

Delft University of Technology

A Classification of Memory-Centric Computing

Du Nguyen, H.A.; Yu, J.; Abu Lebdeh, M.F.M.; Taouil, M.; Hamdioui, S.; Catthoor, Francky

DOI
10.1145/3365837
Publication date
2020
Document Version
Final published version
Published in
ACM Journal on Emerging Technologies in Computing Systems

Citation (APA)
Du Nguyen, H. A., Yu, J., Abu Lebdeh, M. F. M., Taouil, M., Hamdioui, S., & Catthoor, F. (2020). A
Classification of Memory-Centric Computing. ACM Journal on Emerging Technologies in Computing
Systems, 16(2), 1-26. Article 13. https://doi.org/10.1145/3365837

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3365837
https://doi.org/10.1145/3365837

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

13

A Classification of Memory-Centric Computing

HOANG ANH DU NGUYEN, JINTAO YU, MUATH ABU LEBDEH,

MOTTAQIALLAH TAOUIL, and SAID HAMDIOUI, Delft University of Technology

FRANCKY CATTHOOR, Inter-university Micro-Electronics Center (IMEC)

Technological and architectural improvements have been constantly required to sustain the demand of faster

and cheaper computers. However, CMOS down-scaling is suffering from three technology walls: leakage wall,

reliability wall, and cost wall. On top of that, a performance increase due to architectural improvements is also

gradually saturating due to three well-known architecture walls: memory wall, power wall, and instruction-

level parallelism (ILP) wall. Hence, a lot of research is focusing on proposing and developing new technologies

and architectures. In this article, we present a comprehensive classification of memory-centric computing

architectures; it is based on three metrics: computation location, level of parallelism, and used memory tech-

nology. The classification not only provides an overview of existing architectures with their pros and cons but

also unifies the terminology that uniquely identifies these architectures and highlights the potential future

architectures that can be further explored. Hence, it sets up a direction for future research in the field.

CCS Concepts: • Computer systems organization → Special purpose systems; • Hardware → Spintronics

and magnetic technologies;

Additional Key Words and Phrases: Computation-in-memory, resistive computing, memory-centric computer

architectures

ACM Reference format:

Hoang Anh Du Nguyen, Jintao Yu, Muath Abu Lebdeh, Mottaqiallah Taouil, Said Hamdioui, and Francky

Catthoor. 2020. A Classification of Memory-Centric Computing. J. Emerg. Technol. Comput. Syst. 16, 2, Article

13 (January 2020), 26 pages.

https://doi.org/10.1145/3365837

1 INTRODUCTION

For several decades, technology scaling has provided a 43% performance gain for each successive
node and cheaper computers as a result of a higher operating frequency and lower cost per tran-
sistor, respectively [15, 54]. On top of that, smart architectural improvements such as pipelining
and cache hierarchies have increased computer performance up to 50% every 2 years [49]. How-
ever, CMOS scaling suffers from three main walls: leakage wall, reliability wall, and cost wall [45],
while computer architectures also face three walls: memory wall, power wall, and instruction-level

The results presented in this article have been obtained in the framework of the project “Computation-in-memory archi-

tecture based on resistive devices” (MNEMOSENE), which has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 780215.

Authors’ addresses: H. A. D. Nguyen, J. Yu, M. A. Lebdeh, M. Taouil, S. Hamdioui, and F. Catthoor, Mekelweg 4,

2628 CD, Delft, the Netherlands; emails: {H.A.DuNguyen, J.Yu-1, M.F.M.AbuLebdeh, M.Taouil, S.Hamdioui}@tudelft.nl,

Francky.Catthoor@imec.be.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1550-4832/2020/01-ART13 $15.00

https://doi.org/10.1145/3365837

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

https://doi.org/10.1145/3365837
mailto:permissions@acm.org
https://doi.org/10.1145/3365837
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3365837&domain=pdf&date_stamp=2020-01-30

13:2 H. A. Du Nguyen et al.

parallelism (ILP) wall [100]. In order to address these walls, novel technologies and architectures
are under research to improve the performance [54]. As a result, an enormous amount of computer
architectures have been proposed recently. Therefore, a complete classification of these architec-
tures is needed, not only to have a useful way of describing and comparing them, but also to have
a clear view about what has been explored and what has not been explored yet.

Limited work has addressed this problem. Most of the well-known classifications separate the
processors from the memory. Therefore, these classifications often are processor-centric-based
architectures, such as Flynn’s [35], Skillicorn’s [117], and Shami-Hemani’s classification [112]. Al-
though these classifications work well for processor-centric architectures proposed in the past
decades, they are not applicable to the emerging memory-centric architectures. Other small-scale
surveys mostly target a specific type of computer architecture such as vector processors, au-
tomata processors, or processing-in-memory architectures [23, 58, 69, 108, 113, 122, 125, 126].
These surveys only discuss a limited part of the computer architecture classification and, in ad-
dition, do not contain the complete space of both conventional processor-centric architectures
and memory-centric architectures. Therefore, these surveys often make no distinction between
processing inside and near the memory. This leads to a confusion in terminology (e.g., processing-
in-memory, logic-in-memory, in-memory computing, near-memory computing, etc.). For example,
Hybrid Memory Cube is considered to be near-memory computing [101]; however, it is also re-
ferred to as processor-in-memory [3]. Some recent classifications and reviews did mention those
architectures in the context of technology development [94, 136]. However, these papers mostly
targeted the technological feasibility instead of the characteristics and variants of such computer
architectures. In addition to the above, there are some architecture-related papers that briefly dis-
cussed the features of emerging architectures [89, 91, 106]. However, they are incomplete, focus
mostly on relatively narrow aspects, and only classify the architectures based on applications [89]
and logic design methods [91, 106]. In short, there is still a lack of systematic and complete classi-
fication that focuses on memory-centric computing or computer architectures in general. This is
exactly the target of this article.

This article presents a comprehensive classification of memory-centric computing and discusses
both conventional and emerging computing architectures. The classification is based on three met-
rics: computation location, memory technology, and computation parallelism. The computation
location indicates where the computations are performed (e.g., near or far from the memory) and
provides an insight regarding the severeness of the memory wall. The memory technology, which
provides characteristics of the memory, can enable new computer architectures (e.g., resistive com-
puting). The computation parallelism specifies the type of parallelism that can be exploited in an
architecture (e.g., task-level parallelism). With these distinct metrics, the classification covers all

computing architectures in general and memory-centric computing in specific. Note, however,
that it does not make previous proposed classifications obsolete, as they typically target specific
subclasses. In short, the contributions of this article are the following:

• Unify the terminology for computer architectures such that it is applicable to all computing
paradigms including conventional, in-memory, and near-memory computing.

• Propose a complete classification that includes both existing and emerging architectures.
• Explain one representative architecture of each subclass in detail.
• Discuss and evaluate the main advantages and disadvantages of the different classes and

selected architectures.
• Highlight the whole space of memory-centric computing, including the nonexplored archi-

tectures.

The rest of this article is structured as follows. Section 2 shows the metrics used in the classi-
fication, briefly introduces the four classes, and provides a quantitative comparison among them.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

A Classification of Memory-Centric Computing 13:3

Fig. 1. Computer architecture.

Sections 3, 4, and 5 present the characteristics of the three memory-centric computing classes;
the fourth class contains the traditional von Neuman architectures and is out of the scope of this
article. Section 6 discusses the pros and cons of this classification and compares it with existing
ones. Finally, Section 7 concludes this article.

2 CRITERIA AND CLASSIFICATION

In this section, we first present the set of metrics to classify computer architectures. Thereafter, we
map the existing architectures on our classification. Finally, we compare the classes qualitatively
based on their most important metrics.

