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Chapter 1

Introduction

When a forensic investigator enters a crime scene, he starts searching for evidence that could help reveal
the truth of what has happened. The type of crime needs to be identified, this can vary from burglary
to murder. He will search for fingerprints, footprints, gunpowderresidue and other types of evidence.
Bloodspatter can be used for reconstructing a crime. One of the most powerful types of evidence are
traces of DNA. The classic traces are blood, saliva and sperm. But there are also other DNA traces that
can’t be seen by the naked eye. These are called biological contact traces. For instance during a struggle
cells from the skin of the offender can be left behind on the victim. The investigator collects all traces he
can find. During this investigation he needs to determine what the significance of every trace is. Traces
of blood can belong to the offender yet they can also belong to the victim. Finally he can end up with
100 to 200 different traces. According to the type of crime he selects a number of traces he thinks has
the most value for revealing the truth. Usually this number is between 5 or 10 different traces. Of course
traces of blood are easier to investigate than contact traces. The selection of traces will be sent to a
forensic institute, for instance the NFI or TMFI. It depends on the type of crime how long it takes to
investigate the traces. The fastest they can get results is in a day. Usual it takes about a week. In a big
murder investigation it can take up to a month before everything is processed.

When the traces arrive at the forensic institute they will be thorougly examined. This takes up to
four days. During the first day the DNA is isolated from the trace and quantified. The second day the
DNA fragments are multiplied using polymerase chain reactions. Using short tandem repeat analysis loci
on the DNA from two or more samples are compared, where a locus is the specific location of a gene or
DNA sequence on a chromosome. This takes about an hour for 16 samples. On day three the process of
day two is repeated in order to be extra sure of the results. On the fourth day they report all the results
of the examination.

The forensic investigator would like to have the results of the DNA examination as fast as possible
in order to find the truth of what has happened as quickly as possible. The developments in this area
are going fast. New methods lead towards solving cases faster and better. Could there be a faster way
of examining the DNA?

1.1 DNA

DNA (Deoxyribonucleic acid) consists of two long polymers of simple units called nucleotides, with
backbones made of sugars and phosphate groups joined by ester bonds. These two strands run in opposite
directions to each other and are therefore anti-parallel. Attached to each sugar is one of four types of
molecules called bases. It is the sequence of these four bases along the backbone that encodes information.

1.2 Transportation of molecules through membranes

Transportation of polymer molecules through a nanopore is the subject of a lot of research nowadays
both experimental and theoretical. It is important in biological systems and technological applications.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: DNA, source: www.wikipedia.org

The translocation of biomolecules through channels in membranes is a very important process within
or across biological cells for both delivery and signaling purposes. In (bio)chemistry, forced translocation
is used in selection and purification of larger molecules, in medicine, it plays an important role in drug
delivery. Also DNA and RNA translocation across nuclear pores, protein transport through membrane
channels and virus injection into cells are important examples of phenomena in which long molecules
traverse through a nanopore (Luo et al., 2008b), (Dekker, 2007).

All these processes of translocation have their potential technological applications, such as for example
rapid DNA sequencing, gene therapy and controlled drug delivery. Actually intensive research may lead
to a fast and efficient sequence detection. As mentioned in the introduction, now the sequencing of DNA
happens through chemical processes, which are costly and time consuming. Rapid DNA sequencing using
nanopores might help to speed up the process of examining the DNA traces the forensic investigator had
found!

DNA is double stranded but for research purposes in the early stages of research processes, single
stranded DNA sequences are often used. Our research is based on translocation of homogeneous polymers.
It’s important to note that inhomogeneities in the structure and interactions between polymer and other
molecules might have a significant effect on translocation dynamics (Luo et al., 2008c).

1.3 Translocation through a nanopore

During translocation a chain moves through a very small pore. The chain consists of several elements, the
most simple chain consists of monomers of a single species. This chain is called a homogeneous polymer.
A monomer is a unit that can consist of severval base pares. For example you could say: 5kbp DNA
can be modelled as 20-30 monomers. The next step is a chain that consists of two different types of
monomers, say A and C. Such a polymer is called a heterogeneous polymer. The combination of the
two sorts of monomers can attain different series. For example series like AnCn with A and C the two
different monomers and n the number of monomers. But also (AnCn)m, where m is the amount of times
the series repeat itself is an interesting combination. And also a random combination could be possible.
Both homogeneous and heterogeneous polymers will be investigated in this thesis, but we will restrict
ourselves to two-species chains in this project. Research is still mainly based on two-species chains as
even this simple model is still hard to understand. Though there are more possibilities for the chain. In
the end the idea is to translocate a DNA or RNA chain containing four different monomers that are also
interconnected to each other, they don’t align in a straight chain.
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Figure 1.2: Schematic representation of a heterogeneous polymer ready for translocation

The small pore is actually called a nanopore. One can compare the size of a nanopore with the size of
the diameter of a single hair divided by 80 000, that is a few nm. This kind of size is way too small to see
with our eyes, but can be observed with AFM (atomic force microscope) images. The pore will interact
with the chain. For instance, the A monomers of the chain can feel an attractive force when they are
inside the pore. In order for a chain to traverse a pore, a force is applied to the part of the chain inside the
pore. When the force is very small, the translocation process takes a long time, and translocation could
actually fail. Therefore in experiments typically voltage differences of a few 100mV are applied across a
pore, which implies a sufficiently strong driving force that usually guarantees succesful translocation.

Most theoretical research focuses on the dependence of the translocation time on relevant parameters.
This way you can study how the translocation dynamics depend on the details of the DNA sequences.
The parameters under consideration are for instance the polymer chain length N , pore length L and pore
width W , driving force F , sequence and secondary structure and polymer-pore interactions. Also the
dynamics of a single segment passing through the pore during translocation in an important issue. An
interesting open key question is if DNA translocation through a nanopore can be used to determine the
detailed sequence structure of the molecule (Luo et al., 2008b). In this thesis heterogeneous polymers
with two types of monomers will be investigated. It turns out that we will be able to discriminate between
A and C type monomers when the interaction strength with the pore for the different species differs a
factor 3. This is a promising result and a step in the direction of actually sequencing a full DNA profile,
although many challenges are still to be overcome.

Figure 1.3: A sketch of a polymer traversing a graphene nanopore, source: ceesdekkerlab.tudelft.nl
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Figure 1.4: Schematic representation the blockade signal

1.4 An experiment

Let’s start with a well-known typical translocation experiment. In physics the following routine gives
interesting results. An electric field drives single stranded DNA and RNA molecules through a solid-state
nanopore immersed in a salt-solution and the passage of each molecule is signalled by a blockade in the
channel current. The length and size of the blockade can be used to characterize the kind of polymer
that was under investigation. Comparing the translocation time distributions of polydeoxyadenylic acid
[(poly(dA)100)] and polydeoxycytidylic acid [(poly(dC)100)] DNA molecules, it is found that the translo-
cation time distribution of [(poly(dA)100)] is much longer. This is due to the polymer-pore interactions
on the dynamics of the biopolymer. There is a stronger attractive interaction of [(poly(dA)100)] with the
pore (Luo et al., 2008a).

1.5 Physics and Mathematics

The previous experiment shows how one is able to discriminate between two different polymers. In figure
1.5 there is an example of the blockade signal. There are two features we can see in this figure. How
long the blockade is and how big it is. This blockade corresponds to a polymer that has filled the pore.
This way the current through the pore is blocked. When the pore is empty the signal returns back to its
original state. A lot of research in physics focusses on the actual translocation of the polymer through
the nanopore, see for instance (Dekker, 2007), (Dekker and Kowalczyk, 2011), (Dekker et al.), (Krudde,
2009). Unfortunately in physics it is still impossible to sequence DNA with single base-pair resolution.
Though in this thesis we will focus on the mathematics of the translocation process and we are able to
discriminate each monomer. This is done by monitoring the waiting time for each monomer. That is the
time it takes monomer n to reach the pore for the first time given that monomer n− 1 is in the pore at
time t = 0. This quantity is not accessible in an experiment which explains the difficulties underlying
DNA-sequency using solid-state nanopores.

1.6 Assignment

In this thesis the translocation time distributions of polymer molecules through a nanopore in a membrane
in two-dimensions will be investigated. In particular, the dependence of the translocation time on the
sequence occuring in heterogeneous chains will be studied.

We will study polymers with different sequences for instance polymers with repeating blocks AnCn
for various values of n. We will also investigate the distribution for the residence time of each monomer
of the polymers inside the pore.

The experiment described shows a real case of translocation of a chain through a nanopore. But all
investigations in this thesis, only deal with simulations of the translocation processes on a computer.

1.6.1 Expectations

We have certain expectations of the results. The translocation time should depend on the length of the
polymer, the length of the seperate blocks and the orientation of which base enters the pore first. The final
emptying of the pore will probably take the longest, as the final emptying of the pore corresponds to a rare
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crossing of the barrier (Luo et al., 2008a). Translocation dynamics was observed in many experiments and
computations to be anomalous. The contribution of the different processes to the translocation time will
depend in different ways on the attraction strength of the pore (Luo et al., 2008c). The pattern exihibited
by the waiting times of the individual bases and their periodicity can unambiguously determine the values
of m, n and N respectively.

1.6.2 Overview of this thesis

So in this thesis a polymer chain will be modelled that translocates through a nanopore. This thesis is
divided in two parts. In the first part we examine the mathematical concepts necessary in translocation
and investigate the literature. In chapter 2 the basic topics of our statistical model will be explained.
These topics are stochastic differential equations, the Smoluchowski equation, the Fokker-Planck equation
and the Langevin equation. In chapter 3 we start with a basic approach of our problem using the Rouse
model. In chapter 4 we use a few articles to explain the different types of models that explain the
basics of translocation. In the second part we build a numerical two-dimensional model and use this to
implement a program in Matlab that we use to produce some interesting result. The numerical model for
the translocation will be built in three steps. The first step is modelling the movement of a homogeneous
polymer chain through space. Using several forces both conservative and random the polymer chain
attains an equilibrium state. This is done in chapter 5. In the second step a nanopore is inserted in
the model. When the nanopore is inserted additional forces enter the model, these forces arise from
the interaction between the monomers of the polymer with those of the nanopore. Also external forces
can be added, for instance a voltage difference. This is done in chapter 6. In chapter 7 the third stage
is explained in which a homogeneous polymer chain is replaced by a heterogeneous polymer. This last
stage is the first step towards sequencing DNA. During the simulations of the steps in the previous three
chapters we use an external force. In order to compare our results with those of the theory investigated
in the first part of this thesis, we also investigate in chapter 8 a few cases where the external force is
smaller.

After building the model, it will be implemented in Matlab. The program will simulate different
polymer chains passing through a nanopore. The chains will differ in length and structure. Also the pore
can attain different sizes. In the literature data is averaged over 2000 to 104 independent runs (Luo et al.,
2007). In this thesis most results are averaged over 2000 independent runs. The explanation of the code
can be found in chapter 9.
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Chapter 2

Basic Knowledge

The translocation process that we like to study is inherently stochastic. Therefore we will briefly review
a number of concepts that will be used in modelling the translocation process.

2.1 Stochastic Differential Equations

The theory behind the model of this thesis is based on stochastic differential equations. In this chapter
the basics will be explained. Let’s start with a basic ordinary differential equation.

dx

dt
= f(t, x) (2.1)

This equation can also be written as

dx = f(t, x)dt (2.2)

or

x(t) = x0 +

∫ t

t0

f(s, x(s))ds (2.3)

where x(t) = x(t|x0, t0) is a solution for the initial condition x(t0) = x0. Define l.i.m. as the limit in
mean square sense for the limit of a stochastic series as:

l.i.m.t→∞Xt = X. (2.4)

This means

limt→∞E(Xt −X)2 = 0. (2.5)

Now a stochastic differential equation can be defined with Brownian motion.

dXt = f(t,Xt)dt+ g(t,Xt)dβt (2.6)

Xt0 = X0, (2.7)

where dβt comes from the random Brownian motion. Define a random proces W as ‘white noise’ if
it’s mean is zero and the covariance of times s and t is the Dirac delta function

E[W (t)] = 0 (2.8)

E[W (s)W (t)] = δ(t− s). (2.9)

White noise does not have a fysical meaning, only a mathematical ideal representation of the fysical
world. Brownian motion cannot be differentiated, because white noise is discontinuous everywhere. The
Fouriertransform of the covariance is given by

9
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F (ω) =

∫ ∞

∞

eiωtδ(t)dt = 1. (2.10)

White noise can be seen as a Gaussian process. Brownian motion is related to white noise by

β(t) =

∫ t

0

W (s)ds, for 0 ≤ t ≤ ∞, (2.11)

and can be written as

dβ(t) = β(t+ dt) − β(t) = W (t)dt. (2.12)

Taking βt0 = β0 gives for the mean and covariance

E[β(t)] = β0 (2.13)

E[(β(t) − β0)
2] = t− t0. (2.14)

For the stochastic differential equation (2.6)this gives

E[dβ(t)] = 0 (2.15)

E[(dβ(t))2] = dt. (2.16)

All dβ(ti) are independent of each other and the initial condition β(t) and the distribution of dβ(t)
is Gaussian. Now the stochastic differential equation can be interpreted as a stochastic integral and

Xt = X0 +

∫ t

t0

f(s,Xs)ds+

∫ t

t0

g(s,Xs)dβs, for 0 ≤ t0 ≤ t ≤ ∞. (2.17)

The second integral is a stochastic integral. This integral cannot be solved using regular calculus.
For this we use Ito calculus. Assume E[|g(t, x)|2] < ∞ for all t ∈ [0, T ] and g(t, x) is continuous on the
interval [0, T ] and independent of dβt. Take P as a partition of [0, T ]:

0 = b0 < t1 < ... < tn = T (2.18)

The integral can now be defined as

∫

P

g(t, x)dβt = l.i.m.∆t→∞

n−1
∑

i=0

g(t′i, x)(βti+1 − βti), (2.19)

with ∆t = maxi(ti+1 − ti) and t′i ∈ [ti, ti+1]. For Ito calculus∗ take t′i = ti.

