
Block ILU smoothers for p-
multigrid methods in Isogeo-
metric Analysis

Mark Looije





Block ILU
smoothers for
p-multigrid
methods in
Isogeometric

Analysis
by

Mark Looije
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday March 18, 2022 at 10:00 AM.

Student number: 4381874
Project duration: September 1, 2020 – March 18, 2022
Thesis committee: Prof. dr. ir. C. Vuik, TU Delft, supervisor

Prof. dr. ir. H. X. Lin, TU Delft
R. P. W. M. Tielen, TU Delft, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Abstract

Isogeometric Analysis (IgA) is an extension of the more well known Finite Element Method (FEM). It allows for more
accurate descriptions of boundary value problems on irregular domains. However, many of the traditional iterative
solution strategies that are known to work well in FEM do not show the same behavior in IgA, especially for increasing
order of basis functions p.

A method shown to have fast convergence in this situation is a p-multigrid method with a smoother based on a Block
ILUT factorization. Most of the blocks of this factorization are efficiently calculated. The same holds for the smooth-
ing steps.

It is therefore our objective to make changes to the Block ILUT smoother. Inspiration is taken from methods where ILU
factorizations are constructed using a fixed-point iteration. We combine these with the existing Block ILUT smoother.
This ultimately leads to two new proposed methods we will call Block Fixed-point ILU and Block ParILUT.

The existing methods as well as the newly suggested methods are tested and compared on computational costs of
the factorization, the number of nonzero entries in this factorization and the number of multigrid iterations needed
to reach convergence, if these factorizations are to be used as smoother. The benchmark used for these tests is a
convection diffusion reaction (CDR) equation on a multipatch geometry with 4, 16 or 64 patches.

iii





Preface and acknowledgments

During the past one and a half years I have been working on this master’s thesis "Block ILU smoothers for p-multigrid
methods in Isogeometric Analysis", executed at the Numerical Analysis department and supervised by Roel Tielen
and Kees Vuik. Doing this master’s thesis has been both the final as well as by far the most challenging part of my
studies. Did not always enjoy it either, progress and motivation definitely came in waves. But in the end I am proud of
what I produced and thankful for the help I have received.

Therefore I want to thank both Roel and Kees for being my supervisors, for guiding me even though I was not al-
ways the easiest to work with. Next to them I want to thank my parents and especially the friends I know from outdoor
sports association Slopend or my studies. They were the distraction I needed, they are the ones that made my time in
Delft enjoyable. And they are the ones that gave the extra support and encouragement when I needed it.

Mark Looije
Delft, March 2022

v





Contents

1 Introduction 1

2 Isogeometric Analysis 3

2.1 Variational Formulation and Geometry Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Variational Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Geometry function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 B-spline basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 B-spline curves, surfaces and solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Refinement strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Matrix Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Support of basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Integral approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Multipatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Multigrid Methods 11

3.1 Introduction Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 h-multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Prolongation operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Restriction operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 p-multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 L2-projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Motivation for p-multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Smoothers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.1 Alternative smoothers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 ILU type smoothers - Part I 17

4.1 Incomplete LU factorizations and smoothers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.1 ILU(0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 ILUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Computational Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Block ILUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Matrix structure for multipatch geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Block ILUT factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Using Block ILUT as a smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.4 Computational Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 ILU type smoothers - Part II 25

5.1 Motivation for continued research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Removing Off-Diagonal Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Fixed-point ILU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.3 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



viii Contents

5.4 Block Fixed-point ILU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4.1 General info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4.2 Sparsity pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.3 Parallel performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.4 Computational Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 ParILUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.1 Adjusting sparsity pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.2 Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.6 Block ParILUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6.1 General info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6.2 Residual matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6.5 Computational Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.7 Block ILUT vs Block Fixed-point ILU vs Block ParILUT . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion and Further Research 47

List of Symbols 49

Bibliography 51



Chapter 1

Introduction

"Block ILU smoothers for p-multigrid methods in Isogeometric Analysis".
The title of this thesis consists of several parts. We will start with Isogeometric Analysis, the other sections will follow
from this.

Isogeometric Analysis (IgA) is easiest explained and motivated as an extension to the Finite Element Method (FEM),
first described by Hughes in 2004 [1]. While FEM is currently the most well known and widely used method for solv-
ing problems over irregular domains, this method does have its inefficiencies. The main one being the translation
between the geometry created by CAD (Computer Aided Design) and an analysis-suitable geometry. This process is
computationally expensive; it is estimated that for complex engineering designs this translation is responsible for 80%
of overall analysis time [2]. All while only being an approximation to the ’exact’ geometry.
This is the original motivation for IgA; the use of B-Spline basis functions allows for a highly accurate representation
of complex geometries as well as establishing a link between the design and the engineering tools. Another positive
for IgA is the higher continuity of basis functions, a useful property that is more and more appreciated.

Challenges in IgA include assembly of the system matrix and right hand side vector, which isn’t as straightforward
as it may be in for example FEM. The main challenge however, lies in the fact that many common solvers for linear
systems don’t perform well for our IgA discretization.
The proposed method for solving the linear system is a p-multigrid method. In most multigrid methods the coarsen-
ing is in the mesh width h, here coarsening is applied in the spline degree p. The choice for p-multigrid makes it that
the problem on the coarse grid looks a lot more familiar, where we know how to efficiently solve this coarser problem.
But of course, p-multigrid comes with its own intergrid operators and challenges. And it requires a different choice of
smoothers.

Since traditional smoothers such as Gauss Seidel do not perform for higher spline degree p we need to consider al-
ternative smoothers. For this smoothers are suggested based on incomplete LU factorizations. After first discussing a
few more elementary factorizations we build up towards Block ILUT, a method taking advantage of the block structure
of our system matrix. This method is often used in the work of Tielen [3],[4],[5],[6],[7] and shown to work very well in
the context of Isogeometric Analysis.
In the final parts of this thesis we will try to make alterations to the Block ILUT smoother, searching for further im-
provements. Here new methods are proposed with incomplete LU factorizations based on fixed-point iterations, while
also using the existing block structure.

The layout of the core of this thesis follows the same structure. We will start with a description of IgA and how to
go from a boundary value problem to a linear system of equations (Chapter 2). Strategies are proposed on how to
efficiently solve these systems using multigrid methods (Chapter 3). This is followed by two chapters regarding ILU
type smoothers, or ILU type smoothers applied in this setting more specifically. Here chapter 4 describes methods
used before by Tielen or others (though explained more elaborately and with reproduced test results). Chapter 5 is my
actual contribution to this subject, describes my own research.

1





Chapter 2

Isogeometric Analysis

2.1. Variational Formulation and Geometry Function
As mentioned before, IgA is used to find an approximation to boundary value problems. For instance, the homoge-
neous Poisson equation could be considered. {

−∆u = f inΩ,

u = 0 on ∂Ω.

HereΩ is an open domain in Rd , ∂Ω the boundary ofΩ, f ∈ L2(Ω).

2.1.1. Variational Form
As is the case with FEM, the solution stategy is based on a variational formulation (also known as weak formulation).
To find the variational formulation to this boundary value problem, we consider the function space V . Here V is
defined as

V := {v ∈ H 1(Ω), v = 0 on ∂Ω},

where H 1(Ω) the first order Sobolev space. This space consists of all functions v ∈ L2(Ω) that have weak and square-
integrable first derivatives as well as being 0 on the boundary. Please note that the solution u to the boundary value
problem must lie in this set V .

The variational form is obtained by multiplying the PDE with a test function v ∈ V and integrating over Ω. Then
integration by parts and Gauss’ divergence theorem are applied. The boundary integral vanishes as v is zero on the
boundary.

−
∫
Ω
∆uv dΩ=

∫
Ω

f v dΩ,

−
∫
Ω

div(∇uv) dΩ+
∫
Ω
∇u∇v dΩ=

∫
Ω

f v dΩ,

−
∫
∂Ω

∇uv ·n dΓ+
∫
Ω
∇u∇v dΩ=

∫
Ω

f v dΩ,∫
Ω
∇u∇v dΩ=

∫
Ω

f v dΩ,

which will be abbreviated as
a(u, v) = 〈 f , v〉 .

For the boundary value problem to hold, a(u, v) = 〈 f , v〉 must hold for every v ∈V . Hence solving the variational form
for every such v will give the desired solution to the boundary value problem.

To discretize the variational form, V is replaced by a finite dimensional subspace Vh ⊆ V . Let φ1, ...,φn be a basis
of Vh , then the numerical approximation uh ∈Vh is constructed as the linear combination of these basis functions:

uh =
n∑

i=1
uiφi .

Inserting uh into the variational form and testing with v =φi for i = 1, ...,n we find

a(uh ,φi ) =
n∑

i=1
ui a(φi ,φ j ) for j = 1, ...,n

3



4 2. Isogeometric Analysis

And therefore we obtain the linear system
Au = f, where

Ai , j = a(φi ,φ j ), fi = 〈 f ,φi 〉 i , j = 1, ...,n.

Determining the coefficients ui through this linear system will give the approximation to the variational form and
therefore the boundary value problem [8],[9].

2.1.2. Geometry function
Now, suppose the physical domain is parametrized. Suppose that there is some geometry function F that is an invert-
ible mapping from parameter domainΩ0 to physical domainΩ (see figure 2.1).

Figure 2.1: Parametrization ofΩ. The parametric domain is denoted byΩ0. From: [8]

The following is a well known integration rule∫
Ω

w(x)d x =
∫
Ω0

w(F (ξ))|detDF (ξ)|dξ,

with DF (ξ) = ( ∂Fi
∂ξ j

)i , j=1,...,d the Jacobian matrix.

Applying this to the integrals in the variational form we find the following [8]:

a(u, v) =
∫
Ω
∇u ·∇vd x =

∫
Ω0

(∇uDF (ξ)−1) · (∇vDF (ξ)−1)|detDF (ξ)|dξ,

〈 f , v〉 =
∫
Ω

f vd x =
∫
Ω0

( f v)(F (ξ))|detDF (ξ)|dξ.

This is slightly different to what is done in FEM. There the geometry transformation is applied later, on integrals over
elements, not the entire domain. As the grid in FEM is (often) build from triangles, this transformation is a linear
transformation. The basis functions are often tent-functions, but also other choices for basis functions can be made
[9].

In IgA B-splines (or more generally NURBS) are used to define F. For the basis functions we will use B-spline basis
functions, which will be defined in section 2.2.



2.2. B-splines 5

2.2. B-splines
An example of a B-spline curve can be seen in figure 2.2. B-spline curves, surfaces and solids are excellent for de-
scribing complicated shapes. Next to describing the geometry, the B-spline basis functions are also used as the basis
functions in our IgA discretization.

Figure 2.2: An example of a B-spline, in this case a piecewise quadratic curve in R2. From: [1]

2.2.1. B-spline basis functions
B-spline basis functions are piecewise polynomials and defined using a knot vector. A knot vector in one dimension
is a set of coordinates in the parametric space, written Ξ = {ξ1,ξ2, ...,ξn+p+1}. Here ξi ∈ R is the i -th knot, i the knot
index, p the polynomial order, and n the number of basis functions which compromise the B-spline.
For instance, a typical knot vector for piecewise quadratic (p = 2) polynomials would be {0,0,0, 1

8 , 1
4 , 3

8 , 1
2 , 5

8 , 3
4 , 7

8 ,1,1,1}.
This vector is open (as it repeats the endpoints p times) and uniform (the distances between the knots is uniform).

B-spline basis functions are defined recursively

φi ,0(ξ) =
{

1 if ξi ≤ ξ< ξi+1,

0 else,

φi ,p (ξ) =
{

ξ−ξi
ξi+p−ξi

φi ,p−1(ξ)+ ξi+p+1−ξ
ξi+p+1−ξi+1

φi+1,p−1(ξ) if well defined,

0 else.

This recursion is known as the Cox-de Boor formula. Due to this recursive definition the derivatives of B-spline basis
functions are efficiently represented in terms of the lower order bases

d

dξ
φi ,p (ξ) =

{ p
ξi+p−ξi

φi ,p−1(ξ)− p
ξi+p+1−ξi+1

φi+1,p−1(ξ) if well defined,

0 else.

Similar expressions exist for the higher order derivatives, but we don’t deem it necessary discussing them here.

Examples of some lower order basis functions can be seen in figure 2.3. The knot vector used is {0, 1
8 , 1

4 , 3
8 , 1

2 , 5
8 , 3

4 , 7
8 ,1}

for p = 0 and expended with additional zeros and ones for increasing p.

Some important properties of the B-spline basis functions include [1],[2]:

• They add to one, that is, ∀ξ ∑n
i=1φi ,p (ξ) = 1. This is known as the partition of unity property.

• They are non-negative, that is φi ,p (ξ) ≥ 0 ∀ξ.

• The support of each φi ,p is compact and contained in the interval [ξi ,ξi+p+1].

• They are C p−1(that is, they have continuous derivatives up to order p −1), if there are no repeated knots. They
are C p−k−1 if a knot is repeated k times [1],[2].

These properties give for some usefull consequences. For example, the support structure gives for sparse matrices.
It can also be seen that the amount of non-zero entries increases for higher polynomial order p. The mass matrix M
(more on this in later chapters) will be easy to lump due to the partition of unity property, etc.



6 2. Isogeometric Analysis

Figure 2.3: Basis functions of order 0,1,2,3 for an open uniform knot vector

2.2.2. B-spline curves, surfaces and solids
B-spline curves in Rd are constructed by taking linear combinations of B-spline basis functions. The coefficients are
the control points. Given n basis functions, φi ,p , i = 1,2, ...,n and corresponding control points Bi ∈Rd , i = 1,2, ...,n a
piecewise-polynomial B-spline curve is given by

C (ξ) =
n∑

i=1
φi ,p (ξ)Bi

In general the control points are not interpolated by B-spline curves. Their continuity is inherited by the continuity
of the B-spline basis functions, though now the continuity is also decreased for repeated control points. Both this
interpolation of control points (marked in red) and the decrease in continuity can be seen in figure 2.2.

B-spline surfaces and B-spline solids are defined in a similar manner. For the B-spline surfaces consider a control
net Bi , j , i = 1, ...,n, j = 1, ...,m and knot vectors Ξ = {ξ1, ...,ξn+p+1} and H = {η1, ...,ηm+q+1}. Then the tensor product
B-spline surface is defined by

S(ξ,η) =
n∑

i=1

m∑
j=1

φi ,p (ξ)ψ j ,q (η)Bi , j

The formulation for a B-spline solid contains a control net Bi , j ,k with 3 indices, 3 knot vectors and 3 sets of basis func-
tions.

