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Abstract
Background and objectives: Junctional Ectopic Tachycardia (JET) is a tachyarrhythmia most commonly
observed in infants and children in the postoperative setting. An automatic detection algorithm could
be valuable for early identification and timely treatment of JET. However, the detection is challenging as
the initial changes on the electrocardiogram (ECG) are often subtle and monitor data commonly contains
substantial noise and artefacts. The objective of this study was to investigate which features contribute to
accurate JET detection and to develop an automated detection model.

Methods: A retrospective study was conducted using monitor ECG data of paediatric patients admitted to
the Paediatric Intensive Care Unit. The training set consisted of 17 patients, and the test set of 8 patients. ECG
metrics were detected, in order to segment the signal and to derive several features. The two-dimensional
vectorcardiogram (VCG) was computed for calculating features representing the beat-to-beat variability of
the signal. Automatic feature selection methods were applied to identify which features most effectively
differentiate JET from sinus rhythm (SR), based on balanced accuracy. Logistic regression (LR) and random
forest (RF) models were finally created and performance was validated.

Results: The LR and RF models achieved balanced accuracy scores of 0,989 and 0,988, respectively, on the
training dataset. The selected features included the number of P waves and the variance of the PQ interval.
For the RF model, the standard deviation (SD) of the RR interval was also selected. VCG-features did not
prove effective in distinguishing JET from SR. A secondary validation on the test set yielded lower scores of
0,899 and 0,892. An analysis of misclassifications revealed that they were all attributed to errors in peak
detection, which occurred in cases of deviating ECG morphologies or the presence of artefacts and noise.

Conclusions: This study demonstrates that P wave-related features are most effective for distinguishing
JET from SR, with simple machine learning models based on these features showing promising results for
automated JET detection. Peak detection is currently the most important limiting factor for the robustness
and generalisability of this method. Interpatient variability and the low quality of monitor ECG data remain
important challenges. Expanding the dataset, improving the data quality and implementing signal quality
assessment (SQA) methods are recommended to improve the robustness of the models.
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1 INTRODUCTION

1 Introduction
Congenital heart disease (CHD) represents the largest subgroup of congenital anomalies, with a global
incidence of 8 per 1,000 live births [1]. The CHD group includes a wide spectrum of diseases ranging
from minor defects to severe cardiac malformations with heart failure and/or severe cyanosis immediately
after birth [2]. Approximately 25% of children born with CHD require life-saving interventions such as heart
surgery in the first year of life [3]. Arrhythmias after paediatric cardiac surgery are common and can be
life-threatening [4]. They occur intraoperatively or may appear shortly after surgery.

One such arrhythmia is Junctional Ectopic Tachycardia (JET). Postoperative JET, occurring within 72
hours after surgery, is observed in 1-15% of children following correction of congenital cardiac defects [5]. A
congenital form of JET also exists, typically occurring in the first six months after birth, but this form is rare
[6].

JET originates in the region of the atrioventricular (AV) node or proximal His bundle [7]. Postoperative
JET has been attributed to ischemia, stretching, and direct injury to the AV conduction tissue of the heart
during surgical repair of these defects [6]. JET usually exhibits a gradual onset (’warm-up’ phase) [8]. It is
often a narrow complex tachycardia but may present as a wide complex tachycardia as a result of aberrant
conduction. It typically involves AV dissociation, where the atrial rate is slower than the ventricular rate. In
some cases, it may also present with 1:1 retrograde ventriculoatrial (VA) conduction [9].

Postoperative JET is a self-limiting disorder that usually resolves within one week [10]. However, due
to the rapid heart rate (HR) that impairs adequate ventricular filling and the loss of AV synchrony, JET can
lead to an acute impairment of cardiac output and haemodynamic instability [11]. JET is associated with
extended intensive care stay and increased risk of morbidity and mortality, with a reported 30-day mortality
rate nearly 9 times higher among paediatric intensive care unit (PICU) patients who develop JET [12, 13].
Several strategies, including cooling, sedation, electrolyte correction, reducing catecholamine doses, and
administering antiarrhythmic medications, can be used to treat JET and lower the ventricular rate [7, 11].
Early treatment has been shown to improve patient outcomes, underscoring the importance of early detection
[11]. Furthermore, the ability to retrospectively identify periods of JET would be valuable for research into
the effectiveness of various treatment strategies. However, early recognition of JET remains challenging
because the initial changes on the electrocardiogram (ECG) are often subtle, and continuous monitoring of
the ECG by healthcare staff of the PICU is not feasible. Automatic detection of JET using ECG signals could
offer a solution.

The ECG may reveal certain features like a high ventricular rate and the disappearance of the P-wave
or the appearance of retrograde P-waves, which could be used in a detection model. However, reliable
identification is challenging due to several factors: the high frequency of tachycardia, noisy monitoring data,
low P-wave amplitudes, and cases where the P-wave is obscured by the QRS complex. In two studies on JET
detection, the models were mainly focused on P-wave features [14, 15]. It was shown that particularly high
frequency tachycardias, interpatient variability, P waves with low prominences and abnormal morphology
caused classification errors.

For detecting arrhythmias, the temporal evolution of the ECG signal is also relevant. Incorporating not
just isolated beats but also the preceding rhythm could offer valuable diagnostic information. Patterns such
as signal consistency, gradual transitions, or sudden changes over time may all hold predictive value.

Additionally, leveraging information from multiple leads instead of only using one ECG lead could
enhance the robustness of detection models. Combining the data of multiple leads can provide
two-dimensional (2D) or three-dimensional (3D) representations of the heart’s electrical activity which may
provide additional insights. Vectorcardiography (VCG) is a technique in which three orthogonal leads are
constructed, representing the right-left axis (Vx), head-to-feat axis (Vy), and anteroposterior axis (Vz), after
which the vector magnitude in several planes can be computed according to the theorem of Pythagoras [16].
VCG loops can be visualised in the frontal (xy), sagittal (yz) and transverse (xz) plane. Furthermore, the 3D
loop can be constructed. A literature review has been conducted to look into the different applications of
VCG on the detection, classification and characterization of cardiac arrhythmias [17]. It revealed that there
are many parameters available for VCG analysis of cardiac arrhythmias. For a real-time JET detection model,
different parameters could be considered to quantify loop orientation and beat-to-beat variability.
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1 INTRODUCTION

Previous research conducted at the PICU of Sophia Children’s Hospital explored automatic JET detection
using a manually constructed decision tree based on ECG and 2D VCG features [18]. The model achieved
high accuracy (87,8%) but relied on accurate P wave detection, an element that proved unreliable, and
required a sinus rhythm (SR) reference fragment for comparison. This dependency limits clinical applicability,
especially in cases where no post-operative SR is available. Moreover, the model was only evaluated on the
small development dataset, raising concerns about overfitting and generalisability.

1.1 Goals and objectives

Several significant challenges remain in achieving accurate JET detection. These include high-frequency
tachycardias, low P wave prominences, interpatient variability leading to diverse ECG morphologies, and
noisy monitoring data. In addition, JET can manifest in multiple forms, with varying types of atrioventricular
conduction patterns, which further complicates the development of a robust detection model.

The goal of this thesis is to identify ECG and VCG features that reliably distinguish JET from SR, and to
develop an accurate, automated detection model based on monitor ECG data.

After computing different ECG and VCG features and exploring their potential for distinguishing JET from
SR, feature-based classification models will be developed and trained on a labelled dataset. These models
will then be validated on longer, more heterogeneous datasets, which may include varying morphologies,
artefacts, noise and mixed rhythms, to evaluate their applicability in real-world scenarios. This evaluation
may reveal limitations or highlight cases where the model underperforms, guiding future refinements and
iterations.
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2 METHODS

2 Methods
This single-centre retrospective study was conducted at the Erasmus MC Sophia Children’s Hospital, utilising
monitor ECG data from children with CHD admitted to the PICU between 2018 and 2025. A waiver for ethical
approval was obtained for data collection using standard of care bedside monitoring (MEC-2021-0937).
Figure 1 provides an overview of the workflow of this project, including the different analysis steps, which
will be elaborated on in the following subsections. Data analysis was performed using Python version 3.12.

Figure 1: Overview of project workflow.

