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Exploring Optimal Pump Scheduling in Water
Distribution Networks with Branch and Bound Methods

Ruben Menke1 ·Edo Abraham2 ·Panos Parpas3 ·
Ivan Stoianov1

Abstract Water utilities can achieve significant savings in operating costs by optimis-
ing pump scheduling to improve efficiency and shift electricity consumption to low-tariff
periods. Due to the complexity of the optimal scheduling problem, heuristic methods that
cannot guarantee global optimality are often applied. This paper investigates formulations
of the pump scheduling problem solved using a branch and bound method. Piecewise lin-
ear component approximations outperform non-linear approximations within application
driven accuracy bounds and demand uncertainties. It is shown that the reduction of symme-
try through the grouping of pumps significantly reduces the computational effort, whereas
loops in the network have the opposite effect. The computational effort of including con-
vex, non-linear pump operating, and maintenance cost functions is investigated. Using case
studies, it is shown that linear and fixed-cost functions can be used to find schedules which,
when simulated in a full hydraulic simulation, have performances that are within the solver
optimality gap and the uncertainty of demand forecasts.

Keywords Water distribution systems · Pump scheduling · Mixed integer programming ·
Branch and bound · Looped network models

1 Introduction

In the US up to 4 % of all energy demand is consumed by water distribution and treat-
ment works (Pasha and Lansey 2014). In particular 70 % of the life cycle cost of a pump
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system can be attributed to its electricity consumption (Nault and Papa 2015). Optimal
pump scheduling has been shown to reduce the energy cost of a water distribution system
(WDS) by 10–20 %, this by shifting consumption to time periods with lower electricity cost
or improving operational efficiency (Boulos et al. 2001).

Pump scheduling for fixed energy tariffs has been studied extensively, detailed reviews
can be found in D’Ambrosio et al. (2015) and Singh (2014). However, as energy grids
are changing with the introduction of renewables, different operating strategies may be
favourable compared to optimising for a fixed energy tariff.

This paper outlines in detail a selection of optimisation approaches for such analyses.
Then the performance of a range of mathematical optimisation methods suitable for differ-
ent analyses is explored. Following an extensive review of published literature on optimising
pump schedules, a mixed integer problem formulation solved with a branch and bound
method is selected as optimisation method most suited to achieve the objectives outlined
above. The performance of different model approximations for the objective function, which
describes the operating cost, and the constraints, describing the hydraulic model are inves-
tigated. The approximations investigated include quadratic equations for modelling pumps
and pipes, as well as convex and piecewise linear approximations. The improvements in
computational speed for different approximations of system components are assessed with
respect to the resulting loss in accuracy of the hydraulic solution. Results of a preliminary
analysis of this method by the same authors (Menke et al. 2015) are further explored on a
larger benchmark network. Here the changes in computational performance are investigated
when taking into account maintenance constraints on pumps, grouping pumps to reduce the
symmetry of the model and changing the problem size by varying the number of time steps
and the size of the network. This analysis is performed using a benchmark network and
skeletonised network based on an operational network model supplying roughly a million
customers in the UK.

2 Literature Review

Optimal pump schedules for a water distribution system (WDS) are derived using either
heuristic methods or mathematical optimisation. In the former methods, heuristics are used
to generate schedules and evolutionary methods guide the search for optimality. Mathemat-
ical optimisation solves the problem by using information of the objective function to guide
the search and a set of constraints to limit the search to feasible states of the real system.

2.1 Review of Heuristic Methods

The complexity and non-linearity of the equations describing the hydraulic system has led
to the application of heuristic methods, which solve the hydraulic problem separately from
the optimisation problem, in a dedicated hydraulic simulation. Genetic algorithms (GA)
have been applied to optimise pump scheduling (Mackle et al. 1995), and have been com-
bined with improvements for local searches (Van Zyl et al. 2004; Reis et al. 2006; Siew
et al. 2016). The large number of solutions generated by a GA lends itself to the application
of multi-objective optimisation (Savic et al. 1997; Siew et al. 2014). To reduce the compu-
tational effort of each iteration the hydraulic simulation can be replaced with an artificial
neural network (Jamieson et al. 2007). Warm starts for GAs can improve the computa-
tional effort and have been applied to pump scheduling (Pasha and Lansey 2014). Simulated
annealing, a heuristic method inspired by the cooling processes of metals, has also applied
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to pump scheduling (Goldman and Mays 1999; Pedamallu and Ozdamar 2008; Teegavarapu
and Simonovic 2002; Samora et al. 2016). Ant colony optimisation, a nature inspired opti-
misation technique, has also been applied optimise pump scheduling (López-Ibáñez et al.
2008; Afshar et al. 2015). Other evolutionary methods applied to pump schedule opti-
misation in WDS include harmony search optimisation (Kougias and Theodossiou 2013)
and particle swarm optimisation (Wegley et al. 2000; Ostadrahimi et al. 2012). Heuristic
methods can provide optimised pump schedules for hydraulic systems, but cannot provide
bounds on the global optimality of the solution.

