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Water Distribution Networks (WDNs) are often susceptible to either accidental or deliberate contami-
nation which can lead to poisoned water, many fatalities and large economic consequences. In order to
protect against these intrusions or attacks, an efficient sensor network with a limited number of sen-
sors should be placed in a WDN. In this paper, we focus on optimal sensor placements by introducing
two greedy-based algorithms in which the imperfection of sensors and multiple objectives can be taken
into account. The algorithms were tested using a medium scale urban WDN. It is shown that our algo-
rithms are able to find sensor placements in reasonable time and that its solutions are close to optimal.
Furthermore, relaxing the often used assumption that sensors work perfectly results in different sensor
placements than were found before, indicating the importance to take sensor imperfection into account

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Water Distribution Networks (WDNs) form a crucial part in our
life by providing clean, safe drinking water to billions of people
around the world. A WDN supplies fresh water from water sources
to households, companies e.g. using a large hydraulic system. This
system or network consists of many elements such as reservoirs,
tanks, treatment facilities, pumps, pipes, and valves. These net-
works are diverse and can be very large, consisting of hundreds or
thousands of kilometers of underground pipes. An increasing num-
ber of people make use of water from such a system every day and
rely on the safety and the quality of water in their lives or work.
If a problem arises within the WDN, the impact on society can be
enormous.

There are several threats to a WDN which can be divided into
physical and chemical disruptions. Physical disruptions, such as
leaking pipelines, failing pumps or intentional attacks on the net-
work itself, will have a big economical impact but are not con-
sidered a serious risk to human beings. The biggest threat to a
population comes from intentional or accidental chemical contam-
ination within the water network. In order to protect the pub-
lic from such intrusions it is necessary to incorporate an early
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warning system with a sensor network to monitor the quality of
the drinking water effectively and efficiently in a WDN. Together
with EPA (the United States Environmental Protection Agency),
Murray et al. (2009) estimated that a contamination warning sys-
tem could save half of the expected fatalities and over 19 billion
dollars of associated economic impact on a water network of a
large municipality.

Accidental contamination of a WDN may occur in many ways
including breaking of pipelines. However, a much bigger and more
lethal threat to a society happens with the intentional poison-
ing of drinking water by criminals or terrorists. In every volume
of the report The World’s Water Gleick and Heberger (2014), all
known conflicts and threats which involve water resources or wa-
ter systems are enumerated. These upcoming threats show the rel-
evance of a good warning system. A sensor system should be able
to quickly detect intrusions in the WDN and therefore reduce sick-
ness, fatalities and the associated economic consequences. Due to
cost and maintenance reasons, it is of course not possible to place
sensors at every place in the network. Hence, a small number of
sensors need to be placed efficiently to achieve an effective mon-
itoring. Several objectives and different algorithms have been con-
sidered to achieve an optimal or sub-optimal placement of sensors.
In previous works, it has mostly been assumed that the sensors de-
tect every contamination (100% reliability). This is most likely an
unrealistic assumption and with only a limited number of sensors
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to be placed in the WDN, the unreliability of one sensor could have
severe consequences.

In this work, we introduce new heuristic algorithms for solv-
ing the sensor placement problem when sensors are not 100% re-
liable, making use of a maximum covering model with weighted
edges. Further, we quantify the effect of the reliability of imper-
fect sensors on the optimal sensor placement and explore the ef-
fect of multiple objectives on the sensor placement. A basis of this
research is a recent paper by Palleti et al. (2016) in which they
design a perfect-sensor network using a greedy heuristic based on
the set covering problem (SCP) to be able to detect the contami-
nation and identify the source of the contamination. While max-
imizing the probability of detection has always been one of the
main objectives when designing a sensor network, the objective
of identifying the source of the attack is quite new in literature.
When the point of intrusion is known, it is possible to take action
instantly and to get some parts of the water network back to oper-
ation sooner. Besides these objectives of maximizing detection and
identification, we introduce objectives to also include objectives to
minimize the time to detection and the impact of a contamination
as well.

The organization of the paper is as follows. In Section 2 an
overview of the related work on sensor placement is given, and
the novelty of our work compared to the literature is described. In
Section 3, the main assumptions and the mathematical formula-
tion of the sensor placement problem are described, as well as the
greedy algorithms proposed to solve this problem. Section 4 con-
tains the main results of applying the developed algorithms on a
case study focusing on the Bangalore WDN. Finally, Section 5 de-
scribes the main conclusions and suggestions for future research.

2. Related work
2.1. Perfect sensor placement

Several researchers have addressed the sensor placement prob-
lem in WDNs considering different objectives assuming perfect
sensors. It was first mentioned by Lee et al. (1991), and Lee and
Deininger (1992) where they maximized the demand coverage
by sensors. Kessler et al. (1998) considered level of service as
an objective for sensor location in WDNs. Propato (2006) de-
veloped a mixed-integer linear program to identify optimal sen-
sor locations for early warning against accidental and intentional
contaminations in drinking water distribution systems. The gen-
eral model can be applied to unsteady hydraulic conditions. Later,
Shastri and Diwekar (2006) presented a two stage stochastic pro-
gramming approach for sensor placement in WDNs by incorpo-
rating nodal demand uncertainties in the objective function. Also,
Rico-Ramirez et al. (2007) proposed a two stage mixed integer pro-
gram which minimizes the expected population at risk and the
cost of sensors. Mukherjee et al. (2017) presented a new approach
to solve sensor placement problem in WDNS by incorporating un-
certainties in nodal demands and attack locations.

One of the main research works on sensor placements is the
Battle of the Water Sensor Networks (BWSN) (Ostfeld et al., 2008)
which was a multi-objective network design competition. In this
competition, fifteen independent teams have participated to design
the sensor network. They considered the following objectives in
their formulations: minimize the detection time, the population af-
fected and the amount of contaminated water consumed and max-
imize the detection likelihood with a limited number of sensors. In
this competition the best four solution methods based on the num-
ber of non-dominated' solutions are obtained (Berry et al., 2006;

T A solution is non-dominated if none of the objective functions can be improved
in value without degrading some of the other objective values.

Dorini et al,, 2006; Krause et al., 2006; Wu and Walski, 2006). A
major limitation of the BWSN formulation is the way non-detected
events were handled. Events which could not be detected were ig-
nored which could result in very promising results on impact re-
duction with a very small chance of detection.