2.2.3. Refinement strategies
In the multigrid solver it will be necessary to describe B-splines using different sets of basis functions and control
points. Several strategies are known for refining the B-spline basis through expanding the knot vectorΞ and adjusting
the control points. These strategies are called h-refinement, p-refinement and k-refinement [1],[2].
h- and p-refinement also exist in FEM and are known as knot insertion and order elevation respectively. k-refinement
is exclusive to IgA. They are best explained through a simple example:

h-refinement: {0,0, 1
2 ,1,1} to {0,0, 1

4 , 1
2 , 3

4 ,1,1}; additional distinct knots are inserted.
p-refinement: {0,0, 1

2 ,1,1} to {0,0,0, 1
2 , 1

2 ,1,1,1}; the multiplicity of every knot is increased.
k-refinement: {0,0, 1

2 ,1,1} to {0,0,0, 1
2 ,1,1,1}; the multiplicity of the endpoints is increased.

The impact of these refinements on the basis functions can be seen in figure 2.4.

Important observations to make: The number of basis functions almost doubles for h- and p-refinement (though this
is better seen in bigger examples), while for k-refinement the number of basis functions only increases by one. Both
p- and k-refinement allow for order elevation of the basis functions, though another major benefit of k-refinement
opposed to p-refinement being a better continuity for the internal knots.



2.2. B-splines 7

Figure 2.4: Different refinement techniques

Throughout this literature study, we adopt k-refinement unless stated otherwise. In chapter 3 it is further elaborated
how changing the knot vector and basis functions impacts the coefficients.



8 2. Isogeometric Analysis

2.3. Matrix Assembly
For the matrix assembly a method is shown that is very similar to the method used in FEM. The idea is to decompose
the integral over the entire parameter domainΩ0 into rectangular or cuboid atomic contributions and apply standard
cubature rules such as Gauss formulae on each rectangle resp. cuboid afterwards.

Using system matrix A and right hand side vector f from section 2.1, assuming F = id so that the expressions remain
readable, we receive

Ai , j =
∫
Ω
∇φi∇φ j dΩ=

Nel∑
k=1

∫
Ωk

∇φi∇φ j dΩ,

fi =
∫
Ω

f φi dΩ=
Nel∑
k=1

∫
Ωk

f φi dΩ.

2.3.1. Support of basis functions
In section 2.2.1 the support structure of the basis functions was already mentioned. They are zero over most elements,
making the integrals over those elements zero by default, thus reducing the amount of integrals that have to be calcu-
lated.

The support of these basis functions can be visualized in several ways [2]. The first being: given a basis function,
in what elements is this basis function unequal to zero (see figure 2.5a)? The blue area is the support of basis function
φ1,1, the red area the support of φ3,2, the green area is where both basis functions are supported. p = 2 in this image.
Another way to look at it: given an element, what basis functions are supported on this element (see figure 2.5b)?
Again for p = 2, the red dots show what basis functions are relevant for integrating over the green area.
Finally, in figure 2.5c the nonzero pattern of the matrix A is shown for p = 2 and Nel = 8 in both directions. As p = 2 we
see two non-zero entries to the left and two non-zero entries to the right of the diagonal. As well as two blocks to the
left and on the right respectively.

(a) bsplinesupport interpretation 1 (b) bsplinesupport interpretation 2 (c) sparsitypattern A(p = 2, Nel = 8)

Figure 2.5: Support of B-spline basis functions visualization. (a),(b) from: [2]

2.3.2. Integral approximation
The selected approximation method is Gauss quadrature.∫ 1

−1
f (x)d x ≈

n∑
i=1

wi f (xi )

An n-point Gauss quadrature rule is exact for polynomials of degree 2n−1, by suitable choice of quadrature points xi

and weights wi [10]. These points and weights for the standard interval [−1,1] can be found in table ??.

Considering for example the expressions for Ai , j earlier this section, degree of basis functions p = 2. Then both ∇φi

and ∇φ j would have have degree 1, hence the integrand having polynomial order 2. 2 quadrature points would be
sufficient to exactly calculate the integral.

Generally, the geometry function F isn’t simply the identity, the integrand isn’t a polynomial. Still, Gauss quadrature
works quite well for these functions.



2.3. Matrix Assembly 9

Number of points, n Points, xi Weights, wi

1 0 2

2 ± 1p
3

±0.57735... 1

3
0 8

9 0.888889...

±
√

3
5 ±0.774597... 5

9 0.555556...

4
±

√
3
7 − 2

7

√
6
5 ±0.339981... 18+p30

36 0.652145...

±
√

3
7 + 2

7

√
6
5 ±0.861136... 18−p30

36 0.347855...

5

0 128
255 0.568889...

± 1
3

√
5−2

√
10
7 ±0.538469... 322+13

p
70

900 0.478629...

± 1
3

√
5+2

√
10
7 ±0.90618... 322−13

p
70

900 0.236927...

Table 2.1: Gauss quadrature points and weights. From: [11]

Change of interval
Table 2.1 gives the points and weights for an integral over [−1,1], however this isn’t the domain we are interested in.
This is easily accounted for using a simple transformation [12]. An integral over [ξi ,ξi+1] is approximated∫ ξi+1

ξi

f (ξ)dξ= ξi+1 −ξi

2

∫ 1

−1
f
(ξi+1 −ξi

2
x + ξi +ξi+1

2

)
d x

≈ ξi+1 −ξi

2

Nel∑
k=1

wi f
(ξi+1 −ξi

2
xi + ξi+1 −ξi

2

)
.

The quadrature rule is easily expanded to squares or cubes. For example, for p = 3 and integrating over [−1,1]2, the

quadrature points are {−
√

3
5 ,0,

√
3
5 }× {−

√
3
5 ,0,

√
3
5 }. The weights are ( 5

9 , 8
9 , 5

9 )⊗ ( 5
9 , 8

9 , 5
9 ).

For a rectangle [ξi ,ξi+1]× [η j ,η j+1] we again will have to use a simple transformation.



10 2. Isogeometric Analysis

2.4. Multipatch
So far we have pretended all domains can be mapped onto either the unit square (2D) or the unit cube (3D). But this
is of course not the case, in almost all practical circumstances it will be necessary to describe domains using multiple
patches.
Most common reason is the situation where the domain simply differs topologically from a square or cube. For ex-
ample the shape in figure 2.6, it is clear we can’t find invertible F that maps this domain to the unit square. Instead all
coloured areas are mapped separately to their own unit squares.

Figure 2.6: Example of a geometry where multiple patches are required. From: [3]

Other reasons to use multiple patches include when different materials or different physical models are used in dif-
ferent parts of the domain. Finally it may be computationally efficient to assemble different subdomains in parallel,
which is more convenient when using multiple patches [2].

In multipatch,Ω is divided into a collection of non-overlapping subdomainsΩk such that Ω̄=⋃K
k=1 Ω̄

k .

We call Ω a multipatch geometry consisting of k patches. For each Ωk a geometry function Fk is then defined to
parametrize each subdomain individually

Fk :Ω0 →Ωk Fk (ξ) = x ∈Ωk , ∀ξ ∈Ω0.

For illustration, consider the multipatch geometry consisting of 4 patches as shown in figure 2.7. In the same figure
you can also see the resulting block structure of the system matrix A.
The first 4 diagonal blocks Ai i are associated with the interior degrees of freedom on Ωi . AΓΓ denotes the degrees of
freedom at the interface Γ. Finally, the off-diagonal blocks denote the coupling between degrees of freedom at the
interior and the interface.
The resulting block structure is called a block arrowhead matrix. This particular block structure is of course only
achieved for particular numberings of the degrees of freedom. The blocks A11, ..., A44 will look similar to the matrix A
in figure 2.5c.

Figure 2.7: A multipatch geometry, consisting of 4 patches and the resulting block structure of the system matrix. From: [3]



Chapter 3

Multigrid Methods

3.1. Introduction Multigrid
In chapter 2 we described how a boundary value problem leads to a linear system of equations, using IgA. This chapter
focusses on solving the resulting linear system. In particular, we focus on multigrid methods.
Multigrid methods aim to solve linear systems by combinining a basic iterative method and a correction which is
based on a connected and easier problem. Multigrid is shown to be very efficient, especially for large systems [13],[14].

The goal is to determine u in Au = f, but the dimensions of this problem are too big to do so effectively with just a
basic iterative method.
Therefore consider the connected system Ãũ = f̃. Here Ã, ũ and f̃ are connected to the original matrix and vectors via
a prolongation operator IP (u =IP ũ) and restriction operator IR ( ũ =IR u).
Ã can be obtained by either rediscretizing the bilinear form or by applying so-called Galerkin coarsening: Ã =IR AIP .

In the remainder of this section various multigrid algorithms are shown, starting with the most basic application
of multigrid. As more and more is added these alterations will be explained and motivated. v will be used to denote
the approximation to u.
Multigrid algorithm 1 shows the use of two different grids and can be used to determine a reasonable initial guess v.
It is however of no use in trying to iteratively improving our solution.

ALGORITHM 3.1

Goal: Determine u in Au = f.
1. Determine Ã and f̃, using Ã =IR AIP and f =IP f̃.
2. Solve for ṽ, using Ãṽ = f̃.
3. Determine v, by prolongating v =IP ṽ.

To further improve on an initial guess we use the residual equation. That is, instead of working on Ãũ = f̃ we work
on Ãẽ = r̃. We see (approximately) how big the error is and thus how much our guess should be corrected. This leads
to multigrid algorithm 2. The sequence can be repeated iteratively to further improve your guess v.

ALGORITHM 3.2 (Coarse grid correction)

Goal: Determine u in Au = f.
1. Compute the residual r = f− Av.
2. Restrict the residual r̃ =IR r.
3. Solve Ãẽ = r̃.
4. Prolongate the error e =IP ẽ.
5. Update the guess v ← v+e.

It is known from literature that coarse grid correction (algorithm 2) is effective in reducing low frequency compo-
nents of the error. On the other hand basic iterative methods such as Gauss Seidel or (damped) Jacobi reduce the high
frequency components. Hence, they are often used together. A typical multigrid method contains both smoothing
steps and a coarse grid correction. Algorithm 3 is an example of this. The number of pre- and postsmoothing steps is
denoted by ν1 and ν2 respectively.

11



12 3. Multigrid Methods

ALGORITHM 3.3 (Two-grid cycle)

Goal: Determine u in Au = f.
1. Relax ν1 times on Au = f with initial guess v.
2. Compute the residual r = f− Av.
3. Restrict the residual r̃ =IR r.
4. Solve Ãẽ = r̃.
5. Prolongate the error e =IP ẽ.
6. Update the guess v ← v+e.
7. Relax ν2 times on Au = f with initial guess v.

The most effective way of solving Ãẽ = r̃ may be to restrict to an even easier grid. That is, we want to apply the
multigrid approach recursively.
This recursive use of multigrid leads to a V-cycle and is described in multigrid program 4. Figure 3.1a shows the V-cycle
scheme in a more visual way.

ALGORITHM 3.4 (V-cycle)

Goal: Determine u in Au = f.
Relax ν1 times on Au = f with initial guess v.
1. Compute f̃ =IR r.
2. Relax ν1 times on Ãũ = f̃ with initial guess ṽ = 0.

3. Compute ˜̃f =IR r̃.
...

4. Solve A∗u∗ = f∗.
...

5. Update ṽ ← ṽ+IP ˜̃v.
6. Relax ν2 times on Ãũ = f̃ with initial guess ṽ.
7. Update v ← v+IP ṽ.
8. Relax ν2 times on Au = f using initial guess v.

Next to V-cycles there are several other ways of going through the hierarchy, the main ones being W-cycles, F-cycles
and FMG (full multigrid) and shown in figure 3.1. Trade-off is speed of doing a single iteration versus the expected
number of iterations necessary.

Figure 3.1: Visual description of a V,W and F-cycle scheme using 4 levels.



3.2. h-multigrid 13

3.2. h-multigrid
The most common choice for the operator Ã is the operator corresponding to a coarser discretization. Ã is the opera-
tor resulting from a discretization with a mesh width 2h instead of h. Hence why we call it h-multigrid. As a result of
the increased mesh width, the matrices and vectors on the coarser level are significantly smaller.
These are its main advantages: it is well known, well researched and we get to work on significantly smaller systems
on the coarser levels.

For notation we use Ah , A2h , vh , v2h , etc. for matrices and vectors on the different grids.
The prolongation operator is denoted I h

2h . This is to be read from the bottom to the top; it transforms vectors over a

grid with mesh width 2h to vectors over a grid with mesh width h. The restriction operator is denoted I 2h
h .

We will show how these operators look like for both 1- and 2-dimensional problems.

3.2.1. Prolongation operator
To prolongate information from the coarse grid to the fine grid within h-multigrid methods, linear interpolation is
typically adopted. For a 1-dimensional problem this means I h

2h v2h = vh , where [13]

vh
2 j = v2h

j ,

vh
2 j+1 = 1

2
(v2h

j + v2h
j+1), 0 ≤ j ≤ 1

2
n −1.

In matrix-vector form a small example would look like

I h
2hv2h =



1 0 0
2 0 0
1 1 0
0 2 0
0 1 1
0 0 2
0 0 1


v1

v2

v3

=



v1

v2

v3

v4

v5

v6

v7


= vh .

When expanding to a 2-dimensional problem, we see I h
2h v2h = vh , where [13]

vh
2i ,2 j = v2h

i j ,

vh
2i+1,2 j = 1

2
(v2h

i j + v2h
i+1, j ),

vh
2i ,2 j+1 = 1

2
(v2h

i j + v2h
i , j+1),

vh
2i+1,2 j+1 = 1

4
(v2h

i j + v2h
i+1, j + v2h

i , j+1 + v2h
i+1, j+1), 0 ≤ i , j ≤ 1

2
n −1.

3.2.2. Restriction operator
For restriction it may be tempting to simply keep the information on those grid points which are also on the coarser
grid, discard the information on those nodes only on the fine grid. This is known as injection: v2h

j = vh
2 j .

But the most common and the better choice is full weighting, where a weighted average is taken of fine grid nodes.
For a 1-dimensional problem this means I 2h

h vh = v2h , where [13]

v2h
j = 1

4
(vh

2 j−1 +2vh
2 j + vh

2 j+), 1 ≤ j ≤ 1

2
n −1.

Or in case of a small example in matrix-vector form

I 2h
h vh =

1 2 1 0 0 0 0
0 0 1 2 1 0 0
0 0 0 0 1 2 1


v1

...
v7

=
v1

v2

v3

= v2h .

For a 2-dimensional problem we can write the operator I 2h
h in stencil notation as [14]

I 2h
h = 1

16

1 2 1
2 4 2
1 2 1

2h

h

.

With this choice of prolongation and restriction operators the variational condition I h
2h = c(I 2h

h )T is satisfied.



14 3. Multigrid Methods

3.3. p-multigrid
In p-multigrid the coarser level is based on a lower order discretization. That is, the hierarchy is based on a different
order p of the basis functions [6]. A vector vp contains the coefficients of the order p basis functions to some B-spline
curve, surface or solid. vp−1 contains the coefficients to the same curve, surface or solid, but now using the order p−1
basis functions.