2.1 Data acquisition

ECG was continuously recorded with at least 3 electrodes (ECG, 3M St. Paul, Minnesota, United States),
sampled at 200 Hz and stored on a digital server (Dräger, Lübeck, Germany). For the initial training dataset,
60-seconds fragments were selected from 17 patients, and labelled as either SR or JET by a paediatric
intensivist. For each patient, at least one SR and one JET fragment was selected. In addition to the primary
rhythm label, all JET fragments received an additional subtype label based on the observed atrioventricular
relationship: AV dissociation, visible retrograde P wave, or unclear AV relation. Data fragments were only
selected when at least lead I, II and III were saved. Data fragments with paced rhythms, and data containing
movement artifacts or arrhythmias other than JET were excluded from the analysis.

For a secondary validation, additional data was collected from eight patients, four of whom had
experienced JET and four of whom had not. For each patient, two data fragments of one hour were included.
Only data containing at least leads I, II and III and from periods of time when patients’ rhythms were not
paced are included.

2.2 Preprocessing

Initially, all signal analysis steps are performed using 60-seconds windows. Additionally, shorter window
sizes of 30, 20, and 10 seconds are evaluated by dividing the original fragments into smaller segments.

The data processing and feature derivation steps from raw signal to final features are schematically
presented in the flowchart in Figure 3. First, leads aVL, aVR and aVF are derived from leads I, II and III
using the following equations:

aV L =
1

2
(I − III) (1)

aV R = −1

2
(I + II) (2)

aV F =
1

2
(II + III) (3)

The directions of these leads are visualised in figure 2. To remove baseline wander resulting from low
frequency signals, such as respiration or body movement, and to filter out high frequency noise, a third order
Butterworth bandpass filter with cut-off frequencies of 0.8 and 80 Hz is applied [19].

For VCG analysis, a vector is created by combining multiple leads. As leads V1 to V6 are not available
in our dataset, vector analysis is limited to 2D representations of the heart’s electrical activity, in the frontal
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2 METHODS

plane. Leads I and aVF are used to create this vector over time. The length |v⃗| and angle α of this vector are
calculated with the following equations:

|v⃗| =
√
v2I + v2aVF (4)

α = deg (arctan 2(vaVF, vI)) (5)

where vI and vaVF are the components of the vector along the horizontal (lead I) and vertical (lead aVF) axes
respectively. α gives the angle in degrees, where the direction of lead I is 0 degrees, as illustrated in figure 2.

Figure 2: Direction of the ECG leads I, II, III, aVL, aVR and aVF. In orange, the vector created by combining leads I and
aVF is illustrated.

2.3 Peak detection

After preprocessing, peak detection is performed to enable both the direct calculation of several time-based
features and the segmentation of the signal into the QRS complex and the intervals between, needed for
VCG features. Altogether, peak detection includes the R peak, Q peak, S peak, the start and end of the QRS
complex, the T wave and the P wave. Existing methods from previous work, of which a summary is provided
in Appendix A.1, act as a starting point and were refined iteratively based on observed detection errors [18].

R peaks

R peaks are detected first, as these typically have the highest amplitude. Since the direction of ventricular
depolarization may not align perfectly with any of the standard ECG leads, the vector (Eq. 4) is used for
optimal accuracy. By identifying the time point at which the vector reaches its maximum value, a new,
fictive lead is created in this direction, by projecting the vector signal onto that direction, using the following
equation:

compav =
a · v
|a|

(6)

where a is the vector at the point of maximum magnitude, v is the vector at each time point, and |a| is
the length of the maximum vector. If the highest amplitude of this fictive lead is in the negative direction,
the signal is inverted to ensure that R peaks are positive. Peaks are then detected in this fictive lead. The
characteristic steep signal slope of R peaks is used to distinguish them from T and P waves. The mean of
the smoothed derivative of the signal surrounding each peak (25 ms before and 25 ms after) is computed
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2 METHODS

Figure 3: Flowchart of the data processing steps. The columns from left to right show the ECG signals, the derived vector
signals, the detected peaks and the extracted features.

and visualised in a histogram. Assuming a bimodal distribution, with one mode representing R peaks and
the other non-R peaks, the two highest histogram peaks are identified. The local minimum between them is
chosen as the slope threshold. Final peak detection is performed on the fictive lead using a minimum distance
of 150 ms and a minimum height of the 90th percentile of the signal. Only peaks with surrounding derivative
segments exceeding the slope threshold are retained.

After the detection of R peaks, all ECG signals, including the fictive lead, are normalised by dividing them
by the mean amplitude of the R peaks.

Q and S peaks

For each R peak, the corresponding Q and S peaks are searched within a time window of 100 ms before and
after the R peak, respectively. While these peaks typically occur close to the R peak, conduction abnormalities,
such as bundle branch blocks (BBB), require a broader search window. As the Q and S peak are expected to
be negative relative to the R peak, peaks are searched for in the inverted fictive lead. Similar to R peaks, the Q
and S points are characterised by steep signal slopes. Q candidates must be followed by a positive derivative
segment (25 ms) with a mean >0.1, and S candidates must be preceded by a similarly steep segment. If
multiple candidates meet these criteria, the lowest point is selected. If no valid peaks are found, such as in
signals lacking a clear negative Q or S deflection, fallback rules apply: the Q peak is assigned to the most
negative point within the search window, and the S peak is defined at the first point after the R peak where
the derivative drops below 0.1, to avoid misclassifying inverted T waves.
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2 METHODS

The onset (Q start) and offset (S end) of the QRS complex are also determined. This involves computing
the absolute derivative of the fictive lead, smoothed with a 7-sample (35 ms) moving average filter. Q start
is defined as the point before the Q peak where the derivative reaches a minimum value of 0.05, and S end
is defined as the first point after the S peak where it first drops below 0.02. These thresholds were chosen
empirically.

T waves

Before detecting T waves, baseline correction is applied using a baseline fitting method (snip) from the
pybaselines library, in order to centre the baseline around zero [20]. The QRS complexes are then deleted by
setting the signal to zero between the previously identified Q start and S end points, to isolate the remaining
parts of the signal, primarily containing T and P waves. From this modified signal, a new fictive lead is
created (using Eq. 6), which theoretically aligns with the maximum amplitude of the T wave. This lead
is then smoothed using a Gaussian filter (with σ=2) to reduce noise. Next, peaks are detected in the
intervals between consecutive QRS complexes. All peaks are initially identified, the two peaks with the
highest prominence are selected, and the first one (in time) is labelled as T wave.

P waves

First, a search window is determined for P wave detection. After each T wave, the first zero crossing of the
second derivative (i.e., the inflection point) is identified in the fictive T wave lead, which is first smoothed
with a Gaussian filter (with σ=1). The resulting point is used as an estimate for the T wave end. P waves are
detected between this point and the subsequent Q start.

While lead II typically provides the clearest P wave morphology, inter-patient variability, especially in
patients with congenital cardiac defects, necessitates a more flexible approach. Therefore, P waves are
detected separately in leads I, II and III. Peaks are identified with a minimum prominence of 0.02 and the
peak with the highest prominence is selected. If no peak is found, a NaN value is added for that beat.
To automatically determine which lead provides the best P wave detection, two metrics are computed per
lead: the ratio of valid P waves (relative to the number of Q peaks), and the standard deviation (SD) of P
wave angles. In case of correct P wave detection, the variation in P wave angles within this patient group is
expected to be low, reflecting a consistent direction of atrial depolarisation. A combined score is computed
for each lead as follows:

p score = p valid− 0.1 ∗ p angle sd (7)

with p valid the fraction of detected P waves (from 0 to 1), and p angle sd the SD of the P wave angles (Eq.
5). The lead with the highest p score is selected, and its corresponding P peaks are used for further analysis.

2.4 Feature extraction

After peak detection, the signal is segmented to extract vector loops, and features are calculated. Table 6 in
Appendix A.3 provides an overview of all features with brief descriptions.

2.4.1 Time domain features

Using the detected R peaks, HR is calculated using the following equation:

HR =
nr peaks

trn − tr0
∗ 60 (8)

where nr peaks is the number of R peaks and tr0 and trn the time points of the first and last R peak,
respectively. From all consecutive RR intervals, the standard deviation (RR sd) is then calculated as a
measure of variability.

