

23-10-2019

MSc thesis in Geomatics for the Built Environment

Automatic Conversion of CityGML to IFC

Nebras Salheb

2019

2

3

Automatic Conversion of CityGML to IFC

A thesis submitted to the Delft University of Technology in partial fulfillment of

the requirements for the degree of

Master of Science in Geomatics for the Built Environment

By

Nebras Salheb

October 2019

4

Nebras Salheb: Automatic Conversion of CityGML to IFC (2019)

This work is licensed under a Creative Commons Attribution 4.0 International

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group

Department of Urbanism

Faculty of the Built Environment & Architecture

Delft University of Technology

Supervisors: Prof.dr. Jantien Stoter

Dr. Ken Arroyo Ohori

Michiel Boelhouwer

Co-reader: Dr. Pirouz Nourian

http://creativecommons.org/licenses/by/4.0/

5

ABSTRACT

This study presents a methodology to convert from the most dominant 3D city model standard in

3D GIS to BIM. Namely, CityGML to IFC. IFC is chosen because it is the common open standard

to exchange data in the BIM world. For the aim of this study, the two standards are divided into 5

comparable subparts; Semantics, Geometry, Geographical coordinates, Topology, and Encoding.

The characteristics of each of these subparts are studied and a theoretical conversion method is

proposed for it from the first standard to the other. This is done by performing a semantic and

geometrical mapping between the two standards, converting the georeferencing from Global to

local, converting the encoding that the two standards use from XML to STEP, deciding which

topological relations are to be retained, and providing a basic implementation that is created using

Python to combine the above tasks. The work presented in this thesis can provide a foundation for

future work in converting CityGML to IFC. It provides an insight into the relationship between

the two standards and a methodology for the conversion from one to the other, and the process of

developing software to perform such conversion. This is done in a way that can be extended for

future specific needs.

6

7

ACKNOWLEDGEMENTS

Finishing my graduation thesis comes with challenges that I have overcome with the support of

people around me. My deepest appreciation goes to Ken Arroyo Ohori whose continues support

and advice were innumerably valuable throughout the thesis work. Special thanks also go to

Jantien Stoter whose comments made an enormous contribution to my work and who provided me

with big learning opportunities both inside and outside the university. I would also like to thank

all the others from the 3D geoinformation group for being there whenever I need any help or advice

including Kavisha Kumar, Abdoulaye Diakite, and Hugo Ledoux.

I would like to thank all the other teachers from the MSc Geomatics at the TU Delft, particularly

Pirouz Nourian and Mathias Lemmens for their contribution during the time of this thesis.

I would like to thank all the colleagues from the department of “Basisinformatie” at the

municipality of Rotterdam who provided me with all the resources possible to make my work there

a success. I would like to particularly thank Michiel Boelhouwer who directly supervised me and

generously provided me with all the connections and knowledge that I required. Furthermore, I

would like to express my deepest gratitude to the following for their time and knowledge: Timo

Erinkveld, Christian Veldhuis, Christian Wisse, and Alexander Boersema.

 I would also like to express my gratitude to my friends in the Netherlands for their moral support

and warm encouragement. And to my family who no matter how far they are, they are always in

my heart.

8

9

CONTENTS

1 Introduction ... 14

 Background .. 14

 Motivation and problem statement ... 14

 Research question ... 19

 Use Case ... 19

 Scientific relevance .. 20

 Scope .. 20

 Thesis outline ... 21

2 Background .. 22

 CityGML .. 22

2.1.1 Multi-scale representation ... 22

2.1.2 Semantics .. 24

2.1.3 Geometry... 27

2.1.4 Coordinates ... 27

2.1.5 Topology ... 28

2.1.6 Encoding ... 29

 IFC .. 32

2.2.1 Semantics .. 33

2.2.2 Geometry... 34

2.2.3 Coordinates ... 34

2.2.4 Topology ... 36

2.2.5 Encoding ... 36

10

3 Related work .. 38

 Matching IFC and CityGML schemas ... 38

 Conversion of 3D-Geoinformation to BIM .. 38

 Conversion of IFC to CityGML ... 40

 Georeferencing BIM .. 41

 Software ... 42

3.5.1 FZKViewer ... 42

3.5.2 CityGML2CAD .. 42

4 Methodology .. 43

 Overview of methodology .. 43

4.1.1 Source Data ... 46

4.1.2 Filtering the Dataset .. 46

4.1.3 Creating IFC dataset ... 47

4.1.4 Make the data accessible for users .. 47

 Encoding... 48

 Geometry .. 50

 Coordinates... 54

 Semantics ... 59

 Topology .. 65

 User accessibility.. 67

 Methodology results ... 70

5 implementation .. 73

 Program Description .. 73

5.1.1 how to use program ... 74

 Data description.. 75

11

5.2.1 Rotterdam3D ... 75

5.2.2 Other data sources ... 76

 Tools ... 76

6 Validation .. 78

 FZK Viewer.. 78

 IfcCheckingTool... 81

 Checking other files ... 84

 IFCRELAGGREGATES ... 85

 Checking with users ... 86

7 Conclusions ... 88

 Research questions ... 88

 Discussion .. 91

 Limitations ... 92

 Future work .. 92

8 Appendices .. 95

A. Revit error.log .. 95

B. Complete Program.. 98

C. methodology resulting data model ... 106

9 References ... 107

12

TABLE OF FIGURES

Figure 1- From CityGML to BIM ... 16

Figure 2- IFC can be added to the export possibilities of Rotterdam3D 17

Figure 3- Importing CityGML to a BIM software such as Revit to provide context for BIM

models ... 18

Figure 4- Contextual design of a new building on the Wilhelminapier requires the BIM models

of the immediate surroundings.. 20

Figure 5- Top-level class hierarchy of CityGML (Kolbe—2009—Representing and Exchanging

3D City Models with Ci.pdf, n.d.). ... 24

Figure 6- UML diagram of CityGML’s building model (Gröger et al., 2012) 26

Figure 7- Polygon primitive example ... 28

Figure 8- relationship from Window towards the Room according to CityGML schema 28

Figure 9- Rectangular GroundSurface in CityGML (XML data format) 31

Figure 10-IFC example ... 32

Figure 11-IFC building (El-Mekawy et al., 2012) .. 33

Figure 12- Separation of geometry and semantics in the IFC data model 34

Figure 13- IFCSite as part of the spatial structure (buildingsmart, 2019a) 35

Figure 14- Two options for the relationship from IfcWindow towards the IfcSpace according to

user requirements .. 36

Figure 15- Ground/Slab rectangular surface in IFC (STEP data format) 37

Figure 16- BIM creation processes for new and existing buildings (Volk et al., 2014) 39

Figure 17- Workflow of the solution (Diakité & Stoter, 2017) .. 39

Figure 18- FZKViewer convert bridge from CityGML (left) to IFC (right) 42

Figure 19- Overview of methodology... 44

Figure 20- Research workflow from CityGML to IFC ... 45

Figure 21- Webtool place in the workflow ... 47

Figure 22-Adding IFC to Rotterdam 3D export ... 48

Figure 23-example of CityGML GroundSurface geometry to be converted to IFC..................... 51

Figure 24- Resulting geometry model for IFCSLAB ... 52

Figure 25- Converting from CityGML geometry to IFC .. 53

file:///C:/Users/nebra/Desktop/12-01-2018/Nebras_Salheb_%20P5+++.docx%23_Toc23157255
file:///C:/Users/nebra/Desktop/12-01-2018/Nebras_Salheb_%20P5+++.docx%23_Toc23157275

13

Figure 26- Creating a reference point based on minimum values .. 54

Figure 27- Converting calculating local referencing to all points .. 55

Figure 28- Transformation file example ... 56

Figure 29- from CityGML to IFC geographical transformation ... 57

Figure 30- The data model of CityGML Building .. 61

Figure 31-Rotterdam3D visualization... 62

Figure 32_Semantic mapping application .. 63

Figure 33- Defining the object type (IFCWall) and the namespace (bldg:WallSurface) based on

the source entity in CityGML (WallSurface).. 64

Figure 34- the use of IfcRelAggregates to establish a spatial structure including site, building,

building section and storey (“IfcSpatialStructureElement,” 2019)... 66

Figure 35-visualizing CityGML for users using cesium... 67

Figure 36- Incorporating methodology within 3DCityDB ... 68

Figure 37-Incorporating conversion tool within the frame of FME server. 69

Figure 38- The complete methodology resulting data model ... 71

Figure 39- Source CityGML example dataset .. 72

Figure 40- Resulting IFC dataset .. 72

Figure 41- Snapshot of the GitHub repository .. 73

Figure 42-Rotterdam3D Building Model.. 75

Figure 43- CityGML Building (left) Composed of 2D surfaces. IFC Building (right) with

enhanced geometry composed of SweptSolid .. 92

file:///C:/Users/nebra/Desktop/12-01-2018/Nebras_Salheb_%20P5+++.docx%23_Toc23157290
file:///C:/Users/nebra/Desktop/12-01-2018/Nebras_Salheb_%20P5+++.docx%23_Toc23157293
file:///C:/Users/nebra/Desktop/12-01-2018/Nebras_Salheb_%20P5+++.docx%23_Toc23157294

14

1 INTRODUCTION

 BACKGROUND

Since 2008 there was an increase in the use of Building Information Modeling (BIM) within the

construction industry. It has been increasingly adopted to improve the construction process to save

both time and money, and to decrease the number of requests of information(Lee & Hollar, 2013,

p. 1). Similarly, Geographic information systems (GIS) have been increasingly used to generate

detailed 3D data (Ohori, Diakité, Ledoux, Stoter, & Krijnen, n.d.).

Both GIS and BIM are able to provide 3D data. However, there are major differences between the

two in terms of their characteristics and focus. The main focus of the BIM field is on the

information regarding building sites and its design and construction. Hence, it contains information

about all the physical elements that comprise an individual building as it is designed or built. This

results in that BIM is more detailed and semantically rich than GIS. On the other hand, GIS has

less detailed but more updated datasets describing the environment in a wider area (Ohori, Diakité,

Ledoux, Stoter, & Krijnen, 2018).

The trend of increased usage of both BIM and 3D GIS, and the similarity between the two has also

led to an increase in the overlap between them. A possible application of such overlap is providing

context data for BIM models through importing 3D GIS to BIM, which is the focus of this research.

 MOTIVATION AND PROBLEM STATEMENT

In the process of creating a new BIM project, architects and engineers go through different steps

from creating a schematic model to creating a digital representation of the building in BIM.

Throughout these steps, GIS can be integrated. That means blending a layer of geospatial context

into the BIM model. This is beneficial because GIS and BIM operate on different scale levels. GIS

provides information at the city level. While BIM data applies to designing and building a specific

shape or structure. In the BIM model the physical structure is designed at an object level, for

example sketching and placing a door, window or wall.By adding GIS data , BIM model can be

managed within the context of a larger and smarter landscape. For example, a building will be

15

connected to a parcel of land, utilities, and roads (“GIS and BIM Integration Will Transform

Infrastructure Design,” 2018).

Currently, the above-mentioned GIS integration within BIM is challenging, due to the different

data models used for both, hence the lack of interoperability between the two. The aim of the

research is to help to bridge this gap by providing a method to convert common data models from

3D GIS to BIM.

The dominant GIS standard for storing city models is CityGML which is“an open data model and

XML-based format for the storage, analysis, representation, and exchange of semantic 3D city

models. The common information model behind CityGML defines classes and relations for the

most relevant topographic objects in cities and regional models with respect to their geometrical,

topological, semantic and appearance properties” (Gröger, Kolbe, Nagel, & Häfele, 2012). The

CityGML information model is becoming the de-facto standard for storing and managing urban

geographical information.

On the other hand, designers and engineers usually design the buildings using BIM models which

are stored in different data formats one of which is IFC. An IFC dataset is an open data standard

commonly used to develop and exchange BIM models. By taking the surrounding CityGML data

and converting it to IFC; The resulting IFC models could give context to designers directly in their

software, this would help them in multiple design-related issues such as visualizing the shadow

that their new building casts on neighboring buildings, assessing quickly whether the gardens of

neighbors are visible…etc. see Figure 2 and Figure 3.

It is difficult for BIM users to use CityGML in their models because of the lack of support in BIM

software for 3D Geo-information in general and for CityGML in particular. The aim of this

research is to make Geo-information models more useful for them by developing a method for

automatic conversion of CityGML dataset to IFC.

This conversion can also encourage the production of BIM models that are possible to be prepared

and later be exported to CityGML by being properly Georeferenced and following a certain

standard.

16

Another application for converting CityGML to IFC is creating complete BIM models for

buildings that require one, this can be done by applying this conversion to CityGML with a high

level of detail such as LOD3 or LOD4.as shown in the figure below:

In the above figure, a building modeled in CityGML LOD3 is converted to a simple IFC model.

and then the IFC model is improved by adding the necessary elements and attributes to create a

BIM model.

Another possible application of the CityGML to IFC conversion methodology is the use of the

resulting models to create a simplified BIM model of buildings and then develop the models using

BIM software. This can be useful to create thematic representations of buildings to show the

location of users for example.

CityGML LOD3 Simple IFC model

Complete IFC model Complete BIM model

1 2

3 4

Figure 1- From CityGML to BIM

17

Figure 2- IFC can be added to the export possibilities of Rotterdam3D

18

1- For a construction lot, The

surrounding buildings are defined in

the CityGML dataset.

2- The surrounding buildings are then

exported from CityGML to IFC.

3- Lastly, the surrounding buildings are

imported to the BIM software of

choice and the new building is then

developed within its context.

Figure 3- Importing CityGML to a BIM software such as Revit to provide context for BIM models

19

 RESEARCH QUESTION

HOW TO MAKE 3D CITYMODELS ACCESSIBLE IN DESIGN & CONSTRUCTION

SOFTWARE?