2.2 Review of Mathematical Optimisation Approaches

Mathematical optimisation approaches that have been applied to pump scheduling include
dynamic programming (Dreizin 1970), model predictive control (Sun et al. 2015), iterative
methods (Price and Ostfeld 2013), benders decomposition (Cai et al. 2001) and branch and
bound methods (Costa et al. 2016).

Dynamic Programming (DP) has been applied to the optimisation of pump schedules but
for larger systems it suffers from the “curse of dimensionality” (Powell 2005). To overcome
this, the WDS can be decomposed into sub-networks or pump switching decisions can be
aggregated (Joalland and Cohen 1980; Zessler and Shamir 1989).

Model Predictive Control (MPC) is an iterative control method applied in receding hori-
zon fashion, widely used in the control of plant operations (Camacho and Alba 2013). MPC
has been applied to the optimisation of WDS operations (Ocampo-Martinez et al. 2013;
Fiorelli et al. 2013). Although it does not guarantee global optimality of operations, it has
yielded good control strategies in practice (Nikolaou 2001), acting against uncertainties in
demand at each schedule update. It has also been applied as a control technique to mitigate
maximum demand charges when operating a WDS (van Staden et al. 2011). Other itera-
tive methods, decompose the scheduling problem into sub-problems that can be solved by
a range of mathematical optimisation methods. This includes the application of linear pro-
gramming (Bunn and Helms 1999; Price and Ostfeld 2013), or graph search methods (Price
and Ostfeld 2016).

The pump scheduling problem can be posed as a mixed integer non-linear prob-
lem (MINLP) and solved using a branch and bound algorithm (Gleixner et al. 2012;
Burgschweiger et al. 2008). For a special network structure the components can be approx-
imated with convex relaxations, yielding a more tractable convex MINLP (Bonvin et al.
2016).

Other methods to improve the tractability are a Lagrangian decomposition of the problem
(Ghaddar et al. 2014), or generalized benders decomposition (Verleye and Aghezzaf 2016).
The computational effort can be reduced, however these decompositions can lead to a loss
of the global guarantee of the optimality.

Fig. 1 The Van zyl network,
adapted from Van Zyl et al.
(2004). It is comprised of two
storage tanks and a demand node
supplied by two pump stations
with a total of three pumps
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3 Problem Formulation

An example of a WDS, used to illustrate pump scheduling, is shown in Fig. 1. The sys-
tem transports water from a source reservoir, J1, to demand nodes, for example J5 in this
network. The required pressure head is provided by pumps such as main1 or booster and
stored in elevated tanks such as J6. Pipes labelled P1, P2 . . . P8 connect the components.

The optimal pump scheduling problem can be formulated as the mathematical optimisa-
tion problem:

Minimise : Pumping cost
subject to : Energy balance,

Mass balance,
(1)

where the energy and mass balance are the governing physical constraints for the WDS. As
outlined the optimisation method presented here aims to enable analysis of energy usage
strategies of WDS and this requires the guarantee of a bound on the global optimality gap. A
convex branch and bound problem can provide such a guarantee (Garfinkel and Nemhauser
1972), a general outline of a branch and bound algorithm applied to pump scheduling is
given by Algorithm 1.

Algorithm 1 Branch and bound

Given a MILP of the form:

Minimise: 1 2

subject to: 1 2

0 1 1

(2)

where 1, 2, 1, 2, define the problem, is set of continuous variable and is a
set of binary variables. The outline below gives a general procedure, however to reduce
computational effort, solvers may use a different order of steps or additional steps, to find
solutions and determine branching directions (IBM 2009; Achterberg 2009).

Step 0: Select a binary variable and partition the problem into two branches and setting
the selected variable to its extreme values.
Step 1: Set an upper bound to or find a feasible solution for (2) through
a heuristic and set . Set a lower bound by evaluating (2) with a relaxed
integrality requirement (by letting [0 1]). Set .
Step 2: Evaluate with each branch by relaxing the integrality requirement for the other
binary variables and solve the relaxed problem.

Step 3: If a solution from Step 1 is a feasible solution of (2) (respects the integrality
constraint) set it to .

Step 4: Set the infimum (greatest lower bound) of the solutions to Step 1 as if it is
greater than the current .
Step 5: Discard any branches where of the branch is greater than of another
branch.

Step 6: If the optimality gap is lower than the desired level, or the

computational time limit has elapsed then stop else go back to Step 1.