Additionally, features are defined to characterise the presence and timing of P waves relative to the QRS
complex. The proportion of QRS complexes that are preceded by a detected P wave is given by:

p valid =
np waves

nq peaks
(9)
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2 METHODS

with np waves and nq peaks the number of P waves and Q peaks, respectively. A value of 1 indicates each
QRS complex is preceded by a P wave within the defined search area. For all detected P waves, the interval
between the P and Q peaks is calculated, and the variance of these intervals (pq var) is used as an additional
feature to capture irregularity in atrioventricular timing. Finally, the SD of the angles (Eq. 5) of all P waves
is computed and saved as a feature (p ang sd).

2.4.2 VCG features

Several VCG-based features are calculated with the aim to analyse the beat-to-beat variability. The previously
identified Q start and S end points are used to segment the signal into two parts: the QRS complexes (QRS
loops) and the signals in between (SQ loops).

The vector lengths and angles are calculated as previously defined (Eqs. 4 and 5). For each QRS loop and
for each SQ loop, the point in time where the vector has the highest magnitude is identified, and both the
corresponding magnitude and the angle are recorded. Subsequently, the SD of these values across all beats
is computed, yielding two features: magnitude sd and angle sd. These reflect the variability in magnitude
and orientation of the dominant vector of each segment. In the case of QRS loops, this dominant vector
typically corresponds to the R peak and represents the cardiac axis. For SQ loops, the dominant vector is
expected to reflect the T wave. However, in cases of repolarization abnormalities, the P wave may become
dominant instead. Additionally, if the P wave is superimposed on the T wave, this overlap may also influence
the characteristics of the dominant vector.

Next to analysing the dominant vector, a more detailed analysis of the morphology of the beats is done
to capture more subtle differences. For both QRS loops and SQ loops, beats across time are compared to
each other using multiple methods. Variability can be quantified by computing distance or similarity metrics
between loops, typically done on a sample-by-sample basis, necessitating uniform sampling across beats [17].
However, beat length variability, which is expected in JET but also to a certain extent in SR, may complicate
this, as not all beats will contain the same number of samples. Resampling could distort the original loop
shape, which could result in misleading results of distance and similarity measures. To address this, Dynamic
Time Warping (DTW) is used. DTW allows for the alignment of similar shapes that may be out of phase in
the time axis, by applying non-linear temporal warping [21]. Figure 4 provides an illustration of DTW. This
technique is applied to compare the morphology of both QRS loops and SQ loops across time.

Figure 4: Illustration of linear, sample-by-sample comparison of two signals on the left, and Dynamic Time Warping on
the right [22].

As changes during JET can occur gradually, especially during the warm-up phase of this arrhythmia,
comparing only consecutive loops might not be sufficient to capture these changes. Instead, a set of loops is
selected at regular intervals within each time window. All pairwise combinations of these loops are compared,
and the results are averaged to obtain a final distance score. The number of selected loops per window is
adapted to the window size: 30 loops for 60 seconds, 15 for 30 seconds, 10 for 20 seconds, and 5 for 10
seconds.

Using DTW, each pair of loops is aligned by minimising the total cumulative distance between points.
The time difference between the two loops is used as input parameter to define the maximum allowed time
shift for DTW. In order to perform DTW, a distance metric must be defined to quantify the similarity between
two samples (i.e., time points) from different loops. In this study, three variations of distance measures are
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used: Euclidean distance, derivative-based Euclidean distance, and angular distance. The Euclidean distance
is calculated between the 2D coordinates of two vector points, from the frontal plane representation of the
VCG, at a given time point:

deucl =
√

(x2 − x1)2 + (y2 − y1)2 (10)

where (x1, y1) and (x2, y2) represent the spatial positions of the two samples being compared. This distance
reflects the spatial difference between two loops at each time point, capturing differences in loop shape and
position.

Secondly, to emphasise local signal dynamics, a second approach, referred to as the derivative DTW, is
applied. In this variation, each loop is first transformed into a sequence of 2D slope vectors by calculating the
difference between consecutive points. The Euclidean distance formula is then applied to these derivative
vectors. This method captures the beat-to-beat changes in trajectory and direction within the VCG loop.

A third distance measure, the angular distance, quantifies the directional difference between two vectors
v⃗1 and v⃗2 by computing the angle between them:

θ = arccos

(
v⃗1 · v⃗2

|v⃗1| · |v⃗2|

)
(11)

This captures how similarly oriented the vectors are at each time point, independent of their magnitude.
For each pairwise loop comparison, the total distance after alignment is normalised by the alignment path

length (the number of links between samples, similar to the number of grey connection lines in Figure 4).
The mean distance across all loop combinations is then saved as a feature. Additionally, the top 10% of local
(pointwise) distances, representing the most dissimilar regions, are identified and averaged, and saved as
separate features to highlight high-variance segments within the loops.

2.5 Feature analysis

An initial exploratory analysis is conducted to examine feature distributions and relationships, using the
labelled JET subtypes to explore how patterns vary across different presentations of the arrhythmia.

Mutual information (MI) scores are used to assess how much each feature reduces uncertainty about the
classification label (JET or SR). In parallel, a Pearson correlation matrix is computed to identify features that
are strongly correlated with one another. If any pair of features exhibit a high correlation (Pearson correlation
coefficient >0.7), the feature with the lower MI score is excluded to reduce redundancy.

2.6 Model development

Two different machine learning models are used: Logistic Regression (LR), a simple approach for
benchmarking, and Random Forest (RF), which is better suited to handle non-linear relationships and capture
more complex patterns in the data. Models are created for different window sizes of 60, 30, 20 and 10
seconds.

First, feature selection is performed with use of nested cross-validation, with five outer loops and three
inner loops (see Figure 5). To prevent data leakage and maintain class balance, folds were stratified
and grouped at the patient level. For LR, recursive feature elimination (RFE) is applied to identify the
optimal subset of features by recursively removing the least important ones based on model coefficients.
For the RF model, feature selection is performed using SelectFromModel, retaining features with the
highest impurity-based importance scores as determined during tree construction. Within each outer fold,
hyperparameter tuning, including the number of selected features, is performed using a grid search. The
best model from the inner loop is then evaluated on the outer fold. Tables 7 and 8 in Appendix A.6 list the
tuned parameter values. To assess feature stability, the selected features are tracked across outer folds. Only
features selected in at least four out of five folds, i.e. ’stable features’, are retained in the final model.

Using only these stable features, a final grid search was conducted on the entire training data using 5-fold
stratified group cross-validation to determine the optimal hyperparameters. The final LR and RF models were
then trained on the full training set using the selected features and hyperparameters.
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Figure 5: Nested cross-validation with a 5-fold split in the outer loop and 3 folds in the inner loop.

2.7 Model Validation

Following model development and internal evaluation on the training set, the final LR and RF models
are further validated using an external validation set comprising new patients not involved in model
development. This secondary dataset contains two one-hour ECG recordings from eight additional patients,
and may include signals with different morphologies, mixed rhythms, or artefacts, providing a more
realistic representation of clinical conditions. Model predictions are validated by reviewing one-minute data
fragments (each corresponding to a single prediction) sampled at five-minute intervals, which is performed by
a paediatric intensivist. Given the limited dataset size, the resulting metrics are considered indicative rather
than fully representative. Misclassified cases are further examined to understand the rationale behind the
model’s predictions. This secondary validation is particularly aimed at identifying areas in need of refinement.

2.8 Statistics and evaluation metrics

Continuous variables are reported as median values with first and third quartiles (Q1–Q3). Categorical
variables are summarised as counts with corresponding percentages.

Model evaluation is based on the following performance metrics: balanced accuracy, area under the
receiver operating characteristic curve (AUROC), false positive rate (FPR) and false negative rate (FNR).
Balanced accuracy is used as the primary optimisation metric, as it accounts for class imbalance in the dataset.
For the nested cross-validation, the mean and SD of the balanced accuracy scores are reported. For the
evaluation of the final models with only the stable features on the training set, the mean performance metrics
across the cross-validation folds are reported.
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3 Results

3.1 Research population

A total of 17 patients were included in the initial training dataset, and 8 patients were included in the
secondary, validation dataset. Table 1 summarises these patients’ characteristics. The training dataset
comprises 53 fragments of JET and 30 fragments of SR. From the validation dataset, 137 were labelled
as SR, 47 as JET and 8 as other or mixed rhythms.

Table 1: Characteristics of included research population.