2.2 Smoluchowski equation

In the previous chapter we encountered Brownian motion. The effect of Brownian motion appears most
clearly in diffusion. Small particles initially placed at a certain point will spread out in time. Let C(x, t)
be the concentration at (x, t). Fick’s law now states that if the concentration is not uniform, there exists
a flux q(x, t) which is proportional to the spatial gradient of the concentration

q(x, t) = −D∂C
∂x

, (2.20)

with D the diffusion constant. During a one-dimensional transport process, the mass is transported
in the x-direction. A graphic explanation of this process is displayed in the figure.

Two parallel surfaces are placed orthogonal on the x-axis a distance ∆x apart. Take the concentration
C(x, t) at (x, t). In between the surfaces there exists a mass of C(x, t)∆x. In time this mass changes.
The difference in mass is given by

∗For the method of Stratonovich take t′
i
= 1

2
(ti + ti+1).
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Figure 2.1: Visualisation transport process

∂C

∂t
∆x. (2.21)

This should be equal to the difference in flux through the two surfaces. This difference is given by

∂q

∂x
∆x. (2.22)

We found the so-called continuity equation

∂C

∂t
= − ∂q

∂x
. (2.23)

And using Fick’s law, the diffusion equation is found

∂C

∂t
= D

∂2C

∂x2
. (2.24)

If there is an external potential U(x), Fick’s law must be modified. The potential U(x) exerts a force
F = −∂U

∂x on a particle, and gives a velocity v, which is linear in F so

v = −1

ξ

∂U

∂x
, (2.25)

where ξ is the friction constant. This velocity of a particle gives an additional flux Cv, so that the
total flux now turns into

q = −D∂C
∂x

− C

ξ

∂U

∂x
. (2.26)

In the equilibrium state the concentration is given by the Boltzmann distribution

Ceq(x) ∝ e

“

−U(x)
kB T

”

. (2.27)

Using this we can derive the Einstein relation

D =
kBT

ξ
. (2.28)
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The Einstein relation is a special case of a more general theorem, the fluctuation dissipation theorem,
which we will encounter later on.

Combining this new flux equation with the continuity equation gives the Smoluchowski equation

∂C

∂t
=

∂

∂x

1

ξ

(

kBT
∂C

∂x
+ C

∂U

∂x

)

. (2.29)

2.3 The Fokker-Planck Equation

The name of the FPE comes from the work of Fokker(1914) and Planck(1917) which where both investi-
gators of Brownian motion. The FPE is also called Kolmogorov’s Equation or Smoluchowski Equation.
The Fokker-Planck equation in one dimension is

∂f(x, t)

∂t
= − ∂

∂x
[A(x, t)f(x, t)] +

1

2

∂2

∂x2
[B(x, t)f(x, t)]. (2.30)

What makes the FPE interesting is that it is valid for conditional probability

f(x, t) = p(x, t|x0t0), (2.31)

for any initial x0, t0, with the initial condition p(x, t0|x0, t0) = δ(x− x0).
And the stochastic process described by a conditional probability satisfying the FPE is equivalent to

the SDE (stochastic differential equation)

dx(t) = A[x(t), t]dt +
√

B[x(t), t]dW (t). (2.32)

As the FPE is a second-order parabolic partial differential equation, an initial condition and two
boundary conditions are needed. The intial condition is already mentioned a few lines above. For the
boundary conditions several options are possible.

Using this Fokker-Planck equation we can connect the theory of the stochastic differential equations
with the theory of the Smoluchowski equation.

2.4 Langevin equation

Unfortunately solving the Fokker-Planck equation is in general difficult as it is a general second order
partial differential equation with unknown coefficients. An alternative description of Brownian motion is
to study the equation of motion of the Brownian particle writing the random force f(t) explicitely in the
Langevin form:

ξ
∂x

∂t
= −∂U

∂x
+ f(t) (2.33)

In this equation the random force is the sum of the forces working on a particle. To connect the
Langevin equation to the Smoluchowski equation we assume that the distribution of f(t) is Gaussian
with:

〈f(t)〉 = 0 (2.34)

〈f(t)f(t′)〉 = 2ξkBTδ(t− t′) (2.35)

This gives a one on one equivalence relation between the Langevin equation and the Fokker-Planck
equation. In the appendix this equivalence will be proven for the case where U = 0.



Chapter 3

Rouse model

The Rouse model is the simplest model describing the dynamics of a simple chain in a solution. We
will follow the line of thought as presented in (Doi and Edwards, 1986). In this model, the dynamics of
the polymer are modeled using Brownian motion. For this model, two assumptions are made. There is
no hydrodynamic interaction and no excluded volume interaction. Because there is no excluded volume
interaction, the chains of this model are called ghost chains and the system can be viewed as beads
connected with springs. The equation of motion of the beads can be discribed by the Langevin equation

∂

∂t
rn(t) =

∑

m

Hnm

[

∂U

∂rm
+ FRm

]

, (3.1)

where Hnm = δnm

ξ , the mobility tensor and U = k
2

∑N
n=2(rn − rn−1)

2, the interaction potential, with

k = 3kBT
b2 . Now the Langevin equation can be written as a linear equation for n = 2, 3, ..., N − 1

ξ
drn
dt

= −k(2rn − rn+1 − rn−1) + FRn (3.2)

and for n = 1, N

ξ
dr1
dt

= −k(r1 − r2) + FR1 , ξ
drN
dt

= −k(rN − rN−1) + FRN . (3.3)

The distribution of the random force FRn is Gaussian, with:

〈

FRn
〉

= 0 (3.4)
〈

FRnαF
R
mβ

〉

= 2ξkBTδnmδαβδ(t− t′) (3.5)

By regarding n as a continous variable, and taking the continous limit, the previous equation can be
rewritten as

ξ
∂rn
∂t

= k
∂2rn
∂n2

+ FRn . (3.6)

The limits turn into

∂rn
∂n

|n=0 = 0,
∂rn
∂n

|n=N = 0. (3.7)

with r0 = r1 and rN+1 = rN . The moments of the random forces slightly change according to

〈

FRn
〉

= 0 (3.8)
〈

FRnαF
R
mβ

〉

= 2ξkBTδ(n−m)δαβδ(t− t′) (3.9)

13
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The Rouse model has a few characteristics. For instance, the mean square displacement of the position
of the centre of mass is given by

〈

(RCM (t) −RCM (0))2
〉

= 6
kBT

Nξ
t. (3.10)

with the centre of mass given by

RCM =
1

N

∫ N

0

rndn. (3.11)

The self diffusion constant of the centre of mass is defined by∗

Dg = lim
t→∞

1

2t

〈

(RCM (t) −RCM (0))2
〉

=
kBT

Nξ
. (3.12)

The characteristic relaxation time τr of a polymer can be defined as the longest relaxation time

〈

~RN (t) ~RN (0)
〉

= e(
−t
τr

), (3.13)

where RN (t) = rN (t) − r0(t) is the end-to-end vector and

τr =
ξN2b2

3π2kBT
. (3.14)

So for the Rouse model τr ∝ N2. Another way to obtain N dependence of quantities like τ and the
self diffusion coefficient Dg is by the theory of scaling arguments. According to (Doi and Edwards, 1986)
scaling can be applied to the model. Take

N → N

λ
b→ bλν ξ → ξλ (3.15)

and it can be shown that

Dg =
kBTλ

Nξλ
=
kBT

Nξ
∝ N−1 τr = ξλNxb2λ2ν

3π2kBTλx = ξNxb2λ2ν+1

3π2kBTλx ∝ N1+2ν , (3.16)

because we need to take x = 1+2ν. The exponent ν is the Flory exponent given for d = 3 as ν = 0.588
and at d = 2 as v = 0.75.

∗In 3D instead of dividing by two, one needs to divide by six.



Chapter 4

Translocation

We now have the tools to build a stochastic model of translocation. Though there are several phenomeno-
logical theories that explain the basics of translocation. In this chapter the most relevant models will be
briefly reviewed.

We start with the basic model of a chain of length N translocating from the cis-side to the trans-
side of a membrane. We can calculate the free energy. This is also called the Helmholtz free energy, a
thermodynamical state function, which measures the energy in a closed system at constant temperature
and volume.

F = E − TS, (4.1)

where F is the free energy, E is the internal energy of the system, T is the temperature and S
is the entropy. This free energy is minimal when the system is in equilibrium. Now we make three
assumptions. First, we can divide the chain in two parts which are both in equilibrium with their
environment. Second, the cis- and transside environments are equal, there exists no driving force, which
would bias the translocation. Though we will also examine the case with force. The third assumption
is the most important. Translocation of a polymer chain , which is in reality a process in 3D, can be
modelled as effectively taking place in one dimension, by only considering the length of the translocated
part of the chain. This assumption greatly simplifies the analysis.

The entropy of both parts of the chain on the cis- and trans-sides can be calculated:

SI = kB log[(N − n)−γµN−n]
SII = kB log[n−γµn]
Stot = SI + SII

= NkB logµ− γkB log[n(N − n)]

(4.2)

where µ is a connectivity constant which depends for example on dimension, n is the number of
monomers on the trans-side, N is the length of the polymer and γ a constant for the steric hinderance
by the wall.

Together these equations give (where we assume E = 0):

Figure 4.1: Schematic representation the translocation process from the cis-side to the trans-side

15
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F = E − TS = −NkBT logµ+ kBTγ log[n(N − n)]. (4.3)

There are two equivalent ways to go from this to a stochastic dynamical system, either by a stochastic
differential equation or by the use of the Fokker-Planck equation. Assume that there is a single coordinate
n which completely describes the stochastic process. The force acting on n is the entropic force given by
F

F = − ∂

∂n
kBTγ ln[n(N − n)] =

kBTγ(N − 2n)

n(N − n)
(4.4)

Inserting this in the Langevin equation 2.4 describes the process:

ξ
dn

dt
= −kBTγ(N − 2n)

n(N − n)
+B(t) (4.5)

The Langevin equation includes a Brownian force B(t). For this force we have:
〈B(t)〉 = 0

〈B(t1)B(t2)〉 = Γδ(t1 − t2),
with Γ = 2kBTξ, see also the next chapter. From the Langevin equation the Ito SDE can be derived

ξdn(t) = −kBTγ(N − 2n)

n(N − n)
dt+

√
ΓdW (t) (4.6)

Integrating equation (4)gives

n(t) = n(t0) +
1

ξ

∫ t

t0

−kBTγ(N − 2n)

n(N − n)
dt′ +

1

ξ

∫ t

t0

√
ΓdW (t) (4.7)

taking n(t0) = 0 it is given that

〈n(∆t) − n0〉 = −kBTγ(N − 2n)

ξn(N − n)
∆t (4.8)

〈

(n(∆t) − n0)
2
〉

=
Γ∆t

ξ2
(4.9)

The Fokker-Planck equation corresponding to the Langevin equation equals:

∂P

∂t
= − ∂

∂x
[
kBTγ(N − 2n)

n(N − n)ξ
P ] +

kBT

ξ

∂2

∂x2
P (4.10)

4.1 Comparing Numerical results with Theoretical results

The numerical results in this thesis can be compared to some theoretical results. For this we use the theory
of the Fokker-Planck Equation. This was the equation that gives the time evolution of the probability
density function for a system. For instance, we can calculate the first passage time using the FPE. In this
section a short review is given of the corresponding Backward FPE, which we will further use to derive
a differential equation for the mean first passage time, following (Gardiner, 2004).

The Backward Fokker-Planck Equation

∂G

∂ω
= −A∂G

∂φ
+B

∂2G

∂φ2
(4.11)

In fact this is the Hermitian conjugate of the Fokker-Planck operator. Since the the Fokker-Planck
equation is given by:

∂f(x, t)

∂t
=

∂

∂x
[A(x, t)f(x, t)] +

1

2

∂2

∂x2
[B(x, t)f(x, t)] = LFPG, (4.12)

then
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L†
FP = −A∂G

∂x
+B

∂2G

∂x2
. (4.13)

4.1.1 Mean first passage time

The Fokker-Planck equation is very useful for calculating first passage times. The position of a monomer
can be described by the FPE. The time it takes the monomer to remain in a certain region around the
initial position can be calculated using the backward Fokker-Planck equation. Two different cases will
be discussed.