The solution forms the lower bound for each branch

Finding more feasible solutions through heuristics can improve the convergence
performance.
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3.1 Objective Function

For a fixed speed pump, the pump’s ON-OFF state can be described by an integer variable.
The state of a pump, ip at time step j ∈ [0, N ] it is given by Tip,j ∈ {0, 1}. The cost of
operating a fixed speed pump can be expressed as:

f1(·) :=
ip=Np∑

ip=1

j=N∑

j=1

Tip,jPip,j (3)

where Pip,j is the cost of energy in having pump ip ON at time j . This approximation
assumes a fixed power consumption. While the power consumption may be relativity con-
stant in the operating range of the pump, the power consumption of a pump can vary with
flow. To account for this the power consumption can be approximated:

f2(·) :=
ip=Np∑

ip=1

j=N∑

j=1

Tip,j c
e
ip,1 + me

ip,1qip,j ; (4)

where Eq. 4 is a linear approximation with coefficients ce
ip,1 and me

ip,1 and a quadratic
approximation is given by:

f3(·) :=
ip=Np∑

ip=1

j=N∑

j=1

Tip,j c
e
ip,2 + ae

ip,2q
2
ip,j + be

ip,2qip,j , (5)

with coefficients ae
ip,2, b

e
ip,2 and ce

ip,2.
For fixed speed pumps, switching the pump state causes fatigue loading on the water

distribution system and the pump it self. To account for these, pump switches are often
charged with a proxy cost (Lansey and Awumah 1994; Savic et al. 1997).

A penalty function that penalises ON-to-OFF and OFF-to-ON switches equally is added
to the objective function.

f4(·) :=
ip=Np∑

ip=1

Ps

j=N∑

j=1

|Tip,j − Tip,j−1| =
ip=Np∑

ip=1

Ps

j=N∑

j=1

(
Tip,j − Tip,j−1

)2 (6)

where Ps is a switching penalty and the equality in Eq. 6 holds because T ∈ {0, 1}.
In summary, the pump cost are considered either as fixed during the time interval the

pump operates as described by Eq. 3, or proportional to the flow rate with either a linear
dependence on the flow through the pump as given by Eq. 4 or a quadratic dependence on
the flow rate as described by Eq. 5. In addition, maintenance cost can be accounted for by
adding costs for switching as in Eq. 6.

3.2 Pump Approximations

When a pump is ON, the characteristic curve of the pump describes the relationship between
the head difference across the pump and the flow rate. When the pump is OFF, the flow
through the pump is zero. For pump ip that connects nodes J1 and J2 with flow qip , the
pressure difference across the pump at a time step can be represented with a polynomial
function:

hJ1 − hJ2 =
{

aipq2
ip

+ bipqip + cip if: T = 1

unspecified, qip = 0 if: T = 0.
(7)
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This results in quadratic equality constraints that make problem (1) a non-convex mixed-
integer non-linear program (MINLP). However, convex relaxation can be formed by
neglecting the concave constraints. These constraints are implemented using the big-M
method detailed in Section 3.3 and Gleixner et al. (2012).

A set of linear constraints describing a convex set can also be considered to approximate
the characteristic curve. The constraints are enforced if Tip = 1, and are described by:

hJ1 − hJ2 ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m
p

ip,1qip + c
p

ip,1 and

m
p

ip,2qip + c
p

ip,2 and
...

m
p
ip,Ncon

qip + c
p
ip,Ncon

if: T = 1

Δhub, qip = 0 if: T = 0,

(8)

where mip,1 . . . mip,Ncon and cip . . . cip,Ncon are the linear coefficients and Ncon is the num-
ber of these constraints and Δhub is an upper bound on the head difference across the pump.
These constraints are also implemented using the big-M method.

To further simplify the pump description, a formulation prescribing a fixed head dif-
ference is implemented assuming that pumps operate near their best efficiency point
(BEP):

hJ1 − hJ2 =
{

hf ixed , qmin ≤ qip ≤ qmax if T = 1
unspecified, qmain1 = 0 if T = 0,

(9)

where hf ixed is the head difference at the BEP and is enforced if the pump is on, qmin and
qmax are limits close to the BEP flow rate. Such a formulation was used by Gleixner et al.
(2012).

Often multiple pumps are installed in parallel or in series at pumping stations, such as
pumps main1 and main2 in the Van Zyl network shown in Fig. 1. These pump configura-
tions can be modelled as individual pumps or as a single pump represented with a composite
pump performance curve (Larock and Jeppson 2000).

For pump station ip with a set of pumps with a total of kp composite pump curves, the
different composite curves of the pump station can, for a given time step, be approximated
by quadratic equality constraints as given by:

hJ1 − hJ2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a
p

1 q2
ip

+ b
p

1 qip + c
p
ip

if: T1 = 1

a
p

2 q2
ip

+ b
p

2 qip + c
p

2 if: T2 = 1
...