The aim is to propose a method to convert CityGML data to IFC. To apply this transformation, the

following sub-questions should be answered:

- What are the requirements for CityGML to IFC conversion?

- How to map semantics from CityGML to their equivalents in IFC?

- How to generate IFC Geometry Resource from CityGML?

- How to spatially reference the resulting IFC models?

- What kind of topology should be retained in the resulting IFC model?

- How to make the conversion methodology for CityGML to IFC accessible for

users?

 USE CASE

To clarify the practical implementation of the project, the following use case is introduced:

An architectural firm is designing a new tower on the south side of “Wilhelminapier” in Rotterdam.

In order to make the tower more coherent with the surrounding, they need to incorporate the

surrounding buildings as 3D models in their BIM model during the design phase. The aim of this

research is to facilitate this procedure by allowing the architects the company to download the

surrounding area of the project from the city’s 3D model in IFC format Figure 4.

For this conversion to be successful, several metrics are set for the resulting model to fulfill. The

amount of these metrics that the resulting BIM can grasp will be considered as an indication of the

performance and completeness of the resulting BIM model. BIM Performance generally refers to

many metrics that cover the abilities and deliverables of a BIM model. In this research, the

following metrics are set based on different conversations with BIM users and creatures and

bounded by the scope of research; The ability of the model to visualize reality, simulate shadows,

detect clashes between elements, heat simulation, and others.

to fulfill these requirements, the model should include specific characteristics in terms of

geometry, topology, and semantics. It is also worth noting that the above-mentioned use case is

20

merely an example, and the methodology will be tested on multiple other use cases and different

city objects (other than buildings).

.

Figure 4- Contextual design of a new building on the Wilhelminapier requires the BIM models of the immediate surroundings

 SCIENTIFIC RELEVANCE

This research aims at bridging the gap between 3D GIS and BIM. This field is quite extensively

studied in terms of converting BIM to 3D GIS, but the research is limited in the opposite

conversion (from 3D GIS to BIM). Moreover, no research is found dealing with this issue on the

data level which is focused here in this research.

 SCOPE

The research focuses on converting CityGML to IFC datasets since these are the most relevant

data formats for the aim of the research. Other geographic features that are presented in GML but

not in CityGML will not be focused on, such as noise and pollution models.

21

Moreover, Other BIM data formats such as.RVT and .NWD are not included in the research

because of their proprietary nature and less relevance for the aim the research. Other IFC formats

such as .ifcXML and .ifcZIP will not focused on since .ifc is the common data exchange format.

This research aims at producing semantically accurate IFC buildings from CityGML, and making

sure that these models can be imported in BIM software. Other CityGML features are converted

into semantically accurate IFC objects when possible, otherwise, it can be converted to generic

IFC objects within the scope of this research.

Developing a web-based tool to disseminate the resulting IFC dataset for users is important to

practically give access for the user to the developed methodology. Therefore, it is studied but it is

not the focus of the research.

 THESIS OUTLINE

Chapter 1 contains the introduction of the research where the problem statement and the problem

background are introduced and the scientific relevance and the scope. Chapter 2 contains

background information regarding the methodology including a description of both CityGML and

IFC and an overview of the related work. Chapter 3 covers related work. Chapter 4 covers the

conversion methodology for semantics, geometry, data, and georeferencing. The implementation

of the methodology is covered in Chapter 5 including checking the validity of the results and

making the data accessible for users. Chapter 6 includes the conclusions, recommendations and

future work derived from this research.

22

2 BACKGROUND

To propose a method for converting CityGML data to IFC, a proper understanding of the different

aspects of both standards is needed. In this chapter, these different aspects are presented and

compared to provide a good basis for developing a methodology.

 CITYGML

CityGML (Consortium., 2012.) is the most common standard to store and exchange 3D city models

that includes semantics in the 3D GIS domain. It has a structured way to describe the geometry

and semantics of topographic features such as buildings and roads (Arroyo Ohori, Diakité, Krijnen,

Ledoux, & Stoter, 2017). The representation of spatial objects in CityGML is based on the GML3

(Geography Markup Language 3) schema.

In CityGML objects can be represented in five different levels of detail. These objects represent

four different aspects of virtual 3D city models; semantics, geometry, topology, and appearance.

These aspects will be discussed in this subchapter with a particular focus on building features since

it is the focus of the research.

2.1.1 Multi-scale representation

There are five levels of detail (LOD) in CityGML, which can help both the provider and the

customer to indicate the quality class of a CityGML dataset and makes the datasets comparable in

terms of granularity, complexity, and accuracy (“Kolbe - 2009 - Representing and Exchanging 3D

City Models with Ci.pdf,” p. 18).

 Objects become more detailed with the increased LOD and it differs regarding its geometry and

thematic representation, and objects can be represented in different LODs simultaneously. These

LODs derive from data collection processes and facilitate efficient visualization and data analysis.

LODs of buildings feature are represented in the following table:

23

Buildin

g

Feature

Geometry LOD-0 LOD-1 LOD-2 LOD-3 LOD-4

Building

Footprint

gml:MultiSurf

ace
✓ ✓ ✓ ✓ ✓

Building

Volume

gml:MultiSurf

ace

 ✓ ✓ ✓ ✓

Facades

of

Building

gml:MultiSurf

ace

 ✓ ✓ ✓ ✓

Outer

Building

Installati

on

ImplicitGeom

etry

 ✓ ✓ ✓

Openings

(Door

and

Window)

gml:MultiSurf

ace

 ✓ ✓

Rooms gml:Solid or

gml:MultiSu

rface

 ✓

Interior

Building

Installati

ons

ImplicitGeo

metry

 ✓

Table 1-CityGML Building Features and associated geometries (Gröger & Plümer, 2012),(Kavisha, 2015), own work.

24

2.1.2 Semantics

In CityGML features are an abstraction of real-world objects and modeled by classes that are

specified using UML notation. Geographic features may have an arbitrary number of spatial and

non-spatial attributes. Object-oriented modeling can be applied in order to create a specialization

and aggregation hierarchies. As shown in Figure 5- Top-level class hierarchy of CityGML

(Kolbe—2009—Representing and Exchanging 3D City Models with Ci.pdf, n.d.).

CityGML provides class definitions, normative regulations, and explanations of the semantics for

the most important geographic features within virtual 3D city models including buildings, DTMs,

water bodies, vegetation, and city furniture. (Kolbe—2009—Representing and Exchanging 3D

City Models with Ci.pdf, n.d.)

Figure 5- Top-level class hierarchy of CityGML (Kolbe—2009—Representing and Exchanging 3D City Models with Ci.pdf, n.d.).

25

 Looking at the data model of buildings. Figure 6. We find that a Building or a BuildingPart is

described by optional attributes inherited from AbstractBuilding.

Starting from LOD2 the boundary surfaces of Buildings and BuildingParts can be represented as

semantic objects. BoundarySurface is the abstract superclass of these thematic objects that include

as subclasses; RoofSurface, WallSurface, GroundSurface, ClosureSurface, CellingSurface,

26

FloorSurface ... etc. They also derive from the class CityObject to inherit its attributes and

relations.

Starting from LOD3 openings such as doors and windows can be represented. Rooms can be

represented only in LOD4.

Figure 6- UML diagram of CityGML’s building model (Gröger et al., 2012)

27

2.1.3 Geometry

CityGML is a subset of the GML3 model where geometries of geographic features are represented

as objects that have an identity and further geometric substructures. These objects have a geometry

that is described using GML.

Composite geometries like CompositeSurface must be topologically connected and isomorphic to

a primitive of the same dimension (e.g. Surface)

Aggregate geometries like MultiSurface or Multi-Solid do not impose topological constraints and

thus their components can also permeate each other or be disjoint.

Volumetric geometries are modeled according to Boundary Representation where each solid is

bounded by a closed surface (typically CompositeSurface).

ImplicitGeometry which is an extension of GML3 that refer to a shape geometry in a local

coordinate system that can be reused. For example, it can be used for tree and city furniture.

Curved Geometries are not supported; hence it needs to be approximated.

Buildings and building objects' geometrical representations are defined implicitly. Which means

that an object is defined by attributes that define its sub-elements which are then combined to form

the complete object.

2.1.4 Coordinates

In CityGML all coordinates belong to a world coordinates reference system (CRS) and local

transformations are not allowed. In addition to 3D CRS, GML support 2D+1D CRS which means

that x and y coordinates will have a different reference system than the vertical coordinates z.

The advantage of having only absolute coordinates is that each geometry belongs to exactly one

fixed place in space which helps in creating and maintaining spatial indexes in geodatabases or

geoinformation systems. However, one big disadvantage is that shape definition cannot be reused.

Here ImplicitGeometry can be used. ImplicitGeometry has, in addition to a local coordinate system,

a transformation matrix and an anchor point in a world CRS.

28

Because of the explicit association of each geometry with CRS; Integrating different CityGML

datasets can be done by applying the respective geodetic datum and coordinates transformation.

2.1.5 Topology

The topology model of GML3 follows the line of full decomposition of n-dimensional topological

primitives into (n-1)-dimensional primitives, which again are decomposed down to the level of

nodes (0D). Each primitive becomes an object with ID; Figure 7- Polygon primitive

example(Kolbe, 2009). (Kolbe, 2009)

<gml:Polygon gml:id="ID_b1b63cd4-2a3e-46fa-bed4-3b4fb27a6c10">

<gml:exterior>

<gml:LinearRing>

<gml:posList>93980.525 432736.058 -1.90642999999905

93982.817 432733.142 -1.90642999999905 93978.625

432729.81 -1.90642999999905 93976.321 432732.709 -

1.90642999999905 93979.07 432734.899 -

1.90642999999905 93980.525 432736.058 -

1.90642999999905</gml:posList>

</gml:LinearRing>

</gml:exterior>

</gml:Polygon>

Figure 7- Polygon primitive example

In CityGML the schema of the relationship between elements is well defined, for example the

relation between a window and a room is defined in the schema as shown in the following Figure

8- relationship from Window towards the Room according to CityGML schema Figure 8:

Figure 8- relationship from Window towards the Room according to CityGML schema

29

2.1.6 Encoding

CityGML is an application schema for GML3 that is based on XML. It provides a common

definition of basic entities, attributes and relations of a 3D city model. Being based on XML;

CityGML has a tree representation of this data and it usually preferred on the server-side, this tree

will create a hierarchal structure that reaches down to individual features and attributes. A typical

CityGML project will consist of a collection of XML files. Where each will represent a part of the

dataset. besides, some image files can also be included. These files represent the textures and it is

pointed at in the XML files. The CityGML datasets can be divided into different areas or LODs or

based on object types. (Gröger et al., 2012). See examples in Figure 7 and Figure 9.

30

<?xml version="1.0" encoding="UTF-8"?>

<core:CityModel

 xmlns:bldg="http://www.opengis.net/citygml/building/1.0"

 xmlns:luse="http://www.opengis.net/citygml/landuse/1.0"

 xmlns:app="http://www.opengis.net/citygml/appearance/1.0"

 xmlns:xAL="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"

 xmlns:base="http://www.citygml.org/citygml/profiles/base/1.0"

 xmlns:frn="http://www.opengis.net/citygml/cityfurniture/1.0"

 xmlns:smil20lang="http://www.w3.org/2001/SMIL20/Language"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:tex="http://www.opengis.net/citygml/texturedsurface/1.0"

 xmlns:wtr="http://www.opengis.net/citygml/waterbody/1.0"

 xmlns:smil20="http://www.w3.org/2001/SMIL20/"

 xmlns:grp="http://www.opengis.net/citygml/cityobjectgroup/1.0"

 xmlns:core="http://www.opengis.net/citygml/1.0"

 xmlns:veg="http://www.opengis.net/citygml/vegetation/1.0"

 xmlns:sch="http://www.ascc.net/xml/schematron"

 xmlns:gen="http://www.opengis.net/citygml/generics/1.0"

 xmlns:dem="http://www.opengis.net/citygml/relief/1.0"

 xmlns:gml="http://www.opengis.net/gml"

 xmlns:tran="http://www.opengis.net/citygml/transportation/1.0">

 <gml:boundedBy>

 <gml:Envelope srsName="EPSG:28992" srsDimension="3">

 <gml:lowerCorner>93976.321 432729.81 -

1.90642999999905</gml:lowerCorner>

 <gml:upperCorner>93982.817 432736.058 -

1.90642999999905</gml:upperCorner>

 </gml:Envelope>

 </gml:boundedBy>

 <core:cityObjectMember>

 <bldg:GroundSurface>

 <bldg:lod2MultiSurface>

 <gml:MultiSurface srsName="EPSG:28992" srsDimension="3">

 <gml:surfaceMember>

 <gml:Polygon gml:id="ID_b1b63cd4-2a3e-46fa-

bed4-3b4fb27a6c10">

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList>93980.525

432736.058 -1.90642999999905 93982.817 432733.142 -1.90642999999905 93978.625

432729.81 -1.90642999999905 93976.321 432732.709 -1.90642999999905 93979.07

432734.899 -1.90642999999905 93980.525 432736.058 -1.90642999999905</gml:posList>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

31

 </gml:surfaceMember>

 </gml:MultiSurface>

 </bldg:lod2MultiSurface>

 </bldg:GroundSurface>

 </core:cityObjectMember>

</core:CityModel>
Figure 9- Rectangular GroundSurface in CityGML (XML data format)

32

 IFC

BIM has emerged as one of the key streams in construction and civil engineering research within

the last decade (Yalcinka & Singh, 2015), It means the semantic modelling of objects and

processes in the field of AEC (Architecture/Engineering/Construction), Facilities Management

and CAAD (Computer-aided architectural design). Like in CityGML, thematic objects are

represented with their 3D spatial properties and interrelationships.

