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Abstract: The performance of various nonlinear frequency division multiplexed (NFDM) fiber-optic
transmission systems has been observed to decrease with increasing signal duration. For a class of
NFDM systems known as b-modulators, we show that the nonlinear bandwidth, signal duration,
and power are coupled when singularities in the nonlinear spectrum are avoided. When the nonlinear
bandwidth is fixed, the coupling results in an upper bound on the transmit power that decreases
with increasing signal duration. Signal-to-noise ratios are consequently expected to decrease, which
can help explain drops in performance observed in practice. Furthermore, we show that there is often
a finite bound on the transmit power of b-modulators even if spectral singularities are allowed.

Keywords: nonlinear Fourier transform; nonlinear frequency division multiplexing; b-modulation;
power limitation

1. Introduction

The nonlinear Fourier transform (NFT) [1] is a mathematical tool to solve the normalized nonlinear
Schrödinger equation (NSE)

i
∂q
∂z

+
1
2

∂2q
∂t2 + κ|q|2q = 0, q = q(z, t), (1)

which is a model for an ideal lossless single-mode fiber obtained after suitable normalization and
path averaging [2]. (The path average can be avoided by using tapered fibers [3].) Here, q(z, t)
is the slowly varying pulse envelope, z is the location, and t is retarded time, all in normalized
units. The parameter κ determines if the dispersion in the fiber is normal (−1) or anomalous (+1).
The nonlinear evolution of the signal according to the NSE equals a simple phase rotation in the
nonlinear Fourier domain (NFD) [1]. Hence, it was suggested to embed data in the NFD at the
transmitter and use the NFT to recover the data at the receiver [4,5]. This idea is known as nonlinear
frequency division multiplexing (NFDM).

NFDM has garnered much attention in recent years and many different NFDM system designs
have been proposed [3,6–17]. A common problem with many NFDM designs is that the optimum
transmit power decreases with signal duration, making it difficult to utilize signals significantly
longer than the channel memory [10,11,18–20]. Thus, signals are typically short with a relatively
large portion acting as a guard interval that contains no information, leading to low spectral
efficiencies. The difficulties with transmitting longer signals have been suspected to be caused by
limitations of numerical NFT algorithms and increased signal-noise interactions [18] [p. 3], [11]
[Section 3.3], [12] [Section 4].

Recently, in [19], we discovered a new factor contributing to this phenomenon when we derived
an upper bound on the transmit power of one specific NFDM system proposed in [21]. It was shown
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that the transmit power bound decreases with signal duration when the nonlinear bandwidth is kept
constant. Since signals with lower power are more susceptible to corruption by noise, this leads
to reduced transmission performance. In this paper, we look at a class of systems where only a
part of the nonlinear Fourier spectrum known as continuous spectrum is modulated, which is the
nonlinear analogue of linear frequency division multiplexing. More specifically, we look at so-called
b-modulators in the case of anomalous dispersion. The paper is organized as follows. In Section 2,
we briefly review nonlinear frequency division multiplexing (NFDM). In Section 3, we derive two
different upper bounds on the transmit power of b-modulated systems. We conclude our findings in
Section 4.

Notation

Real numbers: R; R≥0 := {x ∈ R : x ≥ 0}; Complex numbers: C; Complex numbers with
positive imaginary part: H; Integers: Z; Natural numbers: N; i :=

√
−1; Euler’s number: e; Real part:

<(·); Imaginary part: =(·); Complex conjugate: (·)∗; Absolute value: |·|; Lebesque spaces: Lp(X)

contains all measurable complex-valued functions f on X for which

‖ f ‖p :=

{
(
∫

X | f (x)|pdx)1/p, if 1 ≤ p < ∞

supx∈X | f (x)|, if p = ∞
< ∞. (2)

2. Review of NFDM

In this section, we describe the mathematical machinery behind the nonlinear Fourier transform
(NFT) and review the idea of nonlinear frequency domain multiplexing (NFDM).

2.1. Nonlinear Fourier Transform for Vanishing Signals

The nonlinear Fourier transform (NFT) that solves the NSE (1) is due to Zakharov and Shabat [1].
It transforms any signal q(t) that vanishes sufficiently quickly for t→ ±∞ from the time domain to
the nonlinear Fourier domain through the analysis of the linear ordinary differential equation (ODE)

∂V(t, λ)

∂t
= C(t, λ)V(t, λ) =

[
−iλ q(t)
−κq∗(t) iλ

]
V(t, λ). (3)

The term λ ∈ C is a spectral parameter similar to the parameter s in the Laplace domain. Since
|q(t)| → 0 fast for t→ ±∞, the ODE has solutions that fulfill the boundary conditions

V(t, λ) = [φ(t, λ) φ̄(t, λ)]→
[

e−iλt 0
0 −eiλt

]
as t→ −∞,

V(t, λ) = [ψ̄(t, λ) ψ(t, λ)]→
[

e−iλt 0
0 eiλt

]
as t→ ∞.

