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Abstract

Optimization of traffic signal control has been widely investigated by means of model-based strate-
gies. In 2012 a new model-based controller was published, named Schedule-driven Intersection
Control (SCHIC). This controller uses a job-scheduling algorithm to minimize the cumulative de-
lay for all observed vehicles. The algorithms of SCHIC are at the basis of the commercially deployed
controller SURTRAC. This means that SCHIC is partly used in real-world traffic situations and
its algorithms are well documented. Therefore, it was possible to reproduce this controller in this
thesis.

Previous literature often evaluated SCHIC in simplified scenarios with (1) unrealistically large look-
ahead times for vehicle detection. Secondly, (2) in most scenarios all approaching vehicles were
restricted to request a single turning-movement at the intersection thereby removing inter-phase
uncertainty (as explained directly below). Inter-phase uncertainty occurs when the chosen entry-
lane of a vehicle determines the green phase that it requires from the traffic light controller. So,
inter-phase uncertainty occurs under the following two conditions. Condition I — an approaching
vehicle must eventually choose between different entry-lanes, with each entry-lane being associ-
ated to a different turning-movement at the intersection. Condition 2 — each of these individual
entry-lanes is serviced during a different and competing green phase. For example, inter-phase
uncertainty occurs when two competing green phases service either the straight-ahead or the left-
turning entry-lane.

The aim of this thesis is to evaluate SCHIC with both (1) realistic look-ahead times and (2) inter-
phase uncertainty, since these two uncertainties are often not found in previous literature, however,
they are commonly found in reality. Thus, it is not directly clear how the reported results would
translate to more realistic settings, which include these two common uncertainties. In this study
SCHIC is re-implemented and evaluated on a typical Dutch urban intersection located in The
Hague. The lane dimensions of this intersection determine the look-ahead times as used in this
thesis.

For this study, a new method is introduced to reduce inter-phase uncertainty which is inspired
by lane change prediction modules for automated driving. This method, Lane Change Prediction
(LCP), makes use of e.g. radar-equipment in order to observe: (1) the driving style of each
approaching vehicle and (2) the upcoming traffic state on each reachable entry-lane. Based on
these two observations a classification model, i.e. a Random Forest, predicts the desired entry-lane
before the vehicle actually enters it. This thesis researches whether the potentially higher accuracy
of LCP will improve SCHICs performance as compared to its simpler statistical baselines, fized-label
and split-vehicles, which could have a lower accuracy.



All traffic scenarios are simulated with Simulation of Urban Mobility (SUMO). Two popular driver-
models are evaluated which determine the dynamic behaviour of the vehicles in simulation, i.e. the
Intelligent Driver Model (IDM) and Krauss driver-model.

The results showed that despite its higher accuracy, LCP does not significantly improve SCHICs
performance over its baseline methods fized-label and split-vehicles. Furthermore, the maximum
theoretical performance gain of using LCP is evaluated with perfect predictions (Oracle). When
applying perfect predictions, the average speed of all vehicles increased by 0.65% and 0.51% for
the Intelligent Driver Model (IDM) and Krauss driver-model, respectively. The average number
of stops per vehicle was reduced by 1.53% and 1.12% for the IDM and Krauss driver-model,
respectively.

Overall, it is concluded that the performance potential of all methods, i.e. the {Oracle, split-
vehicles, fixed-label and LCP}, is quite comparable on SCHICs traffic flow. These methods show
some performance potential, however, their confidence intervals are relatively wide which draws
them closer to each other. In our scenario, the intersection in The Hague, another method might
increase SCHICs traffic flow more significantly.
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Chapter 1

Introduction

Urban traffic congestion is a well known problem and affects road users across the world, therefore,
in this thesis a focus is placed on adaptive traffic light control. The number of motorized road
vehicles in The Netherlands increased in early 2019 to a grand total of 12.7 million vehicles. Out
of this grand total, passenger cars comprise two thirds by reaching 8.5 million registered passenger
cars [2]. Congested traffic in general leads to several cost-factors, for the European Union these
costs are estimated to be 1% of its GDP [3]. Fortunately, automated traffic light control has the
potential to reduce congestion, thereby saving time and money of road users. With urban traffic
on the rise, improvements to traffic light optimization increase in value [4].

The actual performance and weaknesses of commercial traffic light controllers are not always clear.
A large number of traffic control methods have been proposed in the past, and some of these
methods made it into commercial products. Since these commercial controllers often require a
hefty financial investment, researchers do not always have access to them. As a result it is not
always clear how well these methods perform and which weaknesses exist. However, in order
to reduce everyday travel-times it is important to evaluate the weak-points of these commercial
controllers.

This thesis takes a practical approach by evaluating the performance of a controller named Schedule-
driven Intersection Control [1] (SCHIC). In short, SCHIC uses online job-scheduling to minimize
the cumulative delay for all observed vehicles. Xie et al. [1] demonstrated that SCHIC outper-
formed the approximate dynamic programming procedure Combined Optimization of Phases [5]
(COP). Given the fact that SCHIC outperformed COP, Xie et al. [1] concluded that SCHIC is a
state-of-the-art or at least promising novel method.

Furthermore, SCHICs algorithms are at the basis of the recently commercially deployed controller
named SURTRAC. This means that SCHIC is used in real world traffic situations and there-
fore interesting to evaluate. Its algorithms are well-documented, however, an implementation is
unavailable. Therefore, a re-implementation of SCHIC is realized for this thesis.


https://www.rapidflowtech.com/surtrac

Inter-phase uncertainty

Before describing the aim of this thesis, the problem of phase based uncertainties is explained in this
section. Dhamija [6] states that turn-induced uncertainty can result in two forms of uncertainty for
a traffic light controller, namely intra -and inter-phase uncertainty. Both forms of uncertainty and
the conditions to remove the uncertainty all together are visualized and explained directly below.
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Figure 1.1: Phase based uncertainties for vehicles which approach on the South -or West side
approach. These two approaches are enough to define the uncertainties. The phase set contains
all possible green phases which the controller can select. (a) No uncertainty; (b) Intra-phase
uncertainty; (c¢) Inter-phase uncertainty. Image based on Dhamija [6].

See Figure 1.1

A vehicle arrives at the intersection originating from a single approach (e.g. the West or South
approach), whilst travelling on just a single entry-lane. An entry-lane is defined as a portion of the
pavement which is allocated to a single line of traffic which originates from the same direction, as
often indicated by painted longitudinal lines or markers. Please note that each approach towards
the intersection can contain multiple entry-lanes, but can also contain just a single entry-lane.

The phase set contains all possible green phases which the controller can select. During a green
phase, an entry-lane (or multiple entry-lanes) receive a green signal so vehicles on this entry-lane
can leave the intersection on the ezit-lane(s) as indicated by the arrow(s). The characteristics
of a phase set, combined with, the amount of entry-lanes per approach towards the intersection
determine which uncertainties are present for a traffic light controller.



¢ No phase based uncertainty. Figure 1.1a visualizes two conditions for a phase set in order
to eliminate turn-induced uncertainty. Condition I — on each approach of the intersection,
there is only a single entry-lane leading towards the intersection, this single entry-lane is
serviced by a single green phase. Condition 2 — during each green phase vehicles are restricted
to leave the intersection on only one exit-lane. In our example, each approaching vehicle can
only request the green phase for straight-ahead traffic. In conclusion, each approaching
vehicle can be detected far away from the intersection and its green phase and exit-lane are
known in advance.

¢ Intra-phase uncertainty. Figure 1.1b visualizes intra-phase uncertainty, which can influ-
ence a communication mechanism among intersections — if a communication mechanism is
actually in place.

Intra-phase uncertainty is an uncertainty within a single green phase and defined as follows:
during a green phase vehicles on a single entry-lane can choose to leave the intersection on
multiple exit-lanes. For example, this occurs when vehicles can choose to either continue
straight-ahead or turn right during the same green phase (Figure 1.1b). When one of the
green phases is active, intra-phase uncertainty only affects the uncertainty on the number of
vehicles per individual exit-lane.

¢ Inter-phase uncertainty. Figure 1.1c visualizes inter-phase uncertainty. Which occurs
under the following two conditions. Condition 1 — an approaching vehicle must choose
between different entry-lanes. Condition 2 — each of these different entry-lanes is serviced
during a different green phase. For example, inter-phase uncertainty occurs when two entry-
lanes are present on a single approach; one for straight-ahead traffic and one for left-turning
traffic, when each (single) entry-lane is serviced during two different green phases. See
Figure 1.1c.

Aim of this study

Knowledge gap SCHIC

It is not completely clear how the reported results of SCHIC translate when including (1) realistic
look-ahead times and (2) inter-phase uncertainty. These two uncertainties are often not considered
in previous evaluations of SCHIC, whereas they are commonly found in reality. For example,
one scenario of Xie et al. [1] considered a single isolated intersection which uses a look-ahead
time of 70 seconds. On this isolated intersection, the phase set only contained straight-ahead
traffic (see Figure 1.1a), thereby removing inter-phase uncertainty. Secondly, Xie et al. [1] omitted
inter-phase uncertainty on another series of adjacent intersections (Arterial network), where they
reported results of SCHIC with vehicle detection at 10 seconds away from each of the intersections.
Specifically, with the proposed look-ahead time of 10 seconds the complete phase set of Xie et
al. [1] only contained two green phases for straight-ahead and right-turning traffic, as shown in
Figure 1.1b.

When SCHIC needs to deal with inter-phase uncertainty, the proposed look-ahead time of 10 seconds
by Xie et al. [1] is quite unrealistic. To clarify, at 10 seconds from the intersection most vehicles
will still change lanes, depending on their desired turning-movement and thereby requesting a dif-
ferent green phase. Therefore, the aim of this thesis is to evaluate SCHIC with both (1) realistic
look-ahead times and (2) inter-phase uncertainty.



Up until now three baseline methods have been described that can increase SCHICs look-ahead time
whilst handling inter-phase uncertainty, namely split-vehicles [1], [7], fixed-label [8] and Vehicle
to Intersection Communication (V2I) [7]. However, their performance on SCHICs traffic flow is
not well reported. These baseline methods are described directly below. Afterwards, SCHIC is
described in more detail and a new method is introduced: Lane Change Prediction (LCP). LCP
could potentially reach higher predictive accuracies than the existing statistical baseline methods
(i.e. split-vehicles and fixed-label). Thereby, LCP could also bring more traffic flow performance
to SCHIC than its existing statistical baseline methods.

Baseline approaches for modelling inter-phase uncertainty

Several methods have been proposed in past literature to efficiently cope with inter-phase uncer-
tainty. These methods detect vehicles quite far from the intersection and consider the possibility
that each detected vehicle will eventually request a different green phase. For SCHIC, two methods
have been proposed which use historic statistical properties that are observed in the distribution
of vehicles per turning-movement. Both statistical methods increase the look-ahead time by es-
timating or predicting a vehicle’s desired turning-movement. For example, the methods can be
applied on a detected vehicle before it will actually enter one of the (short) entry-lanes associated
to a single turning-movement. The two statistical methods and a third one, are listed below:

o split-vehicles [1], [7] - as proposed by Xie et al. [1], this method splits each approaching
vehicle into a fraction for each turning-movement weighted by the probability per turning-
movement.

o fized-label [8] - as based on a field-test of SCHIC in 2015 and as proposed by Smith [8].
Smith observed a dominant green phase on his intersections, i.e. most vehicles chose this
single dominant green phase for continuing straight-ahead over any other green phase. In this
dominant scenario a fized-label is used for each new vehicle, i.e. upon first detection, each
vehicle is assumed to request the dominant (straight-ahead) green phase at the intersection.

o Vehicle to Intersection Communication (V2I) [7] - inter-phase uncertainty can be removed
for vehicles which use Vehicle to Intersection Communication (V2I). Since a vehicle can now
communicate his desired green phase directly to the traffic light controller.

Recall that the three methods above are well described in previous literature, however, their traffic
flow performance on SCHIC is not well reported.

SCHIC

In this thesis, the focus is limited to the influence of inter-phase uncertainty on SCHICs local
planning, as explained below. As input, SCHIC requires the following information per individual
vehicle: (1) its arrival time at the intersection and (2) the green phase that this vehicle will
request. When inter-phase uncertainty is present, each allowed entry-lane (of a single approach)
is serviced during a different green phase. This means that approaching vehicles can only be
associated to a single green phase when they are close to the intersection. Detecting vehicles closer



to the intersection reduces the look-ahead time, which is defined as: look_ahead_timegetector[s] =
distancegetector|m] / speed limit[m/s].

In general, reducing the look-ahead time of SCHIC reduces its performance [1]. So, it is desired to
detect vehicles as far away from the intersection as possible. However, increasing this distance also
increases the uncertainty on the desired green phase of each detected vehicle, when inter-phase
uncertainty is present. Therefore, inter-phase uncertainty can affect the local planning of SCHIC,
when vehicles are detected so far away from the intersection that they are likely to change to a
different entry-lane and thereby requesting a different green phase.

In general, one can identify three main components of SCHIC — the traffic input information, the
job-scheduler and the coordination mechanism among intersections. While all components could be
improved, the focus in this study is limited to local intersection scheduling without a coordination
mechanism between neighbouring intersections. Several weaknesses of SCHIC have been identified
by those who re-implemented SCHIC. Most of these studies outperformed SCHIC with various
commercial and/or simpler controllers, whereas some improved SCHICs logic [6], [9]-[17]. In this
study an effort is made to improve SCHIC on the traffic input level.

Inter-phase uncertainty, I SCHIC applies a
i.e. the uncertainty of the desired deterministic scheduling method
green phase per vehicle. | for all observed vehicles.

Baseline methods: |

V2I, split-vehicles, fixed-label Local Traffic Observation

Proposed method: |
LCP

Figure 1.2: Coupling of inter-phase uncertainty methods to SCHICs local traffic observation.

Proposed method LCP

In this study, a novel approach with respect to SCHIC is introduced to extend the look-ahead
time for vehicle detection while handling inter-phase uncertainty, namely: Lane Change Prediction
(LCP). LCP is designed and applied here on a lane-split scenario. A lane-split leads the approaching
vehicle (ego-vehicle) to multiple short entry-lanes as shown in Figure 1.3b. LCP makes use of e.g.
radar-equipment in order to observe: (1) the driving style of an approaching ego-vehicle and (2)
the upcoming traffic state on each of its reachable entry-lanes (see Figure 1.3b).

This method is based on the following assumption: each vehicle which is driving towards but
has not yet entered one of the short entry-lanes; will show anticipative clues in its driving style
to indicate its desired short entry-lane. For example, different anticipative driving behaviour is
expected for entering either the left-turning or straight-ahead entry-lane. Furthermore, this is
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assumed when only one of these entry-lanes is receiving a green signal and the other a red signal,
see Figure 1.3b.

LCP is a classification model that predicts mandatory lane changes as based on the observed
driving style of each vehicle which approaches a lane-split. LCP extends its data input compared
to the statistical baseline methods of split-vehicles and fized-label, since LCP also considers the
anticipative driving style. Therefore, LCP could achieve higher predictive accuracies than the
statistical baselines. This thesis researches whether the potentially higher accuracies of LCP in-
crease the traffic flow performance of SCHIC as compared to its statistical baseline methods (i.e.
split-vehicles and fized-label).

An intrinsic limitation of LCP is the fact that each prediction can only be made for the near future,
since it is limited by the future time-frame on which each driver anticipates. I.e. human drivers
only show anticipative driving behaviour for a traffic state which they will reach in a short period
of time. Ortiz et al. [18] based and verified their predictions on real-world vehicle dynamics in
an inner-city scenario, where vehicles approach an inner-city traffic light. The predictive model
is limited to output the following future behaviour: [’keep speed”, "braking”, "stopped”]. The
system of Ortiz et al. can warn drivers when they do not brake in time, for example to warn
a driver which needs to brake since he/she is approaching other (still standing) vehicles with a
velocity which is too high.

Although this model does not predict an actual lane change, it is expected to fit well in the design
of LCP. When LCP is applied with our phase set, one of the two reachable entry-lanes is always
receiving a red signal, whereas the other entry-lane is currently serviced with a green signal. The
predictive output of "stopped” is expected to correlate highly with the entry-lane which is receiving
the red signal as vehicles will need to perform a stop on that entry-lane.

Ortiz et al. propose to apply their predictive model for a future time-frame of up to 3.0 seconds,
since the model is highly accurate up until this range. So, based on the results of Ortiz et al. [18],
Lane Change Prediction (LCP) can theoretically achieve high accuracies up to 3.0 seconds before
a vehicle reaches the stop-line of the intersection. Although LCP can only increase the look-ahead
time of SCHIC with a limited amount, the relative increase from 2.2 seconds to 3.0 seconds is still
large.
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(b) The final entry-lane of the vehicle inside the yellow circle is still unknown. However, its final entry-lane
can be obtained now by SCHICs baseline methods, or by making a Lane Change Prediction.

Figure 1.3: Inter-phase uncertainty in SCHIC.
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Experimental setup

The practical approach of this thesis is pursued by evaluating SCHIC on a simplified Dutch in-
tersection which is located in The Hague. First of all, inter-phase uncertainty is considered since
straight-ahead and left-turning traffic (each having a separate entry-lane) are serviced in different
and contending green phases as shown in Figure 1.4a. Secondly, the dimensions of the entry-lanes
as used in this study match with the dimensions of this typical real-world intersection. The inter-
section contains two lane-splits, which lead vehicles to short (30m) entry-lanes for both allowed
turning-movements at the intersection, one of these lane-splits is shown in Figure 1.4b.

Lane-based vehicle detection as required for SCHIC, can’t be performed beyond the length of these
shorter 30m entry-lanes. This leads to a more realistic look-ahead time of 2.2 seconds on these
shorter entry-lanes. As for the longer lanes at this intersection which do not contain a lane-split,
vehicle detection can be performed further away from the intersection. However, in reality, on
these longer lanes vehicle detection is only performed at 40m from the intersection.

Especially for intersections located in urban areas, limited lane-dimensions are quite often a fact
of life. Hence, the look-ahead time per entry-lane will remain limited as well given the following
trade-off. This trade-off mainly balances on three opposing values: (1) the expected traffic volumes
per individual entry-lane (2) the availability of additional ground space (3) the cost of extending
individual entry-lanes and their associated infrastructure. Given the complexity of extending entry-
lanes in the real world, it is quite interesting to evaluate in which manner the logic of traffic light
controllers can be improved to handle limited lane-dimensions more efficiently.

indices : 0 1 2 3
phase set : N /‘ / l I <§>
green phase set: GRRR RGRR RRGR RRRG
yellow phase set : YRRR RYRR RRYR RRRY

(a) An often encountered phase set in The Netherlands, also the default phase set of Simulation of Urban
Mobility [19] (SUMO).

(b) A drivers perspective on one of the lane-splits which is found on the intersection which is evaluated in
this thesis. Source: Google Street View, accessed on 07-01-2020.

Figure 1.4: Scenario design.
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Focus and scope

Given the focus on inter-phase uncertainty, two main simplifications are applied in this study.
Firstly, pedestrian and bicycle traffic are omitted, i.e. only car traffic is considered. Secondly,
we omit right-turning traffic (which can introduce intra-phase uncertainty), since we only focus
on inter-phase uncertainty. SCHICs local intersection optimization is evaluated on this simplified
version of the intersection. The above two simplifications are in-line with the previously mentioned
knowledge gap and scope of this study.

The scope of this study on LCP is limited to simulated driving behaviour since there is no access
to real-world vehicle dynamics. Simulation of Urban Mobility [19] (SUMO) is used to obtain
the simulated driving behaviour. The choice for this simulator is based on two reasons. First
and foremost, traffic simulators can be classified as macroscopic or microscopic depending on the
manner in which they model vehicle dynamics. Since SUMO is a microscopic traffic simulator, it
is able to to model highly detailed dynamic behaviour of each driver which can lead to valuable
clues for informed predictions. Secondly, SUMO is a popular software package among researchers
which is beneficial both during and after the performed study.

Research Questions

The following research questions are addressed, which are derived from the knowledge gap and
proposed method of LCP. As stated before, the following knowledge gap is present for SCHIC:
SCHICs performance is not well reported for (1) limited and realistic look-ahead times combined
with (2) inter-phase uncertainty.

1. Given a typical Dutch intersection with limited lane-dimensions and hence limited look-
ahead times, how does SCHICs local performance relate to a simpler but commonly applied
Time-Gap Controller?

2. What is the performance potential for SCHIC when perfect Lane Change Predictions are
applied on this typical Dutch intersection with two lane-splits?

3. How accurate are Lane Change Predictions (LCPs) in SUMO?

4. How does SCHIC in combination with LCP perform in comparison to the existing statistical
baseline methods of split-vehicles and fized-label?

Outline of this thesis

This thesis is structured as follows. Chapter 2 starts by discussing general related work on respon-
sive traffic light controllers, before shifting the focus to related work on SCHIC. Lastly, that chapter
also further explains the baseline methods to handle inter-phase uncertainty. Chapter 3 gives a
theoretical framework of SCHIC by explaining its algorithms in a high-level overview. This expla-
nation of SCHIC is helpful, since a clear understanding of SCHIC enables a clear understanding of
the coupling of LCP to SCHIC. Chapter 4 introduces our design of the proposed method of LCP.
The classification accuracy of Lane Change Prediction (LCP) is given in Chapter 5. Chapter 6

14



shows the traffic flow improvements of SCHIC in combination with its existing baseline methods
and the novel method of LCP. Lastly, Chapter 7 brings this work to a close by answering the
research questions and by discussing suggested improvements and extensions to this work.
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Chapter 2

Related work

This work is rooted in the field of adaptive traffic light control. Specifically, we focus on a con-
troller named — Schedule-driven Intersection Control [1] (SCHIC) — when it is applied on an urban
intersection with limited lane-dimensions and inter-phase uncertainty (as explained in the next
paragraph). Although limited lane-dimensions and inter-phase uncertainty are commonly found
on Dutch urban intersections, they are often omitted in previous research.

Most previous work on SCHIC does not consider inter-phase uncertainty, recall that inter-phase
uncertainty is explained prior in subsection 1 on page 7. Without inter-phase uncertainty, each
approaching vehicle is unable to change its entry-lane and each entry-lane is associated to just a
single green phase. Therefore, the green phase of each approaching vehicle is fixed beforehand,
this enables SCHIC to detect vehicles for each green phase already long in advance. Using these
large look-ahead times increases the performance of SCHIC [1].

In this chapter, we first give a general background on adaptive traffic light control which sketches a
context around SCHIC. Afterwards the related work on SCHIC starts with general improvements
to this controller. But these improvements are still presented under the restriction that each vehicle
is unable to change its entry-lane, thereby only able to request a single green phase (i.e. the removal
of inter-phase uncertainty). Subsequently, three existing baseline methods are discussed which do
consider inter-phase uncertainty. These three baseline methods increase the look-ahead time for
vehicle detection, although each detected vehicle is still able to perform a lane change towards a
different entry-lane and thereby able to request a different green phase from SCHIC.

Section 2.1 covers a brief history of some important (commercial) traffic light controllers. Secondly,
Section 2.2 shifts the focus towards SCHIC by summarizing several works which demonstrate a
weakness of this controller, whilst omitting inter-phase uncertainty. Section 2.3 explains three
existing baseline methods which can perform vehicle detection given the fact that inter-phase
uncertainty is present. These baseline methods detect vehicles while they are still able to change
to a different entry-lane and thereby able to request a different green phase. Lastly, Section 2.4
briefly concludes this chapter and based on the identified knowledge gaps, a motivation is presented
for the novel proposed method of Lane Change Prediction (LCP).
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Relevant terminology
Most terms which are used in this chapter are also explained and listed in the glossary on page
96.

2.1 General background on adaptive traffic light control

Firstly, this section covers a brief history of some important (commercial) traffic light controllers
and sketches the general context to support the next section which covers related work on SCHIC.

In 1964 Dunne [20] introduced a linear actuated control algorithm which directly responds to
observed traffic by applying simple linear control rules. This method of Dunne [20] can be classified
as a Vehicle Actuated Control (VA) method. A theoretical analysis, under the assumption of
constant vehicular arrival and departure rates in unsaturated conditions, demonstrates that this
algorithm delivers a stable performance. With the right choice of control parameters, the algorithm
minimizes the average delay of all vehicles. Even to this date simple VA is often optimal for isolated
intersections [1].

Current versions of VA are often based on time-gaps. This Time-Gap Controller works by extending
each current green phase as long as a continuous flow of traffic is detected for it. More precisely,
the next green phase is selected when a sufficient time-gap is observed after the last vehicle has
left in the current green phase. As a result, this method clears the queues which are found for each
active green phase.

Although the former methods are effective, their use of fixed parameter settings — like time-gap or
maximum allowed time per green phase — might be sub-optimal at times. Based on insights found
in historic traffic routes information, one can apply predictive modelling for traffic congestion in
order to make more informed decisions. In general, these predictions allow to tune parameters of
traffic light controllers in real-time in order to increase their performance.

The value of real-time parameter tuning based on predictive modelling of traffic is particularly
seen during a special event like a concert, since this event will cause high traffic volumes. The
set of routes which are affected are quite predictable given the event location and road network.
A method as proposed by Pescaru in 2013 [21] demonstrates the value. With Pescaru’s method
[21], each controller will still react directly to its observed vehicles but is also able to predict two
important variables. First of all a prediction can be made on the total queue length. Secondly, it is
important to predict the set of roads which will influence traffic congestion most in the next time-
frame [21]. Both predictions can be used to tune parameters of common traffic light controllers.
For example by allowing a longer maximum green time to selected lanes, in order to fully clear a
queue of vehicles on these selected lanes.

Intersection controllers which only take local observations into account are prone to make sub-
optimal decisions which only look good locally but not globally. Ideally, the different controllers
ensure smooth travel of vehicles throughout large urban regions. Coordination mechanisms between
traffic lights are of utmost importance, some popular mechanisms will be given here.

The simplest coordination method might be a fized time controller where each intersection uses
an offset time to each neighbouring intersection to compensate for the travel time between them.
Cycle and split are two important terms, which are now explained. Cycle is defined as, the total
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time it takes for all phases of one intersection to receive their allocated green -and inter-green times.
Split is related to cycle and defined as, the amount of time within a phase where a traffic signal is
green. With a fized time controller each green phase has a fixed duration, i.e. a fixed split of the
total cycle time. It is only possible to set a single offset time, and therefore required to have an
equal travel time (distance / free-flow speed) between all direct neighbouring intersections. Some
real-world grid networks found in the United States comply to this single travel-time requirement,
since all buildings are placed in square blocks. And these square blocks are connected by roads
that run parallel to them. Doing so, the travel-times between all direct neighbouring intersections
is identical [22].

Since traffic demands vary throughout the day, the use of fixed times for split, cycle and offset are
not ideal. In 1981 a popular commercial system has been introduced which adjusts these parameters
in real-time, hence the name SCOOT (Split-Cycle Offset Optimization Technique [23]). The system
obtains real-time information on traffic volumes by means of sensors which are embedded in each
road. This information is used to make changes to the split and cycle times. The offsets are adjusted
with respect to intersections that belong to a region, i.e. a fixed set of connected intersections.

An auction-based system as presented by Raphael [24] forms ”coalitions” of intersections dynami-
cally instead of relying on pre-determined coalitions. In each coalition, traffic light controllers work
together to improve the observed traffic low. A market-based mechanism observes the changes
in traffic flow over time and updates the coalitions of traffic lights for a smoother flow of traffic
throughout the network. This method has been demonstrated to outperform SCOOT which uses
pre-defined coalitions.