 IFC (Standard, 2005) is the typical data exchange standard for BIM data, it provides a very

detailed semantic model for 3D building representations using constructive elements like beams,

walls etc. IFC is developed to represent building information over the whole building and to

facilitate data transfer between BIM modelling software (Eastman., Teicholz., Sacks., & Liston.,

2011). IFC models contain structures that are a combination of geometric and non-geometric data

as shown in Figure 10. IFC is the BIM format of choice in this research because of its non-

proprietary nature and its dominance as the main exchange format between AEC software (Shen

et al., 2010).

Figure 10-IFC example

33

2.2.1 Semantics

Since the scope of IFC is restricted to buildings and sites, no topographic feature classes like

terrain, vegetation, water bodies etc. are included. IFC is a semantic model like CityGML, but with

a different scope and at a different scale (El-Mekawy, Östman, & Hijazi, 2012, p. 160). And unlike

CityGML there is no formal approach is adapted for multi scale representation (Borrmann, Kolbe,

Donaubauer, Steuer, & Jubierre, 2013, p. 1)

An IFC building model (Figure 11) is denoted with hierarchical spatial structure beginning with

the classes IFCProject and IFCSite. Class IFCSpatialStructureElement links the building elements

and the upper arrangement of buildings (project, site, building storey, etc.). A building

(IFCBuilding) in IFC can have at least one storey or multiple stories (IFCStorey). Each building

storey can have zero or more spaces (IFCSpace) (Kavisha, 2015).

Figure 11-IFC building (El-Mekawy et al., 2012)

34

2.2.2 Geometry

There are distinctive geometrical models characterized in IFC for example; CSG (Constructive

Solid Geometry), BRep or Sweeping. The semantic implementations of objects are unambiguously

mapped in IFC, for instance, IFCWall, IFCRoof, etc. suggests its semantic implications and its

clear geometric representation. Similarly, to CityGML a strict separation between geometry and

semantics are implemented Figure 12. In IFC there are 653 entities, however, the majority of these

classes are used to create a spatial relation between elements and their geometric representation.

Figure 12- Separation of geometry and semantics in the IFC data model

2.2.3 Coordinates

IFC has classes that can describe the information required for georeferencing. IFCSite

(buildingsmart, 2019a) can have the information of a geographic reference point for the project

site in WGS84 with Longitude, Latitude and Elevation. If these values are given, it provides the

absolute placement in relation to the real world. The geographic reference point would be the

location of the point 0.,0.,0. Of the local placement of the IFCSite. Figure 13 shows IfcSite as part

of the spatial structure. It shows the relation between it and to the following classes:

The IFC entity IfcGeometricRepresentationContext is used to define the coordinate space of an

IFC model in 3D and optionally the 2D plan of such a model. This entity can be used to offset the

project coordinate system from the global point of origin using the WorldCoordinateSystem

attribute, it defines the Precision under which two given points are still assumed to be identical,

and it defines the direction of the TrueNorth relative to the underlying coordinate system. The

35

latter attribute defaults to the positive direction of the y-axis of the WorldCoordinateSystem

(Diakite, 2018, p. 2).

Figure 13- IFCSite as part of the spatial structure (buildingsmart, 2019a)

36

2.2.4 Topology

The IFC structure is designed to support dynamic modelling, that provides the users with the

flexibility to represent their building data. All the objects in IFC can be created using some core

elements, these core elements contain the general information. This flexibility in IFC is the reason

behind the different ways in connecting two different elements in IFC. For example, in the

following figures the relationship from an IfcWindow towards the IfcSpace is changing according

to user requirements because this relation is not defined in the schema:

Figure 14- Two options for the relationship from IfcWindow towards the IfcSpace according to user requirements

2.2.5 Encoding

The IFC architecture has an entity relation model that is based on Express relation. It consists of

hundreds of entities that have a hierarchy that is based on object inheritance relation

(buildingsmart, 2019b).

IFC has multiple file formats; IFC-SPF, IFC-XML and IFC-ZIP. The most common file format is

IFC-SPF which has a STEP encoding and have the file extension .ifc. STEP is a plain text format

that is human readable and more compact compared to XML Figure 15- Ground/Slab rectangular

surface in IFC (STEP data format) Figure 15.

37

ISO-10303-21;

HEADER;

FILE_DESCRIPTION(('ViewDefinition[CoordinationView_V2.0]'), '2;1');

FILE_NAME('0ground.gml', '2018-01-05T00:07:21', (''), (''), 'IFC 2x3 writer version ', 'FZK Viewer x64',

'');

FILE_SCHEMA(('IFC2X3'));

ENDSEC;

DATA;

#101 = IFCORGANIZATION ($, 'IAI/FZK', 'Research Centre Karlsruhe', $, $);

#104 = IFCPERSON ($, 'IAI/FZK', 'IAI/FZK', $, $, $, $, $);

#103 = IFCPERSONANDORGANIZATION (#104, #101, $);

#105 = IFCAPPLICATION (#101, 'Version 4.8', 'FZKViewer', 'FZKViewer');

#102 = IFCOWNERHISTORY (#103, #105, .READWRITE., .NOCHANGE., $, $, $, 1515107241);

#109 = IFCCARTESIANPOINT ((0., 0., 0.));

#110 = IFCDIRECTION ((0., 0., 1.));

#111 = IFCDIRECTION ((1., 0., 0.));

#108 = IFCAXIS2PLACEMENT3D (#109, #110, #111);

#112 = IFCDIRECTION ((1., 0., 0.));

#107 = IFCGEOMETRICREPRESENTATIONCONTEXT ($, 'Model', 3, 1.E-005, #108, #112);

#114 = IFCSIUNIT (*, .LENGTHUNIT., $, .METRE.);

#113 = IFCUNITASSIGNMENT ((#114));

#106 = IFCPROJECT ('1FXEOs0FX9duLKeAKj5gqx', #102, 'core:CityModel', '', $, $, $, (#107), #113);

#116 = IFCAXIS2PLACEMENT3D (#117, #118, #119);

#120 = IFCLOCALPLACEMENT (#2734926363768, #116);

#128 = IFCCARTESIANPOINT ((4.204000, 6.248000, -1.906430));

z#129 = IFCCARTESIANPOINT ((6.496000, 3.332000, -1.906430));

#130 = IFCCARTESIANPOINT ((2.304000, 0., -1.906430));

#131 = IFCCARTESIANPOINT ((0., 2.899000, -1.906430));

#132 = IFCCARTESIANPOINT ((2.749000, 5.089000, -1.906430));

#127 = IFCPOLYLOOP ((#128, #129, #130, #131, #132));

#126 = IFCFACEOUTERBOUND (#127, .T.);

#125 = IFCFACE ((#126));

#124 = IFCOPENSHELL ((#125));

#123 = IFCSHELLBASEDSURFACEMODEL ((#124));

#137 = IFCCOLOURRGB ($, 0.400000, 0.400000, 0.400000);

#136 = IFCSURFACESTYLESHADING (#137);

#135 = IFCSURFACESTYLE ($, .POSITIVE., (#136));

#134 = IFCPRESENTATIONSTYLEASSIGNMENT ((#135));

#133 = IFCSTYLEDITEM (#123, (#134), $);

#122 = IFCSHAPEREPRESENTATION (#107, 'Body', 'SurfaceModel', (#123));

#121 = IFCPRODUCTDEFINITIONSHAPE ($, $, (#122));

#115 = IFCSLAB ('2qlJxYRTDD09U2BKC4zG68', #102, 'bldg:GroundSurface', '', $, #120, #121, $,

.BASESLAB.);

ENDSEC;

END-ISO-10303-21;
Figure 15- Ground/Slab rectangular surface in IFC (STEP data format)

38

3 RELATED WORK

 MATCHING IFC AND CITYGML SCHEMAS

Matching IFC and CityGML schemas means investigating the following; which attributes and

entities correspond to each other, the different semantic meaning of objects, and the loss of

information as a result of direct transformation (El-Mekawy et al., 2012, p. 162).

El-Mekawy, Östman and Hijazi (2012) investigated the matching between IFC and CityGML

schemas based on a manual and practical approach. The focus of the mapping evaluation here is

divided into two parts:

1- The product extension: the product extension is the spatial structure of buildings and the relation

between these structures and building elements. The research defines the product extension classes

properties that can be transformed between IFC to CityGML. Which are:

IfcBuilding, IfcFurnishingElement, IfcSpace, IfcAnnotation.

2- The shared building elements: similarly, to the Product Extension, a lot of the entities in the

shared building elements are used to define spatial characteristics and representations of building

objects hence not applicable for the conversion. the research defines the entities that are applicable

for conversion.

The IfcProductExtension and IfcSharedBuildingElement domains. Combined, they have 83

classes/entities in their schemas.

 CONVERSION OF 3D-GEOINFORMATION TO BIM

The research in conversion from CityGML to IFC is limited because it is considered less useful

than the opposite conversion (Arroyo Ohori et al., 2017, p. 9). However, there is some research

done in this field but not on the data level as it is in this research. In Volk, Stengel, & Schultmann,

2014 methods for creating BIM from existing models is discussed starting from capturing the data

to processing the data and object recognition to model the required BIMs see Figure 16 These

methods can be considered GIS to BIM (DIAKITÉ & STOTER, 2017).

39

Figure 16- BIM creation processes for new and existing buildings (Volk et al., 2014)

In Diakité & Stoter, 2017 an interface to translate Geodata into IFC data is developed by applying

the workflow shown in Figure 17. The method aims to represent subsurface information in IFC,

in which the class IfcSpace is used.

In our research, similar method for georeferencing the IFC model can be used and IfcSpace can

also be used when there is uncertainty of which IfcClass to be used since it has proven sufficient

in (Diakité & Stoter, 2017).

Figure 17- Workflow of the solution (Diakité & Stoter, 2017)

40

 CONVERSION OF IFC TO CITYGML

The opposite conversion from IFC to CityGML is more extensively discussed because it is deemed

more useful and it implies simplifying and removing details and unnecessary information in the

data. In Arroyo Ohori et al. (2017) a methodology for this transformation is developed and it deals

with the models starting from data level which is similar to this research. This methodology starts

with converting the IFC data using IfcOpenShell to export a series of .obj files that represent the

model. For this it is mainly looked at subentities of IfcBuildingElement. And then the individual

.obj files are transformed into CGAL Nef polyhedron for every object, the resulted Nef polyhedra

were each of them processed to generate one Nef polyhedron by a group of processes of Boolean

operations. The resulting polyhedron contains all the relevant information of the building (Arroyo

Ohori et al., 2017).

Donkers (2013) provides a methodology of generating LOD3 buildings models out of IFC. In

addition, a prototype implementation is made that is able to successfully apply the conversion. The

conversion process consists of three steps: the first step consists of identifying the semantics of an

IFC dataset and subsequentially mapping them to a CityGML semantics model. The research also

deals with geometric transformations in which the exterior shell of an IFC model is extracted using

transformation based on morphological operations and Boolean generating an external shell

similarly to Ohori et al. (2018). Lastly the model is modified as necessary form further operations

and analysis.

41

 GEOREFERENCING BIM

Diakite, (2018) proposed an overview about the situation of georeferencing BIM with the focus

on models designed in Revit and exported as IFC. Some BIM software have a methodology to

georeference models, this methodology can give an insight about how to produce Georeferenced

IFC from CityGML. For example, Revit provides multiple ways to feed georeferencing data to

BIM models.

In Autodesk (2018) a method to link CAD files that contain real-world (GIS) coordinates to a Revit

model is proposed, in order acquire those coordinates directly in the Revit model. This is done by

linking a DWG file containing geo-referenced coordinates and adjusting the location of the BIM

project accordingly.

Another possible method to georeference the BIM model using Autodesk software done by

generating a shared reference point for Revit using Autodesk Civil that can be imported in as an

XML file to Revit Table 2 and link this point to the local coordinate system that exists in the

project.

Table 2- Shared reference point XML file

<?xml version="1.0" encoding="utf-8"?>

<CoordSysZup Units="M">

 <OriginX>67561.327969</OriginX>

 <OriginY>444577.20961</OriginY>

 <OriginZ>0</OriginZ>

 <RotationInXYPlane>5.9628533378646953</RotationInXYPlane>

</CoordSysZup>

42

 SOFTWARE

The following software are developed to deal with the issue of converting CityGML to CAD and

BIM formats.

3.5.1 FZKViewer

FZKViewer is tool for the visualization of semantic data models in the fields of BIM and GIS.

FZKViewer is able to export CityGML as IFC (Informatik, 2017). However, it has the following

limitations; It is limited in terms of georeferencing the data, where it can read the coordinates of

the data, these coordinates are lost when CityGML is converted into IFC. FZKViewer is able

correctly convert buildings up to LOD2 in terms of geometry and semantics. However, information

is lost when trying to convert buildings in LOD3 or LOD4 or other city objects such as bridges

Figure 18. lastly, the proprietary nature of the software also does not allow for improvement.

Figure 18- FZKViewer convert bridge from CityGML (left) to IFC (right)

3.5.2 CityGML2CAD

CityGML2CAD helps is bridging the gap between CityGML and CAD. It helps in converting

CityGML models into various 3D formats so that the data can be used in CAD applications. It

supports the following data formats; Sketchup, 3D studio, Object, Open inventor .iv, AC3D, .ive

and .osg. and It is also supporting Georeferencing the resulting data. The limitations of the software

are that it is of a proprietary nature and it supports up to level 1 maturity level BIM but does not

extend to up to level 4 as the aim of this research.

43

4 METHODOLOGY

 OVERVIEW OF METHODOLOGY

IFC and CityGML differs widely, hence the first step in the methodology is that the standards are

divided into different components defining, these are; semantics, geometry, topology, encoding

and georeferencing. Next each of these components is studied and a theoretical conversion method

is proposed for it.

Next step is combining all these conversion requirements in one implementation and then applying

an incremental development on this implementation starting from converting a simple dataset to a

complete dataset and different datasets. Next, a collection of software is selected to check the

results. By checking the resulting on this software the methodology is the improved accordingly

and the implementation is debugged in an iterative process. In the end of this process the

conversion implementation is finished. This implementation is then presented to different users

and the ability to make it accessible to users is studied. Finally, conclusions and future research

are derived. And the program is made accessible for users through GitHub.