...

a
p
kp

q2
ip

+ b
p
kp

qip + c
p
kp

if: Tkp = 1

(10)

where a
p

1 . . . a
p
kp

, b
p

1 . . . b
p
kp

and c
p

1 . . . c
p
kp

are the coefficients of the alternative composite
curves. Only one curve can be active by enforcing:

i=kp∑

i=1

Ti ≤ 1 (11)

If a hierarchy between the pumps can be enforced, the number of pump combinations
can be reduced to the number of pumps in the station, i.e. kp = np . The ON-OFF states of
the pumps are linked explicitly through (Gleixner et al. 2012):

T1 ≥ T2 . . . ≥ Tnp−1 ≥ Tnp (12)
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Representation (12) can group pumps that are not immediately connected. Both pump
grouping approaches were applied to the Van Zyl network and other test networks.

In summary the characteristic curve of the pumps in the network are approximated using
either quadratic equality constraints as given by Eq. 7, a set of linear constraints forming a
convex set as given by Eq. 8 or by simply enforcing a head difference and flow limits as
shown in Eq. 9. The pumps in pump stations are either left as individual pumps or grouped
by modelling their composite curves as given by Eqs. 10 and 11 or by explicitly enforcing
a hierarchy through Eq. 12.

3.3 Pipe Approximations

Frictional head loss of pipe flows is often modelled using the Hazen-Williams or Darcy-
Weisbach formulae. These non-linear empirical equations can be approximated to reduce
the computational effort and formulate a convex problem. Since the Hazen-Williams and
Darcy-Weisbach equations both have a power of ≈ 2 with respect to the flow rate, a
quadratic polynomial approximation can provide a close fit. When considering the exam-
ple from Fig. 1, a quadratic constraint for a given time step for pipe P2, connecting nodes
J3 & J4 is given as:

hJ3 − hJ4 =
{

ac
P2

q2
P2

+ bc
P2

qP2 + cc
P2

, if qP2 ≥ 0
−ac

P2
q2
P2

+ bc
P2

qP2 − cc
P2

, if qP2 ≤ 0.
(13)

For the MIP solver, Eq. 13 is implemented using the big-M constraints:

hJ3 − hJ4 − ac
P 2q

2
P 2 − bc

P 2qP 2 − cc
P 2 ≥ M(λP 2 − 1)

hJ3 − hJ4 − ac
P 2q

2
P 2 − bc

P 2qP 2 − cc
P 2 ≤ M(1 − λP 2)

hJ3 − hJ4 + ac
P 2q

2
P 2 − bc

P 2qP 2 + cc
P 2 ≥ −MλP 2

hJ3 − hJ4 + ac
P 2q

2
P 2 − bc

P 2qP 2 + cc
P 2 ≤ MλP 2

M(λP 2 − 1) ≤ qP 2 ≤ MλP 2 (14)

where, hj is the head at node j and aP 2, bP 2 & cP 2 are the fitted coefficients for the pipe,
cP 2 represents the elevation difference. λP 2 is a binary switching parameter with λP 2 =
1 ⇒ qP 2 ≥ 0 and λP 2 = 0 ⇒ qP 2 ≤ 0 and M is a sufficiently large constant. This results
in quadratic equality constraints and renders problem (1) a non-convex MINLP. However, as
for Eq. 7, by neglecting the concave constraints (lines 2 and 3 in Eq. 14), a convex relaxation
of the problem can be found. In order to replace quadratic constraints and generate a convex
problem, piecewise linear approximations are used to provide an approximation of the head
loss in a pipe. For the pipe P2, the piece-wise linear constraints

hJ3 − hJ4 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qP 2 mc
P 2,1 + cc

P 2,1,

if qlim1 ≤ qP 2 ≤ qlim2
qP 2 mc

P 2,2 + cc
P 2,2,

if qlim2 ≤ qP 2 ≤ qlim3
qP 2 mc

P 2,Npiece
+ cc

P 2,Npiece
,

if qlimNpiece−1 ≤ qP 2 ≤ qlimNpiece

(15)
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are implemented using big-M constraints:

hJ3 − hJ4 − mc
P 2,1qP 2 − cc

P 2,1 ≤ M(1 − λP 2,1)

hJ3 − hJ4 − mc
P 2,2qP 2 − cc

P 2,2 ≤ M(1 − λ2,i,j ) . . .

hJ3 − hJ4 − mc
P 2,Npiece

qP 2 − cc
P 2,Npiece

≤ M(1 − λP 2,Npiece
)

hJ3 − hJ4 − mc
P 2,1qP 2 − cc

P 2,1 ≥ M(λP 2,1 − 1)

hJ3 − hJ4 − mc
P 2,2qP 2 − cc

P 2,2 ≥ M(λP 2,2 − 1) . . .

hJ3 − hJ4 − mc
P 2,Npiece

qP 2 − cc
P 2,Npiece

≥ M(λP 2,Npiece
− 1).

