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Nonparametric Bayesian Volatility
Estimation

Shota Gugushvili, Frank van der Meulen, Moritz Schauer, and Peter Spreij

Abstract Given discrete time observations over a fixed time interval, we study
a nonparametric Bayesian approach to estimation of the volatility coefficient of
a stochastic differential equation. We postulate a histogram-type prior on the
volatility with piecewise constant realisations on bins forming a partition of the
time interval. The values on the bins are assigned an inverse Gamma Markov
chain (IGMC) prior. Posterior inference is straightforward to implement via Gibbs
sampling, as the full conditional distributions are available explicitly and turn
out to be inverse Gamma. We also discuss in detail the hyperparameter selection
for our method. Our nonparametric Bayesian approach leads to good practical
results in representative simulation examples. Finally, we apply it on a classical
data set in change-point analysis: weekly closings of the Dow-Jones industrial
averages.
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1 Introduction

1.1 Problem Formulation

Consider a one-dimensional stochastic differential equation (SDE)

dXt = b0(t,Xt ) dt + s0(t) dWt, X0 = x, t ∈ [0, T ], (1)

where b0 is the drift coefficient, s0 the deterministic dispersion coefficient or
volatility, and x is a deterministic initial condition. Here W is a standard Brownian
motion. Assume that standard conditions for existence and uniqueness of a strong
solution to (1) are satisfied (see, e.g., [47]), and observations

Xn = {Xt0,n , . . . , Xtn,n}

are available, where ti,n = iT /n, i = 0, . . . , n. Using a nonparametric Bayesian
approach, our aim is to estimate the volatility function s0. In a financial context,
knowledge of the volatility is of fundamental importance e.g. in pricing financial
derivatives; see [4] and [52]. However, SDEs have applications far beyond the
financial context as well, e.g. in physics, biology, life sciences, neuroscience and
engineering (see [1, 25, 40] and [76]). Note that by Itô’s formula, using a simple
transformation of the state variable, also an SDE of the form

dXt = b0(t,Xt ) dt + s0(t)f0(Xt ) dWt, X0 = x, t ∈ [0, T ],

can be reduced to the form (1), provided the function f0 is known and regular
enough; see, e.g., p. 186 in [66]. Some classical examples that fall under our sta-
tistical framework are the geometric Brownian motion and the Ornstein-Uhlenbeck
process. Note also that as we allow the drift in (1) to be non-linear, marginal
distributions of X are not necessarily Gaussian and may thus exhibit heavy tails,
which is attractive in financial modelling.

A nonparametric approach guards one against model misspecification and is an
excellent tool for a preliminary, exploratory data analysis, see, e.g., [65]. Commonly
acknowledged advantages of a Bayesian approach include automatic uncertainty
quantification in parameter estimates via Bayesian credible sets, and the fact
that it is a fundamentally likelihood-based method. In [51] it has been argued
that a nonparametric Bayesian approach is important for honest representation of
uncertainties in inferential conclusions. Furthermore, use of a prior allows one to
easily incorporate the available external, a priori information into the estimation
procedure, which is not straightforward to achieve with frequentist approaches. For
instance, this a priori information could be an increasing or decreasing trend in the
volatility.
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1.2 Literature Overview

Literature on nonparametric Bayesian volatility estimation in SDE models is scarce.
We can list theoretical contributions [34, 36, 54], and the practically oriented paper
[2]. The model in the former two papers is close to the one considered in the present
work, but from the methodological point of view different Bayesian priors are used
and practical usefulness of the corresponding Bayesian approaches is limited. On
the other hand, the models considered in [54] and [2] are rather different from ours,
and so are the corresponding Bayesian approaches. The nearest predecessor of the
model and the method in our paper is the one studied in [37]. In the sequel we
will explain in what aspects the present contribution differs from that one and what
the current improvements are. We note in passing that there exists a solid body
of literature on nonparametric Bayesian estimation of the drift coefficient, see, e.g.,
[35, 55, 57, 63, 70, 71] and the review article [72], but Bayesian volatility estimation
requires use of substantially different ideas. We also note existence of works dealing
with parametric Bayesian estimation in discrete-time stochastic volatility models,
see, e.g., [45] and [46], but again, these are not directly related to the problem we
study in this paper.