44

Figure 19- Overview of methodology

45

To be able to apply the conversion between CityGML and IFC both data models should be studied

and specified. For this purpose, practical data models are used, such as Rotterdam3D and practical

BIM models that were provided by municipality of Rotterdam. This helps to avoid different

definitions because it is based on real world data.

To accurately convert from CityGML to IFC the data model from CityGML are redesigned to

incorporate with IFC. The difference in data models between the two is quite big where CityGML

is hierarchical IFC is not. This process is done by defining a semantic and geometrical mapping

from the first standard to the other. And by presenting a transformation too to convert from the

first encoding to the other.

Moreover, a practical implementation is presented to This transformation part of the process is

implemented using Python, which enabled performing specialized operations on a feature's

geometry, attributes, and coordinate system. The results are be evaluated by looking at what is

possible with other software such as FME. Other tools that will be used is explained in 5.3. Hence

the complete work flow will look as following Figure 20:

Figure 20- Research workflow from CityGML to IFC

The research is conducted in the municipality of Rotterdam. This helps in acquiring the CityGML

from the newly developed Rotterdam3D 2.0 which is provided by the municipality. This model is

used as an example of the source data. The municipality also gathers BIM models for the newly

designed buildings. These models are used to give insight about the used and delivered IFC

models. Moreover, conducting the research within the municipality gives insight about the needs

46

of different stakeholders and expected users of the developed methods. In addition, the resulting

program can be incorporated in a Web Viewer for example in Rotterdam3D 2.0 to directly export

models from the CityGML view to IFC file format.

4.1.1 Source Data

Rotterdam 3D 2.0 is the main source of CityGML dataset in this research and its focus see Figure

29, this data is in LOD2 and based on both BAG and Rotterdam-Height model (Hoogtebestand) it

contains the following features:

- Buildings

- Terrain model

- Trees

- Street lanterns

- Underground Cables

- Other especially created city objects such as the Erasmus bridge.

4.1.2 Filtering the Dataset

BIM models are generally more rich and detailed datasets than CityGML. Hence, it is preferable

to convert as much information as possible from the source CityGML dataset. However, some

features could be ignored within the scope of the project. For example:

- Vegetation: because IFC2x3 does not have specific classes that is appropriate for

vegetation so could be either filtered out or converted to a generic object class such as

IfcBuildingElementProxy.

- Textures: because IFC2x3 does not support texture data types.

For the above-mentioned features that requires to be filtered, the filtration process is done

automatically because of the implementation method of choice, this happens as following;

The software will look for features with a certain tag (say: building) and convert these features. If

a future tag is not incorporated in the program then it will be left out of the conversion

automatically (say: vegetation).

47

Other filtration of the data is done based on areas, feature type or featured ID. This kind of filtration

is done separately using tools such as FME and other tools as mentioned in subchapter 5.3.

4.1.3 Creating IFC dataset

CityGML has an XML schema. While on the other hand IFC has a STEP format. Python will be

used to read the source XML data, parse the data, apply transformation and write the STEP file

(STEP, 2017) for IFC.

Developing a tool to apply such task can be quite complicated. Hence it is proposed to develop the

tool incrementally, starting from converting one single element (such as wall) to a simple obj file

and then creating a complete building and then including other city objects.

4.1.4 Make the data accessible for users

To make the resulting data accessible for users a tool to select and download the data can be

developed Figure 21. For this purpose, Cesium, which is an open-source JavaScript library for 3D

maps, can be used in combination with 3D Tiles to stream the 3D geospatial datasets on the web

for both CityGML and IFC.

Figure 21- Webtool place in the workflow

48

Figure 22-Adding IFC to Rotterdam 3D export

 ENCODING

The first component to be studied in the conversion is Encoding. Because this is the first major

obstacle that can obstruct the conversion:

A CityGML file is a hierarchy that ultimately reaches down to individual objects and their

attributes. These objects have a geometry that is described using GML (Consortium., 2012.). On

the other hand, IFC model contains both geometric (3D and 2D) and non-geometric data about the

building project. Technically the schema defines an entity-relationship model based on

“EXPRESS” which means that an element is defined in the system and both its type and instance

can have attributes and properties attached to them. The properties themselves has a specific

structure; they are normally grouped in property sets. IFC also defines relationships between the

building elements. (areo, 2016). These difference between the two data models requires

remodeling of the source elements from the hierarchal CityGML to their counterparts of the non-

hierarchal structure of IFC data model.

To generate a unique id for every object a function is created guid()which will automatically

generate a unique id for every time it is called. For example: 'dcdc161f86a246cfb37dcb'

https://en.wikipedia.org/wiki/Geography_Markup_Language

49

The function CityGML2IFC(path,dst) is the main function, in which all the other functions are

called. Here path refers to the source CityGML file and dst is the destination IFC file.

the following steps are implemented inside CityGML2IFC(path,dst);

1- The source CityGML file is parsed using xml.etree.ElementTree

2- The CityGML version is identified based on the root tag. The name spaces are created

based on the CityGML version and then as dictionaries with keys and value.

3- The results from the conversion are printed in a destination file. With the format: dst.ifc

4- The file dst.ifc starts with the mandatory header part with the following information: File

description, name and schema. In which other IFC compatibility formatting is added such

as time and file destination. Followed by the data part. (“STEP-file, ISO 10303-21,” 2017).

Which consists of a sequence of entities, where each line represents a different entity. The

names of these entities are defined by a sequence of numbers that is generated using a

counter starting from 1000. The first part of the data part is filled with the following

information that should exist in every IFC project:

- IFCORGANIZATION

- IFCPERSON

- IFCPERSONANDORGANIZATION

- IFCAPPLICATION

- IFCOWNERHISTORY

- IFCCARTESIANPOINT

- IFCDIRECTION

- IFCDIRECTION

- IFCAXIS2PLACEMENT3D

- IFCDIRECTION

- IFCGEOMETRICREPRESENTATIONCONTEXT

- IFCSIUNIT

- IFCUNITASSIGNMENT

- IFCPROJECTID

- IFCSITEID

50

 GEOMETRY

The CityGML geometry of buildings consists mainly of 2D surfaces. On the other hand, IFC

objects are built using different geometry representations including; sweep volumes, explicit

faceted surface models and CSG (Arroyo Ohori et al., 2017). To be able to convert an element

from CityGML to IFC; the accurate matching geometry should be created. And since the focus of

this research is on converting buildings classes the representations of IFCWall and IFCSlab is

particularly interesting since it is possible to model the whole LOD2 building geometry with these

two classes. In IFC 2x3, the use of 'SweptSolid' and 'Clipping' representations is supported for these

classes. In addition, the general representation types 'Brep', 'SurfaceModel' and 'BoundingBox' are

allowed (buildingsmart, 2017).

To explain the conversion methodology the following example will be shown Figure 23. The same

process is repeated for every surface element in CityGML. The source file in CityGML is a ground

surface that is defined by a linear ring that consists of 6 points:

51

 <bldg:boundedBy>

 <bldg:GroundSurface>

 <bldg:lod2MultiSurface>

 <gml:MultiSurface>

 <gml:surfaceMember>

 <gml:Polygon gml:id="RCID_98b8908e-480d-4e67-8cb8-

2967c0d78523">

 <gml:exterior>

 <gml:LinearRing gml:id="RCID_98b8908e-480d-4e67-

8cb8-2967c0d78523_E_1_1">

 <gml:posList>94713.250000000000000000

433753.299999999990000000 -1.226650000002190000

94712.259999999995000000 433751.789999999980000000 -

1.226650000002190000 94700.619999999995000000

433759.409999999970000000 -1.226650000002190000

94703.250000000000000000 433763.419999999980000000 -

1.226650000002190000 94709.589999999997000000

433759.250000000000000000 -1.226650000002190000

94707.960000000006000000 433756.770000000020000000 -

1.226650000002190000 94713.250000000000000000

433753.299999999990000000 -1.226650000002190000</gml:posList>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 </gml:surfaceMember>

 </gml:MultiSurface>

 </bldg:lod2MultiSurface>

 </bldg:GroundSurface>

Figure 23-example of CityGML GroundSurface geometry to be converted to IFC

The total number of values in gml:posList is 21 defining the coordinates of 7 points because the

end of the ring is the same as the beginning.

Here, using element tree tree.findall('.//{%s}posList' % ns_gml) is used to create list of a

IFCCartesianPoint entities.

IFCCartesianPoint; is a point defined by three dimensional cartesian coordinates system. The list

of these points forms an IFCFaceOuterBound. Which defines the outer boundary of the face;

IFCFace. To define the geometric representation of the face the following entities inheritance is

defined:

52

IFCOPENSHELL

↳ IFCSHELLBASEDSURFACEMODEL

 ↳ IFCPRODUCTDEFINITIONSHAPE

 ↳ IFCSLAB

The complete resulting IFC Geometry model is shown in the figures below Figure 24,Figure 25.

Figure 24- Resulting geometry model for IFCSLAB

53

Figure 25- Converting from CityGML geometry to IFC

54

 COORDINATES

In CityGML, Coordinates belong to a world coordinates reference system and no local

transformations are allowed. On the other hand, IFC files are locally referenced. It is not very

common for BIM models to be geographically referenced, which increases the importance in the

research to produce a correctly georeferenced IFC file. Here a method is proposed and

implemented to georeference the resulting IFC datafile out of the source CityGML files:

Firstly, a reference point for the model is created, this is done by iterating over all points in the

model and selecting the minimum value for all the points. For example; in Figure 26 a reference

point for a GroundSurface in CityGML is created, with an EPSG:28992 coordinate system.

Figure 26- Creating a reference point based on minimum values

Secondly, the values of all points are converted to local referencing in relation to the reference

point. The local referencing is calculated by subtracting the values of all points from the reference

point value. As shown in Figure 27.

55

Figure 27- Converting calculating local referencing to all points

Lastly, latitude, longitude in WGS 84 and elevation of a project are dedicated to the IfcSite class

as shown in (Diakite, 2018). BIM model coordinates are usually stored in an IFC transformation

file as shown in Figure 28. However, since EPSG:28992 system in the Netherlands is based on

XY coordinates the rotation degree is not needed.

56

<?xml version="1.0" encoding="utf-8"?>

<CoordSysZup Units="M">

 <OriginX>67561.327969</OriginX>

 <OriginY>544577.20961</OriginY>

 <OriginZ>2.3</OriginZ>

 <RotationInXYPlane>5.9628533378646953</RotationInXYPlane>

</CoordSysZup>

Figure 28- Transformation file example

The resulting program is able to achieve the following steps for every element (such as a ground

surface) Figure 29:

57

Figure 29- from CityGML to IFC geographical transformation

58

To implement the above conversion, all points in the project are found using:

 tree.findall('.//{%s}posList' % ns_gml)

and then to perform the coordinates conversion the following functions are defined and used:

find_reference_point(l), which takes a takes a list of lists as input and will return the corner point

as a list (point with least x and least y and least z). similarly, the function find_max_point(l) is

defined which will take the maximum value instead.

The function move_to_local(local_pont, l) converts a list of points (l) into local coordinates by

subtracting the local point value (local_pont) from them.

The function from_EPSG28992_TO_WGS84 convert a point from EPSG28992 coordinate system

to WGS84.

59

 SEMANTICS

For semantics mapping, different criteria are used to create semantics mapping between the IFC

domain and the CityGML domain. These criteria include the:

- There is an existing class in IFC that matches the source CityGML class

- The possibility to match the geometry

- The matching practiced in different research for example in In (Kavisha, 2015) the classes

and notations of the two data models are collected and semantic mapping is created.

- The different practices in software that deals with this problem. Most notably FZK Viewer

(Hütter, 2016)

That helped to match the semantic terminologies of objects and classes used in the data models.

as shown in Table 3:

CityGML IFC

AbstractBuilding IfcBuilding

-GroundSurface

-FloorSurface

-CeilingSurface

IfcSlab

-GroundSlab

-FloorSlab

-CeilingSlab

RoofSurface IfcRoof

-WallSurface

-InteriorWallSurface

IFCWall

-Interior Wall

-Exterior Wall

WallSurface IfcCurtainWall

60

GenereicCityObject IfcBuildingElementProxy

SolitaryVegetationObject IfcBuildingElementProxy

Opening

Door

Window

IfcOpeningElement

IfcDoor

IfcWindow

BuildingInstallation - IfcBeam,

- IfcColumn,

- IfcCovering,

- IfcStair,

- IfcRailing,

- IfcRamp

Table 3- IFC-CityGML Mapping (Kumar & Saran, 2015), own work

Looking at the diagram CityGML in different LODs can be converted to IFC models preserving

most of their semantic information. (El-Mekawy et al., 2012). In this study the data model of

CityGML Building is shown below Figure 30:

61

Figure 30- The data model of CityGML Building

Taking the Rotterdam3D data set, it has the following object types Building, GenericCityObject,

SolitaryVegetationObject. As shown in Figure 31:

62

Figure 31-Rotterdam3D visualization

The data model for the features in 3DRotterdam features is depicted below:

 Based on the above proposed semantic mapping, to implement the semantic transformation the

following mapping is performed between the two data models Figure 32:

63

Figure 32_Semantic mapping application

To perform the above-described transformation the following steps are done:

Lists are created for every class that is in CityGML file. For the project here these classes are:

CityObjects, buildings, generic, and other

The list CityObjects contains all the features that belong to the superclass CityObjectMember. The

features here are buildings, generic, and other.