2.1 Classification Metrics

We propose several metrics to classify computer architectures based on the computing resources
and memory. A computer architecture or system consists of (one or more) memories and (one or
more) computational units as shown in Figure 1. The memories can reside in a core (i.e., mem-
ory core) or System in Packages (SiP). A memory core consists of one or more cell arrays (used
for storage) and peripheral circuits (used to access the memory cells). Note that register files and
caches are not considered as storage here, as they are optimized for speed with relatively small ca-
pacity and temporary storage [49]. Hence, the long-term storage of data takes place in the higher
layers such as main memory and solid-state disks. Traditionally, the computing takes place in the
computational cores. However, recently architectures with computing power in the memory have
been proposed [46, 99, 101]. In case the memory contains additional logic circuits such as in Hybrid
Memory Cubes (HMCs) [101], we speak of an SiP. With an increasing distance from the main mem-
ory array, the available bandwidth (specified by BW in Figure 1) reduces; note that the bandwidth
here is related to the memory bottleneck and will be discussed further in Section 2.3. Based on
these definitions, the following metrics are used to classify computer architectures: computation
location, memory technology, and computation parallelism; they are discussed next.

Computation location: This indicates where the result of the computation is produced. A com-
putation is defined here as a primitive logic function (e.g., logical operations) or arithmetic oper-
ation (e.g., addition, multiplication). Figure 1 indicates the four possibilities where a computation
result can be produced; they can be identified by four circled numbers. If the result is produced
within the memory core (i.e., the computing takes places within one of the memories), the com-
puter architecture is referred to as Computation-Inside-Memory (CIM). If the result is produced
outside the memory core, the architecture is referred to as Computation-Outside-Memory (COM).
Both CIM and COM can be further subclassified.

It is worth stressing that CIM architectures perform computations within the memory core. As
already mentioned, the memory consists of a memory array and the peripheral circuits. Specifically,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

13:4 H. A. Du Nguyen et al.

depending on where the result of the computation is produced, CIM architectures can be divided
into two basic subclasses. These subclasses can be combined into many hybrid combinations. We
will describe this large space by focusing first on its two extreme sides:

• CIM-Array (CIM-A): In CIM-A, the computing result is produced within the array (noted as
position 1 in Figure 1). Note that this is different from a standard write operation. Typical ex-
amples of CIM-A architectures use memristive logic designs such as MAGIC and imply [66,
72]. CIM-A architectures always require a redesign of cells to support such logic design,
as the conventional memory cell dimensions and their embedding in the bit- and wordline
structure do not allow them to be used for logic. A memory cell is namely heavily optimized
in terms of processing stack and layout; hence, any changes in the array access require a
completely new cell design and characterization process as the material stack of a memory
array is specifically optimized for specific control voltages, current, and so forth. In addi-
tion, modifications in the periphery are sometimes needed to support the changes in the
cell. Therefore, CIM-A architectures can be subdivided into two groups: (1) basic CIM-A,
where only changes inside the memory array are required, and (2) hybrid CIM-A, where, in
addition to major changes in the memory array, minimal to medium changes are required
in the peripheral circuit. An example of basic CIM-A is an architecture that performs com-
putations using implication logic [76]. In this logic style, only one memory row is activated
at a time, and a number of columns (bits) are read out through sense amplifiers. Hence, due
to the same usage as in normal memory, the peripheral circuits do not require any modifi-
cations. An example of hybrid CIM-A is an architecture that performs computations using
MAGIC [72]. In this case, multiple memory rows are written simultaneously; due to the high
write currents, modifications are required to the cell and medium changes in the peripheral
circuits are needed to activate the multiple rows.

• CIM-Periphery (CIM-P): In CIM-P, the computing result is produced within the peripheral
circuitry (noted as position 2 in Figure 1). Typical examples of CIM-P architectures con-
tain logical operations and vector-matrix multiplications [21, 81, 134]. CIM-P architectures
typically contain dedicated peripheral circuits such as DACs and/or ADCs [37, 111] and
customized sense amplifiers [81, 134]. Note that more radical changes in the peripheral cir-
cuit can be made in the future (e.g., changing in control voltages leads to radical changes in
voltage drivers and sense amplifiers, or including a full functional processor inside memory
banks). Even though the computational results are produced in the peripheral circuits for
CIM-P, the memory array is a substantial component in the computations. As the periph-
eral circuits are modified, the currents/voltages applied to the memory array are typically
different than in the conventional memory. Hence, similarly to the CIM-A subclasses, the
CIM-P architectures are also further divided into two groups: (1) basic CIM-P, where only
changes inside the peripheral is required, which means the current levels should not be af-
fected, and (2) hybrid CIM-P, where the majority of the changes take place in the peripheral
circuit and minimal to medium changes in the memory array. An example of basic CIM-P
is Pinatubo logic [81]. Pinatubo activates two or more (but not many) rows of a memory
array simultaneously during read operations for computations; in addition to a customized
sense amplifier to perform the logic operation, this architecture also requires modifications
in the address decoder to activate several rows. Note, however, that modifications in the
cell/array are not required as the total read current is still small. An example of hybrid
CIM-P is ISAAC [111]. ISAAC activates all rows of a memory array at the same time dur-
ing read operations to perform a matrix vector product using an ADC readout circuit. This
architecture accumulates currents in the bitline that impose higher electrical loading in the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

A Classification of Memory-Centric Computing 13:5

memory array; hence, not only is the periphery circuit heavily modified but also the cell
requires changes due to the high bitline current.

The difference between CIM-A and CIM-P classes is the location of producing results. The re-
sults of CIM-A architectures are produced inside the memory array, which may sometimes require
readout operations to obtain the results for further calculations; instead, in CIM-P the results are
obtained directly after the operations and may sometimes need an additional step to write the
results back to memory. In order to perform computations, both subclasses impact the design of
the memory core. However, in many/most cases both the cell and the peripheral circuitry require
changes; i.e., they are hybrids. In case these changes affect mostly the cell, we speak of hybrid
CIM-A, otherwise hybrid CIM-P.

In COM classes, computations take either place in the extra logic circuits inside the memory
SiP (noted as position 3 in Figure 1) or in the traditional computational cores (noted as position
4 in Figure 1) such as CPU, FPGA, and so forth. In case of the former, the computations take place
near the memory core and the architecture is referred to as Computation-Outside-Memory Near
(COM-N). In case of the latter, the architecture is referred to as Computation-Outside-Memory
Far (COM-F). Note that the bandwidth is still high for COM-N as compared to COM-F, but lower
than CIM-A and CIM-P.

Note that architectures where the computation takes place in different places (e.g., array and
peripheral) are called composite architectures. Hence, they are compositions of the leaf nodes in
our classification tree. In addition, an architecture could have multiple primitive functions, each
with a different computation location. Also, these architectures are considered to be composite.

In addition to the computation location, which specifies where the results are produced, it is
possible to further divide the classes using the computation method by specifying how the com-
putation is performed. For example, CIM-A often uses memristor-based computations such as
IMPLY [14, 115], Snider [118], and MAGIC [72]. CIM-P often uses current summations such as
Scouting logic [134], Ambit [110], and Pinatubo [81]. However, this metric is not included in the
classification for two reasons: (1) it is strongly coupled to the computational location, and (2) it
makes the classification too complex and hence loses its simplicity. Nevertheless, including such
a metric can be complementary to our work. A further subclassification based on this metric can
be based on existing classifications as shown in [26, 106].

Memory technology: This indicates which technology is used to implement the memory array.
The technologies are either conventional charge-based memories such as DRAM/SRAM [86, 87,
93] or emerging non-charge-based memories [107]. The non-charge-based memories can be fur-
ther divided into different types based on their physical mechanism: resistive memories [74, 107],
“magnetic” memories [10, 19, 107], molecular memories [41, 78, 79, 103], or mechanical memo-
ries [16, 42]. Resistive memories store the data as a resistance value; it includes Resistive RAM
(RRAM) [129], phase change memory (PCM) [74], and the like. The resistance in RRAM is de-
termined by the presence or absence of a conductive filament between its two electrodes [107],
while the resistance in PCM relies on a change between amorphous and crystalline phases [105,
130]. Magnetic memories, such as Magnetic RAM (MRAM), store the data using the magnetization
direction of the free layer with respect to the hard or reference layer; it includes, for example,
conventional magnetic RAM [140] and STT-MRAM [36, 51]. The resistive and magnetic memories
are organized in crossbars with cells placed at each junction. The other types of memories (i.e.,
molecular memories, mechanical memories) have not been shown to be useful for computing yet;
hence, they are not discussed further in this classification. It is worth mentioning that each of
these memory technologies has its own characteristics (read/write latency, endurance, capacity,
etc.) and therefore are deployed at different levels in the memory hierarchy [107]. Therefore, the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

13:6 H. A. Du Nguyen et al.