Characteristic Training dataset (N=17) Validation dataset (N=8)
Gender, N (%)

Male 15 (88) 5 (63)
Female 2 (12) 3 (37)

Age (days), median (Q1 - Q3) 119 (44 - 163) 83 (34 - 131)
Diagnosis, N (%)

ToF 6 (35) 1 (13)
TGA 2 (12) 1 (13)
VSD 6 (35) 1 (13)
HLHS 1 (6) 0 (0)
Borderline left heart 1 (6) 0 (0)
Truncus arteriosus 0 (0) 1 (13)
Aortic valve stenosis 0 (0) 2 (25)
Double aortic arch 0 (0) 1 (13)
Ebstein anomaly 0 (0) 1 (13)

Q1 = first quartile, Q3 = third quartile, ToF = Tetralogy of Fallot, TGA = Transposition of the Great Arteries, VSD = Ventricular Septal Defect, HLHS =
Hypoplastic Left Heart Syndrome.

3.2 Peak detection methods

Figures 6, 7 and 8 present examples of the fictive lead R, fictive lead T, and the selected lead for P wave
detection, respectively, with the corresponding detected peaks annotated. Additional examples, including
detection errors from earlier iterations, are provided in Appendix A.2.

Figure 6: Fictive lead R with detected Q, R, and S peaks and QRS start and end points.

Figure 7: Fictive lead T with detected T waves and T wave end estimates.
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Figure 8: Selected lead (I) for P wave detection with annotated T waves, T wave end estimates and P waves.

3.3 VCG loops

Figure 9 provides examples of the vector loops of QRS complexes and SQ segments of the same patient
showing SR and JET, respectively. The dominant vector found for each loop is also shown.

Figure 9: VCG loops of QRS complexes (left) and SQ segments (right) of a) SR and b) JET. 10 consecutive loops are
shown in different colours. The dominant vector of each loop is illustrated with an arrow. α denotes the vector’s angle.
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3.4 Features

Table 2 presents the median and Q1 and Q3 of the feature values for SR and JET. The Pearson correlation
matrix of all features is given in Figure 21 in Appendix A.4. It shows that pq var is moderately correlated
(>0.5) to RR sd and p ang sd. Additionally, several VCG features exhibit high collinearity (>0.7), especially
when describing the same signal segments (either SQ segments or QRS complexes). Particularly, the DTW
distances are highly correlated to the derivative-based DTW distances.

Table 2: Feature values for SR and JET, given in median and first and third quartile values. Descriptions of all features
can be found in Table 6 in Appendix A.3.

Feature SR (Median (Q1-Q3)) JET (Median (Q1-Q3))
HR 130 (116 - 145) 157 (125 - 172)
RR std 0.90 (0.58 - 1.34) 2.96 (1.9 - 6.75)
p valid 1 (1 - 1) 0.38 (0.12 - 0.62)
pq var 0.42 (0.28 - 0.58) 21.1 (8.8 - 54.4)
p angle sd 3.97 (2.38 - 5.06) 6.05 (2.66 - 9.75)
qrs mag sd 0.034 (0.02 - 0.050) 0.051 (0.033 - 0.072)
qrs angle sd 7.09 (4.36 - 12.2) 7.36 (4.04 - 14.3)
sq mag sd 0.012 (0.009 - 0.017) 0.018 (0.012 - 0.0312)
sq angle sd 2.07 (1.47 - 3.00) 2.94 (2.32 - 4.47)
sq distance 0.036 (0.027 - 0.047) 0.033 (0.025 - 0.054)
sq distance 10 0.039 (0.031 - 0.059) 0.077 (0.042 - 0.103)
qrs distance 0.11 (0.09 - 0.13) 0.13 (0.10 - 0.17)
qrs distance 10 0.22 (0.18 - 0.24) 0.24 (0.20 - 0.30)
sq der distance 0.014 (0.011 - 0.022) 0.011 (0.007 - 0.014)
sq der distance 10 0.021 (0.018 - 0.022) 0.026 (0.020 - 0.035)
qrs der distance 0.082 (0.060 - 0.098) 0.094 (0.071 - 0.117)
qrs der distance 10 0.15 (0.13 - 0.17) 0.17 (0.14 - 0.20)
sq ang distance 0.16 (0.10 - 0.26) 0.11 (0.07 - 0.19)
sq ang distance 10 0.27 (0.20 - 0.45) 0.35 (0.21 - 0.57)
qrs ang distance 0.20 (0.17 - 0.28) 0.25 (0.17 - 0.35)
qrs ang distance 10 0.65 (0.52 - 0.77) 0.79 (0.63 - 1.00)

Figure 10: Two examples of scatterplots showing the distribution of features for a window size of 60 s. Different subtypes
of JET are labelled. a) RR std and sq dtw distance 10. b) p valid and pq var.

Figure 10 presents two examples of scatter plots comparing feature values across SR and various JET
subtypes: cases with AV dissociation (AV dis), with retrograde P waves (retro) and with an unclear AV
relation (unclear). The plots indicate a clearer separation between JET and SR when using the features
p valid and pq var, whereas the distinction appears less pronounced for RR sd and sq distance 10. Various
additional scatter plots, visualising the feature values of the dominant vectors and the derivative-based and

17



3 RESULTS

angular distances, are provided in Appendix A.5. They show no clear separations between SR and JET. The
MI scores, reflecting how much each feature reduces uncertainty about the classification label, are given in
Figure 11, with p valid and pq var showing the highest scores.

Figure 11: Mutual Information scores of all features, for a window size of 60 s.

3.5 Classification Model

3.5.1 Feature selection

The results of feature selection using 60-second windows are presented in Table 3. The number of features
selected ranged from 1 to 5 for LR and from 3 to 8 for RF. While some features were consistently selected
across folds, several others were only selected once. In RF models, the features p valid, pq var and RR sd
were selected in every fold. In LR, p valid and pq var were also frequently selected, appearing 5 and 4 times,
respectively.

The results for other window sizes are summarised in Tables 9 and 10 in Appendix A.7. Across all window
sizes, the results for both LR and RF models were comparable, with similar balanced accuracy scores. The
features p valid and pq var (and RR sd in LR) were consistently selected across all window sizes. It can
be noted that when using 10-second windows, the number of selected features increased and the balanced
accuracy slightly decreased.

For the final models, features p valid and pq var were selected for LR and p valid, pq var and RR sd for
RF. The feature importances and an illustration of the decision boundary of the LR model are provided in
Appendix A.8.

3.5.2 Model performance

Model performance on the training set (for 60-second windows) is shown in Table 4. After hyperparameter
optimisation, balanced accuracy scores of 0,989 and 0,988 were achieved for LR and RF, respectively.
Performance results for other window sizes, along with the selected hyperparameters, are provided in Tables
12 and 13 in Appendix A.9. Using smaller window sizes generally led to slightly lower accuracy scores.

On the SR and JET labelled fragments of the validation dataset, the LR and RF model achieved balanced
accuracy scores of 0,899 and 0,892, respectively. The other performance metrics are provided in Table 5.
When comparing the LR and RF models, 4 predictions (2,2%) differed between them. Post-hoc analysis of
the incorrect predictions showed that all were attributable to errors in peak detection. These errors stemmed
from two main causes: variations in waveform morphology not accounted for during model development
and interference from artefacts and/or noise. Within individual recordings, multiple prediction errors were
often caused by the same underlying issue. In Appendix A.10, several examples are provided to illustrate
these types of errors.

18



3 RESULTS

Table 3: Results of nested cross-validation using LR and RF models, with automatic feature selection and hyperparameter
tuning. The mean and SD of the balanced accuracy score and the median and range of the number of features across the
5 outer loops are reported. The selected features and their count across these 5 folds are also given. 60-second windows
were used.

LR RF
Balanced accuracy
(mean (SD)) 0,935 (0,057) 0,957 (0,039)

Number of selected features
(median (range)) 2 (1-5) 4 (3-8)

Feature Times selected (N)
p valid 5 5
pq var 4 5
RR std 5
sq der dist 1 3
sq ang std 1
sq der dist 10 1
qrs dist 10 1
p ang sd 1
HR 1
qrs ang dist 10 1
sq ang dist 1

Table 4: Performance of LR and RF models on the training dataset, after 5-fold stratified group cross-validation. 60-second
windows were used. The LR model includes the features p valid and pq var, and the RF model includes p valid, pq var
and RR sd.