3.3.1. L2-projection
This transformation is a bit more complicated than the transformations we have seen for h-multigrid. Here the pro-
longation and restriction operators are based on a L2-projection. To demonstrate the change of bases, suppose we
have 2 bases B1 = {φ1, ...,φn} and B2 = {ψ1, ...,ψm}. Also suppose we have a function

∑
i aiφi lying in the span of basis

B1, which we want to rewrite using the basisfunctions ψ j .
This means we have to find coefficients b j such that 1

2 ||
∑

j b jψ j −∑
i aiφi ||2L2 is minimized [9].

1

2
||∑

j
b jψ j −

∑
i

aiφi ||2L2 =
1

2

∫
(
∑

j
b jψ j −

∑
i

aiφi )2 dΩ.

For this to be minimized, we need d
dbk

= 0 for all k.

∫
(
∑

j
b jψ j −

∑
i

aiφi )ψk dΩ= 0 ∀k,

∫
(
∑

j
b jψ j )ψk dΩ=

∫
(
∑

i
aiφi )ψk dΩ ∀k,

∑
j

b j

∫
ψ jψk dΩ=∑

i
ai

∫
φiψ j dΩ ∀k,

(∫
ψ jψk dΩ

)
j ,k

b =
(∫

φiψk dΩ

)
i ,k

a,

Mb = Pa,

b = M−1Pa.

Note that M is an n ×n-matrix, whereas P is an n ×m-matrix.

Now to apply this on the different order B-spline basis functions. It has been shown that it is effective to directly
project to the level p = 1 [5]. Therefore only the operators between level p and level 1 need to be specified.
The prolongation operator is given by

I
p

1 = (Mp )−1P p
1 ,

the restriction operator is given by

I 1
p = (M1)−1P 1

p .

Here the mass matrices M and transfer matrices P are defined as

(Mp )i , j =
∫
Ω
φi ,pφ j ,p dΩ, (P p

1 )i , j =
∫
Ω
φi ,pφ j ,1 dΩ,

(M1)i , j =
∫
Ω
φi ,1φ j ,1 dΩ, (P 1

p )i , j =
∫
Ω
φi ,1φ j ,p dΩ.

To avoid having to invert the mass matrices M , its lumped variant M L
i ,i =

∑
j Mi , j is used. Numerical experiments show

this barely effects the convergence behaviour of the p-multigrid method. By the properties (in particular the partition
of unity property, see section 2.2) of B-spline basis functions the lumped matrix is easily calculated.

M L
i ,i =

∑
j

Mi , j =
∑

j

∫
Ω
φi ,pφ j ,p dΩ=

∫
Ω

∑
j
φi ,pφ j ,p dΩ=

∫
Ω
φi ,p dΩ.



3.3. p-multigrid 15

3.3.2. Motivation for p-multigrid
On the level p = 1 the system will not be significantly smaller as it was when we used h-multigrid. However, the system
will be a lot more sparse and will also look a lot more like other better researched systems. This because the level p = 1
equals FEM, which is widely known and widely researched.

As our system on the coarse grid is very similar to a system resulting from a FEM discretization, we can use meth-
ods which are known to perform well for FEM. This means we can use something simple like h-multigrid and Gauss
Seidel.
That is, after we have gone from level p = p to level p = 1, we can go and do h-multigrid on the level p = 1 [6]. This
scheme is visualized in figure 3.2.

Figure 3.2: Scheme for combined use of p- and h-multigrid. From: [6]



16 3. Multigrid Methods

3.4. Smoothers
Within Multigrid methods, a basic iterative method is typically used as a smoother. However, in IgA the performance
of classical smoothers such as (damped) Jacobi or Gauss Seidel decreases significantly for higher values of p [15].
Therefore other methods are suggested, such as a smoother using an Incomplete LU factorization. This is the ap-
proach we choose for the remainder of this report, but this is by far the only option.

3.4.1. Alternative smoothers
As mentioned we decided to focus on the ILU type smoothers in this report, however other methods have also been
suggested. Recent research includes the use of multiplicative Schwarz smoothers [16], subspace corrected mass
smoothers [17], hybrid smoothers [18] and symbol based multigrid smoothers [19].
These aren’t further elaborated upon in this report.



Chapter 4

ILU type smoothers - Part I

4.1. Incomplete LU factorizations and smoothers
The goal of an incomplete LU factorization is to find sparse lower- and upper triangular matrices L, U such that
A ≈ LU . This incomplete factorization is significantly cheaper compared to full LU factorization, both for computa-
tion and storage [4].
Various strategies exist for computing an incomplete LU factorization. Of these we will show two in this chapter
(ILU(0) and ILUT) and others in upcoming chapters (Block ILUT, etc.).

Once the factorization is obtained, a single smoothing step is applied as follows [4]:
Calculate error: e =U−1L−1(f− Au).
Update guess: v ← v+e.

We will see that these ILU type smoothers will cost significant setup time, however one should need only one or few
smoothing steps.

4.1.1. ILU(0)
First incomplete factorization we look at is ILU(0) [20],[21]. It is the simplest incomplete factorization there is and is
based on the ikj-version of Gaussian elimination. It only allows for nonzero entries on L and U on those positions A
contains nonzero entries. Any element in L and U that falls outside the sparsity pattern of A is dropped.
We also call this zero fill in. The algorithm is as follows.

ALGORITHM 4.1: ILU(0)

Goal: Determine sparse lower and upper triangular L,U such that LU ≈ A.
1. Start with L = I , U = copy of A.
2. for i = 2, ...,n:
3. for k = 1, ..., i −1 and if (i ,k) ∈ N Z (A):
4. Compute pivot li k = ui k /ukk , set ui k = 0.
5. for j = k +1, ...,n and if (i , j ) ∈ N Z (A):
6. Compute ui j = ui j − li k uk j .
7. end for
8. end for
9. end for

Here N Z (A) denotes those points where the matrix A contains nonzero entries.

4.1.2. ILUT
The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an adequate rate of convergence. Al-
lowing for more fill in, that is more nonzero entries, may give better approximations of L and U . Methods that allow
for more fill in can be more efficient as well as more reliable.
One such method is ILUT, a factorization where thresholds are used to determine which elements are kept [20],[21].
Similar to ILU(0), except the condition (i , j ) ∈ N Z (A) is replaced by another dropping rule, which is explained below
the algorithm.

ALGORITHM 4.2: ILUT

Goal: Determine sparse lower and upper triangular L,U such that LU ≈ A.
1. Start with L=I, U=copy of A.

17



18 4. ILU type smoothers - Part I

2. for i = 1, ...,n:
3. w := ai⋆

4. for k = 1, ..., i −1 and if wk ̸= 0:
5. wk = wk /akk

6. Apply a dropping rule to wk .
7. if wk ̸= 0:
8. Update w := w −wk uk⋆.
9. end if
10. end for
11. Apply a dropping rule to row w .
12. li j = w j for j = 1, ..., i −1.
13. ui j = w j for j = i , ...,n.
14. Set w = 0.
15. end for

In the factorization ILUT(m,τ) the following rules are used [4]:
1. In line 6, an element wk is dropped (i.e. replaced by zero) if it is less then the relative tolerance τi , obtained by
multiplying τ by the original norm of the i -th row.
2. In line 11, drop again any element in the row with a magnitude below τi . Then, only keep the M (M = m · the aver-
age number of nonzeros per row) largest elements in both the L part and the U part of the row. The diagonal element
is also always kept.
Here ai⋆ denotes the i -th row of matrix A.

In this project we typically use m = 1, τ= 10−13.

4.1.3. Computational Costs
In table 4.1 we see the cost of factorization and smoothing using ILU(0) and ILUT compared to the cost of a full
factorization or a single step or Gauss Seidel.

Full LU factorization O (N 3
dof)

Forward- and back substitution O (N 2
dof)

Single step Gauss Seidel O (N 2
dof)

Setup ILU(0) O (Ndofp
2d )

Apply ILU(0) O (Ndofp
d )

Setup ILUT O (Ndofp
2d )

Apply ILUT O (Ndofp
d )

Table 4.1: Complexity of ILU(0) and ILUT smoothers.

To explain the complexities of the ILU type smoothers keep in mind the structure of the matrix A. We know that ma-
trices resulting from the IgA discretizations have a limited number of nonzero entries. This amount is dependent on
the order of basis functions p and the dimension d . In fact, the number of nonzero entries per row or column is at
most (1+2p)d . Or easier O (pd ).

Using this we can verify the complexities for the ILU(0) smoother. On line 2 we loop over O (Ndof) elements, on line 3
over O (pd ) elements and finally on line 5 over O (pd ) elements. The operations are simple scalar operations, hence a
cost of O (1). Multiplying Ndof with pd , pd and 1 gives a complexity of O (Ndofp

2d ) for the incomplete factorization.
For applying the smoother we need to do forward- and back substitution over O (Ndof) rows with O (pd ) nonzeros per
row. Hence this costs O (Ndofp

d ).

Using similar reasoning for the ILUT(m,τ) smoother. On line 2 we loop over O (Ndof) elements, on line 4 over O (pd )
elements. All operations are at most O (pd ), because the number of nonzeros in w or rows or columns of U and L is
always bounded. Hence a complexity of O (Ndofp

2d ) for the factorization.
And a complexity of O (Ndofp

d ) for the smoothing step, for the same reason as seen before with ILU(0).

It should be noted that though we see the same complexities here for both ILU(0) and ILUT, that an ILUT factorization
will contain more nonzero entries. And thus will be slightly more expensive both for computation and storage.



4.1. Incomplete LU factorizations and smoothers 19

4.1.4. Numerical Results
To show how the different smoothers perform consider the following test problem. The benchmark chosen is a Laplace
equaiton on the unit square. All system matrices, transfer matrices, RHS vectors, etc. have been generated through
my own programming using Python. The code for factorization and smoothing is also self made.

BENCHMARK: Laplace equation on the unit square

Consider the boundary value problem

−∆u = f on [0,1]2, u = 0 on the boundary.

f is chosen as f = 2π2 sin(πx)sin(πy) such that the solution is known to be u = sin(πx)sin(πy).

We will use IgA discretizations (single patch) for different values of p and h. Then we will use a two level p-multigrid
method with on the fine grid either a GS, ILU(0) or ILUT smoother and a direct solve on p = 1.

We are mostly interested in how many steps it takes for a method to converge. For this we use the stopping criterium
||rk ||/||r0|| < 10−8, where rk and r0 denote the residuals after k and 0 steps respectively.
Tables 4.2 till 4.4 show the number of steps till convergence in this particular setup.

p = 2 p = 3 p = 4 p = 5
h = 2−3 8 22 84 347
h = 2−4 7 23 68 254
h = 2−5 5 21 63 204

Table 4.2: Steps till convergence (GS smoother, ν1 = ν2 = 1)

p = 2 p = 3 p = 4 p = 5
h = 2−3 3 2 2 2
h = 2−4 3 3 3 3
h = 2−5 3 3 3 3

Table 4.3: Steps till convergence (ILU(0) smoother)

p = 2 p = 3 p = 4 p = 5
h = 2−3 1 1 1 1
h = 2−4 2 2 1 1
h = 2−5 2 2 2 2

Table 4.4: Steps till convergence (ILUT(m = 1,τ= 10−13) smoother)

Table 4.2 shows the results for using Gauss Seidel as a smoother. As was mentioned already in the introduction the
performance drops significantly if we are using higher order basis functions.
Tables 4.3 and 4.4 show the same tests but for the ILU(0) and ILUT smoother respectively. For the ILUT smoother the
parameters m = 1 and τ = 10−13 are used. Here the amount of steps required to hit the stopping criterium does not
seem to be dependent on the order of basis functions p.
We also see that there are less steps needed if using ILUT compared to ILU(0). Therefore we will continue elaborating
on the ILUT smoother in the following sections.



20 4. ILU type smoothers - Part I

4.2. Block ILUT
4.2.1. Matrix structure for multipatch geometries
In previous sections we have seen that when using multipatch geometries the system matrix A will have the following
block structure.

A =


A11 A1Γ

. . .
...

AK K AKΓ

AΓ1 · · · AΓk AΓΓ


.

Given this block structure we can tell how the LU factorization of A should look like. Through block matrix multipli-
cation it can be verified that

A =


L1

. . .
LK

B1 · · · BK I




U1 C1

. . .
...

UK CK

D

= LU .

Here Li , Ui are based on a complete LU factorization Ai i = LiUi .
The Bi , Ci and D are given by

Bi = AiΓU−1
i , Ci = L−1

i AΓi , D = AΓΓ−
K∑

i=1
Bi Ci .

Here D is not a diagonal submatrix as the symbol might suggest. It is not even upper- or lower triangular. It is simply
the first letter available after the Ai i , Bi and Ci .

4.2.2. Block ILUT factorization
This information gives for a new method of approximating the LU factorization for A.
The Li and Ui are approximated by calculating the ILUT factorization on the blocks Ai i . These approximations are
denoted L̃i and Ũi . Calculations of the other blocks are then based on the L̃i , Ũi .

A ≈


L̃1

. . .
L̃K

B̃1 · · · B̃K I




Ũ1 C̃1

. . .
...

ŨK C̃K

D̃

= L̃Ũ .

B̃i = AiΓŨ−1
i , C̃i = L̃−1

i AΓi , D̃ = AΓΓ−
K∑

i=1
B̃i C̃i .

Here we used tildes to emphasize we are talking about approximations. In the remainder of this text the tildes are
occasionally dropped to avoid clutter in notation. Every time we use one of the symbols Li ,Ui ,Bi ,Ci ,D we do indeed
mean the approximation.
From this moment we will refer to this factorization as Block ILUT, applying ILUT on the full matrix A will from this
point onward be called Global ILUT.
The factorization is also presented in pseudo-code in algorithm 4.3. Note that big parts of the factorization can be
performed in parallel. Lines 2, 5 and 6 could have been combined in a single for-loop, however we decided to show it
this way as the method for calculating Li ,Ui significantly differs from the method for calculating Bi ,Ci .

ALGORITHM 4.3: Block ILUT factorization

Goal: Determine sparse lower and upper triangular L,U such that LU ≈ A.
1. for i = 1, ...,K (in parallel):
2. Li ,Ui = ILUT(Ai i ).
3. end for
4. for i = 1, ...,K (in parallel):
5. Solve for Bi in U T

i B T
i = AT

iΓ.
6. Solve for Ci in Li Ci = AΓi .
7. end for
8. D = AΓΓ−∑K

i=1 B̃i C̃i .



4.2. Block ILUT 21

4.2.3. Using Block ILUT as a smoother
Also in applying the smoother a lot can be parallelized. Remember that u in Au = f is approximated by first solving
Ly = f, then solving U u = y.

L1

. . .
LK

B1 · · · BK I




y1
...

yK
yΓ

=


f1
...

fK

fΓ


,


U1 C1

. . .
...

UK CK

D




u1
...

uK

uΓ

=


y1
...

yK
yΓ


.