IFC Result CityGML Source

64

Next, for every building an IFCBUILDING entity is created. Next bounding elements of the

building are defined and its entities are generated along with its geometry. These entities are

defined based on their feature source in CityGML. See the example below:

if(Boundary.find('{%s}WallSurface' %ns_bldg)):

 print(ifcsurfaceid," = IFCWALL (", guid(),",

$,'bldg:WallSurface',' ',$,$,",ifcproductdefiniteshapeid,",$);"))

Figure 33- Defining the object type (IFCWall) and the namespace (bldg:WallSurface) based on the source entity in CityGML

(WallSurface)

Similarly, the other building elements are converted as follows:

Source CityGML Feature Destination IFC object IFC namespace

GroundSurface IFCSLAB IFCSLAB

FloorSurface IFCSLAB GroundSlab

RoofSurface IFCROOF RoofSlab

WallSurface IFCWALL bldg:WallSurface

InteriorWallSurface IFCWALL bldg:WallSurface

CeilingSurface IFCCovering CoveringSlab
Table 4- Semeatics mapping for building elements in the application

GenericCityObject in CityGML is converted to IfcBuildingElementProxy. The matching between

GenericCityObject and IfcBuildingElementProxy Is logical. since IfcBuildingElementProxy

provides the same functionality as IfcBuildingElement but without having a defined meaning.

Similarly, SolitaryVegetationObject in CityGML is converted to IfcBuildingElementProxy. The

matching between SolitaryVegetationObject and IfcBuildingElementProxy is because there is no

support for vegetation in IFC-2x3.

The application of the conversion methodology is similar to the above building elements.

65

Source CityGML Feature Destination IFC object IFC namespace

GenereicCityObject

IfcBuildingElementProxy IFCSLAB

SolitaryVegetationObject

IfcBuildingElementProxy GroundSlab

Table 5- Semantics mapping for other elements in the application

 TOPOLOGY

It is important to show the spatial structure of the project elements using IfcRelAggregates, for

example, see Figure 34. This is particularly important for some BIM software to read the IFC file

correctly. To complete this relation IfcRelAggregates is used to represent the physical containment

of the buildings in the IFCProject. this creates a certain level for the building in the spatial

structure. This allows the use of IFCRelContainedInSpatialStructure to assign sub-elements of the

building.

Hence the following relation can be established:

This is used to assign elements to a certain level of the spatial project structure. However, it is

worth noting that an element can be assigned once to a certain level of spatial structure as shown

in Figure 34. However, using IfcRelContainedInSpatialStructure spatial containments can be

assigned on multiple levels. Hence a wall can be contained in both a building and a building store.

IFCBuilding

GroundSlab RoofSlab WallSurface

IfcRelContainedInSpatialStructure

66

Figure 34- the use of IfcRelAggregates to establish a spatial structure including site, building, building section and storey

(“IfcSpatialStructureElement,” 2019)

67

 USER ACCESSIBILITY

The implementation was done in a simple way with the aim of allowing it to be incorporated in

different applications.

CityGML is usually visualized using Cesium while 3DCityDB is running on the back end

(“3DCityDB | cesiumjs.org,” n.d.). As shown in the figure below Figure 35:

Figure 35-visualizing CityGML for users using cesium

The program that is resulted from the methodology can be incorporated in the above relation

between CityGML and Cesium in two different ways:

68

The first possibility is by editing the 3DCityDB structure to incorporate the program

CityGML2IFC. as shown in the figure below:

3DCityDB uses a Java-based 3DCityDB-Exporter and it is open source. The idea here is to edit

the source code of it to incorporate the python script of our method.

The second possibility is to incorporate the program in the real-time server of choice. For example,

for 3D Rotterdam FME Server provides the user with the data of their need in real-time (when

requested). This data is generated with the help of FME based transformers. On the other hand,

FME can accept Python-based code to transform data using a special tool called Python Caller.

Therefore, the methodology can be edited to adhere to the Python Caller tool requirements and be

incorporated with the FME server service as shown in the figure below:

Figure 36- Incorporating methodology within 3DCityDB

69

Figure 37-Incorporating conversion tool within the frame of FME server.

The two possibilities above, though explored, were not fully implemented due to the restrains of

the research time and scope.

70

 METHODOLOGY RESULTS

The methodology that is described in chapter 4 is a result of trial and error and a validation process

that is discussed in detail in Chapter 6. The complete program that was resulted from the

methodology can be found here (Complete Program). Taking controlled CityGML data set as input

(Rotterdam 3D for example), the methodology can convert the data set to an IFC2x3 data set that

is readable by all BIM software and editable with some (e.g. Revit). the ability of a BIM modeling

software also depends on the ability of the software itself to deal with IFC files.

In addition, the resulting BIM models are geographically referenced with a local coordinates

system. And it has the necessary topological relations to be accurate schematically. Some attributes

are carried to the IFC file from CityGML, however, no particular focus was given to this point

because of two factors:

- Attributes are dataset dependent. Hence, the program should be edited accordingly for each

different dataset.

- IFC data model is expected to provide sufficient ability to retain most of the attributes from

CityGML in a straight forward way. However, that requires checking which attributes are

to be retained.

The complete methodology resulting model is shown below Figure 38:

 (for higher resolution see appendix methodology resulting data model)

71

Figure 38- The complete methodology resulting data model

In the figure above the following transformations are shown numbered:

1- Semantic mapping from CityGML features to IFC objects.

2- Creating Geometry resources for IFC objects based on source CityGML geometry.

3- Creating Georeferencing point from the CityGML dataset.

4- Georeferencing IFC objects.

5- Storing Georeferencing information in the IFCSite object.

72

The resulting semantic conversion will look as following:

Figure 39- Source CityGML example dataset

Figure 40- Resulting IFC dataset

73

5 IMPLEMENTATION

 PROGRAM DESCRIPTION

The main implementation part consists of a program named “CityGML2IFC.py” it is a script file

written in Python 3. When compiled the program will convert a source file in CityGML to

destination file in IFC.

The complete code could and license information be found on GitHub here

https://github.com/nsalheb/CityGML2IFC

Figure 41- Snapshot of the GitHub repository

https://github.com/nsalheb/CityGML2IFC

74

The following modules are imported and used in the program; these modules should be preinstalled

before running the program:

XML.etree.ElementTree Is used here for parsing the XML data

os To interact with the operating system where the computer is running,

for example, reading time and file bath.

time To read the current time and stored in the created IFC files

itertools Is used to create a hashtagged unique id with an incremental value

starting from a given value

sys Is used to allow files to be written on the hard disk

numpy To perform mathematical operations such as finding minimum value

or subtract arrays

UUID To automatically generate unique IDs

pyproj To convert the resulting files projection

5.1.1 how to use program

1- Make sure that python 3 is installed.

2- Make sure all the necessary modules are installed, particularly:

a. numpy

b. pyproj

3- Download the program CityGML2IFC.py

4- The program will convert a source file in CityGML to destination file in IFC.

5- Change the name of your source CityGML file to: “Source.gml”

6- Compile (Run) the program CityGML2IFC.py.

7- A file called Result.ifc will appear. This file is the result of the conversion.

8- Check Result.ifc on the BIM software of your choice.

75

 DATA DESCRIPTION

5.2.1 Rotterdam3D

Since the research focuses on converting CityGML data to IFC. The CityGML data model is of

great importance. The municipality of Rotterdam made Rotterdam3D available for this research.

Rotterdam3D is an open data produced and provided by the municipality of Rotterdam.

Rotterdam3D consists of LOD1 and LOD2 building simultaneously where the viewer of the data

is designed to let the user view the required level of detail. Buildings in LOD1 is modeled as valid

solids.

Rotterdam3D includes the following features: buildings, trees, ground level, design, and building

information. Pipes and cables are also part of the 3D city model but are modeled as generic city

objects. In Rotterdam 3D buildings are in LOD2, with the following model Figure 42;

Figure 42-Rotterdam3D Building Model

76

5.2.2 Other data sources

Rotterdam3D 2.0 is the main source of CityGML data sets. It is available for the researcher since

the research was conducted in cooperation with the municipality of Rotterdam. The municipality

also provided examples of BIM models. Simplified IFC models are also produced using BIM

software such as ArchiCAD and Revit.

Open IFC Model Repository

Examples of IFC models building were at “Open IFC Model Repository”

http://openifcmodel.cs.auckland.ac.nz/Model/Download

The resulting conversion method is then be tested on other publicly available CityGML datasets

such as Berlin 3D (http://www.businesslocationcenter.de/en/downloadportal).

 TOOLS

Other tools the tools that are required for the aim of the research is diverse depending on the

different aspects of the project which are: CityGML, BIM, conversion and web development tools.

These tools are:

1- FME: to view and select and apply basic transformations on the CityGML datasets. It’s

also useful to view and apply transformations on IFC datasets.

2- FZK viewer: useful and fast to view data for both formats; CityGML and IFC. Moreover,

it can apply basic transformations between the two data formats which are useful for testing

the developed transformation.

3- Python: is the main tool to apply the transformation including reading, parsing and writing

the datasets. For the purpose of the project, different Python libraries are helpful such as:

4- Lxml: to parse the CityGML data sets

5- NumPy: This helps for dealing with large, multi-dimensional arrays and matrices.

6- ArchiCAD and Revit: both are BIM software and they are the most commonly used by

users in the BIM world. This software will be used to visualize and test the resulting IFC

datasets. Moreover, they will be used to produce samples for IFC data. For example, a wall

http://openifcmodel.cs.auckland.ac.nz/Model/Download
http://www.businesslocationcenter.de/en/downloadportal

77

can be georeferenced in Revit and exported as IFC to acquire an example of a

georeferenced IFC element.

7- IfcCheckingTool (https://www.iai.kit.edu/1649.php): which is an analysis tool for

checking the semantic and syntactic correctness of IFC data. It can be used to check the

final resulting data when needed.

8- IFCdiff http://cgcad.thss.tsinghua.edu.cn/liuyushen/ifcdiff/: A content-based automatic

comparison approach for IFC files with hierarchical structures

9- https://www.nist.gov/services-resources/software/ifc-file-analyzer IFC The IFC File

Analyzer generates a spreadsheet or CSV files from an IFC file.

10- Other tools for IFC can be found in: http://www.ifcwiki.org/index.php/Freeware

https://www.iai.kit.edu/1649.php
http://cgcad.thss.tsinghua.edu.cn/liuyushen/ifcdiff/
https://www.nist.gov/services-resources/software/ifc-file-analyzer
http://www.ifcwiki.org/index.php/Freeware

78

6 VALIDATION

As mentioned in Chapter 4.1. incremental development was done to make the methodology

complete. In this chapter, the validation procedure is described in which the resulting model was

tested. After every test, the methodology was adjusted and the conversion was developed to reach

the complete software hence the “incremental “description.

This procedure to check the results is as follows:

1- FZK viewer: check if the results shoes probably on it FZK viewer (visual inspection).

2- Check with BIM viewer software (DDS-CAD viewer, Arreddo BIM viewer).

3- Check with Building information modeling software (Revit, ArchiCAD).

4- FZK viewer: check message log, if any message report

5- Use IfcCheckingTool tool to see advanced errors

6- Check with users.

Further reports about this procedure are discussed in the following subchapters.

 FZK VIEWER

In the beginning, initial conversion for LOD2 buildings was performed, the resulting IFC building

was able to be viewed on FZK viewer after ignoring the error messages. However, for one building

there were 32 errors found divided into 7 categories. These errors were a result of inaccurate

conversion and provided an indication to certain areas of the program to be improved by resolving

these errors, the following table describes these errors and how they were solved:

79

Error type Error name How the error is solved

Data prepare Illegal GUID found, 10

errors:(in every element

including 2 times for both

IFCsite and IFCbuilding)

Some elements had incorrect GUID, for example,

because of too many characters in GUID or

including a space in the name. This problem was

solved by giving accurate IDs for all elements. As

shown in the example below:

‘IFC-wall‘→ ‘36d1601925d54a5ca6a4cd'

EccoError Runtime error: incomplete

assignment, 7 errors

In STEP encoding; when assigning an object to

multiple other objects the comma should be

removed at the end of the list as shown in the

example below:

[#109,#110,] → [#109,#110]

EccoError Runtime error: unresolved

reference, 2 errors

References to unexacting objects were removed

EccoError Runtime error: missing

parameter for construction

type IFCRoot, 1 error

For unknown parameters, the sign: “$” is added.

To avoid these kinds of errors: missing parameter

EccoError Runtime error: too many

parameters for every wall,

4 errors

The number of parameters should be accurate

according to the IFC standard.

EccoError Runtime error: parameter

expected

For unknown parameters, the sign: “$” is added.

To avoid these kinds of errors: parameter

expected

80

MapView_002 (can’t find file material in

FZKprogram)

This is a program-related error,

When the capabilities of a program, In this case,

FZK viewer, is unable to view a defined material

in the data file.

Table 6- Errors after initial conversion and how they were solved

After fixing the above errors, FZK viewer was able to view the results unlike other software, see

the table below:

Error Type Result on program (readable= ✓ / not readable = X)

FZK DDS-CAD

viewer

Arreddo BIM

viewer

BIM

Vision

ArchiCAD Revit

Illegal GUID ✓ X X X X X

Incomplete

Assignment

✓ X X X X X

Unresolved

reference

✓ X X X X X

Missing parameter ✓ X X X X X

Too many

parameters

✓ X X X X X

Parameter

expected

✓ X X X X X

Material missing ✓ X X X X X

Table 7- The result after fixing all the above errors, the file is still not visible in different BIM software

81

Also, noticeably some errors are related to the program itself, for example, the missing material

above is considered an error in FZK while in other viewers is not. This error is fixed by adding

material entities to the files and creating a relation between the different entities.

 Another, example of a program-related error is shown in (“IfcOpenShell / Forums / Help: Creating

profile definition with coordinates,” 2019) where most viewers will fail to create a closed face

from the polyline and therefore may extrude the line segments into faces or show nothing at all.

This is because IfcPolylines are not closed implicitly unlike IfcPolyLoops.