1.3 Approach and Results

The main potential difficulties facing a Bayesian approach to inference in SDE
models from discrete observations are an intractable likelihood and absence of a
closed form expression for the posterior distribution; see, e.g., [21, 25, 62] and
[69]. Typically, these difficulties necessitate the use of a data augmentation device
(see [67]) and some intricate form of a Markov chain Monte Carlo (MCMC)
sampler (see [61]). In [37], these difficulties are circumvented by intentionally
setting the drift coefficient to zero, and employing a (conjugate) histogram-type
prior on the diffusion coefficient, that has piecewise constant realisations on bins
forming a partition of [0, T ]. Specifically, the (squared) volatility is modelled a
priori as a function s2 = ∑N

k=1 θk1Bk , with independent and identically distributed
inverse gamma coefficients θk’s, and the prior Π is defined as the law of s2.
Here B1, . . . , BN are bins forming a partition of [0, T ]. With this independent
inverse Gamma (IIG) prior, θ1, . . . , θN are independent, conditional on the data,
and of inverse gamma type. Therefore, this approach results in a fast and simple to
understand and implement Bayesian procedure. A study of its favourable practical
performance, as well as its theoretical validation was recently undertaken in [37].
As shown there under precise regularity conditions, misspecification of the drift is
asymptotically, as the sample size n → ∞, harmless for consistent estimation of
the volatility coefficient.
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Despite a good practical performance of the method in [37], there are some
limitations associated with it too. Thus, the method offers limited possibilities for
adaptation to the local structure of the volatility coefficient, which may become
an issue if the volatility has a wildly varying curvature on the time interval
[0, T ]. A possible fix to this would be to equip the number of bins N forming
a partition of [0, T ] with a prior, and choose the endpoints of bins Bk also
according to a prior. However, this would force one to go beyond the conjugate
Bayesian setting as in [37], and posterior inference in practice would require, for
instance, the use of a reversible jump MCMC algorithm (see [32]). Even in the
incomparably simpler setting of intensity function estimation for nonhomogeneous
Poisson processes with histogram-type priors, this is very challenging, as observed
in [77]. Principal difficulties include designing moves between models of differing
dimensions that result in MCMC algorithms that mix well, and assessment of
convergence of Markov chains (see [22], p. 204). Thus, e.g., the inferential
conclusions in [32] and [33] are different on the same real data example using the
same reversible jump method, since it turned out that in the first paper the chain
was not run long enough. Cf. also the remarks on Bayesian histograms in [27],
p. 546.

Here we propose an alternative approach, inspired by ideas in [7] in the context
of audio signal modelling different from the SDE setting that we consider; see also
[8, 9, 15, 16] and [73]. Namely, instead of using a prior on the (squared) volatility
that has piecewise constant realisations on [0, T ] with independent coefficients θk’s,
we will assume that the sequence {θk} forms a suitably defined Markov chain. An
immediately apparent advantage of using such an approach is that it induces extra
smoothing via dependence in prior realisations of the volatility function across
different bins. Arguing heuristically, with a large number N of bins Bk it is then
possible to closely mimick the local structure of the volatility: in those parts of
the interval [0, T ], where the volatility has a high curvature or is subject to abrupt
changes, a large number of (narrow) bins is required to adequately capture these
features. However, the grid used to define the binsBk’s is uniform, and if θ1, . . . , θN

are a priori independent, a large N may induce spurious variability in the volatility
estimates in those regions of [0, T ] where the volatility in fact varies slowly. As
we will see in the sequel, this problem may be alleviated using a priori dependent
θk’s.

In the subsequent sections we detail our approach, and study its practical
performance via simulation and real data examples. Specifically, we implement
our method via a straightforward version of the Gibbs sampler, employing the
fact that full conditional distributions of θk’s are known in closed form (and are
in fact inverse gamma). Unlike [37], posterior inference in our new approach
requires the use of MCMC. However, this is offset by the advantages of our new
approach outlined above, and in fact the additional computational complexity of
our new method is modest in comparison to [37]. The prior in our new method
depends on hyperparameters, and we will also discuss several ways of their choice
in practice.
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1.4 Organisation of This Paper

In Sect. 2 we supply a detailed description of our nonparametric Bayesian approach
to volatility estimation. In Sect. 3 we study the performance of our method via
extensive simulation examples. In Sect. 4 we apply the method on a real data
example. Section 5 summarises our findings and provides an outlook on our
results. Finally, Sect. 6 contains some additional technical details of our proce-
dure.

1.5 Notation

We denote the prior distribution on the (squared) volatility function by Π and write
the posterior measure given data Xn as Π( · | Xn). We use the notation IG(α, β)

for the inverse gamma distribution with shape parameter α > 0 and scale parameter
β > 0. This distribution has a density

x �→ βα

Γ (α)
x−α−1e−β/x, x > 0. (2)

For two sequences {an}, {bn}, the notation an � bn will be used to denote the fact
that the sequences are asymptotically (as n → ∞) of the same order. Finally, for a
density f and a function g, the notation f ∝ g will mean that f is proportional to
g, with proportionality constant on the righthand side recovered as (

∫
g)−1, where

the integral is over the domain of definition of g (and of f ). The function g can be
referred to as an unnormalised probability density.