2.2 Related work on Schedule-driven Intersection Control
(SCHIC)

While SCHIC is at the basis of the commercial controller SURTRAC, it is also precisely documented
in a publication [1] which allows others to reproduce and study it. A literature study on SCHIC
has been performed which resulted in three main papers which identify a weakness of SCHIC. Some
authors improve SCHIC in order to reduce the identified weakness, whereas others demonstrate a
second method which outperforms SCHIC.

The following three papers are further explained in Appendix A, and briefly summarized in this
section.

e In 2019, Dang [14] introduced lane-based job-scheduling for SCHIC which improves the ac-
curacy of SCHICs cost-function.

e In 2018, Goldstein and Smith [7] introduced ERIS. Which uses a job-scheduling algorithm
like SCHIC, however it applies a more flexible phase set than the one originally proposed for
SCHIC [1].

e In 2019, Hu and Smith [25] demonstrated SCHICs poor performance during saturated traffic
conditions. They proposed a method which gradually shifts from SCHICs job-scheduling
control to queue-based control when the traffic demand grows to a saturated demand.
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Dang [14] improved the accuracy of SCHICs cost-function for a common real-world occurrence, by
considering that vehicles can approach an intersection on opposing entry-lanes whilst sharing the
same green phase. Dang [14] has shown considerable improvements to SCHICs performance, but
omitted inter-phase uncertainty. To clarify, inter-phase uncertainty is omitted since each vehicle
is restricted to approach the intersection on a single entry-lane (for straight-ahead traffic) and
this single entry-lane is associated to a single green phase for straight-ahead traffic. With inter-
phase uncertainty removed vehicle detection can be performed at the beginning of the lane, since
each vehicle on this lane will request the same green phase from the controller. Therefore, the
length of each lane is now the only limiting factor to maximize the look-ahead time for vehicle
detection. In Dangs [14] 5x5 grid network, vehicles on 20 out of the 25 lanes are are detected at at
least 7.5 seconds from the intersection. This look-ahead time is reasonable given that inter-phase
uncertainty is eliminated. However, when vehicles are able to request different and competing
green-phases by switching lanes, inter-phase uncertainty is quite an important factor to consider
at 7.5 seconds from the intersection.

Goldstein and Smith [7] include both straight-ahead and left-turning traffic in their proposed job-
scheduler: ERIS. However, inter-phase uncertainty is removed since all vehicles communicate their
desired entry-lane and hence green phase directly to the traffic light controller. Furthermore, all
vehicles also communicate their speed and position to the the controller. The assumed 100%
adoption rate of communicating vehicles is quite unrealistic, so it is unclear how the results will
translate for more realistic adoption rates of communicating vehicles. ERIS does improve over
SCHIC in terms of extending the search space for new potential schedules, since it allows a larger
set of green phases than SCHIC. To clarify, SCHIC restricts each lane to be present in just one
single green phase, whereas with ERIS each lane is now allowed to be present in multiple green
phases. Since ERIS and SCHIC are both based on job-scheduling, the communicating vehicle
scenario indicates a need for long look-ahead horizons for job-scheduling algorithms.

Hu and Smith [25] demonstrated that queue-based control outperforms SCHIC during saturated
traffic demands. However, it can be concluded that SCHIC does perform well during low to
unsaturated traffic demands given long look-ahead times for vehicle detection.

Although these three papers critically evaluate SCHIC, they all rely on quite large look-ahead times
for vehicle detection which is only possible due to an important simplification. This simplification
implies that all approaching vehicles are either, restricted to approach the intersection on a single
entry-lane for just straight-ahead traffic [14] [25], or each vehicle communicates his upcoming lane
change well in advance to the controller [7]. Doing so, inter-phase uncertainty is omitted, i.e. the
uncertainty that a vehicle can actually request a different green phase by changing lanes is omitted.

2.3 Existing baseline methods for inter-phase uncertainty

Instead of assuming that vehicles cannot change lanes whilst approaching the intersection [14], [25],
three methods have been proposed for SCHIC which increase the look-ahead time for approaching
vehicles while each detected vehicle is still able to change lanes. These three baseline methods are:
split-vehicles [1], [7], fized-label [8] and Vehicle to Intersection Communication (V2I) [7]. These
three baseline methods can be divided based on their working principle, into two categories:
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e Category A, containing both split-vehicles and fixed-label. Both methods make use
of statistical properties found in historic data on turning-movement proportions.

e Category B, contains just Vehicle to Intersection Communication (V2I). V2I is
also referred to as Oracle in this thesis. In this category, a vehicle directly communicates
his desired lane and hence green phase to the controller, thereby removing the uncertainty
for this vehicle.
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(a) The vehicle approaching from the West can still
change lanes to request different competing green-
phases. (b) Traffic counts from the West origin.
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(c) Arrival time at the intersection for the vehicle which is split into two.

Figure 2.1: Splitting vehicles into multiple phases based on historic traffic counts, images repro-
duced from Goldstein et al. [7].

Category A: split-vehicles based on historical turning movement proportions

A historical method to handle inter-phase uncertainty is to apply turning movement proportions to
each vehicle count, i.e. upon first detection each vehicle is split based on the historically observed
distribution of traffic per green-phase. The method is briefly mentioned in the first publication on
SCHIC by Xie et al. [1] in 2012 and further explained by Goldstein et al. [7] in 2018.

A visual example is given in Figure 2.1a, on the West side of the intersection one vehicle has just
entered the lane for straight-ahead traffic. At this point it is unclear if this vehicle will change lanes
to end up in the left-turning lane, each lane-change will change which green-phase is requested from
the controller. Therefore its vehicle count of 1 is split based on the historically observed turning
movement proportions, resulting in two vehicle counts of size {0.25, 0.75}, as shown in Figure 2.1b.
Figure 2.1c shows the the local phase based traffic observation, which uses a single arrival -and
departure-time for both fractions of the vehicle count.
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When individual vehicles are expected to arrive at the intersection within a threshold time, a single
cluster is formed which contains these vehicles. When clustering split vehicles, the vehicle count of
a cluster is based on the weighted fractions. A cluster of vehicles can for example contain a vehicle
count of 1.5. The vehicle count is used to compute the weighted cumulative delay by SCHICs
scheduler. More details on SCHICs scheduling algorithm will be supplied in section 3.1.3.

Category A: fixed-label corresponding to the dominant turning movement

Smith [8] proposes to use a fixed label for all vehicles which can still change lanes and hence change
their desired turning movement at the intersection. This fixed label corresponds to the historically
observed major turning movement. This method is proposed for the historic turning movement
proportions as obtained during a field-test of SCHIC in 2015. Smith distinguishes between major
-and minor traffic flows in his road network, i.e. major flows contain much more traffic per day
than minor flows. In this road-network Smith identifies straight-ahead traffic as a major flow and
all other turning-movements as a minor flow.

More specifically, Smith [8] introduces a hybrid cycle which is a combination of SCHICs scheduling
algorithm for just two green-phases which only service the major flows. However in order to allocate
green-time for the minor flows, this two phase schedule of SCHIC is overruled by another control
algorithm — namely Vehicle Actuated Control (VA) — which services the minor flows. Additionally,
the green-phases which service minor flows are allowed to be skipped when no vehicles are available
for this phase. Performance metrics on the hybrid cycle are limited. Since it is only reported how
often each minor phase is executed and how often a queue of vehicles of a minor traffic flow is
unable to fully clear during its green time.

In this thesis, the hybrid cycle is not completely identical to Smiths [8] proposal since green-phases
which service minor flows are scheduled by SCHIC and therefore not allowed to be skipped. Xie
et al. motivate that green phases are not skipped by SCHIC based on an argument of safety and
fairness [1]. Smiths proposed method is implemented as follows in this thesis. The fixed label
classification which corresponds to the historically observed major turning movement is identical
to Smith [8]. Given the fixed label prediction, SCHIC creates a schedule in which all vehicles
will join the major traffic low for straight-ahead traffic. If a miss-prediction occurs, so when a
vehicle is actually detected on a left-turning lane, its predicted lane is corrected. After detecting
a miss-prediction, the left-turning vehicles are now also scheduled by SCHIC. The comparison is
therefore limited to the baseline method of a fixed label for each new vehicle.

Category B: Vehicle to Intersection Communication (V2I) or Oracle

Inter-phase uncertainty can be eliminated when a vehicle is able to directly communicate his
desired turning movement to the traffic light controller. Vehicles equipped with this technology
can broadcast precise information about their position, velocity and desired turning movement
to the intersection. These messages are known as Cooperative Awareness Messages (CAM). The
drivers lane choice is known in advance rather than predicted, the performance gain can thus
be seen as an upper limit of any predictive approach. On an isolated real-world intersection
controlled by a commercial controller named ImFlow, the reduction in travel time can be up to
9% as demonstrated by Czechowski et al. [26].

These three baseline methods are well documented, however, the actual traffic flow performance
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of SCHIC when either of these methods is applied is ill-reported. So, it is unclear how much each
of the three methods actually increase SCHICs traffic flow performance.

2.4 Conclusion

In this chapter, general literature on (commercially applied) traffic light controllers has been dis-
cussed. In succession, the focus shifted towards strong -and weak points of SCHICs traffic control
algorithm. In this thesis we focus on two real-world constraints, since they have been overlooked in
previous work on SCHIC. These two constraints are (1) a realistically short length of an entry-lane
and (2) the uncertainty than an approaching vehicle can change to a different entry-lane which is
serviced in a different and competing green phase.

Literature on SCHIC has introduced several baseline methods to handle inter-phase uncertainty,
i.e. {fixed-label, split-vehicles and Vehicle to Intersection Communication (V2I)}. Yet, the traffic
flow improvement of SCHIC when either of these methods is applied is often not reported or ill-
reported. Therefore, the traffic flow improvement of SCHIC with each of its baseline methods is
quantitatively evaluated in this thesis. Furthermore, a new method to increase SCHICs traffic flow
performance under inter-phase uncertainty is presented, namely Lane Change Prediction (LCP).
LCP can potentially reach higher accuracies than the two existing statistical baseline methods, i.e.
{fixed-label, split-vehicles}, so it can potentially outperform these two former baseline methods.
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Chapter 3

Theoretical framework of SCHIC

In this chapter SCHIC is explained in detail, in order to clarify in which manner the proposed
extension of Lane Change Prediction (LCP) connects to SCHICs local traffic observation. SCHICs
main components are briefly explained by stating both the abilities and inabilities of this traffic
light controller. Additionally, this non-biased and detailed overview allows for a clear comparison
to other traffic light controllers.

Section 3.1 explains SCHICs local planning method by giving a high-level overview of the sup-
ported features. In that section, SCHIC is decomposed into its three main components: (1) the
traffic input information, (2) the scheduling algorithm and (3) the coordination mechanism among
intersections. These main components are further explained by means of a flowchart which shows
the main logic of SCHIC in Section 3.2. Afterwards, Section 3.3 compares the originally published
results of SCHIC with those as obtained with the re-implementation of SCHIC which is realized
for this study. The most important information of the entire chapter is summarized in Section 3.4.

Relevant terminology
Most terms which are used in this chapter are also explained and listed in the glossary on page
96.
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3.1 Detailed overview of supported features

In this section a high-level overview of SCHICs local scheduling method is given. Both the capa-
bilities and inabilities of SCHIC will be explained which allows for a comparison to other traffic
light controllers.

3.1.1 Restrictions imposed on the phase set

This section is illustrated by Figure 3.1.

Xie et al. [1] define the intersection as a set of entry -and exit roads which intersect each other
in a single point. The entry-roads lead traffic towards the intersection whereas exit-roads move
traffic away from the intersection. Each entry-road can contain multiple entry-lanes, where each
entry-lane is dedicated to a single traffic movement. Examples of traffic movements are straight-
ahead -and left-turning traffic. A movement is formally defined as a path from one entry-lane to
one exit-lane. Each movement is shown as an arrow in Figure 3.1.

Phases and movements

A phase is an assignment of light signals — i.e. red, yellow or green — to each and every movement
on the intersection. Movements which can safely pass the intersection at the same time are grouped
into a single green phase. In other words, a green phase services a set of non-conflicting movements.
When one green phase is active it shows a green signal (i.e. a green light) to its assigned movements,
while all other movements observe a red signal. The total set of green phases is referred to as I. In
some images, a green phase is referred to with two integers: (i, g) or g*), where i € I is the phase
index and g the variable phase duration in seconds.

To conclude, a simplifying restriction is imposed by Xie et al. [1], i.e. for SCHIC each movement is
only allowed to be present in one green phase. To clarify, there is no overlap of movements between
all green phases. Including more green phases and allowing movements to be present in multiple
green phases will increase the flexibility and performance of a single intersection. However it also
increases the search space for the scheduler.

indices : 0 1 2 3

phase set : — /‘v/ JI %’
green phase set: GRRR RGRR RRGR RRRG
yellow phase set : YRRR RYRR RRYR RRRY

Figure 3.1: Example of a phase set which does not contain overlapping movements. Including
the individual green -and yellow light signals in ”green -and yellow phase set”. This is an often
encountered phase set in The Netherlands, and also the default phase set of Simulation of Urban
Mobility [19] (SUMO).
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Figure 3.2: Visual example of clusters on an entry-lane. Each cluster represents at least one car
and is defined with variables: arr, dep, |c|. Image reproduced from Xie et al. [1].

3.1.2 Local traffic observation

Vehicle detection relies on induction loop sensors in SCHIC [1], these induction loop sensors are
commonly used by real-world intersections. For SCHIC these induction loops are placed at the
start -and end of each entry-lane, respectively called stop -and advance detectors. Each loop can
detect vehicles which pass or stay over the loop sensor. The stop -and advance detectors are
respectively placed at points 0 and H), in Figure 3.2.

Working principle of induction loop sensors

Induction loop sensors are placed inside the pavement of e.g. an entry-lane. Each loop is charged
with an alternating electric current at a certain frequency. When a vehicle passes or remains above
the loop, the ferrous material of this vehicle will change the inductance of the induction loop sensor.
This change of inductance allows the sensor to detect vehicles !.

Traffic observation on an entry-lane

Upon first detection of a new vehicle at point H), in Figure 3.2, the arrival time of this new vehicle
at the intersection is computed by assuming it will continue with a fixed speed. This travel-time
of a newly detected vehicle towards the intersection will now be referred to as: prediction horizon
(Hp)-

H, is computed as follows: H, = distance between advance detector and the stop-line of the
intersection / speed limit [1]. Upon first detection of each new vehicle a timestamp is saved which
is referred to as the current decision time (cdt). This cdt is used to compute the expected arrival
time of each new vehicle. The expected arrival time (arr) is computed as arr = cdt + Hp,.

Thttps://en.wikipedia.org/wiki/Induction_loop
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Clusters (in a Road Flow List (RF))

A cluster (c) is a data structure in use by SCHIC, which represents the detected vehicles. For each
newly detected vehicle a new cluster is made. The data fields of a cluster are: |c| — the number of
vehicles in this cluster, arr(c) — the expected arrival time of the first vehicle, dep(c) — the expected
departure time of the last vehicle. For a new cluster, the number of vehicles (|c|) is set to 1. The
arrival time is computed as explained in the previous paragraph. The departure time dep(c) =
arr(c) + samp, where samp is the sampling interval in seconds of the vehicle detection method
which is set to samp = 0.5 sec.

All clusters (which represent arriving vehicles) approach the intersection on a single entry-lane and
each entry-lane is associated to only a single movement m. Recall that movements are shown as
individual arrows in Figure 3.1. All clusters are first saved in a list corresponding to their desired
movement m. Specifically, for each individual movement m at the intersection; a separate Road
Flow List is maintained: Crp.,, = (c',..,cI®l). Here, Road Flow List (RF) stands for Road Flow
List, where m is the index of the desired movement, and |Crp,m| is the total number of clusters
for movement m.

Phase based traffic observation (Inflows (IF))

A green phase can service multiple entry-lanes (each for a single movement m) at the same time.
E.g. two opposing entry-lanes for straight-ahead movements can be serviced by the same green
phase (as seen in Figure 3.1). All individual RFs with an individual movement m (Cgrpg,,) which
are serviced by the same green phase are simply merged into a separate Inflow List: Crp,;. So, for
each individual green phase with index ¢, a separate list is maintained: Crp;. Here, the Inflows
(IF) is used to describe all approaching traffic, i.e. IF is a set containing all individual Inflow
Lists: Crp;. So, the following set is collected IF = {Cp; : Vi € |I|}. Where i is an individual
green phase index and |I| is the total number of green phases in the phase set I. IF is used by
the scheduler in order to determine a schedule with minimal cumulative delay.

Threshold based clustering

Clusters which arrive within a certain threshold time, th, = 3.0 seconds, are merged into a
single cluster. Threshold based clustering is not performed for each individual entry-lane which
is associated to a single movement m. Instead, it is only performed for the movements which are
already merged in Cjr; based on their green phase with index ¢. The merging of multiple clusters
into one reduces the problem size of the scheduler. To clarify, a merge of two clusters, ¢; and cao,
into one cluster ¢ is performed as follows. This new cluster has arr(cy) = min(arr(c1), arr(cs)),
dep(co) = maz(dep(c1), dep(c2)), |co| = [e1] + [cal.

Parameter Full name Setting
the threshold clustering | 3 seconds
sult start-up lost time | 3.5 seconds
shw saturation headway | 2.5 seconds

Table 3.1: Fixed parameter settings of SCHIC
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Queue modelling

While the previously explained departure times work for SCHICs scheduling algorithm, they only
work when these vehicles will not become a queue at the intersection. If these vehicles will need
to stop at the intersection (since they observe a red signal) and become a queue, their departure
times are updated since queued vehicles are assumed to have:

1. A fixed saturation headway (shw = 2.5s) towards the next queued vehicle (see Table 3.1.

2. A start-up lost time since they need to accelerate from a stand-still (see Table 3.1).

Queues on each entry-road are associated to a single movement m, these queues are modelled in
a linear manner. The arrival time of a queued vehicle remains the same as before, however, its
departure time is updated. The increase in departure time is based on the saturation headway
(shw = 2.5s), which is the assumed average headway in seconds between vehicles in saturated flow.
To clarify, when the queue has accelerated from a standstill then each vehicle is assumed to have
an headway of 2.5 seconds to the vehicle in front of it.

An estimate of the queue size (¢"™)) is made for each entry-lane, where m is the index of the
entry-lane which services movement m. ¢(™ is defined as the difference between the number of
expected vehicles at the current decision time (cdt) and the actually departed vehicles from that
entry-lane.

The scheduler considers a start-up lost time (sult) of 3.5 seconds to account for the acceleration
time of a queue cluster from a standstill. So, the sult is not added by the clustering method. But
added by the scheduler since adding the sult depends on the chosen schedule. To clarify, when two
queues from opposing entry-lanes are serviced during the same green phase the start-up lost time
of 3.5 seconds should only be added once.

Pseudocode of queue modelling
The pseudocode of the queue clustering is shown in Algorithm 1 together with the following
explanation.

Line 7: the queue count ¢(™) is updated here. ¢("™) is a count of the vehicles which are still at the
intersection while they were assumed to have left already based on their expected arrival time.

Line 12: a queue is expected if the queue count is larger than 0, i.e. ¢ > 0. The queued
vehicles (i.e. the first q(’”) vehicles in the Road Flow List Crp.y,) are now saved in a single queue
cluster c,. The departure time of the vehicles in ¢, is updated by using the Saturation Flow Rate
(sfr). Sfr is defined as sfr = Njgnes/shw. Where Njgpes is the number of entry-lanes which are
available for movement m and shw is the average saturation headway. Njgnes = 1 in this thesis.
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Algorithm 1: Arriving vehicles on the entry-lane for movement m which have become a
queue; require more time to be serviced. So, they are now saved in the Road Flow List
(Crrm) as a single queue cluster ¢, with an increased departure time.

1 create_queue_cluster_on_roadflow(cdt, m)
Input : cdt is current decision time, m is the entry-lane index associated to movement
m.
Output : The queue count estimate (q(m)) is updated. Which is used to update the
queued clusters with a fixed flow rate in Crp .

g™ =0

old_c = ﬁrSt,CluSter((jR}in) // Save the earliest to arrive cluster of (jRFﬂns to reference

[

it later.

// For each cluster ¢ in Crpm, check if its arrival time (arr(c)) is earlier than the
current decision time (cdt).

for Ve € Crpm do

if arr(c) < cdt then

// The arrival time of cluster c (arr(c)) is below the current decision time (cdt), so

=]

the vehicles of cluster c are labelled as a queue.

q“n) += COUIK(C) // Update the queue count estimate (g("™)).
delete ¢ from Chgpﬂn // Cluster c is later converted to a queue cluster.
10 end

11 end

12 if ¢ > 0 then

// The first ¢(™) cars will become a single queue cluster ¢; in CRrpm .

// Create a single queue cluster c; and update its variables accordingly, e.g. update

its departure time.

13 count(c,) = ¢™

14 arr(c,) = arr(old_c)

15 fr(cq) = sfr

16 dep(cq) = arr(cq) + (count(cy) / fr(cqy))

17 end

18

19 return insert Cq into (7qun1 // All queued vehicles for movement m are now saved in one

queue cluster cq.
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Anticipated queues

For each movement, the anticipated queue contains the number of vehicles that are either presently
or in the future expected to join into the existing queue — before this existing queue clears at the
intersection. The anticipative queue is modelled by extending the existing queue, c¢;, with new
anticipated vehicles such that the arrival time and flow-rate of ¢, remain unchanged. To conclude,
the number of vehicles in ¢, is increased and only its departure -and duration-time is updated by
scaling it linearly with the increased vehicle count, |cg].

To fully explain the algorithm, the clusters in Crp,, are iterated over one by one. Consider the
non-queue cluster, ¢/, for which conditions 0, 1 and 2 are performed.

Condition 0: if arr(c?) < dep(c,), then condition 1 is also evaluated.

Condition 1: If dep(c¢’) < dep(cy) or fr(c?) > fr(c,), a full join of ¢/ into ¢, is performed:
lcg| = |eql + |¢7], and ¢/ is removed from Crpm.

Condition 2: if conditions 0 and 1 do not hold, a part or even all of ¢/ might still join into ¢,.
This Condition 2 is further shown in the pseudo-code given in the Appendix in Algorithm 4.
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3.1.3 Scheduler

As explained before (Section 3.1.2 on page 26), the scheduler uses the Inflows (IF) which contains
all approaching vehicles as ordered for each individual green phase. A single green phase can be
referred to by its index: 1.

The Inflows (IF) are used to create and evaluate different Phase Switching Sequences (PSSs).
Each PSS is a sequence of green phases with appropriate durations to service the set of currently
observed vehicles found in Inflows (IF). A complete PSS services all currently observed vehicles, so
quite often different complete phase switching sequences are possible. For each PSS the cumulative
delay of all serviced vehicles is computed based on the entire process of approaching and passing
through the intersection. Lastly, a complete PSS with minimal cumulative delay is selected from
the available set of complete PSSs. Figure 3.3 shows an example with traffic for three phases within
Crr,i, which results in two different complete phase switching sequences (PSS), i.e. Schedule S(4)
and S(B)

Theorem 1. (Elimination Criterion) of Xie et al. [1]

As shown in Figure 3.3, schedule S(4) and S(p) service the exact same clusters but schedule S 4)
does so with a lower cumulative delay. So schedule S(4) is selected. Schedule S p) can already be
eliminated at stage & = 3 (i.e. when the first & = 3 clusters of schedule S(4) and S(p) are known).
At stage k = 3 the following theorem can be applied: Theorem 1. (Elimination Criterion) of Xie
et al. [1], as further explained in the caption of Figure 3.3.

Safety and fairness
The scheduler applies the following safety and fairness rules since the traffic light interacts with
human drivers.

1. Each green phase has a variable duration between a minimum and a maximum value:

[G(i)

A Gsy?w] = [5 seconds, 55 seconds].

2. The yellow phase will run for a fixed inter-green time between two subsequent green phases:
Y = 5 seconds. This yellow phase takes the reaction time of human drivers into account,
as during this yellow phase vehicles are requested to stop at the intersection if it is still safe
to do so.

3. Each green phase will run for a fixed minimum duration, so skipping a green phase is not
allowed. Instead green phases switch in a fixed cycle, i.e. the next green phase index is
determined by: next(i) = (i+1) modulo |I|. Where ¢ is the current green phase index and
|7| is the total number of green phases in the phase set I.

30



! .
, Intersection

Phase 1 —p
-

2,1 [
Phase 2
o
3,1
Phase 3

A

[ )
A

Schedule S(A)= (1, 3, 1, 2) and its corresponding phase switching sequence (PSS).

(k=1) (k=2) (k=3) (k=4)

@ @)
1,1 start-up lost time  (sult )\ 3'1 1,2 2,1 PSS of S(A)

| .
»
g, (a") g Yo JG&JW‘ Y@ |r g | yo | gn | yo g?
-4t -4 L1 _J__JT__ -

Schedule S(B)= (3,1, 1, 2) and its corresponding phase switching sequence (PSS).

B)
»
»

3,1 sun(\)X 1,1 1,2 su\(\ 2,1 PSS of S

|
(1) (1) (1) (2) 2)
9 o (97 ) 1Y [G mmJ Yl
R N

Figure 3.3: Top half of image: observed vehicles per individual phase, known as clusters (e.g.
for the movement straight-ahead or left-turn). Lower half of image: different possible (complete)
schedules S(4) and S(g) which (completely) service all observed clusters. Grey rectangles indicate
queued vehicles. Among all different schedules, the one with minimal cumulative delay is selected.
At stage k = 3, both S 4) and S p) have serviced the same clusters and the same phase is active.
However, the cumulative delay of S(py is higher than that of S4), so schedule S(py can already
be eliminated at stage k = 3 — see Theorem 1. (Elimination Criterion) of [1]. Image reproduced
from: Xie et al. [1].
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3.1.4 Coordination mechanism between intersections

Although the coordination mechanism of SCHIC is not implemented in this thesis, it is mentioned
here as a reference. Xie et al. [27] extend SCHIC by adding a scalable, decentralized coordination
mechanism which is limited to interaction among directly neighbouring intersections. As stated
before, each SCHIC agent develops a Phase Switching Sequence (PSS) which optimizes for its
own locally observable traffic movements through the intersection. These locally observable traffic
movements are within the local look-ahead horizon of each controller.

The basic coordination protocol allows each agent to extend his locally observable traffic movements
by sending requests to each of its direct upstream neighbours. l.e. after the requests it simply
receives a projection of newly planned traffic outflows from its upstream neighbours. Depending on
the horizon length of each request, the reply may contain influences of non-direct neighbours as well.
Lastly, Xie et al. [27] mention that this coordination mechanism can suffer from two problems: (1)
"nervousness” and (2) dynamic instability in the network. Therefore, the coordination mechanism
is applied in such a manner that these two problems are reduced thereby increasing SCHICs
performance.
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3.2 Flowchart of SCHICs algorithms

Figure 3.4 shows a flowchart of SCHICs algorithms where the existing Phase Switching Sequence
(PSS) is updated in six steps. Each of these steps are further explained in the paragraphs directly
below. A PSS is a sequence of phases and it is built on the initial phase condition at its start time.
This initial phase condition is (i, g.) — where i. is the current green phase index and g, is the time
that the current phase with index i, has been green [1].

4. Extension decision: simplificiation in which 5. PSS Implementation: phase switching
we only decide to append time to the current —| sequence is created for optimization horizon

phase or move to the next phase. -

A
| 3. Optimizer: remove inefficient states in D. | | 6. Feasiblitiy: check maximum phase duration. |
A /\
2. Control Model: update state space D. | Reject: new phase is Accept: phase is

= (next( i), min_dur ). (i, extension).
RN a
| |

Inter-phase uncertainty methods: .