One of the four solution methods was provided by the re-
search team of Berry et al. (2006), which performed a lot of re-
search on sensor placement in WDNs. They designed a mixed-
integer programming (MIP) formulation which was very similar to
the p-median facility location problem. In that problem, p facil-
ities should be placed and each customer should be assigned to
one facility in order to minimize the distance between the facility
and the customer. In the formulation of Berry et al. (2006), each
contamination scenario should be detected by one 'witness’ using
some number of sensors in order to minimize the impact over all
contamination scenarios. The 'witness’ is defined such that it is the
first sensor in the network to detect the contamination or it is a
dummy location, which means it is a non-detection. Several opti-
mal methods and heuristics are introduced by the research team.
This MIP formulation and heuristic solution methods formed the
basis of the most used sensor placement toolkit in practice, the
TEVA-SPOT Toolkit (Hart et al., 2008).

Further, Laird et al. (2006, 2005) and Perelman and Ost-
feld (2013) investigated the problem of contamination source iden-
tification based on the sensor deployment in the network. How-
ever, their approaches are useful only if the amount of contami-
nant introduced into the WDN is known. Also, it is also difficult
to obtain the unique solution because of the limited number of
sensor measurements available. Recently Palleti et al. (2016) used
a new and different approach to the sensor placement prob-
lem which satisfy observability and identifiability conditions. They
were interested in the objectives of detecting the attack and iden-
tifying the source of the attack. Observability refers to the ability
of the sensor network to detect the contamination where as iden-
tifiability refers to the ability of the sensor network to identify the
exact location of the intrusion.

2.2. Imperfect sensor placement

The number of papers that take imperfection of sensors into
account for the sensor placement problem in WDNs, is quite lim-
ited. For instance, a very recent survey paper, see Hu et al. (2018),
only mentions one paper, namely Comboul and Ghanem (2013),
that considers sensor imperfection, from a list of 18 papers. Like-
wise, the survey paper Rathi and Gupta (2014), only mentions 3
papers, Berry et al. (2009), Xu et al. (2010), and again Comboul and
Ghanem (2013), out of a list of 23 papers that deal with imperfect
sensors. In this subsection we will briefly discuss these papers and
explain how our work differs from it.

As the data analysis inside a sensor works with some range
or threshold, there is a fair chance not to detect every intru-
sion. For example when the contamination concentration has be-
come too low at that point in the network. Ostfeld and Sa-
lomons (2004) and Weickgenannt et al. (2010) incorporated these
thresholds in their formulation, but the sensors still work perfectly
above some threshold. Other researchers just only considered large
enough contamination events to overcome this problem.

In the previous section, the adjusted p-median facility location
problem introduced by Berry et al. (2006) was explained. In later
work of Berry et al. (2008), they extended their work by allow-
ing the sensors to not detect every contamination. They assign
false negative probabilities to each sensor location and change the
impact of an intrusion into an expected impact. An intrusion at
some point is now with some probability first detected by sensor
1, with some probability by sensor 2, and so on and finally with
some probability not detected at all. In contrast to the standard
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BWSN formulation, they did add penalty costs to non-detections.
In Berry et al. (2008), the formulation is extended for multiple
sensor types and thus multiple different probabilities of detecting
false negatives across the network. In Berry et al. (2009), experi-
ment with a number of solution methods to deal with imperfect
sensors and conclude that it is worth using optimization methods
that are aware of the sensor imperfection as more robust solutions
are found. Krause et al. (2008) describe their contribution to the
BWSN of Krause et al. (2006) along with several extensions. They
show ways to handle multi-objective optimization by scaling all
objectives and also how to handle sensor failures. Imperfect sen-
sors can be implemented in the framework they described by us-
ing a random binary variable associated per location which indi-
cates if a sensors works or not. In that way, the objective func-
tion is changed with an extra expectation over all possible fail-
ure scenarios as the average impact changes per different failure
scenario. In practice, this implementation only worked with a low
failure probability and at most one sensor failure per scenario, ac-
cording to the paper, as the number of different failure scenarios
can increase rapidly. Results of this implementation have not been
given.

In a research by Xu et al. (2010), a two-stage model is pro-
posed to tackle the problem that sensors in a WDN may provide
false positive and false negative signals. They combine a facility
location model with Bayesian networks such that the probabil-
ity that a contamination goes undetected and the false alarm rate
are minimized. Comboul and Ghanem (2013) take sensors imper-
fection into account but imperfection is quanitifed by looking at
one sensor i.e, the one that can detect the contamination at the
earliest. Also, they assume that detection probability is function
of the contaminant concentartion. Preis and Ostfeld (2008) and
Shen et al. (2014) coped with the unreliability by using detection
redundancy as an objective. This means that most contaminations
should be detected by more than one sensor which makes sure
that when a sensor fails, other sensors can still detect the contam-
ination.

To summarize, limited works exist in the literature on the im-
perfect sensor placement. The novel contributions of our work are
as follows.

e A method for determining optimal placement of imper-
fect sensors, based upon a maximum covering model with
weighted edges. So far, in literature, the maximum covering
model has only been applied for perfect sensors. Note that
Xu et al. (2010) considered imperfect sensors, but for the
placement of sensors, perfection of sensors was assumed.
Optimization of a weighted combination of four objectives. Ex-
isting papers dealing with imperfect sensors only optimize one
objective. For instance, in Berry et al. (2009) either “mass con-
sumed” or “population exposed” are optimized.

Incorporation of identification probability objective. Source
identification, one of the objectives of our research, is used to
make sure that the problem can be quickly found and fixed.
By identifying the source, it is possible to close some valves or
pipelines to make sure that the damage to other parts of the
network is minimized and that other parts of the water net-
work can get back to operation sooner. Therefore, this objec-
tive can also be seen as an important practical objective. This
includes a method for giving an upper bound for this proba-
bility. Berry et al. (2009) and Comboul and Ghanem (2013) do
not consider identification probabilities. Xu et al. (2010) does,
but only implicitly through the use of Bayesian networks. We
derived an explicit expression for the identification probability.

3. Design for placement of imperfect sensors

In this section, we list the most important assumptions used
in this paper in Section 3.1. Then we will mathematically define
the sensor placement problem and the objective formulations in
Sections 3.2 and 3.3. Afterwards, several solution methods for this
problem will be presented in Sections 3.4, 3.5 and 3.6.