Fig. 2. Three types of computation parallelism.

memory technology dictates not only which CIM operations are technology-wise feasible but also
where in the memory hierarchy they take place.

Computation parallelism: This indicates the level of parallelism that can be exploited in a
computer system, i.e., task, data, and/or instruction level parallelism, as shown in Figure 2. An
architecture supports task-level parallelism when it contains multiple independent control units
and multiple data memories (see Figure 2(a)). The independent control units can be used to execute
multiple threads or instruction sequences from the same application concurrently; examples are
multithreading [30, 124] and multicore systems [40]. In data parallelism, a single control unit is
used to apply the same instruction concurrently on a collection of data elements (see Figure 2(b));
note that all execution units share the same control signals. The data elements can be processed
using constant sizes (e.g., vector and array processor [28, 33]) or varying subword sizes (e.g., SWAR
(SIMD Within A Register) processor [34, 102]). In instruction-level parallelism, a single control
unit is used to execute various instructions concurrently (see Figure 2(c)); hence, the execution
units have different control signals. A further distinction can be made based on intra-instruction
(e.g., pipelined processor [123]) or interinstruction (e.g., VLIW processor [131]) parallelism, or a
combination of them (e.g., speculative processor [88]).

The three above-mentioned metrics (i.e., computation location, memory technology, and com-
putation parallelism) are dependent on each other. The computation location has a big impact on
the feasibility of the other two metrics, for example, realizing ILP in CIM-A is quite difficult or
realizing COM-N with SRAM is not economically feasible. Also, the parallelism is not fully inde-
pendent from the computation location and memory technology. For example, data parallelism
is often applied straightforwardly in CIM-A and CIM-P [27, 37]; however, it is difficult to realize
ILP in CIM-A, while it is much easier in COM-N and COM-F due to the intrinsic pipeline stages
in conventional processors. The computation parallelism is also affected by the technology as the
technology poses restrictions on the endurance. For example, exploiting ILP in CIM-A architec-
tures demands a high endurance as more writes are required to store immediate stages and, hence,
are not attractive for emerging memories like RRAM and PCM with endurance limitations.

2.2 Classification

We classify the existing architectures based on the above discussed metrics; the result is shown in
Figure 3. The references of the abbreviated architectures are listed in Table 1.

The classification contains 48 categories. Some categories, the ones located in red planes, show
that a lot of work has been done for that particular class. For the categories in the pink planes, a
moderate number of work has been done. To the best of our knowledge, no architectures exist in
the blue planes; these fields are currently unexplored as they have received no attention yet from
the research community or are nonexisting due to current restrictions of the technology; these
blue planes are not further discussed in this article for two main reasons: (1) scope of the article:
the technical and economical feasibility of these planes requires an intensive discussion and is by
itself a new contribution and (2) space limitations. Later on, we will discuss several architectures
from the red and pink planes.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

A Classification of Memory-Centric Computing 13:7

Fig. 3. Memory-centric computing classification.

Fig. 4. Memory-centric computing timeline.

Table 1. Abbreviation List

Abbreviation Reference

DRISA-3T1C [80]

ReVAMP [9]

PLiM [38]

MPU [52]

CIM [27, 46]

CRS [115]

ISAAC [111]

DPP [37]

IMI [32]

AMBIT [110]

DRISA-1T1C [80]

S-AP [121]

Neural$ [29]

Compute$ [1]

Pinatubo [81]

PRIME [21]

CIMA [26]

ReAP [137]

R-AP [138]

STT-CiM [56]

DDN [20]

S-Mem [85]

A-PAGE [98]

HIVE [3]

D-AP [96]

DIVA [24]

HMC [50]

AMC [95]

HBM [84]

DRAMA [31]

FlexRAM [63]

VIRAM [70]

ProPRAM [128]

ReGP [92]

Pipelined [49, 123]

VLIW [83, 131]

Vector Proc. [22, 33, 102]

Multicore [53]

GPU [67, 97]

The developments in memory-centric computing are shown in the timelime of Figure 4; this
shows the trend of computing moving from COM-F to COM-N, CIM-A, and CIM-P. In the figure, a
larger circle indicates that more work has been proposed in that year. Note that the conventional
architectures in COM-F are not memory centric and, hence, are left out. The concept of merging
computation and memory was introduced back in 1970 [120]. This concept became popular around

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

13:8 H. A. Du Nguyen et al.

Table 2. Comparison among Architecture Classes in Terms of Data Movement, Computation

Requirements, Available Bandwidth, Memory Design Efforts, and Scalability

Data
Movement

outside
Memory

Core

Computation
Requirements

Available

Bandwidth

Memory Design Efforts

ScalabilityData
Align-
ment

Complex
Function

Cells &
Array

Periphery Controller

CIM-A No Yes High latency Max High Low/medium High Low

CIM-P No Yes High cost High-Max Low/medium High Medium Medium

COM-N Yes NR Low cost High Low Low Low Medium

COM-F Yes NR Low cost Low Low Low Low High

NR: Not required.

1997 in COM-N architectures and was further developed from 2002. These COM-N architectures,
such as VIRAM [70] (initially named IRAM), DIVA [24], or FlexRAM [63], never commercialized
due to the limitations of embedded DRAM technology (i.e., costly fabrication process and ineffi-
cient speed and memory capacity trade-off [55, 64, 65]). After that, a long silent period in academia
community was observed from 2002 to 2010. Meanwhile, industrial efforts have been invested to
deploy large eDRAM in commercial COM-N systems such as the POWER7 processor [61], PlaySta-
tion2 [7], and Intel’s top-class CPUs [71]. From 2012 to 2016, new commercial COM-N architectures
based on novel 3D stacking technology were proposed such as Hybrid Memory Cube (HMC) [50]
and High-Bandwidth Memory (HBM) [84]. In the last several years, with the emergence of resistive
technology, CIM-A and CIM-P architectures started to become popular.

Note that many of the architectures are hybrid and/or composite, which means that they can
map into multiple classes. In order to simplify Figure 3, the architectures are classified based on
their dominant features. For example, DPP exploits both ILP and DLP; however, DPP focuses more
on performing various parallel operations using multiple functional units, while it also processes a
whole row/column inside the memory; hence, the dominant feature of DPP parallelism is selected
as ILP.

2.3 Qualitative Evaluation

In this subsection, we briefly compare the different computing types qualitatively using the most
important classification metric, i.e., the computation location. This metric dictates the type of data
movements, computation requirements, available bandwidth, memory design efforts, scalability,
endurance requirements, and maturity. With respect to the computation requirements, we discuss
whether the architectures require a specific data alignment and whether they have the capability
to realize complex functions. With respect to available bandwidth, we discuss the capability for
data communication between logic and storage units. With respect to the memory design efforts,
we discuss the modifications that are required for the cells, array, peripheral circuit, and controller.
With respect to the scalability, we discuss the possibility to expand the design to increase the con-
current computing capacity. With respect to the endurance requirement, we indicate the endurance
level that the architecture demands in order to execute an application. With respect to maturity, we
not only mean the readiness of the memory technology but also the available programming and
software support, and current status (i.e., simulations, prototype, or fabrication) for such archi-
tectures. With respect to the applications, we roughly indicate the range of applications for each
architecture class. The results are shown in Tables 2 and 3; their content will be discussed next.

Data movement outside the memory core indicates whether the data will remain in the
memory core during computing or transferred to outside computational units. It affects the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

A Classification of Memory-Centric Computing 13:9

Table 3. Comparison among Architecture Classes in Terms of Endurance Requirement,

Maturity, and Applications

Endurance

Requirement

Maturity
Applications

Software Support
and Technology

Development

CIM-A High Emerging Simulation
Data intensive - Computational complexity

(matrix multiplication [48], parallel addition [27])

CIM-P Medium Emerging Simulation

Data intensive - Bitwise operations
(database processing [81, 109, 110],

graph processing [2],
image processing [47, 110], security and

biosequencing application [8])

COM-N Medium Commercialized Fabricated
General purpose and Application specific

(vector processing [25, 59, 95],
automata processing [96], neural computation [20])

COM-F Low Common Practise Fabricated General purpose

memory bottleneck due to latency and the energy consumption of data transfers. Both CIM-A
and CIM-P architectures have a relatively low amount of data movement outside the memory
core, as the processing occurs inside the memory core. Therefore, they have the potential to al-
leviate the memory bottleneck. Instead of moving data from the memory to the computational
cores, the instructions are moved and directly applied to the memory; these instructions typically
operate on a large dataset, and hence a high level of parallelism can be obtained. Note, however,
that the current state of the art typically allows limited functions to be implemented in these archi-
tectures. Therefore, complex functions would still require data movements to the computational
cores outside the memory. For COM-N and COM-F architectures, data is first read from the mem-
ory. Thereafter, they are typically stored in registers before being fed to the processing units. The
amount of parallelism is limited here due to constraints in the bandwidth and number of available
registers and processing units.