LR RF
Balanced accuracy 0,989 0,988
AUROC 0,997 0,992
FPR (%) 0,0 2,5
FNR (%) 2,2 0,0

Table 5: Performance of LR and RF models on validation dataset. The LR model includes the features p valid and pq var,
and the RF model includes p valid, pq var and RR sd.

LR RF
Balanced accuracy 0,899 0,892
AUROC 0,957 0,929
FPR (%) 9,5 10,9
FNR (%) 10,6 10,6

Besides the segments labelled as SR or JET, there were 8 fragments which contained premature ventricular
contractions (PVC), ectopic atrial rhythms (EAT), single nodal beats or unclear rhythms. Of these, five were
classified as JET and three as SR by both models. The presence of PVCs notably led to errors in peak
detection. For cases with EAT or single nodal beats, the impact on the features (primarily pq var) depended
on the number of deviating beats. If the deviation was significant enough, it resulted in a JET prediction.
Appendix A.10 provides several examples that demonstrate this.
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4 Discussion
This study aimed to identify distinguishing ECG and VCG features between JET and SR and develop an
automatic JET detection model, using monitor ECG data.

The features that proved to be most important to distinguish JET from SR, and that were included in the
final models are p valid, the number of detected P waves, and pq var, the variance of the PQ interval, with
RR sd also included in RF. Although other features were selected in some folds during feature selection,
their selection was highly dependent on the training data, indicating instability. These features likely reflect
patient- or instance-specific characteristics rather than generalisable indicators of JET.

The developed models achieved high balanced accuracy scores on the training dataset, with LR and RF
models attaining 0,989 and 0,988, respectively. In the secondary validation, lower balanced accuracy scores
of 0,899 and 0,892 were achieved. These lower scores suggest overfitting in the initial model, with errors
primarily originating from the peak detection stage. This highlights that peak detection is currently the most
important limiting factor for the robustness and generalisability of this method.

4.1 Comparison to literature

Two studies have reported on automatic JET detection on ECG monitor data. Waugh et al. proposed the
use of median P wave prominence and the interquartile range (IQR) of the PR interval for the classification
of JET [14]. In a LR model, they achieved an AUROC of 0,93 for a test cohort of 25 patients. However,
it should be noted that the included test cohort presented with relatively low frequency tachycardias. For
cases of high frequency tachycardias, which is commonly observed in JET, their algorithm functioned less
effectively. This may the result of the merging of P waves with T waves, making P waves difficult to detect. In
a follow-up study, Ju et al. investigated a Deep Learning (DL) approach using Convolutional Neural Networks
(CNNs), achieving an AUROC of 0,953 [15]. To address the interpretability limitations typical of DL models,
they used Local Interpretable Model-Agnostic Explanations (LIME) to visualise which parts of each heartbeat
influenced the model’s predictions. They revealed that their model primarily relied on P wave features. One
of the factors leading to classification errors was interpatient variability. False positive errors occurred in
cases where P waves had such low prominences that they were not detected. False negatives occurred in
cases of abnormal morphology.

These studies show considerable similarity to the results of this research. Our LR model achieved a
comparable AUROC of 0,957, but with the added benefit of greater interpretability and transparency than
DL models, making it more suitable as a bedside tool. Yet, it is important to note that methodological
differences, such as their beat-by-beat classification versus our segment-based classification, and the use of
different datasets, make direct performance comparisons difficult.

Nevertheless, a key conclusion drawn from all of these results is that P waves play a crucial role in the
detection of JET. Like the two mentioned studies, this research also encountered challenges with reduced P
wave prominence and morphological variation across patients. Additional challenges identified in this study,
including the presence of noise and artefacts, and other arrhythmias, were not reported in literature, because
segments exhibiting movement artifacts or unphysiological data were excluded in those studies, making their
results less representable for real-world data and clinical use. The inclusion of a secondary validation in this
study was very useful for assessing clinical applicability.

This study also introduces a broader methodological perspective by incorporating multi-lead analysis.
Unlike prior models that relied solely on lead II, our approach which leverages all available leads offers
potential advantages. It recognises that the maximum P wave amplitude may not always align with lead II,
especially within this patient group with congenital cardiac defects and often multiple prior cardiac surgeries.
Using multiple leads enhances the likelihood of reliably capturing the P wave. This principle also applies to
other ECG metrics. Since P wave detection often relies on the accurate identification of other peaks, robust
methods for detecting the peaks of the QRS complex and T wave are equally crucial. These ECG metrics also
exhibit varying morphologies across individuals. Consequently, using the VCG to compute new leads in the
optimal direction for these peaks represents an innovative approach that appears promising for enhancing
the robustness of peak detection.
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Given the challenge of distinguishing the P-wave from noise or other ECG components, this study aimed
to incorporate additional features to enhance the robustness of JET detection. However, the VCG-derived
features that were introduced did not contribute significantly to JET detection.

4.2 Interpretation of the results

VCG features

Several VCG-derived features were introduced, focusing primarily on variability across beats. These features
generally received low MI scores and were not consistently selected during the feature selection process,
indicating limited relevance for general classification. Nonetheless, exploratory scatter plots, when stratified
by JET subtypes, suggested some patterns. For instance, while in general no clear separation is seen between
SR and JET when plotting RR sd and sq distance 10 (Figure 10a), higher values for both features were seen
in JET cases with AV dissociation. Higher RR sd values are expected since JET can present as an irregular
rhythm in case of both nodal beats and capture beats. Also, higher sq distance values were anticipated
due to the P wave displaying different relative timing with each beat, causing an inconsistent beat-to-beat
morphology. However, there is still substantial overlap between JET and SR. This may be partially due to
the changes in JET being too subtle to be captured effectively by this measure. In JET, the P wave may
appear spread over the entire SQ segment, leading to higher distances, but there are also instances where
it shifts only minimally in time. In such cases, if there is a difference in beat length, DTW may still achieve
alignment with low distance scores. Conversely, noisy signals can lead to higher DTW distances, which could
explain the SR samples with higher values (see Figure 25 in Appendix A.5 for a set of examples to visualise
this). Although signal smoothing or additional filters could theoretically reduce the influence of noise, these
approaches risk suppressing the already low-amplitude P wave, potentially obscuring diagnostically relevant
information. Since the P wave is central to detecting JET, excessive filtering is undesirable. Balancing noise
reduction with the preservation of important waveform features remains an important challenge in this
research.

For distance measures of the QRS complex, aberrant conduction was hypothesised to be an additional
cause for beat-to-beat variability next to the ‘wandering’ P wave. Aberrancy can occur as a result of sudden
changes in cardiac frequency, where the length of the cardiac cycle changes without a compensatory change
in the length of the refractory period [23]. These changes in frequency are particularly expected during the
warm-up phase of JET, which is also when AV dissociation is commonly observed. However, only slightly
higher qrs distance values can be seen for JET (AV dis), with substantial overlap with SR (see Figure 22 in
Appendix A.5). This finding may also be explained by the subtle beat differences combined with the presence
of noise.

Altogether, despite the inclusion of additional measures of DTW derivative-based and angular distances,
which are theoretically useful for capturing differences in beat shape and depolarisation direction, VCG
features did not provide additional value in distinguishing JET from SR.

However, this does not preclude the potential of VCG-based features altogether. Future studies may
benefit from computing alternative metrics from the VCG, such as directional changes during more specific
signal segments, or applying these analyses selectively during rhythm transitions (e.g., onset of JET or return
to SR). Moreover, incorporating additional ECG leads, particularly the precordial leads (V1–V6), may provide
a more detailed spatial representation and thereby enhance the effectiveness of VCG-based features.

P wave features

As mentioned before, P waves and specifically the features p valid and pq var appeared to be most important
for distinguishing JET from SR. Within the training dataset, the value of p valid was consistently very
close to 1 for all SR fragments. For some JET fragments, this value was also close to 1, but this was
typically accompanied by a higher pq var value. This elevated pq var may reflect either dissociated P waves
causing true PQ variability, or noise falsely detected as P waves, resulting in higher interval variance due to
randomness. It is important to note that detecting noise is accepted within this model, as the pq var value
helps differentiate whether the detected peaks are true P waves corresponding to SR. Another key takeaway
from this finding is that the model has been trained to require a high p valid value for an SR prediction,
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implying that missing P waves would likely result in a JET prediction. This underscores the model’s strong
reliance on accurate identification of P waves.