(16)

where λP 2, (1,2...Npiece) ∈ {0, 1} is a switch for each corresponding linear section. A for-
mulation with Npieces introduces Npieces of integer variables per pipe at each time step.
Consequently, approximations with more pieces that more closely follow the head loss curve
may scale badly for larger network models.

In summary, the pipes in the system have head loss modelled with either quadratic equal-
ity constraints as shown in Eq. 14 or a set of piecewise linear constraints as given by Eq. 16.
By increasing the number of linear pieces given by Ncon, it is possible to more closely
approximate the head loss curve; in this paper either Ncon = 3 or Ncon = 7 are used.

3.4 Mass balance at network nodes

Since steady-state approximations of the hydraulic conditions are used, the mass flow is
equal to the volume flow. For a network node joining links P1, P2, · · · Pn, the mass flow
must balance at each time step j as:

p=Pn∑

p=P1

qp,j − dj = 0, (17)

where dj is the demand at the node at time step j .A minimum hydraulic head can also be
enforced at nodes if desired. For a tank, such as J4 in Fig. 1, with flows qP 2 and qP 3 the
mass balance for time steps j = 1 . . . N − 1 is given by:

qP 2,j + qP 3,j = (
hJ4,j+1 − hJ4,j

) × AJ4, (18)

where the horizontal surface area of the tank is given by AJ4 and the tank is assumed to
have vertical walls. The constraints on the final time step level of the tank are described by:

(
hJ4,1 − hJ4,N

) × AJ4 ≤ δV , (19)

where δV defines an acceptable limit of volumetric difference between initial and final fill
levels. By defining the final state in terms of the initial state, they aren’t specified by the
input data as this would limit the feasible search space and would lead to a sub-optimal
final solution. This is a common technique to set the initial and final tank levels (Price and
Ostfeld 2013).

4 Methodology

4.1 Problems Considered and Investigation Procedure

The component approximations and the associated objective functions and constraint equa-
tions are used to construct a number of MIP problems as summarised in Table 1. By
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Table 1 Formulation combinations used to investigate the influence of the component approximations

No.: Formulation Details

Solved with SCIP:

1a min.: f4(·) + f1(·) MINLP with the fewest number of integer variables,

s.t.: (7), (14), (17), (18) but most non-linear constraints

1b min.: f3(·) + f4(·) MINLP like No. 1a, but with a quadratic pump power

s.t.: (7), (14), (17), (18) consumption term

2 min.: f4(·) + f1(·) MINLP with less non-linear constraints than No. 1a,

s.t.: (7), (16), (17), (18) but more integer variables (Npiece = 7)

3 min.: f4(·) + f1(·) MINLP with the same non-linear constraints as No. 2,

s.t.: (7), (16), (17), (18) but fewer integer variables (Npiece = 3)

Solved with CPLEX:

4 min.: f4(·) + f1(·) MIQP with only linear constraints (Npiece = 7,

s.t.: (8), (16), (17), (18) Ncon = 7)

5 min.: f4(·) + f1(·) MIQP like No. 4, but fewer integer variables but a

s.t.: (8), (16), (17), (18) similar number of constraints (Npiece = 3, Ncon = 7)

6 min.: f4(·) + f1(·) MIQP like No. 4, but less constraints but the same

s.t.: (8), (16), (17), (18) number of variables (Npiece = 7, Ncon = 3)

7a min.: f4(·) + f1(·) MIQP like No. 4, but significantly less integer variables

s.t.: (8), (16), (17), (18) and constraints (Npiece = 3, Ncon = 3)

7b min.: f1(·) MILP, similar to No. 7a, but as without a switch

s.t.: (8), (16), (17), (18) penalty

7c min.: f2(·) MILP, like No. 7b, but with a linear pump power

s.t.: (8), (16), (17), (18) consumption term

7d min.: f3(·) + f4(·) MIQP like No. 7a, but with a quadratic pump power

s.t.: (8), (16), (17), (18) consumption term

8 min.: f1(·) MILP with a simpler pump formulation and fewer in-

s.t.: (9), (16), (17), (18) teger variables (Npiece = 3)

For each optimisation problem defined the constraints apply to all relevant components: (7, 8 or 9) apply to
all pumps, (16 or 14)apply to all pipes and (17) to all nodes and (18) to all tanks

comparing the computational effort required and the level of optimality of the solutions
among the different problem formulations, the individual effects of each modelling deci-
sion can be assessed. The investigation presented in this paper is done in three stages. At
first, the effect of symmetry is investigated by considering network formulations with and
without grouping constraints on pump stations.