 IFCCHECKINGTOOL

The IfcCheckingTool is an analysis tool for checking the semantic and syntactic correctness of

IFC data. The check considers IFC Schema versions as of IFC2X3 in the file formats SPF (STEP

Physical File) and ifcXML. In an automatically generated interactive report, the results can be

sorted according to different criteria. As far as possible, a hyperlink to the corresponding definition

in the IFC specification is output for each error, and the error within the instance document can be

displayed via an EXPRESS navigation window.

After running the tool on the above city object that does not contain any errors according to FZK

message log, the following report is generated:

Results:

Total Number of Errors 68

Total Number of Warnings 0

Total Number of Comments 2

Number of Ecco Errors 60

Object Statistic:

Object Types 5

82

Object Instances 9

Object Amount

IFCBUILDING 1

IFCPROJECT 1

IFCSITE 1

IFCSLAB 2

IFCWALL 4

Full Statistic:

Types 24

Instances 95

Object Amount

IFCAPPLICATION 1

IFCAXIS2PLACEMENT3D 1

IFCBUILDING 1

IFCCARTESIANPOINT 31

IFCDIRECTION 3

IFCFACE 6

IFCFACEOUTERBOUND 6

IFCGEOMETRICREPRESENTATIONCONTEXT 1

IFCOPENSHELL 6

83

IFCORGANIZATION 1

IFCOWNERHISTORY 1

IFCPERSON 1

IFCPERSONANDORGANIZATION 1

IFCPOLYLOOP 6

IFCPRODUCTDEFINITIONSHAPE 6

IFCPROJECT 1

IFCRELCONTAINEDINSPATIALSTRUCTURE 1

IFCSHAPEREPRESENTATION 6

IFCSHELLBASEDSURFACEMODEL 6

IFCSITE 1

IFCSIUNIT 1

IFCSLAB 2

IFCUNITASSIGNMENT 1

IFCWALL 4

According to the report above there are 68 errors, these errors consists mainly of a missing

definition for example:

- No view definition in the header

- No material definition

The later problem was fixed by assigning different materials for every kind of element: (wall, roof,

ground). However, adding materials increased the size of the file exponentially and can be ignored

if not needed. This increase in size is very clear and affect performance on big files size (example

below):

84

 With materials 17MB

 Without materials 5.8 MB

 CHECKING OTHER FILES

Other files were checked for errors with IfcCheckingTool to control results, namely the default

file; IFCOpenHouse.ifc.Then file came without errors. It was also tested on the other software and

it worked on all of them as shown below:

Filename Result on program (readable= ✓ / not readable = X)

FZK DDS-CAD viewer Arreddo BIM

viewer

BIM Vision ArchiCAD Revit

IfcOpenH

ouse.ifc
✓ ✓ ✓ ✓ ✓ ✓

85

 IFCRELAGGREGATES

Adding correct IFCRELAGGREGATES (see chapter Topology) has fixed the problem with the

conversion making the files readable with the following software:

Filename Result on program (readable= ✓ / not readable = X)

FZK DDS-CAD viewer Arreddo BIM

viewer

BIM Vision ArchiCAD Revit

New.ifc ✓ ✓ ✓ ✓ ✓ ✓

With ArchiCAD and Revit you can add elements to the resulting file. With Revit, you can even

edit the resulting file. Basic editing with Revit includes:

Moving elements such as walls and roofs

Copy and paste elements

Applying an array copy

Creating facades and sections

86

Revit is also able to provide a list of found errors, see (A Revit error.log). these errors were also

traced and fixed (as much as possible in the final conversion).

 CHECKING WITH USERS

Lastly, the resulting files are checked with different users from different fields. namely:

Architecture, building engineering, Geomatics, Public sector/GIS.

The results are shown in the table below:

Question Answer

Percentage of users who were able to open

the data with the software of their choice?

100%

Could the data be helpful with your work? 80% Yes

20% Maybe

In what ways can the data file be helpful for

your work?

1- It becomes possible to exchange 3D-data

between GIS and BIM. That is good for all of us.

2- Existing information

3- Give a context to design

4- Visualization

5- The exchange between software

In what way you think the data file can be

more useful?

1- Detail information

2- Including terrain model

3- Metadata enrichment

87

4- when it is defined as an element can be used

for structural and environmental simulations in a

BIM environment

What are the limitations of datafile? 1- the base level of all buildings is the same

2- Not possible to edit the file after the transfer

Table 8- Results from user questionnaire

Taking the opinions of the above users has helped to identify the limitation of the conversion

against the requirements of the users. Some parts that were not focused on in the research, were

for particular importance to the users. Namely;

- There was a request for a more data/meta data-rich IFC model. however, this depends on

the amount of data that is provided with the original CityGML model. in addition to the

effectiveness of the methodology itself.

- Including the terrain model, which is outside of the scope of the research.

- The ground floor of all buildings was on the same high, which is a limitation of the source

CityGML data set.

There were also a few positive results that were derived from the questionnaire. Namely;

- The users expressed the possible helpfulness of the data.

- The users were able to open and use/view the data on their software of choice.

88

7 CONCLUSIONS

The aim of the present research was to examine the possibility of making 3D city data accessible

in the design and construction software. This is done with the aim of using open source data format

namely CityGML and IFC. Where different aspects of both formats are determined and studied in

a comparable way.

Next, this work was undertaken to design a methodology to convert CityGML to IFC and a

prototype software is developed to perform such conversion.

This is done in a way that allows the extensibility and reusability of the software in different

applications such as, making the conversion accessible in a web viewer or incorporating its data

transformation software.

 RESEARCH QUESTIONS

To draw conclusions from this research, the research questions stated in Chapter 1.3 are answered

here. The main research question of the study is:

HOW TO MAKE 3D CITYMODELS ACCESSIBLE IN DESIGN & CONSTRUCTION

SOFTWARE?

To answer the above question the study has identified CityGML as a source of 3D Geo-information

data and provided a methodology to convert this data to IFC. Through this conversion, the IFC

data can be then used within the different design and construction software such as Revit &

ArchiCAD.

In order to accomplish the above conversion, the first step was to identify the requirements of the

conversion between the two standards. Hence the study had to answer the following sub-question:

- What are the requirements for CityGML to IFC conversion?

89

By studying the two standards each standard has its own characteristics that were identified. And

to make the conversion successful these characteristics had to be matched from the source data to

the destination data. These characteristics are defined in the following main categories:

• Semantics

• Geometry

• Coordinates

• Topology

• Encoding

These structures were generally kept throughout the research. Where for every standard these five

categories had been looked into to make a successful conversion. Hence for each of these

categories, a sub-question can be derived. Therefore, the second sub-question in this research was:

- How to map semantics from CityGML to their equivalents in IFC?

Compared to CityGML, IFC has a high number of classes. Therefore, to find a matching class in

IFC multiple classes in IFC are studied and previous research is done to create a basic semantic

matching. In subchapter 4.5, This mapping was extended based on the requirements of this

research and the particular data set that is being tested. Next, the above matching is extended and

described in the data models, and programming implementation is described. To apply the above;

a theoretical description of the classes and their geometrical resources had to be comparable.

Therefore, from the need to generate the geometrical resource for the above classes the third sub-

question in this research is derived:

- How to generate IFC Geometry Resource from CityGML?

 In CityGML in general and in the datasets that were studied here in particular; geometry resource

for all features consists of polygonal faces. On the other hand, IFC objects can accept multiple

kinds of geometry resources polygonal faces are also used for IFC elements to achieve direct

matching. The main difference between CityGML and IFC is that the geometry is included in the

same hierarchy as the semantics in CityGML, While in IFC there is a complete separation between

the two. This kind of conversion and separation is presented in subchapter 4.3. During the process

of creating the accurate geometry for IFC the fourth research sub-question is dealt with:

90

- How to spatially reference the resulting IFC models?

In CityGML Coordinates belong to a world coordinates reference system and no Local

transformations are allowed, On the other hand, IFC files are locally referenced. in subchapter 4.4

a method is proposed and implemented to georeference the resulting IFC data file out of the source

CityGML files by automatically creating a reference point for the project and storing it in the IFC

class. This has resulted in a fully referenced IFC project.

The last characteristic to be converted is the topology which is related to the following sub-

question:

- What kind of topology should be retained in the resulting IFC model?

In subchapter 2.2.4 it was shown that topology in IFC can be represented in different ways.

However, the current study found that a certain topological relation is necessary to have an

accurate IFC model that can be used on different BIM software, namely, aggregation and

containment in spatial structure. This relation was described theoretically and implemented in

programming.

The topological relation of in CityGML exists implicitly duo to the hierarchal nature of XML files

in general and CityGML datasets in particular, and this results on relations that are fixed according

to the standard. In contrast, IFC’s topological relation has to be represented explicitly. This also

allows to have more flexibility of possible topological relations according to the user’s needs.

Other possibility, is to generate different IFC geometry from CityGML based on different

topological requirement. For example, a pipe in CityGML is converted to 2D surfaces for the

purpose of this research. Instead, if the user requires creating a connection from this pipe to other

pipes or city furniture; the pipe can be converted to a SweptSolid in IFC with a beginning and end

points, these points can then be connected to other points that belongs to other pipes or City

Furniture.

 After having a complete and working conversion a final sub-question has to be answered is:

- How to make the conversion methodology for CityGML to IFC accessible for

users?

91

To make the conversion method accessible for users. A simple program is developed with a clear

way for usage has been provided. The way that the program is developed allows it to be

incorporated within a data transformation software such as FME or incorporating it within a web

viewer such as Cesium as shown in subchapters 4.7.

 DISCUSSION

This research provides a basic framework of conversion from CityGML to IFC. It is possible with

additional work and adjustment to extend the work to include more feature classes and other

versions of CityGML and IFC.

It is clear from the research and practice that the complexity of IFC also comes with flexibility, in

contrast to the strict rules of CityGML. This leads to the conclusion that there could be different

ways to convert some elements from CityGML to IFC. This can lead to a different end result, for

example, two elements that belong to one class in CityGML can be converted to different classes

in IFC based on a specific attribute to generate a more semantically reach IFC file. Another

possibility is to generate a different geometry for an object based on our requirements. For

example, a pipe can be constructed as a SweptSolid instead of MultiSurface so that we can add the

necessary topological connections to the other pipes in the IFC project.

Different BIM software deals with IFC data in different ways. This was helpful to provide different

readings to debug the errors. It was evident also that commercial software such as Revit expected

only completely accurate IFC models to be imported into it, unlike free software such as FZK

Viewer. This could be because commercial software tries to push its own proprietary data formats.

It is important to make the conversion adequate to the needs of the user so that unnecessary

information is left out from the conversion to reduce file size and for simplicity. One approach to

be taken is to make the conversion as complete as possible by including all the possible

information. Next, we can leave out parts of this complete conversion according the user needs,

this can be done by developing specialized tools or be simply creating different versions of the

software as done in this research where two versions of the program are provided; “with material”

and “without material” where the later create a smaller in size files.

92

 LIMITATIONS

This study presents a methodology of conversion with certain assumptions of the state of the source

CityGML data. Any changes with the source data require some adjustments on the methodology

this is particularly difficult for researchers with no programming background. One important

limitation that could be faced with other data sets is then geographical reference system. Where

this research is done on data with an EPSG:28992 coordinate system. Data that belongs to a

different coordinates system would require some adjustments accordingly.

The study focuses on producing data in IFC2x3 format, while during the time of the study (January

2019) IFC4 was introduced and it is expected to become more prevailing in the upcoming period

hence the required adjustment should be considered.

 FUTURE WORK

Some aspects of the research were left for future studies. For example, the conversion could expand

from merely converting the geometry from the CityGML to IFC. to enhancing this geometry by

adding volume to the surface as described in the figure below:

Figure 43- CityGML Building (left) Composed of 2D surfaces. IFC Building (right) with enhanced geometry composed of

SweptSolid

93

This will be helpful to calculate Human space usage and buildings heat exchange. Other example

regards converting pipes; in this research CityGML2IFC convers pipes in a direct way from

GenericCityObject (2D faces) to BuildingElementProxy (2D faces). Instead, the methodology can

be extended to provide the user the possibility to generate pipes that are composed of SweptSolid

to create topological relations as mentioned before.

Other area of future research regards providing the methodology the ability to deal with CityGML

datasets that belongs to a CRS other than EPSG:28992. This will lead to a higher level of

complexity, because in this research converting from CityGML datasets that are based on

EPSG:28992 to the local coordinates system of IFC files is basically converting between two

cartesian systems. Hence it is important to explore the possibility of converting CityGML datasets

that are based on a CRS that is not Cartesian (WGS84 for example).

Focusing more on including more attributes from CityGML to be transferred to IFC. Because when

it comes to buildings; IFC is more detailed than CityGML hence all building information that are

available in CityGML is possible to be transferred to IFC. But this requires checking each attribute

from different datasets and including these attributes in the conversion. This can be done using a

validation process similar to what is described in Chapter 6.

Other area of future work is including more classes from CityGML and higher LODs (up to

LOD4). This is important for creating BIM models out of CityGML data as shown in figure 1. In

94

addition, this is important to avoid information loss when converting to IFC and to avoid

information loss in case these data was converted back to CityGML.

Other possible area of future work is Including IFC4 in the conversion. Since, IFC4 is gaining

more popularity and it addresses some issues that the users have with IFC2x3.

Additional future work possibility is creating a user interface for easily navigating the CityGML

model and exporting the data to IFC. or include such the tool in existing software such as in

www.3drotterdam.nl as discussed in Chapter 4.7 .

http://www.3drotterdam.nl/

95

8 APPENDICES

A. REVIT ERROR.LOG

Revit is expecting integers instead of floats in IFCSite coordinates

/***

* ReadStepFile diagnostics.