: LCP, split-vehicles, fixed-label, V2I. | 1. Route Flow Information: updated IF.
. | A

R AN

phase | | (i, 9,.) roll interval 1 I

optimization horizon H

Figure 3.4: Flowchart of SCHICs components, in a high level abstraction. The methods for inter-
phase uncertainty connect to step: 1. Route Flow Information. The image is re-created without
any intended changes from SCHICs original publication by Xie et al. [1].
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1. Route Flow Information (i.e. local traffic observation)

At each time-step of 0.5 seconds, the scheduler obtains the updated current traffic observation,
namely the Inflows (IF). These Inflows (IF) are defined as a separate list per green phase and each
list contains the arrival times of all approaching vehicles for each single green phase. However,
vehicles which are expected to arrive briefly after each other are aggregated into a single arriving
cluster as explained in section 3.1.2.

2. Control Model

The scheduler uses a forward recursive algorithm to re-order the observed clusters found in the
Inflows (IF) in all allowed manners. A simple example is shown in Figure 3.5, which shows a tree
structure where each path is a different re-ordering of the observed clusters. This tree structure is
referred to as the statespace D and each state is shown as a node of the tree. Each node is defined
by three variables: {X, s, Sprev }-

X is an array which counts the number of serviced clusters per phase, i.e. X = [1,1] means that
a single cluster is serviced for each of the two phases. The other two parameters are as follows: s
is the current phase index of this state and s, is the phase index of the previous state.

The example in Figure 3.5 considers two green phases and a single cluster for each of the two
green phases. In this particular case two paths can lead to the full state X = [1, 1], the path with
minimal cumulative delay is used to create a Phase Switching Sequence (PSS). However, during
the creation of statespace D, the optimizer limits the search space as explained in the next step
directly below.

X=1[0,0]
s=config=0

X=[2,0] X=[1] X=[1,1] X=1[0,2]
s=0 s=1 s=0 s=1

Figure 3.5: Visualisation of the statespace D. Which is built by a forward recursive algorithm to
re-order the observed clusters for all phases. In this example there is one cluster for each phase.
Each state (shown as a node of the tree) is defined by three variables: {X, s, Sprev}-
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3. Optimizer — (Theorem 1. (Elimination Criterion) of Xie et al. [1])

An elimination criterion is in place in order to reduce the search space without losing optimality.
The state-space D can contain multiple paths which lead to different states, which have however
serviced the exact same clusters of vehicles.

Let’s call these two states: {A, B}. The paths towards {A, B} will each lead to a different Phase
Switching Sequence (PSS). If both states {A, B} have the same current phase index s, and an
identical X array, then these states have previously and currently serviced the exact same clusters.
If one of these states is dominated by the other, i.e. the cumulative delay d4 < dp and the end-time
ta < tp, then one can eliminate state B without loss of optimality [1].

This optimization step is visualized by schedules S(4) and S(p) in Figure 3.3.

4. Extension decision

As mentioned by Xie et al. [1], SCHIC finishes each cluster which is currently being serviced.
Therefore, the extension decision computes the amount of time (i.e. extension time) in order to
finish the currently serviced cluster. This extension time is based on the expected departure time
of the currently serviced cluster. Pseudo-code is given in the Appendix (section 10).

5. PSS Implementation

The state space D is fully built if it contains at least one full state, i.e. a full-state has serviced
all observed clusters in I F. SCHIC retrieves the optimal schedule S by selecting the the full state
with minimal cumulative delay d. From this full state SCHIC tracks back to the root node, and
the phase durations, pd, are saved which have been stored in each state. The schedule S and
corresponding phase durations PD = (pdj, ..., pd|g|) are saved until they are replaced in the next
scheduling iteration.

Thereby, the schedule S which services all observed clusters with minimal delay is converted into
a Phase Switching Sequence (PSS). This PSS contains the green phase durations and inter-green
times (i.e. yellow light times).

More details are supplied in the Appendix (section 19, section 22).

6. Feasibilty check

During the creation of state-space D there is no check performed on the maximum duration of
a green phase (i.e. 55 sec). This check is only performed on the final schedule. If a violation
of the maximum green time occurs, the scheduler simply selects the next allowed green phase.
This is possible since SCHIC cycles through green phases in a fixed order, where each phase has a
minimum green time. Pseudo-code is given in the Appendix (section 10).
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3.3 Quantitative comparison between SCHICs re-implementation
and SCHICs original published results

In this research SCHIC is re-implemented based on the pseudo-code supplied by Xie et al. [1].
Appendix C concludes with a quantitative comparison between the published results on SCHIC by
Xie et al. [1] and the results as obtained with the re-implementation of SCHIC. In order to make
these comparisons, all intersections and vehicle demands are recreated based on specifications found
in [1]. Unfortunately, some specifications and parameter settings are omitted in the publication
of Xie et al. [1]. Therefore, the used parameter settings in this research are clearly reported in
Appendix C. While each parameter described in Appendix C might change the results of the
experiments, one can reasonably conclude that the results of the re-implementation are close to
the original published results.

3.4 Summary

To summarize, a vital part of SCHIC is its clustering method and queue modelling which both
aggregate vehicles together and thereby reduce the input for the job-scheduler. Secondly, its
elimination criterion also reduces the computational load by removing inefficient schedules at an
early stage. Additionally, it has been demonstrated that a scalable coordination mechanism can be
layered on top of the a-synchronously operating single intersections. However, the time duration
of each green phase varies between a minimum and maximum duration. Since green phases are
not skipped this is expected to lead to sub-optimal behaviour when unbalanced traffic scenarios
are applied.
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Chapter 4

Proposed method:
Lane Change Prediction

While SCHIC has been demonstrated to be successful, this was most often realised with large
look-ahead times which required an important simplification. This simplification is as follows,
each approaching vehicle is not allowed to change lanes when approaching the intersection and is
therefore only able to request a single green phase from the traffic light controller. For example,
Xie et al. [1] and Dang et al. [14] restrict each vehicle to approach the intersection on just a
single entry-lane and this entry-lane is serviced in a single green phase for straight-ahead traffic.
This simplification removes the uncertainty that vehicles can request different green phases, for
example by entering the entry lane for left turning traffic which is often serviced in a different
and competing green phase. By applying this restriction, vehicles can now be detected long in
advance, since their final entry-lane and hence desired green phase is known a priori. This enables
unrealistically long look-ahead times which improve SCHICs performance [1].

In this chapter we take a different approach, rather than assuming that lane changes are not
present, we investigate how far we might be able to use machine learning methods to predict these
lane changes, thereby reducing the uncertainty for SCHIC. Specifically, we intend to predict a lane
change of a vehicle based on its observed driving style towards multiple short entry-lanes of an
intersection. Chapter 2 already explained three baseline methods which are aimed at a similar
scenario, since they aim to increase the look-ahead time for vehicle detection while each detected
vehicle is still able to perform a lane change. However, these three baseline methods do not use
the anticipative driving style of each approaching vehicle as is intended with the proposed method
of Lane Change Prediction (LCP).

Section 4.1 discusses related work on Lane Change Prediction (LCP), and is used to motivate our
approach to LCP. Section 4.2 partly covers the realisation of our ideas by presenting our feature
vector. This feature vector captures the observed driving style of an approaching vehicle and its
upcoming traffic state. It is used by a classification model to predict the future lane change of a
vehicle towards one of the shorter entry-lanes. Section 4.3 motivates based on some characteristics
of SCHICs logic, how the method of Lane Change Prediction (LCP) can be applied best to SCHIC
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in order to reduce the uncertainty of lane changes. This chapter is concluded in Section 4.4.

4.1 Related work on Lane Change Prediction (LCP)

Although Chapter 2 contains related work, it does not contain work on Lane Change Prediction
(LCP). So, this section contains related work only on LCP and is thereafter used to motivate
the design of our classification model. I.e. our approach uses a comparable feature vector and
classification model as those described below.

Hou et al. [28] proposed a lane changing assistance system to advise drivers in 2014. The system
detects if a safe gap is found to execute a mandatory lane change on lane drops at Highway and
Inter-state roads, see Figure 4.1a.

A decision-tree and Bayes classifier are used to predict if the lane change can be performed safely.
Open-Source real-world vehicle trajectory data is used to evaluate the performance of the model
on Highway and Inter-state lane drops. Important input data for the model are the vehicle’s speed
and distance relative to the vehicles on the target lane. The best performance is found when both a
Bayes -and Decision Tree classifier are combined as a single classifier which uses a majority voting
principle. This results in a prediction accuracy for a merge event of 79.3% [28].

Studies on lane change predictions are mainly focussed on highway traffic. However, in 2011 Ortiz
et al. [18] introduce a predictive approach for an inner-city traffic light which closely resembles the
intersection which is evaluated in this thesis, see Figure 4.1b.

The input of the predictive model is limited to the speed of the vehicle and the distance and status
of its approaching traffic light. Future behaviour of each vehicle is predicted with a multi-layer
perceptron model (MLP). This application of Ortiz et al. [18] is aimed at Advanced Driving
Assistant Systems (ADAS). The system can warn a driver when he/she does not brake in time.
The predictive output is one of three behaviour primitives: "keep speed”, ”braking” or ”stopped”.

While the system does not predict a lane-change it is expected to fit well into our scenario, when
one of the two final entry-lanes is serviced with a green signal and the other entry-lane is receiving
a red signal. To clarify, a high correlation can be expected between ”"keep speed” and merging into
the entry-lane which is currently serviced with a green signal. A similar high correlation can be
expected between ”braking” or ”stopped” when the driver wants to enter the entry-lane which is
currently observing a red signal.

The predictive accuracy of the model is shown in a single ROC curve for several future time-
frames, i.e. several increasingly large future time-frames are compared for which future behaviour
is predicted, see Fig. 7 in [18]. In conclusion, although the model can perform behaviour prediction
for a time-frame of up to 6 sec in the future, Ortiz et al. conclude that the model is highly accurate
for a future time-frame of up to 3 sec.

Motivations for an interpretable predictive model

Given these learning models of different complexity, one could consider the trade-off between the
accuracy and interpretability of the predictive model. An argument can be made for a relatively
simple and explainable machine-learning model, since in this thesis all predictions are based on
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simulated driving behaviour. A Decision Tree as proposed by Hou et al. [28] is evaluated further in
this thesis, since the learned model is proven on real-world data and therefore likely to be accurate
on our simulated data as well. Therefore, a more complex multi-layer perceptron Model (MLP) as
proposed by Ortiz et al. [18] might not be needed for our simulated data. Lastly, for the Traffic
Light Control industry it can be common practice to validate classification models in simulation by
means of statistical tests before these models are applied to real-world road users. In conclusion,
we focus on a Decision Tree since the results of this open-box model are in general easy to explain

and interpret by means of statistical tests.

Target lane

@@ @
Merge lane m J /

S

(a) Scenario of an Inter-State or Highway lane-
drop, in use by Hou et al. [28]. Image based on
Hou et al. [28]

(b) The approach scene towards the Waalsdor-
perweg traffic light in The Hague (own pic-
ture). Which closely resembles the traffic light
approach scene as evaluated by Ortiz et al. [18].
See Fig. 3 of Ortiz et al. [18].

Figure 4.1: Scenario of Hou et al. [28] and a comparable scenario to that of Ortiz et al. [18]
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4.2 Feature vector for Lane Change Prediction (LCP)

In this section, we begin to present our proposed approach to Lane Change Prediction (LCP).
Specifically, this section introduces the feature vector which will be used by a classification model.

distance
point_3

distance__
point_2 wl
L

distance__
point_1

Driver Anticipation

1 2 4
Track the Predict Stop-line.
behaviour the final
of each vehicle. lane.
3

Conventional
detection point,
correct the prediction if needed.

Figure 4.2: Locations used by Lane Change Prediction (LCP).
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In order to obtain the feature vector, two important regions are defined within Figure 4.2:

1. Driver Anticipation Region, located between points 1 and 2.

2. Traffic State Region, located between points 3 and 4.

Each lane change prediction is made for an ego-vehicle, this ego-vehicle is defined as a single vehicle
which is first observed and tracked in the Driver Anticipation Region. Its future lane change is
predicted when it reaches the end of the Driver Anticipation Region. The first set of features are
based on the driving behaviour of the ego-vehicle when approaching the lane-split in the Driver
Anticipation Region. The second set of features consider the observed traffic state on the two
individual lanes within the Traffic State Region.

The feature vector in this study is based on related work of Hou et al. [28] and Ortiz et al. [18], as
previously described in Section 4.1. Hou et al. [28] present a predictive model for a scenario which
does not consider a traffic light, but a lane-drop which is used to merge into a single target lane of
a Highway. They compose their features based on the ego-vehicle’s speed and distance relative to
the vehicles on the target lane. Ortiz et al. [18] introduce a predictive approach for an inner-city
traffic light. They limit the input of their predictive model to the speed of the ego-vehicle and
the distance and status of its approaching traffic light. Our proposed feature vector is loosely
connected to that of Hou et al. [28], since we initially based it on the feature vector of Ortiz et al.
[18].

Obtaining the feature vector
Below we consider an ego-vehicle which approaches the lane-split, and we describe how its feature
vector is obtained.

1. Driver Anticipation features

When the ego-vehicle enters the Driver Anticipation Region, it is being tracked by radar equipment
in order to observe its velocity. In total, two features are obtained in this region to describe the
Driver Anticipation (D.A.), namely Speed Profile and Speed Change.

e Speed Profile contains four logged speeds (m/s) of the ego-vehicle, these speeds are saved at
an interval of 0.5 seconds. Speed Profile is expressed as:

Speed Profile = [speedy, speeda, ..., speedy]

e Speed Change computes the division of all subsequent speed values which have been saved
prior in Speed Profile, these are used to detect braking -or acceleration of the ego-vehicle.
Speed Change is expressed as:

speed_change; = speed;1/speed;
Speed Change = [speed_change, ..., speed_changes)
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2. Traffic State features
The second set of features are obtained by observing the Traffic State Region, therefore, these
features are categorized as Traffic State (T.S.) features.

The T.S. features are saved once, to be specific, they are saved just before a Lane Change Prediction
is made for the ego-vehicle. This prediction is made when the ego-vehicle reaches point 2, which
is located just before the lane-split see Figure 4.2. At this single moment, the T.S. features are
added once to feature-vector of the ego-vehicle. Each Lane Change Prediction is thus based on the
previously observed Driver Anticipation (D.A.) features and the currently observed Traffic State
(T.S.) features.

The Traffic State features are composed of 7 individual features, as listed in Table 4.1 and as
explained below.

e Current Phase Index (cpi), an integer value describing the Current Phase Index. Indicat-
ing which entry-lane is currently being serviced with a green-phase and which is currently
observing a red-phase.

e Occupancy considers the occupancy-ratio of each split lane, i.e. it is the total area occupied
by vehicles divided by the length of this split lane. The Occupancy value implicitly contains
the distance between the ego-vehicle and the vehicles which the ego-vehicle approaches after
the lane-split.

o Awverage Speed (m/s) considers each of the two shorter lanes after the lane-split, thus within
the Traffic State Region, for each lane the average speed of its vehicles is saved.

The subsequent features consider the leading-vehicles with respect to the ego-vehicle. To clarify,
the last vehicle on each of the shorter split lanes is the closest vehicle on that lane with respect
to the the ego-vehicle. Therefore, these last vehicles are also referred to as a leading-vehicle with
respect to the ego-vehicle. These leading-vehicles are expected to influence the behaviour of the
ego-vehicle considerably. When a leading-vehicle is present on the shorter split lanes, the following
features are saved based on the current speed and acceleration of both the leading-vehicle and
ego-vehicle:

The speed of the ego-vehicle might be influenced by both the acceleration and speed of a leading-
vehicle. For example, the ego-vehicle might approach a leading-vehicle with a higher velocity, when
this leading-vehicles is accelerating. Therefore, the following four features are also computed.

L Speedleadingfvehicle (m/s)

e accelerationiecqding—vehicle (M/$%)

e Relative Speed to a leading vehicle = speedego—vehicie/ SPE€icading—vehicle

e Relative Acceleration to a leading vehicle = accelerationego—venicie/0ccelarationicading—vehicle
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Practical considerations

A vehicle’s speed can be accurately measured with radar equipment. This radar equipment has an
error range below 1.5 mph given a speed of 35 mph, or 2.4 km/h and 56 km/h respectively [29].
Thus resulting in an error percentage of M * 100% = + 4.3%.

Although a vehicle’s speed can be accurately meausured7 we also propose to use some acceleration
based features. We obtain our acceleration measurements directly from our simulator SUMO. In
reality, the acceleration of a vehicle can be computed by measuring its velocity (ve,,v:,) at two
moments in time, tg, t; respectively. The acceleration can now be computed with: accelaration =
Av _ Yt “Vtg

At ti—to °

On just the Krauss drivers, noise is applied by our traffic simulator SUMO. However, the accel-
eration measurements can be even more noisy when they are obtained from real world drivers.
Therefore, we also determine the accuracy of our predictive models without these acceleration

features in Section 5.3.6.

Feature Value

type Name Description Type range

D.A!L Speed Profile Four logged speeds before the lane-split. Real [0, 13.3]

D.A. Speed Change Division of subsequent speeds in own speed Real [0, 00)

profile.

T.S.2 cpi Current phase index of the traffic light. Integer {0,2}

T.S. Occupancy Occupancy of each split lane. Real [0, 1]

T.S. Average Speed Average speed of all vehicles on each split lane.  Real [0, 13.3]

T.S. Leading Vehicle Speed  Speed of the last vehicle on each split lane. Real [0, 13.3]

T.S. Leading Vehicle Accel- Acceleration of the last vehicle on each split Real [-7.5, 2.9]
eration lane.

T.S. Relative Speed to a Division of ego vehicle speed and speed of last  Real [0, o)
leading vehicle vehicle on each split lane.

T.S. Relative Acceleration Division of ego vehicle acceleration and accel- Real (-00, 00)

to a leading vehicle.

eration of last vehicle on each split lane.

! Driver Anticipation (D.A.)
2 Traffic State (T.S.)

Table 4.1: Features which compose the feature-vector for predictive models
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4.3 Application of LCP and baseline methods to SCHIC

Some details specific to SCHIC are addressed, to clarify in which manner Lane Change Prediction
(LCP) and the previously mentioned baseline methods are applied to SCHIC. The baseline methods
and LCP are only applied to SCHIC after evaluating two conditions, as explained below and shown
in the pseudo-code of Algorithm 2.

Condition 1 — see line 5 of Algorithm 2

Is the lane-split currently blocked by stationary or slowly moving vehicles?

The lane-split can be blocked by stationary or slowly moving vehicles, which prevents the ego-
vehicle from passing the lane-split and reaching its desired entry-lane within a reasonable time.
SCHIC uses an expected arrival time for each approaching vehicle. However, when the lane-split is
in a blocked state it will wait for this vehicle even when it is unable to reach its desired entry-lane.
Therefore, when the lane-split is blocked, no new predictions are made and current predictions are
removed.

The lane-split is considered to be in a blocked state when the vehicles of an entry-lane queue up
to the lane-split, i.e. between points 2 and 3 of Figure 4.2. This state is also known as spillback.
In order to detect this blocked state, the average speed is observed for the vehicles which are on
the lane-split, thus between points 2 and 3 of Figure 4.2. If their speed drops below 1 m/s, the
lane-split is considered to be in a blocked state.

Condition 2 — see line 7 of Algorithm 2

Is a green phase currently active on one of the reachable short entry-lanes?

SCHIC does not skip green-phases but cycles through all green-phases in a fixed order, where each
green-phase has a minimum duration of 5 seconds. It is possible that the ego-vehicle approaches
the intersection, and only observes red signals for all reachable entry-lanes. In this scenario, the
ego-vehicle will need to wait for its fixedly ordered green-phase while the other phases are active
for at least a minimum duration of 5 seconds. In this scenario, the performance gain of LCP is
assumed to be minimal, therefore, predictions are only applied if one of the short entry-lanes is
currently serviced with a green phase.

Correcting mis-predictions — see line 12 of Algorithm 2

When the ego-vehicle reaches its final short entry-lane (by reaching point 3 in Figure 4.2) it is
confirmed if the ego-vehicle has reached its predicted lane. False predictions are now corrected and
updated in the local traffic observation of SCHIC.

44



Algorithm 2: Pseudo-code of Lane Change Prediction (LCP) in use by SCHIC.

1 update_lane_change_predictions(lane-split Y)

Input : Lane-split Y.

Output : Lane change prediction for ego-vehicle X which is currently at the end of the
Driver Anticipation (D.A.) region, see point 2 of Figure 4.2. Previous lane
change predictions are corrected if needed, incorrect predictions are detected
when each vehicle has reached its final (short) entry-lane.

// 1. Save and observe the vehicles which are currently: (1) approaching, (2) on or (3)
have passed the lane-split. 2. Check if the lane-split is blocked by slowly moving or
stationary vehicles.

3 vehicle_list, lane_split_blocked = get_and_observe_vehicles_around(lane-split Y)

5 if lane_split_blocked == True then

// Remove the predicted vehicles which are currently approaching or on the lane-split,
since they are unable to move to their desired entry-lane.
remove_current_predictions(lane-split Y)
Ise if current_phase_index € {0,1} then

// Ego-vehicle X needs to be at the end of the Driver Anticipation (D.A.) region, see

@

point 2 of Figure 4.2. It approaches two entry-lanes, and one of these is receiving a
green signal.
predicted_lane = get_lane_change_prediction(feature-vector of ego-vehicle X)
insert_into_local traffic_observation(ego-vehicle X, predicted_lane)
10 end
11

// For each vehicle that reaches its short entry-lane, its predicted lane is updated in the
correct Road Flow List (Cgrp,,) if it was incorrectly predicted.
12 update_mis_predictions(lane-split Y)
13
14 return // Road Flow Lists ((7Rpﬂn) for both possible movements at the intersection (i.e.
left-turn and straight-ahead) have been updated by inserting a Lane Change Prediction (LCP)

and the removal of mispredictions.
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4.4 Conclusion

In this chapter the fundamental structure of the LCP approach is established and it is connected to
related work. It established three fundamental ideas that concern (1) the belief that anticipative
driving styles can be captured in a simple feature vector (2) a reasoning that lane change predic-
tions can be used best when one of the reachable entry-lanes is currently serviced with a green
signal (3) the natural advantage of predictions based on anticipative driving styles. Recall that the
existing baseline methods of fixed-label and split-vehicles solely rely on historic lane occupancies.
The natural advantage of LCP can occur in situations in which other statistical measures only
contain a small information gain, e.g. when historic lane occupancies are balanced.

A simplification is made in this study as the predictive output is limited to only two lanes, for
either left-turning or straight-ahead traffic. In reality, there is a third lane for vehicles which
will make a right-turn at the intersection. Since right-turning traffic can be serviced during the
same green-phase as the one for straight-ahead traffic, it does not increase inter-phase uncertainty,
However, this study only considers inter-phase uncertainty and therefore right-turning traffic is
omitted from this study all together. Lastly, reducing the predictive output to either left-turning
or straight-ahead traffic is likely to increase the predictive accuracy while it does not affect the
influence on inter-phase uncertainty.

What was explained in this chapter will be extended in the next, where the predictive models are
trained on simulated driver behaviour.
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Chapter 5

Accuracy of Lane Change
Prediction

The proposed method of Lane Change Prediction (LCP) is finalized in this chapter by covering
the training procedure of several learning models and by comparing their predictive accuracies.
Additionally, the accuracies of these trained classification models for LCP are compared to the
only baseline method of SCHIC which also performs classification namely fized label. This baseline
method applies a fixed label prediction to each new vehicle, where the label corresponds to the
historically observed dominant turning movement.

Section 5.1 fully defines the design of the evaluated intersection. In succession, Section 5.2 informs
on the several available driver-models which describe the behaviour of drivers in simulation. This
is concluded with a selection of two driver models which are used in our data-sets: the Krauss
-and Intelligent Driver Model (IDM). Section 5.3 begins to explain how we model Lane Change
Prediction (LCP) as a classification task. Perhaps most important, the accuracies of the trained
classification models are compared to each other in Section 5.3.4. This chapter is concluded in
Section 5.4.

5.1 Intersection design

This section defines the evaluated intersection of this thesis in such detail that it can be reproduced
by others. The dimensions of the intersection are based on a technical drawing as obtained from
the municipality of The Hague. However, matters which differ from the real-world intersection are
touched upon as well. We give a clear overview of lane-dimensioning, detector placement and the
chosen phase set.
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Figure 5.1: Overview of the Waalsdorperweg intersection which contains two lane-splits.
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Figure 5.2: This image is a duplicate image, and shows the locations in use by Lane Change
Prediction (LCP).
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Lane dimensions

The total length of each lane which is leading traffic towards -or away from our intersection is set
to 200m. In reality there is a neighbouring intersection on the right-hand side of our intersection
located at roughly 70m, however the effect of neighbouring intersections is not considered in this
work.

As specified by the technical drawing of the municipality, all short entry-lanes are 40m in length,
i.e. these short entry-lanes are within the ”Traffic State” region of Figure 5.2.

Detector placement

The placement of each detector is specified by its distance to the stop-line of the intersection, as
shown for two detectors with distancepoint_s at the top of Figure 5.2. The travel-time between
each detector and the stop-line is defined as follows:

travel_timegetector[S] = distancegetector M)/ speed limit[m/s].

Detectors on entry-lanes after a lane-split
Due to restrictions in the traffic simulator SUMO, the detector placements are slightly different
than the real-world positions. Please refer to Table 5.1 for a clear overview of detector placements.

Here, we consider the entry-lanes after a lane-split. In reality the detectors on these entry-lanes
are placed at distancegetector = 35m for the lane on the West-side and at distancegetector = 30m
for the lane on the East-side. Unfortunately SUMO does not support a distance of more than 30m,
since this places the detector on the actual lane-split which is not supported. Therefore, in order
to not cover the lane-split, within our SUMO scenario these detectors are all set to 30m.

As derived from Ortiz et al. [18] (Section 4.1), it is assumed here that an accurate Lane Change
Prediction (LCP) is possible at 3.0 seconds before the stop-line of an intersection. At point 2 of
Figure 5.2, we obtain the Lane Change Prediction. In order to determine the actual distance at
which we make this Lane Change Prediction, the value of 3.0 s is multiplied by the speed-limit of
50 km/h or 13.9 m/s. Thus, distancepoint, = 3.0 s * 13.9 m/s = 42m.

Detectors on entry-lanes without a lane-split

Here, we consider the entry-lanes without a lane-split, i.e. the vertical lanes of Figure 5.1. In
reality, the detectors on these entry-lanes are placed at 40m. We slightly increased this to 42m
in order to equalize the detector distances on all four approaches (North, East, South and West)
towards the intersection.

Lane type Real world SUMUO scenario SUMUO scenario
distancegetector distancegetector travel_timegetector

Entry lanes without a lane-split. 40m 42m 3.0s

(vertically oriented lanes in Figure 5.1)

Entry lanes after a lane-split 30m (West-side) and  30m (West-side) and  2.2s

(see point 3 in Figure 5.2). 35m (East-side) 30m (East-side)

Table 5.1: Detector placements and travel-times are equalized for all entry-lanes.
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Phase set

The phase set is shown in Figure 5.3. Given our focus on inter-phase uncertainty, we removed
right-turning vehicles, pedestrians and cyclist since they do not affect inter-phase uncertainty (see
Section 4.4).

indices : 0 1 2 3

phase set : — j/ J I ‘:b
green phase set: GRRR RGRR RRGR RRRG
yellow phase set : YRRR RYRR RRYR RRRY

Figure 5.3: An often encountered phase set in The Netherlands, also the default phase set of
Simulation of Urban Mobility [19] (SUMO). It is a non-overlapping phase set, since each movement
(indicated with an arrow) is only found in one of the green phases.
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5.2 Simulated driving behaviour

We have no access to real-world data of vehicles which perform a lane change manoeuvre in our
scenario. Therefore, we simulate all vehicle behaviour in SUMO. This simulated vehicle behaviour
is used as training -and testing-data for the machine learning models. Within the simulation
environment, one can select different car-following models which compute the dynamic behaviour
of a vehicle at all times. I.e, the model is applied when a vehicle is closely following another
vehicle. But also when a vehicle is approaching an empty lane without someone to follow. The
former empty lane-scenario is shown for different car-following models in Figure 5.4.

