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Abstract

Acquisition of complete data, i.e., unblended, well-sampled and broadband data, is technically desirable.
Obviously, such a scenario is prohibitively expensive to realize. To deal with economic considerations in a
seismic survey without seriously compromising data quality, we propose a machine-learning approach that
offers an opportunity to acquire incomplete data, i.e., blended, sparsely-sampled and narrowband data, while
still benefitting from being able to process complete data. In this study, we utilize a deep convolutional neural
network. The incomplete data are fed into the applied network that simultaneously performs suppression of
blending noise, reconstruction of missing traces and extrapolation of low frequencies such that prediction
of the complete data is attainable. We validate the performance of the proposed method using both synthetic
and field datasets. Acquisition scenarios implemented to generate incomplete datasets impose a significant
reduction of data size in the frequency-space domain. Despite the limited information available in the input
data, the prediction results obtained from both numerical and field data examples clearly confirm that the
proposed machine-learning approach is capable of dealing with deficiencies in the incomplete data and
subsequently deriving the complete data of sufficient quality. In addition to suppression of blending noise
and reconstruction of missing traces, no discernible difference in prediction errors between preexisting and
extrapolated frequencies is observed, which is hardly realizable with existing geophysics-based approaches.
As a consequence, the proposed scheme allows for optimal data enhancement even when seismic acquisition
is performed in a blended, sparsely-sampled and narrowband fashion.

Introduction

One may consider that the geophysically ideal seismic acquisition involves perfect spatial sampling,
i.e., regularly and densely distributed detectors and sources, such that the Nyquist sampling theorem is
sufficiently satisfied for the target frequency range. Additionally, it is desirable to use a spatially consistent
source response covering a broad bandwidth at each shot grid. Nevertheless, this scenario is hardly
achievable due to operational and economic considerations. To deal with the trade-off between technical
and business objectives, it is worthwhile to implement strategies that can mitigate the compromise on data
quality while minimizing the acquisition effort.
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In recent years, various studies have demonstrated the effectiveness of compressive sensing that offers
a novel spatial sampling method. The technique allows for the reduced field measurements in a random
fashion, which do not necessarily obey the Nyquist rate, and subsequently aims at recovering the desired
signal (Herrmann, 2010; Mosher et al., 2012; Millis, 2018). Since the spatial distribution of detectors and
sources is one of the key factors determining the operational effort, acquisition geometries that makes use of
the principle of compressive sensing leads to enhancing the acquisition efficiency. Blended acquisition, or
sometimes referred to as simultaneous source acquisition, utilizes two or more sources activated at (almost)
the same time. Blended acquisition can also be regarded as a part of compressive sensing (Lin and Hermann,
2009). Unlike conventional, unblended acquisition, the technique permits the overlap of multiple source
wavefields in time and space. This leads to a significant improvement in acquisition efficiency without
adversely affecting data quality (Berkhout, 2008; Bouska 2010; Abma et al., 2012; Nakayama et al., 2012).
Alternatively, it is capable of enhancing subsurface coverage without increasing project cost and time.

To make compressed field measurements technically justifiable, one needs to pay proper attention
towards a subsequent data recovery step, such as deblending and data reconstruction. To deal with such
an underdetermined system, either the use of low-rank approximation or sparsity promoting program in
some transform domain(s) has proven to be an effective way (Herrmann and Hennenfent, 2008; Oropeza
and Sacchi, 2011; Kutscha and Verschuur, 2012). Although its applicability has been rigorously studied,
the requirement of an iterative procedure makes a data recovery problem computationally expensive.
Furthermore, the compressed signal in the transform domain may not necessarily explain all the complexities
of the subsurface geology, which potentially leads to imperfection in the recovery result.

Contributions of low frequency components to data quality has been well recognized in various aspects,
such as illumination of deep targets, suppression of the wavelet sidelobes, estimation of absolute properties,
and convergence of full-waveform inversion to a global minimum (Ten Kroode et al., 2013, Berkhout and
Blacquicre, 2017). However, generating low frequency energy is a cumbersome task in the field as it requires
dedicated equipment as well as extra source effort (Dellinger et al., 2016; Wei et al., 2018). This unavoidably
makes seismic acquisition more costly and time-consuming. Hence, the estimation of low frequencies during
data processing, referred to as low-frequency extrapolation in this study, is an attractive way in both business
and operational aspects. Although there have been several studies towards low frequency extrapolation (Wu
etal., 2014; Zhang et al., 2017), it is not straightforward to obtain an intrinsic relationship between recorded
and missing frequencies.

In recent years, the application of machine-learning (ML) has become increasingly popular including
in the geoscience domain. For example, several attempts utilizing an ML approach have been made for
a deblending or data reconstruction problem and have demonstrated comparable performance to existing
geophysical approaches (Siahkoohi et al., 2019; Sun et al., 2020). Additionally, once a network has been
trained, the prediction result can be obtained in a very efficient manner. Some recent studies using synthetic
data attempted to extrapolate low frequencies (Sun and Demanet, 2018; Ovcharenko et al., 2019). However,
these mentioned tasks have been so far treated separately. Our primary objective is, therefore, to investigate
the applicability of an ML approach that aims at predicting unblended, well-sampled and broadband data,
defined as complete data, from blended, sparsely-sampled and narrowband data, defined as incomplete data.
This means that the proposed scheme tries to deal with attenuation of blending noise, reconstruction of
missing traces and extrapolation of missing low frequencies in a simultaneous fashion. We validate the ML
based data recovery using both numerical and field data examples.