2 Nonparametric Bayesian Approach

2.1 Generalities

Our starting point is the same as in [37]. Namely, we misspecify the drift
coefficient b0 by intentionally setting it to zero (see also [49] for a similar idea
of ‘misspecification on purpose’). The theoretical justification for this under the
‘infill’ asymptotics, with the time horizon T staying fixed and the observation times
ti,n = iT /n, i = 1, . . . , n, filling up the interval [0, T ] as n → ∞, is provided
in [37], to which we refer for further details (the argument there ultimately relies
on Girsanov’s theorem). Similar ideas are also encountered in the non-Bayesian
setting in the econometrics literature on high-frequency financial data, see, e.g.,
[53].
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Set Yi,n = Xti,n − Xti−1,n . With the assumption b0 = 0, the pseudo-likelihood of
our observations is tractable, in fact Gaussian,

Ln(s
2) =

n∏

i=1

⎧
⎨

⎩

1
√
2π

∫ ti,n
ti−1,n

s2(u) du
ψ

⎛

⎝ Yi,n
√∫ ti,n

ti−1,n
s2(u) du

⎞

⎠

⎫
⎬

⎭
, (3)

where ψ(u) = exp(−u2/2). The posterior probability of any measurable set S of
volatility functions can be computed via Bayes’ theorem as

Π(S | Xn) =
∫
S

Ln(s
2)Π(ds)

∫
Ln(s2)Π(ds)

.

Here the denominator is the normalising constant, the integral over the whole space
on which the prior Π is defined, which ensures that the posterior is a probability
measure (i.e. integrates to one).

2.2 Prior Construction

Our prior Π is constructed similarly to [37], with an important difference to be
noted below. Fix an integer m < n. Then n = mN + r with 0 ≤ r < m, where
N = 	 n

m

. Now define bins Bk = [tm(k−1),n, tmk,n), k = 1, . . . , N − 1, and BN =

[tm(N−1),n, T ]. Thus the first N − 1 bins are of length mT/n, whereas the last bin
BN has length T − tm(N−1),n = n−1(r + m)T < n−12mT . The parameter N

(equivalently,m) is a hyperparameter of our prior. We model s as piecewise constant
on binsBk , thus s = ∑N

k=1 ξk1Bk . The priorΠ on the volatility s can now be defined
by assigning a prior to the coefficients ξk’s.

Let θk = ξ2k . Since the bins Bk are disjoint,

s2 =
N∑

k=1

ξ2k 1Bk =
N∑

k=1

θk1Bk .

As the likelihood depends on s only through its square s2, it suffices to assign the
prior to the coefficients θk’s of s2. This is the point where we fundamentally diverge
from [37]. Whereas in [37] it is assumed that {θk} is an i.i.d. sequence of inverse
gamma random variables, here we suppose that {θk} forms a Markov chain. This
will be referred to as an inverse Gamma Markov chain (IGMC) prior (see [7]), and
is defined as follows. Introduce auxiliary variables ζk, k = 2, . . . , N , and define a
Markov chain using the time ordering θ1, ζ2, θ2, . . . , ζk, θk, . . . , ζN , θN . Transition
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distributions of this chain are defined as follows: fix hyperparameters α1, αζ and α,
and set

θ1∼ IG(α1, α1), ζk+1|θk ∼ IG(αζ , αζ θ−1
k ), θk+1|ζk+1 ∼ IG(α, αζ−1

k+1). (4)

The name of the chain reflects the fact that these distributions are inverse Gamma.

Remark 1 Our definition of the IGMC prior differs from the one in [7] in the choice
of the initial distribution of θ1, which is important to alleviate possible ‘edge effects’
in volatility estimates in a neighbourhood of t = 0. The parameter α1 determines
the initial distribution of the inverse Gamma Markov chain. Letting α1 → 0 (which
corresponds to a vague prior) ‘releases’ the chain at the time origin. �
Remark 2 As observed in [7], there are various ways of defining an inverse
Gamma Markov chain. The point to be kept in mind is that the resulting posterior
should be computationally tractable, and the prior on θk’s should have a capability
of producing realisations with positive correlation structures, as this introduces
smoothing among the θk’s in adjacent bins. This latter property is not possible
to attain with arbitrary constructions of inverse Gamma Markov chains, such as
e.g. a natural construction θk|θk−1 ∼ IG(α, θk−1/α). On the other hand, positive
correlation between realisations θk’s can be achieved e.g. by setting θk|θk−1 ∼
IG(α, (αθk−1)

−1), but this results in intractable posterior computations. The defi-
nition of the IGMC prior in the present work, that employs latent variables ζk’s,
takes care of both these important points. For an additional discussion see [7]. �
Remark 3 Setting the drift coefficient b0 to zero effectively results in pretending
that the process X has independent (Gaussian) increments. In reality, since the
drift in practical applications is typically nonzero, increments of the process are
dependent, and hence all observations Yi,n contain some indirect information on
the value of the volatility s2 at each time point t ∈ [0, T ]. On the other hand,
assuming the IGMC prior on s2 yields a posteriori dependence of coefficients {θk},
which should be of help in inference with smaller sample sizes n. See Sect. 4 for an
illustration. �

2.3 Gibbs Sampler

It can be verified by direct computations employing (4) that the full conditional
distributions of θk’s and ζk’s are inverse gamma,