Computation requirements include data alignment and the ability to implement com-
plex functions efficiently. Data alignment is required for all architectures. However, CIM-A and
CIM-P classes perform computations directly on the data residing inside the memory, and hence,
the robustness and performance are impacted more by data misalignment. Note that performing
a data alignment cannot be handled by the host processors in in-memory computing architec-
tures due to a far communication distance, while adding additional logic inside the memory core
to handle this is also not trivial. It requires an area overhead to temporarily store operands and
do the alignment with CMOS logic. For other classes, the impact of data alignment is less severe;
nevertheless, data misalignment can cause a performance degradation in other classes as well.

As the primitive operations in CIM-A and CIM-P are limited, architectures in these classes face
challenges in computing complex functions such as arithmetic operations with integer or floating-
point numbers. As a result, a lot of primitive operations are required to realize such complex
functions, if even possible. For example, a multibit addition in CIM requires multiple single-bit
additions as primitive operations and communication operations between these single-bit addi-
tions [27]. On top of that, each primitive step that involves a write operation in a memristor-based
CIM architecture suffers from a high latency due to its high write time. In addition, current CIM-P
architectures require a high cost to implement a diverse set of arithmetic operations as their ef-
ficiency today is mainly limited to bitwise logical operations and matrix vector multiplications.
Moreover, providing complex functionality using peripheral circuits in CIM-P is difficult, due to
the limited available area on the memory core. Note that despite these drawbacks, the performance

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

13:10 H. A. Du Nguyen et al.

can still be high when sufficient parallelism is exploited, e.g., by operating on multiple crossbars
in parallel. Furthermore, data doesn’t have to be transferred to the main processor, and hence, the
energy and performance can be improved. In COM-N and COM-F, computations are performed
by CMOS circuits that contain mature, optimized, and, if needed, dedicated functional units. How-
ever, the main bottleneck comes from the many additional data transfers through the memory
hierarchy.

Available bandwidth specifies how much data can be transferred between the computational
and storage units. This metric is important as it affects the amount of parallelism that can be ex-
ploited. The available bandwidth is considered similarly to the bandwidth specification of multiple
levels in the memory hierarchy; hence, it includes four ranges: max (TBs), high (10GBs), medium
(GBs), and low (MBs) [13]. Note that these terms are used for memory technology nowadays as the
exact bandwidth values are subject to change with new or different technologies. CIM-A architec-
tures may exploit the maximum bandwidth, as operations happen inside the memory array. CIM-P
architectures have a bandwidth range from high to max, depending on the complexity of the pe-
ripheral circuitry. Note that the peripheral circuits can be complex, e.g., when large customized
sense amplifiers are used. Therefore, the placement of such sense amplifiers may be limited due to
area constraints. In such cases, still a relatively high bandwidth can be realized. For COM-N, the
bandwidth is bounded by on-chip interconnections between the memory core and extra logic cir-
cuits; for example, in Hybrid Memory Cube [101] the bandwidth is limited by the number of TSVs
and available registers. This bandwidth for TSV is considered high in comparison with COM-F,
where the bandwidth is even lower due to off-chip interconnections [132].

Memory design efforts specify the required efforts needed to modify the memory (as a stor-
age entity) to make it also realize the computing functionality. In some cases, it is very difficult (or
may be even practically impossible) to modify the cells, array, periphery, and controller. CIM-A
architectures require a redesign of the cell in order to make the computing feasible. Recharacteriz-
ing the cell requires a huge effort and induces a huge cost. Other classes, except for hybrid CIM-P,
do not require this modification due to the usage of standard memory cells. In terms of changes
in the periphery, CIM-P architecture requires complex readout circuits as the output value of two
or more accessed cells may end up in multiple levels. Moreover, complex peripheral circuits (i.e.,
ADC, DAC) limit the scalability when they exhibit internal bottlenecks and could also dominate
the area of the memory core when the memory sizes are small. Hence, CIM-P is mainly useful
for larger sizes. Other classes, except for hybrid CIM-A, can utilize existing optimized readout cir-
cuits and hence do not require modifications in the periphery. In terms of memory controller, the
complexity reduces from high to low for CIM-A, CIM-P, COM-N, and COM-F, respectively. CIM-
A architectures require a complex controller as it is responsible for both controlling the crossbar
(consisting of a large number of states, each controlling different voltage drivers) and handling data
transfer (which involves the usage of buffers/registers to store temporary values). CIM-P architec-
tures have relatively simpler controllers as the computations are constructed in a similar manner
as for conventional memory (read/write) operations. The difference is that they typically have to
deal with more in-memory operations. COM-N and COM-F architectures utilize the memory in a
conventional way, and hence, standard memory controllers can be used.

Scalability specifies how easy or hard it is to scale up the architecture in order to maintain the
parallelism level. CIM-A has a low scalability due to several reasons such as the lack/complexity
of the interconnect network within the memory array it needs and the difficulty in isolating logic
units to ensure parallel executing. CIM-P has a medium scalability as the limited amount of re-
sources inside peripheral circuits makes it difficult to fit large and complex logic units; the com-
plexity of the periphery circuits is the main bottleneck . COM-N also has a medium scalability for
the same reason; even though the logic layer of memory SiP has more processing resources than

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

A Classification of Memory-Centric Computing 13:11

peripheral circuits, it cannot accommodate many complex logic units. COM-F has high scalability
due to a mature interconnect network and large space for logic devices.

Endurance requirement specifies how many write operations can be performed before the
memory of the architecture starts to fail. A memory that needs a higher number of writes will
have a lower lifetime when both have technology-wise the same endurance. Three ranges can be
specified for the architectures: a high endurance requirement (i.e., much higher than DRAM en-
durance 1015 [139]), a medium endurance requirement approximately equal to DRAM endurance,
and a low endurance requirement much less than the DRAM endurance. CIM-A has in general a
high endurance requirement due to the need for multiple write steps to perform simple Boolean
functions. CIM-P has a lower endurance requirement as operations are performed during read
operations [134]. Nevertheless, results have to be still written back to the memory in order to
perform complex functions. As CIM-A and CIM-P architectures are typically based on emerging
devices such as memristors, their endurance could be a potential issue. Similarly to CIM-P, COM-N
architectures operate closely to the memory and have to write back the results to the main mem-
ory due to the absence/limited number of registers and caches. In contrast, COM-F architectures
have a much lower endurance requirement as computations are performed using CMOS and the
results of the operations are rarely written back to the main memory due to the usage of registers
and caches.

Maturity refers not only to how feasible/reliable the memory technology is but also to how
much software support exists and the development status of the architectures in the classes. As
CIM-A and CIM-P are relatively new concepts and typically resistive based, lots of work still has
to be done to realize these architectures from both a hardware and software point of view. Re-
sistive memories and nonvolatile memories in general are typically under research development.
For example, the limited endurance puts a constraint on the amount of computations that can be
performed in resistive CIM-A architectures. Programming languages, compilers, and simulators
still need to be developed in general for these architectures. In the COM-N class, several architec-
tures have been prototyped in the industry, and therefore, they are more mature than CIM-A and
CIM-P. Architectures in COM-N also have more software support as they are equipped with tool
chains that allow product development on these architectures; for example, Micron’s automata
processor is already commercialized and is programmed in Automata Network Markup Language
(ANML) [96]. COM-F architectures are today’s conventional von Neumann architectures. They
have the highest maturity from both a technological point and software support. With respect
to the development status, CIM-A and CIM-P architectures mostly are verified using simulations,
either cycle-accurate simulations [4, 12] or circuit verification simulation (i.e., HSpice). COM-N
and COM-F architectures are further developed; they have been demonstrated in prototypes and
commercial products [101, 104]. In general, COM architectures are more mature than CIM archi-
tectures.