Some detection methods used in this study may not generalise to other arrhythmias. For instance, the
P wave detection approach assumes consistent directional alignment, reflecting atrial activity from a single
origin, typically the sinus node. This assumption does not hold in arrhythmias such as EAT. In such cases,
selecting the lead with the lowest P wave angle variation may not yield reliable results.

Peak detection

Beyond P wave detection, accurate peak detection more broadly forms the foundation for many components
of this research. Some features are directly calculated from the detected R peaks, and accurate detection
of the QRS complex is essential for signal segmentation, which is followed by analysis of the vector loops.
Additionally, the computation of the fictive lead for T wave detection relies on QRS cancellation, and P wave
detection depends on accurate identification of T waves. Altogether, this creates numerous dependencies,
meaning that errors in one step can propagate through the pipeline. However, peak detection was not
the primary focus of this research and was not directly manually validated, unlike in previous work.
One key advantage of this study was that the dataset encompassed a variety of patients with different
ECG morphologies, including signals with high irregularities, inconsistent QRS complex amplitudes, and
conduction disorders such as BBBs. During model development, these abnormalities were taken into
account, allowing for the optimisation of the peak detection methods over a wide range of pathophysiologies.
Several iterations on earlier approaches improved robustness (as illustrated in Appendix A.2). Despite these
improvements, errors in peak detection persisted in the secondary validation, highlighting the need for
further refinement.

These errors were not only linked to morphological variations but also to the presence of noise and
artefacts. A contributing factor was the use of bedside monitor ECG data, which is inherently prone to signal
disturbances such as baseline wander, drift, and muscle activity, often caused by respiration, movement,
or poor electrode contact [24, 25, 26]. Although the use of this data type is considered a strength of this
study, enhancing clinical relevance and real-world applicability, it introduces practical challenges that must
be addressed through robust preprocessing and pipeline design.

Model performance

High performance was achieved in this study, with respect to annotations provided by a single expert. LR
and RF models gave comparable results. RF was included to capture potential nonlinear patterns. However,
since JET and SR were almost perfectly separable using only two features, as shown by the LR model, the
added complexity of RF may not be required for this specific classification task. In this context, LR offers
the advantage of simplicity and interpretability, making it well-suited for clinical implementation. More
complex models such as RF may become valuable when expanding to multi-class classification involving
other arrhythmias.

Since the model was trained exclusively on SR and JET fragments, a positive prediction may not be highly
specific to JET. Given the included features, the model is better described as detecting non-sinus rhythms that
lack consistent atrial activity preceding ventricular depolarisation. Consequently, other arrhythmias, such as
AV block or re-entry tachycardias, may also be classified as JET.

Performance metrics from the secondary validation were calculated only for SR and JET fragments, in
line with the study’s primary focus. However, a few additional fragments containing other rhythms were also
processed. In several of these cases, the model indeed predicted JET, although this was partially due to peak
detection errors that distorted the extracted feature values. Nonetheless, the number of such fragments was
too limited to draw any conclusions about the model’s behaviour on other arrhythmias.

The limited dataset remains a key factor influencing the generalisability of the validation results. The
training set was also imbalanced, with more JET than SR fragments. Although this imbalance could have
increased the risk of false positives, this was not specifically observed in the secondary validation results.

The model performance across different window sizes (Tables 12 and 13) indicates that 60-second
windows yield the highest performance, though the differences are relatively small. The lower performance
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observed with 10-second windows may be attributed to insufficient deviations in p valid and pq var over
shorter intervals. In particular, in cases where the nodal rate is only slightly higher than the atrial rate,
usually during the warm-up phase of JET, p valid might remain close to 1 and pq var very low, resulting in a
SR classification. Additionally, shorter window sizes led to a larger number of selected features. This could
be due to increased overlap in p valid and pq var values between SR and JET, necessitating more features to
distinguish between the two rhythms. Given the higher overall performance and expected greater robustness,
the 60-second window was used for further validation.

4.3 Limitations

This study has several methodological and data-related limitations. The labelling process, conducted by a
single paediatric intensivist, introduces subjectivity. When assessing the ECG, clinicians’ opinions may vary.
Moreover, as arrhythmias evolve over time, it is challenging to define clear thresholds for labelling a rhythm
as JET. For example, a rhythm may initially appear as SR but show occasional nodal beats, complicating the
decision of when it should be classified as JET. Furthermore, the question can be raised whether the different
phases of JET over time (warm-up, high frequency, cooling-down) should be treated as separate classes.
While various subtypes (retro, AV dis, unclear) were labelled for exploratory analysis, all JET fragments were
treated as one single class. Splitting the data into distinct classes may have revealed new patterns. However,
with the current sample size the study was not powered to conduct such subtype analysis. Furthermore, given
that only two features were sufficient to achieve high accuracy in the complete dataset and that significant
overlap was observed between SR and JET in the scatter plots of other features, it is unlikely that splitting
the subtypes would have given substantially different results in this study.

Additionally, the ECG data in this study was sampled at a frequency of 200 Hz. The American Heart
Association recommends 150 Hz as minimum bandwidth and 500 Hz as minimum sampling rate for recording
paediatric ECGs [27]. Rijnbeek et al. even recommend a higher sampling rate, after investigating errors in
maximum QRS amplitudes for different low-pass filter cut-offs [28]. They found that the youngest children,
who have the highest frequency content, also exhibit more errors. For children under 1 year old, similar
to the population in this study, they suggest a minimum bandwidth of 250 Hz and recommend a sampling
frequency of at least 1000 Hz. Insufficient sampling frequencies can lead to altered wave amplitudes, thus
limiting data quality. Using data with higher sampling frequencies could improve the quality of the data and
may enhance the performance of features. Especially those representing beat-to-beat variability, which aim
to capture very subtle differences, may benefit from improvement of data quality.

4.4 Recommendations

Several steps are recommended for further research. First, improving the robustness of the overall pipeline
is crucial, as secondary validation revealed that many errors stemmed from inaccurate peak detection. Some
mistakes occurred due to deviating waveform morphologies not encountered during model development,
which highlights the need to expand the dataset to include more patient data, allowing for further iterations.
Other mistakes occurred with high levels of noise or many artefacts, which could be addressed by improving
preprocessing. However, in these situations the P wave is often distorted or obscured by noise, which cannot
be completely restored by additional preprocessing.

Given the noise and artefacts commonly encountered in the monitor ECG, achieving a perfect peak
detection method is unlikely. Integrating automatic signal quality assessment (SQA) could help identify
unreliable segments and prevent misleading predictions. Numerous SQA techniques have been proposed
in literature, ranging from simple thresholding and morphological change detection to advanced machine
learning and signal decomposition techniques [29]. There are several straightforward approaches that could
be implemented within the model pipeline, to review peak detection accuracy. For instance, the RR sd
value can provide insight into potential issues with R peak detection. While higher values may indicate
rhythm irregularities, exceeding a specific threshold could signal errors in R peak detection. Similarly, for
T wave detection, high variability in the ST interval could point to potential issues in the identification of T
waves. Incorporating such checkpoints and refraining from making predictions when certain thresholds are
exceeded could enhance the model’s robustness. If these simple measures are insufficient to address incorrect
predictions caused by poor data quality, more complex SQA techniques should be explored.
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If manual features prove insufficient to ensure robust and specific classification, the use of DL should be
further explored, as it offers the major advantage of capturing more complex patterns. Instead of a single-beat
approach, as done by Ju et al., using multi-beat segments (as in this study) or incorporating memory
over longer time windows may improve classification by capturing temporal dynamics. Clinical rhythm
interpretation often relies on such patterns: for instance, a sudden onset of high-frequency tachycardia
may indicate re-entry tachycardia, while a gradual increase following AV dissociation is more suggestive
of JET [30]. DL models with memory components, such as long short-term memory (LSTM) models, could
help mimic this contextual reasoning, offering a way to integrate temporal patterns into classification [31].
However, their effectiveness would depend on having sufficient and representative temporal data.

Before clinical deployment, alarm logic should be refined. Since alarm fatigue is a well-recognised issue
in the PICU, an excessive number of false positives should be prevented [32, 33]. Currently, the probability
threshold for a JET prediction is set at 0.5. Adjusting this threshold, combined with requiring multiple
consecutive windows to be classified as JET, could help reduce unnecessary alerts.

