, training and prediction time, memory requirement for ANN
models for different outputs of the 6D lookup table.

OutPUt MSEtrain MSEtest R?rain R%est tirain [S] tp'r‘ed[s]
alpha 2.29116-1077 | 2.29437-10~" | 0.999994 | 0.999994 | 31687.63 | 0.09248
kI, 9.24757-10~7 | 9.25337-10~" | 0.999971 | 0.999971 | 38922.24 | 0.061967
k 6.20130-10~7 | 6.21295-10~" | 0.999982 | 0.999982 | 31136.22 | 0.043862
psi 2.43773-1077 | 2.43958-10~" | 0.999995 | 0.999995 | 40089.48 | 0.161509
SourcePV | 1.86031-10~7 | 1.84412-10~" | 0.999412 | 0.999417 | 20890.64 | 0.099103
Temperature | 4.98109-10~7 | 4.98189-10~7 | 0.999987 | 0.999987 | 15904.38 | 0.192252
variance T | 3.20249-10~7 | 3.19699-10~" | 0.999966 | 0.999966 | 29918.38 | 0.084579
Viscosity 1.64439-107° | 1.64529-107% | 0.999961 | 0.999960 | 34596.42 | 0.084856
Yoy, 1.41469-10~7 | 1.41901-1077 | 0.999475 | 0.999476 | 34236.36 | 0.043884
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Figure 6-39: Case 1: Temperature with respect to mean scaled progress variable for different
values of mean mixture fraction. 6D Table.
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Figure 6-42: Case 4: Temperature with respect to enthalpy loss factor for different values of the
mean scaled progress variable. 6D table.
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Figure 6-43: Case 1: Viscosity with respect to mean scaled progress variable for different values
of mean mixture fraction. 6D Table.
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Figure 6-47: Case 1: Grey absorption coefficient with respect to mean scaled progress variable
for different values of mean mixture fraction. 6D Table.
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Figure 6-48: Case 2: Grey absorption coefficient with respect to the variance of mixture fraction
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Figure 6-50: Case 4: Grey absorption coefficient with respect to enthalpy loss factor for different
values of the mean scaled progress variable. 6D table.

From the above figures, we can observe that, in general, the ANN models are very well capable
to represent the outputs along the whole table. This can be confirmed observing the statistical
measures in table 6-5, where the MSE in training and data set are around the same and order
10~7 in both cases. Likewise, the coefficient of determinations in both sets are very close to
1, which implies that accurate fitting has been achieved. This can also be seen from figures
6-39 to 6-50. Regarding to these outputs, we can see that their scales do not change along the
table, for instance, in the case of temperature, the scale is order 102, whereas in kinematic
viscosity is order 107°. Conversely, in the source term of the progress variable, there is a
wider range of scales from 0 to 102. This fact combined with the high non-linearity of this
output may explain why it is so difficult to represent it using an ANN in comparison to the
other outputs.

Moreover, as it was pointed out in section 6.1.2, we can observe from figure 6-39 that the
temperature is not strictly increasing. Therefore, we can conclude that temperature does
not define unambiguously a state during combustion and it should not be used as a progress
variable.

Finally, in the following table 6-6, we compare the memory requirement of a lookup table
(single output) with respect to the memory requirement of the ANN models obtained:

Table 6-6: Comparison of memory requirements between 6D lookup table(Single output) with
ANN models obtained in the current project.

Table size Memory requirement
6D Lookup table (one output) 625.3MB
ANN 72 — 80kB
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From table 6-6, we can observe a substantial memory reduction of around 7800 times. There-
fore, a substantial reduction in memory has been achieved. Additionally, with these models
performing Large Eddy Simulations (LES) may be possible and more reliable results could
be obtained. Although it was not possible to perform a numerical simulation in a CFD solver
during the current project, the retrieval time is expected to be larger than retrieving infor-
mation from the lookup table. Nonetheless, this retrieval time is expected to be more similar
to retrieving the information using lookup tables than was the case in the 4D table. This is
because, as the 6D lookup tables contains 45 millions points, searching information in those
tables may be quite similar to retrieving information from ANNs. Therefore, retrieving infor-
mation using ANNs in the case of the 6D lookup table eventually will not cause an increase
on the overall time during CFD simulations.
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Chapter 7

Conclusions and Recommendations

In this master thesis project, Artificial Neural Networks have been applied in order to simplify
and replace the chemistry representation provided by lookup tables in turbulent combustion.
From the results, we can conclude the following:

e Using Artificial Intelligence, in this case Artificial Neural Networks, provides powerful
models that are well capable to represent with high accuracy and high stability the
thermochemical quantities stored in a 4D lookup table for hydrogen flames.

e However, for the 6D lookup table for dutch natural gas, the ANN model for the source
term of the progress variable shows some non-physical peaks for stoichiometric-non
diluted-adiabatic mixtures for small fluctuations in mixture fraction. Nonetheless, this
is only present in a confined area in the table. Therefore, these instabilities should not
cause important numerical issues when CDF simulations are being performed.

e The previous non-physical peaks are not a surprise in the sense that the ANN technique
can be categorized as an optimization problem, where there is a target and the ANN
tries to predict the target with the smallest error possible. Therefore, in order to improve
these model, we must inform the model in advance with the physics that underlies in
the lookup table generation.

e Although in this project paid a lot of attention on choosing carefully the activation
function and rescaling adequately the data, alternative techniques must be employed in
order to make these models physically-informed.

e For the other thermochemical quantities stored in the 6D lookup table, the ANNs are
quite good in understanding the flamelet data in terms of accuracy and stability.

e The high accuracy and stability obtained employing ANNs are achieved at considerably
lower storage requirement in comparison to the lookup tables studied in this report.
Hence, they achieve the goal of reducing substantially the memory requirement of con-
ventional lookup tables.
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e Likewise, obtaining highly stable models depends on the choice of the activation func-

tions in hidden and output layers. Additionally, using more than one hidden layer helps
to achieve this goal.