(4)

The matrix V(t, λ) is said to contain (generalized) eigenfunctions since Equation (3) can be rearranged
into an eigenvalue equation with respect to λ [22]. For the solutions Equation (4) of Equation (3), there
exists a unique matrix

S(λ) =

[
a(λ) b̄(λ)
b(λ) −ā(λ)

]
, (5)

called the scattering matrix, such that [22][
φ(t, λ) φ̄(t, λ)

]
=
[
ψ̄(t, λ) ψ(t, λ)

]
S(λ). (6)
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The components a(λ), b(λ), b̄(λ), and ā(λ) are known as the scattering coefficients. The scattering
coefficients satisfy [22] (pp. 260, 271)

b̄(λ) = κb∗(λ∗), ā(λ) = a∗(λ∗), a(λ)ā(λ) + b(λ)b̄(λ) = 1. (7)

The evolution of the scattering coefficients along the location z in the fiber is simple: [22] [Sec. III]

a(z, λ) = a(0, λ),

b(z, λ) = b(0, λ)e−4iλ2z.
(8)

The reflection coefficient is then defined as ρ(λ) = b(λ)/a(λ) for λ ∈ R. It provides a represention of
the continuous spectrum. In the anomalous dispersion case κ = 1 considered in this paper, the nonlinear
Fourier spectrum can also contain a so-called discrete spectrum. It corresponds to the complex poles of
the reflection coefficient in the upper half-plane H, or equivalently to the zeros λk ∈ H of a(λ). Usually,
there are only finitely many (N) such poles, all simple [22] [Section VI]. The poles λk are also referred
to as eigenvalues and a corresponding set of values ρk := b(λk)

/ da
dλ (λk) are known as residues [22]

[App. 5]. The eigenvalues correspond to the solitonic components of the signal. There are different
ways to define a nonlinear Fourier spectrum. One possibility is {ρ(λ)}λ∈R, (λk, ρk)

N
k=1 [22]. Another is

{b(λ)}λ∈R, (λk, b(λk))
N
k=1 [23]. In the case of anomalous dispersion (κ = 1), the energy of the signal

q(t) is related to the components of the nonlinear spectrum as [4] [p. 9]

∫ ∞

−∞
|q(t)|2dt =

1
π

∫ ∞

−∞
log(1 + |ρ(ξ)|2)dξ + 4

N

∑
k=1
=(λk), (9)

or equivalently ∫ ∞

−∞
|q(t)|2dt = − 1

π

∫ ∞

−∞
log(1− |b(ξ)|2)dξ + 4

N

∑
k=1
=(λk). (10)

Note that Equation (7) implies that |b(ξ)| ≤ 1 for real ξ. When |b(ξ)| = 1 for some real ξ, then the
integrand in Equation (10) is undefined at that point. Such points are known as spectral singularities in
the literature [24]. Even though simple signals such as the rectangle and hyperbolic secant can have
isolated spectral singularities [25] [Chapter 2], most of the literature on NFTs assumes that |b(ξ)| < 1
for all real ξ. From here on, ξ will be used to denote the spectral parameter if it is strictly real and λ

if otherwise.
Information can be embedded in the scattering coefficients in various ways. In this paper, we

consider the techniques where information is embedded only in b(ξ) for ξ ∈ R, i.e., we consider
signals without solitons. The idea of embedding information in b(ξ) is known as b-modulation [26].
The advantages of b-modulation are tight control over signal duration and lower sensitivity w.r.t.
noise [11,26]. If the signals are of infinite duration, they are truncated to some finite interval [T1, T2].
From Equation (10), we can see that the energy of a b-modulated signal can be controlled by varying
b(ξ). This indirectly allows us to control the average power of the truncated signal. In this paper,
we will concentrate on b-modulation in the case of anomalous dispersion (κ = 1).

2.2. NFDM Signal Generation

As in any digital transmission scheme, the data to be transmitted are fed to the transmitter as a
stream of bits. The system then takes a block of Nb ∈ N bits and generates a signal for transmission
through the optical fiber channel. This is the process of modulation. At the receiver, the effect of
the channel on the nonlinear spectrum is first reverted using Equation (8). Then, the block of bits is
recovered. The NFDM transmission scheme is illustrated in Figure 1.



Entropy 2020, 22, 639 4 of 15

Inverse

NFT

Channel

� 0, �   

� ∈ −∞, ∞
0,1 
�

0,1 
�

� 0, �   

� ∈ �
, ��

Modulator

Map to 

nonlinear 

spectrum

Forward

NFT

De-map 

nonlinear 

spectrum

� �, �   

� ∈ �
, ��

Signal 

Truncation

Phase 

equalization 

using Eq. 8

Figure 1. Nonlinear frequency domain multiplexing (NFDM) transmission of one block of Nb bits.