If validated for long-term use, the model could support studies into JET treatment strategies, such as
antiarrhythmic drugs. A study by Sylva et al. on eight patients treated with ivabradine for JET identified an
association between higher ivabradine serum levels and lower heart rates [34]. However, the direct impact
on JET remains unexplored. With automated rhythm detection, long-term ECG data could be used to better
understand how JET evolves in response to medication over time. These insights could contribute to the
development of pharmacodynamic models that link drug levels to rhythm patterns.

5 Conclusion
This study demonstrates that P wave-related features, specifically the number of detected P waves and the
variance of the PQ interval, are most effective for distinguishing JET from SR in critically ill children with CHD
admitted to the PICU. In contrast, VCG-derived features based on beat-to-beat variability did not contribute
meaningfully to classification.

The LR and RF models achieved high balanced accuracy scores on the training set (0,989 and 0,988,
respectively). However, secondary validation revealed reduced performance (0,899 and 0,892), primarily
due to errors in peak detection. These findings underscore that accurate and robust peak detection remains
the key limitation for generalising this method to broader clinical use.
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A APPENDIX

A Appendix

A.1 Previous Research
In previous research, peak detection was applied to find the QRS peaks, T wave and P wave. Figure 12 provides a
flowchart showing the different analysis steps. From the original ECG signals, a fictive lead was created in the direction
of the highest amplitude of the signal. In this fictive lead, all peaks were detected and their prominences were fitted using
a Gaussian model, assuming a bimodal distribution. The minimum between the two peaks of this distribution was used
as prominence threshold for R peaks. Q and S peaks were subsequently detected by finding the peaks in the inverted
fictive lead within 60 ms before and after the R peak, respectively. QRS complexes were then removed from the signal,
after which a new fictive lead was created. In this lead, local maxima were detected and labelled as T waves. The start
point of Q and the end of T were both identified using a ’trapezium’s area approach’, as proposed in literature. Following
this, the signal from Q start points to T end points was removed by setting the signal to zero. Finally, another fictive lead
was created, aimed to be in the direction of the P wave. P waves were detected using a similar approach as for R peaks:
the prominence threshold was determined using a Gaussian fit model.

Using these peaks, the following features were computed: HR, SD of PR interval and fraction of P waves. Additionally,
the VCG was created (using lead I and aVF), and the SD was computed of the vector length of the initial 50 ms of the
QRS complex. Finally, a decision tree for the detection of JET was manually created, as illustrated in figure 13.

Figure 12: Flowchart of peak detection used in previous research [18].
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Figure 13: Decision tree for the classification of JET, developed in previous research [18].
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A.2 Peak detection: typical examples

R peaks

Figure 14 illustrates two approaches for R peak detection in the fictive lead. In Figure 14a, the method based on previous
research involves identifying all peaks and their prominences, followed by applying a prominence threshold derived from
a Gaussian fit (as described in Appendix A.1). This example highlights a key limitation: prominence alone may not
reliably distinguish R peaks from T waves. In contrast, Figure 14b shows the method used in this study, which also uses
the fictive lead but applies a Gaussian fit to the mean steepness (i.e., smoothed derivative) around each peak to define a
slope-based threshold. This approach improves the ability to discriminate R peaks from T waves.

Figure 14: R peak detection in the fictive lead. a) Detection using a prominence-based threshold. b) Detection using a
steepness-based threshold derived from the local signal slope. The first derivative of the fictive lead (diff) is shown to
illustrate the discriminative steepness of R peaks.

Q and S peaks

Figure 15 illustrates different Q and S peak detection approaches in a patient with a BBB. In figure 15a, the method from
previous work is applied, where Q and S peaks are detected in the inverted fictive lead within a 60 ms window around
the R peak. The latest negative peak is selected for Q and the minimum value for S. In this example, Q peaks are detected
too early due to the altered QRS morphology. Figure 15b demonstrates that simply broadening the search window does
not resolve this issue. Selecting the last Q and the lowest S in a wider window results in inaccurate detection, with Q
peaks occurring too late and S peaks too far from the actual QRS end. To address this, the method developed in this study
selects peaks based on local steepness, requiring a steep positive slope following Q and a steep negative slope preceding
S. As shown in Figure 15c, this improves peak detection in signals with conduction abnormalities.

Q start and S end

Figure 16a shows Q start detection when using the trapezium method proposed in previous work, resulting in mistakenly
identifying the P waves as Q start points. In this study, Q start is identified as the point before Q where the smoothed
derivative of the signal exceeds a certain threshold. Also, the S end point is added (needed for QRS segmentation for
VCG analysis). S end is identified as the point after the S peak where the derivative drops below a second threshold. The
resulting detections are shown in Figure 16b.
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Figure 15: Q, R, and S peak detection in the fictive lead for a signal exhibiting a BBB. a) Detection using a fixed window
and selection rules based on timing and amplitude. b) Broadened search window using the same rules, leading to
incorrect peak assignment. c) Detection based on steepness criteria, improving accuracy in altered QRS morphology.

Figure 16: Q start and S end detection in the fictive lead. a) Trapezium-based method from previous work, with
misclassification of P waves as Q start. b) Detection method using thresholds on the smoothed absolute derivative.
The derivative (diff) is shown to visualise the slope-based detection.
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T waves

In previous research, the highest amplitude of the fictive lead T within each SQ interval was marked as the T wave.
However, the presence of flat or low-amplitude T waves, which can be a normal finding in newborns, can give errors
when applying this method [35]. Figure 17 provides an example where T waves were lower in amplitude than P waves.
Consequently, when selecting the highest peak in the fictive lead T, P waves are mistakenly labelled as T waves. When
choosing the first of the two most prominent peaks, as applied in this study, T waves are correctly detected.

Figure 17: Fictive lead T with detected T waves when selecting the highest peak.

T wave end

Figure 18 shows an example of T wave end points detected when using the trapezium area approach as used in previous
research [18, 36]. It can be seen that the P waves closely follow the T waves and that they are partially superimposed.
When using this T wave end point as a starting point for searching the P wave, the P wave would be missed. It also shows
the first zero crossings of the fictive lead T (e.g. inflection points), which are used in this study.

Figure 18: Fictive lead T with detected T waves and T wave end points using the trapezium are method.
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P waves

For P wave detection, previous work proposed QRST cancellation, followed by the computation of a new fictive lead and
application a prominence threshold based on a Gaussian fit. However, this method is highly sensitive to both noise and
residual signal content after QRST cancellation. If the end of the T wave is not accurately detected, the remaining signal
may still contain T wave components. As a result, the direction used to compute the fictive lead can become distorted,
causing the lead to misalign with the true P wave orientation. This makes the method vulnerable to overlapping signals
and noise. An illustration of this issue is provided in Figure 19, where residual T wave signal dominates the fictive lead
and causes peak detection errors.

To address this issue, the current study avoids computing a fictive lead for P wave detection. Instead, peaks are
identified directly in the original ECG leads I, II, and III. A decision rule is then applied to select the lead with the clearest
P wave morphology. Figure 20 shows the improved result on the same signal.

Figure 19: P wave detection using a fictive lead. a) Illustration of QRST cancellation in lead II. b) Fictive lead P with
detected P waves based on prominence limit. c) The same detected P waves, demonstrated on lead II.

Figure 20: Lead II with detected P waves using this study’s method.
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A.3 Feature descriptions

Table 6: Overview of features with brief descriptions.

Feature Description
HR Heart rate
RR sd SD of RR intervals
p valid number of identified P waves (relative to number of QRS complexes)
pq var variance of PQ intervals
p ang sd SD of P wave angles
qrs mag sd SD of dominant vector magnitude of QRS complex
qrs angle sd SD of dominant vector angle of QRS complex
sq mag sd SD of dominant vector magnitude of SQ segment
sq angle sd SD of dominant vector angle of SQ segment
sq distance DTW (Euclidean) distance of SQ segment
sq distance 10 DTW (Euclidean) distance of SQ segment - highest 10% of local distances
qrs distance DTW (Euclidean) distance of QRS complex
qrs distance 10 DTW (Euclidean) distance of QRS complex - highest 10% of local distances
sq der distance DTW derivative-based (Euclidean) distance of SQ segment
sq der distance 10 DTW derivative-based (Euclidean) distance of SQ segment - highest 10% of local distances
qrs der distance DTW derivative-based (Euclidean) distance of QRS complex
qrs der distance 10 DTW derivative-based (Euclidean) distance of QRS complex - highest 10% of local distances
sq ang distance DTW angular distance of SQ segment
sq ang distance 10 DTW angular distance of SQ segment - highest 10% of local distances
qrs ang distance DTW angular distance of QRS complex
qrs ang distance 10 DTW angular distance of QRS complex - highest 10% of local distances

A.4 Feature correlations

Figure 21: Pearson correlation matrix of all features, when using a window size of 60 s.
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A.5 Feature trends

Figure 22: Scatter plot showing the distribution of features RR sd and qrs distance 10 (window size of 60 s). Different
subtypes of JET are labelled.