If we write it out we can see it is possible to determine y1, ...,yK in parallel using forward substitution on each of the
blocks. After this we can determine yΓ, again by forward substitution.
In the second system we first have to determine uΓ through solving DuΓ = yΓ. D is not triangular, thus requiring an
expensive exact solve or a further approximation. Once uΓ is obtained u1, ...uΓ can be determined in parallel using
backward substitution on each of the blocks.

ALGORITHM 4.4: Smoothing using Block ILUT factorization

Goal: Update guess u.
1. for i = 1, ...,K (in parallel):
2. Solve for yi in Li yi = fi using forward substitution.
3. end for
4. Solve for yΓ in Ly = f using forward substitution.
5. Solve for uΓ in DuΓ = yΓ using ... .
6. for i = 1, ...,K (in parallel):
7. Solve for ui in Ui ui = yi using backward substitution.
8. end for

4.2.4. Computational Costs
In table 4.5 we see the computational cost for different parts of the Block ILUT smoother as well as a comparison to
the cost of the global smoother.
Npatch denotes the degrees of freedom within a single patch, i.e. the size of one block corresponding to one patch.
Ninterface denotes the degrees of freedom at the interface, i.e. the size of the right column and bottom row. These
relate to Ndof via Ndof = K Npatch +Ninterface.

Global ILUT (setup) O (Ndofp
2d )

Global ILUT (apply) O (Ndofp
d )

Block ILUT (setup Li ,Ui ) O (Npatchp2d )

Block ILUT (setup Bi ,Ci ) O (Npatchpd )

Block ILUT (setup D) O (N 3
interface)

Block ILUT (apply) O (Npatchpd )∗
Table 4.5: Complexity of Block ILUT smoother.

Doing an ILUT factorization on a submatrix Ai i is of course cheaper than on the full matrix A. It is easy to see that
computing a pair Li ,Ui can be done at a cost of O (Npatchp2d ), compared to the O (Ndofp

2d ) for the full matrix.
The blocks Bi ,Ci are determined through solving the systems U T

i B T
i = AT

iΓ, Li Ci = AΓi . These only require forward

substitution and can therefore be performed at the cost of O (Npatchpd ) per patch.
Computing D requires matrix multiplication. In the worst case scenario (for a full matrix D) this will cost O (N 3

interface).

Next to considering how expensive each step is, also consider what could be parallelized.
Determining Li ,Ui is independent of determining L j ,U j and can be performed in parallel.
Determining Bi is independent of determining Ci , which is independent of determining B j ,C j . Again can be per-
formed in parallel. For determining D the matrix multiplications can be performed in parallel.

Also in applying the smoother a lot can be parallelized. Just before we have seen how Ly = f and U u = y look when



22 4. ILU type smoothers - Part I

written out. 
L1

. . .
LK

B1 · · · BK I




y1
...

yK
yΓ

=


f1
...

fK

fΓ


,


U1 C1

. . .
...

UK CK

D




u1
...

uK

uΓ

=


y1
...

yK
yΓ


.

We can determine y1, ...,yK in parallel using forward substitution on each of the blocks. This at the cost of O (Npatchpd ).
The cost of determining yΓ, again by forward substitution, is dependent on the amount of nonzeros in Bi , ...,BK .
In the second system we first have to determine uΓ through solving DuΓ = yΓ. D is not triangular, either making
this quite expensive at a cost of O (N 3

interface) for an exact solve, or using a further approximation. Once uΓ is obtained

u1, ...uΓ can be determined in parallel using backward substitution on each of the blocks. This at a cost of O (Npatchpd ).

Hence the asterix in table 4.5. Applying the smoother costs roughly O (Npatchpd ) if applied in parallel and the bottom
row is small. Which is the case if using a smaller amount of patches, but certainly not the case for a large amount of
patches.

4.2.5. Numerical Results
To show the performance of Block ILUT we need a new benchmark. Block ILUT shines when used on a discretization
based on a multipatch geometry. In fact, I do not know what Block ILUT on a single patch geometry would look like.
And the previous benchmark used only a single patch.

The benchmark chosen is a CDR equation on a unit square and is equal to a benchmark used in [3]. The system
matrices and the necessary transfer matrices were provided by supervisor Ir. Roel Tielen. The code for factorization
and smoothing was written by myself, using Python.
This benchmark is the benchmark used for the remainder of this text.

BENCHMARK: CDR equation on multipatch geometry

Consider the convection-diffusion-reaction (CDR) equation

−∇· (D∇u)+v ·∇u +Ru = f , onΩ,

whereΩ= [0,1]2, D =
(

1.2 −0.7
−0.4 0.9

)
, v =

(
0.4
−0.2

)
, R = 0.3.

The right hand side vector f is chosen such that the exact solution u to this problem is given by

u(x, y) = sin(πx)sin(πy).

Next to varying h and p we also vary the amount of patches. We consider K = 4, K = 16 and K = 64.

In table 4.6 we see the steps required till convergence (||rk ||/||r0|| < 10−8) for this particular setup.
Also the number of nonzero elements in the factorization are provided, displayed as a fraction of the number of
nonzero elements of A. That is nz(ILUT)/nz(A). We see an increase for the number of nonzeros from the system
matrix A, to L+U for a global ILUT factorization, to L+U for a block ILUT factorization. But this increase is manage-
able.

From this table it is clear that the Block ILUT smoother performs remarkably well. The steps till convergence are
very low, often the method converges in a single step.

Therefore we chose to use Block ILUT as a base for our research in the next chapter. The convergence is very fast
as seen in this table. There are however some expensive steps involved, both in the factorization stage as well as the
smoothing stage.



4.2. Block ILUT 23

steps steps nz nz nz
Global Block Global Block
ILUT ILUT A ILUT ILUT

K=4

p=2
h=3 3 2 7569 1.81 2.59
h=4 2 2 27889 1.98 3.53

p=3
h=3 2 1 16641 1.66 2.07
h=4 2 2 58081 1.93 2.78

p=4
h=3 2 1 30625 1.52 1.77
h=4 2 1 101761 1.86 2.39

p=5
h=3 2 1 50625 1.42 1.61
h=4 2 1 160801 1.81 2.17

K=16

p=2
h=2 3 1 8649 1.51 1.84
h=3 3 1 29929 1.79 2.93

p=3
h=2 3 1 21025 1.37 1.51
h=3 2 1 66049 1.68 2.23

p=4
h=2 2 1 42025 1.26 1.36
h=3 2 1 121801 1.57 1.87

K=64

p=2
h=1 3 1 11025 1.45 1.31
h=2 3 1 34225 1.57 1.91

p=3
h=1 3 1 31329 1.29 1.18
h=2 3 1 83521 1.41 1.55

p=4
h=1 3 1 70225 1.20 1.12
h=2 3 1 167281 1.31 1.38

Table 4.6: Steps till convergence for the Block ILUT smoother compared to the Global ILUT smoother





Chapter 5

ILU type smoothers - Part II

5.1. Motivation for continued research
In chapter 4 the Block ILUT smoother was introduced, utilizing the block structure of the system matrix A and there-
fore knowing how its LU factorization should look like. The following approximation is used.

A ≈


L1

. . .
LK

B1 · · · BK I




U1 C1

. . .
...

UK CK

D

= LU .

Bi = AiΓU−1
i , Ci = L−1

i AΓi , S̃ = AΓΓ−
K∑

i=1
Bi Ci .

The Block ILUT smoother performed very well in our IgA context. The best smoother so far. But it also looked like
there still is something to improve. As seen in section 4.2.4 the L1,U1, ...,LK ,UK are efficiently approximated, but es-
pecially D drives up the cost, both for factorization and smoothing.

This leads to the question: Can we find a factorization for A which does not require to calculate D (and possibly
the Bi ,Ci ), or where these can be approximated using a different approach?

There are multiple approaches to tackle this, different fields to take inspiration from. From these we discuss two
in this chapter, others are left for the section ’further research’.
A first obvious approach is to simply remove the off-diagonal entries. This is attempted in section 5.2. Unfortunately
too much information is lost doing this, this does not give for a good method

In sections 5.3 to 5.6 we investigate a method which does show a lot more promise. Inspiration is taken from the
work of Chow and Anzt ([22],[23]), which describe methods of construction of L and U via a fixed-point method.
This is of particular interest as it suggests we can calculate the ’easy’ blocks via Block ILUT. Calculate the ’hard’ blocks
using this iterative process, only needing to update that part of the matrix. It also produces a factorization in the form
below as seen below, where E and F are actually lower and upper triangular.

A ≈


L1

. . .
LK

B1 · · · BK E




U1 C1

. . .
...

UK CK

F

= LU .

Next to this, the process is also parallelizable, making it even more attractive.

25



26 5. ILU type smoothers - Part II

5.2. Removing Off-Diagonal Entries
The idea of this section is to attempt factorizations where we simply discard parts of the information. Certain blocks
of the factorization are too difficult or costly to compute, that we rather do not do this.
We are aware that this will probably significantly impact the accuracy of the factorization, however it will also decrease
the cost of the factorization by such an amount (as well as the cost per smoothing step) that we can accept quite an
increase of multigrid iterations.

For comparison, remind the factorization following from Block ILUT:


L1

. . .
LK

B1 · · · BK I




U1 C1

. . .
...

UK CK

D

≈


A11 A1Γ

. . .
...

AK K AKΓ

AΓ1 · · · AΓk AΓΓ


.

An obvious approach would be the following factorization. It focuses entirely on the interior of the patches, the inter-
faces are completely ignored.


L1

. . .
LK

I




U1

. . .
UK

I

=


Ã11

. . .
ÃK K

I


.

This factorization could be computed at a cost of O (Npatchp2d ) and the smoother could be performed at a cost of

O (Npatchpd ). The reason for suggesting this factorization as a smoother was the hope that it could fix errors on the
interior of the different patches, while keeping errors on the boundaries the same.
Unfortunately though, it turns out this is not what happens. The method diverges if you choose to use this as a
smoother as can be seen in table 5.1 under the column ’Diag1’. Too much information is lost.

Global Block
ILU(0) ILUT ILUT Diag1 Diag2 Diag3

K=4

p=2
h=3 4 3 2 89 - -
h=4 3 2 2 20 - -

p=3
h=3 3 2 1 - - -
h=4 3 2 2 - - -

p=4
h=3 4 2 1 - - -
h=4 3 2 1 - - -

p=5
h=3 4 2 1 - - -
h=4 4 2 1 - - -

K=16

p=2
h=2 4 3 1 - - -
h=3 4 3 1 - - -

p=3
h=2 4 3 1 - - -
h=3 3 2 1 - - -

p=4
h=2 4 2 1 - - -
h=3 4 2 1 - - -

K=64

p=2
h=1 5 3 1 - - -
h=2 4 3 1 - - -

p=3
h=1 6 3 1 - - -
h=2 4 3 1 - - -

p=4
h=1 6 3 1 - - -
h=2 4 3 1 - - -

Table 5.1: Steps till convergence for several diagonal block limited smoothers.

Altogether, in table 5.1 we see only two instances where the method converges ’by accident’ as the dashes imply that
the method did not converge within 200 iterations and therefore the method is stopped. At the very best one could
say the method does not work reliably. The more accurate description would be that it does not work.



5.2. Removing Off-Diagonal Entries 27

Two other factorizations have been attempted that seemed reasonable. For ’Diag2’ we chose:
L1

. . .
LK

B1 · · · BK I




U1 C1

. . .
...

UK CK

I

≈


A11 A1Γ

. . .
...

AK K AKΓ

AΓ1 · · · AΓk
∑

Bi Ci


.

This does not require to compute D and the rest of the factorization matches. However, in the bottom right we end
with quite a big submatrix that is far removed from AΓΓ. And thus not helping in reducing the error when applied as a
smoother in the multigrid method.

Finally, for ’Diag3’ we attempted the following:
L1

. . .
LK

LΓ




U1

. . .
UK

UΓ

=


A11

. . .
AK K

AΓΓ


.

where LΓUΓ an incomplete LU factorization of AΓΓ. Also this method has no convergence when applied as a smoother
in the multigrid method.

We can conclude that this approach is unsuccessful. It was very easy to try whether this could be a possibility, but
unfortunately it is too much of a simplification.



28 5. ILU type smoothers - Part II

5.3. Fixed-point ILU
5.3.1. Algorithm
All ILU type factorizations we have discussed so far are based on a Gaussian elimination process. But not this one, the
fixed-point ILU algorithm is an iterative process based on the property

(LU )i j = ai j , (i , j ) ∈ S.

where S is the desired sparsity pattern of the ILU factorization. Instead of using a Gaussian elimination process, it is a
problem of computing unknowns li j and ui j using the above property as constraints. The unknowns to be computed
are

li j , i > j , (i , j ) ∈ S, ui j , i ≤ j , (i , j ) ∈ S.

The total number of unknowns is |S|, the number of elements in the sparsity pattern S, as we can choose L to have a
unit diagonal.

To determine these unknowns we rewrite the constraint. Using that L and U are lower- and upper triangular re-
spectively we can write

ai j =
∑Ndof

k=1 li k uk j =
∑min(i , j )

k=1 li k uk j , (i , j ) ∈ S

As every constraint is associated with an element of S, we have |S| equations to go with the |S|unknowns. The equation
for (i , j ) gives an explicit formula for li j (if i > j ) or ui j (if i ≤ j ).

li j = 1

u j j

(
ai j −

∑ j−1
k=1 li k uk j

)
,

ui j = ai j −
∑i−1

k=1 li k uk j

Note that these equations are in the form x =G(x), where x is a vector containing the unknowns li j and ui j . It is now
natural to try solve these equations via a fixed-point iteration.

x(p+1) =G(x(p))

This leads to the following algorithm.

ALGORITHM 5.1: Fixed-point ILU

Goal: Determine sparse lower and upper triangular L,U such that LU ≈ A.
1. Start with initial guess for L and U
2. for sweep = 1,2, ... until convergence:
3. for (i , j ) ∈ S (in parallel):
4. if i > j :

5. li j =
(
ai j −∑ j−1

k=1 li k uk j

)
/u j j

6. else:
7. ui j = ai j −∑i−1

k=1 li k uk j

8. end if
9. end for
10. end for

An obvious choice for an initial guess for L and U would be to simply take the lower- and upper triangular parts of A.
And let L(0) have unit diagonal

l (0)
i j = ai j , i > j , (i , j ) ∈ S

u(0)
i j = ai j , i ≤ j , (i , j ) ∈ S

An obvious choice for S would be the sparsity pattern of A.



5.3. Fixed-point ILU 29

5.3.2. Remarks
There is a lot of structure in the function fixed-point function G . When the unknowns li j and ui j are viewed as entries
of matrices L and U , the formula for unknown (i , j ) depends only on other unknowns in L and U that are to its left or
above it. This is depicted in figure 5.1, where the L and U factors are shown superimposed into one matrix.

Figure 5.1: Formula for unknown at (i , j ) (dark gray) depends on other unknowns left of (i , j ) in L and above (i , j ) in U (shaded). From: [22]

Therefore, different ways of performing the fixed-point iteration can give different methods. For example, if you de-
cide to compute all components of x(k+1) in sequence (and left to right and top to bottom). If while doing this you
always use the latest values of x, then we solve the equations in a single sweep. Also, the solution process corresponds
exactly to performing a conventional ILU factorization.