In order to be able to make concise statements in the coming sections, we now introduce formal
definitions for a modulator and a b-modulator. An illustrating block diagram is shown in Figure 2.

Definition 1. A modulator is a function-valued function

M : {0, 1}Nb → L2([T1, T2]) (11)

that maps vectors of Nb bits to transmit signals of finite energy and duration.

This definition of a modulator makes no assumptions about how data are embedded in the signal
q(t) and is thus very general. A b-modulator on the other hand is a specific type of modulator that
embeds data in the scattering coefficient b(ξ) that was defined in Equation (5).

Definition 2. A b-modulator is a modulator of the form

M(v) = T (Q(B(v))), (12)

where B maps vectors of bits to nonlinear spectra b(ξ) with ξ ∈ R, Q is the inverse NFT that maps scattering
coefficients b(ξ) to the corresponding time-domain signals q(t), t ∈ R, without solitonic components, and

T : L2(R)→ L2([T1, T2]), [T (q)](t) = q(t) ∀ t ∈ [T1, T2], (13)

simply truncates infinite duration signals to a finite duration. We assume that b = B(v) and q = Q(b) satisfy

‖b‖∞ ≤ 1,
∫ ∞

−∞
|q(t)|2dt = − 1

π

∫ ∞

−∞
log(1− |b(ξ)|2)dξ < ∞, ∀ v ∈ {0, 1}Nb . (14)

Remark 1. The first assumption in Equation (14) is necessary since |a(ξ)|2 + |b(ξ)|2 = 1 on the real axis
for any NFT (see Equation (7)). Note that we do not make the common stronger assumption that ‖b‖∞ < 1
(no spectral singularities). The second assumption in Equation (14) is simply Equation (10) specialized to
nonlinear spectra without solitonic components. It is known to hold in the absence of spectral singularities.
We expect this result to hold even in the presence of spectral singularities. However, as we could not find this
result in the literature, we are stating it as an assumption here. We remark that, even if b-modulators that satisfy
Equation (14) with ‖b‖∞ = 1 would not exist, our results still apply to any b-modulator that ensures ‖b‖∞ < 1.
This still includes all cases in the current literature.



Entropy 2020, 22, 639 5 of 15

Remark 2. For sufficiently rapidly decaying b(ξ) with ‖b‖∞ < 1, it is possible to verify that the second integral
in Equation (14) will be finite. However, when ‖b‖∞ = 1, the integrand will have singularities at which it
becomes infinite. The integral may or may not be infinite in such cases. It was observed in [21] that it remains
finite in specific cases. In this paper, we will show in Lemma 1 that this behavior is the norm, not the exception.

Remark 3. The results that will be derived in this paper for b-modulated systems also apply to ρ-modulated
NFDM systems with normal dispersion (κ = −1, see, e.g., [27,28]) when b is replaced by ρ. Let us check that the
assumptions in Equation (14) are fulfilled by ρ in that case. For normal dispersion, |a(ξ)|2 − |b(ξ)|2 = 1 [29]
[p. 25]. Thus, ρ = b/a satisfies ‖ρ‖∞ ≤ 1. Using [29] [Equations 1.6.7 and 1.6.21b], the signal energy is found
to satisfy ∫ ∞

−∞
|q(t)|2dt = − 1

π

∫ ∞

−∞
log(1− |ρ(ξ)|2)dξ. (15)

�(0, �) � 0, �

� ∈ −∞, ∞0,1 ��
� 0, �

� ∈ ��, ��

M
B Q T

Figure 2. Transmitter side components of a NFDM transmission scheme employing b-modulation.

In the next section, we will derive two different bounds on the transmit power of information
bearing signals q(0, t) that are generated by b-modulators at the fiber input.

3. Upper Bounds on the Transmit Power of b-Modulators

With fiber-optic transmission systems that modulate the conventional “linear” Fourier spectrum,
the power of the transmit signal can theoretically be made arbitrarily high without increasing the
bandwidth or duration of the signal, simply by scaling (amplifying) it in the time domain. Although
b-modulated systems are in many ways similar to such linear systems, there are also some important
differences. Scaling the signal in time domain distorts its nonlinear Fourier spectrum in complicated
ways. For example, scaling a signal without solitonic components can give rise to many solitons.
In linear systems, bandwidth and signal duration are coupled, but the transmit power is independent
of the two. We show in the following that, under certain conditions the nonlinear bandwidth, duration,
and transmit power in b-modulators are coupled. We already showed this for one specific b-modulator
in [19]. In this section, we will derive two more general bounds on the power of b-modulated systems
that apply to many systems considered in the literature. In Section 3.1, we derive and discuss a bound
for systems that have no spectral singularities. In Section 3.2, we will show that, even in the presence
of spectral singularities, the power still remains bounded for a class of b-modulators.