Let’s start will two absorbing barriers, so a ≤ x ≤ b. This means that when the monomer reaches a
or b it is removed from the interval. At time t = 0 the monomer of interest is at position x0. This x0 is
somewhere in the interval (a, b). The probability that at time t the particle is still inside this interval is:

∫ b

a

p(x′, t|x, 0)dx′ = G(x, t) (4.14)

The time that the particle leaves (a, b) is called T and rewritting the previous equation gives:

Prob(T ≥ t) =

∫ b

a

p(x′, t|x, 0)dx′ = G(x, t). (4.15)

The system is time homogeneous therefore, p(x′, t|x, 0) = p(x′, 0|x,−t) and now the backward FPE
can be used:

∂tp(x
′, t|x, 0) = A(x)∂xp(x

′, t|x, 0) +
1

2
B(x)∂2

xp(x
′, t|x, 0) (4.16)

and hence G(x, t) obeys the equation

∂tG(x, t) = A(x)∂xG(x, t) +
1

2
B(x)∂2

xG(x, t). (4.17)

The boundary conditions give the following information, as: p(x′, 0|x, 0) = δ(x− x′) it is known that

G(x, 0) = 1 a ≤ x ≤ b
= 0 elsewhere

(4.18)

and if x = a or x = b, the monomer is absorbed, so then

Prob(T ≥ t) = G(a, t) = G(b, t) = 0. (4.19)

As G(x, t) is the probability that T ≥ t, the mean of any function of T can be defined as:

〈f(T )〉 = −
∫ ∞

0

f(t)dG(x, t), (4.20)

and the mean first passage time is 〈T 〉 = T (x) = −
∫ ∞

0 t∂tG(x, t)dt =
∫ ∞

0 G(x, t)dt. For this last
equality integration by parts is used and Prob(T ≥ ∞) = 0, G(x, t) goes to zero fast enough.∗

Using

∫ ∞

0

∂tG(x, t)dt = G(x,∞) −G(x, 0) = −1,

and integrating 4.17 over (0,∞) an ODE can be derived

A(x)∂tT (x) +
1

2
B(x)∂2

xT (x) = −1, (4.21)

with as boundary conditions T (a) = T (b) = 0. The solution for this ODE is

∗As such 〈T n〉 = Tn(x) =
R ∞

0
tn−1G(x, t)dt
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T (x) =
2

[(

∫ x

a
dy
ψ(y)

)

∫ b

x
dy′

ψ(y′)

∫ y′

a
ψ(z)dz
B(z) −

(

∫ b

x
dy
ψ(y)

)

∫ y′

a
dy′

ψ(y′)

∫ y′

a
ψ(z)dz
B(z)

]

∫ b

a
dy
ψ(y)

, (4.22)

where

ψ(x) = exp

[∫ x

a

2A(x′)

B(x′)
dx′

]

(4.23)

However, the problem under consideration in this thesis does not have two absorbing boundaries, but
one absorbing and one reflecting boundary. Therefore slight adjustment needs to be made. One of the
absorbing boundaries (a) is replaced by a reflecting one. The new boundary conditions are:

∂xG(a, t) = 0
G(b, t) = 0

Solving 4.21 again with the new boundary equations gives:

T (x) = 2

∫ b

x

dy

ψ(y)

∫ y

a

ψ(z)

B(z)dz
, (4.24)

with ψ(x) given by equation (4.23) and we assume a < b. In the numerical part of this thesis most
simulations of translocation include an additional force exerted on the monomers in the nanopore. For
instance in fysical experiments mentioned in the introduction a potential difference between the two sides
of the pore exists. This model of translocation is called driven translocation. In this thesis one has
A = −U ′(s), with U(s) = ln(s(1 − s)), B = 2D, a = x0 and b = x0 + 1. And the ψ(x) results in

ψ(x) = exp
[

∫ x

a
2A(x′)
B(x′) dx

′
]

= exp
[

∫ x

x0

−2U ′(x′)
2D dx′

]

= exp
[

−1
D ln(x(1 − x)) − ln(x0(1 − x0))

]

=
[

x(1−x)
x0(1−x0)

]
−1
D

take (x0(1 − x0))
1
D = C

and:

T (x) = 2

∫ x0+1

x

(y(1 − y))1/D

C1

∫ y

x0

C2

2D(z(1 − z))1/D
dzdy

where C1 and C2 are defined like C.
When U(s) = ln(s(1− s)) the external force is not included. To include the driving force used in this

thesis take U(s) = ln(s(1 − s)) + ks and find:

ψ(x) = exp
[

∫ x

a
2A(x′)
B(x′) dx

′
]

= exp
[

∫ x

x0

−2U ′(x′)
2D dx′

]

= exp
[

−1
D (ln(x(1 − x)) − ln(x0(1 − x0)) + k(x− x0))

]

= Cexp

[

x(1−x)
x0(1−x0)

]
−1
D

e
−kx

D

take (x0(1 − x0))
1
D = C

and:

T (x) = 2

∫ x0+1

x

(y(1 − y))1/De
kx

Dx0

C1

∫ y

x0

C2

2D(z(1 − z))1/De
kz

Dz0

dzdy.

For an example of this mean first passage time see figure 4.2†.

†The mean first passage time for the driven translocation does not differ significantly from the undriven translocation
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Figure 4.2: Example of mean first passage time starting from position x

4.2 Sung and Park, an equilibrium model

In (Sung and Park, 1996) the authors introduce a three-dimensional translocation model where the
interaction of the polymer segments with the membrane is “considered to be only of steric origin”. Here
the modelling is also done in one-dimension. The authors obtain the free energy F and from that derive
the equation of motion. As mentioned before, during translocation several configurations of the polymer
are prohibited by the membrane. This leads to a reduction of the entropy of the polymer and an increase
of its free energy. They take an ideal chain, where the first monomer is placed on a wall in the yz
plane. They take as a boundary condition that all the other monomers cannot cross this wall. Now
they obtain the probability of finding the final monomer at some place r, given the first one at r0 on
the surface G(r, r0;n) by using the method of images. This probability is proportional to the number of
configurations in free space, which is the Gaussian distribution, minus the number of configurations for
which the chain does cross the surface,

G(r, r0;n) = G0(r, r0;n) −G0(r,−r0;n)

=
[

2πnb2

3

]− 3
2

e
−3(r−r0)2

2nb2 −
[

2πnb2

3

]− 3
2

e
−3(r+r0)2

2nb2

=
[

2πnb2

3

]− 3
2 6xǫ
nb2 e

−3(r)2

2nb2

where r0 = (ǫ, 0, 0) and ǫ is an arbitrarily small distance of the anchored segment from the surface.
The steric constraint factor of a chain is given as

ZS(n) =

∫

x>0

G(r, r0;n)dr < 1, (4.25)

and scales as n− 1
2 . The partition function as the boundary condition is absent is given by

ZB(n) ∼ e−βnµ (4.26)

where β = 1
kBT

and µ is the chemical potential per segment defined by µ =
[

∂F (n)
∂n

]

T
in the limit

n→ ∞. Now the free energy F (n) given from the full partition function is given as:

F (n) = −kBT × ln[ZS(n)Z(B(n))] =
1

2
kBT lnn+ µn+ C (4.27)
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where C is a constant term independent of n which arises from the integral in equation 4.2. At
this stage the boundary condition is absent, since this is a static model. To reintroduce the boundary
condition in the model, they decompose the chain into two independent chains each in the opposite half
spaces “cis” and “trans”. Now the total free energy of the system can be calculated as:

F (n) = F (n) + F (N − n)
= 1

2kBT ln[n(N − n)] + n∆µ+ C

The ∆µ part of this last equation is the excess chemical potential per segment of the trans side relative
to that of the cis side. In homogeneous media this contribution does not appear and exactly this leads to
our entropic barrier. Namely, the free energy with ∆µ = 0 has a symmetric barrier which is of entropic
origin, which, for a long chain, is nearly flat except near n = 1 or n = N − 1.

Furthermore Sung and Park treat the translocation process as a diffusive random process which is
described by a Fokker-Planck equation for the probability distribution of n, ∂

∂tP (n, t) = LFP (n)P (n, t),
where the operator is

LFP (n) =
1

b2

[

∂

∂n
D(n)e−βF(n)

(

∂

∂n
eβF(n)

)]

(4.28)

D(n) is the chain diffusivity constant and it is given by D = kBT
Γ ∼ N−ν , Γ is the chain friction

proportional to N−ν . The exponent ν is 1 if the hydrodynamic interaction between the segments is
neglected. This is the case in the Rouse model. And ν = 1

2 if it is included. This is called the Zimm
model. Now the mean first passage time can be defined as:

τ = b2
∫ N−1

1

[

1

D(n)
eβF(n)

∫ n

1

(

e−βF(n′)
)

dn′

]

dn (4.29)

And assuming that D does not change, they conclude that the model predicts that the translocation

time scales with N as τ = (Nb)2

2D ∼ (Nb)2+ν , where b is the length of a Kuhn segment and these results
can be checked experimentally. This is also the case for the one dimensional diffusion of a single Brownian
particle. For instance take D = 1

N and ν = 1 as is the case in the Rouse model, and find τ ∼ N3. If Γ is
independent of N , τ ∼ N2. Typically the exponent ν is between 0 and 1.

4.3 Anomalous Diffusion model

The results in the previous section, where the translocation time is found to be τ ∝ N2 seem quite right.
Though while comparing this with the characteristic Rouse time τRouse ∝ N2ν+1, with ν = 0.588 for
d = 3 and ν = 0.75 for d = 2 something odd appears as τRouse ≫ τ . This means that it would take a free
polymer longer to diffuse a distance of the order of its gyration radius than it takes to translocate.

To resolve this problem, in (Dubbeldam et al., 2007b) they have taken a different approach, to
overcome the equilibrium hypothesis. First of all they consider the translocation process to be anomalous
diffusion and they use a fold model (Metzler and Klafter, 2003), (Panja et al., 2007), (Kantor and Kardar,
2004). Second, they derive analytical results to compare them with Monte Carlo simulations.

Again they turn the three dimensional problem into a one-dimensional problem, by focussing on the
translocation coordinate called folds, s. As usual, the chain of length n is assumed to be in equilibrium
with a free energy of entropic nature. Then the translocation coordinate follows Brownian motion and
the Smoluchowski equation is used with the free energy as external potential.

Again we write down the free energy of both the cis and trans side and the total free energy:

F t(n)
T = −n lnκ− (γ1 − 1) lnn

F c(n)
T = −(s− n) lnκ− (γ1 − 1) ln(s− n)
F (n)
T = −s lnκ− (γ1 − 1) ln[n(s− n)]

(4.30)

where κ is the connectivity constant and γ1 is the surface entropic exponent which equals γ1 ≈ 0.945.
Now the entropic activation barrier can be calculated as

∆E(s) = (F )(s/2) − (F )(1) = (1 − γ1)T ln s (4.31)
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Now take the pure Rouse time τ ∝ S2v+1 and add the activation energy, imposed by the membrane
with the nanopore. Then the characteristic time scales as

t = τR(s)e∆E(s) ∝ s2v+2−γ1 (4.32)

Estimating the mean-squared displacement of the s coordinate gives:

〈

s2
〉

∝ t
2

2v+2−γ1 (4.33)

Now the anomalous diffusion law can be stated as:
〈

s2
〉

∝ ta with a = 2
2v+2−γ1

and the translocation

time equals τ ∝ N2v+2−γ1

As it is known from the literature that fractional diffusion gives rise to a subdiffusive dependence of
〈

s2
〉

on t, that is,
〈

s2(t)
〉

∼ tα with α < 1, this is the starting point for further analysis.

∂

∂t
W (s, t) = 0D

1−a
t Kα

∂2

∂s2
W (s, t), (4.34)

where W (s, t) is the probability diffusion function for having a segment s at time t in the pore and

the fractional Riemann-Liouville operator 0D
1−α
t W (s, t) = 1

Γ(α)
∂
∂t

∫ t

0
W (s,t′)

(t−t′)1−α dt
′.

The analysis is based on the more general analysis of the fractional Fokker-Planck equation. Solving
the equation above is solving a so-called boundary value problem. Take as interval 0 ≤ s ≤ N . There
are two boundary conditions corresponding to the reflecting and absorbing case ∂

∂sW (s, t)s=0 = 0| and
W (s = N) = 0. The initial distribution is W (s, t = 0) = δ(s − s0). The solution is a sum over all
eigenfunctions, called φn(s). And the solution can be represented as:

W (s, t) =
∞
∑

0

Tn(t)φn(s) (4.35)

Solving equation 4.3, one finds:

W (s, t) =
2

N

∞
∑

n=0

cos

(

(2n+ 1)πs0
2N

)

cos

(

(2n+ 1)πs

2N

)

× Eα

[(−(2n+ 1)2π2

4N2

)

Kαt
α

]

(4.36)

where Γ(a) is the Gamma function, and Kα is the generalized diffusion constant and Eα(x) is the
Mittag-Leffler function defined as:

Eα(x) =

∞
∑

k=0

xk

Γ(1 + αk)
. (4.37)

The actual distribution of translocation times can be calculated using the first-passage time distribu-
tion (FPTD),

Q(s0, t) = − d

dt

∫ N

0

W (s, t)ds (4.38)

=
πKαt

α−1

N2

∞
∑

n=0

(−1)n(2n+ 1) cos

(

(2n+ 1)πs0
2N

)

(4.39)

×Eα,α
[(

− (2n+ 1)2π2

4N2

)

Kαt
α

]

(4.40)

where Eα,α is the generalized Mittag-Leffler function given by

Eα,α(x) =

∞
∑

k=0

xk

Γ(α+ αk)
. (4.41)
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If t → ∞, Q(t) ∼ αN2

2Γ(1−α)Kαt1+α . They compare the scaling of Q(t) with t for large t with numerical

simulations.
More information is contained in the moments of the probability distribution of the translocation

coordinate s(t). In particular the first and second monoments‡.

〈s〉 (t) =

∫ N

0 sW (s, t)ds
∫ N

0
W (s, t)ds

(4.42)

= N −
2N

∑∞
n=0

1
(2n+1)2Eα

(

− (2n+1)2π2

4N2 Kαt
α
)

π
∑∞
n=0

(−1)n

(2n+1)2Eα

(

− (2n+1)2π2

4N2 Kαtα
) (4.43)

〈

s2
〉

(t) =

∫ N

0 s2W (s, t)ds
∫ N

0
W (s, t)ds

(4.44)

= N2 −
8N2

∑∞
n=0

(−1)n

(2n+1)3Eα

(

− (2n+1)2π2

4N2 Kαt
α
)

π2
∑∞

n=0
(−1)n

(2n+1)2Eα

(

− (2n+1)2π2

4N2 Kαtα
) (4.45)

〈s〉 (t = 0) = 0 (4.46)

〈s〉 (t→ ∞) =
N

3
(4.47)

〈

s2
〉

(0) − 〈s〉2 (0) = 0 (4.48)

〈

s2
〉

(t→ ∞) − 〈s〉2 (t→ ∞) =
N2

18
(4.49)

(4.50)

4.4 Driven polymer translocation

In addition to the anomalous diffusion model, the same authors wrote an article, where the translocation
of the polymers is driven (Dubbeldam et al., 2007a). In order to take this additional force into account,
the equations of the previous chapter slightly differ. The Fractional Fokker-Planck equation 4.3 changes
into:

∂

∂t
W (s, t) = 0D

1−a
t

[

∂

∂s

U ′(s)

ξα
+Kα

∂2

∂s2

]

W (s, t) (4.51)

where ξα = T
Kα

and U(s) is the external field. This external field is a simple linear function given by
U(s) ≥ ks. The k can for instance be seen as the chemical potential difference k = ∆µ. The solution of
the FFPE changes in:

W (s, t) =
2

N
e

f(n−n0)
2

∞
∑

n=0

sin
(nπs0

N

)

sin
(nπs

N

)

× Eα

(

−
(

f2

4
+
n2π2

N2

)

Kαt
α

)

(4.52)

Using the calculations from (Lubensky and Nelson, 1999) the first passage time distribution is given
by:

Q(t) =
α

4π
1
2 ft

[

Γ(1 + α)

Kαtα

]
1
2

[

N2Γ(1 + α)

Kαtα
− 2

]

× exp






−

[

N − f Kαt
α

Γ(1+α)

]2

4 Kαtα

Γ(1+α)






(4.53)

And the translocation time scales as:

τ ∝ 1

f
N2ν+1−γ1 (4.54)

‡The solution of the last equation is a correction of the original paper!
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4.5 Heterogeneous Translocation

All the previous theory was based on homogeneous translocation. This means that all the beads of the
translocating chains are the same. Though in DNA there are four different bases. There don’t exist many
theoretical papers on the translocation of heterogeneous chains. J. Dubbeldam and F. Redig explain the
basics in (Dubbeldam and Redig, 2010).