This behavior is shown in table 5.2. Here the norm of the ILU residual (A − LU ) is given for a test matrix A (K =
4, p = 2,h = 3), with S the sparsity pattern of A and after different number of iterations and different ways of perform-
ing the fixed-point iteration. Fixed-point 1 is to always use x(k+1) when it is known, to perform everything in sequence.
Fixed-point 2 will always use the old x(k). In Fixed-point 3 we pretend we are working in parallel using four cores.
This is compared to the ILU residual of the ILU(0) method seen in chapter 4.

1 2 3 4 5 6 7 8 9 10
ILU(0) 2.1064

Fixed-point 1 2.1064 2.1064 2.1064 2.1064 2.1064 2.1064 2.1064 2.1064 2.1064 2.1064
Fixed-point 2 2 ·102 3 ·103 1 ·104 4 ·105 8 ·106 1 ·107 1 ·108 1 ·109 2 ·1010 2 ·1011

Fixed-point 3 13.049 2.1063 2.1064 2.1064 2.1064 2.1064 2.1064 2.1064 2.1064 2.1064
Table 5.2: ILU residuals after different amount of sweeps.

We see that Fixed-point 1 gives the same factorization as ILU(0). This is to be expected, given that the chosen sparsity
pattern equals that of A and thus the sparsity pattern of the ILU(0) factorization. Fixed-point 3 converges to the same
factorization, very quickly as well. Fixed-point 2 diverges.

There are other factors that could impact the method. For example, it has been shown in [22] that it is beneficial
to diagonally scale the matrix A. That is, instead of working on A to work on a matrix T AT , where T a diagonal matrix
such that T AT has unit diagonal. This has shown to improve convergence.
To illustrate this, table 5.3 shows the results for the same test as before, but now with a diagonally scaled matrix. Now
we also see convergence for Fixed-point 2.

1 2 3 4 5 6 7 8 9 10
ILU(0) 0.7757
Fixed-point 1 0.7757 0.7757 0.7757 0.7757 0.7757 0.7757 0.7757 0.7757 0.7757 0.7757
Fixed-point 2 1.4283 0.9371 0.7932 0.7813 0.7753 0.7759 0.7756 0.7757 0.7757 0.7757
Fixed-point 3 0.9039 0.7755 0.7757 0.7757 0.7757 0.7757 0.7757 0.7757 0.7757 0.7757

Table 5.3: ILU residuals after different amount of sweeps (diagonally scaled).



30 5. ILU type smoothers - Part II

5.3.3. Computational Cost
From algorithm 5.1 it is clear that the cost of a single sweep is dependent on the size of sparsity pattern S (the loop on
line 3) and the number of nonzeros per row or column (the summations on line 5 and 7).

If we were to apply this on our IgA discretization, where for S we take the sparsity pattern of A, this would have a
computational cost of O (Ndofp

2d ). The size of S is O (Ndofp
d ), as A has Ndof rows with O (pd ) nonzeros per row. The

maximum length of the summations in line 5 and 7 is thus also O (pd ). Giving a total of O (Ndofp
2d ) per iteration.

The total is the same as for example ILU(0) or the global ILUT method.



5.4. Block Fixed-point ILU 31

5.4. Block Fixed-point ILU
5.4.1. General info
Sections 5.3 discussed Fixed-point ILU by itself and showed results where Fixed-point ILU is performed on the full
matrix. However, we do not aim to replace the Block ILUT method, we want to combine Fixed-point ILU with the
Block ILUT method.
We want it to do the tasks where the current Block ILUT method struggles. Given its iterative structure it should per-
form pretty well when tasked with completing only part of the factorization.

Therefore consider various combinations of calculating certain blocks via Block ILUT (see section 4.2), other blocks
with the newly proposed Fixed-point ILU method (see section 5.3). For example like in algorithm 5.2. Then look how
they perform on the various test problems. Table 5.4 shows the number of multigrid iterations till convergence for
different combinations of Block ILUT and Fixed-point ILU. This is compared to some of the previous smoothers.

ALGORITHM 5.2: Block Fixed-point ILU

Goal: Determine sparse lower and upper triangular L,U such that LU ≈ A.
1. for i = 1, ...,K (in parallel):
2. Li ,Ui = ILUT(Ai i ).
3. end for
4. for i = 1, ...,K (in parallel):
5. Solve for Bi in U T

i B T
i = AT

iΓ.
6. Solve for Ci in Li Ci = AΓi .
7. end for
Determine E ,F using the following, initial E and F are the lower- and upper triangular parts of AΓΓ. Sparsity pattern
S is restricted to the block ΓΓ.
8. for sweep = 1,2, ... until convergence:
9. for (i , j ) ∈ S (in parallel):
10. if i > j :

11. li j =
(
ai j −∑ j−1

k=1 li k uk j

)
/u j j

12. else:
13. ui j = ai j −∑i−1

k=1 li k uk j

14. end if
15. end for
16. end for

As mentioned, in table 5.4 we consider 4 such combinations of Block ILUT and Fixed-point ILU. They are elaborated
on after table 5.4. Algorithm 5.2 matches combinations 3 and 4. This is also the combination we will work with in
upcoming sections.

Here fixed-point 1 denotes the method of factorizing the entire matrix using Fixed-point ILU, for S use the sparsity
pattern of A. As mentioned before, this constructs the same factorization as ILU(0). And indeed, it shows the same
steps till convergence as in ILU(0).

In fixed-point 2 we calculate the Li i ,Ui i via Block ILUT, the Bi ,Ci and D using Fixed-point ILU. In fixed-point 3 we
calculate the Li i ,Ui i ,Bi and Ci via Block ILUT. Only the final right bottom block using Fixed-point ILU. For both we
take S the sparsity pattern of A. We see the method works, but not better then other methods discussed before.

Finally, in fixed-point 4 we again calculate everything but the right bottom block via Block ILUT, the final bit using
Fixed-point ILU. But this time we allow for the entire bottom right block to be filled. That is, S equals this entire block.
This time we see the same steps till convergence as Block ILUT. And the constructed L and U factorize to something
very close to S. However as we will see in section 5.4.4 this method is not cheaper then the Block ILUT method.



32 5. ILU type smoothers - Part II

Global Block fixed- fixed- fixed- fixed-
ILU(0) ILUT ILUT point1 point2 point3 point4

K=4

p=2
h=3 4 3 2 4 4 4 2
h=4 3 2 2 3 3 3 2

p=3
h=3 3 2 1 3 3 3 1
h=4 3 2 2 3 3 3 2

p=4
h=3 4 2 1 4 4 3 1
h=4 3 2 1 3 3 3 1

p=5
h=3 4 2 1 4 4 4 1
h=4 4 2 1 4 4 4 1

K=16

p=2
h=2 4 3 1 4 4 4 1
h=3 4 3 1 4 4 4 1

p=3
h=2 4 3 1 4 4 4 1
h=3 3 2 1 3 3 3 1

p=4
h=2 4 2 1 4 4 4 1
h=3 4 2 1 4 4 4 1

K=64

p=2
h=1 5 3 1 5 5 5 1
h=2 4 3 1 4 4 4 1

p=3
h=1 6 3 1 6 6 6 1
h=2 4 3 1 4 4 4 1

p=4
h=1 6 3 1 6 6 6 1
h=2 4 3 1 4 4 4 1

Table 5.4: Number of multigrid iterations till convergence for the combined Block ILUT Fixed-point method.

These results show that there is potential for a combined approach of Block ILUT and Fixed-point ILU. Especially the
case referred to in the table as fixed-point 3. The number of multigrid iterations necessary is acceptable, the cost for
factorization and smoothing is expected to be low.
Probably we are looking at a factorization somewhere between fixed-point 3 and fixed-point 4. Allowing for more
nonzero entries gives chance for more accurate factorizations. If we choose these locations in a clever manner we
may see both a lower number of necessary multigrid iteration, as well as factorization cost that remains low.



5.4. Block Fixed-point ILU 33

5.4.2. Sparsity pattern
Sparsity pattern strategies
In section 5.4.1 we have seen that the accuracy of a factorization is strongly influenced by the allowed number of
nonzero entries. Of course the number of nonzeros also has an influence on the cost of the factorization. We have
seen that if we take S to be the sparsity pattern of AΓΓ that the approximation is not good enough. And if we take S to
be the entire bottom right block that this is likely too expensive.

Therefore we want to look at a couple of different sparsity patterns that seem logical and lie somewhere in between
these two extremes. Sorted from a smaller amount of nonzeros to very many nonzeros, consider the following options
for S:
S1: nonzero pattern of AΓΓ, i.e. the same as fixed-point3 in section 5.4.1.
S2: the level-1 set of AΓΓ, i.e. the nonzero pattern of LΓUΓ, the ILU(0) factorization of AΓΓ.
S3: nonzero pattern of the bottom right block of A2, that is the nonzero pattern of

∑
[AΓi AiΓ]+ AΓΓ.

S4: the level-1 set of A in the bottom right block, that is the nonzero pattern of
∑

[Bi Ci ]+ AΓΓ.
S5: the entire bottom right block, i.e. the same as fixed-point4 in section 5.4.1.
S6: something dynamic (discussed later, section 5.6).

Some motivation for these candidates. S1 and S5 are obvious and discussed before. S2 till S4 take inspiration from
a concept called level of fill, a concept regularly used in the field of ILU factorizations and explained among other
places in [21]. S2 till S4 are variations on the level-1 set of A restricted to the bottom right block.
S2 is the cheapest of these, only needing to consider AΓΓ. S3 is included as we expect it to look similar to S4, but
cheaper to determine and cheaper to use. This because we expect AΓi and AiΓ to have less nonzero entries then Bi

and Ci . S4 is arguably closest to this level-1 set. Also, the block D in Block ILUT has this nonzero pattern. D is not
upper- or lower triangular, but one would expect it is possible to find a good approximation using this sparsity pattern.

Test Results
For these options for the sparsity pattern S we want to know a few things. Firstly we want to know how big these sets
are, we want to know how expensive it is to determine these sets, we want to know the cost of factorization using these
sparsity patterns. Finally we want to know the number of steps required for the multigrid method to converge, given
the factorization based on these S1,S2, ....

The size of S1,S2, ... and the steps for the multigrid method are easily presented in a table (see table 5.5). Determining
the cost of deciding which (i , j ) are in S can be more difficult, especially for the cases S3 and S4.

These tests are performed where each update is made in sequential order and thus the factorization is finished in
a single step. Multiple reasons for this:
1. We do not want to introduce too many things at once, vary to many aspects at the same time. Rather first find
out what is a suitable sparsity pattern, then find out what is a suitable number of parallel factorization step, then see
whether these combine well.
2. If the factorization does not perform well now, it certainly will not perform well when the factorization is computed
in parallel.
3. These tests were performed before the tests with parallel implementation.

Looking at these results we indeed see a pattern that more elements in Si leads to less iterations required for the
multigrid method. However not very convincing, the decrease in number of iterations is not very significant between
S1 and S4. There is a big drop when we make the jump to S5. But as mentioned before, S5 is too expensive, especially
for larger K .

These results are thus slightly disappointing. More was expected of S4 in particular as this mimics the sparsity pattern
of D in Block ILUT. This means S1 is probably the best choice of sparsity pattern, compared to the others. Not only be-
cause of the increased cost as a result of the size of Si , but also because of the additional cost of determining S2,S3,S4.



34 5. ILU type smoothers - Part II

size size size size size steps steps steps steps steps
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

K=4

p=2
h=3 205 221 421 1045 1369 4 4 3 2 2
h=4 365 381 709 3605 4761 3 3 3 2 2

p=3
h=3 329 365 725 1281 1681 3 3 2 2 2
h=4 553 589 1141 4033 5329 3 4 2 3 1

p=4
h=3 477 541 1101 1541 2025 3 3 2 3 1
h=4 765 829 1645 4485 5929 4 4 2 3 1

p=5
h=3 649 749 1549 1825 2401 4 4 2 3 1
h=4 1001 1101 2221 4961 6561 4 4 3 3 1

K=16

p=2
h=2 837 981 2085 3277 13689 4 4 3 3 1
h=3 1317 1461 2949 10509 45369 4 4 3 3 1

p=3
h=2 1509 1995 5457 4701 19881 4 4 3 3 1
h=3 2181 2505 5313 12957 56169 3 3 2 3 1

p=4
h=2 2373 3165 7725 6381 27225 4 4 3 3 1
h=3 3237 3813 8325 15661 68121 4 4 2 3 1

K=64

p=2
h=1 2989 4113 8165 6037 90601 5 5 4 5 1
h=2 4109 4893 10717 17045 275625 4 4 4 4 1

p=3
h=1 5957 8339 15633 10845 170569 6 5 5 6 1
h=2 7525 10495 29425 24637 405769 4 4 3 3 1

p=4
h=1 9933 14037 25557 17045 275625 6 5 5 6 1
h=2 11949 16837 42133 33621 561001 4 4 3 3 1

Table 5.5: Size of sparsity pattern and number of multigrid iterations till convergence.

Determining S2,S3,S4

S1 and S5 are easily determined from looking at the matrix A. S2,S3,S4 require more work to establish these sets.
S2 requires ILU(0) factorization on the block AΓΓ, costing O (Ninterfacepd ). For S3 and S4 matrix multiplications are
required. Unfortunately determining the sparsity pattern of a matrix product is the same amount of work (at least in
terms of order of magnitude) as actually performing the matrix product. Worst case (full matrices) determining S3

and S4 would thus have a cost of O (N 3
interface). In practice, though the pattern of nonzeros is not very predictable, both

AiΓ, AΓi and Bi ,Ci consist of mostly zeros.
As we expect more nonzeros in Bi ,Ci compared to AiΓ, AΓi , determining S4 will be slightly more expensive compared
to S3.



5.4. Block Fixed-point ILU 35

5.4.3. Parallel performance
In section 5.3.2 we have seen that if you perform the fixed-point method in a specific sequence, that the factorization
converges in one step. It would not be fair to abuse this as in practice you will not use this. You will want to use the
option to work in parallel, especially since the other steps of the factorization also lend itself to work in parallel.
The obvious approach would be to use as many cores as you have patches. Then every core can calculate one set of
Li ,Ui , one set of Bi ,Ci and have its contribution to the bottom right block.

Therefore in this section we will pretend to be calculating the bottom right block in parallel. Two reasons for this:
1. the test problems are not big enough for it to be efficient to work in parallel and 2. it would take a lot of time to learn
how to program this. And we have reason to think our ’pretend situation’ is close enough as to not expect any change
in results.