The level of detail in traffic simulations can vary from macroscopic to microscopic. SUMO is a
microscopic traffic simulator, which enables it to model highly detailed dynamic behaviour of each
driver. These high levels of detail can lead to valuable clues which enable informed Lane Change
Predictions. This section is brought to a close by describing two popular car-following models in
more detail, namely the Krauss-model and the IDM.

General categories of car-following models
Based on their logic, car-following models are often divided into the following categories [30]:

e Gazis-Herman-Rothery models (GHR) compute a vehicle’s acceleration based on the
velocity of the leading vehicle and the distance to this leading vehicle. The Intelligent Driver
Model (IDM) fits into this category.

e Safety-distance models directly adjust the velocity of each vehicle in order to maintain a
safe distance to the leading vehicle. This category applies to the Krauss-model [31].

e Psycho-physical models take the limited human perception of each driver into account.
For example, thresholds are set for the minimal observable speed difference between a follower
-and leading vehicle. The Wiedemann-model fits into this category.

Speed

— Default
----- IDM
0 Wiedemann

o 50 100 150 200 250 300
Distance traveled

Figure 5.4: Different car-following models determine the dynamic behaviour of each vehicle which
approaches an empty lane with a red signal. (”Default” in the legenda refers to the Krauss car-
following model)
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(a) Car following behaviour of vehicle: «, when following a leading vehicle:
a—1.

Variable Description

Uq Proposed acceleration for the a vehicle

Umax Maximum desired acceleration

brnaz Maximum desired deceleration

Vo Current velocity of the a vehicle

Vdes Desired velocity of the a vehicle

) Tuning exponent

Av,, Velocity difference between the a -and leading vehicle
S0 Minimum desired net distance to the leading vehicle
T Desired headway in seconds

Tk Reaction time of the driver

At Time step

(b) Explanation of variables used by car following models [32]

Table 5.2: Car following behaviour of vehicle o and explanation of its variables.

Krauss Car-Following Model

Stefan Krauss introduced the Krauss car-following model [31] in 1998, although slight modifications
are applied to this model, it is currently the default car-following model of SUMO . In this model
the velocity of a vehicle is directly adjusted, without deriving it from the acceleration. The main
goal is to maintain a safe distance to the leader vehicle.

Figure 5.5 contains the main equations of this model. First of all a safe velocity: v, e, is computed
by Equation 5.1. Two important variables in order to compute vsqf. are the reaction time of the
driver: 7 and the maximum desired deceleration in non-emergency situations: b,q-

The desired velocity is simply limited in Equation 5.2, either by the just computed safe velocity:
Vsafe, the speed-limit: v,,q, or by the current velocity times the maximum desired acceleration.
This limitation should ensure a safe gap to the next vehicle.

In the final step a random perturbation: 1 > 0 is subtracted from the desired velocity which results
in the velocity for the next time step: v, (t + At), see Equation 5.3.

1A link to SUMOs documentation on car-following models and default paramater settings
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Sa(t) — va(t) Tk

Dpagel®) = var(t) + 2= 51)
Sl

Vdes (t) = m’in(’l)safe (t)7 Umazx, Va (t) + amawAt) (52)

Vo (t + At) = max (0, vges(t) — 1) (5.3)

Figure 5.5: Formulas to compute the velocity of a vehicle by the Krau8l car following model [32].

Intelligent Driver Model (IDM)

The Intelligent Driver Model (IDM) is introduced by Treiber [33] in 2000 as a deterministic model
for highway traffic. In 2017 Treiber incorporated stochastic properties in order to model a common
phenomena, i.e. traffic flow oscillations of congested traffic [34]. Treiber identifies three possible
causes of traffic flow oscillations: instabilities in traffic flow, finite human perception thresholds
(i.e. indifference regions) and external acceleration noise. These three possible causes are added to
IDM in isolation by Treiber [34], in order to investigate the relative importance of each of them.

Simulations of this stochastic version of IDM are compared to real-world data which is acquired
from experimental car-platoons in China. It is demonstrated that within simulation, similar results
are obtained by either adding external acceleration noise or by applying finite human perception
thresholds with action points. For inner city traffic with relatively low speeds of 30 km/h, action
points or external noise can both accurately reproduce the oscillations as observed in the real-world
data.

However, this stochastic variant of IDM is not implemented in SUMO. Instead, the original deter-
ministic IDM is implemented in SUMO. This was concluded based on the source code of SUMO.
To confirm our findings on the source code, a forum post was made, where the main developer of
SUMO confirmed our findings.

A brief description of the formulas used in deterministic IDM is given below.

See Equation 5.4. The acceleration of the following vehicle: a,(t), is computed based on the
current velocity of the following vehicle: v, the velocity difference with the leading vehicle: Aw,
and the distance to the leading vehicle: s,.

See Equation 5.5. In order to compute the previously explained acceleration of the following vehicle:
as(t), one first needs to compute: s*(.). This s*(.) is a summation of the following distances: the
minimum desired distance to the leading vehicle: sq, the desired headway distance given the current
velocity of the « vehicle: v, (t)T', and a distance which compensates for the braking of the leader.
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val(t) s 570) 2
Udes(t)) (Sa(t))) (5.4)

Vo () Avg, (t)

2 ama:r: bmaa:

aa(t) = @maz (1 — (

§*(va(t), Avg(t)) = s + va(t)T + (5.5)

Figure 5.6: Formulas to compute the acceleration of a vehicle by the IDM car following model,
Pourabdollah [32].

Parameter settings of car-following models
In order to reproduce the experiments as conducted in this thesis, the parameter settings of each

car-following model are listed in Table 5.3. These settings are the default parameter settings of
each model 2 .

Driver Model Variable Description Value
Krauss, IDM accel Normal (non-emergency) acceleration ability 2.9 m/s?
Krauss, IDM decel Normal (non-emergency) deceleration ability 7.5 m/s?
Krauss, IDM maxSpeed Maximum speed 13.8 m/s
Krauss, IDM minGap Minimum gap when standing to leader vehicle 2.5 m
Krauss, IDM length Vehicle length 4.3 m
Krauss sigma Driver imperfection with range [0,1] 0.5

(0 denotes perfect driving)

Table 5.3: Explanation of default parameter settings of car-following models.

Conclusion and selection of car-following models

In order to make meaningful predictions on lane changes, the car-following model should resemble
real-world behaviour as much as possible. IDM is a deterministic model while the Krauss car-
following model incorporates stochastic properties. In reality nobody drives deterministic, however
some drivers do tend to anticipate smoothly on upcoming traffic as occurs with the Intelligent
Driver Model. Other drivers might use a more aggressive approach in traffic, but always maintain
a safe distance to leading vehicles, which matches the objective of the Krauss driver model.

Both models are commonly used in research on traffic control, and in this thesis each model
is evaluated in isolation for Lane Change Prediction (LCP).

2A link to SUMOs documentation on default paramater settings for car-following models.
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5.3 LCP as a classification task

Given the preceding description of the intersection and how we can simulate traffic in it, we can
now formalize our approach to Lane Change Prediction (LCP) as a classification task.

First of all, Section 5.3.1 stipulates the formation of the training -and testing-sets. The baseline
methods of SCHIC are explained in Section 5.3.2. Thereafter, Section 5.3.3, explains several
Machine Learning models and their training procedures. The accuracies of the trained classification
models are compared in Section 5.3.4. Additionally, some promising classification models are
further evaluated by means of Learning Curves in Section 5.3.5. The proposed acceleration based
features (see Section 4.2) could be quite noisy when obtained in reality. Therefore, we obtain the
accuracy scores of our models without these acceleration features in Section 5.3.6.

5.3.1 Generation of training -and testing sets

straight, . left
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Figure 5.7: Visual representation of the intersection. Each arrow in this figure is an Origin -and
Destination pair, and defines the movement of a vehicle through the intersection. Each Origin
-and Destination pair is composed by selecting an Origin and an allowed Destination from the
set Directions = {North, East, South, West}. For example, an allowed Origin-Destination pair
is South-West which is a left-turn at the intersection.

Distribution of turning-movements

The predictive models are evaluated on two commonly found traffic scenarios which differ in the
distribution of left-turning and straight-ahead traffic — respectively [left-turning, straight-ahead] =
[0.2, 0.8] or [0.5, 0.5] as illustrated in Figure 5.7.

The [20,80] scenario considers a distinction between major -and minor traffic flows as is often made
in research and practice, for example as mentioned in a field study by Smith in 2015 [8]. In this
thesis the major flow (straight-ahead traffic) is assumed to contain 80% of all traffic which leaves
20% for the minor flow (left turning traffic). The second [50, 50] scenario, is a balanced one in
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which both traffic flows receive an equal number of vehicles. The baseline methods of SCHIC use
the observed distribution of these traffic flows, i.e. either [20,80] or [50,50]. In order to realize
a fair comparison between these baseline methods and the learning models, both need access to
the same information, therefore the learning models are trained on these different distributions in
isolation.

Traffic generation method

All traffic scenarios are obtained by using a single driver model, i.e. either the Intelligent Driver
Model or Krauss. Origin-Destination pairs are used to specify the number of vehicles from each
origin-lane to each destination-lane, as shown in Figure 5.7. Although the distribution of turning-
movements differ, the vehicle demand from all four directions (North, East, South, West) are
equal. Four hourly vehicle demands are used and each demand is composed of 15 individual hourly
simulations. Each hourly simulation contains randomized arrival times of vehicles, since a different
seed is used in SUMOs traffic generator: OD2TRIPS.3

The hourly vehicle demands used for our single intersection are based on SCHICs original paper,
where Xie et al. [1] evaluate the performance of SCHIC on a single intersection which contains
some differences compared to our single intersection. In their scenario, traffic is found on only
two lanes, i.e. only straight-ahead traffic originating from the North and West is considered see
Figure 5.7. Therefore, two green phases for straight-ahead traffic suffice in their scenario. Their
vehicle demand varies from [600, 800, ..., 1200] (vehicles / hour).

However, in this thesis left-turning traffic is scheduled as well and four green phases are in use
instead of just two. Using four green phases instead of two means that each vehicle needs to wait
longer before his green phase is reached, since SCHIC cycles through each phase in a fixed order
where each green phase runs for at least a minimum duration. Therefore, the hourly demands on
the intersection of this thesis are slightly lower and vary between [200, 400, 600, 800] (vehicles /
hour). These hourly demands are considered to be low to moderate, however related to the original
publication on SCHIC since traffic is now approaching on eight different lanes and serviced in four
green phases instead of just two.

Sample counts in training -and testing-sets

For both the [20,80] and [50,50] data-set, 300 independent hourly simulations are combined in
total and contains the four different hourly vehicle demands. Therefore, a single predictive model
is trained for all four hourly vehicle demands. Each data-set is split into two parts, i.e. 80% (240h)
is used for training and 20% (60h) for testing.

As stated prior in Section 4.3, the Lane Change Prediction (LCP) is only applied under the following
two conditions: 1) an approaching vehicle needs to observe a green phase on one of its reachable
entry-lanes 2) an approaching vehicle needs to observe a ”"non-blocking” lane-split, so it can swiftly
move to its desired entry-lane. Since the model is only applied under these two conditions it is
also only trained under these two conditions. Therefore these two conditions limit the number of
samples on which a model is trained, the sample counts of the training and testing-sets are listed
in Table 5.4.

3A link to SUMOs documentation on OD2TRIPS.
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Turn

Training-set Testing-set | Training-set Testing-set

distribution | Krauss Krauss IDM IDM
[0.5, 0.5] 7981 1962 7838 1957
[0.2, 0.8] 7804 1954 7902 2014

Table 5.4: Sample counts in training -and testing-sets.

Traffic light controller

The traffic light controller is not considered to influence the driving behaviour towards the in-
tersection significantly. Therefore, for computational speed-up the training -and testing-sets are
derived from a VA controller instead of a SCHIC controller. Later on in Chapter 6, Lane Change
Prediction (LCP) is applied on a SCHIC controller. However, the predictive accuracies of LCP
with the SCHIC controller match closely with the predictive accuracies which will be given in this
chapter which are obtained with a VA controller instead.

Notes on bias

A considerable bias is found in the [20, 80] training-set, here 80% of all traffic continues straight
ahead, so a model which predicts all vehicles to continue straight-ahead results in an high accuracy
of 80%. Luckily, this bias is removed in the balanced [50,50] training-set.

A second form of bias considers the historic lane occupancies. The predictive model is aimed to
be trained on just the drivers behaviour, although the feature vector also contains historic data on
lane occupancy. Recall that lane occupancy is defined as the total length of all vehicles on a lane
divided by the length of that lane. Therefore, the lane occupancy implicitly contains the distance
from the ego-vehicle (for which a prediction is made) to the vehicles which it is approaching on
subsequent lanes. Some measures have been taken to prevent the model from being biased towards
historic lane occupancies.

Most importantly, we aim to prevent a shift towards Time Series Classification (TSC). To clarify,
Time Series Classification (T'SC) would use a large history of observations of this lane occupancy
feature over time in order to predict the lane occupancy for the near future. For example, with
TSC the feature vector can contain the lane occupancies of the last hour which is used to predict
the lane occupancy for the next minute. Whereas our predictive model only has access to a single
observation of the lane occupancy feature in its feature vector. Therefore, the lane occupancy
feature is not given in series to the predictive model, but instead, the lane-occupancy feature is
only found once in our feature vector. Doing so we aim to prevent a shift towards Time Series
Classification (TSC).

Lastly, a single hourly vehicle demand could correlate highly with a mean and maximum value for
each lane occupancy value. However, the model is trained on four different hourly demands. Both
measures combined, aim to reduce the influence of time series information as much as possible.
However these arguments are only valid for the balanced [50,50] training-set. In case of a [20,80]
distribution the lane occupancies are able to bias the model towards these historic values.
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5.3.2 Baseline methods of SCHIC

In this subsection we explain classification models which are based on SCHICs baseline methods.

Fixed label

This baseline method of SCHIC uses a fixed label prediction which corresponds to the observable
major turning-movement. The accuracy of this model depends on the turning-movement distribu-
tion in the used test-set, i.e. [50, 50] or [20, 80] in our case, thus the accuracy of a fized-label is
respectively 0.5 or 0.8.

Probability classifier

This method is loosely based on SCHICs baseline method split vehicles, which splits vehicles
based on the observed turning movement distribution. However, in order to compare split vehicles
to a classification methods it is first converted into a classification method as described below.
SCHICs baseline method splits each vehicle into two fractions, for example {0.2,0.8}. However,
the probability classifier generates a random number between [0,1] for each vehicle that will receive
a Lane Change Prediction. Afterwards, the turning movement distribution is used to predict a
single lane. In case of a [0.2, 0.8] distribution, a random number below 0.2 is labelled as a left-turn
(label = 0) and values above 0.2 as straight-ahead traffic (label = 1).

5.3.3 Selected Machine Learning methods

Here, we supply implementation details of our proposed machine learning models, i.e. Support
Vector Machine (SVM), Decision Tree and a Random Forest. These machine learning models are
based on the literature study on Lane Change Prediction (LCP) (Section 4.1).

Support Vector Machine (SVM)
This model did not follow directly from the performed literature study, but is included as a refer-
ence. In this study the following implementation is used: sklearn.SVM.

Recall that with the Krauss driver model a safe velocity is computed for each vehicle in order to
maintain a safe distance to its leading vehicle (Section 5.2). Afterwards a random perturbation
is either added or subtracted from this deterministically computed safe velocity. Therefore, the
velocity will always deviate from the deterministically computed safe velocity within the range of
the random perturbation.

In our classification problem, each feature vector belongs to either of the following two classes: {left-
turn, straight-ahead}. With a SVM, each data point (feature vector) is seen as a p-dimensional
vector. The aim is to separate these data points as well as possible with a (p-1) dimensional
hyperplane. Classification for a new data point is simply performed by checking on which side of
the hyperplane this new point lies, with each side corresponding to a single class. An example is
given for p = 2, where the filled and unfilled circles represent two different classes in Figure 5.8a.
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Multiple hyperplanes might be able to fully separate both of the two classes, e.g. Hy and H3 both
separate the two classes. However, H3 has a wider margin towards the different data points than
H,. This margin can be measured by the perpendicular (L) distance from a hyperplane towards
the nearest point of each different class. Maximizing this margin-distance is beneficial, since small
variations in the data points will be less likely to change the classification output of the model [35].

The randomization found in speed-profiles for Krauss vehicles might be separated quite well by
linear vectors as occurs with an SVM model, see Figure 5.8b.
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(a) Two classes, as indicated with a filled black cir- (b) Different car-following models determine the dy-
cle and unfilled circle respectively. Different hy- namic behaviour of each vehicle which approaches an
perplanes (Hi, H2, H3) aim to separate the two empty entry-lane with a red signal. (?Default” in the
classes. Hs and Hs both fully separate the two legend refers to the Krauss car-following model)
classes. Source: https://en.wikipedia.org/wiki/

Support_vector_machine, accessed on 17-05-2020.

Figure 5.8: Visual explanation of the hyperplanes of a Support Vector Machine (SVM) and a speed
profile for several driver-models in the simulation package SUMO.
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Decision Tree
In this section we explain the working principle of a Decision Tree and the manner in which each
tree learns from the training-data.

A decision tree as proposed by Hou et al. [28] followed directly from the literature study (sec-
tion 4.1). In this thesis, the following implementation is used: sklearn.tree. DecisionTreeClassifier
and its hyper parameters are listed below in Table 5.5.

samples = 7902
value = [6387, 1515]

class = straight

True

speed_change_3 < 1.014
gini = 0.397

occupancy_left < 0.009
gini = 0.138

samples = 4672 samples = 3230
value = [3397, 1275] value = [2990, 240]
class = straight class = straight

occu straight < 0.015 ooy straight < 0.499 last_speed_diff straight < 0.947
g = 0% PG 00 P G- 0528

gini = 0.3:

samples = 345 samples = 2426 samples = 804
value = [78, 267] value = [2365, 61] value = 625, 179]
class = left class = straight class = straight

Figure 5.9: Top part of a Decision Tree for the IDM driver-model, showing the root node and some
branches.

Working Principle A decision tree uses a feature vector as input and performs a sequence of
tests on it along a path of nodes, which results in a classification decision [36]. Each internal node
of the tree performs a test, with the following general structure. ”Is feature x; < a?”, with a
being a threshold value. The outcome of each test is thus a binary answer, which corresponds to
a descendant node in which the next test is performed on this feature vector. At the end, this
feature vector traversed a path throughout the tree by reaching a terminal node which returns a
class label.

Training procedure To assemble a decision tree, the tests performed by each node should be
determined, as well as the ordering of these nodes. By performing each test, a tree iteratively splits
its training set into two branches. Where each branch is a sub-tree, which receives a subset of the
training-set.

Each node t receives a subset of the the training set X;. The root node (or starting node) is assigned
with the entire training-set: X;. The goal of each binary split is to create two subsets that are more
homogeneous than the parent subset. Our implementation, i.e. sklearn.tree. Decision TreeClassifier,
uses the Gini impurity to measure the quality of a split [37].

The Gini impurity I(t) [38], can be computed for each subset X; of each node t. The Gini
impurity measures how often a randomly chosen element from the entire training set would be
incorrectly labelled based on the distribution of labels in the subset X;. Therefore, Gini impurity
is computed by summing the probability that an item p; is chosen from the entire training set,
times the probability of incorrectly labeling that item in subset Xy, i.e. Y, 2iPe =1—p;.
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The Gini impurity Ig(t) can thus be defined as shown below. J defines the number of classes,
in our scenario we label each feature vector as {left-turn, straight-ahead}, i.e. i € {1,2,..,J} =
{1,2} with J = 2. And p; is the fraction of items labelled with class ¢ in subset X;.

J J
Io(t) =Y (mi Yy _p)=1-> p}
i=1

i=1 ki

The optimal value of I(t) = 0 which is achieved when all items of subset X; are assigned to a
single label i. Therefore, the lowest impurity at a node ¢, i.e. I5(t), indicates the best possible
split.

The quality of a split, can be referred to as the decrease in node impurity of the parent node
Alg(t). After the binary split at node ¢ its subset X, is split and assigned to two nodes, the next
node with answer ”yes” ty is assigned with subset X;, , and the next node with answer "no” ty is
assigned with subset X;,. The quality of a split is computed weighted by the number of vectors
Ni, and N, in each subset X;, and X, .

N, N,
Alg(t) = Ig(t) — %Ig(ty) - AjN Ia(ty)
t t

After an exhaustive search for all candidate questions, the candidate question with the maximum
impurity decrease is chosen at node t.

Stop-Splitting Criteria and Class assignment A tree can be expanded until all its terminal
nodes are pure, i.e. when all items of its subset X; correspond to a single class label. This can
lead to a large tree, which is likely to over-fit on the training set.

Therefore, we set a maximum depth of 25 to limit the growth of our decision tree. Secondly, we
only allow a node to be split if it contains at least 2% of the entire training set. The tree is not
further expanded when either of the these two conditions are violated, see Table 5.5.

Let y; and yo describe our two classes: left-turn and straight-ahead. When a terminal node is
reached, the class label j is given by computing the dominant class label in its subset X;:

j = argmax P(y;|t)

Decision Tree Random Forest

Maximum depth of each tree. 25 25
Minimum number of samples per node in each tree, 0.02 0.02
defined as a fraction of the entire training set X;.

Number of features during node-splitting. Nfeatures /M features

Table 5.5: Parameter settings of the Decision Tree and Random Forest.
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Random Forest (RF)

A Random Forest is an ensemble method, since it combines several individually trained Decision
Trees [39]. The aim of ensemble methods is to combine the predictions of several classifiers, in
order to improve the robustness over just a single classifier. With a Random Forest the individual
predictions of all Decision Trees are averaged in order to reach a single prediction, this often
improves the variance when compared to each of its individual Decision Trees. The predicted class
label of an input feature-vector is a vote by the Trees in the Forest, this vote is weighted by the
probability estimate of each Tree. Therefore, the predicted class label is the one with the highest
mean probability estimate across all Trees.

Each Decision Tree is trained individually on a different sub-samples Xiy..,, of the original training-
set X. The sub-sample size of Xy, is identical to the size of the original training-set X. How-
ever, the feature-vectors of Xiyee, are drawn with replacement from X (i.e. bootstrap sampling).
Drawing a feature vector with replacement means that each feature vector is allowed to occur
multiple times in a sub-sample Xy,¢e, . For example, when the original training-set contains five
feature-vectors (denoted as X = [1,2,3,4,5]), drawing with replacement can lead to the following
sub-samples Xi,.., which contain duplicates of the same feature-vector.

o X =1[1,2,3,4,5|
L4 Xtreel = [1a2735375]
L4 Xtreeg = [1a1725375]

Secondly, when determining the split at each node during the tree construction, the best split can
be found by considering all features (nfeqtures) Or by considering a subset (/T feqtures). A single
Decision Tree uses all features (nfeqtures), Whereas a Decision Tree of a Random Forest uses the

smaller subset (/7 features)-

In conclusion, each individual Decision Tree is now trained on a different training-set Xiree,, -
Secondly, each Decision Tree of the forest receives a small set of features to determine the best
split at each node. The above two sources of randomness aim to decrease the variance of a Random
Forest.

In this study the following implementation is used: sklearn.ensemble. RandomForestClassifier, ver-
sion 0.19.1. The Random Forest is composed of 100 individually trained decision trees and its
parameters are shown in Table 5.5.
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5.3.4 Accuracies of trained classifiers

The accuracy scores of these trained predictive models are evaluated on the previously described
test-sets. A separate test-set is used for each driver model and distribution of turns. (Section 5.3.1)

Scenario A: Intelligent Driver Model (IDM)
In general, the Random Forest and Decision Tree classifiers show a high accuracy on the determin-
istic IDM model, as shown in Figure 5.10.

In the [50,50] case, all models are trained on a balanced training-set and an accuracy of roughly
0.8 is reached by the Decision Tree and Random Forest. Given this balanced turning movement
distribution, the fixed label method obviously results in an accuracy of 0.5. The SVM model does
not perform properly given its accuracy of 0.59, which is close to the performance of a fixed label
(acc = 0.5). The higher accuracies of 0.8 indicate that the Tree and RF model have learned to
predict lane changes quite well based on the supplied training-data, i.e. the driving style of each
vehicle.

In the [20,80] case, the models might be strongly biased since they are trained on this unbalanced
turning movement distribution. Again, fixed label and SVM perform similar by reaching an accu-
racy of, respectively 0.80 and 0.81. However, an accuracy of 0.89 is reached for both the Decision
Tree and Random Forest. This accuracy indicates that these models do not only use the bias of the
unbalanced turning movement distribution, but additionally use the actual features as observed in
the driving style.

Scenario B: Krauss driver model

In general, all classifiers show a weak accuracy for the Krauss driver model. Based on the confusion
matrix of the Random Forest classifier, we observed a fixed label prediction in the unbalanced
[20,80] scenario. Potential reasons for this weak performance are listed below.

The Krauss car following model aims to just keep a safe distance to the next vehicle. Doing
so, it anticipates less on the upcoming traffic state than an IDM vehicle. Lastly, this model
contains stochastic properties, which increases the difficulty of the learning process compared to
the deterministic IDM vehicles.

Conclusion

The Random Forest performs most accurate on both test-sets of Scenario A. The Random Forest
and Decision Tree models are further evaluated by means of learning curves in the next section, in
part to judge the size of the training-set.
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Scenario A: Intelligent Driver Model (IDM)
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Figure 5.10: Scenario A: Intelligent Driver Model (IDM). Accuracies of different predictive models
on two test-sets with different turning-movement distributions, i.e. [0.5, 0.5] and [0.2,0.8].

Scenario B: Krauss driver model
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Figure 5.11: Scenario B: Krauss driver model. Accuracies of different predictive models on two

test-sets with different turning-movement distributions, i.e. [0.5, 0.5] and [0.2,0.8].
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5.3.5 Model validation with learning curves

After choosing a set of machine learning models and their hyper parameters, it is important to
evaluate how well each model performs both after and during its training procedure. During
training each model learns from the training-data which is given to it, and adjusts itself to perform
well on this training-data. Ideally, the models performance will be more accurate and robust
when it is fed with more training data. When this occurs the model learns and generalizes well.
However, it is important to diagnose if a model is actually learning properly from his training data,
we diagnose this with learning curves, as explained below.

Generating a learning curve

A learning curve plots the average performance of several models on the Y-axis, where each model
is trained on an incrementally increased training-set as shown on the X-axis. The learning curves
are generated as follows. A cross-validation generator splits the entire dataset k times (with k=7)
in training and validation data. Subsets of the training set, with increasing sizes, are used to
train the model and an accuracy score is obtained for each training subset and the validation set,
respectively called training score and validation score. Lastly, these scores are averaged over all
k=7 runs for each training subset size.

The learning process of each model is diagnosed with two performance metrics, training score and
validation score, as explained below:

o Training score: an accuracy-score based on data on which the model has been trained
before.

¢ Validation score: an accuracy-score based on novel data, i.e. the model performs a pre-
diction for novel data which it has not seen during training.