They take two different beads A,B and these are randomly placed in a chain of N beads as η(i) for
i = 1, ..., n. The pore has different affinity for the molecules that belong to A and B. The environment
on both sides of the membrane is the same. The position of the translocated part is measured in unit 1

n .
So Xt is always between 0 and 1, where Xt = 0 corresponds to the situation where the chain has fully
translocated. Again the free energy F (x) of the chain configuration can be calculated using the simple
potential

F (x) = ln(x(1 − x)) (4.55)

Now the continuous time random walk on Tn := (0, 1
n , ..,

n−1
n , 1) is defined for functions f : Tn → R

by

Lηf(x) =
(

Iη(⌊nx⌋)=AτA + Iη(⌊nx⌋)=BτB
)

Lnf(x) (4.56)

with

Lnf(x) = e−
β
2 (F(x+ 1

n)−F (x))
(

f

(

x+
1

n

)

− f(x)

)

+ e−
β
2 (F(x− 1

n)−F (x))
(

f

(

x− 1

n

)

− f(x)

)

(4.57)

for x 6∈ 0, 1 and Lnf(0) = 0, Lnf(1) = f(1 − 1
n ) − f(1) and β = 1

kBt
. The last term accounts for the

entropy. This random walk is absorbing at x = 0 and becomes reflecting at x = 1. In the limit of n→ ∞
the random walk can by replaced by a diffusion process. The autors take

ψ(x, η) = E
n
η,x(T0) (4.58)

with ψ(x, η) the mean first passage time for a polymer starting at x and having a bead sequence given
by η. And they take Lηψ = − 1

χ , with χ = Iη(⌊nx⌋)=AτA + Iη(⌊nx⌋)=BτB . Taking the average and using
the ergodic theorem results in

lim
n→∞

Lnψ = −
(

pA
1

τA
+ pB

1

τB

)

. (4.59)

Using Taylor expansion they take

Lf(x) := n2Lnf(x) = −βF ′(x)f ′(x) + f ′′(x) (4.60)

This means that we have returned back to our familiar diffusion process. Again a the translocation
time distribution comes down to

T (x) = c

∫ x

0

∫ 1

t

(t(1 − t))β

(u(1 − u))β
dudt

where

c =

(

pA
1

τA
+ pB

1

τB

)

(4.61)
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Numerical Results
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Chapter 5

The basic model

5.1 Theory

First the behaviour of a polymer moving in free space is investigated. The polymer chains themselves
are modeled as bead-spring chains of Lennard-Jones (LJ) particles with finite extension nonlinear elastic
(FENE) potential. The short-range (repulsive and possible attractive) LJ potential, models the excluded
volume effects and Van der Waals interactions between all pairs of beads (Huopaniemi et al. (2007)). So
it ensures that particles cannot be at the same place at the same time and they cannot overlap. The
potential energy associated with the Lennard-Jones interaction (forces) is given by:

ULJ(r) = 4ε[(
σ

r
)12 − (

σ

r
)6] + ε, (5.1)

for r ≤ 2
1
6 σ and 0 for r > 2

1
6 σ. Here σ is the diameter of a monomer and ε is the depth of the

potential.

The fact that the monomers are connected to each other in a chain is modeled by the so-called FENE
potential, which reads

UFENE(r) = −1

2
kR2

0 ln(1 − r2

R2
0

). (5.2)

Here r is the distance between two consecutive monomers, k is the spring constant and R0 is the
maximum allowed separation between connected monomers.

Each monomer is subjected to conservative, frictional and random forces. For modelling the movement
of the polymer, Langevin dynamics are used. This means that the behaviour of each monomer is governed
by Newton’s second law, which results in the following differential equation:

mr̈i = −∇(U(ri)) − ξvi + Fext + FRi , (5.3)

for each monomer i. Here m is the mass of a monomer, ri is the location of the monomer, U(ri)
is the total potential that works on a monomer such that −∇(U(ri)) is the force on the particles that
is calculated from the LJ and FENE potentials, vi is the velocity of each monomer, ξ is the frictional
constant, Fext an external force and FRi is a random force working on each monomer arising from collisions
with the solvent molecules. The frictional force FFi = −ξvi for each individual monomer comes from
hydrodynamic drag.

The random force includes the Brownian motion of the monomers resulting from the random bom-
bardment of solvent molecules and is represented by FRi and satisfies the fluctuation-dissipation theorem
(Huopaniemi et al. (2007)). As the stochastic force FRi (t) is assumed to be Gaussian distributed, we need
only to consider the first two monoments of the distribution of FRi (t), which are given as

〈

FRi (t)
〉

= 0

and
〈

FRi (t1)F
R
i (t2)

〉

= Γδ(t1 − t2), with Γ = 2kBTξm.

27
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Figure 5.1: The Lennard-Jones potential (solid line) and the FENE potential (dotted line)

Derivation of the fluctuation dissipation theorem

Start with the Langevin equation:

dp

dt
= −ξp+ f(t), (5.4)

it is known that,

〈f(t1)f(t2)〉 = Γδ(t1 − t2),

and take,

p = mv.

Solving this equation gives:

p(t) = p0e
−ξt + e−ξt

∫ t

0

eξt
′

f(t′)dt′. (5.5)

When calculating 〈p2〉 one gets:

〈p2〉 = p2
0e

−2ξt + e−2ξt

∫ t

0

∫ t′′

0

eξt
′ 〈f(t′)f(t′′)〉 eξt′′dt′dt′′ + 2p0e

−2ξt

∫ t

0

eξt
′ 〈f(t′)〉 dt′ (5.6)

= p2
0e

−2ξt + e−2ξt

∫ t

0

∫ t′

0

eξt
′

Γδ(t′ − t′′)eξt
′′

dt′dt′′ + 2p0e
−2ξt

∫ t

0

eξt
′ 〈f(t′)〉 dt′ (5.7)

= p2
0e

−2ξt + e−2ξt

[

Γ

(∫ t

0

e2ξt
′

dt′
)]

+ 2p0e
−2ξt

∫ t

0

eξt
′ 〈f(t′)〉 dt′ (5.8)

= p2
0e

−2ξt + e−2ξt[Γ[
1

2ξ
[e2ξt

′

]t0] + 2p0e
−2ξt

∫ t

0

eξt
′ 〈f(t′)〉 dt′ (5.9)

= p2
0e

−2ξt +
Γ

2ξ
[1 − e−2ξt] + 2p0e

−2ξt

∫ t

0

eξt
′ 〈f(t′)〉 dt′ (5.10)

=
Γ

2ξ
+ p0e

−2ξt[p0 −
Γ

2ξp0
+ 2

∫ t

0

eξt
′

f(t′)dt′]. (5.11)

The second term in the last equation goes to zero for t→ ∞. And all that remains is

〈

p2
〉

=
Γ

2ξ
. (5.12)
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It was already defined that p = mv so,

〈

p2
〉

= m2
〈

v2
〉

=
Γ

2ξ
, (5.13)

moreover by the equipartition theorem the velocity fluctuations are related by the temperature by

1

2
m

〈

v2
〉

=
1

2
kBT (5.14)

m
〈

v2
〉

= kBT. (5.15)

Substituting gives:

mkbT =
Γ

2ξ
(5.16)

⇒ Γ = 2ξkBTm. (5.17)

5.1.1 Rouse time

As there is no membrane present in this fase, the characteristic time for the cis-trans translocation can
be calculated. This would be the pure Rouse time tR ∝ s2ν+1. Therefore this model is also called the
Rouse model. The Rouse time is defined as the time that it takes for a free polymer to diffuse a distance
of the order of its gyration radius (Dubbeldam et al., 2007b).

5.1.2 Integration in time

For the integration in time of the model, the Verlet algorithm is used. This algorithm is based on a
Taylor expansion of the coordinate of a monomer at time t+ ∆t and t− ∆t about time t

r(t+ ∆t) = r(t) + v(t)∆t+
f(t)

2m
∆t2 +

∂3r

∂t3
∆t3

3!
+ O(∆t4), (5.18)

r(t− ∆t) = r(t) − v(t)∆t+
f(t)

2m
∆t2 − ∂3r

∂t3
∆t3

3!
+ O(∆t4). (5.19)

Adding these two equations and subtracting r(t− ∆t) on both sides gives

r(t+ ∆t) = 2r(t) − r(t − ∆t) +
f(t)

m
∆t2 + O(∆t4). (5.20)

This new position is accurate to order ∆t4. The velocity is calculated from the trajectory and accurate
to order ∆t2

v(t) =
r(t+ ∆t) − r(t − ∆t)

2∆t
+ O(∆t2). (5.21)

The velocity will be used for calculating for instance the kinetic energy or temperature. This algorithm
is in particular useful as it conserves the total linear momentum of the system and the total energy of
the system.

5.2 Simulation

The model in this chapter is implemented in Matlab. In the following figures, some of the characteristics
of the model are depicted for chains of length n = 11, 21, 51, 101. These can be checked using theoretical
values. The slope of the centre of mass should be equal to

D =
kBT

Nξ
. (5.22)
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And the radius of gyration, with ν = 0.75 should go to

R2
g =

1

6
N2νb2. (5.23)

The temperature T should stay constant at the prescribed value. The total linear momentum should
be conserved, following

d

dt

N
∑

i=1

mivi(t) = 0. (5.24)

Also the total energy (kinetic and potential energy) should be conserved. The kinetic energy should
follow

Ekin =

N
∑

i=1

mv2
i

2
= NkbT. (5.25)

All figures are based on 2000 simulations, except for those corresponding to the polymer of length
N = 101 For this polymer only 380 simulations were used. From the figure we can see that the gyration
radii go to the right equilibrium except for N = 11. In fact a polymer of length N = 11 is almost too
short to give reliable results. The momentum for all polymers stays around zero with small fluctuations.
The energy is approximately constant. In the figures 5.4, 5.5 we can see the log-log plot of the center of
mass. We clearly observe a cross over behaviour which is consistent with the literature.

Because the gyration radius and the kinetic energy are related to the length of the polymer, its
interesting to see how these quantities depend on N . In figures 5.6, 5.7 we can indeed see that the
dependence can be fit using a power law. For the radius of gyration we find ∼ N1.54 and for the kinetic
energy we find ∼ N1.01, which agrees with theoretical values.
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Chapter 6

Homogeneous Translocation

The next step in the model is the actual translocation of a homogeneous polymer through a nanopore.
During translocation a few fases will be encountered. In the first fase a polymer chain enters the pore.
Than the translocation process begins. This process is based on certain assumptions, the entropic barrier
that needs to be crossed is the main one. But also the interaction between the monomers and the pore
is very important. After translocation we want to be able to interpret the results of our simulations, so
we need to introduce some typical translocation terms, like successful translocation and waiting time.

6.1 The pore

Let’s start with expanding our model. A membrane is inserted in the space where the polymer chains
from the previous chapter were moving freely around. Now besides the interaction between the monomers
themselves, which was captured in the LJ potential and the FENE potential, the interaction with the
membrane also needs to be modelled.

The model for the membrane is the following. A rigid wall of thickness L will be defined, with in its
center a pore of width W , which is assumed to be small enough to allow only a single segment passage
(Melchionna et al., 2009). The wall is formed by stationary particles at a distance of σ from each other.
The segments cannot cross the membrane elsewhere.

The interaction of the wall-monomers with the monomers of the polymer is modelled by a Lennard-
Jones potential as well. This potential is basically the same as the one that is used for the interaction
between the monomers of the polymer. Except for the cut-off and the interaction strength. Here a
cut-off of 2.5σ is used and an interaction strength of εpm. This means that the interaction can either be
attractive or repulsive depending on the position of the monomers of the polymer from the monomers of
the membrane (Luo et al., 2007)∗. Let’s recall the LJ potential

ULJ(r) = 4εpm[(
σ

r
)12 − (

σ

r
)6] + εpm, (6.1)

The only thing that is changed, is the ε. This constant is changed into a constant dependent of the
interaction strength of the particular pore-monomer it refers to. In this chapter about homogeneous
translocation this constant is called εpm. Note that so far the model includes two different interaction
strengths: εmm, the interaction strength between monomers from the polymer and εpm, the interaction
strength between monomers from the polymer and monomers from the pore.

6.2 External Force

Another aspect that can be added to the polymer-pore model is an external force. This external force is
defined as Fext = F~xi where F is the external force strength exerted on the monomers in the pore, and
~x is a unit vector in the direction along the pore axis. The external force can, for instance be a driving
force like a difference in the electric potentials at the different sides of the pore. This way the polymer

∗This interaction is due to a chemical potential gradient (Dubbeldam et al., 2007b).
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Figure 6.1: Schematic representation of a heterogeneous polymer ready for translocation

can be driven through the nanopore. In this thesis an external force is assumed. Adding this external
force to the model accelerates the translocation. This way also simulations run faster.

Adding this external force involves changing the Langevin equation:

mr̈i = −∇(U(ri)) − ξvi + Fext + FRi , (6.2)

Besides the driving force used in this thesis other external forces are used in translocation research.
An extra example, a pulling force, which is important for ATM (Atomic Force Microscope) experiments,
is briefly explained in the addenda.