The sparsity pattern S is stored as a list of indices (i , j ). This list is then split in K pieces S1, ...,SK . Then S1 makes
its first update, S2 makes its first update, and so on. Then they can all make a second update, a third update, ... This
simulates asynchronous parallelism, where the updated value is used when available, old value otherwise.
This is a reasonable approximation of working on K cores using shared memory. Not quite, sometimes you can use
an updated matrix entry that should not have been updated yet. For example, the first update of S2 should not be able
to use that first updated value of S1. On the other hand, sometimes you have to use an old value where an updated
value would have probably already been available. This because not every update take the same time, entries more to
the left and the top are faster as the summation is shorter. But all together, this should not make too much a difference.

Test Results
Suppose we make a factorization using this method. What is the number of iterations needed to make a decent fac-
torization? Does this number depend on the values of K , p and h? If so, how? Do we see different results for the case
with diagonal scaling and the case without diagonal scaling?

Answers to these questions are given in tables 5.6 and 5.7. To test how much the factorization changes between steps
we consider the norm of the ILU residual, that is the L2 norm of the matrix R = A −LU . These tests use the sparsity
pattern S1 as in section 5.4.2, that is S is equal to the sparsity pattern of AΓΓ.
For readability we decided to leave spots in these tables empty from the moment this residual norm does no longer
change. Or at least the first 4 decimals do no longer change. We consider this as ’the factorization has converged’.

From these tables we can conclude that the interesting number of iterations is between 2 and 4. Most likely 2 steps
should be a good enough approximation to expect decent performance in the multigrid method. There is no reason
to go beyond 4, the factorization has (as good as) converged at 4.
This number does not seem to depend on the values of K , p and h or on diagonal scaling.

It does show that problems with a higher number of patches benefit more from parallelization though. A problem
with K = 4, where the amount of work per iteration is divided by 4, needing 2 or 3 iterations is not a big improvement.
Especially taking into account the communication necessary. However for K = 64, needing 2 or 3 iterations using 64
cores is an enormous improvement over calculating it all in 1 step but on a single core.



36 5. ILU type smoothers - Part II

steps
0 1 2 3 4 5

K=4

p=2
h=3 673.99 0.7191 0.6386 0.6384 0.6385 0.6386
h=4 1001.0 0.9923 0.9353 0.9352

p=3
h=3 1846.7 0.6296 0.4487 0.4477 0.4478
h=4 2844.0 0.7257 0.5751 0.5743 0.5744

p=4
h=3 3975.6 0.6966 0.367 0.3652 0.3651
h=4 6354.9 0.7416 0.4452 0.4436

p=5
h=3 7314.6 0.7263 0.3129 0.3102 0.3101
h=4 12204 0.7552 0.3738 0.3715

K=16

p=2
h=2 600.33 1.6468 1.3907 1.3906
h=3 953.07 2.1038 1.8513 1.8512

p=3
h=2 1464.4 1.6979 1.0174 1.0153
h=3 2612.0 1.9229 1.3593 1.3576 1.3577

p=4
h=2 2697.2 1.8949 0.9470 0.9457
h=3 5622.9 1.9447 1.1217 1.1208

K=64

p=2
h=1 422.33 4.1341 3.9572 3.9581
h=2 848.98 3.7425 3.2206 3.1297

p=3
h=1 765.45 4.0984 3.5734 3.5744 3.5745
h=2 2071.3 10.511 2.2672 2.2629

p=4
h=1 1221.5 6.4752 3.3156 3.2558 3.2559
h=2 3815.2 4.0288 2.1798 2.0082 2.0083

Table 5.6: ILU residual after several steps of the parallel factorization process.

steps
0 1 2 3 4 5

K=4

p=2
h=3 4.3680 0.3821 0.3366 0.3365 0.6386 0.6386
h=4 6.9250 0.52261 0.4901 0.4900

p=3
h=3 9.8189 0.3576 0.2511 0.2501
h=4 15.073 0.4025 0.3111 0.3103

p=4
h=3 16.805 0.3784 0.2148 0.2127
h=4 25.303 0.3979 0.2465 0.2447

p=5
h=3 25.169 0.3941 0.1973 0.1945 0.1944
h=4 37.227 0.405 0.2170 0.2143 0.2142

K=16

p=2
h=2 6.2391 0.8948 0.733 0.7329
h=3 9.8007 1.1327 0.9779 0.9778

p=3
h=2 15.013 1.0515 0.5918 0.5903 0.5904
h=3 22.192 1.1585 0.7585 0.7570

p=4
h=2 27.363 1.2356 0.5400 0.5441
h=3 37.840 1.2759 0.6494 0.6483

K=64

p=2
h=1 8.2274 1.5484 1.366 1.3669 1.3670
h=2 13.097 2.0251 1.7201 1.7195

p=3
h=1 23.094 2.1613 1.4314 1.4329 1.433
h=2 31.635 2.2553 1.3979 1.3951

p=4
h=1 46.817 4.6863 1.5029 1.5030
h=2 57.614 2.6927 1.3224 1.2923 1.2921

Table 5.7: ILU residual after several steps of the parallel factorization process (including diag scaling).



5.4. Block Fixed-point ILU 37

5.4.4. Computational Costs
In section 5.3.3 we already went into the cost of applying Fixed-point ILU on the full matrix, this time we consider the
case where we apply it only on the bottom right submatrix.
We have seen the cost is dependent of the size of the allowed sparsity pattern S as well as the number of nonzeros in
the rows and columns of the guesses L and U (as these determine the length of the summations).

Sounds easy, but it is in fact very difficult to make sensible claims about the cost of this method. The reason this
is so difficult is because the nonzero pattern of Bi ,Ci and also E and F is unpredictable. The size of S1 and S5 are
easily determined:

|S1| =O (Ninterfacepd ), |S5| =O (N 2
interface)

The others (S2,S3,S4) are less predictable. It is not possible to motivate similar claims through a proof, but it is pos-
sible to make an educated guess through numerical testing and counting number of nonzeros. These tests show the
number of nonzeros lie closer to that in S1, also that the number of nonzeros stay under control for increasing one of
the parameters K ,p or h.

For the length of the summations, again through numerical testing, these appear to be O (pd ). Finally there is the
cost of determining S, but this is already discussed in section 5.4.2.

This leads to the following table. Note that these results stem from numerical tests, not from a logical proof. This
is especially the case for S2,S3,S4.

cost factorization cost determine S

S1 O (Ninterfacep2d ) -

S2 O (Ninterfacep2d ) O (Ninterfacepd )

S3 O (Ninterfacep2d ) O (N 3
interface)

S4 O (Ninterfacep2d ) O (N 3
interface)

S5 O (N 2
interfacepd ) -

Table 5.8: Complexity of Block Fixed-point ILU.

The cost of applying these factorizations as a smoother are O (Npatchpd ). Will be considerably cheaper then Block
ILUT as this factorization is actually lower- and upper triangular rather then being only block lower- and block upper
triangular. An expansive direct solve (or further approximation) is saved.



38 5. ILU type smoothers - Part II

5.4.5. Discussion
This section stands to combine what is learned in sections 5.4.1 to 5.4.4. Then compare this ’ultimate Block Fixed-
point ILU smoother’ to the smoothers seen before, Block ILUT in particular. Discuss the cost of factorization, the
amount of work per iteration of the multigrid method and of the amount of steps necessary in the multigrid method.

The variants of the Block Fixed-point ILU smoother we consider in this section are those with an allowed sparsity
pattern of S1 or S4 (see section 5.4.2) and where the factorization is based on 2 or 4 parallel factorization steps.
The number of steps required for the multigrid method to converge is shown in table 5.9. The method that stands out
is the one with sparsity pattern S1 and 2 parallel factorization steps. It does not stand out because it has lower number
of multigrid iterations, it stands out as it shows comparable number of multigrid iterations, while being significantly
cheaper.
Not only does it show that 2 parallel factorization steps is enough (it scores just as well as the variant with 4 steps), it
also compares very well to Block ILUT.

Global Block S1 S1 S4 S4

ILU(0) ILUT ILUT 2 steps 4 steps 2 steps 4 steps

K=4

p=2
h=3 4 3 2 4 4 3 2
h=4 3 2 2 3 3 2 2

p=3
h=3 3 2 1 3 3 3 3
h=4 3 2 2 3 3 3 2

p=4
h=3 4 2 1 3 3 3 3
h=4 3 2 1 3 3 3 3

p=5
h=3 4 2 1 4 4 3 3
h=4 4 2 1 3 4 3 3

K=16

p=2
h=2 4 3 1 4 4 3 3
h=3 4 3 1 4 4 3 3

p=3
h=2 4 3 1 4 4 3 3
h=3 3 2 1 3 3 3 3

p=4
h=2 4 2 1 4 4 3 3
h=3 4 2 1 4 4 3 3

K=64

p=2
h=1 5 3 1 5 5 5 5
h=2 4 3 1 4 4 4 4

p=3
h=1 6 3 1 6 6 6 6
h=2 4 3 1 4 4 3 3

p=4
h=1 6 3 1 6 6 6 6
h=2 4 3 1 5 4 3 3

Table 5.9: Steps till convergence for some of the best Block Fixed-point ILU methods

The number of multigrid iterations in Block ILUT may be considerably lower than that in S1 with 2 factorization steps.
The cost of factorization is higher for Block ILUT, the cost of performing a smoothing step is more expensive for Block
ILUT.



5.5. ParILUT 39

5.5. ParILUT
5.5.1. Adjusting sparsity pattern
To compute an ILU factorization where the sparsity pattern of the L and U factors are adapted to the values of A,
we propose interleaving a method for computing an ILU factorization for a fixed sparsity pattern with a method for
adjusting the sparsity pattern [23].
In such a pattern we do not need to compute the ILU factorization for a given sparsity pattern exactly, since that
sparsity pattern will be further adjusted. Therefore, it is natural to use one sweep of the fixed-point ILU algorithm to
cheaply approximate an ILU factorization in between adjusting the sparsity pattern.

To add nonzeros to the sparsity pattern S of the current L and U approximations, consider an entry ri j of R = A−LU .
If L and U are exact ILU factors for the pattern S, then ri j would be zero. If ri j is large in magnitude, then either L and
U are very inaccurate incomplete factors, or (i , j ) is not in the sparsity pattern of S. In the latter case, it is natural to
consider (i , j ) as a nonzero location to add to the sparsity pattern.
A candidate can be added to S if its corresponding ri j is large in magnitude according to a threshold. Alternatively, all
candidates can be added to S.
Note that when S corresponds to the level-0 ILU factorizations, the set of candidates corresponds to the pattern of the
level-1 ILU factorization.

If you want to remove nonzeros from the sparsity pattern S, simply remove nonzeros in L and U if they are small in
magnitude. This can be either a threshold on the size of the nonzeros and/or a threshold on the number of nonzeros
that can be used.

5.5.2. Algorithm outline

ALGORITHM 5.3: ParILUT

Goal: Determine sparse lower and upper triangular L,U such that LU ≈ A.
1. Start with initial guess for L and U
2. for sweep = 1,2, ... until convergence:
3. Identify candidate locations
4. Compute ILU residual at candidate locations
5. Estimate ILU residual norm
6. Add mL nonzeros to L and mU nonzeros to U
7. Do one sweep of the fixed-point ILU algorithm
8. Remove the m′

L and m′
U smallest magnitude elements from L and U , respectively

9. Do one sweep fo the fixed-point ILU algorithm
10. end for

This is one possibility, the variant displayed in [23]. However, several aspects to this can be adjusted.
In the algorithm it was decided to add nonzeros to the sparsity pattern before removing nonzeros. Compared to
removing and then adding nonzeros, this gives somewhat more accurate L and U factors at the end of each step, al-
though the cost is slightly higher because the fixed-point ILU sweep then operate on more nonzeros.
In this example it was also decided to, at each step, remove the same number of nonzeros as the number of nonzeros
that were added earlier in the step. Another strategy could be to allow the number of nonzeros to grow with each step,
which would be more suited to our current problem.

The initial approximations chosen for L and U are the lower- and upper triangular parts respectively. In the pro-
cedure for adjusting the sparsity pattern, we must specify the initial values of the selected candidate locations, i.e. the
matrix locations added to L and U .
One natural choice for these initial values is zero. However, since we use a single fixed-point sweep to adjust the
nonzero values, the zeros added do not contribute to adjusting existing nonzero values of L and U until they them-
selves have been updated to a nonzero value. An alternative choice for the initial value of a newly added li j or ui j

is
li j = ri j /u j j , if i > j , or ui j = ri j /li i , if i < j .

If only a single nonzero is added to the sparsity pattern, these are the values of li j or ui j that would reduce ri j to zero.
However, adding such a nonzero will also generally change the residual at other locations besides (i , j ). The strategy
we will use is to set the initial value of newly added li j ,ui j at zero.

In section 5.6 we will discuss how we combine this method with the block structure of our matrix A.



40 5. ILU type smoothers - Part II

5.6. Block ParILUT
5.6.1. General info
In section 5.4 we used a combination of Block ILUT and a Fixed-point ILU method where the sparsity pattern S was
static. The pattern was determined beforehand and not allowed to change. Next to this we want to consider a variant
where the sparsity pattern is more dynamic. Again, we calculate the Li ,Ui ,Bi and Ci using Block ILUT, but this time
we calculate the bottom right block using ParILUT, the approach of section 5.5. This approach will be called Block
ParILUT.

From the above paragraph one might expect Block Fixed-point ILU (section 5.4) and Block ParILUT (current section)
to be very similar. They are however very different in a key aspect. This difference is caused by the expression we en-
counter when needing to calculate the ILU residual matrix R. To show this, consider the following two factorizations
of A.

A ≈


L1

. . .
LK

B1 · · · BK I




U1 C1

. . .
...

UK CK

D

= LU .

A ≈


L1

. . .
LK

B1 · · · BK E




U1 C1

. . .
...

UK CK

F

= LU .

Block ILUT creates a factorization of the top kind. Block Fixed-point ILU creates a factorization of the bottom kind
and does so without needing to calculate D (for an appropriately chosen sparsity pattern that is).
Block ParILUT also creates a factorization of the bottom kind, however here it is needed to first calculate D .

This is an important distinction. Not wanting to calculate D was one of the reasons we wanted to make alterations to
Block ILUT in the first place. This does not mean that Block ParILUT is a useless method though, the cost of factoriza-
tion may not be an improvement compared to Block ILUT, the cost of a single smoothing step will be cheaper.

We need to consider the ILU residual R = A −LU in order to know which candidates to add to the sparsity pattern.
More specifically we need to consider R limited to the bottom right block, since this is the only part of the matrix that
has entries of significant magnitude and also the only part of the matrix that changes between different iterations of
Block ParILUT. Comparing the expression for RΓΓ to the expression for D seen in the Block ILUT method we see the
following

RΓΓ = AΓΓ− (LU )ΓΓ = AΓΓ−
∑K

i=1 Bi Ci −EF

D = AΓΓ−
∑K

i=1 Bi Ci

That is RΓΓ = D−EF , where E ,F are the current approximations. Block ParILUT will therefore be calculating Li ,Ui ,Bi ,Ci

and D as in Block ILUT. Afterwards it will determine E ,F from D using ParILUT. Initial E and F are the lower- and up-
per triangular part of D , these are iteratively improved during ParILUT.