Interpreting a learning curve

The training-score will thus always be higher than the validation-score, since the model made a
prediction for data it has seen before. To clarify, it has seen this feature vector and actual label
before in its training phase. The training-score is expected to decrease when the training size
increases, since it is more difficult to fit a model well on a larger set of training data. Contrary
to the training-score, the validation-score is based on unseen validation-sets generated by K-fold
cross validation (k=7). The validation-score is expected to increase with a larger training size,
since the model will learn to generalize better. When the training -and validation scores converge
it indicates that the model has reached its optimal performance. Since it now performs similar for
data that it has seen before, as for data which it did not see before.

Learning curves are also used to identify under-fitting and over-fitting of a model.

¢ Under-fit (biased model) Some models are said to under-fit, since they are unable to
learn and adjust themselves properly based on an increase in training-data. Their predictive
accuracy remains low and constant despite an increase in training-data.

o Over-fit (high variance model) It is possible that a model adjusts itself erroneously on
his training-data, i.e. instead of generalizing well on the training-data it over-fits on noise
which is only found in this specific set of training-data.
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In conclusion, learning curves are a tool to find out if the model will benefit from adding more
training-data and if the model suffers from under-fitting or over-fitting.

As concluded in Section 5.2, two driver models are used to represent the general problem domain

in which the learning process occurs. On the next pages, learning curves are evaluated for Scenario
A: IDM and Scenario B: Krauss driver model.
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Scenario A: Intelligent Driver Model (IDM)
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(a) Learning-curves for a Decision-Tree classifier.
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(b) Learning-curves for a Random Forest classifier (composed of 100 Decision-Trees).

Figure 5.12: Learning curves on the IDM driver-model for both training-sets: [50,50] and [20,80].
K-Fold cross validation (k=7) is used to derive the validation score.

Here, we focus on the deterministic, Intelligent Driver Model (IDM). Figure 5.12a shows the
learning curves for the Decision Tree classifier and Figure 5.12b shows these for the Random Forest.
The two graphs on the left consider the balanced [50,50] turning movement distribution, whereas
the two graphs on the right consider the unbalanced [20,80] turning movement distribution.

In the [50,50] case, i.e. the graphs on the left, the Decision Tree and Random Forest show a similar
performance and both converge after roughly 6000 training-samples.

In the [20,80] case, i.e. the graphs on the right, the convergence point is reached with less training
data when compared to the [50,50] case, this holds for both models. The rapid convergence in the
[20,80] case is most likely a result of the bias in the training-set. The models are now trained on
a [20,80] distribution of turning-movements instead of on a balanced, [50,50] distribution. In the
[20,80] case, the Decision Tree converges at a later point than the Random Forest. The Random
Forest contains 100 individually trained Decision Trees and uses a majority voting principle, it is
therefore more likely to converge faster than a single Decision Tree.

Both models learn to predict the behaviour of the deterministic IDM driver model quite well.
Since IDM is deterministic, there is little noise and variation expected in the training-data. It
is trivial, that low noise in the training-date reduces the risk that a model is able to over-fit on

67



noise. A fixed label prediction will only apply the bias which is found in the training-set and will
yield an accuracy of 0.5 or 0.8, respectively for the [50,50] and [20,80] training-sets. However, the
convergence of the validation -and training-score towards respectively 0.8 and 0.9 for both training
sets is well above the bias found in these training sets. Therefore, the learning curves indicate that
the models have learned to predict lane changes for the IDM model properly, and will not benefit
from adding more training data.

Scenario B: Krauss driver-model

Learning curve for Krauss in traffic distribution 50_50 Learning curve for Krauss in traffic distribution 20_80
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(a) Learning-curves for a Decision-Tree classifier.

Learning curve for Krauss in traffic distribution 50_50 Learning curve for Krauss in traffic distribution 20_80

. 00
(b) Learning-curves for a Random Forest classifier (composed of 100 Decision-Trees).

Figure 5.13: Learning curves on the Krauss driver-model for both training-sets: [50,50] and [20,80].
K-Fold cross validation (k=7) is used to derive the validation score.

Here, we focus on the stochastic Krauss driver-model. Figure 5.13a shows the learning curves for
the Decision Tree classifier and Figure 5.13b shows these for the Random Forest. The two graphs
on the left consider the balanced [50,50] turning movement distribution, whereas the two graphs
on the right consider the unbalanced [20,80] turning movement distribution.

In the [50,50] case, i.e. the graphs on the left, the Decision Tree shows a horizontal training-score
of roughly 0.5. The horizontal trend demonstrates that no learning occurs based on an increase
in training-data, as was expected by the accuracy score of 0.5 for both the Decision tree and RF
model in Section 5.3.4. The Random Forest classifier has a large gap between the training -and
validation score, which could indicate a lack of training data. Given that the validation score is
almost horizontal, it is again unlikely that any learning is going on, so more training data is unlikely
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to increase the performance. Since there is no actual learning process observed, these models are
likely to under-fit on the data.

As for the [20,80] case, i.e. the graphs on the right, no proper learning-effect is observed. Both
models rapidly converge towards the bias found in the training data with a [20,80] distribution of
turns. The rapid convergence of training -and validation-scores to a value of 0.8 indicates that
learning is not as intended, i.e. it is not based on the behaviour of each driver. The models
are highly biased by the distribution of turns found in the training-set and are therefore likely to
over-fit on the training-data.

In conclusion, for these two learning models there is most likely too little variance in the feature-
vector which describes the driving behaviour of the Krauss driver-model. A more advanced
machine-learning model might learn driving behaviour from the current feature vector, and would
demonstrate this most in the balanced [50,50] case with an accuracy above 0.5. Secondly, the
feature vector could be enhanced to contain additional variables.

We consider the identified enhancements for Lane Change Prediction (LCP) with the Krauss driver
model as out of scope for this research project. And instead, we focus on the higher accuracies as
obtained with the IDM driver model in order to answer our next research question which considers
the traffic flow improvement of LCP when it is applied to SCHIC.

5.3.6 Predictive accuracies without acceleration features

The proposed acceleration based features (see Section 4.2) could be quite noisy when obtained in
reality. Therefore, we measure the predictive accuracy of our models without these two acceleration
based features:

1. Leading Vehicle Acceleration.

2. Relative Acceleration to a leading vehicle.

The predictive accuracies without these two features are listed in Table 5.6 and Table 5.7.

When including the above two features, the Random Forest achieved the following accuracies
during both turning-movement distributions, i.e. [0.5, 0.5] and [0.2, 0.8], respectively IDMgy.. =
0.81 and 0.89 and Kraussgs.. = 0.51 and 0.80. It can be concluded that the accuracies of the
Random Forests remain almost identical when removing these acceleration based features. We can
thus observe that our predictive models are not aided much by the proposed acceleration based
features.

In conclusion, it is strongly advised to remove the acceleration based features since they (1) do not
increase the predictive accuracy too much and (2) are difficult and noisy to obtain in reality.

The above two features are still used by LCP in the next chapter where we evaluate the Traffic
Flow Improvement of SCHIC with LCP. These two features are still in use, since this test without
them has been performed afterwards.

Additionally, Appendix D shows the importance of each individual feature in a graphical manner,
by plotting the individual importance of each feature. There, we also remove the derived features,
Speed Change and Relative Speed to a leading vehicle.
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Turning Movement distribution | Fixed label Probability SVM Decision Tree Random Forest

[50, 50] 0.50 0.51 0.57  0.78 0.79 (before: 0.81)
[20, 80] 0.80 0.67 0.80  0.89 0.89 (before: 0.89)

Table 5.6: Accuracies for the IDM driver model, without acceleration based features.

Turning Movement distribution | Fixed label Probability SVM Decision Tree Random Forest

[50, 50] 0.49 0.50 0.50  0.53 0.49 (before: 0.51)
[20, 80] 0.80 0.67 0.80 0.79 0.80 (before: 0.80)

Table 5.7: Accuracies for the Krauss driver model, without acceleration based features.

5.4 Conclusion

This chapter covered the training procedure of classification models for Lane Change Prediction
(LCP). These classification models are trained on two commonly used driver-models within the
traffic simulator SUMO, i.e. deterministic IDM and the stochastic Krauss driver-model. Two sce-
narios are explained and each uses a single driver model, Scenario A: IDM and Scenario B: Krauss
driver-model. For each of these two driver-models two popular turning-movement distributions are
considered which are either balanced or un-balanced, i.e. the ratio of [left-turning, straight-ahead]
is either [0.5, 0.5] or [0.2, 0.8].

The most accurate predictive models are the Decision Tree and Random Forest, which achieved
comparable accuracies. The predictive accuracies of the Random Forest during both turning-
movement distributions /0.5, 0.5] and [0.2, 0.8], are respectively Kraussqse. = 0.51 and 0.80,
IDM,.. = 0.81 and 0.89. Given the predictive accuracy on the Krauss driver-model, it is expected
that no learning is achieved based on the anticipative driving style. Since the Random Forest
has simply reverted to a fixed label prediction in the unbalanced [20,80] scenario. As concluded
with learning curves, an accurate Lane Change Prediction (LCP) based on the anticipative driving
style is only achieved for the deterministic Intelligent Driver Model (IDM). The Random Forest
is chosen, since it is expected to generalize better in a real-world scenario where different driving
styles are actually expected to occur.

In the next chapter, the performance of SCHIC is evaluated by applying the predictions of LCP
to SCHICs scheduling algorithm for both Scenario A: IDM and Scenario B: Krauss driver-model.
Although the Intelligent Driver Model (IDM) is deterministic this does enable a clear reasoning on
the results of SCHIC, since stochastic behaviour is not present in these IDM simulations.
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Chapter 6

Traffic Flow Improvement with
LCP

In the preceding chapters we described how Lane Change Prediction (LCP) can be formalized as
a classification task. We performed simulations in SUMO to generate training-data, which was
used to learn a Lane Change Predictor. We evaluated the performance of LCP for two turning-
movement distributions at the intersection, i.e. the ratio of [left-turning, straight-ahead] is either
[0.5, 0.5] or [0.2, 0.8]. In this chapter, we again evaluate two driver-models, the deterministic
Intelligent Driver Model (IDM) and stochastic Krauss driver-model.

We can accurately predict lane changes for IDM, since the predictive accuracies during both
turning-movement distributions of /0.5, 0.5/ and [0.2, 0.8] are IDM,.. = 0.81 and 0.89, re-
spectively. However, with the Krauss driver-model the predictive accuracies are just Kraussge. =
0.51 and 0.80 which only match the bias as found in the turning-movement distribution.

However, ultimately we are interested in evaluating if these Lane Change Predictions can increase
SCHICs performance. We consider an intersection with commonly found short entry-lanes. Here,
LCP is compared to SCHICs baseline methods of fized-label and split-vehicles. Next to these
methods, which only estimate or predict lane changes, we apply perfect predictions by means of
an Oracle.

This chapter continues by briefly explaining the chosen performance metrics in Section 6.1. After-
wards, we state all parameter-settings of the Time-Gap Controller to which SCHIC is compared as
well in Section 6.2. Section 6.3 presents the results of the aforementioned Scenario A: IDM, where
each driver is controlled by the Intelligent Driver Model (IDM). Section 6.4 presents the results of
Scenario B: Krauss driver-model, where all drivers are now controlled by the Krauss driver-model.
Thereafter, this chapter concludes in Section 6.5.
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6.1 Performance metrics

The criteria on which this evaluation focusses are threefold. Namely, during each hourly vehicle
demand we evaluate the following three metrics which are then averaged over all vehicles of this
hourly vehicle demand: (1) average speed (2) average number of stops (3) average waiting time. In
this section, these three metrics are briefly explained and related to SCHICs optimization-function.

Recall that SCHICs optimization-function aims to minimize the cumulative delay for all observed
vehicles. In this simulation, all vehicles drive a route which is identical in length. Therefore, a
minimization of cumulative delay will be reflected in a higher average speed and a reduced average
waiting time for all vehicles in simulation.

One could argue that the most intuitive (or visible) result of LCP and the baseline methods is
to prevent that an approaching vehicle will need to stop at the intersection while it wants to join
the currently active green-phase. In order to evaluate this intuitive result, the average number
of stops per vehicle is measured. Lastly, one should note that reducing the average number of
stops is an indirect result of LCP given SCHICs optimization-function. As stated before, SCHICs
optimization-function actually only optimizes the cumulative delay for all observed vehicles, i.e. it
does not optimize for the number of stops directly.

6.2 Parameter settings of the Time-Gap Controller

SCHIC is compared to a Time-Gap Controller, which working principle is based on time-gaps
as observed between subsequently arriving vehicles (Section 2.1). Recall, that this Time-Gap
Controller extends the current green phase if each consecutive vehicle arrives at its associated
detector (specified by detectorgq, = 2.2s) within a threshold value of mazgqp, = 3.0s. This Time-
Gap Controller uses the same phase set as SCHIC with the same minimum and maximum phase
durations, respectively [5s, 55s].

The implementation of SUMOs time-gap control is used, unfortunately only a single value can
be specified for the location of all advance detectors. Therefore, the comparison to SCHIC is
not completely fair. For this Time-Gap Controller the advance detectors are placed on each lane
as limited by the shortest lanes. These shortest lanes are thus found after a lane-split, and the
advance detectors are place here at the maximum allowed distance from the stop-line, i.e. 2.2s or
30m from the stop-line. This value of 2.2s is also used by SCHIC on these shortest lanes when it
does not use any predictions for lane changes. However, on the longer and vertically oriented lanes
without a lane-split SCHIC already detects vehicles at 3.0s, as explained in Section 5.1 and listed
in Table 5.1.

The default settings of SUMOs Time-Gap Controller are: mazgep = 3.0s and detectorgae, =
2.0s. Therefore, the used scenario only differs ever so slightly since the detector-gap increased to
detectorgq, = 2.2s. In conclusion, the comparison between SCHIC and the Time-Gap Controller
is not completely fair given the differences in look-ahead time for vehicle detection.
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6.3 Scenario A: Intelligent Driver Model (IDM)
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Figure 6.1: Average speed per vehicle in the hold-out test-set with 15 hours of simulation per
hourly vehicle demand. Scenario A: Intelligent Driver Model (IDM).

(1) Average speed: Figure 6.1 contains the results of all six control algorithms and plots the
average speed of all vehicles in simulation.

The Time-Gap Controller (dashed, black) clearly performs worse than all SCHIC methods.
Possibly due to the fact that it only uses a look-ahead time of 2.2s on the (vertical) full length
lanes, whereas SCHIC uses 3.0s on these lanes. Or, simply due to the simpler logic. Recall that
the Time-Gap Controller terminates each green-phase after it observes a threshold duration of
inactivity on the currently serviced lane, thgq, = 3.0s. Whereas SCHIC terminates a green-phase
directly after the last observable vehicle has left, so potentially SCHIC services the other (waiting)
vehicles sooner.

Moving on to SCHICs control now, SCHIC Oracle (blue, filled circle) shows slightly better
performance when compared to fixed-label, split-vehicles and LCP. SCHIC Oracle’s performance
increase over SCHIC no prediction (blue, empty circle) is compared across all hourly vehicle de-
mands within the [50,50] and [20,80] turning movement distributions, the average speed increases
with 0.56% and 0.73% respectively.
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However, split-vehicles (blue, dashed) outperforms the Oracle ever so slightly during the ve-
hicle demand of 400 (veh/hour) in the balanced [50,50] turning movement distribution. A possible
reason is given here, by stating the conceptual difference between both approaches. The Oracle
terminates or extends each green-phase based on the correct upcoming lane change of a single
detected vehicle. Split-vehicles divides the detected vehicle in two split-vehicles, and each split-
vehicle corresponds to a single green-phase. Thus, split-vehicles, acts less strict since it actually
considers the two potential green-phases that this vehicle can request. Therefore, SCHIC computes
a schedule and cumulative delay based on two split-vehicles which each correspond to a potential
green-phase. A specific scenario in which this conceptual difference might change the results is
described below in ¢ Thought experiment 1.

Overall, it is clear that the baseline methods (Oracle, fized-label, split-vehicles) and LCP
(blue, ) perform very similar. However, the performance of these baseline methods and LCP
can’t be properly compared here, since the worse performing Time-Gap Controller is plotted as
well which reduces the scale of the graph. Therefore, Figure 6.3 omits the Time-Gap Controller
but visualizes the same metric of average speed in a bar graph only for all SCHIC controllers.

¢ Thought experiment 1, extension dilemma for closely arriving vehicles.

In this thought experiment, Vehicle A, B and C are considered which can approach the
intersection on the same road as well as on opposing roads. See Figure 6.2.

Current time: 10.0 sec (Figure 6.2a)

Consider that vehicle B and C will each request a different green-phase. The first vehicle
to arrive at the intersection is {vehicle B; phase: 0} and a brief moment later {vehicle C;
phase: 1} arrives. Consider that currently green-phase 1 is active, but could be terminated
in the next time-step, since the last vehicle (vehicle A) for this green-phase has now left its
entry-lane. When the Oracle detects the firstly arriving vehicle B at its detection-loop, it will
communicate to SCHIC that this vehicle will not request the currently active green-phase.

Current time: 10.5 sec (Figure 6.2b)

Therefore, SCHIC Oracle will now terminate the current green-phase and select the next
green-phase (green-phase 2), since all observed vehicles for the current green-phase have left
their entry-lane. However, split-vehicles might allow SCHIC to prolong the current green-
phase a bit longer when vehicle B is detected. Prolonging the current green phase is in favour
of vehicle C which arrives closely after vehicle B. Recall that vehicle B had to stop at the
intersection regardless. Since SCHIC does not skip green-phases and wehicle B’s requested
green-phase (green-phase 0) will only be active after green-phases 1,2 and 3 are have at least
run for a minimum duration of 5 sec.

To conclude, this specific scenario might occur quite often in the the balanced [50,50]
turning movement distribution. Hence, split-vehicles might have a conceptual advantage here
since it allows the current green-phase to be extended for a brief moment in which subsequently
arriving vehicles can join this extended green-phase.

(Note that Vehicle A is not required in this scenario, since each phase needs to run for
a minimum duration of 5 sec.)
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Phase: 1 (for left-turning traffic)
Detected vehicles by Oracle: {vehicle: B, phase: 0, arrival: 13.0 sec}

Detected vehicles by split-vehicles: {vehicle: B°, phase: 0, arrival: 13.0 sec}
{vehicle: B, phase: 1, arrival: 13.0 sec}

(a) Time-step 10.0 sec, vehicle C is still undetected.
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Time: 10.5 sec
Phase: 2 (for straight-ahead traffic, vertical lanes) is selected by the Oracle.
Phase: 1 (for left-turning traffic) is likely extended by split-vehicles.

Split-vehicles could thus allow vehicle C to join the extended phase 1.

Detected vehicles by Oracle: {vehicle: B, phase: 0, arrival: 13.0 sec}
{vehicle: C, phase: 1, arrival: 13.5 sec}

Detected vehicles by split-vehicles: {vehicle: B, phase: 0, arrival: 13.0 sec}
{vehicle: C° phase: 0, arrival: 13.5 sec}
{vehicle: C', phase: 1, arrival: 13.5 sec}

(b) Time-step 10.5 sec, the Oracle switched to the next green-phase. While split-vehicles likely extended
the previous green-phase, allowing vehicle C to join.

Figure 6.2: Thought experiment 1 for the Oracle and split-vehicles, showing time-steps 10.0 sec
and 10.5 sec.
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[50,50] turning movement distribution for Intelligent Driver Model (IDM)
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Figure 6.3: Average speed per vehicle in the hold-out test-set with 15 hours of simulation per
hourly vehicle demand. Error-bars are 95% confidence intervals. Scenario A: Intelligent Driver
Model (IDM).
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(1) Average speed: the previous observations remain clear. However, for a comparison of
SCHIC and its baseline methods, Figure 6.3 is used. The bar on the left shows SCHIC without
any predictions on the lanes that contain a lane-split (SCHIC no pred). So the bars, moving from
left to right, correspond to the methods of: no pred, Oracle, fixed-label, split-vehicles and LCP.

[50,50] turning movement distribution

In the [50,50] case, fized-label shows the poorest performance across the board when compared to
split-vehicles and LCP. Which can be expected given its low accuracy of 50% compared to an 81%
accuracy of LCP. Since both LCP and fized-label perform classification, the differences in accuracy
are most likely leading to the performance increase of LCP over fixed-label.

In the same [50,50] case, split-vehicles and LCP are now compared. It is observed that split-
vehicles outperforms LCP in the two lowest vehicle demands. However, LCP slightly outperforms
split-vehicles during the vehicle demand of 600 (veh/hour). Both methods achieve almost identical
performance in the highest vehicle demand of 800 (veh/hour). Split-vehicles does not perform a
classification of vehicles, but instead splits each vehicle weighted by the observed balanced turning-
movement distribution of [left-turn = 0.5, straight-ahead = 0.5]. Therefore, the 81% classification
accuracy of LCP can’t be used directly to explain performance differences of split-vehicles and
LCP. However, by scheduling a split-vehicle for each green-phase, split-vehicles might cover up
for its lower accuracy in this balanced scenario as described prior in ¢ Thought experiment 1. In
conclusion, split-vehicles has a slight edge over LCP during the lower two vehicle demands but
their performance converges to each other during the higher two vehicle demands.

[20,80] turning movement distribution

Lastly, the [20,80] case can be concluded in a more concise manner. The performance of fized-label
increases as is expected, since its accuracy rose from 50% to 80%. However, the accuracy of LCP
rose to 89% and given the fact that both methods are based on classification, LCP outperforms
fixed-label. LCP also ever so slightly outperforms split-vehicles. Although an accuracy metric is
not available for split-vehicles, LCPs accuracy of 89% is well above the bias found in the [20,80]
case which is used by split-vehicles.

At 400 vehicles per hour, the Oracle is insignificantly outperformed by LCP with a margin
of 0.0015 m/s. However, for both the Oracle and LCP this is well within the 95% confidence
intervals of £ 0.052 m/s. With the deterministic Intelligent Driver Model (IDM), the arrival
time of each vehicle at the intersection is identical each time one of the 15 individual hourly
simulations is executed. To clarify, the vehicle release times for each each (of the 15) individual
hourly simulation are randomized a priori with 15 pre-determined seeds. The confidence intervals
are however present since each (of the 15) individual hourly simulations contain different arrival
times at the intersection.

The fact that LCP shows an insignificantly higher average speed could be explained by "lucky’
miss-predictions. Each miss-prediction of LCP will increase the duration of the currently active
green-phase, this might allow a currently undetected but closely arriving vehicle to join the ex-
tended green-phase. Hence, the reference to a ’lucky’ miss-prediction by LCP. The difference of
0.0015 m/s between the Oracle and LCP can be considered as insignificant given their 95% con-
fidence intervals of + 0.052 m/s. Therefore, the reasoning above should suffice as a potential
explanation.

In conclusion, in the unbalanced [20,80] case the Oracle, fized-label, split-vehicles and LCP
show a small and comparable performance potential for SCHICs traffic flow.
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[50,50] turning movement distribution for Intelligent Driver Model (IDM)
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Figure 6.4: Average number of stops per vehicle in the hold-out test-set with 15 hours of simulation
per hourly vehicle demand. Error-bars are 95% confidence intervals. Scenario A: Intelligent Driver
Model (IDM).

(2) Average number of stops: One could argue that the most visible result of LCP and
the baseline methods is to prevent that an approaching vehicle will need to stop at the intersection
while it wants to join the currently active green-phase. In order to validate this visible result, the
average number of stops per vehicle is shown in Figure 6.4.
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Overall, the Oracle reduces the number of stops compared to SCHIC no prediction for both
turning-movement distributions of [50,50] and [20,80] with 1.21% and 1.84% respectively.

[50,50] turning movement distribution

As expected in the [50,50] case, fized-label performs poorly given its low accuracy of 50% and
causes costly additional stops compared to the Oracle. Again, fized-label performs poorest when
compared to the other two methods of split-vehicles and LCP. Additionally, in this balanced [50,50]
case with 400 (veh/hour) fized-label even causes more vehicle stops than SCHIC no pred. This
might be explained with thought experiment 2 as shown below, however, this is not supported by
additional measurements.

At 600 (veh/hour), fized-label, split-vehicles and LCP ever so slightly outperform the Oracle.
Again, these differences might be explained by ’lucky’ miss-predictions of fixed-label and LCP as
explained before. During all hourly vehicle demands, split-vehicles outperforms the Oracle ever
so slightly which could again be explained by ¢ Thought experiment 1. Furthermore, for all three
methods, the differences are well within the 95% confidence intervals.

In the same [50,50] case, split-vehicles and LCP are now compared. Again, it is observed
that split-vehicles outperforms LCP during some demands, namely [200, 400, 800] (veh/hour).
However, these methods perform almost similar during the vehicle demand of 600 (veh/hour).
Again, it can be reasoned that the high accuracy of LCP (accuracy = 81%) is counteracted by its
strictness. Split-vehicles is challenged by the balanced turning movement distribution, on which it
bases the split-ratio for each predicted vehicle. However, it seems to be aided by its fuzzy control
approach since it expects two vehicles to arrive instead of just one as with LCP.

[20,80] turning movement distribution

Lastly the [20,80] case can be concluded in a more concise manner. The Oracle is insignificantly
outperformed by LCP during the demand of 200 vehicles per hour. This marginal difference
might again be explained by ’'lucky’ miss-predictions and is well within the confidence intervals.
The performance of fized-label improved, as is expected since its accuracy rose from 50% to 80%.
Fized-label (accuracy = 80%) and LCP (accuracy = 89%) are identical approaches which only
differ in their classification accuracy, the accuracy of LCP surpassed that of fized-label and slightly
outperformed fixed-label during all hourly demands.

In general, a slight increase in the average number of stops on the vertical lanes might enable
a higher average speed for vehicles on the horizontal lanes. The different methods are likely to
increase the duration of a green-phase for traffic on the horizontal lanes, so new vehicles can still
join this green-phase. Therefore, the number of stops on the vertical lanes is likely to increase since
their green-phase is now delayed by a small amount of time, this is in favour of vehicles on the
horizontal lanes. However, the average speed of all vehicles could be higher since the additional
stops are only brief and the average speed is measured on the entire route of each vehicle.

In conclusion, in the unbalanced [20,80] case all three methods have almost converged to the
performance of the Oracle.
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¢ Thought experiment 2, extension dilemma with miss-classification-burst.

See Figure 6.5.

Consider that the green-phase for left-turning traffic on the horizontal lanes is currently
active. But this green-phase is about to be terminated since the last vehicle for this green-
phase is about to leave its entry-lane. Fized-label performs classifications for new vehicles
which could join this current green-phase. A miss-classification in this scenario, is predicting
that a new vehicle will join the currently active green-phase while it will actually request the
different green-phase for straight-ahead traffic.

A miss-classification in this scenario, will therefore extend the duration of the current
left-turning green-phase on the horizontal lanes. Even when all vehicles on the horizontal
lanes request a different green-phase for continuing straight-ahead.

This extended duration can cause two problems: (1) it can cause the queues of ”vertical”
traffic to wait longer (2) can cause additional stops for new ”vertical” vehicles. Without a
burst of miss-classifications, ”vertical” vehicles would have observed their green signal sooner,
and could thus have joined an accelerating queue instead of joining this still standing queue
which causes additional stops.

In conclusion, fized-label operates at two lane-splits, when enough miss-predictions occur
in a row at either of these two lane-splits, it could increase the number of stops on the vertical
lanes.
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Figure 6.5: Two mis-classifications extend the current green-phase, causing an unnecessary
delay for the two vertical vehicles.
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[50,50] turning movement distribution for Intelligent Driver Model (IDM)
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Figure 6.6: Average waiting time per vehicle in the hold-out test-set with 15 hours of simulation
per hourly vehicle demand. Waiting time is defined as the total time that a vehicle has a speed
below 0.1 m/s. Error-bars are 95% confidence intervals. Scenario A: Intelligent Driver Model
(IDM).