Finally, the FGM and its extensions (for instance, DA-FGM approach) rely on accurate
generation of steady and unsteady flamelets. Creating inaccurate flamelets could lead
to nonphysical results as it was found out in the middle of this project. Therefore,
choosing carefully the extinction strain rate is one of the most important decisions in
order to obtain good results when the FGM approach and its extensions are used.

Finally recommendations and future research for the current topic are provided as follows:

With the new 4D lookup table for hydrogen flames, it may be a good idea to repeat the
CFD simulation made using ANSY'S Fluent in [20]. Better results and faster convergence
may be expected.

As it was mentioned in section 6.2.1, one way of informing the model about the physics
that underlies on the table is to refine the table in the zone where the nonphysical peaks
were found. Adding the values of the output at £’2 = 0.05 may be enough to force the
model to lower these sharp peaks and, at the same time, avoid increasing substancially
the table size. This also would have a directly consequence in not increasing so much
the training time of the ANNs.

For the current project, the large amount of data contained in the lookup tables allows
avoiding the use of regularization techniques such as dropout, batch normalization and
others, which prevent the Machine Learning models to suffer overfitting. Nevertheless,
for other cases where the data set is smaller than the ones considered in this project,
such techniques must be used in order to avoid overfitting.

As it was mentioned in section 3.3, the inputs and outputs dimensionality can be in
principle as many as we want (there is no restriction). However, higher dimensionality
on inputs and outputs implies a more complex model and a higher risk of overfitting.
For large data sets as the ones considered in this project, this does not represent an issue.
Nevertheless, for smaller data sets and high input dimensionality, overfitting will be more
likely to occur. This is called Curse of dimensionality. In such cases, dimensionality
reduction techniques such as Principal Component Analysis (PCA) should be applied.

Finally, CFD simulations using the ANNs would be necessary in order to study whether
they improve the convergence due to their smooth representations(in comparison to
the linear interpolation) and, whether this improvement in convergence balances the
expected overhead due to higher retrieval time using ANNs.
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Appendix A

Other ANN architectures for the
source term of the progress variable

The results for other ANN architectures used for the Source term of the progress variable are

given as follows:

o Architecture 36-36-36-36:
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Figure A-1: Case 1: Source term of the progress variable with respect to mean scaled progress
variable for different values of mean mixture fraction. 6D Table. Architecture 36-36-36-36.
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Figure A-2: Case 2: Source term of the progress variable with respect to the variance of mixture
fraction for different values of mean scaled progress variable. 6D Table. Architecture 36-36-36-36.
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Figure A-3: Case 3: Source term of the progress variable with respect to the variance of scaled

progress variable for different values of mean scaled progress variable. 6D Table.Architecture
36-36-36-36.
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Results ANN SourcePV case ¢=0.5, var z=0 , var ¢=0, y=0.6
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Figure A-4: Case 4: Source term of the progress variable with respect to enthalpy loss factor for
different values of the scaled progress variable. 6D table. Architecture 36-36-36-36.
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Figure A-5: Case 1: Source term of the progress variable with respect to mean scaled progress
variable for different values of mean mixture fraction. 6D Table. Architecture 16-16-16-16-16.
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Figure A-6: Case 2: Source term of the progress variable with respect to the variance of mixture
fraction for different values of mean scaled progress variable. 6D Table. Architecture 16-16-16-
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different values of the mean scaled progress variable. 6D table. Architecture 16-16-16-16-16.
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List of Acronyms

ANN
MP
UAT
Al
SOM
FGM
ML
DL
PCA
DA-FGM
RANS
LES
GD
SGD
EBP
SGD
NS
DNS
LES
CFD
CSv
RELU
PDF
ILDM

Artificial Neural Network
Multilayer Perceptron

Universal approximation theorem
Artificial Intelligence
Self-Organizing Map

Flamelet Generated Manifold
Machine Learning

Deep Learning Neural Network
Principal Component Analysis
Diluted Air FGM

Reynolds Average Navier-Stokes
Large Eddy Simulation
Gradient Descent

Stochastic Gradient Descend
Error Back Propagation
Stochastic or Online Gradient Descent
Navier-Stokes equations

Direct Numerical simulations
Large Eddy Simulations
Computational Fluid Dynamics
Comma Separated Value
Rectified Linear

Probability Density Function

Intrinsic Low Dimensional Manifold
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78 Glossary
MILD Moderate or Intense Low Oxygen Dilution

MSE Mean Squared Error

WSGG Weighted-Sum-of-Grey-Gases

RTE Radiative Transfer Equation

TRI Turbulent Radiation Interaction

List of Symbols

W Learning Rate
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