Secondly, the optimal schedules found are simulated using a fully nonlinear hydraulic
simulation. This simulation provides data on the “true operational cost” C′ and hydraulic
conditions of the WDS when operated using the schedules from optimisation. This data is
then compared to the computed operating cost C and hydraulic conditions modelled in the
optimisation. The mean error is given by:

EOF = 1

|Xf |
∑

C∈Xf

‖C − C′‖
C′ (20)
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where Xf is the set of feasible solutions computed by the MIP solver using one of the
formulations and |Xf | is the size of the set.

Finally, the errors in the estimation of the hydraulic operation by the optimisation and
the computational effort of the optimisation can be weighted up to compare trade-offs and
guide the selection of suitable methods for further analysis. The hydraulic solution com-
puted in the optimisation (u) is compared to a high-accuracy hydraulic simulation solution
(u′) produced via a null space method (Abraham and Stoianov 2015) using the pump control
profiles (x) from the optimisation as inputs. The mean error in hydraulic analysis is given
by:

Ehyd = ‖u − u′‖
‖u′‖ (21)

where Ehyd is the mean error in flow rates for all flows in a given network and over all time
steps.

4.2 Networks Analysed

When analysing the performance of pump scheduling optimisation methods, it is impor-
tant to consider different networks since the suitability of certain methods and algorithms
vary with the network topology, controlled components and operational conditions (Jolly
et al. 2014). The Van Zyl network shown in Fig. 1 is a test network with one loop. The per-
formance of the method presented here on a larger network is analysed using the network
shown in Fig. 2a. To analyse the impact of loops in a WDS on the computational effort, three
artificial networks with zero (Fig. 2b), one (Fig. 2c) and two loops (Fig. 2d) are investigated.

(a)

(b) (c) (d)

Fig. 2 Networks used for analysis in addition to the Van Zyl network. A commercial WDS supplying a city
and three artificial networks to assess the performance impact of loops
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5 Results and Discussion

The computational effort in solving MIPs cannot always be predicted accurately; how-
ever, the results show that certain aspects of the problem formulation should be considered
carefully to improve performance.

5.1 Problem Symmetry

In the Branch and Bound algorithm, grouping reduces the number of possible search tree
branches with equal objective function values. This is known as symmetry and it is consid-
ered good practice to remove it from the model (Sherali and Smith 2001). Grouping limits
the combinatoric possibilities for pump settings from:

j=nH∏

j=1

k=np,j∑

k=0

np,j !
k! (np,j − k)! , (22)

for the ungrouped case to:
j=nH∏

j=1

(kp,j + 1), (23)

for the grouped pumps, where nH is the number of pump stations and kp,j the number of
pump combinations in station j . Removing symmetry has a very pronounced effect on the
computational performance of the solution. The Van Zyl Network with twelve time steps
and approximation number 7 is solved in 373 s when the pumps are not grouped, but in less
than 4 s when the pumps in the main pump station are grouped. Similar performance gains
were observed for different networks and time step sizes. As removing symmetry does not
affect the optimality of the solution, grouping is applied to all simulations.

5.2 Optimisation Constraints

For a given network, the size of the MIP problem (i.e. the number of variables and con-
straints) is dictated by the number of time steps and component approximations chosen. To
investigate the influence of the overall size of the problem on the computational effort the
analysis is performed on a range of simulation time steps. These are doubled three times
from 6 to 48 representing four hour to half hour time-steps for the daily pump schedules. The
observed increase in computational effort as number of time steps are increased is exponen-
tial for all approximation methods and networks. However, the number of links and nodes
of the network graph, does not have such a distinct effect. The number of integer variables
and the number of possible configurations that are explored in the branch and bound algo-
rithm increase, but as linked components have linked states, the the size of the network in
terms of pipes and nodes has less influence on the computational effort.

The computational effort measured in CPU time taken to get to a solution with a 5 %
bound on gap to global optimality, or in the optimality bound after 600 s, are shown in Fig. 3
along with the operating cost of the schedules found using a full hydraulic simulation. The
formulations 1a, 2 and 3 are computationally the most expensive. These formulations are
intractable for all but the smallest number of time steps and network sizes. The piecewise
linear pipe approximations are significantly faster to evaluate than the quadratic equality
constraints. This brings a reduction in computational effort that is amplified through the use
of a mixed integer solver tailored for linearly constrained MILP/MIQP problems. However,
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Fig. 3 Results of the analysis of the Van Zyl network (a ... c) and B-town network (d ... f) using different
approximations as detailed in Table 1

as the differences in computational effort between approximations 1a, 2 and 3 shows, the
problems with only some piecewise approximations are faster to evaluate with the same
solver.