3.1. Main assumptions

e A typical WDN consists of reservoirs, tanks, valves, pumping
stations, pipes and fire hydrants etc. As most of the network
is burried underground, only a few components of WDN are
present above the ground such as reservoirs, tanks, valves and
pumps. We assume that the above ground components are
more easily accessible for the attackers and considered them
as potential target for the contamination (Palleti et al., 2016).
These components are termed as vulnerable nodes. Therefore,
it is assumed that only a subset of nodes are considered as the
potential target for an attack. An attack can happen on each
vulnerable node with equal probability. As long as the contam-
ination is not detected, contamination will be added to the net-
work at the intrusion point.

o The contamination will travel through the network with the
same speed as the water does.

o It is assumed that each sensor in the network will have
the same given probability p of detecting the contamination:
0 <p<1. Besides that, the detection of an attack by a certain
sensor is independent of the detection of the attack by other
Sensors.

o The sensor imperfection is not necessary related to chemical

properties but can also reflect the impact of cyber attacks. For

instance, in 2015, the U.S. States ICS-CERT (Industrial Control

Systems Cyber Emergency Response Team) received and re-

sponded to 295 incidents (ICS-CERT, 2016). The Water Sector

account for 8.5% of these incidents. Therefore it is assumed that

a sensor might be imperfect, namely, that as a result of cyber

attacks, the sensor readings might no longer be reliable.

The detection of an attack by a certain sensor is independent of

the detection of the attack by other sensors.

False positives will not be considered. The effect of a false pos-

itive reading by a sensor is negligible with only some economic

impact compared to the consequences of a real contamination
which is not detected.

A sensor which is able to detect the contamination will imme-

diately raise an alarm. At this time of detection, it is assumed

that several actions will be taken directly such that no more
contaminated water will be consumed.

3.2. Sensor placement formulation

We consider a WDN in which water flows from certain sources
or tanks to the customers. This network can be represented as a
graph G = (V,E), where the nodes V represent sources, demand
points, and junctions in the network. Pumping stations, treatment
plants, valves and fire hydrants are also illustrated as nodes. E,
the set of edges, represents all the pipes between the different
nodes. A specific demand pattern introduces flows on the net-
work. The directions of these flows can be modelled by making
the graph directed. In this study, EPANET 2 (Rossman, 2000) soft-
ware is used to simulate the WDN to obtain the corresponding
flow directions. A WDN typically consists of hundreds to tens of
thousands nodes and pipes. A small subset of the set of vertices
is considered to be vulnerable or accessible for an attack. In our
research, the same classification for a vulnerable node is used as
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Fig. 1. The Ex-1 network with two vulnerable nodes and three demand nodes.

was done by Palleti et al. (2016), i.e. the vulnerable nodes are wa-
ter reservoirs and tanks from which water can flow, pumping sta-
tions, treatment plants and valves. The set of m vulnerable nodes
is denoted by V.

Sensors can be placed on all nodes j in the set {V\V'}. When a
directed path exists from vulnerable node v to node j, a sensor at
node j is able to detect a contamination on node v. The probabil-
ity that the sensor actually detects the contamination is denoted
with p. If p equals 1, the sensor is considered to be perfect. A sen-
sor placement X is a subset of the set of possible sensor locations.
The number of sensors to be placed in the network is denoted by
B. So, from the set {V\V'}, a subset X of size B should be picked.
This should be done such that the objective formulation used in
our research is maximized. The objective function f does not only
depend on the sensor placement but also on the probability p that
a sensor detects the contamination. Many different objectives can
be taken into account. The general sensor placement formulation
can be written as follows.

max f(X|p) (1)
st Xc{v\V) 2)
|X| =B (3)

3.3. Objective formulations

In this paper, we consider four different objectives: the network
probability of detection (D), the network probability of identifica-
tion (F), the average time to detection (T) and the estimated im-
pact of an attack (Z). The first two need to be maximized, the
last two minimized. Each objective is scaled between 0 and 1 and
weights w are used, depending on which objective is thought to be
more important. We will elaborate how values for the objectives
can be derived when sensor uncertainty plays a role. For simplic-
ity, all weights are put to %. In general, the objective formulation
of Eq. (1) can be written as follows.

max f(X|p) = max wpD +wWrF +wr(1 -=T) +wz(1 -2) (4)

One example will be used in the next sections to illustrate
the whole methodology. We consider the simple water distribution
network of Fig. 1, which has two vulnerable nodes, v; and v,, and
three demand nodes, ji, jo, and j3. This network will be called the
Ex-1 Network.

Water in this network flows from node v; to node j3 via nodes
Jj1, jo and v,. Data concerning the flow time in hours in this net-
work can be seen in Fig. 1. It takes in total 8 h for the water to
travel from v; to j3. The demand at each of the three demand
nodes is equal to one unit per hour. In this example, sensors can
be placed on nodes ji, j, and j3 and we assume the probability
of detection p of each sensor to be 0.8. Now, let us elaborate all
objectives using this example.

o Detection likelihood (D):

Given a sensor network where each sensor has a probability p
of detecting a contamination, it is possible to calculate the detec-
tion likelihood of the whole sensor network. For each vulnerable
node v, S, denotes which sensor locations are located downstream
of v in the directed graph. The set cardinality of S,, denoted by ny,

is the number of sensors downstream of v. The probability of de-
tection for each vulnerable node can now be defined as one minus
the chance of not detecting the contamination with all n, sensors.
Finally, D is defined as the average of the detection likelihood of
all m vulnerable nodes:

D= a-(-p") (5)
veV’

In the case of perfect sensors, i.e. p=1, the sum term within
D for a given vulnerable v equals 1 if there is a sensor down-
stream of v (ny > 0) and 0 if n, =0. If in the Ex-1 network of
Fig. 1 a sensor is placed on nodes j; and j3, there are two sen-
sors which can detect a contamination on node v; and only one
sensor which can detect an attack on node v,. If p=0.8, then
D= (0.8+0.96)/2 = 0.88.

o Identification probability (F):

Palleti et al. (2016) showed that identifying the source of an at-
tack is fairly straightforward with perfect sensors. It is only neces-
sary to make sure that the set of sensors triggered by an attack on
a vulnerable node is unique for each vulnerable node. For example,
the sensor network {j;, j3} in the Ex-1 Network leaves two unique
sets for each of the two vulnerable nodes.

With imperfect sensors, this no longer holds. Consider again the
placement of sensors on nodes j; and j3. When sensors are known
to be imperfect and only j3 raises an alarm, we are not 100% cer-
tain what the source of the contamination is. It could be v,, but
it is also possible that v; is the source, if j; failed to detect the
contamination.

To deal with this uncertainty, we assume node v is contami-
nated and then consider all possibilities with respect to detection,
for each sensor node in S,. Therefore, from the set S,, every sub-
set of detecting sensors ¢ € P(S,) is considered, where P(S,) is the
power set of set S, excluding the empty set. If we denote the num-
ber of sensors in subset ¢ by n¢, then the probability that combi-
nation c is precisely the set of sensors alarming when node v is
contaminated, is given by

P(clv, p) = p™(1 — p)™" (6)

The only combinations ¢ that contribute to the identification
probability, are those that do not occur as a combination of de-
tecting sensors for any other vulnerable node. For instance, again
considering the Ex-1 Network, assume that Sy, = {j1, j2, j3}. Then
the combinations {j;}, {j} and {j;, jo} will be able to identify with
certainty v as the source of contamination.