6.3 Initial configuration

Initially the membrane with the pore is inserted in the model. A possibility for the next step is inserting
a polymer chain in the free space and to wait for it to move towards the pore and for it to enter the pore
and hope for it to translocate. This would be too time consuming. Though the success rate of a chain
being captured by the pore is an interesting subject, it will not be discussed here, but some analysis on
the process has been performed by Muthukumar and one can find a detailed discussion in (Muthukumar,
2010). But instead of inserting the monomer in the free space, it can also be placed with its first monomer
at the opening of the pore. In this thesis results are based on a slightly different approach. In the initial
configuration the centre monomer of the polymer is placed inside the pore. This prevents the polymer for
leaving the chain without being fully translocated. For instance the polymer could have returned to the
side of the polymer where it had entered. Let’s call the side of the membrane where the polymer chain
‘comes’ from the cis-side and the side of the membrane the polymer translocates to the trans-side. In the
matlab code it is assumed that the cis-side is to the left and the trans-side to the right of the membrane.

So the centre of the polymer is placed inside the pore. Still the translocation cannot be started yet.
First the straight polymer that’s inserted needs to relax and reach equilibrium. This can be done by
holding the centre monomer and let the rest start to move. So the middle monomer is not allowed to
move untill the rest of the polymer has attained an equilibrium position, by undergoing thermal collisions
described by the Langevin thermostat (Luo et al., 2007). In figure 6.3 a polymer is displayed in a
straight configuration and a equilibrium configuration. Note: The ends of the polymer in the straight
configuration are not visible.

During simulations it is not necessary for doing this over and over again. When an equilibrium position
is attained, it can be used for all following simulations. This is done by taking the equilibrium position,
let it run for a little while longer and start the translocation process. This saves time and still allows for a
different random position at the start of the translocation every time. In figures 6.4, 6.5, 6.6 and 6.7 some
numerical results for free polymer chains are presented. For the polymer chains of lengths 11, 21, 51, 101
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a simulation is done in order to find equilibrium positions for them. This position is reached when the
gyration radii at both sides of the pore have converged. The gyration radius is defined by

Rg2 =
1

N

N
∑

k=1

〈

(xk − xmean)2
〉

(6.3)

with xmean = 1
N

∑N
k=1 xk. And recall that in equilibrium the radius of gyration should go to 1

6 ∗N2ν .
In the figures below is displayed resp. the radius of gyration from simulations and theory and a final
configuration.

6.4 Successful translocation

After attaining its equilibrium starting position, the centre monomer of the polymer chain is free to
move as well. Now the translocation process starts. When the chain has moved out of the pore, the
translocation is stopped.

Most theoretical research focusses on the translocation time of the polymer passing through the
nanopore. Using this information, one would like to be able to link the translocation time with several
aspects of the translocation of the polymer, for instance the length of the polymer or the external force
exerted on the monomers in the pore. This way the simulation results can be compared with the results
from actual experiments.

There are a multiple equivalent definitions of the translocation time. Some are based on theory others
on practical results. For instance the translocation time is defined in (Luo et al., 2008a) as the time
interval between the entrance of the first segment into the pore and the exit of the last segment and in
(Sung and Park, 1996) as the mean first passage time for the barrier crossing, obtained from the Fokker-
Planck equation. The first definition is more practical, where the second is based on theory. The last
definition is based on the so-called entropic barrier. This barrier will be fully explained in the following
section.

In this thesis, the polymer starts halfway the pore. So the translocation time is defined as the time
interval that is elapsed between the moment the middle monomer is released and the exit of the last
bead. This way successful translocations are very likely to take place. And adding the external force to
the model translocation will always be succesful. After translocation of many polymers the data will be
averaged to find the translocation time. The average is usually taken over 2000 runs with different initial
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equilibrium positions. When the data is averaged over a different number of runs, this will be stated
specifically.

In real experiments translocation is not always successful. To get some insight in this phenomenon, the
translocation probability Ptrans can be calculated, as the fraction of runs leading to succesful translocation
for given initial conditions. Also in experiments the measured blockage time consists of both the time
that a polymer succesfully translocated, as the time a polymer took to enter the pore and return back to
the cis-side of the pore. For this purpose the residence time τr is defined as the weighted sum of these
two (Luo et al. (2007)). Note that in case of forcing this amount to the same thing.

The total translocation time can be split up in three different process. The initial filling of the pore,
the transfer of the polymer from the cis to the trans-side and the final emptying of the pore (Luo et al.,
2008a), Luo et al. (2007). All these processes have their own features considering translocation time. As
mentioned above, the initial filling of the pore will not be investigated here. But in the next chapter the
final emptying of the pore will reveal interesting properties of the polymer chains under consideration. A
global impression of the three stages of translocation is shown in 6.8.

6.4.1 Waiting time

The ultimate goal of the translocation processes is sometimes considered to be to sequence DNA. This
implies that individual monomers are to be distinguished while traversing the pore. To be able to test
whether it would in principle be possible to discriminate different monomers by the time it takes each
monomer to travel through the pore we introduce the so-called waiting time. So besides investigating the
translocation time it is also interesting to investingate this. The waiting time (also called residence time
of the monomers) of monomer s is defined as the average time between the events that the monomer s and
the monomer s+1 exit the pore for the first time. This gives some insight in how long each monomer stays
inside the pore. In particular the difference between the three different processes mentioned above could
be perceived, in particular, the emptying of the pore is visible for monomers that have a high interaction
strength with the pore. Or, as will be done in the next chapter, a difference between monomers with
different interaction strengths with the pore. To be able to differentiate between different monomers
would take a huge step in future research of sequencing DNA. And as will be shown in the next chapter,
this seems to actually be possible! Unfortunately this is not possible yet in real experiments, as was
mentioned in the introduction.

6.5 Entropic barrier

What happens during translocation? Because the polymer chain is forced to go through the nanopore
and unable to pass the membrane, certain configurations are impossible. This leads to an entropic energy
barrier (Luo et al., 2007). For a succesful translocation it is necessary that the polymer crosses this
entropic energy barrier. This entropic activation barrier is defined as ∆E(s). Because the barier is
present, is slows down the transition rate. This was also encountered in chapter 4. Remember in (Sung
and Park, 1996) the translocation seen as a stochastic diffusion process crossing the free energy barrier
was calculated from the chain configuration partition function. The total free energy is:

F(n) =
1

2
kBT ln[n(N − n)] + C. (6.4)

So ∆E(N) = F(N2 ) −F(1)†. The characteristic time then scales as t(s) = tR exp[∆E(s)] ∝ s2ν+2−γ1

(Dubbeldam et al., 2007b). In figure 6.5 the free energy is visualised as a function of the translocation
coordinate and the entropic energy barrier is depicted.

†In (Luo et al., 2007) the energy difference is calculated differently as they say refering to the final emptying of the pore:
‘This is due to the activated nature of the translocation process with a free energy difference of ∆F̃ = L[εpm − F

2
− f(N)]

between the final and the initial state’.
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6.6 Results

On the following pages the results of the translocation of polymers of length N = 11, 21, 5, 101 are dis-
played. For the lengths N = 11, 21, 51 the translocation time and waiting time distribution is displayed.
The translocation time distributions look like Gaussians with heavy right tails. The waiting time distri-
butions reveal properties of the translocation process. First there is a start up time. The polymer needs
to adjust to its new dynamics. Than the process will speed up. At the end of the translocation process
the emptying of the pore takes a bit longer. The pore is attracted to the polymer and won’t let go of it.
Unfortunately in the waiting time distributions in this chapter and the following chapters some unusual
peaks exist. It is unknown where they come from, but they might be explained by the configuration of
the polymer at the cis-side of the membrane. When the polymer is pulled through the pore, the part
of the polymer of the cis-side might get strangled up. It will take some time to unwind before the next
monomer can translocate. As the peaks happen mostly at the same place, it could also be a numerical
error. In figure 6.6 the translocation times are plotted against the length of the polymers and can be
fitted using a power fit law. In figure 6.12 the translocation and waiting time distribution of a polymer
of length N = 101 is shown in detail. We can see that indeed a Gaussian fits to the data. The heavy
right tail can be fitted using Exponential, Double exponential and a Power law fit. Note: the mode is
the value that occurs most frequently in a data set or a probability distribution.
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Figure 6.5: Equilibrium position N = 21.
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Figure 6.6: Equilibrium position N = 51.
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Figure 6.8: Three stages of translocation, τ1 the initial filling of the pore, τ2 the translocation, τ3 the
emptying of the pore
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Figure 6.11: Translocation time and Waiting time distributions for homogeneous polymers with length N = 11, 21, 51
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Chapter 7

Heterogeneous Translocation

Instead of homogeneous polymers, this chapter focusses on heterogeneous polymers. This means that the
polymer will consist of multiple different monomers. These monomers differ in the way they interact with
the nanopore. In this chapter polymers with two different monomers will be investigated. The model
itself doesn’t change much. Only the base-pore interaction modelled bij the LJ potential is modified. The
interaction strengths are specific for each base. For example εpA and εpC .

Note: In this chapter the A type monomers are labeled red and these are the ones with a high
interaction strength and the C type ones, labeled blue, have a low interaction strength with the pore.

Having a high interaction strength means that this monomer is highly attracted to the pore and
prefers to stay inside more than the monomers with a low attraction strength. This will influence the
total translocation time. By the use of simulations we will try to infer some features of heterogeneous
polymers translocation through a nanopore. For a number of different sequences we investigate the
translocation time distribution and the waiting time. In particular we investigate a number of polymers
with random sequences. We find surprisingly that for the interactions chosen, it is possible to discriminate
between the A and C type monomers in the chain.

Red vs Blue

Let’s start with a very simple example. Almost all papers involving the translocation of heterogeneous
polymers mention the dependence of the translocation time on the orientation of which type of monomer
of the polymer enters the pore first. For a length of N = 11 we take two different sequences. They
both have five successive blue monomers and six successive red monomers but their orientation is turned.
Simulations now give for the blue orientated polymer a translocation time of 22.33 time unit and for the
red oriented polymer a translocation time of 14.45 time unit. This is exactly what is expected. As the
blue oriented polymer ends with 6 red monomers, it is expected that these prefer to stay inside the pore
with their high interaction strength and it will take a lot longer before this polymer leaves the pore.

7.1 Half red, half blue

The next sequence under investigation is a polymer with the first 1
2N monomers blue, the middle monomer

red and the last 1
2N monomers red as one of the polymers of the previous example. As the simulation

starts with the polymer half way the pore, these simulations should not give results that differ much with
the original simulations with homogeneous polymers. Though the translocation process could go slightly
faster. For the polymers of length N = 11, 21, 51 the translocation time is plotted versus N in figure 7.1.
Fitting the data with a power law gives τ ∝ N1.23. Remark: The data of N = 11 seems to be a bit
off. It should be smaller, as it should be smaller than homogeneous translocation. As said before, chains
of length N = 11 could be too short to produce reasonable data.

51
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Figure 7.1: τ vs N Sequence half red, half blue, Power law fit ∼ N1.23

7.2 A fourth part red, a fourth part blue, a fourth part red

and a fourth part blue

Because our translocation process starts with the polymer already halfway the pore the previous section
could not give much new information. In this section the two half sides of the polymer are divided in two
parts again. Again the translocation time versus the length of the polymer for N = 21, 51, 101 is plotted,
but now for these new sequences, in figure 7.2. Fitting the data with a power law gives τ ∝ N1.17. The
translocation process goes faster than in the case of homogeneous translocation. This is indeed what one
would expect, there are more blue monomers translocating that go faster through the pore than the red
monomers.

Let’s have a closer look at the translocation process of the polymer with length N = 101 (figure
7.4). The distribution of the translocation time can be fitted with the Gaussian, Exponential, Double
Exponential and Power law fit. And the cumulative distribution with the Double Exponential fit. In
figure 7.4(b) the waiting time is plotted. Something unusual happens there and this is rather interesting.
First the last red monomer of the first half passes through the pore. As this one won’t be replaced by
another red attractive monomer, but by a blue one, this last red monomer stays inside the pore for a
long time. The first blue monomers from the second half shoot through the pore very quickly. Then
the translocation process slows down a little. As the red ones are approaching, it speeds up again. The
first new red monomers stay again a long while in the pore and then the translocation process speeds
up. Again the final red monomer takes a long while inside the pore before leaving it, as was already
mentioned for the homogeneous case. Remark: Again the high peak around monomer n = 85 could be
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Figure 7.2: τ vs N Sequence a 4th red, a 4th blue, a 4th red, a 4th blue, Power law fit ∼ N1.17
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explained by configuration issues.

For N = 101 the simulation was also done for the other orientation (red starts translocating first),
see figure 7.5. As the translocation process ends with blue monomers, the translocation time is faster
than in the reversed orientation case. Again take a look at the waiting time of the monomers. It is
possible to recognise where the new blue sequence starts!. First about 25 red monomers pass through
the nanopore. As the end of the red sequence is approaching, the monomers stay inside the pore for a
longer amount of time. Especially when the transfer from red to blue happens this seems to hold up the
translocation process. The red monomers want to stay inside and as they won’t be replaced by other red
monomers they don’t like to let the blue ones enter the pore. After the blue ones have entered the pore
the translocation process quickly speeds up.

7.3 Alternating red and blue

The next sequence consists of alternating red and blue monomers. Because there are no clusters of the
red subsequent monomers that slow down the translocation process, the translocation process goes faster.
For the lengths of N = 11, 21, 51, 101 the translocation time τ vs the number of monomers N is plotted
in figure 7.3. This gives a power law fit with: τ ∝ N1.24.

Features of the translocation process of the alternating sequence of length N = 101 is shown in figure
7.6. Again the waiting time of the polymer shows a lot of the sequence of the polymer. There is definitely
an almost fully consistent alternating pattern. And the last monomer shows to be a red one. Changing
the red ones in blue ones and the other way around gives figure 7.7.