3.1. Power Bound for a Fixed Gap to Singularity

As already discussed earlier, in the case of anomalous dispersion, it is required that |b(ξ)| ≤ 1
for real ξ. In special cases, even simple signals such as the rectangle and hyperbolic secant can
have isolated spectral singularities at which |b(ξ)| = 1 [25] [Chapter 2]. In the presence of spectral
singularities, the usual theory behind the NFT unfortunately breaks down and has be to extended in a
quite complicated manner [24]. Many algorithms available in literature for computing the time-domain
signal starting from b(ξ) break down in their presence [26,30]. In practice, to avoid the complications
arising from the spectral singularities, a “gap to singularity” εb := 1− ‖b‖2

∞ > 0 is typically enforced
by either clipping [19,31] (The use of clipping in [31] was reported in [12] [p. 1574], not in the paper
itself.), scaling [26,31], and/or reshaping [12] of b(ξ). In [21], the constellation was reshaped. The gap
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to singularity εb cannot be made arbitrarily small as the numerical algorithms are limited by the
computing precision. Since any number that is closer to one than the machine precision is rounded
to one, gaps to singularity smaller than machine precision cannot be represented with floating point
numbers. As soon as the gap to singularity is never zero, the following power bound applies.

Theorem 1. LetM be any b-modulator (see Definition 2) with a gap to singularity. That is,

ε := 1− max
v∈{0,1}Nb , b=B(v)

‖b‖2
∞ > 0. (16)

Then, the maximum transmit power of the modulator is upper bounded as

Pmax = max
q=M(v), v∈{0,1}Nb

1
T2 − T1

∫ T2

T1

|q(t)|2dt ≤ −2W log ε

πγ(T2 − T1)
, (17)

where 0 < γ < 1 can be chosen arbitrarily and W > 0 is any finite constant such that

γE := − γ

π

∫ ∞

−∞
log(1− |b(ξ)|2)dξ ≤ EW := − 1

π

∫ W

−W
log(1− |b(ξ)|2)dξ, ∀ b = B(v). (18)

It is always possible to find such a W.

Remark 4. Note that 2W is a bound on the nonlinear γ× 100-percent bandwidth of the modulator, which is
illustrated in Figure 3 together with the gap to singularity εb. Figure 4 illustrates the decay of the power bound.

Figure 3. In this example, 2W is exactly the 90% bandwidth: 90% (γ = 0.9) of the energy corresponding
to the left spectrum (E) are equal to the energy corresponding to right spectrum (EW ). That is, γE = EW .

20

0

20

Figure 4. The power bound from Theorem 1 for W = 6.0338, γ = 0.9 and ε ≥ 0.1. The transmit power
of any b-modulator with these fundamental parameters must approach zero for long durations.
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Remark 5. The most important implication of Theorem 1 is that as soon as there is a nonlinear bandwidth
constraint (γE ≤ EW) and the gap to singularity cannot be made arbitrarily small (e.g., due to clipping or finite
precision effects), the transmit power of any b-modulator producing long transmit signals must be low. Longer
signals are preferred as they are more data dense. However, making the signals longer decreases the SNRs. Hence,
one expects there to be a finite optimal signal duration.

Proof of Theorem 1. Let 0 < γ < 1 be fixed. We start with finding W > 0. For any fixed b = B(v),
the assumptions in Equation (14) ensure that γE ≤ EWb for some finite Wb > 0. Since the number of
bit vectors v ∈ {0, 1}Nb that can be passed to the modulator is finite, there is only a finite number of
nonlinear spectra b = B(v). Hence, Equation (18) is fulfilled if we choose W to be the largest of the Wb.

For any fixed q =M(v) with corresponding b = B(v), the transmit power satisfies

Pb =
1

T2 − T1

∫ T2

T1

|q(t)|2dt

≤ 1
T2 − T1

∫ ∞

−∞
|q(t)|2dt︸ ︷︷ ︸
=E

(18)
≤ 1

T2 − T1

EW
γ

=
1

T2 − T1

−1
πγ

∫ W

−W
log(1− |b(ξ)|2)dξ

(16)
≤ 1

T2 − T1

−1
πγ

∫ W

−W
log(1− (1− ε))dξ

=
1

T2 − T1

−1
πγ

2W log ε.

(19)

Since this bound is independent of v, we obtain Equation (17).

3.2. Uniform Power Bound for Arbitrary Gaps to Singularity

The bound derived in Theorem 1 describes many practical situations and applies to most of the
b-modulators currently seen in the literature. However, the bound is not meaningful in the limit ε→ 0
as it blows up. It is interesting to know if we could achieve arbitrary powers in scenarios where the
gap to singularity could be made arbitrarily small. In the following Theorem 2, we show that the
power will still remain bounded for many typical b-modulators even in the limit ε→ 0.