For a node v and combination c, define the indicator function
I(v,c) as

)1, ce¢PS)VueV'\v,
Iv.c) = {0, otherwise.

Using this indicator function, it is possible to define the identi-
fication probability F of a sensor network as follows.

Fe L3 3 wop( - py (®)

veV’ ceP(Sy)

(7)

e Detection time (T):

For the other two objectives, detection time and impact,
a method is used which is similar to the one used in
Berry et al. (2008). The intuition behind these methods is that a
contamination will first pass the first sensor which can detect the
contamination with the lowest detection time, and if this sensor
does not detect it, the contamination travels further through the
network to the next sensor. For the detection time, define the time
it takes to detect an attack on node v with a sensor on node j as
qf}’j. This time can be computed using the flow speeds in and the
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volume of the pipes. We can then construct an sorted list L} in
which these detection times for each vulnerable node v are sorted
such that L} (i) is the ith fastest sensor to detect the contamination.

If none of the downstream sensors are able to detect the con-
tamination due to failure, which happens with probability (1 —
p)™, a predetermined time ¢, ., is defined in which the contam-
ination is detected in another way, for example by observing an
outbreak of sickness. In previous research, 48 h is mostly consid-
ered for this time Krause et al. (2008). The choose to scale the final
detection time to a value between 0 and 1 and not in between 0
and 48. All in all, after derivations given in Appendix, the detection
time T of the sensor network is given by:

—aX o

vev’

ny
qv - <Z (p(l - p)lilq;[_;/(,')) + (1 - P)""Qf;,oo (9)

i=1
o Contamination Impact (Z):

The method for the contamination impact is very similar to the
method for the detection time, since the estimated volume of con-
taminated water consumed grows over time. The same ordering as
in list L%, can thus be used. q . is defined as the estimated volume
of water consumed when a contammatlon on node v reaches the
jth sensor in L. q,,m is the estimated volume of water consumed
at maximum time ¢, .

As each vulnerable node v can affect a different part of the net-
work with different impacts, the corresponding ¢}, ..'s may vary.
For example, after 48 h and a demand of 1 unit per hour in the
Ex-1 Network, ¢}, =129 and qj, ., = 46. This should be taken
into account by weighing the different impacts of each vulnerable
node. By doing this, we place more importance on the parts of the
network in which the most water flows. Finally, Z is defined as fol-
lows, analogous to the derivation of T in Appendix.

1 - ;
2= T s | 000 ) + (P
vey! AUV’ Hloo \ j_q

(10)

The formulas for the 4 separate objectives have been derived
under the assumption that the detection for every sensor node is
the same, namely p. It is easy to extend this to the case that every
sensor node has a different detection probability. For instance, if
we denote the detection probability of the i" sensor node, located
downstream of the vulnerable node v, by p;,, then Eq. (5) be-
comes

D:EZ ufm pi) ). (1)

veV’

Similar expressions can be derived for the other three objectives.
However, for the remainder of the paper we assume that every
sensor has the same detection probability p.

3.4. Greedy algorithm for optimal sensor placement

We are dealing with a multi-objective and non-linear problem.
It is a conjecture in literature that the water quality sensor place-
ment problem is in general NP-hard (Krause et al., 2008; Xu et al.,
2013). Therefore it is assumed that it is not possible to find the
optimal solution for practical problems within reasonable time,
which forces the use of heuristics.

In our heuristic approach, the problem is reformulated into a
weighted set covering formulation. A static water distribution net-
work with vulnerable nodes can be converted to a bipartite graph
as was shown by Palleti et al. (2016). In the bipartite graph, the
set of vulnerable nodes is on one side and all other nodes (pos-
sible sensor nodes) on the other side. Each vulnerable node v can

Ji
U1
J2

U2

/1

.jS

Fig. 2. The Ex-1 network converted to a weighted bipartite graph.

affect a subset S, of the set of nodes {V\V'} and these arcs are
present in the bipartite graph. The bipartite graph representation
of the example Ex-1 Network is shown in Fig. 2.

In contrast to the work of Palleti et al. (2016), values are placed
on each arc (v, j) for each objective - partial objective values. They
describe what the placement of a sensor on node j adds to ob-
jectives D, F, (1 —T) or (1 —2Z) for a contamination on vulnerable
node v. The contribution of the placement of a certain sensor at
node j on the whole network can be calculated by summing all the
partial objective values of the arcs entering that node j. However,
after one sensor location has been chosen, the objective values on
the other arcs should be updated as they are not valid anymore.
This method can therefore not be used to place multiple sensors
within one step.

3.4.1. Computing partial objective values

It will now be shown how the partial objective values per arc
should be calculated and updated for each objective. A partial ob-
jective value is denoted by I‘(U i where (v, j) is the arc and A the

objective for which the value applies. I‘A W) is defined as the dif-
ference between the part of the objective value for that vulnera-
ble node v with sensors at S, U j minus the one with sensors only
at Sy.

For the detection probability D, a specific vulnerable node v and
an arc (v, j) in the bipartite graph representation, the derivation
of the partial objective value on (v, j) is shown in Egs. (12)-(14),
using the fact that n, changes to n, + 1.

L) —l((1 -(A=p)"H - (1-1-p™), (12)
_l((] _ )nv _ (1 )nv+1) (_13)
- p p)™th,
~Lopa-pm »
=m PU =P (14)

The partial objective values for the time to detection and the
impact of the contamination also depend on the place of the pos-
sible sensor j in the ordered list L. For this, we define k as the
number of already placed sensors that need to change position in
the ordered list when sensor j is added. Therefore, k = 0 when the
sensor location j is the last sensor to detect and k = n, when it
is the first sensor. After some derivations, see Appendix, it can be
shown that the partial objective values for (1 —T) and (1 —Z) are
given by Egs. (25) and (26):

1
IFN(IE P ——p(1-p)" ¥ (1-pq,
k
+ Z (p(l - p)h_lqlt,']_g(nv,[prh)) - quj ) (15)

h=1



C.d. Winter, V.R. Palleti and D. Worm et al./ Computers and Chemical Engineering 121 (2019) 200-211 205

Table 1
The initial partial objective values for the Ex-1 network.

rerforrT rz Average

(.j1) 04 04 0375 0590 0441
(11.j) 04 04 0367 0585 0438
(1,j3) 04 00 0333 0549 0428
(12.j3) 04 00 0383 0210 0331

1
F(Zv_j) (k) = Wp(l - P)n"fk 1- P)k‘ﬁ,oo
ueV’ Mu,00
k
+ Z (p(l - p)hqqlzlli(nwflwh)) N qf/-j ’ (16)
h=1

Using these partial objective values we do not need to calculate
every objective value from scratch after only adding one sensor.
This improves the required runtime of every algorithm that aims to
optimize the objective function by adding one sensor at a time. If
the added sensor is only connected to some vulnerable nodes, only
the objective values on the arcs leaving those influenced vulnera-
ble nodes need to be changed. For source identification, no simple
formula of the partial objective value on an arc could be obtained.
Therefore, Eq. (8) will be needed to compute this value.