θk|ζk, ζk+1 ∼ IG

(

α + αζ ,
α

ζk
+ αζ

ζk+1

)

, k = 2, . . . , N − 1, (5)

θ1|ζ2 ∼ IG

(

α1 + αζ , α1 + αζ

ζ2

)

, (6)
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θN |ζN ∼ IG

(

α,
α

ζN

)

, (7)

ζk|θk, θk−1 ∼ IG

(

αζ + α,
αζ

θk−1
+ α

θk

)

, k = 2, . . . , N. (8)

See Sect. 6 for details. Next, the effective transition kernel of the Markov chain {θk}
is given by formula (4) in [7], and is a scale mixture of inverse gamma distributions;
however, its exact expression is of no direct concern for our purposes. As noted in
[7], p. 700, depending on the parameter values α, αζ , it is possible for the chain
{θk} to exhibit either an increasing or decreasing trend. We illustrate this point by
plotting realisations of {θk} in Fig. 1 for different values of α and αζ . In the context
of volatility estimation this feature is attractive, if prior information on the volatility
trend is available.

Inference in [7] is performed using a mean-field variational Bayes approach,
see, e.g., [5]. Here we describe instead a fully Bayesian approach relying on Gibbs
sampling (see, e.g., [26] and [29]), cf. [9].

The algorithm is initialised at values ζ2, . . . , ζN , e.g. generated from the prior
specification (4). In order to derive update formulae for the full conditionals of the
θk’s, define

Zk =
km∑

i=(k−1)m+1

Y 2
i,n, k = 1, . . . , N − 1,

ZN =
n∑

i=(N−1)m+1

Y 2
i,n.

With this notation, the likelihood from (3) satisfies

Ln(θ) ∝ θ
−(m+r)/2
N exp

(

− nZN

2T θN

) N−1∏

k=1

θ
−m/2
k exp

(

− nZk

2T θk

)

.

100 200 300 40010−4

10−2

100
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1010

α = 40.0, αζ = 20.0

100 200 300 40010−4
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10−2
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1010

α = 20.0, αζ = 40.0

Fig. 1 Realisations of the Markov chain {θk} with α = 40, αζ = 20 (left panel) and α = 30,
αζ = 30 (center panel) and α = 20, αζ = 40 (right panel). In all cases, θ1 is fixed to 500
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Using this formula and Eq. (5), and recalling the form of the inverse gamma
density (2), it is seen that the update distribution for θk, k = 2, . . . , N − 1, is

IG

(

α + αζ + m

2
,

α

ζk

+ αζ

ζk+1
+ nZk

2T

)

,

whereas by (7) the ones for θ1 and θN are

IG

(

α1 + αζ + m

2
, α1 + αζ

ζ2
+ nZ1

2T

)

, IG

(

α + m + r

2
,

α

ζN

+ nZN

2T

)

,

respectively.
Next, the latent variables ζk’s will be updated using formula (8). This update step

for ζk’s does not directly involve the dataXn, except through the previous values of
θk’s.

Finally, one iterates these two Gibbs steps for θk’s and ζk’s a large number
of times (until chains can be assessed as reasonably converged), which gives
posterior samples of the θk’s. Using the latter, the posterior inference can proceed
in the usual way, e.g. by computing the sample posterior mean of θk’s, as well
as sample quantiles, that provide, respectively, a point estimate and uncertainty
quantification via marginal Bayesian credible bands for the squared volatility s2.
Similar calculations on the square roots of the posterior samples can be used to
obtain point estimates and credible bands for the volatility function s itself.

2.4 Hyperparameter Choice

We first assume the number of bins N has been chosen in some way, and we
only have to deal with hyperparameters α, αζ and α1, that govern properties of
the Markov chain prior. In [7], where an IGMC prior was introduced, guidance on
the hyperparameter selection is not discussed. In [8], the hyperparameters are fine-
tuned by hand in specific problems studied there (audio denoising and single channel
audio source separation). Another practical solution is to try several different fixed
combinations of the hyperparameters α, αζ and α1, if only to verify sensitivity
of inferential conclusions with respect to variations in the hyperparameters. Some
further methods for hyperparameter optimisation are discussed in [16]. In [8] opti-
misation of the hyperparameters via the maximum likelihood method is suggested;
practical implementation relies on the EM algorithm (see [13]), and some additional
details are given in [15]. Put in other terms, the proposal in [15] amounts to using
an empirical Bayes method (see, e.g., [20], [59] and [60]). The use of the latter
is widespread and often leads to good practical results, but the method is still
insufficiently understood theoretically, except in toy models like the white noise
model (see, however, [17] and [56] for some results in other contexts). On the
practical side, in our case, given that the dimension of the sequences {ζk} and {θk} is
rather high, namely 2N−1 with N large, and the marginal likelihood is not available
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in closed form, this approach is expected to be computationally intensive. Therefore,
a priori there is no reason not to try instead a fully Bayesian approach by equipping
the hyperparameters with a prior, and this is in fact our default approach in the
present work. However, the corresponding full conditional distribution turns out to
be nonstandard, which necessitates the use of a Metropolis-Hastings step within the
Gibbs sampler (see, e.g., [39], [50] and [68]). We provide the necessary details in
Sect. 6.