Theorem 2. LetM be a b-modulator (see Definition 2) such that any b = B(v) is of the form

b(ξ) = A
N

∑
n=−N

snΨ(ξ − n∆ξ), s−N , · · · , sN ∈ S∗, A, ∆ξ > 0, (20)

where S∗ ⊂ C is a finite constellation alphabet and Ψ ∈ L2(R) is a real-analytic carrier waveform with

lim
ξ→±∞

Ψ(ξ) = 0 and sup
k=2,3,...

∥∥∥∥∥dkΨ
dξk

∥∥∥∥∥
∞

< ∞. (21)

The power control factor A ≥ 0 and the symbols sn in Equation (20) may depend on the bit vector v. All other
quantities are assumed independent of v. Then, the maximum transmit power of the modulator is bounded as

Pmax = max
q=M(v), v∈{0,1}Nb

1
T2 − T1

∫ T2

T1

|q(t)|2dt ≤ E
T2 − T1

< ∞,
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where the constant E is independent of the power control factors A = A(v) and data symbols sn = sn(v) in
Equation (20), as well as of the temporal domain [T1, T2].

The proof of Theorem 2 requires us to establish some lemmas first, which will be given later in
this section. Before we proceed to the lemmas, let us first discuss the theorem.

Theorem 2 is formulated such that it is applicable to the carriers typically used in NFDM systems.
One of the commonly used carriers is the sinc function [10–12,32]

Ψ(ξ) = sinc(ξ) =

{
1, ξ = 0
sin(ξ)

ξ , otherwise
. (22)

The function sinc(ξ) is real-analytic [33], square-integrable, and decays to zero as ξ → ±∞. To
apply Theorem 2, we need to show that supk=2,3,...

∥∥∥ dk

dξk sinc
∥∥∥

∞
< ∞. To check this, we first note that

sinc ∈ L∞(R) with ‖sinc‖∞ = 1. The Fourier transform of sinc(ξ) is furthermore a rectangle function,

F{sinc}(ω) =

{
π, |ω| < 1

0, otherwise
. (23)

The set of ω for which the Fourier transform is non-zero thus satisfies suppF{sinc}(ω) ⊂ [−1, 1],
where “supp” is short for support. Then, [34] [Theorem 4] tells us that ‖ dk

dξk sinc‖∞ ≤ 1k‖sinc‖∞ so
that Equation (21) is indeed fulfilled. Theorem 2 now tells us that the b-modulator is bounded in
transmit power.

Remark 6. The argument above for showing that the sinc(ξ) carrier satisfies the conditions in Theorem 2
exploits that the support of its Fourier transform is contained in the interval [−1, 1]. For a b-modulatorM
as in Theorem 2 where the Fourier transform is not contained in [−1, 1], but in some larger interval [−α, α],
the following trick can be applied. For any b = B(v), we define bα(ξ) = b(αξ) and qα := Q(bα). By basic
properties of the NFT, we have that qα(t) = 1

α q(t/α). The b-modulator

Mα : {0, 1}Nb → L2([αT1, αT2]), v 7→ qα (24)

has the maximum transmit power

Pα := 1
αT2−αT1

∫ αT2
αT1
|qα(t)|2dt = 1

αT2−αT1

∫ αT2
αT1

|q(t/α)|2
|α|2 dt = 1

|α|2(T2−T1)

∫ T2
T1
|q(t̃)|2dt̃ = P

|α|2 , (25)

where we used the substitution t̃ := t/α, dt̃ = dt/α. The carrier waveform ofMα will by construction have
a Fourier transform with support in [−1, 1], so that the argument given above for sinc(ξ) can again be made.
Thus, the power P of the modulatorM will also be bounded.

Similar arguments show that raised cosine carriers [26] and flat-top carriers [35] also fulfill the
conditions of Theorem 2. Having seen that Theorem 2 is applicable to many b-modulated systems,
we now prove two lemmas which we need to prove the theorem.

Lemma 1. Let b(ξ) be any real-analytic function for ξ ∈ R with

‖b‖∞ ≤ 1, lim
ξ→±∞

b(ξ) = 0 and sup
k=2,3,...

∥∥∥∥∥dkb
dξk

∥∥∥∥∥
∞

< ∞. (26)
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Then, the energy contained in any finite interval [−W, W] is finite:

EW := − 1
π

∫ W

−W
log(1− |b(ξ)|2)dξ < ∞. (27)

Proof. Let us set f (ξ) := b(ξ)b̄(ξ), where b̄(ξ) = b∗(ξ∗). If b(ξ) is real-analytic, then b̄(ξ) is
real-analytic which implies f (ξ) is also real-analytic [36] [Proposition 1.1.4]. For ξ ∈ R, f (ξ) := |b(ξ)|2.
Let ξ0 denote any spectral singularity (i.e., |b(ξ0)| = 1). We are interested in showing that the
contribution of the singularity to the signal energy is finite, i.e.,