3.4.2. The greedy algorithm

A greedy algorithm will be used to place sensors in the network
based on the weighted set covering formulation. In the greedy al-
gorithm, sensors are placed one at a time such that it is possible to
update the partial objective values after placing a sensor. At each
iteration of the algorithm, we choose to pick the best possible sen-
sor location given the objective values at that time and place a new
sensor at that location.

Given a static demand pattern for a WDN, hydraulic network
simulations can be performed to construct the directed graph and
obtain values needed to compute time and impact. Using the di-
rected graph, a bipartite graph can be constructed and the ini-
tial partial objective values for each arc can be calculated, using
ny = k = 0. The best sensor candidate j can now be chosen. This
is the sensor location j with the largest value when summing all
partial objective values F(Av_ i of the incoming arcs on that node j,
multiplied with the corresponding weight w, of each objective A.
After one sensor is placed, the objective value and all necessary
partial objective values are updated. The partial objective values
entering node j are put to zero. Next, it is again investigated which
sensor location is the best to pick and this will continue until B
sensors have been placed. The final sensor placement X consists of
all the chosen sensor locations.

In the Ex-1 Network, it can be shown which sensor location
should be chosen first using the given objective values formulas.
All initial partial objective values and the average of the four ob-
jectives for each arc (i.e. we assume every objective has the same
weight w = 1/4) can be found in Table 1.

Even though location j3 does not contribute to objective F, as
it is able to detect both possible contamination attacks, it is the
best possible sensor location in the first step. This is true as 0.428
+ 0.331 is larger than 0.441 or 0.438. After a sensor is placed on
location j3, the partial objective values for arcs (vq, j1) and (v1, jo)
need to be recalculated.

3.5. Local search

Greedy algorithms are in general very fast and may result in
good solutions. However, the optimal solution is not always found.

1:00
( ) 19:00
: : 1:00

Fig. 3. A Network with two vulnerable nodes and three demand nodes. The flow
time of each arc is shown at each arc.

When a sensor location is chosen as the Bth sensor in the previ-
ous step, all updated sensor placements with |X| > B contain that
sensor location.

A small example network in which this is a problem is shown
in Fig. 3.

The demand is again one unit per hour, p is again 0.8 and the
flow times are shown in the figure. In the first step of the greedy
algorithm, sensor location j3 will be chosen as it can detect both
possible contaminations. The greedy solution of two sensors must
contain location j; whereas the optimal sensor placement of two
sensors consists of j; and js.

A simple way to try and improve the greedy solutions is to use
a local search algorithm in order to improve the solution found
by the greedy algorithm. This local search method is defined as
follows. Consider a sensor placement X. In the local search step,
each neighboring solution is investigated to check whether it has
a better objective value than the current sensor placement. If so,
the best-found neighboring solution will be the new placement
X and we perform another local search step until a local op-
timum is found. Neighboring solutions are defined by replacing
one sensor node in X with one of the set {{V\V'}\X}. Note that
Berry et al. (2009) also suggested a local search method. However,
his local search start from the optimal placement found under the
assumption of perfect sensors while our starting position comes
from running the Greedy algorithm first, already taking sensor im-
perfection into account.

3.6. Theoretical upper bound for the objective

To quantify the performance of the heuristics, it is useful
to compare the found objective values, with a theoretical upper
bound. It is easy to see that the following bounds hold: D<1, T>0
and Z>0. In fact, if we assume that p is sufficiently close to 1, or
if the number of sensors is sufficiently large (i.e. all njs are suf-
ficiently large), then the values of D, T and Z, will be very close
to their bounds, i.e. 1, 0 and 0, respectively. The situation for the
identification probability F is different. Recall that V' denotes the
set of vulnerable nodes, with |V/| = m. Next, define the subset W
of V/, consisting of vulnerable nodes, that are not downstream of
any other vulnerable nodes in V'. Then, only the vulnerable nodes
in W can be identified as the source of contamination, with cer-
tainty. Therefore, F, will have an upper bound ‘VTZ—‘ Denoting the
objective by O, and assuming all weights in Eq. (4) are equal, we
obtain the following upper bound for the objective.

3m+ |W|
< .
- 4m

We will use Equation (17) to assess the performance of our
heuristics for a specific use case, in the next section.

0 (17)

4. Case study

We will use an EPANET benchmark instance of a WDN, corre-
sponding to a reduced representation of the WDN of Bangalore,
to demonstrate the methodology introduced in the previous sec-
tion. In Section 4.1, the Bangalore Network is introduced. This is a
medium-sized network with a relatively high number of vulnerable
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Fig. 4. The Bangalore Network with V' in red and the sensor placement in green. (a), (b), (c), (d) represent sensor locations for Xp, X¢1, Xs2 and Xg3 respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

nodes. More information on the Bangalore Network can be found
in Datta (1992).

4.1. Bangalore network

The Bangalore Network, as seen in Fig. 4, is a reduced repre-
sentation of the water distribution network of Bangalore, a city in
India. The network has three sources, which are represented in the
network by the reservoir nodes 1, 2 and 3. A clarification of all
symbols used in the representation of the WDN can be found in
Palleti et al. (2016). This network contains 150 nodes in total, 116
normal pipes, 32 valves and six pumps. Pumps and valves are rep-
resented in the networks with an edge between two nodes with
the specific symbol on the edge. For this reason, when pumps or
valves are considered as a vulnerable node, the node before the
pump or valve is labeled as vulnerable. For example, consider the
pump between node 66 and 67 on the far left of the network. As
water flows from node 66 to node 67, node 66 is considered as a
vulnerable node and nodes 67, 68, 69 and 70 will be affected by
an attack on this node. Even though the network contains several
different demand conditions, the consequences for the flow direc-
tions are minimal.