Finally, we briefly discuss the choice of the hyperparameterN . As argued in [37],
in practice it is recommended to use the theoretical results in [37] (that suggest to
take N � nλ/(2λ+1), if the true volatility function s0 is λ-Hölder smooth) and try
several values of N simultaneously. Different N’s all provide information on the
unknown volatility, but at different resolution levels; see Section 5 in [37] for an
additional discussion. As we will see in simulation examples in Sect. 3, inferential
conclusions with the IGMC prior are quite robust with respect to the choice of
N . This is because through the hyperparameters α and αζ , the IGMC prior has
an additional layer for controlling the amount of applied smoothness; when α and
αζ are equipped with a prior (as above), they can in fact be learned from the data.

3 Synthetic Data Examples

Computations in this section have been done in the programming language Julia,
see [3]. In order to test the practical performance of our estimation method, we use
a challenging example with the blocks function from [18]. As a second example, we
consider the case of the Cox-Ross-Ingersoll model. Precise details are given in the
subsections below.

We used the Euler scheme on a grid with 800,001 equidistant points on the
interval [0, 1] to obtain realisations of a solution to (1) for different combinations
of the drift and dispersion coefficients. These were then subsampled to obtain
n = 4000 observations in each example.

The hyperparameterα1 was set to 0.1, whereas for the other two hyperparameters
we assumed that α = αζ and used a diffuse IG(0.3, 0.3) prior, except in specially
noted cases below. Inference was performed using the Gibbs sampler from Sect. 2,
with a Metropolis–Hastings step to update the hyperparameter α. The latter used an
independent Gaussian randomwalk proposal with a scaling to ensure the acceptance
rate of ca. 50%; see Sect. 6. The Gibbs sampler was run for 200,000 iterations and
we used a burn-in of 1000 samples. In each example we plotted 95% marginal
credible bands obtained from the central posterior intervals for the coefficients
ξk = √

θk .

3.1 Blocks Function

As our first example, we considered the case when the volatility function was given
by the blocks function from [18]. With a vertical shift for positivity, this is defined
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as follows:

s(t) = 10 + 3.655606×
11∑

j=1

hjK(t − tj ), t ∈ [0, 1], (9)

where K(t) = (1 + sgn(t))/2, and

{tj } = (0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81),

{hj } = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2).

The function serves as a challenging benchmark example in nonparametric regres-
sion: it is mostly very smooth, but spatially inhomogeneous and characterised
by abrupt changes (cf. Chap. 9 in [74]). Unlike nonparametric regression, the
noise (Wiener process) in our setting should be thought of as multiplicative and
proportional to s rather than additive, which combined with the fact that s takes
rather large values further complicates the inference problem. Our main goal here
was to compare the performance of the IGMC prior-based approach to the IIG prior-
based one from [37]. To complete the SDE specification, our drift coefficient was
chosen to be a rather strong linear drift b0(x) = −10x + 20.

In Fig. 2 we plot the blocks function (9) and the corresponding realisation of the
process X used in this simulation run.

The left and right panels of Fig. 3 contrast the results obtained using the IGMC
prior with N = 160 and α = αζ = 20 versus N = 320 and α = αζ = 40.
These plots illustrate the fact that increasing N has the effect of undersmoothing
prior realisations, that can be balanced by increasing the values of αζ , α, which has
the opposite smoothing effect. Because of this, in fact, both plots look quite similar.

The top left and top right panels of Fig. 4 give estimation results obtained with
the IIG prior-based approach from [37]. The number of bins was again N = 160
and N = 320, and in both these cases we used diffuse independent IG(0.1, 0.1)
priors on the coefficients of the (squared) volatility function (see [37] for details).

0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15
X

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30 s3

Fig. 2 The sample path of the process X from (9) (left panel) and the corresponding volatility
function s (right panel)
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Fig. 3 Volatility function s from (9) with superimposed 95%marginal credible band for the IGMC
prior, using N = 160, α = αζ = 20 (left panel) and N = 320, α = αζ = 40 (right panel); in both
cases, α1 = 0.1
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Fig. 4 Volatility function s with superimposed 95% marginal credible band for the IIG prior
IG(0.1, 0.1), using N = 160 (top left panel) and N = 320 bins (top right panel). Volatility
function s from (9) with superimposed 95% marginal credible band for the IGMC prior, using
N = 160 (bottom left panel) and N = 320 bins (bottom right panel); in both cases, α1 = 0.1 and
α = αζ ∼ IG(0.3, 0.3)

These results have to be contrasted to those obtained with the IGMC prior, plotted
in the bottom left and bottom right panels of Fig. 4, where we assumed α1 = 0.1
and α = αζ ∼ IG(0.3, 0.3). The following conclusions emerge from Fig. 4:
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• Although both the IGMC and IIG approaches recover globally the shape of
the volatility function, the IIG approach results in much greater uncertainty in
inferential conclusions, as reflected in wider marginal confidence bands. The
effect is especially pronounced in the case N = 320, where the width of the
band for the IIG prior renders it almost useless for inference.