(3) Average waiting time: lastly, one could also argue that the average number of stops
is only an important result of LCP since it is a directly observable result. To clarify, SCHICs
cost-function only optimizes the cumulative delay of all observed vehicles, i.e. it does not optimize
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for the number of stops directly.
Therefore, Figure 6.6 evaluates the average waiting time per vehicle. Waiting time is defined
as the total time that a vehicle has a speed below 0.1 m/s.

When observing the average waiting time, during both the [50,50] and [20,80] turning move-
ment distributions, the same overall trend is seen as for the average speed metric. When comparing
the Oracle to SCHIC no prediction, the performance potential of the Oracle decreases slightly when
the vehicle demand increases. It could be argued that optimizing the traffic flow is increasingly
difficult when the vehicle demand increases.

[50,50] turning movement distribution

The Oracle shows a slightly higher average waiting time than split-vehicles at 200, 400 (veh/hour)
and LCP at 600 (veh/hour). However, the differences are both negligible and well within the 95%
confidence intervals.

During the balanced [50,50] scenario at 600 and 800 vehicles per hour, fized-label shows the
poorest performance of all methods. This is most likely due to fized-labels low 50% classification
accuracy. Since its performance relative to the other methods increases in the [20,80] scenario,
where its classification accuracy rises to 80%.

[20,80] turning movement distribution

At 400 and 800 (veh/hour) the Oracle is insignificantly outperformed by LCP, which is again well

within the confidence intervals and might be explained by 'lucky’ miss-predictions of LCP.
Especially in the unbalanced [20,80] turning movement distribution, the Oracle, fized-label,

split-vehicles and LCP show a comparable performance potential for SCHIC.
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6.4 Scenario B: Krauss driver-model
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Figure 6.7: Average speed per vehicle in the hold-out test-set with 15 hours of simulation per
hourly vehicle demand. Scenario B: Krauss driver-model.

(1) Average speed: Figure 6.7 contains the results of all six control algorithms under the same
vehicle release times as before, however all vehicle dynamics are now determined by the Krauss
driver-model.

As in the previous IDM-scenario, the Time-Gap Controller (dashed, black) clearly performs
worse than all SCHIC methods.

In general, the performance potential of the Oracle (blue, filled circle) over SCHIC no pre-
diction (blue, unfilled circle) averaged over all hourly vehicle demands is 0.40% in the balanced
[50,50] scenario and 0.62% in the unbalanced [20,80] scenario. These performance improvements
are slightly lower than those obtained in the previous IDM scenario, but remain comparable.

Given the stochastic properties which are applied on a vehicles’ speed by the Krauss driver-
model, the average speed might fluctuate a bit during its entire 400m route. Recall that the
average speed is measured for a vehicle when it approaches and exits the intersection, so over a
total distance of 400m. A fluctuation in the average speed is observed in the lower vehicle demands
up to 400 [veh/hour], since the Oracle’s performance shows a slight drop here.

The performance of the SCHIC controllers are further evaluated on the next pages.
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[50,50] turning movement distribution for Krauss driver-model
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Figure 6.8: Average speed per vehicle in the hold-out test-set with 15 hours of simulation per
hourly vehicle demand. Error-bars are 95% confidence intervals. Scenario B: Krauss driver-model.

Figure 6.8 shows the average speed as obtained with all SCHIC controllers, the worse per-
forming Time-Gap Controller is removed, in order to compare the SCHIC Controllers more clearly.

The 95% confidence intervals for these stochastic Krauss vehicles are considerably larger than
with the deterministic IDM vehicles. This is probably due to the previously mentioned stochastic
properties which are applied on the speed of a Krauss vehicle during its entire route of 400m.
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[50,50] turning movement distribution

In the [50,50] scenario, the Oracle performs worse than split-vehicles during the demands of 400
and 800 [veh/hour], with a margin of 0.0150 m/s to 0.0156 m/s. However, these margins remain
well within the confidence intervals of £0.0550 m /s and £0.0389 m/s for both vehicle demands.
The same trend is seen for LCP (at 200 [veh/hour]) and fized-label (at 400 [veh/hour]), which
outperform the Oracle with a negligible margin with respect to their confidence intervals.

These negligible differences are likely a result of (1) the limited performance potential of all
methods, combined with, (2) the stochastic properties in the speed profiles of the Krauss driver-
model. The small differences could be appointed to statistical insignificance on this performance
metric.

As before, split-vehicles might have a conceptual advantage in this balanced scenario thanks to
its fuzzy approach of splitting vehicles and therefore allowing SCHIC to schedule two green-phases
for this single vehicle. In conclusion, split-vehicles performs quite well in this balanced scenario.

A second general note considers the low accuracies of both fized-label and LCP, their accuracies
are respectively just 49% and 51% during the balanced [50,50] turning movement distribution. The
increase of the average speed under these methods fluctuates a bit, e.g. during the different vehicle
demands fized-label and LCP win and lose from each other in an alternating order. The fluctuation
in their performance potential is likely due their low classification accuracies, which likely causes
quite some miss-predictions.

[20,80] turning movement distribution

Lastly, the [20,80] scenarios are observed. Again, the Oracle performs poorly in the two lower
vehicle demands, however its performance is superior in the higher two vehicle demands. When
comparing fixed-label, split-vehicles and LCP, there is a slight fluctuation of performance observed
among them.

Overall, it can be concluded that split-vehicles performs best in the balanced [50,50] case.
Lastly, in the unbalanced [20,80] scenario fized-label, split-vehicles and LCP perform quite compa-
rable.
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[50,50] turning movement distribution for Krauss driver-model
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Figure 6.9: Average number of stops per vehicle in the hold-out test-set with 15 hours of simulation
per hourly vehicle demand. Error-bars are 95% confidence intervals. Scenario B: Krauss driver-
model.

(2) Average number of stops: Figure 6.9 shows the average number of stops per vehicle
for both the balanced [50,50] scenario and the unbalanced [20,80] scenario.

On average, the Oracle reduces the number of stops compared to SCHIC no prediction for
both turning-movement distributions of [50,50] and [20,80] with 0.79% and 1.44% respectively.
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During the different hourly demands in the [50,50] and [20,80] scenarios, the performance potential
of the Oracle over SCHIC no prediction varies between between {0.27% and 2.24%}.

The relative performance potential of the Oracle as expressed in percentages, is comparable
for both the Krauss and IDM scenario. However, the average number of stops for Krauss vehicles
are roughly one entire stop less. For IDM vehicles, the value range on the Y-axis for both the
balanced and unbalanced case varied between {2.0 and 1.60} and {1.80 and 1.40} respectively.
Whereas this range for Krauss drivers is between {0.76 and 0.74}, for both turning movement
distributions. Thus, there is a range difference of roughly one additional stop between Krauss and
IDM vehicles, which is likely to be explained by the fact that IDM vehicles always perform a brief
stop at the intersection. Even when their lane is currently serviced with a green signal. During
this brief stop an IDM vehicle might check if there are no conflicting vehicles on the intersection,
i.e. it can confirm that it is safe to pass the intersection.

Overall, and for both the [50,50] and [20,80] turning movement distributions, a similar trend is
shown by all methods when comparing these to SCHIC no prediction. The 95% confidence intervals
of the Oracle, fized-label, split-vehicles and LCP are quite wide compared to their performance im-
provements. The performance potential of the Oracle is negligible at 200 [veh/hour], but increased
for the higher three vehicle demands (400, 600, 800 [veh/hour]). Fized-label, split-vehicles and
LCP show some fluctuating performance, however, during the [20,80] turning movement distribu-
tion their performance differences get smaller for the higher two vehicle demands. In conclusion,
applying either of the four methods is beneficial to improve the performance as compared to SCHIC
no prediction.
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[50,50] turning movement distribution for Krauss driver-model
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[20,80] turning movement distribution for Krauss driver-model
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Figure 6.10: Average waiting time per vehicle in the hold-out test-set with 15 hours of simulation
per hourly vehicle demand. Waiting time is defined as the total time that a vehicle has a speed
below 0.1 m/s. Error-bars are 95% confidence intervals. Scenario B: Krauss driver-model.

(3) Average waiting time: Figure 6.10 shows the average waiting time per vehicle, which
is defined as the total time that a vehicle has a speed below 0.1 m/s.

When observing the Oracle during the balanced [50,50] case, it is clear that it is outperformed
during the vehicle demands of (400, 800) [veh/hour|. At 400 [veh/hour] the Oracle is slightly out-
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performed by both fized-label and split-vehicles. At 800 [veh/hour] only split-vehicles outperforms
the Oracle.

The slightly poorer performance of the Oracle might be explained as follows. For all methods,
the 95% confidence intervals are quite large in relation to the average differences between these
methods. Two potential reasons for these large confidence intervals are given below. All vehicle
release times into the network are randomized a priori, and therefore identical. However, each
vehicle might arrive at the intersection at different moments in time due to the stochastic speeds
on the 200 m approach towards the intersection. Secondly, and arguably less probable, the braking
profiles of Kraus vehicles are stochastic. Thus, the amount of time that each vehicle has a speed
below 0.1 m/s (i.e. waiting-time) might differ too, causing fluctuations in the measured waiting-
time.

The fuzzy approach of split-vehicles might be beneficial again in the balanced [50,50] scenario,
as explained prior in: ¢ Thought experiment 1, extension dilemma for closely arriving vehicles.

In the unbalanced [20,80] case, the Oracle is outperformed during the lower vehicle demands
of (200, 400) [veh/hour]. However, in the higher vehicle demands of (600, 800) [veh/hour] the
Oracle’s performance is superior.

In conclusion, split-vehicles again performs well in the balanced [50,50] scenario. In the
unbalanced [20,80] scenario, fized-label, split-vehicles and LCP show similar performance but do
not reach the performance of the Oracle during the vehicle demands above 600 [veh/hour].

6.5 Conclusion

This chapter discussed the results of the proposed method LCP by comparing it to SCHIC and
its baseline methods: {Oracle, fized-label and split-vehicles}. The Oracle is implemented here as
a perfect Lane Change Prediction by means of Vehicle to Intersection Communication (V2I). The
Oracle is applied when a vehicle reaches the same detection sensor as used by the other methods.
An Oracle is a perfect classifier which demonstrates the maximum performance potential of the
classification models: fized-label and LCP. Secondly, it serves as an interesting comparison to the
non-classification based method: split-vehicles. Two turning movement distributions are considered
in this work, [left-turn: 0.5, straight-ahead: 0.5] and [left-turn: 0.2, straight-ahead: 0.8] denoted
as [50,50] and [20,80] respectively.

The first set of results are obtained in Scenario A: Intelligent Driver Model (IDM). In this
scenario the dynamic behaviour of all vehicles is deterministically controlled by IDM.

SCHIC Oracle is compared to SCHIC no prediction, across all hourly vehicle demands within
the [50,50] and [20,80] turning movement distribution, the Oracle increases the average speed here
with 0.56% and 0.73% respectively. The average number of stops per vehicle is reduced by 1.21%
and 1.84% respectively. Although the behaviour of IDM is deterministic, this does allow for a clear
determination of the Oracle’s performance.

At first glance, the results on the average speed and average waiting time indicate that LCP
and the baseline methods of {fized-label and split-vehicles} perform quite similar for both the
balanced and unbalanced turning movement distributions. However, during the balanced turning
movement distribution, i.e. [left-turn: 0.5, straight-ahead: 0.5], the accuracy of fized-label is
reduced to just accfiged—iavel ipm = 50% which reduces its performance compared to the other
methods.

In this balanced [50,50] scenario, the method of split-vehicles performs quite well. In conclu-
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sion, LCP reached a high predictive accuracy of accrcp rpy = 81%, however it only matches or
outperforms split-vehicles during the two higher vehicle demands.

In the unbalanced [20,80] scenario LCP reaches an accuracy of accpop rpy = 89%, however,
all methods, i.e. the {Oracle, fized-label, split-vehicles and LCP} show a comparable performance
potential for SCHIC.

The second set of results are obtained in Scenario B: Krauss driver-model. In which all vehicles
are controlled by the stochastic Krauss driver-model, which applies a slightly more aggressive
driving style than IDM.

During a few vehicle demands, the Oracle is outperformed by split-vehicles as well as by
fized-label and LCP on the average speed, but the margins are slim with just 0.0150 to 0.0156 m/s.
In addition, these margins remain well within the confidence intervals of £0.0389 to +0.0550 m/s.
Recall that the average speed of each vehicle is measured on its entire route of 400m throughout
the network. The exit-lanes are 200m in length, where the vehicles are likely able to travel at the
speed-limit of 50km/h or 13.9m/s. But these speeds fluctuate now due to the stochastic properties
of the Krauss driver-model. Lastly, Krauss vehicles might arrive at the intersection at different
moments in time, since their speed fluctuates during their 200m approach towards the intersection.

Therefore, these negligible differences are likely a result of (1) the limited performance po-
tential of all methods, combined with, (2) the stochastic properties in the speed profiles of the
Krauss driver-model on the entry -and exit-lanes (3) a potential fluctuation in arrival times at the
intersection. The small performance differences could be appointed to statistical insignificance on
this performance metric.

Overall, SCHIC Oracle increases the average speed compared to SCHIC no prediction for
both turning-movement distributions of [50,50] and [20,80] with 0.40% and 0.62% respectively. The
average number of stops reduced by 0.79% and 1.44% respectively. Although these improvements
are slightly lower than with the IDM scenarios, they are comparable.

It can be concluded that LCP and fized-label show fluctuations in the balanced Krauss sce-
narios where their accuracies are just 51% and 49%, respectively. Nonetheless, it can be concluded
that fixed-label, split-vehicles and LCP perform similarly with a slight advantage to split-vehicles.
This advantage might be present since LCP only achieved an accuracy of accrop grauss = 51%.

As for the unbalanced [20,80] scenario, the accuracy of LCP rose to accrop krauss = 80%,
however, it does not surpass the bias in the observed turning movement distribution. As a logical
result, LCP does not outperform split-vehicles and fized-label which are all based on the same bias
as found in the turning movement distribution. The performance of these three methods is similar,
and converge to each other when the vehicle demands increases in the unbalanced [20,80] scenario.

In conclusion, for both the IDM -and Krauss scenarios the performance potential of all meth-
ods, i.e. the {Oracle, split-vehicles, fized-label and LCP}, are quite comparable. Although the
Oracle increases the average speed (between 0.40% to 0.73%) and reduces the average number of
stops (between 0.79% to 1.84%) for all scenarios, it does contain relatively wide confidence inter-
vals. In retrospection, the performance gain of the Oracle might be increased in a more isolated
scenario, where the Oracle is applied on all entry-lanes of the intersection instead of on half of its
entry-lanes as is done now. However, this scenario requires a lane-split on all approaches towards
the intersection, which is quite uncommon.

In the next and final chapter this study will be concluded.
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Chapter 7

Conclusion

In this chapter we reflect on the research process and its outcomes.

For this thesis, the adaptive traffic light controller SCHIC was analysed. This controller is well-
documented and forms the basis of a controller which is used in real-life, namely SURTRAC.
SCHICs performance could potentially be hindered by two uncertainties which are commonly
found in reality. These uncertainties are (1) inter-phase uncertainty introduced by the presence
of left-turning traffic and (2) typical lane dimensions which limit the look-ahead time for vehicle
detection to realistic values.

Although SCHIC is a promising controller, its performance is not well reported for the above two
uncertainties, which are however, commonly found in reality. This knowledge gap is also present
for the baseline methods which can cope with these problems, as explained in the next paragraph.
Therefore, the aim of this thesis is to evaluate SCHIC with both (1) inter-phase uncertainty and
(2) realistic look-ahead times, this is achieved by applying SCHIC on a (simplified) typical Dutch
urban intersection located in The Hague.

In order to deal with these two problems, the following standard statistical methods were selected
as baselines: fized-label and split-vehicles. However, these do not utilize the potential sensing
capabilities at the intersection (e.g. camera/radar) and often do not achieve a satisfying accuracy.
The reason for their unsatisfying accuracy is the fact that these baseline methods only use the bias
which is found in the observed turning movement distribution at the intersection.

In this thesis, a Lane Change Prediction (LCP) method based on machine learning was proposed
and implemented. LCP extends its input information compared to the baselines, since it uses
the turning movement distribution (just as the baselines do), but also uses the observed anticipa-
tive driving style of approaching vehicles, which might increase its accuracy. The main research
question was whether the potentially higher accuracy of LCP would improve SCHICs traffic flow
performance as compared to the baselines.

This paragraph partly repeats the experimental setting, by giving a brief summary. This study uses
simulated driving behaviour which is obtained with Simulation of Urban Mobility [19] (SUMO).
Within SUMO, the dynamic driving behaviour of a vehicle is determined by a driver-model. Two
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driver-models are evaluated in: Scenario A: Intelligent Driver Model (IDM) and Scenario B: Krauss
driver-model. IDM is a deterministic driver-model, whereas Krauss also applies stochastic prop-
erties to the driving behaviour. In both Scenario A and B, a balanced and unbalanced turning-
movement distribution is evaluated, respectively [left-turn: 0.5, straight-ahead: 0.5] and [left-turn:
0.2, straight-ahead: 0.8]. Each turning-movement distribution is also referred to as [50,50] and
[20,80], respectively. For each turning-movement distribution the vehicle release times are identi-
cal, i.e. Scenario A and B only differ in the selected driver-model.

In this study it is shown that the accuracy of LCP in simulation for one driver model, i.e. for IDM, is
indeed higher than the statistical baseline methods. These predictive accuracies for IDM vehicles in
the balanced turning movement scenario are: accrpoprpm = 81% and in the unbalanced scenario:
accrop,ipm = 89%, where fized-label only reaches accuracies of 50% and 80% respectively. Despite
these much higher accuracies, LCP does not significantly improve SCHICs traffic flow performance
over its baseline methods, which answers the research question.

Next to this study on the baseline methods and LCP, this thesis also examined whether perfect
knowledge on lane changes (potentially given by Vehicle to Intersection Communication (V2I)) - an
”Oracle” method, would improve SCHICs performance. The performance potential of the Oracle is
quite low, but does decrease the number of stops for both IDM -and Krauss drivers with 1.53% and
1.12%, respectively. However, with the confidence intervals being quite wide and the performance
potential of the four methods being comparable, it was concluded that the performance potential
of all methods, i.e. {fized-label, split-vehicles, LCP} and even the {Oracle}, is comparable.

Overall, it can be concluded that LCP did not improve SCHICs performance compared to its
baseline methods. Furthermore, the theoretical performance potential of LCP (i.e. the Oracle)
is inherently limited in this scenario with (1) the lane-splits being very close to the intersection
and (2) given our evaluated traffic scenarios. The performance potential of the Oracle could be
increased when the lane-splits are placed further from the intersection. Additionally, there could
be more performance potential for LCP when all entry-lanes of the intersection contain a lane-
split, instead of half of the entry-lanes. Further research will have to examine whether the above
suggestions improve the performance potential of the Oracle and LCP.

Based on these results, the four research questions can be answered.

e R.Q. 1. Given a typical Dutch intersection with limited lane-dimensions and hence limited
look-ahead times, how does SCHICs local performance relate to a simpler but commonly
applied Time-Gap Controller?

Prior to this work, SCHIC has not been well evaluated under these short look-ahead times of
3 seconds, combined with inter-phase uncertainty. This thesis shows that SCHIC significantly
outperforms the simpler Time-Gap Controller (Section 6.2) which is most notably shown in the
average speed of all vehicles in simulation (see Figure 6.1 and Figure 6.7).

The poor performance of the Time-Gap Controller is possibly due to the fact that it only uses a
look-ahead time of 2.2 seconds on half of its entry-lanes, whereas SCHIC uses 3.0 seconds on these
lanes. Some more reasoning for these performance differences is given in Section 6.3.
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e R.Q. 2. What is the performance potential for SCHIC when perfect Lane Change Predictions
are applied on this typical Dutch intersection with two lane-splits?

The maximum performance potential of LCP is demonstrated by means of perfect predictions as
obtained with an Oracle. This means that 3.0 seconds before a vehicle would reach the intersection
it communicates its desired entry-lane directly to SCHIC by means of Vehicle to Intersection
Communication (V2I). This maximum performance potential of LCP is quite low, so it is likely
unnoticed by a single driver when he/she passes the intersection. However, averaged over all
vehicles in simulation, there is an increase in the average speed and a reduction of the number of
stops.

The results are explained below and shown in Table 7.1.

In Scenario A, the Intelligent Driver Model (IDM), the Oracle increased the average speed over
SCHIC no prediction across the different turning-movement distributions with 0.56% in the bal-
anced [50,50] scenario and 0.73% in the unbalanced [20,80] scenario. Averaged over both the
balanced and unbalanced scenario, the average number of stops decreased by 1.53% for the deter-
ministic IDM vehicles.

Similar performance is shown in Scenario B, the Krauss driver-model. The Oracle increased the
average speed over SCHIC no prediction across the different turning-movement distributions, with
0.40% in the balanced [50,50] scenario and 0.62% in the unbalanced [20,80] scenario. Averaged
over both the balanced and unbalanced scenario, the average number of stops decreased by 1.12%
for Krauss vehicles.

Performance of SCHIC Oracle over | Scenario A: IDM | Scenario B: Krauss
SCHIC no prediction.

Average speed increase in [50, 50] 0.56% 0.40%
Average speed increase in [20, 80] 0.73% 0.62%
Average number of stops reduction

in [50, 50] and [20, 80] combined 1.53% 1.12%

Table 7.1: Performance metrics of SCHIC Oracle over SCHIC no prediction.

e R.Q. 3. How accurate are Lane Change Predictions (LCPs) in SUMO?

A Random Forest is selected as our classifier in order to obtain Lane Change Predictions (LCPs).
In this thesis an accurate LCP based on an anticipative driving style is only realised for the
deterministic Intelligent Driver Model (IDM).

The predictive accuracy for IDM vehicles is accr,cp,rpm = 81% in the balanced turning movement
scenario and accrcp,rpm = 89% in the unbalanced scenario. The accuracy is expected to be higher
in the unbalanced scenario, as during its training phase the machine learning model observed the
unbalanced lane-occupancy.

The Krauss driver-model contains stochastic properties and LCP has the following accuracies:
accrcp, kKrauss = 51% in the balanced scenario and accrop, Krauss = 80% in the unbalanced
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scenario. Based on these accuracies and learning-curves of the predictive models for Krauss, it is
assumed that these models have only applied the bias found in their training-set. It is possible that
the current feature vector contains too little information on the driving style of a Krauss vehicle.
The Random Forest might be able to predict lane changes based on an enhanced feature vector
which contains more variables. Lastly, a more advanced learning model might learn to predict the
lane changes of a Krauss vehicle based on the current feature vector.

e R.Q. 4: How does SCHIC in combination with LCP perform in comparison to the existing
statistical baseline methods of split-vehicles and fixed-label?

Finally, SCHICs traffic flow performance with LCP has been compared to its baseline methods
fized-label and split-vehicles. These two baseline methods rely on the historic traffic demands per
turning-movement, i.e. {left-turn, straight-ahead}.

In Scenario B, for the Krauss driver-model with a balanced distribution of turning-movements, LCP
only reaches an accuracy of accrop, krauss = 51%. Which is almost similar to the accuracy of a
fized-label classifier. Given this low accuracy, mis-classifications are expected to occur quite often
and might explain the more unpredictable performance increase of SCHIC when LCP or fized-label
is applied. Overall, fived-label and LCP show a similar performance increase but win and lose from
each other throughout the balanced turning movement scenario. In the unbalanced Krauss scenario,
the accuracy of both LCP and fized-label rise to: accrop, Krauss = GCCfiged—label, Krauss = 80%.
In this unbalanced scenario, it can be concluded that all three methods {fized-label, split-vehicles
and LCP} show some fluctuations during the different hourly demands but perform quite similar
overall.

In Scenario A, IDM, with turning movement distributions [left-turn: 0.2, straight-ahead: 0.8],
LCP reaches an accuracy of accpop rpy = 89% and ever so slightly outperforms fized-label and
split-vehicles. However, all four methods, including the Oracle, perform almost comparable. It can
be concluded that LCP ever so slightly outperforms these statistical baseline methods when its
accuracy is both above 80% and above the accuracy of a fixed-label classifier.

For both Krauss and IDM, during the balanced turning-movement distributions split-vehicles per-
forms quite well. Its fuzzy approach seems advantageous in a balanced turning-movement scenario
compared to the binary classification approach of LCP. Split-vehicles fuzzy approach allows SCHIC
to consider two split vehicles which are both scheduled by SCHIC. By considering these two split
vehicles, the duration of a current phase might be extended more often when compared to the clas-
sification approach of LCP. This could allow closely arriving vehicles to join this extended green
phase more often in the balanced [50,50] scenario, resulting in a potential conceptual advantage
for split-vehicles.

In conclusion, despite LCPs higher accuracies for IDM, it does not significantly improve SCHICs
performance over its baseline methods fized-label and split-vehicles. For both the IDM and Krauss
scenarios the performance potential of all methods, i.e. the {Oracle, split-vehicles, fixed-label and
LCP}, are quite comparable.
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7.1 Discussion & Further Research

This section first discusses a limitation of this thesis (¢). Subsequently, some suggestions for further
research are given (x).

¢ The prediction horizon of Lane Change Prediction (LCP) is inherently limited to a short
future time-frame on which each human driver anticipates. As shown in literature, these
accuracies reduce rapidly when the prediction horizon is increased beyond 3.0 seconds [18].

x Two features are used by LCP which are based on acceleration measurements, these mea-
surements are obtained without noise from the traffic simulator SUMO. However, obtaining
acceleration measurements in reality, with real-world sensors, is difficult and leads to noisy
measurements. Furthermore, it is shown that the acceleration based features do not aid the
predictive accuracy much (Section 5.3.6). Given the above two reasons, it is advised to not
use the acceleration based features in further research on LCP.

x The potential societal impact of this research will be more relevant when LCP is not applied
to SCHIC, but applied to an actual commercially deployed controller. LCP brings a limited
performance potential to SCHICs traffic flow. However, SCHIC is not deployed commercially
and its scheduling algorithm is not as flexible as some (commercial) controllers. To clarify,
SCHIC cycles through its green phases in a fixed order and each green phase runs for at least
5 sec [1]. However, a more flexible controller which can consider a green signal for any given
entry-lane at any given moment in time, could harness more performance potential from
both the Oracle and LCP. Secondly, given the ongoing development to Machine Learning
models and sensor technologies, it could be possible that lane changes can be predicted
further in advance with higher accuracies in the near future. Predictive accuracies might
improve thanks to improved Machine Learning models, improved feature selection (e.g. by
AutoML) or more accurate (radar)-sensors. The above two arguments, i.e. (1) a more flexible
(commercial) controller and (2) more accurate Lane Change Predictions, could both increase
the traffic flow performance of LCP and its societal relevance.

x Although there is only a slight traffic flow improvement possible when applying Lane Change
Predictions (LCPs) to SCHIC. The study on LCP can also be used in further research which
is solely aimed at autonomously driving vehicles.

x The performance potential of perfect Lane Change Predictions is evaluated with an Oracle
(or V2I) being applied quite close to the intersection at 3.0 seconds from the stop-line.
Vehicle detection on the short entry-lanes after the lane-split is realized at 2.2 seconds from
the stop-line. So, the Oracle increases the look-ahead time from 2.2 seconds to 3.0 seconds,
which is an increase of roughly 36%. However, the absolute increase is only 0.8 seconds.
Thus, it can be interesting to investigate the performance potential of the Oracle when it
is applied further from the stop-line, e.g. at {4.0 seconds or 5.0 seconds}. Lane change
predictions will be less accurate at these prediction points, but the performance potential for
SCHIC with an Oracle and even its statistical baseline methods might be higher.
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x The evaluated intersection contains two lane-splits, so it contains a lane-split on just half of
its entry-lanes. There could be more performance potential for SCHIC in combination with
LCP when all entry-lanes of the intersection contain a lane-split. However, an intersection
with a lane-split on all of its entry-lanes is arguably less commonly found than the intersection
examined in this research.

x SCHIC is compared to a simple and commonly used Time-Gap Controller, which is expected
to reach its own optimal performance, since it is used with its close to default parameter
settings. However, the look-ahead time of SCHIC is slightly larger on half of its entry-lanes.
It would therefore be interesting to evaluate the performance of the Time-Gap Controller
when it uses the same look-ahead times as SCHIC on all entry-lanes.
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Abbreviations

COP Combined Optimization of Phases [5].