Applications that run effectively on the architectures are also described in Table 3. In general,
CIM architectures can be more efficient than COM architectures for certain data-intensive appli-
cations as they are less affected by the memory bottleneck. For CIM-A architectures and several
CIM-P architectures (e.g., Pinatubo, CIMA, STT-CiM), there are currently limited types of opera-
tions that can be efficiently performed on these architectures; hence, a limited range of applications
can be mapped on these architectures. For example, CIM-A architectures focus more on arithmetic
operations such as matrix multiplication [48] and parallel addition [27]. CIM-P architectures fo-
cus on bulk bitwise applications such as database processing, graph processing, image processing,
security, and biosequencing application [2, 8, 47, 81, 109, 110]. COM-N architectures are both gen-
eral purpose and application specific. A limited number of COM-N architectures are considered
as general-purpose computers such as FlexRAM [62] and SM [85]. Other COM-N architectures

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

13:12 H. A. Du Nguyen et al.

Fig. 5. Complementary resistive switch-logic crossbar array (CRS) [115].

target specific applications such as vector processing (e.g., VIRAM [59], DIVA [25], AMC [95],
etc.), automata processing (D-AP [96]), and neural computation (DDN [20]). COM-F architectures
are mostly designed for general-purpose applications.

3 COMPUTATION-IN-MEMORY-ARRAY (CIM-A)

The CIM-A class contains mostly resistive computing architectures that use memristive-based
logic circuits [26] to perform computations and resistive RAM (RRAM) as memory technology.
The resistive logic circuits may implement different design styles such as stateful logic [76], IM-
PLY [73], MAGIC [72], CRS-based logic [115], and so forth. These design styles can be further clas-
sified, as presented in [106]. In addition to resistive computing, computations can be performed
using DRAM cells as demonstrated in [80], which will be explained later.

Few architectures have been proposed in this class; they are Complementary Resistive Switch
(CRS) [115], Computation-in-Memory (CIM) [27, 43, 46], Memristive Memory Processing Unit
(MPU) [52], Programmable Logic-in-Memory Computer (PLiM) [38], ReRAM-based VLIW archi-
tecture (ReVAMP) [9], and a DRAM-based Reconfigurable In-Situ Accelerator with a 3T1C cell
design (DRISA-3T1C) [80]. Most of the architectures, except for REVAMP, have similar organiza-
tions. They contain a memristor crossbar (except for DRISA-3T1C) that is used for both storage
and computation and a controller that applies the voltages to the memory array. Each architecture
uses a different logic style and controller; for example, CRS, MPU, and PLiM use CRS-based logic,
Memristive-Aid loGIC (MAGIC), and majority logic, respectively, while CIM can use any logic
style. ReVAMP uses a different architecture and integrates the resistive memory in a pipelined
processor in which the memory replaces both the cache and register file. It optimizes traditional
pipelined processors by combining the execution, memory, and write-back in a single stage.
DRISA-3T1C contains a DRAM memory array and performs NOR instructions by reading two
rows simultaneously and writing the results back via the sense amplifier to another row. During
the read, the capacitances of the accessed cells will discharge the bitline via a transistor when one
or both cell values are high; only when both capacitance values are zero does the bitline remain.
As examples, we only describe the CRS and ReVAMP architectures next in more detail; they are
the latest proposed architectures that represent a basic CIM-A and hybrid CIM-A architectures,
respectively. Due to page limitations, only one representative figure is used to describe each
architecture.

3.1 Basic CIM-A Architecture

CRS architecture was proposed in 2014 by Siemon et al., from RWTH Aachen University [115].
It is a memristor-based architecture that exploits data-level parallelism using implication logic.
The architecture consists of multiple crossbars and a control unit (as shown in Figure 5 [115]).
The crossbar stores and performs logic operations using CRS cells; a CRS cell consists of two
resistive switches or resistive RAMs. The control unit distributes signals to the intended addresses
(wordlines and bitlines) to perform operations on the crossbars.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

A Classification of Memory-Centric Computing 13:13

Fig. 6. ReRAM-based VLIW architecture (ReVAMP) [9].

The crossbar is controlled by a sequence of operations including write-in (WI), read-out (RO),
write-back (WB), and compute (CP). Before the operations can be performed, the crossbar part used
for computation is once entirely reset to a logic value 0. The WI operation writes a logic value into
a memristor. The RO operation reads a logic value from a cell; the logic output value is determined
by the sense amplifier. The RO operation is destructive and changes the value of the memristor
to logic value 1. The task of the WB operation is to recover the destroyed value. Finally, the CP
instructions are used to execute the implication logic gates [82, 115]. The data transfer between
CRS cells is carried out through the control unit using RO and WB operations; in other words, the
control unit reads a value of the source CRS cell and writes this value into the destination cell.

In addition to the general characteristic of CIM-A described in Tables 2 and 3, CRS has the fol-
lowing advantages: (1) It is less impacted by the sneak path currents due to the usage of CRS cells;
the cell’s resistance is always equivalent to high resistance; hence, sneak path currents are elim-
inated; however, variations in resistances will make such paths practically unavoidable unless a
1T2R cell is used; (2) CRS logic requires fewer cells to perform computations than Fast Boolean
Logic (FBL) [133]. However, it also has the following limitations: (1) the latency of the primitive
functions varies and requires readout instructions to determine the voltages that have to be ap-
plied; (2) the RO operation is destructive, and hence, a WB operation is required after each RO
operation, which increases the latency and energy of computations; (3) the data tranfer method is
indirect as it is based on the readout and write-back scheme—as all cells have high resistance, di-
rect copying of cells in the crossbar is not applicable; (4) the control unit imposes a high overhead
as it is responsible for both controlling the crossbar (requiring a large number of states) and trans-
ferring data (which involves the usage of buffers/registers to store temporary values); and (5) the
architecture requires additional compiling techniques and tools to convert conventional Boolean
logic functions to implication logic. This architecture was only evaluated at circuit level using
adders. Therefore, it is hard to make general conclusions on the performance and the applicability
of this architecture.

3.2 Hybrid CIM-A Architecture

ReVAMP was proposed in 2017 by Bhattacharjee et al., from Nanyang Technological Univer-
sity [9]. It is a memristor-based architecture that exploits data parallelism using majority logic.
The architecture consists of an Instruction Fetch (IF), Instruction Decode (ID), and Execute (EX)
stage (as shown in Figure 6 [9]). The IF block fetches instructions from the Instruction Memory
using the program counter (PC) as address and puts the resulting instruction in the Instruction

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

13:14 H. A. Du Nguyen et al.

Register (IR). The ID block decodes the instruction and generates control signals, which are placed
in the control registers of the EX block. The EX stage finally executes the instruction.

The IF and ID stages are similar to those of the traditional five-pipelined RISC architecture. The
IF stage includes an Instruction Memory (IM) and a Program Counter (PC). The ID stage contains
registers (IR and Primary Inputs) and an Instruction Decode and Control Signal Generation. The
EX stage consists of several registers (i.e., Data Memory Register (DMR), Primary Input Register
(PIR), Mux control (Mc) register, Control (Cc) register, Wordline (Wc) register), as well as a cross-
bar interconnect, wordline select multiplexer, data Source Select multiplexer, and Write circuit to
control the crossbar that stores data. Once an instruction is fetched and decoded in IF and ID,
respectively, the control registers in EX are filled with suitable values. These values control the
multiplexers that are responsible for applying the right control signals to the crossbar. Depending
on the operation, primary inputs from PIR or data retrieved from the crossbar stored in DMR can
be used for the next operation. The crossbar interconnect permutes the inputs and control signals
(indicated by Cc) to generate the voltages that need to be applied to the memory crossbar. The
Write circuit applies these voltages to the targeted wordline address (indicated by Wc).