This network was also used by Palleti et al. (2016) in their re-
search focusing on detection and identification with perfect sen-
sors. The main advantage of this network is the large number of
reservoirs from which water flows and possible vulnerable nodes,
such that the sets of nodes affected by an attack can be very dif-
ferent. Palleti et al. (2016) used nine vulnerable nodes in their re-
search: the three reservoirs and the 6 pumps. The large number
of 32 valves were omitted for simplicity of presenting the results
as their target was 100% detection and identification, which would
otherwise require around 30 sensors. In our research, both 9 and

41 vulnerable nodes will be used. The case with 9 vulnerable nodes
will be referred to as the standard Bangalore Network. The case
with 41 vulnerable nodes will mainly be used to see how well our
methods and objectives can handle larger numbers of vulnerable
nodes.

4.2. Perfect-Sensor placement vs imperfect-sensor placement

In Section 4.2.1, a perfect-sensor network for the Bangalore Net-
work will be presented. After that, in Section 4.2.2, we will show
how the best-found sensor placement may change, as the proba-
bility of detection p is lowered. In these sections, equal weights
for each objective will be considered.

4.2.1. Perfect-sensor placement

In our research, the same static loading condition and flow pat-
terns are used as in Palleti et al. (2016). The nodes before the
pumps and the three reservoirs were considered to be vulnerable
nodes. The resulting nine vulnerable nodes were nodes 1, 2, 3, 19,
32, 37, 39, 53 and 66. As a consequence, there are 141 nodes left
where sensors could be placed.

They found out that six sensors are necessary in the Bangalore
Network to detect and identify all possible attacks on the nine vul-
nerable nodes. The sensor network they present is the sensor set
{20, 33, 40, 54, 67, 71}, which indeed gives value 1 to objectives D
and F. However, using the presented greedy algorithm with p=1
and adding objectives T and Z, a slightly different sensor placement
is found. The sensor on location 71 is moved to location 74 as this
location is reached somewhat earlier in the network. The small dif-
ferences for the objectives can be seen in Table 2.

The sensor placement {20, 33, 40, 54, 67, 74} will be used in the
next sections as the perfect-sensor placement for comparison and



C.d. Winter, V.R. Palleti and D. Worm et al./ Computers and Chemical Engineering 121 (2019) 200-211 207

Table 2

Comparison of the solution found by Palleti et al. (2016) and the solution found by our greedy

algorithm.
Sensor placement D F T VA Average
Palleti et al. (2016): {20, 33, 40, 54, 67, 71}  1.000 1.000 0.970 0.981  0.988
Greedy algorithm: {20, 33, 40, 54, 67, 74} 1.000 1000 0.980 0.995 0.994

0.975 A

0.950 A

o
©
N
wu
)

0.900 A

Objective Value
o
[e0)
~
w

0.850 A

0.825 A

0.800 A

1 0.99 0.98

Xp

0.96 0.94 0.92 0.9

Probability Detection

Fig. 5. Comparison of objective values with different detection probabilities.

Table 3
Different sensor placements and the range of p for which that sensor placement
is optimal according to the greedy algorithm.

Sensor placement Range of p for which the placement is optimal

Xp: {20, 33, 40, 54, 67, 74}

Xe1: (20, 40, 54, 58, 67, 74}
Xea: {20, 40, 54, 67, 68, 74}
Xc3: {40, 41, 54, 67, 68, 74}

p = 1.000 to 0.981
p = 0.980 to 0.955
p = 0.954 to 0.932
p = 0.931 to 0.900

to see how this placement changes when p decreases. This place-
ment will be referred to as Xp. In Fig. 4, the Bangalore Network is
represented in which you could see the nine vulnerable nodes in
red and the six sensor locations from Xp in green. The flow direc-
tions are also represented in this network by arrows, such that the
paths from the vulnerable nodes to the sensors are visible.

4.2.2. Imperfect-sensor placement

We will now gradually decrease the detection probability p, us-
ing a step size of 0.001, starting at p = 1, until we reach p=0.9.
For each value of p, the greedy algorithm is executed to find the
optimal sensor placement. This leads to sensor placements which
are optimal for a certain range of p, see Table 3.

The perfect-sensor placement is only the best-found sensor
placement for detection probabilities larger than 0.98. At that
point, changing one sensor location results in a better overall ob-
jective value. Table 4 shows how the optimal objective values
change, as a function of decreasing values of p. The optimal ob-
jective values for a given p are shown bold-faced. Fig. 5 shows the
comparison of objective values of different sensor placement and
detection probabilities.

When p decreases, it can be seen that the objective values for
sensor placement X3 decrease slower than the ones for Xp. The
reason behind this can clearly be seen when considering the sen-
sor network X3 (see Fig. 4). At some places in the network, two
sensors are placed next to each other to compensate the imperfec-

tion of the other sensor. This occurs with location pairs 40 & 41
and 67 & 68 in Xg3. We have shown that for the Bangalore Net-
work the transition value for the detection probability is p = 0.98,
assuming nine nodes are vulnerable and six sensors are placed in
the network. In addition we have also run experiments to study
to what extent this transition probability depends on the number
of placed sensors, the number of vulnerable nodes and the net-
work topology. The results are reported in de Winter (2018). For
example, we found that for the Bangalore Network with 41 vul-
nerable nodes, even for p =0.999 with nine sensors deployed in
the network, the sensor placement differs from the perfect-sensor
placement at three places.

From the results reported in this subsection, we can clearly see
the added value of our proposed algorithm, as the assumption that
the sensors are perfect in general do not lead to optimal sensor
placements.

4.3. Impact of uncertainty in the demand

In the previous subsection we have evaluated our model under
static load conditions. In this subsection we will quantify the im-
pact of uncertainty of demand on the imperfect sensor placement.

The starting point of the analysis is the same as before,
i.e. the Bangalore network with static loading conditions, as in
Palleti et al. (2016). We model uncertainty in demand by vary-
ing the original demand W; at demand node i, by a factor P.
We assume the demand is uniformly distributed on the interval
[(1 =P)W,, (1 +P)W;]. For the uncertainty in demand, we have
considered the following values for P: {5%, 10%, 15%, 20%, 25%}.
The cases with uncertainty in demand are bench marked against
the case with static loading. We denote the sensor placement ob-
tained for this benchmark case by X,,. So for instance, for the case
p=0.9, according to Table 3, X,;, = {40, 41, 54, 67, 68, 74}.