I :=
∫ ξ0+δ/2

ξ0−δ/2
log(1− f (ξ))dξ > −∞ (28)

for δ > 0 small enough. Since f (ξ) ∈ [0, 1], this would imply that I is real and not positive. In a
interval (ξ0 − δ/2, ξ0 + δ/2) with δ > 0 small enough, we can write ([36] [Corollary 1.1.10])

f (ξ) = f (ξ0) +
f (1)(ξ0)

1!
(ξ − ξ0) +

f (2)(ξ0)

2!
(ξ − ξ0)

2 +
f (3)(ξ0)

3!
(ξ − ξ0)

3 + . . . , (29)

where f (k) := dk

dξk f . The derivative test tells us that ξ0 will be an isolated maximum point of f only if

f (k)(ξ0) = 0 for k = 1, . . . , n with n odd and f (n+1)(ξ0) < 0. Plugging these into Equation (29), we get

f (ξ) = 1 +
f (n+1)(ξ0)

(n + 1)!
(ξ − ξ0)

(n+1) +
f (n+2)(ξ0)

(n + 2)!
(ξ − ξ0)

(n+2) + . . . . (30)

(Spectral singularities are maximum points because f (ξ) = |b(ξ)|2 ≤ 1 for all ξ. They must be isolated
because otherwise f (ξ) = |b(ξ)|2 = 1 for all ξ ∈ R since f is real-analytic [36] [Corollay 1.2.6], which
contradicts the second condition in Equation (26).)

For showing Equation (28), let us define a second integral I I by substituting only the first two
non-zero terms of the expansion Equation (30) for f (ξ) in Equation (28):

I I :=
∫ ξ0+δ/2

ξ0−δ/2
log

(
1−

(
1 +

f (n+1)(ξ0)

(n + 1)!
(ξ − ξ0)

(n+1)

))
dξ (31)

=
∫ ξ0+δ/2

ξ0−δ/2
log

(
− f (n+1)(ξ0)

(n + 1)!
(ξ − ξ0)

(n+1)

)
dξ (32)

=
∫ ξ0+δ/2

ξ0−δ/2
log

(
− f (n+1)(ξ0)

(n + 1)!

)
dξ +

∫ ξ0+δ/2

ξ0−δ/2
log
(
(ξ − ξ0)

(n+1)
)

dξ (33)

= δ log

(
− f (n+1)(ξ0)

(n + 1)!

)
+
∫ δ/2

−δ/2
log
(
(ξ2)(n+1)/2

)
dξ (34)

= δ log

(
− f (n+1)(ξ0)

(n + 1)!

)
+ 2

n + 1
2

∫ δ/2

0
log
(

ξ2
)

dξ (35)

= δ

(
log

(
− f (n+1)(ξ0)

(n + 1)!

)
+ (n + 1)

(
log
(

δ

2

)
− 1
))

. (36)

For any δ > 0, I I is real and finite.
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Our next goal is to show that the term I I I := I − I I is also finite for δ > 0 small enough. We start

by bounding S := f (n+2)(ξ0)
(n+2)! + f (n+3)(ξ0)

(n+3)! (ξ − ξ0)
1 + . . .:

|S| =
∣∣∣∣∣ f (n+2)(ξ0)

(n + 2)!
+

f (n+3)(ξ0)

(n + 3)!
(ξ − ξ0)

1 + . . .

∣∣∣∣∣
≤
∣∣∣∣∣ f (n+2)(ξ0)

(n + 2)!

∣∣∣∣∣+
∣∣∣∣∣ f (n+3)(ξ0)

(n+3)!
(ξ − ξ0)

1

∣∣∣∣∣+ . . .

(37)

The largest value for |ξ − ξ0| we have to consider is |ξ − ξ0| = δ/2. Hence,

|S| ≤
∣∣∣∣∣ f (n+2)(ξ0)

(n + 2)!

∣∣∣∣∣+
∣∣∣∣∣ f (n+3)(ξ0)

(n + 3)!2

∣∣∣∣∣ δ +

∣∣∣∣∣ f (n+4)(ξ0)

(n + 4)!4

∣∣∣∣∣ δ2 + |. . .| (38)

Since, by assumption supk=n+2,n+3,... | f (k)(ξ0)| < ∞, we find that

|S| ≤ sup
k=n+2,n+3,...

∣∣∣ f (k)(ξ0)
∣∣∣ ( 1

(n + 2)!
+

δ

(n + 3)!2
+

δ2

(n + 4)!4
+ . . .

)
→ sup

k=n+2,n+3,...

∣∣∣ f (k)(ξ0)
∣∣∣ 1
(n + 2)!

for δ→ 0,
(39)

Hence,

|S| < 2
(n + 2)!

sup
k=n+2,n+3,...