ERIS Expressive Real-time Intersection Scheduling [7].
IDM Intelligent Driver Model.

LCP Lane Change Prediction.

PSS Phase Switching Sequence.

SCHIC Schedule-driven Intersection Control [1].
SCOOT Split-Cycle Offset Optimization Technique [23].
SUMO Simulation of Urban Mobility [19].

SVM Support Vector Machine.

TSC Time Series Classification.

V2I Vehicle to Intersection Communication.

VA Vehicle Actuated Control.
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Glossary

The following terms are directly derived from the original publication of SCHIC by Xie et al. [1].
Behind each term, a page number is listed in the form of: (p zyz) which corresponds to the first
occurrence of this term in [1]. Two terms (Inflows (IF), Road Flow List (RF)) are however only
found in SCHICs coordination paper [27].

(Xo, So) the previous state groups that can reach the current state (X,s) are (X,,s,), with o
referring to old. To compute the value rows of (X, s), X, = X with 2(*) = 2(8) — 1 is used.
Here, s, is the phase index of the previous state group (X,,s,) that can reach the current
state (X,s) (p 177). 96

C% a cluster sequence on route i. Which is an aggregate flow representation by aggregating
vehicles on routes into sequences of clusters (p 172). 96

GSL)M, GS,?M Minimum and maximum green times for phase with phase indez i (p 170). 96
Hp optimization horizon in seconds. 96

H § finish time of the optimal state with minimal cumulative delay (p 171). 96

Hp limited prediction horizon in seconds in which new vehicles are detected (p 170). 96

Xempty, X pur special X arrays for the empty and full status, which have 2 =0 and () = |C’(i)|
for V i, respectively for Xempry and Xy (p 173). 96

cli7) this is the j¥ cluster in O where j € [1,|C®|] and |C)| is the number of clusters on the
route i (p 173). 96

(k)
k' job the k' job is the cluster (e ), see also schedule status X (p 173). 96
¢ queue size on route i (p 171). 96

X®) all schedule statuses X which sum to integer value k. Le. X®) = {X : Zy:ll @) = k}. The
scheduler explores all possible states in state space D using ¥V X € X*) and Vs € [1,|1]] (p
176). 96

|[Ho| the number of individual time-steps in optimization horizon Ho (p 171, 177). 96
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state space (2 state space based on the unclustered vehicle flow and using timesteps of size A =
0.5 sec. This state space is only used when we do not apply vehicle clustering (p 171). 96

state space D state space containing all possible schedules but based on the clustered vehicles.
This space D is a subspace of the actual state space Q. State variables are (X, s, t, d) (p
171). 96

cluster a representation of arriving vehicle(s), each cluster (c) has five attributes: (|c|, arr, dep,
dur, fr) |¢| = vehicle count, arr = arrival of first vehicle, dep = departure of last vehicle, dur
= dep - arr, fr = |¢| / dur (p 172). 34, 96

cycle the total time it takes for all phases of one intersection, to receive their allocated green -and
inter-green times (inter-green time is only the yellow-time for SCHIC). 17, 18, 96

full-clearance state a state that clears all vehicles in the prediction horizon (p 171). 96

Inflows (IF) a green phase can service multiple entry-lanes (each for a single movement m) at
the same time. E.g. two opposing entry-lanes for straight-ahead movements can be serviced
by the same green phase (as seen in Figure 3.1). All individual road flows with an individual
movement m (Crp,m,) which are serviced by the same green phase are simply merged into
a separate Inflow List: Crp;. So, for each individual green phase with index ¢, a separate
list is maintained: Cyp,;. Here, the Inflows (IF) is used to describe all approaching traffic,
i.e. IF' is a set containing all individual Inflow Lists: Crp,;. So, the following set is collected
IF = {CiFp,; : ¥Yi € |I|}. Where i is an individual green phase index and |I| is the total
number of green phases in the phase set I. (p 324 of SCHICs coordination paper [27]). 26,
30, 34, 96, 98

lane a portion of the pavement which is allocated to a single line of traffic which originates from
the same direction, as often indicated by painted longitudinal lines or markers. 7, 24-28, 45,
96, 99

movement traffic flow from (some number of lanes of) an entry approach to an exit approach (p
170). 24, 26, 27, 29, 96, 99, 100, 118

offset the difference in starting times of two consecutive phases along a road. 17, 18, 96

phase defined as (i,g) or ¢ in which i is the phase index, ¢ is a variable phase duration. g is
the green time of the currently active phase (p 170). 24, 26, 30, 33, 34, 96, 99

phase design containing a set of phases I in which each phase with phase index i € [1, I
corresponds to the right-of-way for route 7 (p 170). 96

phase index each phase index i € [1, I] corresponds to the right-of-way for route ¢ (p 170). 96

Phase Switching Sequence (PSS) defined as a sequence of phases. Each PSS is built upon an
initial phase condition (i, g.), where i. is the current green phase index, and g. is the the
time that the current phase i, has been green (p 170). 30, 33, 34, 96
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Road Flow List (RF) a cluster sequence (Cgp,m), where each individual Crp,,, contains the

vehicles travelling towards the intersection on the entry-lane associated to movement m (p
324 of SCHICs coordination paper [27]). 26, 96, 98

route each route contains a set of non-conflicting movements that allow safe passage of vehicles
simultaneously through the intersection. A simplifying restriction is applied since each move-
ment is only allowed to be found in one route, i.e. routes do not share any movements (p
170). 96

samp samping interval of vehicle detection method, the temporal arrival distribution of vehicles
in the prediction horizon Hp is divided into time segments. The number of time-segments is
[1, Hp / samp] (p 172). 96

saturation flow rate sfr = Njunes/saturation headway, where Njgnes is the number of lanes
and saturation headway is the average headway between vehicles during saturated flow. (p
179). 96

schedule S specifies the order in which the clusters will pass through the intersection one by one.
It is represented as a sequence of route indices (s, ..., s ... | s(SD) (p 173). 96

schedule status X a list which is linked to a schedule S**) and defined as: X = (:v(i), - x(m))
where (V) € [ 0, |C]] counts the number of elements in S*) that are equal to i. In other
words, each (¥ counts the number of clusters that have been scheduled for route i. The k"
job is cluster c(s(R)="*), (p 173). 96

split the amount of time within a phase where a traffic signal is green. 17, 18, 96

stage at the k' stage, k clusters have been scheduled in schedule S so (k € [1,]S]]). At stage k,
the schedule lets the k*" job, which is the earliest cluster that remains on the route s(*)
leave from the intersection at the earliest time (p 173). 30, 96

start-up lost time if we anticipate a queue this start-up lost time (a fixed time) is added to the
job duration. Since the queue needs time to get up to speed when it is finally serviced with
a green signal (p 171). 96

state a state in state space D representing a partial solution with a cumulative delay value (p
171). 34, 96

state group defined as a tuple (X,s) in which X is the schedule status and s € [1,|I|] means that
the last job is scheduled on route s. Each state group also contains a table of value rows that
allow to track back to all previous state groups to obtain a schedule S (p 176). 96

state variables in the state space D of the scheduling model, each state is associated with a
partial schedule S**). For each S*) the state variables are defined as a tuple: (X, s, t, d)
where k is the sum of all values in X = [2°, .., 2], s = s(*) t is the actual finish time of the
kt" job and d is the cumulative delay for all k scheduled jobs. (p 173). 96

Switchback(i) Switchback(i) = MinCyle - G\, is the minimum time required for the traffic light

min

to return to the phase index i in one cycle (p 178). 96
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temporal arrival distribution arrival distribution of vehicles between [0, H]gi)](p 171). 96

time resolution A all temporal values are rounded into a single time-step value by dividing it
with this time resolution value A (p 171). 96

TL-PSS A Phase Switching Sequence (PSS) for a specific traffic light (p 170). 96
value rows Each state group contains a table of value rows in which each value row contains four
elements (t, d, §, ¥). Where |(X,s)], is the actual number of value rows for a single state

group. These value rows are used to track back to the root-state when obtaining the schedule
S from a certain state group (p 176). 96
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Appendix A

Literature study A: Related work
on SCHIC

The three papers which are briefly summarized in Section 2.2 are explained in a more elaborate
manner in this appendix.
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Paper 1: lane-based job-scheduling by Dang [14]

Dang [14] improved SCHIC both on the traffic-input -and scheduling level in 2018 for a common
real-world occurrence, namely vehicles which approach the intersection on opposing lanes and
share the same green phase. Figure 1 (Fig. 1) in [14] clarifies this visually, i.e. cluster sets {a,b, e}
and {c,d} both approach the intersection on opposing lanes and share the same green-phase for
straight-ahead traffic. By original design, SCHIC does not consider the lane-direction [ of clusters
which share the same green-phase.

The objective function of SCHIC, i.e. to minimize the estimated cumulative delay of all observed
vehicles, is now made more accurate by Dang [14] since the lane-direction of each entry-lane I is
taken into account as well. Two improvements are evaluated by Dang [14]: SCHIC-new-clustering
(SCHIC-nc) which considers the lane-direction Iy during the clustering process and SCHIC-2 which
includes the new clustering method and an enhanced scheduling method.

Clustering of approaching vehicles is already explained in more detail in section 3.1.2, however in
this paragraph a brief recap is given in order to understand the extensions of Dang [14]. SCHIC
detects approaching vehicles and saves each of them in a data-structure known as a cluster. Each
cluster is defined as (¢, arr, dep), where ¢ is the number of vehicles in the cluster with arr being
the arrival time of the first vehicle and dep the departure time of the last vehicle. In order to
reduce the problem size of the scheduler, SCHIC aggregates multiple clusters into a single cluster
if their vehicles arrive within a threshold time: thc = 3.0. This threshold based clustering process
is applied for each phase, regardless if clusters are found on opposing lanes. For example the merge
process of ¢; and ¢y into ¢p is as follows: arre, = min(arre,,arre,), dep., = max(depe,,depe,)
and ¢, = C¢, + Cc,. Vehicles of the merged cluster (cp) are assumed to be uniformly distributed
between the arrival and departure time which is unlikely to be true when vehicles are found on
opposing lanes.

SCHIC-new-clustering (SCHIC-nc) therefore only applies threshold based clustering on vehicles
which travel in the same lane direction: I;. SCHIC-new-clustering (SCHIC-nc) is able to use
the original scheduling algorithm of SCHIC, since it still meets the requirement of this original
scheduling algorithm, i.e. a single cluster sequence per phase index (i).

dur=dep -arr

A
Ic] i fr=|c|/dur
y » time (seconds)
H

0 arr dep

Figure A.1: Visual explanation of clusters — note that clusters can be found on opposing lanes.
Each cluster is defined by (arr, dep and |¢|). Image reproduced from Xie et al. [1].

SCHIC-2 extends the default scheduling algorithm by allowing to individually schedule each cluster
on each lane direction l;. The default scheduling algorithm only allows to schedule a single green
phase for vehicles on opposing lane directions which share the same green phase. The default
scheduler of SCHIC is extended to allow the scheduling of multiple cluster sequences per phase.
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Therefore, a separate cluster sequence is now maintained for each lane direction [; of each phase
i. The scheduler of SCHIC-2 is referred to as a two machine scheduling method in Figure 1 (Fig.
1) in [14].

To visualize and more clearly clarify SCHIC-2, Figure 1 (Fig. 1) in [14] shows four lanes in total
which are serviced in two individual green phases. The two horizontal -and two vertical lanes are
associated with one of the two green phases. SCHIC-2 maintains four cluster sequences, i.e. one
for each of the four individual lane-directions ;. Whereas SCHIC-nc maintains only two cluster
sequences for the two green phases. Both SCHIC-nc and SCHIC-2 evaluate different potential
schedules by iteratively adding clusters one by one from the available cluster sequences. SCHIC-2
and SCHIC-nc evaluate these different potential schedules to select the one with lowest cumulative
delay.

Performance metrics are given by considering two green-phases where only straight-ahead and
right-turn movements are allowed (phases with indices 0,2 in Figure 1.4a). The 5x5 grid-network is
identical to the one used by SCHIC [40]. The communication protocol of SCHIC [40] is implemented
as well. SCHIC [40] communicates projected traffic outflows to directly neighbouring intersections
to extend the local observation of each controller.

To indicate the performance potential an example is given in case of no communication between
intersections (CS0). Performance is reported on the average waiting time. SCHIC-2 (two machine
scheduling) contains the improvements of SCHIC-nc (new-clustering) implicitly, i.e. SCHIC-2
contains SCHIC-nc and adds a lane-based scheduler. As a result performance metrics are given
for ”SCHIC-2 over SCHIC” and ”SCHIC-2 over SCHIC-n¢” in [14]. The improvement of SCHIC-2
over SCHIC grows from 9% to 15%, when the vehicle demand increases from a low to high value.
The performance improvement of SCHIC-2 over SCHIC-nc, indicating the performance gain of the
new scheduler, grows from 4% to 6% when the vehicle demand increases.

Inter-phase uncertainty omitted

Dang [14] has shown considerable improvements to SCHIC, but omitted inter-phase uncertainty
since the only allowed movement at the intersection is the movement for straight-ahead traffic, this
can be considered as a large simplification. Dang [14] evaluates intersections which are identical to
the ones originally proposed for SCHIC by Xie et al. [27]. By only allowing straight-ahead traffic
and scheduling it with two dedicated green-phases, vehicles on each of the four entry-lanes can only
be associated with just a single green-phase for straight-ahead traffic. By removing inter-phase
uncertainty a commonly found real-world uncertainty is also removed, i.e. inter-phase uncertainty
occurs when vehicles which travel towards the intersection on the same road can request different
and competing green-phases by changing lanes on this single road. For example by entering the
lane dedicated to left-turning traffic, or by deciding to stay on the lane for straight-ahead traffic.

With inter-phase uncertainty removed vehicle detection can be performed at the beginning of the
lane, since each vehicle on this lane will request the same phase from the controller. Therefore,
the length of each lane is now the only limiting factor to maximize the look-ahead time for vehicle
detection. In Dangs [14] 5x5 grid network, vehicles on 20 out of the 25 lanes are are detected at at
least 7.5 seconds from the intersection. This look-ahead time is reasonable given that inter-phase
uncertainty is eliminated. However, when vehicles are able to request different phases by switching
lanes, inter-phase uncertainty is quite an important factor to consider at 7.5 seconds from the
intersection.
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Paper 2: a more flexible phase set with ERIS by Goldstein and Smith [7]

As mentioned by Manolis et al. [9], a major limitation of SCHIC is found in the restriction which
is placed on the phase set. This restriction is as follows, by initial design of SCHIC in 2012 the
following restriction is present — each movement (or serviced incoming lane) is only allowed to
be present in one of the green phases [1]. This restriction is also explained prior and supported
with a figure in section 3.1.1. In this thesis, it is referred to as a non-overlapping phase set. A
non-overlapping phase set is visualized in Figure A.2 where each movement (shown as an arrow)
is only found in one green-phase.

In 2018, Goldstein and Smith [7] introduced ERIS — Expressive Real-time Intersection Scheduling
[7]. ERIS uses a more flexible phase set for lane-based job-scheduling by allowing phase overlap,
i.e. each lane can now be serviced in multiple phases. The afore-mentioned method of Dang [14] is
still restricted to a non-overlapping phase set. ERIS maintains lane-specific traffic estimates and
uses an A* algorithm to evaluate different possible combinations of two compatible lanes in the
next green phase.

A dual ring barrier is used by ERIS where any combination two compatible / non-conflicting lanes
can receive a green signal. Green signals for turning lanes are allowed to be skipped if no vehicles
are present, however straight-ahead lanes are not allowed to be skipped. A visual example of the
allowed transitions is shown in Figure 2 of [7].

The A* algorithm allows for real-time decisions by bounding the large search space. A heuristic
function estimates the cost of executing future actions. This cost is computed as the expected
delay-time of jobs (clusters of vehicles per lane). The heuristic function is based on the earliest
start time of jobs. This heuristic function is evaluated using pre-emptive job-scheduling, thus
showing resemblance to SCHICs job-scheduling algorithm.

Unfortunately inter-phase uncertainty is omitted in this research, ERIS assumes a 100% adoption
rate of communicating vehicles [7]. All vehicles communicate their desired movement (straight-
ahead or turning left), speed and location without noise at each second to the traffic controller.
ERIS outperforms the commercial version of SCHIC named SURTRAC and a simpler adaptive
controller based on time-gaps [7]. Both SURTRAC and the adaptive controller have access to
the connected vehicles in a for them suited form as well. However the 100% adoption rate of
communicating vehicles can be seen as a perfect information, connected vehicle scenario — in
reality this is highly uncommon to date.

indices : 0 1 2 3

phase set : — j/ JI <§’
green phase set: GRRR RGRR RRGR RRRG
yellow phase set : YRRR RYRR RRYR RRRY

Figure A.2: Default phase set of Simulation of Urban Mobility [19] (SUMO), which is a non-
overlapping phase set. Since each movement (indicated with an arrow) is only found in one of the
green phases.
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Paper 3: poor performance of SCHIC during saturated traffic demands by Hu and
Smith [25]

In 2019, Hu and Smith [25] proposed a method which gradually shifts from SCHICs job-scheduling
control to queue-based control. SCHIC is based on job-scheduling which works quite well for low
vehicle demands. But job-scheduling has been proven to be sub-optimal when the traffic condition
reaches saturation. Therefore Hu and Smith [25] proposed to only use SCHICs job-scheduling
method for low-vehicle demands.
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Appendix B

Algorithms of SCHIC

Chapter 3 has introduced the working principles of SCHIC in a high-level manner. In this appendix
we give a more detailed explanation, mostly by means of detailed pseudo-code.
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4. Extension decision: simplificiation in which
we only decide to append time to the current
phase or move to the next phase.

5. PSS Implementation: phase switching
P sequence is created for optimization horizon
H.

3

A

A 4

| 3. Optimizer: remove inefficient states in D.

| | 6. Feasiblitiy: check maximum phase duration.

A

| 2. Control Model: update state space D.

Accept: phase is

| Reject: new phase is
(i, extension).

A

(next( i), min_dur ).

Inter-phase uncertainty methods: | .
| LCP, split-vehicles, fixed-label, V2I. | 1. Route Flow Information: updated IF.

A

A

-

phase | | (i, 9,.) roll interval 1 I
| el

Existing PSS for intersection controller optimization horizon H

Figure B.1: A repeated figure which is included for clarity of this appendix. Flowchart of SCHICs
components, in a high level abstraction. The image is re-created without any intended changes
from SCHICs original publication by Xie et al. [1].
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Important variables

Some important variables are left as a reference below, they will be explained in the chapter later
on.

e cdt (int): current decision time

e cpi (int) : current phase index

e cpd (int): current phase duration

e phase (list): a list of light signals (red, yellow or green) for each allowed movement at the
intersection

e A (float): time resolution in seconds
e D (list): state space used to store different orderings of observed clusters

e cluster (list): stores information about arriving vehicles: <|c|, arr, dep, dur, fr, road_ratio={entry_road m:
x, entry_road_n: y} >

e |c| (int): number of vehicles in the cluster

e arr (int): expected arrival time of the first vehicle

e dep (int): expected departure time of the last vehicle
e dur (int): duration of the cluster = dep - arr

e fr (float): flow rate of the cluster = |¢| / dur

e road_ratio (list of vehicle counts per lane): keeps a vehicle count for each entry-lane found
in a cluster

e RF (list of clusters): road flows are all observed clusters on an incoming lane

e JF (list of clusters): Inflows are all RFs that can pass the intersection during the same
green-phase

e o (list of different variables): observation o is a list of [RF, I'F, cdt, cpi, cpd]
e th. (float): threshold time-gap for clustering individual vehicles into one arriving cluster

o sult (float): start-up lost time, the time that is lost before a queue of cars reaches the speed
limit

e shw (float): saturation headway, the average head-way between vehicles in saturated flow

113



Parameter Full name Setting
the threshold clustering | 3 seconds
sult start-up lost time | 3.5 seconds
shw saturation headway | 2.5 seconds

Table B.1: Fixed parameter settings
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Local Traffic Observation

The induction loops have a fixed sampling interval: samp [seconds]. The prediction horizon Hy, is
divided into time-segments where the total segment count = H, / samp. In every time-segment
h we have a(® as the number of vehicles arriving in time-segment h. If a(® > 0: it becomes an
arriving cluster, c.

Each arriving cluster ¢ has the following variables. Firstly, |c| (integer) is the number of vehicles
in this cluster, arr(c) (integer) is the arrival time of the first vehicle and dep(c) (integer) the
departure time of the last vehicle. The flowrate (fr(c)) and duration (dur(c)) can be derived from
these variables see Figure 3.2.

Algorithm 3 present the details on insertion and removal of vehicles.

Algorithm 3: insertion and removal of vehicles on road flows

1 insert_remove_vehicles(m)
Input : m is the lane index associated to movement m
Output : insertion and removal of vehicles on road flows

// Insertion of new vehicle(s) which arrive during time-segment h.

if ™ > 0 then

3

4 ¢ = initialize_an_empty_new_cluster()
5 count(c) = a®

6 arr(c) = cdt + Hegt

7 dep(c) = cdt + Heyt + samp

8 dur(c) = dep(c) - arr(c)

9 fr(c) = count(c) / dur(c)

10 insert ¢ into Crrm

11 sort Crr,m on increasing arrival time
12 end

// Removal of departed vehicles.
13 dep_count = get_count_of_departed_vehicles(m)
14 while dep_count > 0 do

15 ¢ = first_cluster in(Crg,m)

16 if dep_count < count(c) then
// Remove the departed vehicles from the first cluster.

17 count(c) -= dep_count

18 arr(c) -= dep_count / fr(c)

19 dur(c) -= dep_count / fr(c)

20 fr(c) = count(c) / dur(c)

21 else

22 ‘ remove ¢ from Crpm

23 end

24 dep_count -= count(c)

25 end

26 return
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Queues The formation of queues is explained prior in Section 3.1.2.

Anticipated queues As stated prior in Section 3.1.2, here we supply the pseudo-code on the
formation of the anticipated queue.

Vehicles which are expected to join the current queue ¢, before before it is able to clear are called
the anticipated queue. The anticipated queue is added to the current queue cluster, i.e. the current
queue ¢, will now be extended.

The arrival time and flow rate of the original queue cluster ¢, remain unchanged as stated in
[1]. Only the vehicle count of the queue cluster increases or decreases and as a result the arrival,
departure and duration scale accordingly.

A more detailed explanation is presented in algorithm 4.
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Algorithm 4: Anticipated queues on Crp m.

1 anticipated_queue(cdt, m)
Input : cdt is current decision time, m is the lane index associated to movement m
Output : Extend the current queue with anticipated queues on Crp,m,

2 end_condition = false

3 for Vc € Crp,, do

a if arr(c) <cdt then
// c is a queue cluster and we need a queue cluster in order to extend it.
5 Cg=2=C
6 ¢/ = next(cy)
7 while arr(c¢?) < dep(c,) and end_condition == false do
8
9 if dep(c’) < dep(cy) or fr(¢?) > fr(c,) then
// Merge ¢’ into cq, but keep fr of ¢4
10 count(c,) += count(c’)
11 dep(cq) = arr(cq) + (count(cy) / fr(cq))
12 dur(cq) = dep(cq) - arr(cy)
13 remove ¢ from Cg F.m
14
15 else
// A part or all of c(9) might join ¢q and dur is extended with Jdur
// sfr is the estimated flow rate of a queue.
16 § dur = (dep(cy) - arr(c?)) / (1 - (fr(c?) / sfr))
17
18 if 6 dur > dur(c’) then
‘ // Join ¢/ into cq as in lines 10 - 13.
19 else
// Only the first part of ¢/ joins into c¢q.
20 vehicles_that_join = count(c¢?) * (§ dur / dur(c¢?))
21 count(c,) += vehicles_that_join
22 dep(cq) = arr(cq) + count(cq) / fr(cq))
// Keep the last part of ¢/ as its own cluster.
23 count(c;) -= vehicles_that_join
24 arr(cj) += 0 dur
25 dur(c;) = dep(cy) - arr(c;)
26 fr(c;) = dur(c;) / count(c;)
// The anticipated queue process is terminated after this logic is reached
[11.
27 end_condition = true
28 end
29 end
30 end
31 end
32 end
33 return
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Figure B.2: Some lanes can be serviced at the same time in one phase. A shown on this simple
intersection from The Hague.

Inflows (IF)

It is often true that multiple movements are serviced during one green-phase. This is illustrated
in Figure B.2.

The actual clusters of interest for the scheduler are the Inflows IF" which are based on the available
green-phases. Crr; is a list of all clusters that can pass the intersection safely during green-phase
i. Le. IF contains a list of clusters: Cyr; for each green-phase i. See Figure 3.1.

Assumption 1 The authors of [1] [27] assume that each lane (or movement) is often serviced in
only one green-phase.

Assumption 1 makes the road to phase mapping RtoP() trivial. Cjp; is a concatenation of all
road flows Crp,, that have the right of way during the phase with index i. Formally IF =

(Crras - Crry))-

Road_ratio{} keeps count of the number of vehicles that originate from each entry lane. This
information is necessary for communication with downstream neighbours.

A cluster is thus extended with road_ratio to the form:

cluster in IF: <|c|, arr, dep, dur, fr, road_ratio {entry_lane_m: (int) x, entry_lanen: (int) y} >
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Aggregate clustering on IF
The second aggregation technique resembles a feature used by Vehicle Actuated logic (VA) in which
vehicles are continuously serviced if they arrive within a critical interval.

Vehicles that are expected to arrive within a threshold time-gap (th, = 3 seconds) are merged

together. This resembles the continous servicing found in VA since clusters are treated as non-
divisable in SchIC.

The merging procedure is straightforward but described in algorithm 5 below.

Algorithm 5: Threshold-based clustering for each green-phase with index ¢

1 threshold_based(i)
Input : Cjypy, ie. the Inflows (IF) where i refers to the green-phase with index 7 from
the phase set
Output : threshold clustering applied to Crr;
2
3 c.last = last_element(Crp;)
4 for Ve € Crp,; do

5 if ¢ # c_last then

6 c_current = ¢

7 c_next = next(c_current)

8 time_difference = arr(c-next) - dep(c_current)

9

10 if time_difference < th, then

// merge two clusters

11 arr(c_current) = min(arr(c_current), arr(c_next))
12 dep(c_current) = max(dep(c_current), dep(c_next))
13 count(c_current) += count(c_next))

14 dur(c_current) = dep(c_current) - arr(c_current)
15 fr(c_current) = count(c_current) / dur(c_current)
16 remove c_next from Crp;
17 end
18 end
19 end

Call graph for clustering The previous algorithms are called in the following order.

1. Update all Road Flows (RF) by adding or removing vehicles on each lane with Algorithm 3
Create a single queue on each lane using Algorithm 1
Append the estimated queue to the single queue on each lane using Algorithm 4

Concatenate multiple RF’s into a single IF using RtoP()

A B

Threshold based clustering on the Inflows (I F') with Algorithm 5
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Scheduler

The scheduler creates the previously described state space D (Section 3.2). States that have
serviced all observed clusters are called full-states. A full state with minimal cumulative delay is
selected to retrieve the schedule S.