7.4 Random sequences

In this section the behaviour of random sequences will be explored. For five different chains of four
different lengths the translocation time and waiting time are investigated, see figures 7.8, 7.9, 7.11 and
7.12. The translocation times seem to be distributed the same way the previous translocation times of
the previous chains were distribution. The distribution can be fitted by a Gaussian and the tail is slightly
heavy, which can be fitted by a exponential or power law. The double exponential fit seems at sight
again to be the best fit for the tail. This can also be concluded for the cumulative distribution. The
translocation process goes faster than in the homogeneous case, as there are blue monomers present.

The most interesting are the waiting times. Almost fully consistent can the sequence of the randomly
placed blue and red monomers be read out of the waiting time figure. The red dots in the average waiting
time (see the (b) part of the figures) correspond to an A-type monomer in the pore, a blue dot to a C-type
monomer, counting from the middle monomer from right to left. After a minor decrease at the start,
the waiting time increases for subsequent red monomers and decreases for blue monomers. The upper
peaks correspond to red monomers and the lower peaks correspond to the blue monomers. This way a
unknown sequence can be identified by investigating the waiting times. It is expected that under perfect
conditions, for instance starting at the beginning of the nanopore and 104 simulations will give perfect
results.
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Figure 7.8: Random sequence 1 N = 101.
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Figure 7.9: Random sequence 2 N = 101.
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Figure 7.10: Random sequence N = 51.
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Figure 7.11: Random sequence N = 21.
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Chapter 8

Changing forces

In addition to the previous chapters, this chapter presents the results of a few cases where the external
force is changed. The results are presented in figures (8.1, 8.2, 8.3, 8.4, 8.5, 8.6). In the previous chapters
the external force was always taken equal to 2. This makes the translocation process to go faster and this
way, simulations will take less time. Though this makes it hard to compare results with results from the
theoretical investigation of the literature study part. To make simulation times resonable, the following
simulations were run: 2 polymers of length N = 51 with an external force equal to 1, simulated a 1000
times; 2 polymers of length N = 21 with an external force equal to 0.5, simulated 500 times and finally
2 polymers of length N = 11 with an external force equal to 0.1, simulated 100 times. The two different
sequences were a homogeneous sequence and an alternating sequence. It is important to note that the
fewer the simulations, the worse the results. Especially the cases of N = 11 are not reliable. Though
three important conclusions are worth noting. First of all, translocation takes considerably longer than
in the cases of a big external force, which was to expected. Second, the behaviour determined in the
previous chapters can again be seen in the lower external force cases. For instance the emptying of the
pore when the last monomer(s) are red and the alternating waiting time for alternating sequences. The
third conclusion is interesting compared to the theoretical results. As the external force goes to zero, the
exponent of the power law fit goes to 1.8 as was the case in (Dubbeldam et al., 2007b).
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Figure 8.1: External force F = 1, N = 51.
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Figure 8.2: External force F = 1, alternating sequence, N = 51.
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Figure 8.3: External force F = 0.5, N = 21.
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Figure 8.4: External force F = 0.5, alternating sequence N = 21.
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Figure 8.5: External force F = 0.1, N = 11.
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Figure 8.6: External force F = 0.1, alternating sequence N = 11.
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Chapter 9

Program

To get the figures in this thesis a self-written program is used. This program is written in Matlab and
based on the theory of this thesis and (Vlugt et al., 2008). In this chapter the most important routines
are mentioned and the numerous abilities of the program will be highlighted. The Matlab code itself can
be found in the addendum. The different fases below can also be found explained in short in the code.

9.1 Manual of the code

Init

Obviously the program starts with defining a number of things. The init fase is divided in four subfases.
In the first fase used-defined constants need to be given that will define the purpose of the program. In
the second fase simulation specific variables need to be defined. These are for instance the length and
width of the pore or the length of the polymer. More on these used-defined constants can be found in the
next section. In the third fase the constants of the main method need to be defined. These are defined
in table 9.1.

In fase four some preparing activities take place. These are: preallocating space for big matrices,
taking the squares of distance constants and defining the measures of the figures and the area in which
the translocation will take place.

Pore

Most simulations are used for translocating a polymer. For translocation obviously a pore is necessary.
This pore will be built during initialisation. First a membrane is built. The size of the membrane is
dependent of the size of the polymer. The size of the pore itself is user-defined. In principle the height
of the pore can be defined in n or in 0.5n with n ∈ Z and the width of the pore in n with n ∈ Z as the
membrane consists of at least two outer rows of monomers, except obviously when the width is equal to
one. For visualization and differences in attration strengths the monomers of the pore and the monomers

Table 9.1: constants

σ = 1 diameter of monomer
m = 1 mass of monomer
T = 0.9 temperature
R = 2 maximum allowed seperation between connected monomers
k = 7 spring constant

kB = 1.2
T Boltzmann constant

ξ = 0.7 friction constant
ε = 1.2 energy scale

RC = 2
1
6 ∗ σ cut-off distance

RCP = 2.5 ∗ σ cut-off distance attracting pore
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(a) Pore, width=5, length=3
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(b) Pore, width=1, length=1

Figure 9.1: Different sizes of pores

of the membrane are distinguished. After building the pore the number of monomers that interact with
the polymer is made smaller for calculation conveniences. Now the simulation can start.

Initial position polymer

For the intial position of the polymer (with or without pore) three different options are possible. First
of all the simulation can start with the polymer in a straight line. The second option is to use the
configuration of a saved configuration. And the third option is a random configuration. The second
option is the most useful. While using the first you need a lot of time to let the polymer go to an
equilibrium position, but this will likely always work out. The last option might go to the equilibrium
faster but the possibility that an error occurs becomes bigger. Though, for safety, additional restraints
are placed on the monomers close to the pore. After the polymer is placed you can get a visualisation of
the polymer (and the pore). Besides the initial configuration, the first distance matrices are defined and
also the initial velocity. The random initial configuration is found by trying random configurations and
calculating whether the monomers aren’t either to close to each other or too far away.

Start translocation

Before starting the translocation the program checks three things. First it calculates the monomers that
are closest to each other. This is done for speeding up the program. This way it won’t be necessary
to calculate every time the interactions between all monomers. For this we need to assume that these
distances won’t change too many too quickly. The second check involves defining which monomer is in
the pore before the translocation process starts, this way we can track when the monomer leaves the
pore. The final check involves the conditions whether the program should still run. These conditions are
in case of a pore whether the polymer is still in the pore and no error has occured and in case of running
an equilibrium configuration or a time defined movement of the polymer whether it is finished. In the
case of an equilibrium configuration the external force needs to be redefined as zero. Now the program
starts translocating the chain. The amount of translocations being performed is user-defined.

Interaction Pore-Polymer

In the occurence of a pore, the interaction will be calculated of the monomers of the pore with the
monomers of the polymer. This interaction is three-fold, the three interactions are: interaction with
membrane monomers, interaction with the pore with red monomers or with blue monomers. In the first
case there exists only a repulsive interaction strength and in the second and third cases their also exists
a attractive strength which is different in case of different monomers of the polymer (red or blue). A new
distance matrix needs to be calculated. And the interaction will only be calculated for the monomers
that are close enough, these are within the cut-off distance. So the interaction from the LJ potential is
only calculated for a selected number of monomers. This is also defined in the LJ potential. When the
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(a) Polymer straight starts halfway the pore
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(b) Polymer straight starts at the left side of the pore
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(c) Random polymer starts halfway the pore
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(d) Polymer straight starts at the right side of the pore

Figure 9.2: Different initial positions
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distance is too big, the potential is defined to be zero. For information purposes besides the potential
also the energy associated with the potential will also be calculated in this step. As the monomers inside
the pore also undergo a external force exerted on them, these monomers are also found in this step.

Interaction Monomers

After the interaction of the polymer with the pore, the interaction between the monomers of the polymer
itself is calculated. This interaction is based on the LJ potential and the FENE potential. Again also the
energy associated with the potentials are calculated. These calculations are not done for each momoner
with every other monomer, but again for a selected number of monomers, that are within the range of
the cut-off distance. Though these are still too many calculations. So the number of monomers that will
be checked is lowered by using information from previous calculations. Only those monomers which are
in a circle of used-defined radius of a specific monomer will be used for interaction with that monomer
a few steps long. This selection is compiled in another step. N.B. the initial selection is made in the
Start translocation subsection.

Forces

In just two lines of code the random force is calculated and all forces working on the different monomers
of the polymer are added to create the total force working on these monomers. These forces are the ones
calculated from the LJ and FENE potential, the force calculated from the interaction with the pore, the
external force, the random force and the hydrodynamic drag.

Random force: Fr = 1/
√

∆t ∗ rand ∗
√

(2 ∗ kb ∗ T ∗ ξ)
All forces: f = f + fp + Fext − ξ ∗ v + Fr

Update position polymer

Now the position of the polymer is updated according to the verlet algorithm explained in chapter (5.1.2).

xn+1 = 2 ∗ xn − xn−1 + δ2 ∗ f/m

Also the new velocity is defined according to the verlet algorithm and the old value xn−1 is updated.
In case there is no xn−1, (n = 1), the value is set to a userdefined value. This is either xn or based on a
Taylor expansion.

v = (xn+1 − xn−1)/2 ∗ ∆t

Note: At certain places in the code there seems to be an extra adjustment to variables. In these
cases periodic boundary conditions were taking into account, but these turned out to be redundant.

Check equilibrium option

At this point the program checks again whether the option equilibrium is on. When this is the case, the
specific monomer of the polymer that needs to stay in the same place all the time, needs to be placed
back. Also the external force value is updated. In the case of an equilibrium configuration the external
force needs to be redefined as zero.

Update monomers of interest

Now the selection of monomers that are within a certain radius from eachother needs to be adjusted. This
action is two-fold. Most of the time for the monomers in the selection their new distance will be calculated.
But at certain times (again used-defined) the distances between all monomers is calculated and a new
selection is made. At this point the program also checks whether no error has occured concerning the
maximum allowed distance between two subsequent monomers. During simulations this never seems to
be the case.
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Which monomer has left the pore?

For the distribution of the waiting times, it is necessary to know when a monomer has left the pore. So
each time the next monomer has left the pore for the first time it is recorded and the time between the
successive events is also recorded. Besides being necessary for the waiting time, this is also used as a
check whether the polymer is translocating through the pore in the right way.

Update variables of interest

At this point a number of values need to be saved in order to compare results at the end of the simulation.
These are radii of gyration, centre of mass, potential energy, kinetic energy, temperature and momentum.
In case the visualisation is on, the latest configuration will appear on screen. In order to save memory,
these values do not need to be updated every time.

Check conditions

In the initial fase the program checked the conditions. Now it checkes them again. These conditions
were, in case of a pore whether the polymer is still in the pore and no error has occured and in case of
running an equilibrium configuration or a time defined movement of the polymer whether it is finished.
If the conditions aren’t met, the simulation of the single polymer stops.

Check the results

The simulation of one single polymer has ended. The translocation time is recorded and the program
checks whether it translocated succesfully. For this to happen it needs to have translocated the full
polymer and no error has occurred. This error can happen in two ways. First the distance between
two monomers became too big. This almost never happens. Or unfortunately the polymer has passed
through the membrane, from the trans-side to the cis-side. This error seems to happen occasionally, but
cannot be explained yet. If a mistake occurs the program shows a visualization of this. The program
also shows how many simulations were performed. After this, the a new simulation is started, until the
initial set number of simulations is reached.

Results

For the different settings of the program different results can be displayed.

• In all cases:

– The final configuration

– The simulation time

• In case of no pore:

– Centre of mass

– Gyration radius

– Temperature

– Momentum

– Kinetic energy

– Potential energy

– Total energy

• In case of equilibrium configuration

– Gyration radius of cis- and trans-side

• In case of translocation

– Translocation time

– Histogram translocation time

– Waiting time
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9.2 User-defined constants

What needs to be done?

The program has several options for running different kind of simulations. First of all, of course, you can
define whether you want to insert a nanopore in your model for simulation. For the initial configuration
there are three options, a straight line, a random configuration or a saved configuration from a previous
simulation. And the polymer can start at the left side of the pore, in the middle and in principe at the
right side of the pore. Though for this last option you have to manually change the rest of the code at
few places. But translocation from left to right is the same as from right to left, so this option seems
redundant. You can also decide to hold one monomer at one place and let the rest of the polymer move
till it has found an equilibrium position, for this you also need to list the time when it should be at a
equilibrium configuration. After it has reached this position, you can choose to stop the simulation or
let it run further and translocate. For visualisation during simulation you can also adjust how fast you
would like to see the polymer translocate. But be aware, this can takes a lot of time and memory. The
init option is used for the first run of your simulation. If you don’t want to use this, you can also let the
first step be based on your present value of the position of the polymer. The options will be defined by
giving them a value of 0, 1, 2. See the code for specific values.

What does my polymer looks like?

For defining the polymer there are several values that need to be filled in. You have to define the length
of the polymer, and how the ‘a’ and ‘b’ monomers are defined. And the interaction strengths of these
monomers with the a pore. If a saved configuration is used, you need to load this.

What does my pore look like?

For the pore all you need to define are the length and width of the pore, and the external force exerted
on the monomers inside the pore.

How many information needs to be saved?

In order to keep the amount of time and memory needed for simulations reasonable, there are several
values you can change. For the selection of the monomers that interact with each other, you can define
how many times this selection stays the same and the radius of the circle for the monomers to decide
which ones are closest to each other. You can also define how many monomers of the membrane are
taken for calculating the interaction with the monomers of the polymer.

How many simulations?

Of course you can adjust the number of simulations you want to run. Also you can define the number
of timesteps you want to take per run. This is only possible when you don’t want to translocate. You
always have to define the value of the timestep.
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Conclusion

Translocating a chain of different beads through a very small pore can be used as a first step of modelling
a DNA chain that passes through a nanopore. This translocation process offers a variety of possibilities in
chemical and biological processes, for instance rapid DNA sequencing. In this thesis the chain is modelled
as a polymer with different types of monomers as beads. The translocation dynamics of heterogeneous
polymers through nanopores can be modelled using the LJ and FENE potentials and different interaction
strengths between the monomers of the polymer and the pore. The translocation time gives important
information of the chain sequence, depending on the length of the polymer. The waiting time is defined
as the time a specific monomer stays inside the pore. This waiting time in particular gives useful results
considering the chain sequence. Simulations reveal that the waiting time of the last monomer can define
the type of monomer under consideration. Monomers with a high interaction with the pore will stay
inside considerably longer. We found that from the average waiting time it is possible to retrieve the
original sequence of the beads constituting the chain.