• The bands based on the IGMC prior look more ‘regular’ than the ones for the IIG
prior.

• Comparing the results to Fig. 3, we see the benefits of equipping the hyperparam-
eters α, αζ with a prior: credible bands in Fig. 3 do not adequately capture two
dips of the function s right before and after the point t = 0.2, since s completely
falls outside the credible bands there. Thus, an incorrect amount of smoothing is
used in Fig. 3.

• The method based on the IIG prior is sensitive to the bin number selection:
compare the top left panel of Fig. 4 using N = 160 bins to the top right panel
using N = 320 bins, where the credible band is much wider. On the other hand,
the method based on the IGMC prior automatically rebalances the amount of
smoothing it uses with different numbers of bins N , thanks to the hyperprior on
the parameters α, αζ ; in fact, the bottom two plots in Fig. 4 look similar to each
other.

3.2 CIR Model

Our core estimation procedure, as described in the previous sections, assumes that
the volatility function is deterministic. In this subsection, however, in order to test
the limits of applicability of our method and possibilities for future extensions, we
applied it to a case where the volatility function was stochastic. The study in [53]
lends support to this approach, but here we concentrate on practical aspects and
defer the corresponding theoretical investigation until another occasion.

Specifically, we considered the Cox-Ross-Ingersoll (CIR) model or the square
root process,

dXt = (η1 − η2Xt)dt + η3
√

XtdWt, X0 = x > 0, t ∈ [0, T ]. (10)

Here η1, η2, η3 > 0 are parameters of the model. This diffusion process was
introduced in [23] and [24], and gained popularity in finance as a model for short-
term interest rates, see [11]. The condition 2η1 > η23 ensures strict positivity and
ergodicity of X. The volatility function s0 from (1) now corresponds to a realisation
of a stochastic process t �→ η3

√
Xt , where X solves the CIR equation (10).

We took arbitrary parameter values

η1 = 6, η2 = 3, η1 = 2, x = 1. (11)
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Fig. 5 The sample path of the process X from (10) (left panel) and the corresponding realised
volatility function s(ω) (right panel). The parameter values are given in (11)
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Fig. 6 Volatility function s from (10) with superimposed 95% marginal credible band for the
IGMC prior, using N = 160 (left panel) and N = 320 bins (right panel); in both cases, α1 = 0.1
and α = αζ ∼ IG(0.3, 0.3)

A sample path of X is plotted in the left panel of Fig. 5, whereas the corresponding
volatility is given in the right panel of the same figure. In Fig. 6 we display
estimation results obtained with the IGMC prior, using N = 160 and N = 320
bins and hyperparameter specifications α1 = 0.1 and α = αζ ∼ IG(0.3, 0.3). A
conclusion that emerges from this figure is that our Bayesian method captures the
overall shape of the realised volatility in a rather satisfactory manner.

4 Dow-Jones Industrial Averages

In this section we provide a reanalysis of a classical dataset in change-point
detection in time series; see, e.g., [10, 14, 41, 42] and [43]. Specifically, we consider
weekly closing values of the Dow-Jones industrial averages in the period 2 July
1971–2 August 1974. In total there are 162 observations available, which constitute
a relatively small sample, and thus the inference problem is rather nontrivial. The
data can be accessed as the dataset DWJ in the sde package (see [44]) in R (see
[58]). See the left panel of Fig. 7 for a visualisation. In [43] the weekly data Xti ,
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Fig. 7 Dow-Jones weekly closings of industrial averages over the period 2 July 1971–2 August
1974 (left panel) and the corresponding returns (right panel)

i = 1, . . . , n, are transformed into returns Yti = (Xti − Xti−1)/Xti−1 , and the
least squares change-point estimation procedure from [12] has been performed.
Reproducing the corresponding computer code in R results in a change-point
estimate of 16 March 1973. That author speculates that this change-point is related
to the Watergate scandal.

Similar to [43], parametric change-point analyses in [10, 14] and [42] give
a change-point in the third week of March 1973. However, as noted in [43],
examination of the plot of the time series Yti (see Fig. 7, the right panel) indicates
that another change-point may be present in the data. Then dropping observations
after 16 March 1973 and analysing the data for existence of a change-point using
only the initial segment of the time series, the author discovers another change-point
on 17 December 1971, which he associates with suspending the convertibility of the
US dollar into gold under President Richard Nixon’s administration.