Assumption 2 Clusters in state space D are non-divisible. If we split a cluster to service another
we introduce a large delay. The next phase(s) block the currently waiting cars with their green and
yellow time.

Assumption 2 limits the number of operations on D and makes each operation quite simple. The
size of the state space is determined by the number of clusters in IF' and the number phases in
phase set I.

Current observation o

The current observation o is a list that contains [cdt, ¢pi, cpd, I F)]. cdt is the current decision time,
cpi the current phase index, cpd the duration of the currently active phase and IF' the Inflows for
the prediction horizon H,,. More details can be found in Section 3.1.2.

Control Flow

The control flow contains all clusters from IF but reordered them. The control flow is defined
as: CF = (S,CcF). Schedule S is a list of phase indices which determines the ordering of Cop.
Ccr = (ccFr, -, ccr,s))- Each entry: cop; is a cluster that can depart during phase .

Partial schedule

A partial schedule is defined as Sy and contains k clusters of IF, where k is smaller than the
total cluster count in IF. The schedule status X is an array which has an entry for every phase.
X = (21, ..,7|7)) where each entry in the array: z; counts the number of clusters from phase i that
have currently been serviced. To clarify, with each partial schedule Sy the sum of all entries in its
X array is k. The kth cluster in Cop is the z,, th cluster from Crp, .

State groups

A state group is defined by {X, s, Sprev}, i.e. the X array, the current phase s and the previous
green-phase Spre,. X alone does not make a state unique. For example, consider the two states
with X = [1,1] in Figure B.3. However, these states do have a different current phase s, which
makes them unique.
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X=1[0,0]
s=config=0

i=1

X=1[2,0] X=[1,1] X=[1,1] X=1[0,2]
s=0 s=1 s=0 s=1

Figure B.3: A repeated figure which is included for clarity of this appendix. The implemented
state space D, where states are grouped by {X, s, sprev}. Without s,.¢, one cannot track back to
previous states. The current phase index is s.

Call graph scheduler An overview of the order of calling each algorithm presented below.

1. Forward recursion for calculating all state groups in D using Algorithm 6.
2. Remove inefficient state groups using the dominance criterion with Algorithm 7.
3. Compute the cumulative delay for each partial schedule with Algorithm 8.

4. Track back from the optimal state group to find the schedule S with minimal cumulative
delay with Algorithm 9.

5. During runtime: an extension decision is used to determine the new phase duration in Algo-
rithm 10.

Forward recursion with Algorithm 6

Based on observation o, a forward recursion process is used to build state-space D. And hence,
to create different partial schedules S *). Two special X arrays are used: Xepmpty and X, which
respectively have: Vi : x; = 0 and Vi : ®; = |Crp;|. These arrays indicate the empty and full
schedule status. States that have reached Xy, have serviced all observed clusters in IF. The
state space D is initialized with the start node: (Xempty,cpt) which has value row: (cpd, cdt, 0,-).

The logic is explained in Algorithm 6 which calls Algorithm 7 to compute the value rows in state
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space D.

Algorithm 6: forward recursion for calculating all state groups

1 forward_recursion_state_groups(o)
Input : o is current observation (cdt, cpi, cpd, IF)
Output : optimal schedule S
Require: (Xcmpty, ic) has one value row (0,0,-,-). So we start from the empty schedule.

2

3 for k=1 to |IF| do

4 X k) = {X : Z‘@Iz‘l z® = k} // Get all unique X arrays that sum to k.
5

6 for VX € X* do

7 for Vs € [1,]I]] do

8 cluster_count = X yy,1[s]

9 z(8) = X[s]

10 if 28 > 0 and 2 < cluster_count then

11 u;xiate,state,grou;()(@) // Append the x(5)th cluster to a partial schedule.
12

13 end

14 end

15 end
16 end

17 return the solution S using Algorithm 9 (by tracking back from the state with X, and
minimal cumulative delay d.)

Algorithm 7: calculation of the value row in (X, s)

1 update_state_group(X,s)
Input : Schedule status X which is reached by adding latest job on route s
Output : Updated state space by adding job x(*) to reach schedule status X
Require: The old state groups (X,, s,) Vs, € [1, ||}, where X, = X with 2(*) = () — 1.
Recall, (%) refers to X|s].

2
3 X, =X with 208 =2 —1
4 dpin = 00
5 c= c(s’”(s))
6 for s, =1 to |I]| do
7 for y, =1 to |(X,, s,)| do
// For each old state found in D we append cluster c on route s.
8 (pd, t, d) = get_cumulative_delay(s,, pdo, to,do, ¢) // Compute the finish time and
cumulative delay for state (X,s) with algorithm 8.
9 Save (pd, t, d, s,) for (X,s)
10 end
// At this point all possible (X,s) states have been computed.
11 state_manager_greedy(X,s).

// state manager_greedy(X,s) collects all (X,s) states in D and it removes all that have

a longer cumulative delay than the optimal (X,s) state.
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Update state groups with Algorithm 8

Each partial schedule Sy has the following state variables: (X, s, pd,t,d);. Where s and pd are the
index and duration of the last phase, t is the finish time of the kth job and d is the cumulative
delay for all k& jobs.

Updating the state variables of Sy can be done if we know the kth phase index (sg) and the state
variables of Si_;. The schedule status X = (X1 with z5, +1).

The input of algorithm 8 is known in algorithm 7. The state variables of S are computed using
(X, s,pd,t,d)i—1 and si by calling algorithm 8.

Lines 4,5 ensure that each phase duration is not shorter than G-

Lines 7 and 14: MinSwitch(s,i) and SwitchBack(i) MinSwitch(s,i) returns the minimum
time for switching from phase s to i. Phase skipping is not allowed. It returns the minimum
duration (Gp,ip) of intervening phases and yellow times between s and i.

Both MinSwitch(i) and SwitchBack(i) only include yellow and minimum green times (G )-

SwitchBack(i) returns the minimum time required for the traffic light to return to phase index i.
Switchback(i) = MinCycle - Guin

Lines 9, 10 adds the startup lost time sult which is needed for clearing the queue.

Line 19 computes the cumulative delay for the kth job.

123



Algorithm 8: Subroutine to calculate (t,d) of partial schedule S*)

1 get_cumulative_delay(s, pd, ¢, d, )
Input : (s, pd, t, d) of S*=1 ¢ is the kth cluster to be added
Output : (pd, t,d) of S*)

i = route(c)
if (s #14) and (pd < Gpin) then
‘ t=1t+ (Gmin - pd)
end
pst = t + MinSwitch(s,i)
ast = max(arr(c), pst)
if (s #1) and (pst > arr(c)) then

© 00 N O vt~ W N

10 ast = ast 4 sult // Queue correction: add startup lost time for clearing the queue.
11

12 end

13 t = ast + dep(c) - arr(c)

14 if (s #4) or (arr(c) - pst > SwitchBack(s)) then

15 pd =t - pst

16 else

17 | pd =pd + (t-pst)

18 end

19 dd = |c| * max(ast — arr(c),0) // Delay for cluster k.
20

21 d=d+dd

22 return (pd,t,d) of S

Elimination Criterion

Theorem 1 If we have two partial schedules S((fl)) and S((j;)) which share the same (X,s). Where
(tof SU5)) < (t of S{)) and (d of S{)) < (d of S{5)). Then S{3) can be eliminated without loss
of optimality [1].

Figure B.4 shows the Inflows on three routes and two possible schedules S(4) and S(p). At stage
k=3 we can remove S(p) since S((j)) and S((:;)) have the same (X,s) but (t,d) of S((%)) is larger than
(t,d) of S((i)). Having the same (X,s) means that the same clusters have been serviced, but in

different orderings. The first k clusters of both schedules will be the same as k increases to |S| for
a full schedule S. Therefore, the delay will always be larger if we would continue with the inefficient
S((?) instead of with the more efficient partial schedule S((i)) [1].
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Figure B.4: Top half of image: observed vehicles per individual phase, known as clusters (e.g.
for the movement straight-ahead or left-turn). Lower half of image: different possible (complete)
schedules S(4) and S(g) which (completely) service all observed clusters. Grey rectangles indicate
queued vehicles. Among all different schedules, the one with minimal cumulative delay is selected.
At stage k = 3, both S 4) and S p) have serviced the same clusters and the same phase is active.
However, the cumulative delay of S(py is higher than that of S4), so schedule S(py can already
be eliminated at stage k = 3 — see Theorem 1. (Elimination Criterion) of [1]. Image reproduced
from: Xie et al. [1].
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Retrieving the solution S using Algortihm 9
The optimal schedule S is obtained when the state space D is fully built. The state space is fully
built if it contains at least one full state. A full state is a state which serviced all clusters in IF'.

Algorithm 9 retrieves the optimal the schedule S from the full state with minimal cumulative delay
d. By tracking back to the root node, the phase durations pd are saved which have been stored in
each state.

The control flow: Ccp and corresponding phase durations PD = (pdy,...,pd|g|) are saved until
they are replaced in the next scheduling iteration.
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Algorithm 9: Retrieve the solution S

1

get_optimal_schedule()

Input : State space D.

Output : Optimal schedule S.

Require: State space D needs to have reached depth |IF|.

// Select the full-state (X,s) with minimal cumulative delay d.

3 X ::}{fu”

4 S=arg ming

d}(&

// Track back from the full state (X,s) with minimal cumulative delay.

6 for k= |IF| to 1 do
7 S = S
// Obtain the phase (s,) of the previous state, by tracking back to the previous state.
s =5, 0f (Xo, So) with X, having xs, = x5, — 1
9 end
10 return S = (s1,..,5g|)

Extension decision

Section 3.4 in [1] states that only the first cluster (¢;) of the computed schedule S is used. The
current phase is extended until the first cluster (¢1) is expected to have departed. An updated
schedule S is obtained after each update of the traffic observation, since clusters are non-divisible,
the first cluster (c;) will be fully finished even when its arrival at the intersection is delayed. See
Figure B.1 for a graphical overview.

The first cluster of schedule S, ci, is obtained from Ccp and is used for the extension decision,
see Algorithm 10.

Algorithm 10: Extension decision

1

® N o AN W N

extension_decision()
Input : Current observation o.
Output : Extension decision.

if |S| =0 or sy # cpi or arr(cy) > SwitchBack(cpi) then
‘ ext =0

else
| ext = min(dep(c1) - cdt)

end

return ext

Line 4: when ext = 0 the next green phase, and its preceding yellow phase, are selected to run for
their minimum durations.

Line 6: If ext > 0 the current phase duration (cpd) is extended by ext. A violation of the maximum
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green time is repaired when it occurs. If the current phase duration (cpd) reaches the maximum
green time duration, i.e. cpd = Gpuqq, the current green phase is terminated and the next green
phase, and preceding yellow phase, are selected to run for their minimum durations.
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Appendix C

Quantitative comparison on
published networks

As referred to in Section 3.3, this appendix contains a quantitative comparison between the pub-
lished results on SCHIC by Xie et al. [1] and the results as obtained with the re-implementation
of SCHIC.
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The first paper on SCHIC [1] considers two ideal networks, i.e. an isolated intersection and an
arterial network, to evaluate the performance of several traffic control algorithms. The isolated
intersection demonstrates intersection optimization, the arterial network also incorporates implicit
coordination between neighbouring intersections.

Both scenarios can be seen as ideal since each controller uses two phases, where each entry-lane
is serviced in one phase. Hence there is no inter -or intra-phase uncertainty for the traffic light
controller. All lanes are identical in length (L) and the speed limit is set to 10m/s. The default
signal timing constraints are set for each green (G) and yellow (Y) phase, Gpin = 58, Gasz = 55,
Y =5s.

In this thesis both networks and traffic scenarios are recreated to compare the performance of
the re-implementation with the metrics published in [1]. Unfortunately the original authors have
refused to supply the original traffic scenarios, which makes this comparison incomplete. However,
it does give an indication whether or not the algorithms are correctly re-implemented.

Traffic scenarios are recreated in the following manner, hourly traffic demands are converted into
traffic scenarios with OD2TRIPS . In this thesis, all results are averaged over 10 independent
1-hour simulations for each hourly demand. The default Krauss car-following model of SUMO is
used with its default parameter settings? , see Table C.1.

Parameter Description Value
accel Normal (non-emergency) acceleration ability 2.9 m/s?
decel Normal (non-emergency) deceleration ability 7.5 m/s?
maxSpeed Maximum speed 10.0 m/s
minGap Minimum gap when standing to leader vehicle 2.5 m
length Vehicle length 4.3 m
sigma Driver imperfection with range [0,1] 0.5

(0 denotes perfect driving)

Table C.1: Default parameter settings for Krauss driver model during the quantitative comparison.

Comparative traffic controllers

Different responsive controllers are compared to SCHIC in [1], namely vehicle-actuated logic (VA)
[20] and a dynamic programming method called Controlled Optimization of Phases (COP) [5].
Lastly, a fixed coordination plan (FIX) is used for the arterial network. The time offsets between
the fixed time controllers ensure coordination given that the traffic scenarios do not change over
time.

In this thesis the following two controllers are used:

1. VA, which is implemented as a Time-Gap Controller.

2. FIX, a fixed time-plan with offsets.

lhttps://sumo.dlr.de/docs/0D2TRIPS.html
2https://sumo.dlr.de/docs/Vehicle_Type_Parameter_Defaults.html
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Isolated intersection

The isolated intersection demonstrates intersection optimization since no network level effect is
included. Two entry-lanes with a length of L = 750m cross here, the advance detectors are placed
at Lger = 700m from the intersection which results in a 70s look-ahead horizon (Lget/Vfree fiow)-
While the length of these lanes could resemble a rural intersection, a prediction horizon of 70s
seems uncommonly long in reality. This prediction horizon of 70s might enhance the performance
of SCHICs job-scheduling algorithm, however it is only possible since there is no inter-phase un-
certainty (i.e. each lane is serviced in one phase only).

The original SCHIC paper [1] compares two controllers, namely Vehicle Actuated Control (VA)
and SCHIC. The performance metric is the average speed on the two incoming lanes. The traffic
scenarios are described by an hourly demand, where the demand proportions on both lanes shift
every 20 minutes in the following manner: {0.3;0.7}, {0.5;0.5}, {0.7;0.3}. In each run the simulation
period is 1 hour, the reproduced runs are evaluated on 10 independent 1 hour simulations for each
hourly demand.

Figure C.2 shows the reported performance in the original paper on SCHIC [1] on the left-side and
the reproduced performance of the re-implementation on the right-side. Both SCHIC controllers
(blue lines) show a close resemblance up until 900 vehicles per hour. The re-implementation of
SCHIC shows a much higher performance between 900 and 1200 vehicles per hour. The reported
results show a significant performance drop for both SCHIC and VA after 900 vehicles per hour.
Both reproduced controllers, SCHIC and VA, do not show this steep performance drop after 900
vehicles per hour. Therefore the performance difference is likely the result of differences in the
reproduced traffic demands.

Vehicle Actuated Control (VA) is shown twice since the advance detector placement is not specified
in [1]. Here, the two used advance detector placements are 2sec and T0sec from the intersection,
2sec is the default-setting of SUMO. With VA, a green phase is prolonged as long as vehicles are
arrive within a time-gap of 3.0 seconds at the detection point. VA with a look-ahead of 70Osec
shows little resemblance to the reported values in [1], which could be due to the fact that 70sec is
an uncommonly long look-ahead time for VA control.

On the contrary to the reported performance in [1], the default VA controller outperforms SCHIC
in the reproduced runs for vehicle demands above 600 vehicles per hour. A possible reason can be
found in the robustness of a VA controller, the controller continuously services a phase if vehicles
arrive at the detection point within a time-gap that is below a threshold (set to 3sec). SCHIC
determines an arrival time for each vehicle 70sec before it is able to reach the intersection. The
VA control with a short look-ahead time of 2sec cannot look ahead as far as the SCHIC controller,
but given the higher average speed it seems to be more responsive to disturbances or uncertainties
in traffic flow compared to SCHIC.

In conclusion, the performance of both SCHIC controllers is similar enough to assume that the
algorithms are re-implemented correctly.
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Unmeasured Lanes

Lanes used for performance measures: average speed

Network Information:

Road length: 750m

Advance detector : 700m from traffic light
Speed limit: 10 m/s

Look ahead time: 70 seconds e R

Figure C.1: Isolated intersection scenario.

Reported in [1]: average speed at a single intersection ~Reproduced results: average speed at a single intersection
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Figure C.2: Comparison of reported and reproduced results. Average speed on an isolated inter-
section.
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Arterial network

"""""""""" Unmeasured Lanes
Lanes used for performance measures: waiting time and average speed

All horizontal lanes towards A,B,C,D are arterial lanes or art: Tyan= (TwamA +T +T +T )
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All lanes towards A,B,C and D are non-bottineck or nb: Tomw= (Tat Tt T, 4T, /4
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Figure C.3: Recreated arterial network based on [1].

The primary function of arterial roads is to deliver a high throughput between popular points of
interest, for example between a city centre and a highway. The arterial road, i.e. main horizontal
road, often intersects lower capacity roads which can join the arterial road. Coordination between
the intersections is an important tool to deliver high throughput on the arterial road.

The arterial network as shown in Figure C.3 contains a bottleneck intersection O and four intersec-
tions {A, B, C, D} which will be used to evaluate different controllers. Intersection O uses a fixed
time plan, with 35sec of green time for the (horizontal) arterial road in a total cycle of 70sec. The
fixed time control limits the number of vehicles that can travel towards intersection A. Intersection
O can be seen as the boundary of the control zone.

Several controllers, a Fixed Time Plan (FIX), VA and SCHIC, are evaluated on intersections
{A, B,C, D}. The Fixed Time Plan uses a green split of {43sec, 17sec}, respectively for the arterial
-and vertical road. Each intersection uses an offset of 28sec to its neighbour. Xie [1] obtained these
parameters through a local search to maximize the average speed on the arterial lane, given that
no turns occur in the traffic scenarios. All lanes are 250m in length (L) with advance detectors
placed at 100m, resulting in a look-ahead time of 10s for the two adaptive controllers: VA and
SCHIC.

Performance metrics are only reported for the entry-lanes of intersections {A, B, C, D}. Figure C.3
shows all entry-lanes in solid black lines and will be referred to as non — bottleneck-lanes or nb in
short, only the horizontal lanes are referred to as arterial-lanes or art.
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Traffic is generated for the entire network based on hourly demands which vary from {300, 600, .., 1500}
vehicles per hour. The hourly demand is distributed among the roads in the following manner, 15
on the arterial road and 1—16 on each of the four side roads. The remaining fraction of 15—6 traverses
intersection O on the vertical road, but does not affect the performance of the other intersections.
All traffic is considered to continue straight-ahead. In this thesis, the performance metrics for each

hourly demand is averaged over 10 independent simulations of 1 hour.

Comparison of reported and reproduced metrics

The reported -and reproduced performance metrics will be compared here. Metrics used for com-
parison are the average speed on non-bottleneck entry-lanes (v, np) as well as the average waiting
times on the non-bottleneck -and arterial lanes (Tiy, grt, Twnp). Waiting times are obtained from
SUMO, and defined as the total time that each vehicle has a speed below 0.1 m/s.

For FIX, average waiting times are shown in Table C.2. Most noticeable is T, oy = 0 as obtained
in [1] which is not realized in the reproduced scenarios. A possible reason for this difference could
be that the used offset of 28sec and a green split of {43sec, 17sec} does not fit the reproduced
traffic scenario. Given that driver properties like driver-imperfection are not exactly the same as
in [1]. A local search based on the reproduced traffic scenarios and vehicle properties could yield
an offset and green split ratio which does result in Ty o7t = 0.

On all non-bottleneck lanes combined the differences between the reported and reproduced results
are smaller, see Ty, np in Table C.2. At 1500 vehicles per hour the performance difference increases
heavily, which might be a result of the previously mentioned misfit in the used offset.

The lower performance of the reproduced fixed time controller is also visible in the average speed
on all non-bottleneck lanes, see Figure C.4. The reported graph demonstrates a horizontal perfor-
mance for fixed time control, whereas the reproduced results show that the fixed time controller
becomes gradually worse. In conclusion, small changes to the behaviour of drivers are likely to
worsen the results of a fixed time controller.

For VA average waiting times are shown in Table C.3. Two detector placements are used in the
reproduced results, since the detector placement is not specified by [1]. Similar results are found
when the detector is placed at 2 sec from the stop-line of the intersection. The results of VA
Reported [1] and VA Reproduced 2 sec vary little on both reported waiting times: Ty, 4r¢ and
Tp,np- This is likely to indicate that the reproduced traffic scenarios are quite similar to the ones
in use by [1], given that the controller adapts to drivers behaviour in real-time.

For SCHIC, average waiting times are shown in Table C.4. SCHIC Reproduced does not obtain the
low waiting times on T, 4¢ as reported in [1]. Large values of T, 4.+ are however also seen for FIX
and VA controllers when comparing the Reported and Reproduced values. SCHICs reproduced
values of T, qr¢ are considerably lower than the ones reproduced with VA control. This indicates
that SCHICs control is advantageous over VA control in this scenario.

Twnp is comparable between SCHIC Reported and SCHIC Reproduced. These waiting-times,
T nb, consider the waiting time of all vehicles on SCHICs entry-lanes (intersections {A, B, C, D}).
SCHIC Reproduced shows the lowest waiting times when compared to FIX Reproduced and VA
Reproduced. These low values indicate that the optimization for all vehicles behaves as expected.

In conclusion, the algorithms of SCHIC seem to be re-implemented correctly.
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300 veh 600

900 1200

1500

Tw,art Twmb Tw,art Tw,nb Tw,art Tw;nb Twﬁart Tw,nb Tw,a'rt Tw;nb

FIX Reported [1] 0.00 5.96  0.00
FIX Reproduced 0.76 7.16 1.14

6.04  0.00 6.15  0.00 6.07  0.00 6.41
719  1.94 7.81  3.59 8.99  5.69 10.32

Table C.2: Performance of Fixed Time Plan (FIX) reported in [1] compared to FIX Reproduced

300 veh 600 900 1200 1500

Tw,art Tw,nb Tw,art Tw,nb Tw,art Tw,nb Tw,art Tw,nb Tw,art Tw,nb
VA Reported [1] 6.84 5.33 7.13 5.97 7.15 6.68 7.27 7.52 7.67 8.43
VA Reproduced 2 sec 7.27 5.87 8.06 6.56 7.32 6.42 5.84 6.01 5.41 6.56
VA Reproduced 10 sec  16.43 11.9 23.19 16.31 26.78 19.04 2737 1996 23.85 18.86

Table C.3: Performance of Vehicle Actuated Control (VA) reported in [1] and reproduced perfor-
mance which is given for the default detector placement at 2sec and at 10sec.

300 veh 600 900 1200 1500

Tw,art Tw,nb Tw,art Tw,nb Tw,art T’w,nb Tw,art Tw,nb Tw,art Tw,nb
SCHIC Reported [1]  0.26 0.57 0.35 1.23 0.34 2.05 0.27 2.90 0.29 3.71
SCHIC Reproduced 0.6 0.74 0.63 1.18 0.52 1.69 0.5 2.46 0.69 3.2

Table C.4: Performance of SCHIC as reported in [1] and the re-implementation of SCHIC

Average speed on SCHICs

entry-lanes in the arterial network
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Figure C.4: Average speed on SCHICs entry lanes, i.e.

network.

Vehicle demand per hour [veh/ hour]

——  FIX Reproduced
—8— SchICg2 Reproduced

135

non-bottleneck (nb), for the arterial



Appendix D

Feature importance

Here, we evaluate the performance of our predictive models without a set of derived features.
Secondly, we plot the relative importance of each individual feature.

Removing acceleration and derived features

In Section 5.3.6 we removed the acceleration based features, due to the expected noise on their
measurement. Here, we remove the acceleration-based -and derived features.

The derived features, Speed Change and Relative Speed to a leading vehicle, are derived from other
features from the feature-vector. Since these features are derived, they might contain duplicate
information and could therefore be obsolete or un-used by the predictive models. Therefore, we
observe if they are actually useful for the predictive models by obtaining the accuracy without the
following four features.

1. Leading Vehicle Acceleration.
2. Relative Acceleration to a leading vehicle.

3. Speed Change.

4. Relative Speed to a leading vehicle.

The results are shown in Table D.1 and Table D.2.

When including all features, the Random Forest achieved the following accuracies during both
turning-movement distributions, i.e. /0.5, 0.5] and [0.2, 0.8], respectively IDM,.. = 0.81 and 0.89
and Kraussg,.. = 0.51 and 0.80.

It can be concluded that the accuracies of the Random Forests are slightly lower, but remain
comparable when removing these features.
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Turning Movement distribution ‘ Fixed label Probability SVM Decision Tree Random Forest

[50, 50] 0.50 0.51 0.61 0.74 0.74
[20, 80] 0.80 0.67 0.83  0.86 0.86

Table D.1: Accuracies for IDM driver model, without the following features: Leading Vehicle

Acceleration, Relative Acceleration to a leading vehicle, Speed Change and Relative Speed to a
leading vehicle.

Turning Movement distribution ‘ Fixed label Probability SVM Decision Tree Random Forest

[50, 50] 0.49 0.50 0.49  0.52 0.51
[20, 80] 0.80 0.67 0.80  0.78 0.80

Table D.2: Accuracies for the Krauss driver model, without the following features: Leading Vehicle
Acceleration, Relative Acceleration to a leading vehicle, Speed Change and Relative Speed to a
leading vehicle.

Feature importance graphs

Figure D.1 and Figure D.2 show the individual features and their importance for the Lane Change
Prediction models, respectively for the IDM and Krauss driver-model. All features are listed on
the Y-axis and their importance is shown on the X-axis.

More information on all features is given in Section 4.2.

In conclusion, we can assume that the acceleration based features are not perceived as important to
the models. The speed_change features, are however perceived as quite important by the models.

Acceleration based features

We focus here on the possibly noisy acceleration features. The features speed_change_1, speed_change_2
and speed_change_3 can be considered acceleration based features. To clarify, in order to com-
pute each speed_change; the measured speeds of each vehicle before the lane-split are used: e.g.

__ speed-2
speed_change 1 = E220=

With the Krauss driver-model the observed speeds before the lane-split , e.g. speed_2 and speed_1,
are noisy which causes speed_change_1 to be noisy as well. Nonetheless, the predictive models
for both driver-models (Krauss and IDM) seem to see value in these possibly noisy speed_change;
features since they are among the most important features.

Besides these speed_change; features, there are other acceleration based features. These acceleration-
based features are sometimes important, but are overall not among the most important features,
as described below.

Intelligent Driver Model (IDM) - Figure D.1
With IDM in the balanced [50,50] case, the first occurrence of an acceleration feature is at the 18th
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place and out of all features they are the least important. With IDM in the un-balanced [20,80]
case, the first acceleration feature is found at the 7th place, in this case the other acceleration
features are almost all among the least important features.

Krauss Driver Model - Figure D.2

With Krauss in the balanced [50,50] case, the acceleration based features are found mid-way in
the feature importance ranking at place 11 to 15. As for the unbalanced [20,80] case, the first
acceleration feature is found at place 8, again the other acceleration features are almost all among
the least important features.
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Figure D.1: Feature importances for Random Forests of the IDM driver-model. Y-axis contains
individual features, X-axis the relative importance of an individual feature.
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RF_passenger_Krauss_50_50
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Figure D.2: Feature importances for Random Forests of the Krauss driver-model. Y-axis contains
individual features, X-axis the relative importance of an individual feature.
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