Besides the numerical model, a theoretical stochastic model is presented, based on several different
papers. This way an all-round model is covered, containing an equilibrium model, an anomalous diffusion
model, a driven translocation model and a heterogeneous translocation model.

The translocation process during simulations is driven, with a force of 2 units. Extra simulations show
that reducing this force will lead to translocation times that agree with theoretical results for undriven
translocation.

The polymers under consideration vary in length between N = 11, 21, 51, 101 and in sequence. In
particular several random sequences are simulated. The waiting time distributions of these random chains
show the possibilities of sequencing using translocation.

The program used for the simulations is a self written program in Matlab.

10.1 Recommendations

Instead of simulating heterogeneous polymers of two different types of monomers, one could add one or
two more types of monomers to the model. The one-on-one relationship between the sequence and its
corresponding waiting time could then be really tested and investigated

This thesis is based on simulations of translocations through nanopores. At this point it is not possible
yet to define the waiting times of single monomers in real experiments. Though, the ionization potentials
for different monomers are different. Therefore in the future it might be that laser-induced attractive
interactions along with fluorescence spectroscopy could be used to make a device that will detect either
the waiting time or the number of monomers inside the pore as a function of time (Luo et al., 2008c).
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Addendum

Pulling force

Investigating translocation nowadays has a lot of different approaches. Another approach than the one
followed in this thesis, is the one where a pulling force is exerted on the first leading monomer of the
polymer. A reallife development is the possibility to manipulate single molecules, where the motion of a
polymer can be controlled by optical tweezers. There also exists a new sequencing technique that is based
on a combination of magnetic and optical tweezers for controlling the DNA motion. Therefore research
also focusses on theoretically investigating translocation under a pulling force.

The pulling force is represented as Fpulling = F x̂, where F is the pulling force strength on the first
monomer and x̂ is a unit vector in the direction perpendicular to the wall. This force can then be included
in the main model of Eq.(6.2) (Huopaniemi et al., 2007).

The Morse potential

Instead of the Lennard-Jones potential in some papers such as (Dubbeldam et al., 2007a) the Morse
potential is used. The Morse potential is named after physicist Philip M. Morse, and the potential
models the potential energy. The Morse potential is given by

U(r) = ε
(

1 − e−a(r−re)
)2

, (10.1)

where re is the equilibrium bond distance and a controls the ‘width’ of the potential.

An example of the one-on-one relationship between the Langevin equation and the

Fokker-Planck equation

Following (Doi and Edwards, 1986) we consider the Brownian motion of a free particle, so we know U = 0.
The Langevin equation then becomes

ξ
dx

dt
= f(t). (10.2)

Integrating this gives

x(t) = x(t0) +
1

ξ

∫ t

0

f(t′)dt′. (10.3)

It is well known in literature that x(t) must be a Gaussian. The probability distribution of x(t) must
be

Ψ(x, t) = (2πB)
−1
2 exp

(

− (x−A)2

2B

)

, (10.4)

with

A = 〈x(t)〉 B =
〈

(x(t) −A)2
〉

. (10.5)

Calculating these moments give for A
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A = x(t0) +
1

ξ

∫ t

0

〈f(t′)〉 dt′ = x0 (10.6)

and for B

B =

〈(

1

ξ

∫ t

0

f(t′)dt′
) (

1

ξ

∫ t

0

f(t′′)dt′′
)〉

(10.7)

=
1

ξ2

∫ t

0

∫ t′

0

〈f(t′)f(t′′)〉 dt′′dt′ (10.8)

=
2kBT

ξ

∫ t

0

∫ t′

0

δ(t′ − t′′)dt′′dt′ (10.9)

=
2kBT

ξ
t (10.10)

= 2DT. (10.11)

So the probability distribution of x(t) is given by

Ψ(x, t) = (4πDt)
−1
2 exp

(

− (x− x0)
2

4Dt

)

, (10.12)

which is exactly the solution of the Fokker-Plank equation

∂Ψ

∂t
= D

∂2

∂x2
Ψ (10.13)

Calculation of the number of walks that you can travel, starting from 0, and counting

N steps never crossing the origin

P (x, t+ ∆t) = P (x+ ∆x, t)pL + P (x− ∆x, t)pR + P (x, t)[1 − (pL + pR)] (10.14)

where pL is the posibility that you step to the left and pR is the possibility that you step to the right.
Taking the Taylor expansion will give

P (x, t) +
∂P

∂t
∆t = P (x, t)pL +

∂P

∂x
pL∆x +

∂2P

∂x2
pL

(∆x)2

2
(10.15)

+ P (x, t)pL +
∂P

∂x
pR∆x+

∂2P

∂x2
pR

(∆x)2

2
(10.16)

+ P (x, t) − P (x, t)(pL + pR) (10.17)

∂P

∂t
∆t =

∂P

∂x
∆x(pR − pL) +

1

2

∂2P

∂x2
(∆x)2[pL + pR] (10.18)

We take both pL and pR equal to 1
2 and we take ∆x = 1 and ∆t = 1 and arrive at

∂P

∂t
=

1

2

∂2P

∂x2
(10.19)

This is a second order differential equation. We need two boundary conditions and one initial condi-
tion.

P (x, 0) = δ(x− x0) (10.20)

P (0, t) = 0 (10.21)

P (N, t) = 0, for N → ∞ (10.22)

Solving this results in

P (x, t) =
1√
2πt

(

exp

(−(x− x0)
2

2t

)

− exp

(−(x+ x0)
2

2t

))

. (10.23)
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Remark

Citation (Luo et al., 2008c): “The present model has some limitations: Due to the coarse-grained nature of
the model, it is clear that the quantative details of some results presented here depend on the microscopics
of the real-world experimental setup. However, dimensionality plays an unimportant role. Regarding the
issue of hydrodynamics, recent molecular dynamics and lattice Boltzmann simulation results show that
hydrodynamics is screened out in a narrow pore. Finally for the present case where we model single
stranded DNA chains, the bending stiffness of the chain is also not expected to play a role. ”
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Code of the Matlab Program

% MASTER THESIS Program 1.0 Chain with nanopore 2D and two different monomers______________________

clear all

clc

close all

tic

figure

%INPUT_____________________________________________________________________

init=1; % init=1 if verlet algorithm is used for initial step, else initial step is based on random first placing

beeld=0; % beeld=1 when visualization of polymer is required

wacht=0.001; % pause during plotting

config=2; % config=1 if first configuration is straight line, config=2 if equilibriumconfig is used else random first configuration

nanopore=1; % nanopore=1 if there is a nanopore

start=0.5; % start=0 when polymer starts at the beginning of the pore, 0.5 when it starts halfway, and 1 when it starts at the end of the pore

equilibrium=0; % first let polymer attain equilibrium position

only=0; % if only equilibrium needs to be attained, else after equilibriumend, starts translocating

equilibriumend=5000;

nrresults=1;

exponent=0.5; % exponent=1 when size polymer equals half size pore, exponent=0.5 when sqrt size polymer equals half size pore

timeloop=32;

straal=3;

c=1; %number of simulations

nn=5000; %number of timesteps

rem=10000;

n=51; %number of particles

xload=load(’xeq51’);

%vload=load(’veq51’);

simulationend=5*n^3;

%Random sequence

aapje=randperm(n);

aapjea=aapje(1:round(n/2));

aapjeb=aapje((round(n/2)+1):n);

mona=sort(aapjea);

mont=zeros(n,1);

mont(mona’)=1;

monb=sort(aapjeb); %distribution monomer b

%Or predefined sequence

% mona=[(1:1:n)]; %distribution monomer a

% mont=zeros(n,1);

% mont(mona’)=1;

% monb=[(0:0:n)]; %distribution monomer b

varpa=3; %attraction monomer a

varpb=1; %attraction monomer b

length=1.5; %diameter porie

width=1; %breedte porie

tijd=zeros(n,1);

%CONSTANTEN________________________________________________________________

sigma=1; %diameter of monomer

m=1; %mass of monomer

T=0.9; %temperature

R=2; %maximum allowed seperation between connected monomers

R2=R^2;

k=7; %spring constant

kb=1.2/T;

xi=0.7;

var=1.2; %energy scale

xb=(n-1)*6; %square box!!!!

yb=xb;

height=xb/2-(length/2+0.5);

heightnonv=floor((n-1)^exponent)-(length/2+0.5);

xbnonv=floor(((n-1)^exponent)*2);

rc=((2^(1/6))*sigma); %cut-off distance

rcp=(2.5*sigma); %cut-off distance attracting pore

rc2=rc^2;

rcp2=rcp^2;

delta=0.001; %time interval

Fextn=2;

Fexte=0;

if nanopore==1

Fextc=Fextn; %external force

else

Fextc=Fexte;

end

Fext=zeros(n,2);

Fexta=zeros(n,2);

Fextv=zeros(n,2);

diagonal=diag(ones(n-1,1),1);

diagonal=diagonal(1:end-1,:);

diagonal=find(diagonal);

%PORIE_____________________________________________________________________

if nanopore==1

xx=[zeros(height,1),(length/2+1.5:1:xb/2)’];

xx=[xx; xx(:,1) -1*xx(end:-1:1,2)];

if width~=1

xx=[xx; xx(:,1)+width-1 xx(:,2)];

end
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sizexx=size(xx,1);

xx=[xx; (0:1:width-1)’ (length/2+0.5)*ones(width,1); (0:1:width-1)’ -1*(length/2+0.5)*ones(width,1)];

wand=(1:1:sizexx(1));

sizeporie=size(xx,1);

porie=(sizexx(1)+1:1:sizeporie(1));

xxwand=xx(wand,:);

xxporie=xx(porie,:);

%nanopore visualization is previous code, now let’s reduce the pore

xx=[zeros(heightnonv,1),(length/2+1.5:1:xbnonv/2)’];

xx=[xx; xx(:,1) xx(:,2)-(xbnonv/2+ceil(length/2)+1)];

if width~=1

xx=[xx; xx(:,1)+width-1 xx(:,2)];

end

sizexx=size(xx,1);

xx=[xx; (0:1:width-1)’ (length/2+0.5)*ones(width,1); (0:1:width-1)’ -1*(length/2+0.5)*ones(width,1)];

sizeporie=size(xx,1);

%PREPARE RESULTS___________________________________________________________

F=zeros(c,nrresults);

tau=zeros(4,1);

if equilibrium==1

GRA=zeros(equilibriumend/rem,c);

GRB=zeros(equilibriumend/rem,c);

end

else

POT=zeros(nn/rem,c);

CM=POT;

GR=POT;

E=POT;

TC=POT;

M=POT;

end

cc=1;

for b=1:c

%INIT______________________________________________________________________

if config==1;

x=[(-n:1:-1)’+start*(n+width)+1-2*start,zeros(n,1)];

rd=zeros(n-1,n);

for i=1:(n-1)

for j=(i+1):n

xd=abs(x(i,1)-x(j,1));

yd=abs(x(i,2)-x(j,2));

rd(i,j)=((xd)^2+(yd)^2)^0.5;

end

end

v=2*(rand(n,2)-0.5);

elseif config==2

x=xload.x;

v=2*(rand(n,2)-0.5);

rd=zeros(n-1,n);

for i=1:(n-1)

for j=(i+1):n

xd=abs(x(i,1)-x(j,1));

yd=abs(x(i,2)-x(j,2));

rd(i,j)=((xd)^2+(yd)^2)^0.5;

end

end

else

initdummy=1;

rd=zeros(n-1,n);

while initdummy>0;

x=-1*rand(n,2)-0.5*sigma;

dummy=tril(ones(n));

x=dummy*x;

x=x+start*n;

tel=start*(n+width)+1-2*start;

x(tel,:)=[0 0];

if start==0.5

x(tel+1,:)=[-1 -1];

x(tel-1,:)=[1 1];

elseif start==0

x(tel+1,:)=[-1 -1];

else

x(tel-1,:)=[1 1];

end

initdummy=0;

for i=1:n-1

for j=(i+1):n

xd=abs(x(i,1)-x(j,1));

yd=abs(x(i,2)-x(j,2));

rd(i,j)=((xd)^2+(yd)^2)^0.5;

if i==j-1

if rd(i,j)>R

initdummy=1;

end

end

end

end

end

x=mod((x+(xb/2)),xb)-xb/2;

x=x(n:-1:1,:);

v=2*(rand(n,2)-0.5);

end

r2=rd.^2;

update=find(r2<straal*rc2 & r2>0);

sup=size(update);

%Plot initial distribution
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if beeld==1;

xmona=x(mona,:);

xmonb=x(monb,:);

plot(x(:,1),x(:,2),’k-’);

hold on

plot(xmona(:,1),xmona(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’red’,’MarkerFaceColor’,’none’);

plot(xmonb(:,1),xmonb(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’blue’,’MarkerFaceColor’,’none’);

if nanopore==1

plot(xxporie(:,1),xxporie(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’black’);

plot(xxwand(:,1),xxwand(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’none’);

end

axis equal

axis([-xb/(2*(n-1)/10),xb/(2*(n-1)/10),-yb/(2*(n-1)/10),yb/(2*(n-1)/10)]);

end

fout=0;

count=0;

%FORCE_____________________________________________________________________

a=1;

stapjes=0;

tijdn=zeros(n,1);

monomer=(1-start)*(n+width)+1-2*(1-start);

if nanopore==1

%conditie=(x(1,1)<=width-0.5 & x(end,1)>=0-0.5 & fout==0);

conditie=(monomer~=0 & fout==0);

Fextc=Fextn;

if equilibrium==1

Fextc=Fexte;

if only==1

conditie=(a<=equilibriumend);

end

end

else

conditie=(a<=nn);

end

while conditie

energie=0;

f=zeros(n,2);

f2=f;

fp=f;

fp2=f;

GULJ=zeros(n-1,n);

GUFENE=GULJ;