From the above discussion it should be clear that nonparametric modelling of
the volatility may provide additional insights for this dataset. We first informally
investigated the fact whether an SDE driven by the Wiener process is a suitable
model for the data at hand. Many of such models, e.g. the geometric Brownian
motion, a classical model for evolution of asset prices over time (also referred to as
the Samuelson or Black–Scholes model), rely on an old tenet that returns of asset
prices follow a normal distribution. Although the assumption has been empirically
disproved for high-frequency financial data (daily or intraday data; see, e.g., [6, 19]
and [48]), its violation is less severe for widely spaced data in time (e.g. weekly data,
as in our case). In fact, the Shapiro–Wilk test that we performed in R on the returns
past the change-point 16 March 1973 did not reject the null hypothesis of normality
(p-value 0.4). On the other hand, the quantile-quantile (QQ) plot of the same data
does perhaps give an indication of a certain mild deviation from normality, see
Fig. 8, where we also plotted a kernel density estimate of the data (obtained via
the command density in R, with bandwidth determined automatically through
cross-validation).
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In Fig. 9 we plot the sample autocorrelation and partial autocorrelation functions
based on returns Yti ’s past the change-point 16 March 1973. These do not give
decisive evidence against the assumption of independence of Yti ’s. Neither does
the Ljung–Box test (the test is implemented in R via the command Box.test),
which yields a p-value 0.057 when applied with 10 lags (the p-value is certainly
small, but not overwhelmingly so).

Summarising our findings, we detected only a mild evidence against the assump-
tion that the returns of the Dow-Jones weekly closings of industrial averages (over
the period 16 March 1973–2 August 1974, but similar conclusions can be reached
also over the other subperiods covered by the DWJ dataset) are approximately
independent and follow a normal distribution. Thus there is no strong a priori reason
to believe that a geometric Brownian motion is an outright unsuitable model in
this setting: it can be used as a first approximation. To account for time-variability
of volatility (as suggested by the change-point analysis), we incorporate a time-
dependent volatility function in the model, and for additional modelling flexibility
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we also allow a state-dependent drift. Setting Zt = log(Xt/X0), our model is thus
given by

dZt = b0(t, Zt )dt + s0(t)dWt, Z0 = 0. (12)

An alternative here is to directly (i.e. without any preliminary transformation)
model the Dow-Jones data using Eq. (1). We consider both possibilities, starting
with the model (12).

We used a vague prior on θ1 corresponding to the limit α1 → 0, whereas for
the other two hyperparameters we assumed α = αζ ∼ IG(0.3, 0.3). The scaling in
the independent Gaussian random walk proposal in the Metropolis–Hastings step
was chosen in such a way so as to yield an acceptance rate of ca. 50%. The Gibbs
sampler was run for 200,000 iterations, and the first 1000 samples were dropped as
a burn-in. We present the estimation results we obtained using N = 13 and N = 26
bins, see Fig. 10. Although the sample size n is quite small in this example, the data
are informative enough to yield nontrivial inferential conclusions even with diffuse
priors. Both plots in Fig. 10 are qualitatively similar and suggest:

• A decrease in volatility at the end of 1971, which can be taken as corresponding
to the change-point in December 1971 identified in [43]. Unlike that author, we
do not directly associate it with suspending the convertibility of the US dollar
into gold (that took place in August 1971 rather than December 1971).

• A gradual increase in volatility over the subsequent period stretching until the end
of 1973. Rather than only the Watergate scandal (and a change-point in March
1973 as in [43]), there could be further economic causes for that, such as the
1973 oil crisis and the 1973–1974 stock market crash.

• A decrease in volatility starting in early 1974, compared to the immediately
preceding period.

In general, in this work we do not aim at identifying causes for changes in volatility
regimes, but prefer to present our inference results, that may subsequently be used
in econometric analyses.

Now we move to the Bayesian analysis of the data using model (1). The prior
settings were as in the previous case, and we display the results in Fig. 11. The
overall shapes of the inferred volatility functions are the same in both Figs. 10 and
11, and hence similar conclusions apply.

Finally, we stress the fact that our nonparametric Bayesian approach and change-
point estimation are different in their scope: whereas our method aims at estimation
of the entire volatility function, change-point estimation (as its name actually
suggests) concentrates on identifying change-points in the variance of the observed
time series, which is a particular feature of the volatility. To that end it assumes
the (true) volatility function is piecewise constant, which on the other hand is not
an assumption required in our method. Both techniques are useful, and each can
provide insights that may be difficult to obtain from another.
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Fig. 10 Marginal 90% credible bands for the volatility function of the log Dow-Jones industrial
averages data. The left panel corresponds to N = 13 bins, while the right panel to N = 26 bins
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Fig. 11 Marginal 90% credible bands for the volatility function of the Dow-Jones industrial
averages data. The left panel corresponds to N = 13 bins, while the right panel to N = 26
bins