Figure 23: Scatter plots showing the distribution of VCG features of the dominant vector (window size of 60 s). Different
subtypes of JET are labelled. a) SD of magnitude and angles of QRS complex. b) SD of magnitude and angles of SQ
segment.

Figure 24: Scatter plots showing the distribution of DTW distance measures of QRS loops (y-axis) and SQ segments
(x-axis) (window size of 60 s). Different subtypes of JET are labelled. a) Derivative-based distance b) Angular distance.
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Figure 25: SQ segments of four different data fragments. On the left, the VCG loop is shown. The middle and right
figures show lead I and aVF, respectively. The 30 loops, evenly sampled over 60-second windows, are presented in
different colours. a) JET with AV dissociation, with high DTW distance. b) JET with AV dissociation, with low DTW
distance. c) SR with low DTW distance. d) SR with high DTW distance.
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A.6 Model hyperparameters

Table 7: Parameters used for LR model optimisation.
Parameter Values

Feature selection (RFE) n features to select range(1, n features+1)
LR model C [0.01, 0.1, 1, 10, 100]

Table 8: Parameters used for RF model optimisation.
Parameter Values

Feature selection (SelectFromModel) threshold [mean, median, 0.01]

RF model
n estimators [10, 50, 100, 200]
max depth range(1,11)
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A.7 Feature selection

Table 9: Results of nested cross-validation using a Logistic Regression model, with automatic feature selection (RFE) and
hyperparameter tuning (grid search). The mean and SD of the balanced accuracy score and median and range of the
number of features across the 5 outer loops are reported. The selected features and their count across these 5 folds are
also given.

Window size (s)
60 30 20 10

Balanced accuracy
(mean (SD)) 0,935 (0,057) 0,935 (0,029) 0,957 (0,023) 0,930 (0,030)

Number of selected features
(median (range)) 2 (1-5) 2 (1-4) 2 (1-2) 2 (2-6)

Feature Times selected (N)
p valid 5 5 5 5
pq var 4 4 4 5
sq der dist 1
sq ang std 1 1 1
sq der dist 10 1
qrs ang std 1
RR std 1
qrs dist 10 1
qrs mag std 1

Table 10: Results of nested cross-validation using a Random Forest model, with automatic feature selection (based on
feature importances) and hyperparameter tuning (grid search). The mean and SD of the balanced accuracy score and
median and range of the number of features across the 5 outer loops are reported. The selected features and their count
across these 5 folds are also given.

Window size (s)
60 30 20 10

Balanced accuracy (%)
(mean (SD)) 0,957 (0,039) 0,952 (0,044) 0,957 (0,029) 0,920 (0,013)

Number of selected features
(median (range)) 4 (3-8) 3 (3-8) 3 (3-4) 3 (3-16)

Feature Times selected (N)
p valid 5 5 5 5
pq var 5 5 5 5
RR sd 5 5 5 5
sq der dist 3 1 1
p ang sd 1 1 2
HR 1 2 1 2
qrs dist 10 1 1
qrs ang dist 10 1 1 1
sq ang dist 1 1
sq der dist 10 1
sq dist 10 1 2
sq ang sd 2
qrs mag sd 2
sq dist 1
qrs ang std 1
qrs dist 1
sq ang dist 10 1
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A.8 Final models

Table 11 presents the feature contributions of the final LR and RF model. The left column shows the coefficients from the
LR model (interpretable as the direction and relative strength of association), while the right column displays the feature
importances as computed by the RF model (indicating the relative contribution to model prediction based on impurity
reduction).

Figure 26 illustrates the decision boundary of the LR model.

Table 11: Coefficients and feature importance scores for final LR and RF model.
LR
coefficients

RF
feature importances

p valid -8,53 0,46
pq var 11,86 0,34
RR sd x 0,19

Figure 26: Illustration of decision boundary of LR model.
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A.9 Model performance

Table 12: Performance of LR models on the training dataset using the following features: p valid and pq var. The
optimised hyperparameters are also given.

Window size (s)
60 30 20 10

Balanced accuracy 0,989 0,969 0,976 0,950
AUROC 0,997 0,992 0,994 0,987
FPR (%) 0,0 1,3 2,2 3,1
FNR (%) 2,2 4,9 2,6 6,9
hyperparameters:
C 100 10 100 10

Table 13: Performance of RF models on the training dataset using the following features: p valid, pq var and RR sd. The
optimised hyperparameters are also given.

Window size (s)
60 30 20 10

Balanced accuracy 0,988 0,960 0,958 0,938
AUROC 0,992 0,989 0,993 0,982
FPR (%) 2,5 3,9 5,7 8,0
FNR (%) 0,0 4,1 2,7 4,4
hyperparameters:
max depth 4 4 5 8
n estimators 100 10 100 50
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A.10 Secondary validation: examples of misclassification

Different morphologies

Figure 27 illustrates an example of an SR rhythm, where errors occurred in the detection of Q start. In this signal, the PR
interval is very short, and the expected isoelectric line is absent. Since the Q start is identified by locating a point with a
low signal derivative, this criterion fails in some instances, causing the algorithm to mistakenly mark the peak of the P
wave as the Q start. Consequently, several P waves are missed.

Figure 27: SR fragment illustrating mistakes in Q start detection, resulting in missed P waves.

Figure 28 provides another example of a signal with deviating morphology. T waves are substantially higher than the
QRS complexes. Their increased amplitude, combined with their sharp peaks, leads to misidentification as R peaks. As
a result, certain peaks actually belonging to the QRS complex are incorrectly identified as P waves. This leads to high
p valid and low pq var values, resulting in an SR classification.

Figure 28: JET fragment. T waves were the most dominant in this signal, and are identified as R peaks by the detection
model.
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Noise and artefacts

Figure 29 illustrates a noisy SR signal in which several T and P waves are incorrectly detected. In some cases, the T
wave is identified too early and subsequently the actual T wave is classified as a P wave. Additionally, the presence of
high-frequency noise with relatively large amplitude makes it difficult to accurately identify the P wave. This results in a
high pqvar value, leading to a JET classification.

Figure 29: SR fragment with several errors in T and P wave detection, caused by a noisy signal.

Figure 30 shows a signal affected by an artefact, leading to an incorrect R peak detection and two missed R peaks.
Elsewhere in the signal, the presence of noise causes some P waves to be detected at incorrect time points. Additionally,
two P waves are missed, possibly due to their low prominence.

Figure 30: SR fragment illustrating mistakes in R peak detection around an artefact. Additionally, several mistakes in P
peak detection are made. a) Fictive lead R with QRS peaks. b) Lead I with T and P waves.
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A APPENDIX

Other arrhythmias

In figure 31, en example is given of a signal with several PVCs. Due to the high amplitude of these PVCs, the fictive lead
R is constructed in a direction that does not align with the predominant orientation of the normal QRS complexes. As a
result, many R peaks are missed, influencing the detection of the other peaks as well. In this case, the calculated heart
rate is extremely low, but since there is only one ’window’ where P waves are detected, p valid is 1 and pq var is 0,
leading to a SR prediction. In case of more than two PVCs, pq var becomes higher, resulting in a JET prediction.

Figure 31: Signal with PVCs, leading to mistakes in R peak detection. Fictive lead R is shown with detected QRS peaks
and P waves.

Figure 32 illustrates a SR signal with some extra beats, which may be nodal or atrial beats. This causes several absent P
waves and some irregularity. In this case, it only slightly affects the feature values and the predicted class is SR.

Figure 32: SR signal with some extra beats, either of nodal or atrial origin.

In figure 33, a rhythm is shown which changes into an AET, where the direction of the atrial depolarization changes. It
causes an increase in the value of pq var and leads to a JET prediction.

Figure 33: Signal converting to an atrial rhythm.
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