Method

In this study, we apply a deep convolutional neural network based on the so-called U-Net architecture
(Ronneberger et al., 2015). Figure 1 is a schematic illustrating the applied network architecture, consisting
of pairs of encoding and decoding blocks as well as a center block in between. In our application, the
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incomplete data in the time-space domain are fed into the trained neural network, and then the complete
data in the time-space domain are obtained. Through encoders, the input data is down sampled with a max
pooling layer (Nagi et al., 2011), allowing key features to be extracted. These compressed features are then
up sampled through subsequent decoders with a transposed convolutional layer (Dumoulin and Visin, 2016).
There are skip pathways directly connecting the encoder and decoder blocks. This helps the network to
capture and transfer detailed or subtle information which may be smeared through down sampling and up
sampling processes. Each block employs sets of a convolutional layer (LeCun et al., 1998) followed by a
rectified linear unit (Hahnloser et al., 2000) and a batch normalization layer (Ioffe and Szegedy, 2015). We
also implement residual learning in each block to mitigate the degradation problem, i.e., decaying prediction
accuracy with the network depth (He et al., 2016).

Incomplete data Complete data
' t
Encode_r 1] Decoder 4

g Skip connections
Encoder 2 Decoder 3
Encoder 3 Decoder 2

D li - -
R Encoder 4 ——— > Decoder 1

Center

Figure 1—Network architecture of the applied convolutional neural network, consisting of sets of
encoding and decoding blocks along with skip pathways directly connecting each encoder and decoder.

Results

We generate 20,000 subsurface models, each comprising of three anticlinal reflectors. For each model, we
arbitrarily alter the subsurface structures, i.e., depth and geometry of each reflector, as well as subsurface
properties, i.e., propagation velocity between each reflector and reflectivity of each interface. Based on these
subsurface scenarios, we derive 20,000 complete datasets with a 20 m detector and source interval using
full wave field modelling (Berkhout, 2014). To obtain incomplete datasets, we irregularly decimate 50% of
detectors and 50% of sources. We also apply a blending fold of two (Berkhout and Blacquiere, 2013) and
random time dithering. Low frequencies are also missing in the incomplete data. The applied acquisition
scheme consequently leads to a significant reduction of the data size in the space-frequency domain with
respect to the complete data. The change in the data size is indicative of survey duration and cost that the
incomplete data can save. 19,000 complete-incomplete data pairs are arbitrarily selected as training sets,
while the remaining 1,000 pairs are used as testing sets.

Figure 2 shows one of the recovery results from the testing sets. Here, we selected one complete-
incomplete data pair yielding the median result in terms of prediction errors, which is assumed to be the
representative outcome of the applied ML scheme. As compared to the complete data considered as a
reference (Figures la and 1b), the incomplete data (Figures 2¢ and 2d) notably exhibit blending noise
and acquisition gaps in the time-space domain. The corresponding frequency-wavenumber domain clearly
shows a lack of low frequencies. This indicates that a significant amount of information is absent in
the incomplete data. Despite the aforementioned deficiencies in the incomplete data, the trained network
successfully suppresses blending noise, reconstructs missing traces and extrapolates low frequencies
(Figures 2e and 2f). The difference plots between modeled and predicted complete data notably show
no frequency dependency in prediction errors (Figures 2g and 2h). This means that the low frequency
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components, which are not available in the input data, are well predicted. Consequently, the predicted data
attain comparable quality to the reference data.
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Figure 2—Prediction result (synthetic data example). Top figures show data in the time-space domain while
bottom ones are data in the frequency-wavenumber domain. Modeled complete data (reference): (a) common
shot gather and (b) common detector gather. Incomplete data: (c) common shot gather and (d) common
detector gather. Predicted complete data: (e) common shot gather and (f) common detector gather. Difference
between reference and predicted complete data: (g) common shot gather and (h) common detector gather.

We also applied the ML approach to a field data set, acquired offshore Norway. A subset of this field
data with 25 m detector and source sampling is used to generate 12,000 training sets, i.e., pairs of complete-
incomplete data. As in the numerical example, for incomplete datasets, we irregularly decimate both
detectors and sources by 25%. Low frequencies are also missing. The applied blending scheme employs a
blending fold of two and random time dithering. A testing set is derived from a portion of the filed data in
a different area, meaning that there is no overlap between training and testing datasets.

Figure 3 shows the data recovery result using the field data. Similar to the numerical example, the
ML scheme simultaneously performs deblending, trace reconstruction and low frequency extrapolation, of
sufficient quality. Although the input data employ a narrow bandwidth, the level of prediction errors is fairly
comparable for the whole frequency range (Figure 4d). This field data example further confirms the validity
of the applied ML approach. It is also noteworthy that, with a trained network, prediction of the incomplete
data can be quickly done for both numerical and field data examples.
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Figure 3—Prediction result (field data example). Top figures show data in the time-space domain while
bottom ones are data in the frequency-wavenumber domain. (a) Complete data (reference). (b) Incomplete
data. (c) Predicted complete data. (d) Difference between reference and predicted complete data.

Conclusions

In this study, we apply a deep convolutional neural network based on the U-Net architecture in the
framework of supervised learning to predict complete data from incomplete data. The applied network
aims at simultaneously performing suppression of blending noise, reconstruction of missing traces and
extrapolation of low frequencies. We validate the proposed ML approach using synthetic and field data sets.
Although the acquisition scenarios applied to generate the incomplete data sets significantly compress the
data size in the frequency-space domain, the recovery results clearly confirm that the proposed approach
effectively derives the complete data for both numerical and field data examples. One of the remarkable
outcomes in the applied method is that there is no discernible difference in prediction errors between
extrapolated frequencies and preexisting frequencies, which is hardly achievable with existing geophysical
methods. Although further investigations are required, the ML based data recovery scheme potentially
allows field operations to be performed in a significantly efficient way while providing satisfactory data
quality.
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