∣∣∣ f (k)(ξ0)
∣∣∣ < ∞ (40)

for δ > 0 small enough. The integral

I I I := I − I I (41)

=
∫ ξ0+δ/2

ξ0−δ/2
log(1− f (ξ))− log

(
− f (n+1)(ξ0)

(n + 1)!
(ξ − ξ0)

(n+1)

)
dξ (42)

=
∫ ξ0+δ/2

ξ0−δ/2
log

 1− f (ξ)

− f (n+1)(ξ0)
(n+1)! (ξ − ξ0)(n+1)

dξ (43)

=
∫ ξ0+δ/2

ξ0−δ/2
log

− f (n+1)(ξ0)
(n+1)! (ξ − ξ0)

(n+1) − f (n+2)(ξ0)
(n+2)! (ξ − ξ0)

(n+2) + . . .

− f (n+1)(ξ0)
(n+1)! (ξ − ξ0)(n+1)

dξ (44)

=
∫ ξ0+δ/2

ξ0−δ/2
log

1 +
f (n+2)(ξ0)
(n+2)! (ξ − ξ0)

(n+2) + . . .

f (n+1)(ξ0)
(n+1)! (ξ − ξ0)(n+1)

dξ (45)

=
∫ ξ0+δ/2

ξ0−δ/2
log
(

1 + (ξ − ξ0)
(n + 1)!

f (n+1)(ξ0)
S
)

dξ, (46)

is, in light of Equation (40), thus indeed finite for δ > 0 small enough. Earlier, we already found that
the integral I I is finite for any δ > 0. However, then, the integral I = I I + I I I has to be finite as well
for δ > 0 small enough since the Lebesgue integrable functions form a vector space.

As f (ξ) is real-analytic on R, there can be only a finite number of points ξ◦1 , ξ◦2 , . . . , ξ◦M in [−W, W]

at which f (ξ◦m) = 1 [36] [Corollary 1.2.6]. (An infinite sequence ξ◦1 , ξ◦2 , · · · of spectral singularities in
a finite interval [−W, W] would have an accumulation point. Similarly to before, this would imply



Entropy 2020, 22, 639 11 of 15

f (ξ) = |b(ξ)|2 = 1 for all ξ, which contradicts Equation (26).) As shown above, we can choose
δ1, δ2, . . . , δM > 0 small enough such that

Im :=
∫ ξ◦m+δm/2

ξ◦m−δm/2
log(1− f (ξ))dξ > −∞ (47)

for all m. The set

X := [−W, W]
∖ M⋃

m=1

(ξ◦m − δm/2, ξ◦m + δm/2) (48)

is compact. The function f (ξ) thus attains a maximum on X, which has to be smaller than one since
we removed all points where f (ξ) = 1 from X. Summarizing, we find that

EW = − 1
π

(∫
X

log(1− f (ξ))dξ +
∫
[−W,W]\X

log(1− f (ξ))dξ

)
≤ − 1

π

(
min
ξ∈X

log(1− f (ξ))︸ ︷︷ ︸
>−∞

∫
X

dξ +
M

∑
m=1

Im

)
< ∞.

(49)

Lemma 1 implies that there is a bound on the energy of b(ξ) when the nonlinear bandwidth is
fixed. This leads us to the following lemma.

Lemma 2 (Energy bound for b-modulation). We consider the b-modulator in Theorem 2. Let 0 < W < ∞.
Then, there exists a finite constant EW such that the energy of any generated b(ξ) in [−W, W] satisfies

EW = − 1
π

∫ W

−W
log(1− |b(ξ)|2)dξ ≤ EW . (50)

The constant EW depends on Ψ, S∗, N, ∆ξ, and W, but is independent of A and the choice of the sn.

Figure 5 presents a graphical illustration of Lemma 2.

0

0

1

0

0

6

Figure 5. The left plot shows a b(ξ) of the form Equation (20) for several values of the power
control factor A, resulting in different gaps to singularity εb = 1 − ‖b‖2

∞. The right plot shows
the corresponding integrand in Equation (50). The shaded areas thus represent the signal energy EW in
the shown interval. Lemma 2 tells us that EW will stay below a finite bound no matter how small the
gap to singularity becomes.



Entropy 2020, 22, 639 12 of 15

Proof of Lemma 2. Let us fix s−N , . . . , sN ∈ S∗. For a real-analytic Ψ(ξ), snΨ(ξ) will also be
real-analytic [36] [Proposition 1.1.4]. The sum of real-analytic functions is also real-analytic [36]
[Proposition 1.1.4], thus b(ξ) will be real-analytic. Since A is assumed admissible, the first condition
in Equation (26) is fulfilled. The first assumption in Equation (21) ensures that the second condition
in Equation (26) is fulfilled as well. By applying the triangle inequality to Equation (26) and using
Equation (21) to bound the individual summands, we find that also the third condition in Equation (26)
is fulfilled. Hence, we can apply Lemma 1. The admissible A that results in the largest energy in
[−W, W] is given by (We assume without loss of generality that the denominator in Equation (51) is
not zero. In such cases, the energy is zero for all A ≥ 0.)