For a given value of P, we change the demand of every node,
by multiplying it with a random number between 1 —P and 1+ P.
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Table 4

Objective values for the four sensor placement for different values of p.
Sensor placement p=1 0.99 0.98 0.96 0.94 0.92 0.90
Xp 09937 0.8239 0.8207 0.8141 0.8073  0.8003  0.7930
X1 09932 0.8236 0.8207 0.8148 0.8086 0.8022  0.7956
Xe2 09353  0.8218 0.8195 0.8145 0.8093 0.8039  0.7981
Xe3 08755 0.8182  0.8165 0.8127 0.8088 0.8046  0.8001

Table 5
Fraction of experiments where uncertainty in demand
gives same result as static loading.

p P=5% 10% 15% 20% 25%
0.9 1 0940 0878 0.754 0.682
0.95 1 0.915 0.726  0.679  0.574
Table 6
Ratio of objective values for X,.; and newly found optimal place-
ment.
p P=5% 10% 15% 20% 25%
0.9 1 0.99855  0.99724  0.99561 0.99455
095 1 0.99903  0.99753  0.99454  0.99236
Table 7

Maximun number of different nodes in X,z and
newly found optimal placement.

p P=5% 10% 15% 20%  25%
0.9 0 1 1 1 2
095 0 1 1 2 2

For the obtained WDN we again run EPANET, and subsequently our
algorithm, to determine the best sensor placement. As a measure
of performance we look at the number of nodes in the new sen-
sor placement, that where not in X,,;,. We also look at the ratio
between the overall objective of X,,, and that for the new found
placement.

This experiment has been repeated 500 times. For the imper-
fection of the sensors, two values were considered, namely p = 0.9
and p = 0.95. The results of the experiment are report in Tables 5,
6 and 7.

We conclude from Table 5 that inclusion of demand uncertainty
has an impact on sensor placement. Still, even for uncertainty up
to 25%, for more than 50% of the time, the sensor placement found
through the static demand assumption is the optimal one.

Table 6 shows that even though X, no longer is the optimal
sensor placement, the difference in objective values with the opti-
mal placements are relatively small.

Finally, Table 7 shows that for the considered scenarios, the
maximum number of new nodes in the optimal sensor placements,
is at most two.

Table 8

4.4. Performance of the greedy algorithm

In this section, the performance of our greedy algorithm will
be compared with its variant which in addition implements a lo-
cal search, introduced in Section 3.5. The comparison will be done
using the Bangalore Network with nine vulnerable nodes. A total
of 100 different scenarios are considered, varying the number of
placed sensors B (between 5 and 14) and the detection probability
p (between 0.9 and 0.99, in steps of 0.01). Again, it is assumed that
the weights for each objective is equal. Table 8 reports the average
objective value, the average run time and the number of times the
solution of the algorithm was equal to the best-found solution by
all heuristics. All algorithms were implemented in Python 2.7 and
were run on a computer with an Intel Core i5-5300U processor
with 2.30 GHz CPU and 8 GB of RAM.

The results for the cases corresponding to the placement of 5-9
sensors and that of 10-14 sensors, are split in the table.

By definition, the Greedy + LS heuristic performs at least as
good as the greedy algorithm. We see that in 59 out of the 100
cases the basic greedy algorithm finds solutions which are equally
good as solutions found by Greedy + LS. The more sensors need
to be placed, the less likely it is that Greedy is able to find the
best-known solution. However, the differences are very small. For
the 50 cases with 10-14 sensors, the difference between the aver-
age objective value of Greedy and Greedy + LS is 0.00034 while
the maximum deviation in one case from the best-known objec-
tive value is 0.00144. This largest deviation occurs with the case
p=0.96 and B = 12 for which the best-found objective value was
0.83038. This means that the score of the solution of Greedy is
99.83% if the best-found solution is considered to be 100%.

While this is only a fairly small difference, the greedy algorithm
clearly outperforms the other heuristic with respect to run times.
The run time of Greedy is on average 1 s over all 100 cases in this
small network with a maximum run time of 4 s. The run times of
Greedy + LS increases much faster. The average run time for this
heuristic for the 50 largest cases is over a minute.

Finally we also look at the performance of the heuristics, by
comparing the outcomes with a brute force method that finds the
optimal solution and a theoretical upper bound. For the former, we
looked at a reduced Bangalore Network, where only 36 out of the
original possible sensor locations are considered. Then, for the sce-
nario of 6 placed sensors and detection probability p =0.95, we
find that both Greedy and Greedy + LS give the same objective
value 0.81195 as the brute force method. The run time for this case
was 0.061 s for Greedy, while the brute force method took 704 s.
A second way to quantify the performance of the heuristics is to
compare them with the theoretical upper bound in Eq. (17). It is

Comparison of the two heuristics on the Bangalore Network with nine vulnerable nodes.

Bangalore 5-9 sensors, 10 different p’s 10-14 sensors, 10 different p’s

m=9 Avg. obj.  #best-found®  Avg. time  Avg. obj.  #best-found  Avg. time
Greedy 0.81509 46 0.251s 0.82853 13 1.905s
Greedy +LS  0.81511 50 3.226s 0.82887 50 64.970s

2 Number of solutions found with the heuristic, which are not outperformed by the other heuris-

tic.
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Table 9

Comparison of greedy with theoretical upper bound; 15 sensors are placed and p = 0.95.

Instance Greedy: 15 sensors, p=0.95  Upper-bound  Optimality gap
Bangalore, m =9 0.83110 0.83333 0.27%
Bangalore, m = 41 0.74586 0.76829 2.982%

easy to verify that for the Bangalore network with m =9, three
vulnerable nodes are not downstream of other vulnerable nodes.
Therefore |W| = 3. As a result, according to Eq. (17), the objective
value is upper bounded by 0.833. Also for the Bangalore network
with 41 vulnerable nodes we find |W| = 3, leading to the upper
bound 0.76829. In Table 9, these upper bounds are compared to
the solution value found with the greedy algorithm for 15 sensors
and p = 0.95. Using these results, the optimality gap, defined as
the relative distance between the found objective value and the
upper bound, can be calculated.

We conclude from Table 9 that the sensor placements found
through Greedy are close to the optimal placement.

5. Conclusions and future work

Worldwide, there is an upcoming threat of water pollution and
terrorist attacks on water distribution networks. Accidental or de-
liberate incidents will affect the quality of the drinking water and
can cause many fatalities and a huge economic impact. To prevent
these consequences, WDNs should use a sensor network to mon-
itor the quality of the drinking water. The main problem we con-
sider is how to place sensors in a WDN in an optimal way.

In previous sensor placement studies, it was mostly assumed
that sensors are perfect. However, sensors can fail to detect a con-
tamination due to errors, failures, maintenance difficulties, degra-
dation, drifting or hacking. In this paper it was found that large dif-
ferences in the optimal sensor locations may occur when consid-
ering slightly imperfect sensors compared to perfect sensors. We
have shown that the imperfectness of contamination sensors influ-
ences the optimal placement of these sensors within the network.
In particular, we conclude that it is essential to take the imperfect-
ness of the sensors into account when designing a sensor place-
ment.