In addition to the general characteristic of CIM-A described in Tables 2 and 3, ReVAMP has the
following advantages: (1) the data transfer may include direct (within the crossbar based on copy-
ing resistance values) and indirect (based on readout/write-back) schemes; (2) the crossbar is based
on only one device per cell, resulting in a more compact architecture as compared with other ar-
chitectures that make use of two devices per cell (i.e., Complementary Resistive Switch CRS [115]);
(3) the architecture does not suffer destructive reads as is the case for CRS architecture [115], and
hence the write energy might be less due to the absence of a write-back operation. However, it
also has the following limitations: (1) the latency of majority primitive functions varies depending
on the functional complexity; in addition, before any operations are applied to the cells, these cells
first have to be read out in order to determine the appropriate control voltages; (2) the architecture
has to deal with sneak path currents; possible solutions as mentioned above; (3) the EX stage is
complex as it integrates both the control signals for memory and computations; therefore, it is not
easy to pipeline this architecture, as the EX stage will consume more time than the other stages—
i.e., the stages IF, ID, and EX are not balanced; (4) The architecture requires additional compiling
techniques and tools to convert conventional Boolean logic functions to majority logic gates. The
architecture is simulated and evaluated using EPFL benchmarks [5] and compared against PLiM
[38], which is based on a resistive memory with the same logic style.

4 COMPUTATION-IN-MEMORY-PERIPHERY (CIM-P)

The CIM-P class consists of architectures that perform computations during readout operations
(i.e., two or more wordlines are activated simultaneously) using special peripheral circuitry. Such
operations are typically analog in nature. As there are fewer restrictions on the functionality of
the cell, various memory technologies can be used in this category such as DRAM, SRAM, and
nonvolatile memory technologies.

A medium number of architectures have been proposed in this class: Resistive Associative
Processor (ReAP) [137], a Processing-in-Memory Architecture for Neural Network Computation
in ReRAM-based Main Memory (PRIME) [21], a Convolutional Neural Network Accelerator with
In Situ Analog Arithmetic (ISAAC) [111], In-Memory Accelerator for Bulk Bitwise Operations Us-
ing Commodity DRAM Technology (Ambit) [110], a Processing-in-Memory Architecture for Bulk
Bitwise Operations (Pinatubo) [81], In-Memory Intelligence (IMI) [32], Compute Caches (Com-
pute$) [1], a DRAM-based Reconfigurable In Situ Accelerator with 1T1C design (DRISA-1T1C) [80],
Computation-in-Memory Accelerator (CIMA) [26], Computing in Memory Spin-Transfer Torque

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

A Classification of Memory-Centric Computing 13:15

Fig. 7. Resistive RAM automata processor (R-AP) [138].

Magnetic RAM (STT-CiM) [56], Cache Automaton (S-AP) [121], Neural Cache (Neural$) [29],
RRAM Automata Processor (R-AP) [138], and Data Parallel Processor (DPP) [37].

These architectures fundamentally perform computations in the same way by activating mul-
tiple rows simultaneously in the memory and using generally specialized sense amplifiers and/or
ADC converters to get the results. ReAP performs computations by implementing Content-
Addressable-Memory (CAM) operations using look-up tables (LUTs). PRIME and ISAAC per-
form vector-matrix multiplications for neural applications. Ambit, IMI, Compute$, DRISA-1T1C,
Pinatubo, CIMA, STT-CIM, Neural$, and DPP perform computations using customized sense am-
plifiers only; Ambit, IMI, and DRISA-1T1C use DRAM, Compute$ and Neural$ use SRAM, and the
rest are based on nonvolatile memory. These architectures can only perform logical operations
except for IMI, DRISA-1T1C, Neural$, and DPP, which also perform more complex functions by
having additional logic inside the peripheral circuits. S-AP and R-AP implement inner product op-
erations in automata processors. S-AP is implemented using SRAM technology, while R-AP uses
nonvolatile memory. As examples, we only describe the R-AP and DPP architectures next in more
detail; they are the latest proposed architectures that represent basic CIM-P and hybrid CIM-P
architectures, respectively.

4.1 Basic CIM-P Architecture

R-AP was proposed in 2018 by Yu, et al., from Delft University of Technology [138]. The architec-
ture targets an automata processor that exploits data-level parallelism by performing computations
using state machines. An automata processor contains two main components: the State Transition
Elements (STEs) and the routing matrix; the STE stores the accepting states, while the routing
matrix stores the state transitions as shown in Figure 7(a) [138]. The automata processor accepts
one input symbol at a time, generates next active states, and decides whether a complete input
string is accepted or not.

The architecture consists of STEs and a routing matrix, which are implemented using RRAM
technology. Each RRAM column corresponds to an STE that stores the accepting states in RRAM
cells, as shown in Figure 7(b) [138]. The input symbol is fed to all the STEs simultaneously. The
sense amplifiers collect dot-product results of a vector-matrix multiplication. The output of the STE
and the routing matrix are used to determine the next active states, as shown in Figure 7(c) [138];
this process is carried on until all input symbols are processed. In case the one or more final active
states are part of the acceptance states, it means that the input string has been matched with
the corresponding pattern of the acceptance state. Note that data transfer inside the automata
processor is carried out using the routing matrix.

In addition to the general characteristic of CIM-P described in Tables 2 and 3, R-AP has the fol-
lowing advantages: (1) The architecture is used as a read-favored accelerator, which has a positive
impact on the endurance due to infrequent use [17, 127]; only when the automata changes do the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

13:16 H. A. Du Nguyen et al.

STEs and routing matrix have to be updated; (2) automata processing can be used to perform both
logical and arithmetic operations in general; data can be transferred using both direct and indirect
schemes; (4) the architecture uses nonvolatile memory and hence consumes low energy and has a
small footprint; (5) the automata processing techniques and tooling are quite mature; hence, it is
feasible to explore many applications using automata processing. However, it also has the follow-
ing limitations: (1) the modified peripheral circuitry (row drivers) might pose high overhead in the
memory system; (2) the architecture requires additional compiling techniques and tools to per-
form conventional Boolean logic functions using automata processing; the architecture has been
validated using circuit-level simulations and evaluated against S-AP [121].

4.2 Hybrid CIM-P Architecture

DPP was proposed in 2018 by Fujiki, et al. from University of Michigan [37]. DPP is a RRAM-based
architecture that exploits instruction- and data-level parallelism by performing computations us-
ing a combination of RRAM-based dot-product operations and LUTs. The architecture consists of
multiple RRAM tiles connected as an H-tree; each tile has multiple clusters and some logic units.
Tiles and clusters form a SIMD-like processor that performs the parallel operations. The architec-
ture is considered as a general-purpose architecture as it can perform all primitive functions such
as logical, arithmetic, shift, and copy operations.

In addition to clusters, each tile has several units to support the computations including instruc-
tion buffer, Shift and Add (S+A), and router. Each cluster additionally has one or more computa-
tional units; they are Shift and Add (S+A), Sample and Hold (S+H), DAC and ADC, and a LUT and
register file. While reading from the high-latency RRAM, other units are simultaneously used for
processing. Therefore, the S+H is used to read data (in the form of a current) from the RRAM array
and temporarily store it. Once that data is needed, it is fed to an ADC to convert the analog value
to a digital value. The S+A is used to perform carry propagation in a multiple-bit addition. DAC is
used to apply a digital value to the RRAM array with an appropriate control voltage. Some com-
plex functions that cannot be realized with these units are performed using LUTs and a register
file in each cluster. Data transfer can be performed by enabling two memory rows for direct copy
operations or using the buffers and readout operations for indirect copy operations.

In addition to the general characteristic of CIM-P described in Tables 2 and 3, DPP has the
following advantages: (1) computations include both logical operations and simple arithmetic op-
erations (i.e., addition, multiplication); (2) data can be transferred using both direct and indirect
schemes; (3) the architecture uses nonvolatile memory and hence consumes low energy and has a
small footprint; and (4) this architecture is claimed to be general purpose and hence it can exploit
the existing instruction set, compiling techniques and tools, and applications. However, it also has
the following limitations: (1) the architecture uses nonvolatile memory as main memory, which
may impact the lifetime due to limited endurance [17, 127]; (2) as the sense amplifies are complex,
a trade-off between area and bandwidth has to be made. The architecture potential was simulated
and evaluated against CPU Intel Xeon E5-2697 using a subset of PARSEC benchmarks [11] and
against GPU NVIDIA Titan XP using Rodinia benchmarks [18].