5 Conclusions

Bayesian inference for SDEs from discrete-time observations is a difficult task,
owing to intractability of the likelihood and the fact that the posterior is not
available in closed form. Posterior inference therefore typically requires the use
of intricate MCMC samplers. Designing algorithms that result in Markov chains
that mix well and explore efficiently the posterior surface is a highly nontrivial
problem. Inspired by some ideas from the audio signal processing literature and
our earlier work [37], in this paper we introduced a novel nonparametric Bayesian
approach to estimation of the volatility coefficient of an SDE. Our method is
easy to understand and straightforward to implement via Gibbs sampling, and
performs well in practice. Thereby our hope is that our work will contribute to
further dissemination and popularisation of a nonparametric Bayesian approach to
inference in SDEs, specifically with financial applications in mind. In that respect,
see [38], that builds upon the present paper and deals with Bayesian volatility
estimation under market microstructure noise. Our work can also be viewed as a
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partial fulfillment of anticipation in [31] that some ideas developed originally in the
context of audio and music processing “will also find use in other areas of science
and engineering, such as financial or biomedical data analysis”.

As a final remark, we do not attempt to provide a theoretical, i.e. asymptotic
frequentist analysis of our new approach here (see, e.g., the recent monograph [30],
and specifically [37] for such an analysis in the SDE setting), but leave this as a
topic of future research.

6 Formulae for Parameter Updates

In this section we present additional details on the derivation of the update formulae
for the Gibbs sampler from Sect. 2. The starting point is to employ the Markov
property from (4), and using the standard Bayesian notation, to write the joint
density of {ζk} and {θk} as

p(θ1)

N∏

k=2

p(ζk |θk−1)p(θk|ζk). (13)

6.1 Full Conditional Distributions

We first indicate how (5) was derived. Insert expressions for the individual terms
in (13) from (4) and collect separately terms that depend on θk only, to see that the
density of the full conditional distribution of θk , k = 2, . . . , N −1, is proportional to

θ−α−1
k e−α/(θkζk)θ

−αζ

k e−αζ /(θkζk+1).

Upon normalisation, this expression is the density of the IG(α+αζ , αζ−1
k +αζ ζ−1

k+1)

distribution, which proves formula (5). Formula (7) follows directly from the last
expression in (4). Formula (8) is proved analogously to (5). Finally, (6) follows
from (4) and Bayes’ formula. Cf. also [15], Appendix B.6.

6.2 Metropolis-Within-Gibbs Step

Now we describe the Metropolis–Hastings step within the Gibbs sampler, that is
used to update the hyperparameters of our algorithm, in case the latter are equipped
with a prior. For simplicity, assume α = αζ (we note that such a choice is used
in practical examples in [8]), and suppose α is equipped with a prior, α ∼ π . Let
the hyperparameter α1 be fixed. Obviously, α1 could have been equipped with a
prior as well, but this would have further slowed down our estimation procedure,
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whereas the practical results in Sects. 3 and 4 we obtained are already satisfactory
with α1 fixed. Using (4) and (13), one sees that the joint density of {ζk}, {θk} and α

is proportional to

π(α) × θ
−α1−1
1 × e−α1θ

−1
1

×
N∏

k=2

{
αα

Γ (α)θα
k−1

ζ−α−1
k e−α/(θk−1ζk)

αα

Γ (α)ζ α
k

θ−α−1
k e−α/(θkζk)

}

.

This in turn is proportional to

q(α) = π(α) ×
(

αα

Γ (α)

)2(N−1)

×
N∏

k=2

(θk−1θkζ
2
k )−α

× exp

(

−α

N∑

k=2

1

ζk

(
1

θk−1
+ 1

θk

))

.

The latter expression is an unnormalised full conditional density of α, and can be
used in the Metropolis-within-Gibbs step to update α.

The rest of the Metropolis–Hastings step is standard, and the following approach
was used in our practical examples: pick a proposal kernel g(α′ | α), for instance a
Gaussian random walk proposal g(α′ | α) = φσ (α′ −α), where φσ is the density of
a normal random variable with mean zero and variance σ 2. Note that this specific
choice may result in proposing a negative value α′, which needs to be rejected
straightaway as invalid. Then, for computational efficiency, instead of moving to
another step within the Gibbs sampler, one keeps on proposing new values α′ until
a positive one is proposed. This is then accepted with probability

A = min

(

1,
q(α′)
q(α)

Φσ (α)

Φσ (α′)

)

,

where Φσ (·) is the cumulative distribution function of a normal random variable
with mean zero and variance σ 2; otherwise the current value α is retained. See
[75] for additional details and derivations. Finally, one moves to other steps in the
Gibbs sampler, namely to updating ζk’s and θk’s, and iterates the procedure. The
acceptance rate in the Metropolis–Hastings step can be controlled through the scale
parameter σ of the proposal density φσ . Some practical rules for determination of
an optimal acceptance rate in the Metropolis–Hastings algorithm are given in [28],
and those for the Metropolis-within-Gibbs algorithm in [64].
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