WA linearly constrained, quadratic cost problem is formed by formulations 4–6, 7a and
7d. A linearly constrained, linear cost problem is formed by formulations 7b, 7c and 8. The
number of pieces in the piecewise approximations Eq. 16 (i.e. how closely the approxima-
tions fit the nonlinear pipe headloss equations) has a significant impact on the computational
effort, much more so than the number of piece-wise linear constraints that define the con-
vex sets for the pump models Eq. 8. This is expected because the number of pipes np in a
WDS is larger than the number of pumps np , even by many orders of magnitude for non-
skeletonised models, and so impacts the number of integer variables for the MIP through a
larger proportional constant (i.e. np × Npieces for pipes versus np × Ncon for pumps).

As the constraints represent the hydraulic model of the network, the error in network
states from the schedule optimisation compared to a hydraulic simulation of the schedules
is governed by the choice of component approximation. The non-linear approximations 1–3
provide a close fit to the hydraulic properties of the network components. The small geo-
metric mean errors of 1.74 %, 3.22 %, 3.99 % for approximations 1a ,2 and 3, respectively,
demonstrate this as well as the small spread in errors observed with the largest errors in
flow rate of 3.2 %, 6.0 % and 6.2 %, respectively. For the piecewise linear approximations
the mean error ranges from 2.8 to 4 % with approximation 4 having the smallest error and
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approximation 7a the largest. The maximum error observed is 7 %. This indicates that the
number of pieces in the pipe piecewise linear approximations dictates the size of the error
in the hydraulic approximation. The error in demand estimate for 15 minute time steps is
approximately 5–10 % (Herrera et al. 2010; Donkor et al. 2014). These results lead to the
conclusion that a piecewise approximation with only a few pieces will often have sufficient
detail to provide a schedule with a hydraulic error of size similar to the error in the demand
forecast while significantly reducing the computational effort.

The simple fixed head representation for the pump, approximation 8, gave results with
the smallest solve time. The results however have the largest hydraulic error, which may
lead to schedules that are not repeatable in a real network. For example some flow rates
through the pumps returned by the MIP solver for the 48 time steps on the Van Zyl network
were higher than those achievable in hydraulic simulation, leading to an infeasible solution.

5.3 Objective Function

The objective function formulations are investigated by comparing formulations 1a and
1b as well as 7a to 7d. The accuracy is given by (20), comparing the objective value of
the optimisation to the operating cost found by a full hydraulic simulation of the sched-
ule. The approximation 7b has the largest average error in estimated objective function
EOF = 7.1 %. Together with approximation 7c it has the lowest computational effort,
reaching 10 % optimality bound after 600s compared to 13.7 % for approximation 7a and
55.5 % for approximation 7d. However, the problem formulated with approximation 7d
resulted in EOF = 2.8 %, only approximation 1b achieved a similarly low error. Approx-
imations 7a and 7c both have an error of ∼ 4 %. This shows that the linear objective
functions are slightly faster to solve, while the quadratic objective function can negatively
impact the solution speed, especially when a more detailed representation of the power con-
sumption is required. With all constraints kept the same, the results do not conclusively
relate the computational effort with different objective functions. When compared to mini-
mizing the linear energy cost function f1(·) together with the quadratic switching penalties
f4(·), minimizing f1(·) only results in a fractional increase in the computational effort or
a marginal increase in the optimality gap of computed objective function when a 5 % gap
cannot achieved within the set maximum solve time of 600s. However, as the error caused
by approximating the power consumption curve of the pump is dependent on the pumps in
the network and the shape of their power curves, these can vary significantly for different
pumps. If the quadratic coefficient of f3(·) is negative, the objective function is no longer
positive semi-definite or convex and may make the MIP only solvable to local optimality.
The quadratic term for the switching constraints however, not considered in approximation
7b does not have a negative effect on performance. For the network models used the errors
are small, the simplest pump cost approximation with a consideration for pump switching is
used for all further analysis as outlined in Table 1. Bunn and Reynolds (2009) showed that
in practice savings have been made through optimising the pump operations near the best
efficiency point (BEP) while other applications such as Gleixner et al. (2012) have used less
detailed representations with good success.

5.4 Loops in the WDS

Loops in the network have a significant impact on the computational effort in solving the
scheduling problem. Despite representing an only marginally larger problem than the loop0
network, the schedules for loop1 and loop2 networks are computed considerably slower



5346 R. Menke et al.

with all formulations. For a simulation with 24 time steps the computational effort for the
problem described by approximation 7 increases from 1 s for loop0 to 9 s to 43 s for loop2.
Similar changes in computational effort are observed for other time step sizes or approxima-
tions. The negative computational performance impact of loops could also be a contributing
factor, as to why the Van Zyl network is only solved marginally faster than considerably
larger Networks as highlighted by Fig. 3. Through network simplification methods, it is pos-
sible to remove loops from network models and replacing them with equivalent pipes. Such
preliminary work could yield significant performance improvements for the optimisation
methods presented here (Simpson et al. 2012).