5 COMPUTATION-OUT-MEMORY-NEAR (COM-N)

The COM-N class consists of architectures that perform computation using additional logic units
outside the memory core but inside the memory SiP. These architectures were proposed in the
past and evolved through different memory technologies ranging from conventional DRAM and
embedded DRAM to emerging memory technologies such as RRAM.

Many architectures have been proposed in this class: Vector Intelligent RAM (VIRAM) [59,
68, 70, 99], Active Page (A-Page) [98], Advance Intelligent Memory System (FlexRAM) [63],

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

A Classification of Memory-Centric Computing 13:17

Modular Reconfigurable Smart Memories (S-Mem) [85], Data-Intensive Architecture (DIVA) [24,
25], Hybrid Memory Cube (HMC) [57, 101], Active Memory Cube (AMC) [95], Micron Automata
Processor (D-AP) [96], a machine-learning supercomputer (DDN) [20], an Architecture for Ac-
celerated Processing Near Memory (DRAMA) [31], High-Bandwidth Memory (HBM) [60, 75, 84,
119], a Near Data Computing Architecture using Non-Volatile Memory (ProPRAM) [128], Resistive
GP-SIMD (ReGP) [92], and HMC Instruction Large Vector Extensions (HIVE) [3].

These architectures mainly differ as a consequence of using different technologies. VIRAM,
FlexRAM, SM, DIVA, and DRAMA are based on embedded DRAM technology and try to inte-
grate processing units near the main memory; FlexRAM integrates multiple single-core processors
with caches; SM a reconfigurable processor; VIRAM and DIVA a vector processor; and DRAMA
a coarse-grain reconfigurable accelerator. A-Page is based on reconfigurable DRAM architecture
that integrates conventional DRAM into an FPGA; it implements the reconfigurable logic near the
main DRAM memory. HMC, AMC, HBM, and HIVE are based on 3D-stacked DRAM; HMC and
HBM support general computing, while AMC and HIVE are optimized for VLIW and vector pro-
cessing, respectively. DaDianNao, D-AP, ReGP, and ProPRAM utilize logic units that are located
near the memory. DaDianNao and D-AP implement a neural network and an automata processor,
respectively, with very simple logic units inside the conventional DRAM. ReGP integrates a sim-
plified SIMD processor near nonvolatile memory. ProPRAM utilizes existing logic units near the
nonvolatile memory to perform simple computations such as addition and logical operations. As
an example, we only describe the HIVE and ReGP architectures next in more detail; they are the
most recent architectures proposed in the COM-N class.

HIVE was proposed in 2016 by Alves et al., from Federal University of Rio Grande do Sul [3].
HIVE is a Hybrid Memory Cube (HMC) [57, 101]-based architecture that performs large vector
operations inside the logic die of an HMC. The architecture consists of a host processor and an
HMC module that is extended with a HIVE. The host processor, not shown in the figure, is a
pipeline-like architecture with six stages; it fetches, decodes, renames, dispatches, executes, and
commits a sequence of instruction. If an instruction fragment has to be executed using in-memory
instructions, the processor diverts the instruction fragment to the HMC module. The HMC module
executes the fragment and returns the result back to the processor.

The HMC module consists of multiple DRAM layers, logic vaults, a HIVE controller, a crossbar
switch, and multiple-lane links to the host processor. The data is stored in multiple DRAM layers
and retrieved by the HIVE. The HIVE controller contains a register bank, functional units, and
a HIVE sequencer. The logic vaults contains a vault controller, write and read buffer, and DRAM
sequencer. Once the HIVE sequencer receives an instruction, it locks the involved memory address
space. If the memory has already been locked, the requested instruction returns a fail status to the
processor; otherwise, a memory synchronization occurs by flushing related cache data into DRAM.
The logic vaults and HIVE subsequently execute the instructions by reading data to read buffers
and the register bank, performing operations using functional units, and (optional) storing into
memory using write buffers. The operations in HIVE are based on vector operations that operate
on 8KB of data at a time executed by the 32 logic vaults and HIVE functional units. As the amount
of data is large, a DRAM sequencer and HIVE sequencer schedule these operations accordingly.
The results can be collected in register banks and sent back to the host processor through the
crossbar switch and links.

In addition to the general characteristic of COM-N described in Tables 2 and 3, HIVE comes with
the following advantages: (1) the parallelism is high due to vector processing on 8KB of data; (2)
the architecture uses HMC, which is mature, is commercialized, and has some advantages such as
high performance, high bandwidth, low power, and high density [57, 101]. However, it also has the
limitation that the architecture has a complex HMC module, which has a control, communication,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

13:18 H. A. Du Nguyen et al.

Fig. 8. Examples of COM-N architectures.

and programming overhead. The architecture is simulated and evaluated using some integer (vec-
tor search and memory reset/set operations) and floating-point (vector sum, matrix stencil, and
matrix multiplication) kernels against three baseline platforms; both HIVE and baseline platforms
are based on the Intel Atom processor. Like HIVE, the three baseline platforms also have addi-
tional processing capacities; for the baseline platforms they are as follows: (1) HMC instructions
using HMC 2.0 memory [50] (HMC+HMC), (2) 128-bit SSE instructions with DDR-3 1333 modules
(SSE+DDR), and (3) 128-bit SSE instructions with HMC 2.0 (SSE+HMC).

ReGP was proposed in 2016 by Morad et al., from Technion-Israel Institute of Technology [92].
ReGP is an RRAM memory-based architecture that exploits data parallelism by attaching a SIMD-
like processing unit to the resistive memory, as shown in Figure 8 [92]. The architecture consists of
a sequential processor (which is a conventional processor) and its L1 and LLC cache, shared mem-
ory array, and SIMD processor. The sequential processor executes traditional code and controls
the SIMD processor in a master-slave mode. The SIMD processor executes parallel instructions on
the data stored in the shared memory array.

The SIMD processor contains multiple processing units (PUs), a sequencer, and a Network on
Chip (NoC) with reduction tree. Each PU contains registers, a single-bit full-adder, and a function
generator to perform arithmetic and logical operations. The sequencer receives instructions from
the sequential processor and assigns them to PUs. The PUs load data from the shared memory
array and perform the requested operations. If required, the NoC and reduction trees are used to
perform more complex functions.

In addition to the general characteristic of COM-N described in Tables 2 and 3, ReGP comes with
the following advantages: (1) the parallelism is high due to multiple parallel processing units; (2)
the architecture uses nonvolatile memory and hence consumes a low amount of energy and has a
small footprint; (3) the architecture can reuse compilers, programming languages, and tools from
SIMD architectures. However, it also has the limitation that the operations within the processing
units are simple; complex functions such as floating-point operations can cause a high overhead.
The architecture is simulated and evaluated against CMOS GP-SIMD [91] using a benchmark for
dense matrix multiplications [90].

6 DISCUSSION

This section aims to first evaluate the completeness of the proposed classification. Thereafter, we
compare it with existing work in the field. Finally, we discuss the limitations of this work and
propose directions for future work.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

A Classification of Memory-Centric Computing 13:19

6.1 Completeness

The proposed classification presented in Figure 3 is complete and comprehensive. These points can
as follows be proven: (1) theoretically, due to the exploration of all the possible classes derived from
the classification metrics, and (2) practically, by mapping all existing memory-centric architectures
on the classification.

Theoretically, the classification contains four main classes derived from the “computation lo-
cation” (first metric); both inside and outside, approximately close or distant from the memory
core. Moreover, the second metric consists of both charge-based and non-charge-based memories.
Finally, the parallelism metric ranges from instruction to data and task levels. Each metric is in
itself complete, and therefore, the entire classification is complete. The classification not only con-
tains the existing solutions but also highlights the potential future solutions that can be further
explored (e.g., classes in blue spaces in Figure 3). Note that hybrid architectures are also covered
in this classification. For example, a conventional architecture (COM-F) with accelerator in CIM-P
class (e.g., ReAP, ISAAC, CIMA) is considered a hybrid architecture, i.e., a COM-F/CIM-P hybrid.