* Date: Mon Jul 02 16:20:30 2018

* Produced by: The EXPRESS Data Manager Version 5.02.0100.07 : 28 Aug 2013

* Module: EDMstepFileFactory/EDMstandAlone

* Host: DESKTOP-L54SPS3

* Database: C:\Users\nebra\AppData\Local\Temp\{0A0EB9C9-7646-4E2D-9DC8-

267E7272A059}\ifc

* Database version: 5507

* Database creation date: Mon Jul 02 16:20:29 2018

* Model to populate: DataRepository.ifcimport

* Header model to populate:

* Step file name: New_vision.ifc

* EDMuser: sdai-user

* EDMgroup: sdai-group

* License ID and type: 5605 : Permanent license. Expiry date:

* EDMstepFileFactory options: 010201000002

**

************/

96

/* 29 */ #102, 'Rotterdam', 'Description of Default Site Rotterdam', 'LandUse', $, $, $,

.ELEMENT., (4.513888922738401

*** Error in column number: 156 ***

*** Recoverable Error: Inconsistency: INTEGER expected - REAL found. *** on line 29.

, 51.88893480730484

*** Error in column number: 175 ***

*** Recoverable Error: Inconsistency: INTEGER expected - REAL found. *** on line 29.

, 1.75463243424257

*** Error in column number: 193 ***

*** Recoverable Error: Inconsistency: INTEGER expected - REAL found. *** on line 29.

) , (4.513838893294704

*** Error in column number: 215 ***

*** Recoverable Error: Inconsistency: INTEGER expected - REAL found. *** on line 29.

, 51.88891307816326

*** Error in column number: 234 ***

*** Recoverable Error: Inconsistency: INTEGER expected - REAL found. *** on line 29.

, -0.694959999995253

*** Error in column number: 254 ***

*** Recoverable Error: Inconsistency: INTEGER expected - REAL found. *** on line 29.

--

 Operation terminated with error: Error/warning during STEP File read operation.

97

Fatal errors...........: 0

Recoverable errors.....: 6

Warnings...............: 0

Info...................: 0

total..................: 6

Lines..................: 114

98

B. COMPLETE PROGRAM

import xml.etree.ElementTree as ET

import os

import time

import itertools

import sys

import numpy

import uuid

from pyproj import Proj, transform

def guid():

 x=str(uuid.uuid4())

 newstr = x.replace("-", "")

 return ("'"+newstr[:22]+"'")

def find_reference_point(l):

 #takes a list of lists as input

 #will return the corner point as a list(point with least x and least y and least

z)

 x_list = []

 y_list = []

 z_list = []

 reference_point = []

 for x in l:

 x_list.append(x[0])

 minimum_x = numpy.min(x_list)

 reference_point.append(minimum_x)

 for x in l:

 y_list.append(x[1])

 minimum_y = numpy.min(y_list)

 reference_point.append(minimum_y)

 for x in l:

 z_list.append(x[2])

 minimum_z = numpy.min(z_list)

 reference_point.append(minimum_z)

 #return (tuple(reference_point))

 return (minimum_x,minimum_y,minimum_z)

def find_max_point(l):

 #takes a list of lists as input

 #will return a point with maxium values as a list(point with max x and max y and

max z)

 x_list = []

 y_list = []

 z_list = []

 max_point = []

 for x in l:

 x_list.append(x[0])

 max_x = numpy.max(x_list)

 max_point.append(max_x)

 for x in l:

 y_list.append(x[1])

 max_y = numpy.max(y_list)

 max_point.append(max_y)

 for x in l:

 z_list.append(x[2])

99

 max_z = numpy.max(z_list)

 max_point.append(max_z)

 #return (tuple(max_point))

 return (max_x,max_y,max_z)

def move_to_local(local_pont, l):

 #will convert list of points into local coordinates by subtracting the local

point value from them

 local_points_list=[]

 for x in l:

 result = numpy.subtract(x, local_pont)

 local_points_list.append(numpy.ndarray.tolist(result))

 return local_points_list

def from_EPSG28992_TO_WGS84(x1,y1,z):

 # convert coordinates from EPSG28992 TO WGS84

 inProj = Proj(init='epsg:28992')

 outProj = Proj(init='epsg:4326')

 x2,y2 = transform(inProj,outProj,x1,y1)

 return (x2,y2,z)

def chunks(l, n):

 #break the list "l" into sub-lists each has the length of "n"

 n = max(1, n)

 return [l[i:i + n] for i in range(0, len(l), n)]

def CityGML2IFC(path,dst):

 tree = ET.parse(path)

 counter = itertools.count(1000)

 #counter is used to createa a hashtaged unique id with an incremintal value

starting from the value given above

 root = tree.getroot()

 #define name spaces

 if root.tag == "{http://www.opengis.net/citygml/1.0}CityModel":

 # -- Name spaces

 ns_citygml = "http://www.opengis.net/citygml/1.0"

 ns_gml = "http://www.opengis.net/gml"

 ns_bldg = "http://www.opengis.net/citygml/building/1.0"

 ns_tran = "http://www.opengis.net/citygml/transportation/1.0"

 ns_veg = "http://www.opengis.net/citygml/vegetation/1.0"

 ns_gen = "http://www.opengis.net/citygml/generics/1.0"

 ns_xsi = "http://www.w3.org/2001/XMLSchema-instance"

 ns_xAL = "urn:oasis:names:tc:ciq:xsdschema:xAL:1.0"

 ns_xlink = "http://www.w3.org/1999/xlink"

 ns_dem = "http://www.opengis.net/citygml/relief/1.0"

 ns_frn = "http://www.opengis.net/citygml/cityfurniture/1.0"

 ns_tun = "http://www.opengis.net/citygml/tunnel/1.0"

 ns_wtr = "http://www.opengis.net/citygml/waterbody/1.0"

 ns_brid = "http://www.opengis.net/citygml/bridge/1.0"

 ns_app = "http://www.opengis.net/citygml/appearance/1.0"

 # -- Else probably means 2.0

 else:

 # -- Name spaces

 ns_citygml = "http://www.opengis.net/citygml/2.0"

 ns_gml = "http://www.opengis.net/gml"

 ns_bldg = "http://www.opengis.net/citygml/building/2.0"

 ns_tran = "http://www.opengis.net/citygml/transportation/2.0"

 ns_veg = "http://www.opengis.net/citygml/vegetation/2.0"

 ns_gen = "http://www.opengis.net/citygml/generics/2.0"

 ns_xsi = "http://www.w3.org/2001/XMLSchema-instance"

 ns_xAL = "urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"

100

 ns_xlink = "http://www.w3.org/1999/xlink"

 ns_dem = "http://www.opengis.net/citygml/relief/2.0"

 ns_frn = "http://www.opengis.net/citygml/cityfurniture/2.0"

 ns_tun = "http://www.opengis.net/citygml/tunnel/2.0"

 ns_wtr = "http://www.opengis.net/citygml/waterbody/2.0"

 ns_brid = "http://www.opengis.net/citygml/bridge/2.0"

 ns_app = "http://www.opengis.net/citygml/appearance/2.0"

 nsmap = {

 None : ns_citygml,

 'gml': ns_gml,

 'bldg': ns_bldg,

 'xsi' : ns_xsi,

 'xAL' : ns_xAL,

 'xlink' : ns_xlink,

 'dem' : ns_dem

 }

 dmy=time.strftime("%Y-%m-%dT%H:%M:%S", time.gmtime(os.path.getmtime(path)))

 #dmys will print the current time in IFC compatible formay

 dmys="'"+dmy+"'"

 cityObjects = []

 buildings = []

 generic=[]

 other = []

 #-- Find all instances of cityObjectMember and put them in a list

 for obj in root.getiterator('{%s}cityObjectMember'% ns_citygml):

 cityObjects.append(obj)

 for cityObject in cityObjects:

 #createa a list iof different city objects

 for child in cityObject.getchildren():

 if child.tag == '{%s}Building' %ns_bldg:

 buildings.append(child)

 elif child.tag == '{%s}GenericCityObject' %ns_gen:

 generic.append(child)

 else :

 other.append(child)

 i=0

 FILE = open(dst,"w")

 sys.stdout = FILE

 #sys.stdout = FILE means that every print statment will be saved instead in the

file

#---

 #define the ultimate reference point so that all points will have positive/small

values

 points_list_complete = []

 pos2 = tree.findall('.//{%s}posList' % ns_gml)

 for pos in pos2:

 x = ([float(val) for val in (pos.text).strip().split(' ')])

 #points_list_complete.append((x)[:-3])

 points_list_complete.append(x)

 reference_point=find_reference_point(points_list_complete)

reference_point_wgs84=from_EPSG28992_TO_WGS84(reference_point[0],reference_point[1],

reference_point[2])

101

 max_point=find_max_point(points_list_complete)

 max_point_wgs84=from_EPSG28992_TO_WGS84(max_point[0],max_point[1],max_point[2])

--

 ifcprojectid="#"+str(next(counter))

 ifcsiteid="#"+str(next(counter))

 wall_id_list=[]

 ground_id_list=[]

 roof_id_list=[]

 floor_id_list=[]

 print("\nISO-10303-21;"

 "\nHEADER;"

 "\nFILE_DESCRIPTION(('ViewDefinition[CoordinationView_V2.0]'), '2;1');"

 "\nFILE_NAME (","'",(os.path.basename(path)),"'",",",dmys,");"

 "\nFILE_SCHEMA (('IFC2X3'));"

 "\nENDSEC;"

 "\n\nDATA;"

 "\n#101 = IFCORGANIZATION ($, 'MSC_Geomatics', 'TU_Delft', $, $);"

 "\n#104 = IFCPERSON ($, 'Nebras_salheb', 'TU_Delft', $, $, $, $, $);"

 "\n#103 = IFCPERSONANDORGANIZATION (#104, #101, $);"

 "\n#105 = IFCAPPLICATION (#101, 'CityGML2IFC', 'CityGML2IFC', 'CityGML2IFC');"

 "\n#102 = IFCOWNERHISTORY (#103, #105, .READWRITE., .NOCHANGE., $, $, $,

1528899117);"

 "\n#109 = IFCCARTESIANPOINT ((0., 0., 0.));"

 "\n#110 = IFCDIRECTION ((0., 0., 1.));"

 "\n#111 = IFCDIRECTION ((1., 0., 0.));"

 "\n#108 = IFCAXIS2PLACEMENT3D (#109, #110, #111);"

 "\n#112 = IFCDIRECTION ((1., 0., 0.));"

 "\n#107 = IFCGEOMETRICREPRESENTATIONCONTEXT ($, 'Model', 3, 1.E-005, #108,

#112);"

 "\n#114 = IFCSIUNIT (*, .LENGTHUNIT., $, .METRE.);"

 "\n#113 = IFCUNITASSIGNMENT ((#114));"

 "\n#115= IFCMATERIAL('K01-1');"

 "\n#116= IFCMATERIAL('K01-2');"

 "\n#117= IFCMATERIAL('K01-3');"

 "\n#118= IFCMATERIAL('K01-4');"

 "\n#119=IFCLOCALPLACEMENT($,#108);"

 "\n" ,ifcprojectid, " = IFCPROJECT (",guid(),", #102, 'core:CityModel', '', $,

$, $, (#107), #113);"

 "\n",ifcsiteid," = IFCSITE (",guid(),", #102, 'Rotterdam', 'Description of

Default Site Rotterdam', 'LandUse', $, $, $,

.ELEMENT.,""",max_point_wgs84,",",reference_point_wgs84,", $, $, $);")

 for building in buildings:

 ifcbuildingid = "#" + str(next(counter))

 print(ifcbuildingid," = IFCBUILDING (",guid(),", #102, 'bldg:Building', $,

$, $, $, $, $, $, $, $);")

 ifcsurfaceid_list=[]

 BoundedBy=building.findall('.//{%s}boundedBy' %ns_bldg)

 for Boundary in BoundedBy:

 #iterate over every boundedby class

 surfaces=Boundary.findall('.//{%s}surfaceMember' %ns_gml)

 for surface in surfaces:

 ifc_id_list=[]

 pl=0

 pos=surface.find('.//{%s}posList' %ns_gml)

 points_list= [float(val) for val in (pos.text).strip().split(' ')]

 #points list is the list of the bounding points eg. (5 points for

rectangle) every three points have the value of x and y and z

 points_list_chunks=chunks(points_list,3)

 #reference_point=find_reference_point(points_list_chunks)

 bounding_points=move_to_local(reference_point,points_list_chunks)

102

 while pl<len(bounding_points):

 #iterate over every point in the boundary and create an elemetn from

this point and store the id in ifc_id_list

 ifc_id="#"+str(next(counter))

 print((ifc_id)," = IFCCARTESIANPOINT ((",(str(bounding_points

[pl])).strip("[]"),"));")

 ifc_id_list.append(ifc_id)

 pl=pl+1

 ifcpolyloopid="#"+str(next(counter))

 print(ifcpolyloopid," = IFCPOLYLOOP ((", end=' ')

 #note; end= is used to identify what tp print after printstatment

have ended

 loop_string = ""

 for Element_id in ifc_id_list:

 loop_string += (str((Element_id)).strip("''"))

 loop_string += (",")

 loop_string2 = loop_string[:-1]

 print(loop_string2, "));")

 ifcfaceouterboundid="#"+str(next(counter))

 print(ifcfaceouterboundid," = IFCFACEOUTERBOUND (",ifcpolyloopid,",

.T.);")

 ifcfaceid="#"+str(next(counter))

 print(ifcfaceid," = IFCFACE ((",ifcfaceouterboundid,"));")

 ifcopenshellid="#"+str(next(counter))

 print(ifcopenshellid," = IFCOPENSHELL ((",ifcfaceid,"));")

 ifcshellbasedsurfacemodelid="#"+str(next(counter))

 print(ifcshellbasedsurfacemodelid," = IFCSHELLBASEDSURFACEMODEL

((",ifcopenshellid,"));")

 ifcshaperepresentationid="#"+str(next(counter))

 print(ifcshaperepresentationid," = IFCSHAPEREPRESENTATION

($,'Body','SurfaceModel',(",ifcshellbasedsurfacemodelid,"));")

 ifcproductdefiniteshapeid="#"+str(next(counter))

 print(ifcproductdefiniteshapeid," = IFCPRODUCTDEFINITIONSHAPE ($, $,

(",ifcshaperepresentationid,"));")

 if(Boundary.find('{%s}GroundSurface' %ns_bldg)):

 ifcsurfaceid="#"+str(next(counter))

 print(ifcsurfaceid," = IFCSLAB (",guid(),", $,'GroundSlab','