5.5 Further Work

The motivation for this work was to enable further research on energy usage strategies and
the need for a bound on the global optimality of solutions for comparisons of energy usage
strategies. An example of such comparisons can evaluate the potential of WDS to provide
reserve energy to a grid (Menke et al. 2016a). Further modifications could enable analysis of
the scheduling problem as a two stage stochastic problem. Energy recovery from WDS with
pumps as turbines or large pressure drops in networks also offer potential for optimisation
and comparison of operation strategies (Kougias et al. 2014; Carravetta et al. 2012). While
energy consumption of WDS are of concern, measuring the performance of a WDS may not
be so straight forward and a range of performance indicators (Kanakoudis et al. 2011) could
be used to optimise the operations for different priorities, possibly with a multi-objective
optimisation approach (Pecci et al. 2016).

The problem formulation presented here can be expanded, as it only addresses fixed
speed pumps, which make up the majority of installed pumps for utilities. Mathematical
formulations and optimization for variable speed pumps, which are more popular in new
pump installations, can be added to provide a wider scope of analysis (Menke et al. 2016b).
Any loops in the network significantly reduces the computational performance of the for-
mulations presented here. However, since loops are a common feature of networks, there are
two possible approaches for further work. One alternative is to design tailored optimization
solvers that take advantage of structure in networks with loops, for example through fur-
ther constraints or relaxations. Another approach can consider methods for the reduction of
networks to remove loops while generating functionally equivalent networks that are easier
to evaluate for the MIP solvers. An example of such a reduction is described in Deuerlein
(2008), and the performance of optimal pump schedules obtained from such a system could
be the focus of further work.

6 Conclusions

In practice, for a piecewise linear approximation of pipe head loss formulae, the mini-
mum number of pieces that generate an acceptable level of error in the hydraulics should
be used. If the pumps’ power consumption characteristics have a significant gradient with
respect to flow rate, linear or quadratic approximations of the power consumption may be
required. In optimizing schedules over 24 hours of operation, the computed operational cost
was shown to improve by 5–10 % when using smaller time steps although the computa-
tional time for the MIP increases exponentially. Finally, the network model supplied to the
optimisation should be simplified as much as possible, removing loops and symmetry where
possible.



Optimal Pump Scheduling with Branch and Bound Methods 5347

Using the method presented here optimised pump schedules with bounded optimality
gaps can be generated. These can be used for further analysis of the energy consumption of
the WDS. The application of such analysis has already been demonstrated and will provide
a basis for further analysis of the operation of WDS in times of large changes in the energy
supply.

Acknowledgments The authors would like to acknowledge the support of the Grantham Institute for Cli-
mate Change, the NEC-Imperial Smart Water Systems project and EPSRC (EP/G037094/1). Dr Abraham was
a Post-Doctoral Research Associate at Imperial College London (InfraSense Labs) when the work presented
in the manuscript was carried out.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Abraham E, Stoianov I (2015) Sparse null space algorithms for hydraulic analysis of large-scale water supply
networks. J Hydraul Eng 142(3):04015058:1–13. doi:10.1061/(ASCE)HY.1943-7900.0001089

Achterberg T (2009) SCIP: solving constraint integer programs. Math Program Comput 1(1):1–41.
doi:10.1007/s12532-008-0001-1

Afshar A, Massoumi F, Afshar A, Mariño MA (2015) State of the art review of ant colony opti-
mization applications in water resource management. Water Resour Manag 29(11):3891–3904.
doi:10.1007/s11269-015-1016-9

Bonvin G, Demassey S, Le Pape C, Maı̈zi N, Mazauric V, Samperio A (2016) A convex math-
ematical program for pump scheduling in a class of branched water networks. Appl Energy.
doi:10.1016/j.apenergy.2015.12.090

Boulos PF, Moore M, Hsiung P, Thomas D (2001) Optimal Pump Operation of water distribution systems
using genetic algorithms. Proc., Distribution System Symp., AWWA, 2010, San Diego, pp 23–25

Bunn S, Helms S (1999) Application of an expert system to control treated water distribution. In:
WRPMD’99, american society of civil engineers, Reston, VA, pp 1–7. doi:10.1061/40430(1999)68

Bunn SM, Reynolds L (2009) The energy-efficiency benefits of pumpscheduling optimization for potable
water supplies. IBM J Res Dev 53(3):5:1–5:13. doi:10.1147/JRD.2009.5429018
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