A∗ = 1
/

max
ξ∈R

∣∣∣∣∣ N

∑
n=−N

snΨ(ξ − n∆ξ)

∣∣∣∣∣ . (51)

Lemma 1 shows that EW is finite for the choice A = A∗. Since EW can only be lower for other
admissible choices of A, we have obtained a finite upper bound on EW for the chosen s−N , . . . , sN that
is independent of A. Since our constellation alphabet is finite, there is only a finite number of choices
for the s−N , . . . , sN . By taking the maximum over the upper bounds on EW for each possible choice,
we obtain an upper bound on EW that is independent of both A and the sn.

Now that we have proved the existence of an energy bound for the modulator in Theorem 2,
we shall proceed to prove the power bound.

Proof of Theorem 2. Our first goal is to bound the energy corresponding to the nonlinear spectrum

b(ξ) = Ab0(ξ) := A
N

∑
n=−N

snΨ(ξ − n∆ξ).

As the energy is always zero if ‖b0‖∞ = 0, we assume without loss of generality that ‖b0‖∞ > 0. Let us
fix an arbitrary 0 < δ < ‖b0‖∞. Since Ψ(ξ)→ 0 for ξ → ±∞, also b0(ξ)→ 0 for ξ → ±∞. Hence, we
can choose 0 < W < ∞ such that |b0(ξ)| < δ for all |ξ| > W. Since A‖b0‖∞ ≤ 1 by Equation (14), we
obtain

Aδ ≤ δ

‖b0‖∞
=: η < 1

for any admissible A ≥ 0. Choose now EW as in Lemma 2. Then,

E = − 1
π

∫ ∞

−∞
log(1− A2|b0|2)dξ (52)

= − 1
π

∫
R\[−W,W]

log(1− A2|b0|2)dξ − 1
π

∫ W

−W
log(1− A2|b0|2)dξ (53)

≤ − 1
π

∫
R\[−W,W]

log(1− A2|b0|2)dξ + EW (54)

=
1
π

∫
R\[−W,W]

(
A2|b0(ξ)|2 +

1
2

A4|b0(ξ)|4 +
1
3

A6|b0(ξ)|6 + · · ·
)

dξ + EW (55)

≤ 1
π

∫
R\[−W,W]

A2|b0(ξ)|2
(

1 +
1
2

A2δ2 +
1
3

A4δ4 + · · ·
)

dξ + EW (56)

≤ 1
π

η2

δ2 (1 + η2 + η4 + · · · )
∫
R\[−W,W]

|b0(ξ)|2dξ + EW (57)

≤ 1
π

η2

δ2 (1 + η2 + η4 + · · · )‖b0‖2
2 + EW < ∞. (58)



Entropy 2020, 22, 639 13 of 15

In Equation (55), the Taylor expansion − log(1 − ξ2) = ξ2 + ξ4/2 + ξ6/3 + . . . was used.
In Equation (57), it was used that Aδ ≤ η. In the last line, we used ‖b0‖2

2 < ∞, which follows
from Ψ ∈ L2(R), and 0 < η < 1.

The bound on E in Equation (58) is independent of A but still depends on the choice of the
s−N , . . . , sN ∈ S∗ used to construct b0(ξ). Since the set S∗ is finite, there is only a finite number of
possible b0(ξ). Let E denote the largest value of Equation (58) over all possible b0(ξ). By construction,
E is finite and independent of both A and the choice of s−N , . . . , sN . From Equation (14), we find∫ T2

T1
|q(t)|2dt ≤

∫ ∞
−∞ |q(t)|

2dt = E ≤ E. Thus, P ≤ E/(T2 − T1) with E independent of A, the choice of
the sn, and of course the duration T2 − T1.

4. Conclusions

The NFDM technique of b-modulation has received much attention in the last few years. We have
shown, for the first time, that, for b-modulators, the nonlinear bandwidth, signal duration, and power
are coupled when, as it is the case in most practical implementations, the gap to singularity is bounded.
For fixed nonlinear bandwidth, this results in a bound on the transmit power that decreases with
signal duration. This decrease in the transmit power implies that the supremum of the achievable
signal-to-noise ratios (SNRs) decreases as the signals become longer. Hence, we established a new
factor that contributes to the observed performance degradation of b-modulated systems for long
signals [10,11]. Furthermore, we showed that, even in the presence of spectral singularities, the transmit
powers of many b-modulators cannot be made arbitrarily large. The results in this paper also apply
to NFDM systems that modulate the reflection coefficient in fibers with normal dispersion when b is
replaced with ρ since the underlying mathematical structure is the same. The cases of b-modulation in
normal dispersion fiber and ρ-modulation in anomalous dispersion fiber require further research.
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