',$,$,",ifcproductdefiniteshapeid,",$,.BASESLAB.);")

 ifcsurfaceid_list.append(ifcsurfaceid)

 ground_id_list.append(ifcsurfaceid)

 if(Boundary.find('{%s}FloorSurface' %ns_bldg)):

 ifcsurfaceid="#"+str(next(counter))

 print(ifcsurfaceid," = IFCSLAB (",guid(),", $,'GroundSlab','

',$,$,",ifcproductdefiniteshapeid,",$,.BASESLAB.);")

 ifcsurfaceid_list.append(ifcsurfaceid)

 floor_id_list.append(ifcsurfaceid)

 if(Boundary.find('{%s}RoofSurface' %ns_bldg)):

 ifcsurfaceid="#"+str(next(counter))

 print(ifcsurfaceid," = IFCROOF (",guid(),", $,'RoofSlab','

',$,$,",ifcproductdefiniteshapeid,",$,.ROOF.);")

 ifcsurfaceid_list.append(ifcsurfaceid)

103

 roof_id_list.append(ifcsurfaceid)

 if(Boundary.find('{%s}WallSurface' %ns_bldg)):

 ifcsurfaceid="#"+str(next(counter))

 print(ifcsurfaceid," = IFCWALL (", guid(),",

$,'bldg:WallSurface',' ',$,$,",ifcproductdefiniteshapeid,",$);")

 ifcsurfaceid_list.append(ifcsurfaceid)

 wall_id_list.append(ifcsurfaceid)

 if(Boundary.find('{%s}InteriorWallSurface' %ns_bldg)):

 ifcsurfaceid="#"+str(next(counter))

 print(ifcsurfaceid," = IFCWALL (",guid(),",

$,'bldg:WallSurface',' ',$,$,",ifcproductdefiniteshapeid,",$);")

 ifcsurfaceid_list.append(ifcsurfaceid)

 wall_id_list.append(ifcsurfaceid)

 if(Boundary.find('{%s}CeilingSurface' %ns_bldg)):

 ifcsurfaceid="#"+str(next(counter))

 print(ifcsurfaceid," = IFCCovering (",guid(),",

$,'CoveringSlab',' ',$,$,",ifcproductdefiniteshapeid,",$,$);")

 ifcsurfaceid_list.append(ifcsurfaceid)

 roof_id_list.append(ifcsurfaceid)

 if (ifcsurfaceid_list):

 print("#"+str(next(counter))," = IFCRELAGGREGATES (",guid(),", #102, $,

$, ",ifcprojectid,", (", ifcbuildingid,"));")

 print("#"+str(next(counter))," = IFCRELCONTAINEDINSPATIALSTRUCTURE

(",guid(),", #102, $, $, (", end=' ')

 loop_string = ""

 for Element_id in ifcsurfaceid_list:

 loop_string += (str((Element_id)).strip("''"))

 loop_string += (",")

 loop_string2 = loop_string[:-1]

 print(loop_string2, "),",ifcbuildingid,");")

#Added material when needed by commenting the below back in

 #assign material #115 to all walls

 print("#"+str(next(counter))," = IFCRELASSOCIATESMATERIAL

(",guid(),",#102,$,$,(", end=' ')

 loop_string = ""

 for Element_id in wall_id_list:

 loop_string += (str((Element_id)).strip("''"))

 loop_string += (",")

 loop_string2 = loop_string[:-1]

 print(loop_string2, "),#115);")

 #assign material #116 to all roofs

 print("#"+str(next(counter))," = IFCRELASSOCIATESMATERIAL

(",guid(),",#102,$,$,(", end=' ')

 loop_string = ""

 for Element_id in roof_id_list:

 loop_string += (str((Element_id)).strip("''"))

 loop_string += (",")

 loop_string2 = loop_string[:-1]

 print(loop_string2, "),#116);")

 #assign material #117 to all floors

 print("#"+str(next(counter))," = IFCRELASSOCIATESMATERIAL

(",guid(),",#102,$,$,(", end=' ')

 loop_string = ""

 for Element_id in floor_id_list:

104

 loop_string += (str((Element_id)).strip("''"))

 loop_string += (",")

 loop_string2 = loop_string[:-1]

 print(loop_string2, "),#117);")

 #assign material #118 to all ground

 print("#"+str(next(counter))," = IFCRELASSOCIATESMATERIAL

(",guid(),",#102,$,$,(", end=' ')

 loop_string = ""

 for Element_id in ground_id_list:

 loop_string += (str((Element_id)).strip("''"))

 loop_string += (",")

 loop_string2 = loop_string[:-1]

 print(loop_string2, "),#118);")

 #pipes work

 for pipe in generic:

 pl = 0

 pos = pipe.findall('.//{%s}posList' % ns_gml)

 for polygon in pos:

 ifc_id_list=[]

 pl=0

 points_list= [float(val) for val in (polygon.text).strip().split(' ')]

 #points list is the list of the bounding points eg. (5 points for

rectangle) every three points have the value of x and y and z

 points_list_chunks=chunks(points_list,3)

 #reference_point=find_reference_point(points_list_chunks)

 bounding_points=move_to_local(reference_point,points_list_chunks)

 while pl<len(bounding_points):

 #iterate over every point in the boundary and create an elemetn from

this point and store the id in ifc_id_list

 ifc_id="#"+str(next(counter))

 print((ifc_id)," = IFCCARTESIANPOINT ((",(str(bounding_points

[pl])).strip("[]"),"));")

 ifc_id_list.append(ifc_id)

 pl=pl+1

 ifcpolyloopid="#"+str(next(counter))

 print(ifcpolyloopid," = IFCPOLYLOOP ((", end=' ')

 #note; end= is used to identify what tp print after printstatment have

ended

 loop_string = ""

 for Element_id in ifc_id_list:

 loop_string += (str((Element_id)).strip("''"))

 loop_string += (",")

 loop_string2 = loop_string[:-1]

 print(loop_string2, "));")

 ifcfaceouterboundid="#"+str(next(counter))

 print(ifcfaceouterboundid," = IFCFACEOUTERBOUND (",ifcpolyloopid,",

.T.);")

 ifcfaceid="#"+str(next(counter))

 print(ifcfaceid," = IFCFACE ((",ifcfaceouterboundid,"));")

 ifcopenshellid="#"+str(next(counter))

 print(ifcopenshellid," = IFCOPENSHELL ((",ifcfaceid,"));")

 ifcshellbasedsurfacemodelid="#"+str(next(counter))

 print(ifcshellbasedsurfacemodelid," = IFCSHELLBASEDSURFACEMODEL

((",ifcopenshellid,"));")

105

 ifcshaperepresentationid="#"+str(next(counter))

 print(ifcshaperepresentationid," = IFCSHAPEREPRESENTATION

($,'Body','SurfaceModel',(",ifcshellbasedsurfacemodelid,"));")

 ifcproductdefiniteshapeid="#"+str(next(counter))

 print(ifcproductdefiniteshapeid," = IFCPRODUCTDEFINITIONSHAPE ($, $,

(",ifcshaperepresentationid,"));")

 print("#" +

str(next(counter)),"=IFCBUILDINGELEMENTPROXY(",guid(),",#102,'Pipe',$,$,#119,",ifcpr

oductdefiniteshapeid,",$,$);")

 print("\n"

 "\nENDSEC;"

 "\nEND-ISO-10303-21;")

 FILE.write("")

 FILE.close()

#path="complete_city_mpdel_with_pipes_reprojected.gml"

path="Source.gml"

#path="new.gml"

#path="1.gml"

#path="complete_city_mpdel_with_pipes_reprojected.gml"

#path="small_pipe_reprojected.gml"

#path="new_ground_solid_removed.gml"

#path="Ground.gml"

dst="Result.ifc"

CityGML2IFC(path,dst)

106

C. METHODOLOGY RESULTING DATA MODEL

107

9 REFERENCES

3DCityDB | cesiumjs.org. (n.d.). Retrieved September 26, 2019, from

https://cesiumjs.org/demos/3DCityDB/

Autodesk. (2018). Revit 2018 New Feature—Geo-reference Coordinates | Revit Products 2018 |

Autodesk Knowledge Network. Retrieved April 13, 2019, from

https://knowledge.autodesk.com/support/revit-products/learn-

explore/caas/video/youtube/watch-v-Xij-oWzL1f4.html

Borrmann, A., Kolbe, T. H., Donaubauer, A., Steuer, H., & Jubierre, J. R. (2013).

TRANSFERRING MULTI-SCALE APPROACHES FROM 3D CITY MODELING TO

IFC-BASED TUNNEL MODELING. ISPRS Annals of Photogrammetry, Remote Sensing

and Spatial Information Sciences, II-2/W1, 75–85. https://doi.org/10.5194/isprsannals-II-

2-W1-75-2013

buildingsmart. (2019a). IfcSite. Retrieved April 13, 2019, from http://www.buildingsmart-

tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifcsite.htm

buildingsmart. (2019b). Start Page of IFC2x3 Final Documentation. Retrieved April 16, 2019,

from http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm

Diakite, A. (2018). About the Geo-referencing of BIM models. 13.

Donkers, S. (2013). Automatic generation of CityGML LoD3 building models from IFC models.

127.

108

El-Mekawy, M., Östman, A., & Hijazi, I. (2012). An Evaluation of IFC-CityGML Unidirectional

Conversion. International Journal of Advanced Computer Science and Applications, 3(5).

https://doi.org/10.14569/IJACSA.2012.030525

GIS and BIM Integration Will Transform Infrastructure Design. (2018, July 17). Retrieved

January 21, 2019, from Redshift EN website: https://www.autodesk.com/redshift/gis-and-

bim-integration/

Gröger, G., Kolbe, T. H., Nagel, C., & Häfele, K.-H. (2012). OGC City Geography Markup

Language (CityGML) En- coding Standard. 344.

Gröger, G., & Plümer, L. (2012). CityGML – Interoperable semantic 3D city models. ISPRS

Journal of Photogrammetry and Remote Sensing, 71, 12–33.

https://doi.org/10.1016/j.isprsjprs.2012.04.004

Hütter, J. (2016, July 6). KIT - IAI - FZKViewer [Text]. Retrieved September 26, 2019, from

https://www.iai.kit.edu/1648.php

IfcOpenShell / Forums / Help: Creating profile definition with coordinates. (2019). Retrieved

September 12, 2019, from

https://sourceforge.net/p/ifcopenshell/discussion/1782717/thread/efd956d7/

IfcSpatialStructureElement. (2019). Retrieved September 19, 2019, from

http://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifcproductextensi

on/lexical/ifcspatialstructureelement.htm

Kavisha. (2015). CityGML based Interoperability for the Transformation of 3D Data Models. 74.

Kolbe, T. H. (2009). Representing and Exchanging 3D City Models with CityGML. In J. Lee &

S. Zlatanova (Eds.), 3D Geo-Information Sciences (pp. 15–31).

https://doi.org/10.1007/978-3-540-87395-2_2

109

Kolbe—2009—Representing and Exchanging 3D City Models with Ci.pdf. (n.d.).

Lee, N., & Hollar, D. A. (2013). Probing BIM Education in Construction Engineering and

Management Programs Using Industry Perceptions. 8.

Ohori, K. A., Diakité, A., Ledoux, H., Stoter, J., & Krijnen, T. (2018). Final report 10 January,

2018. 30.

STEP-file, ISO 10303-21 [Web page]. (2017, January 3). Retrieved September 11, 2019, from

https://www.loc.gov/preservation/digital/formats/fdd/fdd000448.shtml

110

111

	Abstract
	Acknowledgements
	Contents
	Table of figures
	1 Introduction
	1.1 Background
	1.2 Motivation and problem statement
	1.3 Research question
	1.4 Use Case
	1.5 Scientific relevance
	1.6 Scope
	1.7 Thesis outline

	2 Background
	2.1 CityGML
	2.1.1 Multi-scale representation
	2.1.2 Semantics
	2.1.3 Geometry
	2.1.4 Coordinates
	2.1.5 Topology
	2.1.6 Encoding

	2.2 IFC
	2.2.1 Semantics
	2.2.2 Geometry
	2.2.3 Coordinates
	2.2.4 Topology
	2.2.5 Encoding

	3 Related work
	3.1 Matching IFC and CityGML schemas
	3.2 Conversion of 3D-Geoinformation to BIM
	3.3 Conversion of IFC to CityGML
	3.4 Georeferencing BIM
	3.5 Software
	3.5.1 FZKViewer
	3.5.2 CityGML2CAD

	4 Methodology
	4.1 Overview of methodology
	4.1.1 Source Data
	4.1.2 Filtering the Dataset
	4.1.3 Creating IFC dataset
	4.1.4 Make the data accessible for users

	4.2 Encoding
	4.3 Geometry
	4.4 Coordinates
	4.5 Semantics
	4.6 Topology
	4.7 User accessibility
	4.8 Methodology results

	5 implementation
	5.1 Program Description
	5.1.1 how to use program

	5.2 Data description
	5.2.1 Rotterdam3D
	5.2.2 Other data sources

	5.3 Tools

	6 Validation
	6.1 FZK Viewer
	6.2 IfcCheckingTool
	6.3 Checking other files
	6.4 IFCRELAGGREGATES
	6.5 Checking with users

	7 Conclusions
	7.1 Research questions
	7.2 Discussion
	7.3 Limitations
	7.4 Future work

	8 Appendices
	A. Revit error.log
	B. Complete Program
	C. methodology resulting data model

	9 References