In order to design a sensor placement, the problem has been
converted to a changing weighted set covering formulation with
a bipartite graph. A greedy algorithm and a variant deploying lo-
cal search have been introduced to solve this problem. They can
be used to obtain a close to optimal sensor placement, taking into
account the failure probability of the sensors as well as four differ-
ent objectives: minimizing the time to detection and the impact of
a contamination and maximizing the probability of detection and
the probability of identifying the source of the attack. The algo-
rithms have been tested using the Bangalore network.

The greedy method is very fast, and close to optimal in small
networks. Local search improvements only result in minor im-
provements to the sensor placement, while increasing the compu-
tation time drastically.

The developed method can be easily extended to take dynamic
demand patterns into account, i.e. demand patterns that vary over
time. For each demand pattern a corresponding flow pattern over
the WDN can be derived. The contribution of this flow pattern to
the objective values for a given sensor placement can be computed.
Proper weighing of these contributions for different demand pat-
terns allows to compute the objective values for a dynamic de-
mand pattern over a day, which can be used as input to derive
good sensor placements. In addition, while the formulas described
in this paper assume equal failure probability p over all sensors,
they can easily be adapted to take different failure probabilities
into account.

In order to apply the introduced methods in practice, it is im-
portant to be able to estimate the failure probability p of a sensor,
since p has a large influence on the best sensor placement. KPIs
given by the producer of the sensor may help to estimate p; how-
ever, independent measurements will also be needed to fine tune
such estimations - especially to see how the failure probability de-
pends on the age of the sensor.

Acknowledgement

This work was supported in part by the National Research
Foundation (NRF), Prime Ministerds Office, Singapore, under its
National Cybersecurity R&D Programme (Award No. NRF2015NCR-
NCR003-001) and administered by the National Cybersecurity R&D
Directorate.

Appendix
Derivation of Objective Values for T and Z. In Section 3.3 it was

shown that the objective value T can be formulated as can be seen
in Eq. (9), which is shown again below:

1 1 v .
T=—3 —|>(p(0=p"'d, )+ 1 =D"™
M e Qv.oo \ 57 '

((9) revisited)

This will now be clarified using the previously defined defini-
tions of p, qf}j and L. First, consider only one vulnerable node
v. Given a chance p that a sensor detects a contamination, the

first sensor L% (1) contributes qu} 1) to the average detection time
U

of vulnerable node v, the second sensor p(1 — p)q;Lr @ etcetera.
With probability (1 — p)™, no sensor will give an ala;m which re-
sults in a detection time defined as g, ... In total, summing all
these terms this results in the part between brackets in Eq. (9).
To make sure the objective value is between 0 and 1, we have to
divide this value by the maximum detection time ¢!, ... When no
sensors are placed after vulnerable node v, T for that v should give
1 instead of g, ... The normalized detection time of the whole sen-
sor network is then the average over all m vulnerable nodes in V'.
The derivation of Z is similar.

Derivation of Partial Objective Values for T and Z. The derivation
of the partial objective values for T and Z also need some further
clarification. In Section 3.4.1, it was only stated that the objective
value for an arc also depends on the position of the new sensor j
in the ordered list Lf. The order in L} determines how much each
sensor contributes to the objective function as the first sensor is
the first to raise an alarm with probability p. When the detection
time of the added sensor is less than L. (1), this sensor will be
the first sensor, along with its contribution p, and all other sen-
sors contribute less to the objective than before. When the added
sensor is placed at the end of the network, only the contribution
of the non-detection time of g}, ., will be less than before and the
sensor itself will also contribute a smaller fraction to the total ob-
jective.

Define the normalized detection of one vulnerable node as T:

1 (& ;
Zp(l - p),_lqlt,']_a(i) + (l - p)n”qi,oo (18)

=t
v \ i55

T,
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First, we will look at the easiest example, a sensor on node

j placed further away than the already placed n, sensors such

that ¢t , | <q! . <dg) . Only the last term of T, (which is (1 -
v,L} (ny) v.] »O0

p™qt ) will be split and changes. The sensor with location j
will be the sensor to detect the contamination when all n, sen-
sors fail and this added sensor works. This happens with proba-
bility p(1 — p)™. With probability (1 — p)(1 — p)™, there is a non-
detection. The new formula for T,, denoted as T, can be seen in
Eq. (19).

ny
Iy = 7 Z] p(1=p)'qy 1 + (1~ p)q,
oo \ 12
+(1-p)(1 - p)q, ., (19)

It should also be noted that the contribution of vulnerable node
v to the total objective T is T, divided by m and that our objective
is to maximize (1 — T). The difference between Q’l and T” is equal
to the decrease of objective T via vulnerable node v if sensor jis
added to the end of the ordered list. So, % - Tﬁ" is equal to the
objective value of arc (v, j) as we consider (1 —T) as an objec-
tive. This objective value is denoted by F(v )(k) in which k is used
to show the position of the possible new sensorj in the ordered
list. The variable k represents the number of already placed sensors
which need to change a position in the ordered list when sensor
j is added. In this example, k is equal to zero as the added sensor
is added to the end. F(Tv,j) (0) is calculated in Egs. (20), (21) and

(22).

T*
Ty (k=0) = 5—# . —— (1= p)™q}, . — (p(1 = p)™q},
+(1-p)(1-p)™d,.)) (20)
. ——(p(1 = p)™q,, . — p(1 - p)™q} ) (21)
—P1-p" (@0 — Gy ;) (22)
In the same way, (M)(l) and F(vj)(Z) can be calculated.
re, 1= p(l )" (1 = D)} e + Py 1t n,) — T ;)
(23)
I, ) = m P - " ((1 = p)ay o + P = P), o )
V,00
+P4 1,1y — o) (24)

A pattern becomes visible in these formulas. For larger values
of k, more original sensor contributions change and more terms
need to be added. When k = ny, all sensor contributions change.
In general, we can define the partial objective value for arc (v, j)
and position variable k as follows.

Il () = ——p(1—p)™*| (1-p)dg,,
U
k
+3 (P ="' e ) — T (25)
h=1

In the same way, the partial objective value of objective (1 —Z)
can be derived. The main difference is that we should account for
the weighing of the impact of an attack on each vulnerable node.

The formula for I‘(Zv i (k) can be seen in Eq. (26).

T (0 = s p(1 =" ¥ (- DG,
ueV’ 1u,00
k
+> (p(1- p)h_lqi,l.g(nv—lwh)) — (26)
h=1
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