% GUFENE2=GULJ;

if nanopore==1

GULJP=zeros(n,sizeporie(1));

GULJP2=zeros(n,sizeporie(1));

monat=mona;

xaap1=repmat(x(:,1),1,sizeporie);

xxaap1=repmat(xx(:,1)’,n,1);

xaap2=repmat(x(:,2),1,sizeporie);

xxaap2=repmat(xx(:,2)’,n,1);

xdpm=abs(xaap1-xxaap1);

ydpm=abs(xaap2-xxaap2);

rdp=((xdpm).^2+(ydpm).^2).^0.5;

rdp2=rdp.^2;

closem=find(rdp2(:,1:sizexx)<=rc2);

%ULJ(i,j)=4*var*[(sigma/rd(i,j))^12-(sigma/rd(i,j))^6]+var;

energie=energie+sum(4.*var.*(sigma./rdp(closem)).^12-(sigma./rdp(closem)).^6+var);

GULJP(closem)=48.*var.*(1./rdp(closem)).*((sigma./rdp(closem)).^6).*(((sigma./rdp(closem)).^6)-0.5);

XY=[n,sizexx];

[X,Y] = ind2sub(XY,closem);

sizeclosem=size(closem,1);

for ii=1:sizeclosem

fp(X(ii),1)=fp(X(ii),1)+GULJP(closem(ii))*(x(X(ii),1)-xx(Y(ii),1))/abs(rdp(closem(ii)));

fp(X(ii),2)=fp(X(ii),2)+GULJP(closem(ii))*(x(X(ii),2)-xx(Y(ii),2))/abs(rdp(closem(ii)));

end

poreclosem=find(rdp2(:,sizexx+1:sizeporie)<=rcp2)+sizexx*n;

XY2=[n,sizeporie-sizexx];

[X2,Y2] = ind2sub(XY2,poreclosem);

sizeporeclosem=size(poreclosem,1);

poreclosema=poreclosem(ismember(X2, mona));

energie=energie+sum(4.*varpa.*(sigma./rdp(poreclosema)).^12-(sigma./rdp(poreclosema)).^6+varpa);

GULJP(poreclosema)=48.*varpa.*(1./rdp(poreclosema)).*((sigma./rdp(poreclosema)).^6).*(((sigma./rdp(poreclosema)).^6)-0.5);

poreclosemb=poreclosem(ismember(X2, monb));

energie=energie+sum(4.*varpb.*(sigma./rdp(poreclosemb)).^12-(sigma./rdp(poreclosemb)).^6+varpb);

GULJP(poreclosemb)=48.*varpb.*(1./rdp(poreclosemb)).*((sigma./rdp(poreclosemb)).^6).*(((sigma./rdp(poreclosemb)).^6)-0.5);

for ii=1:sizeporeclosem

fp(X2(ii),1)=fp(X2(ii),1)+GULJP(poreclosem(ii))*(x(X2(ii),1)-xx(Y2(ii),1))/abs(rdp(poreclosem(ii)));

fp(X2(ii),2)=fp(X2(ii),2)+GULJP(poreclosem(ii))*(x(X2(ii),2)-xx(Y2(ii),2))/abs(rdp(poreclosem(ii)));

end

externek=find(x(:,1)<=(0+width) & x(:,1)>=-1);

Fext=Fextv;

Fext(externek,1)=Fextc;

end
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updatespec=find(r2<=rc2 & r2>0);

energie=energie+sum(4.*var.*(sigma./rd(updatespec)).^12-(sigma./rd(updatespec)).^6+var);

GULJ(updatespec)=48.*var.*(1./rd(updatespec)).*((sigma./rd(updatespec)).^6).*(((sigma./rd(updatespec)).^6)-0.5);

IJ = [n-1,n];

updatespec=unique([updatespec; diagonal]);

sups=size(updatespec,1);

[I,J] = ind2sub(IJ,updatespec);

energie=energie+sum(-1.*0.5.*k.*R2.*log(1-(rd(diagonal).^2./R2)));

GUFENE(diagonal)=0.5.*k.*R^2.*(1./(1-(rd(diagonal).^2./(R^2)))).*-2.*rd(diagonal)./(R^2);

xvare=(x(I,1)-x(J,1))./abs(rd(updatespec));

xvart=(x(I,2)-x(J,2))./abs(rd(updatespec));

for ii=1:sups

f(I(ii),1)=f(I(ii),1)+GULJ(updatespec(ii)).*xvare(ii)+GUFENE(updatespec(ii)).*xvare(ii);

f(J(ii),1)=f(J(ii),1)-1.*GULJ(updatespec(ii)).*xvare(ii)-1.*GUFENE(updatespec(ii)).*xvare(ii);

f(I(ii),2)=f(I(ii),2)+GULJ(updatespec(ii)).*xvart(ii)+GUFENE(updatespec(ii)).*xvart(ii);

f(J(ii),2)=f(J(ii),2)-1.*GULJ(updatespec(ii)).*xvart(ii)-1.*GUFENE(updatespec(ii)).*xvart(ii);

end

Fr=(1/(sqrt(delta)))*randn(n,2)*(2*kb*T*xi)^0.5;

f=f+fp+Fext-xi*v+Fr;

if a==1;

if init==1

xo=x+v*delta+(delta^2/(2*m))*f;

xo=mod((xo+(xb/2)),xb)-xb/2;

else

xo=x;

end

xcmo=sum(m.*x)/sum(n*m);

end

xn=2*x-xo+delta^2*f/m;

if equilibrium==1 && a<=equilibriumend

xn(n*(1-start)+start,:)=[0 0];

Fextc=Fexte;

else

Fextc=Fextn;

end

if mod(a,timeloop)==0

for i=1:(n-1)

for j=(i+1):n

xd=abs(xn(i,1)-xn(j,1));

if xd>(xb/2)

xd=xb-xd;

end

yd=abs(xn(i,2)-xn(j,2));

if yd>(yb/2)

yd=yb-yd;

end

rd(i,j)=((xd)^2+(yd)^2)^0.5;

if i==j-1

if rd(i,j)>R

fout=1;

disp(’ fout ’)

f;

end

end

end

end

r2=rd.^2;

update=find(r2<straal*rc2 & r2>0);

sup=size(update,1);

else

for ii=1:sups

xd=abs(xn(I(ii),1)-xn(J(ii),1));

if xd>(xb/2)

xd=xb-xd;

end

yd=abs(xn(I(ii),2)-xn(J(ii),2));

if yd>(yb/2)

yd=yb-yd;

end

rd(updatespec(ii))=((xd)^2+(yd)^2)^0.5;

if i==j-1

if rd(updatespec(ii))>R

fout=1;

disp(’ fout ’)

f;

f2;

end

end

end

r2=rd.^2;

end

%periodic boundary conditions

%rd=rd-xb*round(rd/xb);

xn=mod((xn+(xb/2)),xb)-xb/2;

%CHECK_____________________________________________________________________
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v=(xn-xo)/(2*delta);

%UPDATE____________________________________________________________________

xo=x;

x=xn;

stapjes=stapjes+1;

if x(monomer,1)>width

tijdn(monomer)=stapjes*delta;

monomer=monomer-1;

stapjes=0;

end

if nanopore~=1

if mod(a,rem)==0

POT(a/rem,cc)=energie;

M(a/rem,cc)=sum(sum(m*v));

TC(a/rem,cc)=(sum(sum(m*(v.^2))))/(2*n*kb);

E(a/rem,cc)=sum((m/2)*sum(v.^2));

xcm=sum(m.*x)/sum(n*m);

CM(a/rem,cc)=(sum((xcm-xcmo).^2))^0.5;

xm=repmat(((1/n)*sum(x)),n,1);

GR(a/rem,cc)=(1/n)*sum(sum((x-xm).^2));

end

end

if equilibrium==1

if mod(a,rem)==0

nreq=(n-1)/2;

xma=repmat(((1/nreq)*sum(x(1:nreq,:))),nreq,1);

GRA(a/rem,cc)=(1/nreq)*sum(sum((x(1:nreq,:)-xma).^2));

xmb=repmat(((1/nreq)*sum(x((nreq+2):end,:))),nreq,1);

GRB(a/rem,cc)=(1/nreq)*sum(sum((x((nreq+2):end,:)-xmb).^2));

end

end

if beeld==1;

xmona=x(mona,:);

xmonb=x(monb,:);

plot(x(:,1),x(:,2),’k-’);

hold on

plot(xmona(:,1),xmona(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’red’,’MarkerFaceColor’,’none’);

plot(xmonb(:,1),xmonb(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’blue’,’MarkerFaceColor’,’none’);

if nanopore==1

plot(xxwand(:,1),xxwand(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’none’);

plot(xxporie(:,1),xxporie(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’black’);

end

hold off

axis equal

axis([-xb/(2*(n-1)/10),xb/(2*(n-1)/10),-yb/(2*(n-1)/10),yb/(2*(n-1)/10)]);

pause(wacht)

end

a=a+1;

if nanopore==1

%conditie=(x(1,1)<=width-0.5 & x(end,1)>=0-0.5 & fout==0);

conditie=(monomer~=0 & fout==0);

if only==1

conditie=(a<=equilibriumend);

end

else

conditie=(a<=nn);

end

end

countdummy=0;

if sum(x(:,1)<0)~=0

count=count+1;

countdummy=1;

end

F(cc)=a*delta;

if fout~=1 && monomer==0 && countdummy~=1

cc=cc+1;

tijd=tijd+tijdn;

end

if monomer~=0

figure

xmona=x(mona,:);

xmonb=x(monb,:);

plot(x(:,1),x(:,2),’k-’);

hold on

plot(xmona(:,1),xmona(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’red’,’MarkerFaceColor’,’none’);

plot(xmonb(:,1),xmonb(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’blue’,’MarkerFaceColor’,’none’);

if nanopore==1

plot(xxwand(:,1),xxwand(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’none’);

plot(xxporie(:,1),xxporie(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’black’);

end

hold off

axis equal

axis([-xb/(2*(n-1)/10),xb/(2*(n-1)/10),-yb/(2*(n-1)/10),yb/(2*(n-1)/10)]);

end

b;

disp(b)

disp(monomer)
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disp(count)

end

cc=cc-1;

disp(’ Aantal simulaties ’)

disp(cc)

if equilibrium==1

GRAT=sum(GRA,2)/cc;

figure

subplot(2,1,1)

plot((1:rem:nn)*delta, GRAT)

title(’Gyration Radius Links’);

GRBT=sum(GRB,2)/cc;

subplot(2,1,2)

plot((1:rem:nn)*delta, GRBT)

title(’Gyration Radius Rechts’);

figure

xmona=x(mona,:);

xmonb=x(monb,:);

%subplot(2,2,1);

plot(x(:,1),x(:,2),’k-’);

hold on

plot(xmona(:,1),xmona(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’red’,’MarkerFaceColor’,’none’);

plot(xmonb(:,1),xmonb(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’blue’,’MarkerFaceColor’,’none’);

if nanopore==1

plot(xxwand(:,1),xxwand(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’none’);

plot(xxporie(:,1),xxporie(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’black’);

end

hold off

axis equal

axis([-xb/(2*(n-1)/10),xb/(2*(n-1)/10),-yb/(2*(n-1)/10),yb/(2*(n-1)/10)]);

elseif nanopore==1

figure

hist(F(:,nrresults),round(b/5))

save(’F51rand1.mat’,’F’)

figure

tijd=tijd/cc;

tijd=tijd(n:-1:1);

save(’tijd51rand1.mat’,’tijd’)

plot(tijd)

figure

xmona=x(mona,:);

save(’mona51rand1.mat’,’mona’)

xmonb=x(monb,:);

plot(x(:,1),x(:,2),’k-’);

hold on

plot(xmona(:,1),xmona(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’red’,’MarkerFaceColor’,’none’);

plot(xmonb(:,1),xmonb(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’blue’,’MarkerFaceColor’,’none’);

if nanopore==1

plot(xxwand(:,1),xxwand(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’none’);

plot(xxporie(:,1),xxporie(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’black’);

end

hold off

axis equal

axis([-xb/(2*(n-1)/10),xb/(2*(n-1)/10),-yb/(2*(n-1)/10),yb/(2*(n-1)/10)]);

else

CMT=sum(CM,2)/cc;

figure

subplot(2,2,1)

xmona=x(mona,:);

xmonb=x(monb,:);

plot(x(:,1),x(:,2),’k-’);

hold on

plot(xmona(:,1),xmona(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’red’,’MarkerFaceColor’,’none’);

plot(xmonb(:,1),xmonb(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’blue’,’MarkerFaceColor’,’none’);

if nanopore==1

plot(xxwand(:,1),xxwand(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’none’);

plot(xxporie(:,1),xxporie(:,2),’o’,’MarkerSize’,10,’MarkerEdgeColor’,’black’,’MarkerFaceColor’,’black’);

end

hold off

axis equal

axis([-xb/(2*(n-1)/10),xb/(2*(n-1)/10),-yb/(2*(n-1)/10),yb/(2*(n-1)/10)]);

subplot(2,2,2)

plot((1:rem:nn)*delta, CMT)

title(’Centre of Mass’);

GRT=sum(GR,2)/cc;

subplot(2,2,3)

plot((1:rem:nn)*delta, GRT)

title(’Gyration Radius’);

TCT=sum(TC,2)/cc;

subplot(2,2,4)

plot((1:rem:nn)*delta, TCT)

hold on

title(’Temperature’);

MT=sum(M,2)/cc;

figure

subplot(2,2,1)

plot((1:rem:nn)*delta, MT)

title(’Momentum’);

ET=sum(E,2)/cc;

subplot(2,2,2)

plot((1:rem:nn)*delta, ET)

title(’Kinetic Energy’);

POTT=sum(POT,2)/cc;

subplot(2,2,3)
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plot((1:rem:nn)*delta, POTT)

title(’Potential Energy’);

TOTEN=POTT+ET;

subplot(2,2,4)

plot((1:rem:nn)*delta, TOTEN)

title(’Total Energy’);

end

t2=toc;

tijdinmin=t2/60;

disp(’ tijd ’)

disp(tijdinmin)