5.6.2. Residual matrix
As we are using ParILUT on the bottom right block we need to determine what would be a good strategy for adding
locations to the sparsity pattern S. For this we look at the ILU residual RΓΓ = D −EF . If ri j ̸= 0 we could consider
adding position (i , j ) to the pattern S. There are several ways of deciding what candidates to add:
- Take the m largest elements of RΓΓ.
- Take the m largest elements per row or column of RΓΓ.
- Take every candidate with absolute value bigger then a given threshold.
- A combination of the above.
- Add all candidates.

To make a better decision on which of these strategies would be most beneficial we need to take a closer look on
RΓΓ. How many nonzeros does it contain? How many of those are ’small’, how many are ’large’? How are the big en-
tries spread over the matrix? Are they grouped, scattered, is there a pattern?
Table 5.10 and figure 5.2 help with this. In table 5.10 we see the total number of nonzeros in R, as well as the frac-
tion of nonzeros which are greater then a given threshold. That is the number of nonzeros where |ri j | > τ divided
by the total number of nonzeros. Figure 5.2 shows how these entries are scattered over the matrix for a specific case
K = 16, p = 3,h = 2.



5.6. Block ParILUT 41

total nz max fraction of nonzeros where |ri j | > τ
R |ri j | 10−1 10−2 10−3 10−4 10−6 10−8 10−10 10−12

K=4

p=2
h=3 999 0.1205 0.008 0.262 0.564 0.721 0.835 0.849 0.849 0.849
h=4 3541 0.1191 0.002 0.146 0.462 0.707 0.868 0.912 0.917 0.917

p=3
h=3 1244 0.0885 0.000 0.163 0.445 0.611 0.756 0.780 0.780 0.780
h=4 3980 0.0874 0.000 0.113 0.421 0.663 0.825 0.872 0.879 0.879

p=4
h=3 1502 0.0684 0.000 0.107 0.359 0.550 0.705 0.730 0.730 0.730
h=4 4429 0.0684 0.000 0.075 0.366 0.604 0.788 0.839 0.846 0.847

p=5
h=3 1813 0.0705 0.000 0.069 0.288 0.485 0.639 0.676 0.676 0.676
h=4 4931 0.0705 0.000 0.050 0.315 0.544 0.745 0.802 0.813 0.813

K=16

p=2
h=2 3076 0.1311 0.012 0.347 0.648 0.778 0.817 0.817 0.817 0.817
h=3 10253 0.1447 0.007 0.215 0.578 0.763 0.891 0.904 0.904 0.904

p=3
h=2 4624 0.1351 0.003 0.200 0.529 0.655 0.739 0.741 0.741 0.741
h=3 12768 0.0879 0.000 0.151 0.473 0.668 0.832 0.855 0.857 0.857

p=4
h=2 6437 0.1663 0.002 0.135 0.430 0.584 0.682 0.687 0.687 0.687
h=3 15525 0.0682 0.000 0.098 0.401 0.613 0.791 0.818 0.819 0.819

K=64

p=2
h=1 5515 0.5045 0.017 0.454 0.643 0.649 0.664 0.664 0.664 0.664
h=2 16003 0.1292 0.012 0.364 0.672 0.796 0.833 0.833 0.833 0.833

p=3
h=1 10768 0.4760 0.004 0.329 0.502 0.571 0.583 0.583 0.583 0.583
h=2 24569 0.1351 0.002 0.221 0.546 0.677 0.752 0.753 0.753 0.753

p=4
h=1 17311 0.4387 0.003 0.217 0.448 0.530 0.553 0.553 0.553 0.553
h=2 34276 0.1663 0.001 0.144 0.451 0.603 0.700 0.704 0.704 0.704

Table 5.10: Residual matrix: number of entries over a given threshold.

Based on these results we have a good intuition for how the bigger entries in R are spread. It does not seem like the
bigger entries are grouping together. For example if we were to allow everything with |ri j | > 10−2, we improve over the
entire matrix.
This suggests that it should be good to have a rule of this kind and that is not necessary to have different rules from
row to row. Viable strategies therefore seem:
- Add everything |ri j | > 10−2, |ri j | > 10−4.
- Add everything ri j ̸= 0.

Figure 5.2: Residual matrix: order of magnitude of |ri j | for the large matrix R (left) or the bottom right block RΓΓ (right). A(K = 16, p = 3,h = 2).



42 5. ILU type smoothers - Part II

5.6.3. Algorithm
With the insights from section 5.6.2 we know what could be good strategies for changing the sparsity pattern S. This
leads to the Block ParILUT algorithm, a combination of Block ILUT and ParILUT.
The ParILUT part of the algorithm can be simplified slightly as we will allow the size of S to increase. We choose not to
remove any (i , j ) from S. The increase to the size of S is very manageable and this allows us to do only one Fixed-point
ILU sweep per ParILUT sweep.

ALGORITHM 5.4: Block ParILUT

Goal: Determine sparse lower and upper triangular L,U such that LU ≈ A.
1. for i = 1, ...,K (in parallel):
2. Li ,Ui = ILUT(Ai i ).
3. end for
4. for i = 1, ...,K (in parallel):
5. Solve for Bi in U T

i B T
i = AT

iΓ.
6. Solve for Ci in Li Ci = AΓi .
7. end for
Determine E ,F using the following. Initial E and F are the lower- and upper triangular parts of AΓΓ
8. for sweep = 1,2, ... until convergence:
9. Compute RΓΓ = D −EF .
10. Add all (i , j ) with |ri j | > τ to S.
11. Do one sweep of the fixed-point ILU algorithm.
12. end for

5.6.4. Numerical Results
We will test the Block ParILUT algorithm in multiple situations. S4 will be the logical initial sparsity pattern, as this
is the sparsity pattern of D . Initial E and F will be the lower- and upper triangular parts of D . We want to use both a
stronger threshold τ= 10−2 as well as a more lenient threshold τ= 10−4.
Next to this we want to test what happens if we start with a smaller initial sparsity pattern S1. Will this make a good
approximation using a smaller amount of nonzeros? Initial E and F will have to be limited to this initial sparsity pat-
tern as well.

Tables 5.11, 5.12 and 5.13 show the results to the tests using the Block ParILUT algorithm. In these tables we see
both the size of the sparsity pattern as well as the number of multigrid operations necessary if you use that factoriza-
tion as a smoother.
Table 5.11: Initial sparsity pattern S1, threshold τ= 10−2.
Table 5.12: Initial sparsity pattern S4, threshold τ= 10−2.
Table 5.13: Initial sparsity pattern S4, threshold τ= 10−4.

Finally in table 5.14 we compare the Block ParILUT algorithm with the Block Fixed-point ILU algorithm in as fair a
comparison possible. That is the same initial sparsity pattern, and the same number of ParILUT or Fixed-point ILU
sweeps. This to show what difference the dynamical sparsity pattern makes compared to the static sparsity pattern.

Looking at these tables we can make some remarks. The results for initial sparsity pattern S1 are very surprising.
One would expect this sparsity pattern to grow rapidly towards S4, the submatrix D we try to approximate has this
pattern after all. This is not the case however, it makes a good approximation without needing all these nonzeros. The
number of multigrid iterations are also very competitive.
This makes it unclear which initial sparsity pattern is preferred. S1 requires less nonzeros S4 sometimes needs a few
less multigrid cycles for the same number of ParILUT sweeps.

The suggested number of ParILUT sweeps would be 2 if using S4 as the initial pattern or 2 or 3 if using S1 as the
initial pattern. Also the stronger threshold performs better then the more lenient threshold. The more lenient thresh-
old allows more additional entries, but these do not improve the number of multigrid iterations necessary.

Table 5.14 shows that Block ParILUT requires less multigrid iterations compared to the same number of factoriza-
tion steps using the static sparsity pattern.



5.6. Block ParILUT 43

|S| |S| |S| |S| |S| |S| MG MG MG MG MG MG
0 1 2 3 4 5 0 1 2 3 4 5

K=4

p=2
h=3 205 449 478 480 482 482 3 3 2 2 2 2
h=4 365 786 837 854 861 862 3 2 2 2 2 2

p=3
h=3 329 592 625 628 628 628 6 2 2 2 2 2
h=4 553 964 1026 1042 1043 1043 5 2 2 2 2 2

p=4
h=3 477 834 870 872 872 872 13 3 2 2 2 2
h=4 765 1291 1362 1380 1383 1384 11 3 2 2 2 2

p=5
h=3 649 1038 1109 1113 1113 1113 26 5 3 3 3 3
h=4 1001 1581 1685 1704 1708 1709 23 4 3 3 2 3

K=16

p=2
h=2 837 2223 2405 2462 2470 2476 4 3 3 3 3 3
h=3 1317 3071 3337 3440 3470 3475 4 3 3 3 3 3

p=3
h=2 1509 3025 3353 3427 3456 3470 7 3 3 2 3 3
h=3 2181 4083 4392 4438 4447 4449 6 3 2 2 2 2

p=4
h=2 2373 4266 4662 4742 4757 4767 17 3 3 3 3 3
h=3 3237 5848 6163 6205 6211 6211 13 3 3 2 2 2

K=64

p=2
h=1 2989 8023 8855 9179 9248 9269 7 5 4 4 4 4
h=2 4109 11579 13046 13582 13667 13712 4 4 4 4 3 3

p=3
h=1 5957 12364 13696 13890 13954 13974 11 5 5 4 4 4
h=2 7525 15594 17457 18128 18386 18468 7 3 3 3 3 3

p=4
h=1 9933 18043 20070 20491 20539 20541 23 6 5 5 5 5
h=2 11949 21979 24639 25301 25482 25551 17 4 3 3 3 3

Table 5.11: Size of S and the number of multigrid iterations for factorizations after 0,...,5 steps of Block ParILUT (initial sparsity pattern S1, τ= 10−2).

|S| |S| |S| |S| |S| |S| MG MG MG MG MG MG
0 1 2 3 4 5 0 1 2 3 4 5

K=4

p=2
h=3 1045 1289 1290 1290 1290 1290 3 2 2 2 2 2
h=4 3605 4026 4031 4033 4033 4033 3 2 2 2 2 2

p=3
h=3 1281 1544 1550 1551 1551 1551 6 2 2 2 2 2
h=4 4033 4444 4458 4458 4458 4458 5 2 2 2 2 2

p=4
h=3 1541 1898 1900 1900 1900 1900 13 2 2 2 2 2
h=4 4485 5011 5018 5018 5018 5018 11 2 2 2 2 2

p=5
h=3 1825 2214 2228 2228 2228 2228 26 3 2 2 2 2
h=4 4961 5541 5555 5557 5557 5557 23 3 2 2 2 2

K=16

p=2
h=2 3277 4663 4785 4816 4820 4820 4 3 3 3 2 2
h=3 10509 12263 12465 12517 12526 12536 4 3 3 3 3 3

p=3
h=2 4701 6217 6371 6387 6400 6400 7 3 2 2 2 2
h=3 12957 14859 15054 15114 15123 15124 6 2 2 2 2 2

p=4
h=2 6381 8274 8477 8509 8517 8518 17 4 3 3 3 3
h=3 15661 18272 18443 18497 18518 18522 13 3 2 3 2 2

K=64

p=2
h=1 6037 11071 11839 12147 12222 12239 7 4 4 4 4 4
h=2 17045 24515 25500 25722 25784 25800 4 4 3 3 3 3

p=3
h=1 10845 17252 18157 18303 18339 18359 11 5 4 4 4 4
h=2 24637 32706 33861 34093 34166 34176 7 3 3 3 3 3

p=4
h=1 17045 25155 26234 26339 26359 26361 23 5 5 5 5 5
h=2 33621 43651 44872 45163 45246 45269 17 3 3 3 3 3

Table 5.12: Size of S and the number of multigrid iterations for factorizations after 0,...,5 steps of Block ParILUT (initial sparsity pattern S4, τ= 10−2).



44 5. ILU type smoothers - Part II

|S| |S| |S| |S| |S| |S| MG MG MG MG MG MG
0 1 2 3 4 5 0 1 2 3 4 5

K=4

p=2
h=3 1045 1946 2133 2156 2156 2156 3 2 2 2 2 2
h=4 3605 6052 6505 6643 6643 6643 3 2 2 2 2 2

p=3
h=3 1281 2285 2511 2531 2531 2531 6 2 2 2 2 2
h=4 4033 6869 7396 7532 7532 7532 5 2 2 2 2 2

p=4
h=3 1541 2801 3105 3116 3116 3116 13 2 2 2 2 2
h=4 4485 7479 8020 8117 8118 8118 11 2 2 2 2 2

p=5
h=3 1825 3293 3679 3694 3694 3694 26 3 2 2 2 2
h=4 4961 8134 8774 8833 8834 8834 23 3 2 2 2 2

K=16

p=2
h=2 3277 7233 9452 10266 10517 10555 4 3 3 3 2 2
h=3 10509 20702 25985 28239 29007 29386 4 3 3 3 3 3

p=3
h=2 4701 9962 12550 13618 13942 14026 7 3 2 2 2 2
h=3 12957 24614 30080 32373 33114 33507 6 2 2 2 2 2

p=4
h=2 6381 13459 16735 18022 18453 18518 17 4 3 3 3 3
h=3 15661 29831 36259 38716 39504 39881 13 3 2 3 2 2

K=64

p=2
h=1 6037 16499 24542 30123 33227 34504 7 4 4 4 4 4
h=2 17045 39184 54944 65708 71841 74902 4 4 3 3 3 3

p=3
h=1 10845 27821 41075 49209 53415 55130 11 5 4 4 4 4
h=2 24637 53833 72621 85703 93526 97287 7 3 3 3 3 3

p=4
h=1 17045 42449 59819 71076 76786 79053 23 5 5 5 5 5
h=2 33621 72835 96458 112139 121255 125592 17 3 3 3 3 3

Table 5.13: Size of S and the number of multigrid iterations for factorizations after 0,...,5 steps of Block ParILUT (initial sparsity pattern S4, τ= 10−4).

Block Fixed-point ILU Block ParILUT
2 steps 3 steps 2 steps 3 steps

K=4

p=2
h=3 3 2 2 2
h=4 2 2 2 2

p=3
h=3 3 3 2 2
h=4 3 2 2 2

p=4
h=3 3 3 2 2
h=4 3 3 2 2

p=5
h=3 3 3 2 2
h=4 3 3 2 2

K=16

p=2
h=2 3 3 3 3
h=3 3 3 3 3

p=3
h=2 3 3 2 2
h=3 3 3 2 2

p=4
h=2 3 3 3 3
h=3 3 3 2 3

K=64

p=2
h=1 5 5 4 4
h=2 4 4 3 3

p=3
h=1 6 6 4 4
h=2 3 3 3 3

p=4
h=1 6 6 5 5
h=2 3 3 3 3

Table 5.14: Number of multigrid iterations for factorizations using 2 or 3 Block Fixed-point ILU or Block ParILUT steps respectively (initial sparsity
pattern S4, τ= 10−2).



5.6. Block ParILUT 45

5.6.5. Computational Costs
The Block ParILUT factorization continues from the Block ILUT factorization and will therefore be slightly more ex-
pensive. We have determined before that computing D will cost at the worst case O (N 3

interface), but in practice it will
be cheaper as D still consists of many zeros.
The new part of calculating E and F from D consists of calculating the ILU residual and Fixed-point ILU sweeps. The
cost of the Fixed-point ILU sweeps is O (Ninterfacep2d ) as of section 5.4.4, calculating the ILU residual will be at the
same cost as computing D .

Using ParILUT as a smoother will be significantly cheaper than Block ILUT, as now the factorization will actually be
lower- and upper triangular rather then only block lower- and block upper triangular. The cost will be very comparable
to the cost in Block Fixed-point ILU.

5.6.6. Discussion
Block ParILUT is a very viable method. The cost of factorization will be slightly more compared to the original Block
ILUT method, also requiring a few more multigrid iterations. The cost per smoothing step will be considerably cheaper
though. A good comparison between Block ParILUT and the previously discussed methods Block ILUT and Block
Fixed-point ILU is given in section 5.7.

Both S1 and S4 are effective initial sparsity patterns, τ = 10−2 is a suitable threshold and it is advised to use 2 or 3
ParILUT sweeps on the bottom right block.



46 5. ILU type smoothers - Part II

5.7. Block ILUT vs Block Fixed-point ILU vs Block ParILUT
Finally we have to give a full comparison between the Block ILUT method and the two newly proposed methods Block
Fixed-point ILU and Block ParILUT. To give them a proper comparison we want to score them on 3 criteria.
- The cost of determining the factorization.
- The cost of a single smoothing step in the multigrid method.
- The number of necessary iterations for the multigrid method to converge given this factorization.
Other criteria that could be suggested are the amount of memory needed and the degree to which the methods can
be parallelized. The memory needed is close to equal for the three methods and therefore irrelevant to include in
the comparison. The degree of parallelization is taken into account within the criteria cost of smoothing and cost of
factorization.

For the number of necessary multigrid iteration it is easy to look at concrete numbers, like the difference between
3 or 5 iterations. For the other two criteria it is not as easy to say this method costs O (...) or O (...). But we can make
claims of the kind ’method A is cheaper then method B’.
Therefore we choose to present the performance of the smoothers per category by a score of 1 to 3, where 1 would be
the best scoring method per criteria and 3 the worst scoring method. These scores are seen in table 5.15.

cost cost iterations
factorization smoothing multigrid

Block ILUT 2 3 1
Block Fixed-point ILU 1 1 3
Block ParILUT 3 2 2

Table 5.15: Comparing Block smoothers (1 best, 3 worst).

The scores in the ’iterations multigrid’ column are easily determined from comparing tables of the previous sections.
For the cost of factorization Block Fixed-point ILU is cheapest, not requiring the computation of D , followed by Block
ILUT and finally Block ParILUT which continues from the factorization left by Block ILUT.
For the cost of a single smoothing step Block ILUT is clearly most expensive with the factorization not being fully
lower- and upper triangular and therefore forward- and backward solve not being possible. Block Fixed-point ILU is
slightly cheaper then Block ParILUT as it contains slightly less nonzeros, but this difference is negligible.
We can also make a small adjustment to this table where we contribute equal scores if the difference is very small. This
gives rise to table 5.16.

cost cost iterations
factorization smoothing multigrid

Block ILUT 2 3 1
Block Fixed-point ILU 1 1.5 3
Block ParILUT 3 1.5 2

Table 5.16: Comparing Block Smoothers (1 best, 3 worst), allowing split scores.

It is clear from these two tables that the different methods have strengths and weaknesses in different areas. It is
therefore difficult to say which of these methods is the best. For this one would need to further research how big the
advantages or disadvantages are per criteria and one would need to make a choice on which criteria is considered to
be most important.



Chapter 6

Conclusion and Further Research

The goal for this research project was to better understand the Block ILUT smoother and to make alterations to it in
order to improve efficiency. This was attempted by combining the existing Block ILUT method with methods using
fixed-point iterations to construct L,U , giving rise to the Block Fixed-point ILU and Block ParILUT methods. For both
new methods several setups have seen investigated.
In Block Fixed-point ILU a particularly good setup is to use sparsity pattern S1 with 2 parallel factorization steps. For
Block ParILUT, S4 is a good initial sparsity pattern, with threshold τ= 10−2 and again 2 parallel factorization steps.

Both new methods seem like viable alternatives, though it is difficult to compare them with each other or the orig-
inal Block ILUT, as the methods have strengths in different areas. There is no obvious best method. For instance, the
necessary number of multigrid iterations is lowest for the original Block ILUT method, but the other methods score
better on computational cost per smoothing step. A longer summary is given in section 5.7.

For further research one could try to make a better comparison between the three methods. Currently these are very
hard to compare; nonzero patterns are unpredictable, therefore the cost of the different operations is unpredictable,
the theoretical bounds do not give a good indication. Analyzing the computation times of the numerical programs
will not help either, they are not optimized enough. I did not have enough knowledge on programming sparse matrix
operations or on parallel computing to do this effectively. Big improvements can be made here, it will give for some
very interesting results.

Additionally, if one wants to make further alterations to the Block ILUT method, a good field to take inspiration from
would be the field of Domain Decomposition methods. In terms of structure our problem with a domain split in
multiple patches is very similar to a problem over multiple overlapping domains in Domain Decomposition methods.
Problem setting is similar, resulting system matrix is similar, one could use similar tricks. An excellent book to learn
about these methods is [24]. A more specific source within domain decomposition suggested by the supervisors, but
not actively pursued is [25].

Finally, in [22] an exhaustive list is given of papers where ILU type factorizations are used in combination with parallel
computing. Many of those on problems resulting from Domain Decomposition methods. Maybe one or more of those
could be a good fit for the problems encountered in IgA.

47





List of symbols

In order of first appearance (roughly).

Chapter 2: Isogeometric Analysis
u the unknown in the PDE
f the RHS in the PDE

V function space
Vh finite dimensional subspace
φ1,...,φn basis for Vh

Ω physical domain
Ω0 parameter domain
x point inΩ
ξ point inΩ0

F function linking physical and parameter domain

A the discretization matrix in the matrix equation
u the unknown in the matrix equation
f the RHS in the matrix equation
Can be specified further as Ah,p , uh,p , fh,p

Ξ, knot vector (if we need to consider multiple knot vectors also H and L)
ξi , the i -th knot of Ξ (η j , ζk also as j -th and k-th knot for H and L respectively)

φi ,p (ξ) the i -th order p basis function to knot vector Ξ
h distance between knots
p order of basis functions
Nel number of elements
Ndof degrees of freedom, i.e. the amount of basis functions

xq the quadrature points
wq the weights of said quadrature points

Ωk , Fk multipatch variations ofΩ and F
K the number of patches in a multipatch discretization
Γ the interface between the different patches
Npatch number of basis functions contained within a single patch
Ninterface number of basis functions that interact with the interface

Chapter 3: Multigrid methods
v approximation to u
e general error
r general residual
Can be specified further as vh,p , eh,p , rh,p , etc.

I 2h
h example of intergrid transfer

49



50 6. Conclusion and Further Research

I h
2h example of intergrid transfer

M mass matrix, Mi , j =
∫
Ωφi (x)φ j (x) dΩ

M L lumped mass matrix
P p

1 , P 1
p transfer matrices used in p-multigrid methods

Chapter 4: ILU type smoothers part I
L,U lower- and upper triangular matrix with A = LU
L̃,Ũ approximations to L and U
N Z (A) set of locations where ai j ̸= 0
m general threshold, relating to the number of allowed nonzeros
τ general threshold, relating to the allowed minimum size of nonzeros

Ai i submatrix of A, located on the diagonal
AiΓ, AΓi submatrix of A, located on the right column or bottom row respectively
AΓΓ the bottom right submatrix of A
Li ,Ui ILUT factorization of Ai i , submatrices of L and U in Block ILUT factorizations
Bi ,Ci , submatrices of L and U in Block ILUT factorizations
D,E ,F , submatrices of L and U in Block ILUT factorizations

Chapter 5: ILU type smoothers part II
S general sparsity pattern
S1, ...,S5 sample sparsity patterns, defined in section 5.4.2

R ILU residual, R = A−LU
mL ,mU the number of nonzeros added to the sparsity pattern of L and U in ParILUT
m′

L ,m′
U the number of nonzeros removed from the sparsity pattern of L and U in ParILUT



Bibliography

[1] Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. “Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement”. In: Computer methods in applied mechanics and engineering 194.39-41
(2005), pp. 4135–4195.

[2] J Austin Cottrell, Thomas JR Hughes, and Yuri Bazilevs. Isogeometric analysis: toward integration of CAD and
FEA. John Wiley & Sons, Sept. 2009. ISBN: 0470748737. DOI: 10.1002/9780470749081.ch7.

[3] R.P.W.M. Tielen. “P-multigrid methods for Isogeometric analysis”. English. PhD thesis. Delft University of Tech-
nology, 2021. ISBN: 978-94-6366-453-0. DOI: 10.4233/uuid:8445e901-e31e-4602-8630-5b39a3de7ff6.

[4] Roel Tielen et al. Efficient p-Multigrid Methods for Isogeometric Analysis. Jan. 2019.

[5] Roel Tielen, Matthias Möller, and Kees Vuik. “A direct projection to low-order level for p-multigrid methods
in Isogeometric Analysis”. In: Numerical Mathematics and Advanced Applications ENUMATH 2019. Springer,
2021, pp. 1001–1009.

[6] Roel Tielen et al. “p-multigrid methods and their comparison to h-multigrid methods within Isogeometric Anal-
ysis”. In: (2020).

[7] Roel Tielen, Matthias Möller, and Kees Vuik. “A block ILUT smoother for multipatch geometries in Isogeometric
Analysis”. In: 2020.

[8] Bernd Simeon and Anh-Vu Vuong. Isogeometric Analysis Primer.

[9] JJIM van Kan, A Segal, and FJ Vermolen. Numerical methods in scientific computing. VSSD, 2005. ISBN: 90-71301-
50-8.

[10] SP Venkateshan and Prasanna Swaminathan. Computational methods in engineering. Elsevier, 2013. ISBN: 978-
0-12-416702-5. DOI: https://doi.org/10.1016/C2012-0-06128-5.

[11] Gaussian quadrature. Feb. 2022. URL: https://en.wikipedia.org/wiki/Gaussian_quadrature.

[12] Matthias Möller. “Assembly strategies in isogeometric analysis”. In: 2015.

[13] William L Briggs, Van Emden Henson, and Steve F McCormick. A multigrid tutorial. SIAM, Jan. 2000. ISBN: 978-
0-89871-462-3.

[14] C. Vuik and D.J.P. Lahaye. Course WI4201, Scientific Computing. 2017.

[15] Nathan Collier et al. “The cost of continuity: performance of iterative solvers on isogeometric finite elements”.
In: SIAM Journal on Scientific Computing 35.2 (2013), A767–A784.

[16] Alvaro Pe de la Riva, Carmen Rodrigo, and Francisco J Gaspar. “A robust multigrid solver for isogeometric anal-
ysis based on multiplicative Schwarz smoothers”. In: SIAM Journal on Scientific Computing 41.5 (2019), S321–
S345.

[17] Clemens Hofreither and Stefan Takacs. “Robust multigrid for isogeometric analysis based on stable splittings of
spline spaces”. In: SIAM Journal on Numerical Analysis 55.4 (2017), pp. 2004–2024.

[18] Jarle Sogn and Stefan Takacs. “Robust multigrid solvers for the biharmonic problem in isogeometric analysis”.
In: Computers & Mathematics with Applications 77.1 (2019), pp. 105–124.

[19] Marco Donatelli et al. “Symbol-based multigrid methods for Galerkin B-spline isogeometric analysis”. In: SIAM
Journal on Numerical Analysis 55.1 (2017), pp. 31–62.

[20] Yousef Saad. “ILUT: A dual threshold incomplete LU factorization”. In: Numerical linear algebra with applica-
tions 1.4 (1994), pp. 387–402.

[21] Yousef Saad. Iterative methods for sparse linear systems. Second. SIAM, 2003. ISBN: 978-0-89871-534-7. DOI: 10.
1137/1.9780898718003.

51

https://doi.org/10.1002/9780470749081.ch7
https://doi.org/10.4233/uuid:8445e901-e31e-4602-8630-5b39a3de7ff6
https://doi.org/https://doi.org/10.1016/C2012-0-06128-5
https://en.wikipedia.org/wiki/Gaussian_quadrature
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003


52 Bibliography

[22] Edmond Chow and Aftab Patel. “Fine-grained parallel incomplete LU factorization”. In: SIAM journal on Scien-
tific Computing 37.2 (2015), pp. C169–C193.

[23] Hartwig Anzt, Edmond Chow, and Jack Dongarra. “ParILUT—a new parallel threshold ILU factorization”. In:
SIAM Journal on Scientific Computing 40.4 (2018), pp. C503–C519.

[24] Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. An introduction to domain decomposition methods: algo-
rithms, theory, and parallel implementation. SIAM, 2015.

[25] Jason Frank and Cornelis Vuik. “On the construction of deflation-based preconditioners”. In: SIAM Journal on
Scientific Computing 23.2 (2001), pp. 442–462.


	Introduction
	Isogeometric Analysis
	Variational Formulation and Geometry Function
	Variational Form
	Geometry function

	B-splines
	B-spline basis functions
	B-spline curves, surfaces and solids
	Refinement strategies

	Matrix Assembly
	Support of basis functions
	Integral approximation

	Multipatch

	Multigrid Methods
	Introduction Multigrid
	h-multigrid
	Prolongation operator
	Restriction operator

	p-multigrid
	L2-projection
	Motivation for p-multigrid

	Smoothers
	Alternative smoothers


	ILU type smoothers - Part I
	Incomplete LU factorizations and smoothers
	ILU(0)
	ILUT
	Computational Costs
	Numerical Results

	Block ILUT
	Matrix structure for multipatch geometries
	Block ILUT factorization
	Using Block ILUT as a smoother
	Computational Costs
	Numerical Results


	ILU type smoothers - Part II
	Motivation for continued research
	Removing Off-Diagonal Entries
	Fixed-point ILU
	Algorithm
	Remarks
	Computational Cost

	Block Fixed-point ILU
	General info
	Sparsity pattern
	Parallel performance
	Computational Costs
	Discussion

	ParILUT
	Adjusting sparsity pattern
	Algorithm outline

	Block ParILUT
	General info
	Residual matrix
	Algorithm
	Numerical Results
	Computational Costs
	Discussion

	Block ILUT vs Block Fixed-point ILU vs Block ParILUT

	Conclusion and Further Research
	List of Symbols
	Bibliography