Practically, it contains an overview most of the existing computer architectures and places them
in perspective. In addition, the classification can be used to illustrate the past and future trends
(see Figure 4). Moreover, it clearly depicts a shift from conventional processor-centric architectures
toward memory-centric architectures based on emerging technologies (3D stacking, RRAM, etc.).

6.2 Related Work

Comparison with traditional/processor-centric architecture classifications: Conventional
classifications like Flynn’s [35], Skillicorn’s [117], and Shami-Hemani’s [112] classification are
quite comprehensive and were considered complete at the time they were published. However,
these classifications focus on processor-centric architectures and hence can only be used to classify
conventional architectures (i.e., architectures in COM-F class). Aside from the above-mentioned
classifications, some publications on the COM-N class have presented intensive architectural re-
views [23, 113, 116]. However, they have a restricted focus on near-memory-processing architec-
tures based on 2D, 2.5D, and 3D-stacked DRAM. Signh’s classification [116] is the most recent
work that provides a review of near-memory computing architectures, i.e., COM-N architectures.
It classifies architectures mainly based on the memory hierarchy and processing type (e.g., pro-
grammable unit, fixed functional unit, and reconfigurable unit). Moreover, it evaluates the architec-
tures based on multiple characteristics of memory, processing, evaluation tools, interoperability,
and application domains. However, the classification is not easy to use as the metrics are not sys-
tematic. Furthermore, it is not clear if the classification is complete and if it covers all ranges of
near-computing architectures. Last but not least, in comparison with the aforementioned classifi-
cations, our proposed classification goes one step further to cover both conventional and emerging
architectures by having the additional classes CIM-A and CIM-P. Moreover, the proposed classi-
fication is so broad that several of its classes are not explored yet. New architectures in these
unexplored areas can be easily added to the classification. In addition, our proposed classification
uses three selective metrics, which create distinctive and easy-to-use terminologies, classes, and
subclasses.

Comparison with recent/emerging architecture classifications: Recent surveys and clas-
sifications for emerging architectures have been proposed by Mittal [89] and Reuben et al. [106].
Mittal’s classification only tries to link architectures with their applications. Specifically, the clas-
sification discusses three unconventional architectures: processing-in-memory, machine learning,
and neural-network-based architectures using RRAM. They mostly focus on applications contain-
ing dot-product operations in the RRAM crossbar. This classification is not complete, as RRAM in

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

13:20 H. A. Du Nguyen et al.

particular and emerging memory technology in general can also be used to implement other func-
tions such as bitwise logic operations [81, 134], arithmetic operations using implication logic [72,
114], Boolean logic [118, 133], and the like. Reuben’s classification classifies existing resistive logic
design methods into three classes: in-memory, near-memory, and out-of-memory computing. The
near-memory class has three subclasses without identifiers (e.g., they are based on how data moves
out of the memory array; this includes data movements (1) between consecutive logic levels, (2) for
computing each Sum-of-Products, and (3) for computing each logic gate). This classification, how-
ever, tries to redefine the terminologies without defining clear generic metrics for each class. In-
stead, each class uses different criteria to distinguish between their subclasses. Therefore, it is not a
systematic and comprehensive classification, which makes it difficult to use in identifying and ex-
ploring architectures. Moreover, it is difficult to judge if the classification is complete. Furthermore,
the classification focuses only on resistive memories, while other emerging memory technologies
are also promising. Overall, both Mittal and Reuben et al. classifications are not complete and
comprehensive enough to classify all architectures.

6.3 Future Directions and Challenges

Memory-enteric computing is seen as one of the promising solutions to alleviate (even if partially)
the memory bottleneck. Not only the communication between the processing core and the main
memory but also the energy consumption will be significantly reduced; the data communication
on its own is extremely energy consuming. Implementing CIM based on DRAM or emerging mem-
ristive devices seems to be more realistic than using on-chip SRAMs. Although SRAM technology
is more CMOS compatible when it comes to manufacturing, the cost per bit for such technology
is much higher than that of other memory technologies. Hence, the overall cost of large-capacity
SRAMs (which is needed for CIM) is by far much higher; for the same capacity, SRAM consumes
much more area/power compared to DRAM and nonvolatile memories. In addition, the two main
directions that are currently explored are CIM-A and CIM-P, in which CIM-P is more feasible
than CIM-A due to the complex underlining memory technology. CIM-P requires less effort and
modification in the memory core (mainly in the periphery). Moreover, CIM architectures do not
make conventional architectures obsolete; in fact, multicore architectures with caches are relevant
for applications with high data locality, while CIM architectures can only be used efficiently for
certain specific applications [44]. Furthermore, building appropriate simulators and tools for CIM
architectures based on technology calibrated models will enable a real estimation of the potential
of such architectures [6, 39, 77, 135].

It is worth mentioning that the focus of this article is to propose a unified terminology and
classification instead of presenting a survey. In our future work, we will present a survey that
intensively discusses all architectures.

7 CONCLUSION

In this article, we have proposed a classification using three metrics: computational location, mem-
ory technology, and level of parallelism. We have used the most important metric, i.e., compu-
tational location, to describe and evaluate the four main classes (and the selected architectures
therein). The work shows that architectures are required to be not only memory bottleneck free
but also energy and area efficient. In order to accomplish that, the architectures must be imple-
mented with the right technologies. The relationship and dependency between the architecture
and technologies becomes stronger for memory-centric computing architectures. This work also
showed that new architectures typically emerge after new technology developments (e.g., intro-
duction of 3D stacking and RRAM). Our classification unifies the prior work and aims to provide
a comprehensive and unique terminology for memory-centric computing architectures. Finally,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

A Classification of Memory-Centric Computing 13:21

the classification not only presents an overview of existing architectures but also predicts the po-
tential of future architecture variants, including hybrid architectures that may combine different
strengths of the different classes.

REFERENCES

[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David Blaauw, and Reetuparna Das. 2017.

Compute caches. In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA’17). IEEE,

481–492.

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2016. A scalable processing-in-

memory accelerator for parallel graph processing. ACM SIGARCH Computer Architecture News 43, 3 (2016), 105–117.

[3] Marco A. Z. Alves, Matthias Diener, Paulo C. Santos, and Luigi Carro. 2016. Large vector extensions inside the HMC.

In Design, Automation & Test in Europe Conference & Exhibition (DATE’16). IEEE, 1249–1254.

[4] Marco Antonio Zanata Alves, Carlos Villavieja, Matthias Diener, Francis Birck Moreira, and Philippe Olivier Alexan-

dre Navaux. 2015. SiNUCA: A validated micro-architecture simulator. In Proceeding of International Conference on

High Performance Computing and Communications (HPCC), International Symposium on Cyberspace Safety and Se-

curity (CSS), and International Conference on Embedded Software and Systems (ICESS). 605–610.

[5] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. 2015. The EPFL combinational benchmark

suite. In Proceedings of the 24th International Workshop on Logic & Synthesis (IWLS’15).

[6] Ali BanaGozar, Kanishkan Vadivel, Sander Stuijk, Henk Corporaal, Stephan Wong, Muath Abu Lebdeh, Jintao Yu,

and Said Hamdioui. 2019. CIM-SIM: Computation in memory SIMuIator. In International Workshop on Software and

Compilers for Embedded Systems. ACM, 1–4.

[7] John Barth, Don Plass, Erik Nelson, Charlie Hwang, Gregory Fredeman, Michael Sperling, Abraham Mathews,

Toshiaki Kirihata, William R. Reohr, Kavita Nair, and Nianzheng Cao. 2010. A 45nm SOI embedded DRAM macro

for the POWERTM processor 32 MByte on-chip L3 cache. IEEE Journal of Solid-State Circuits 46, 1 (2010), 64–75.

[8] Gary Benson, Yozen Hernandez, and Joshua Loving. 2013. A bit-parallel, general integer-scoring sequence alignment

algorithm. In Annual Symposium on Combinatorial Pattern Matching. Springer, 50–61.

[9] Debjyoti Bhattacharjee, Rajeswari Devadoss, and Anupam Chattopadhyay. 2017. ReVAMP: ReRAM based VLIW ar-

chitecture for in-memory computing. In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE’17).

IEEE, 782–787.

[10] Sabpreet Bhatti, Rachid Sbiaa, Atsufumi Hirohata, Hideo Ohno, Shunsuke Fukami, and S. N. Piramanayagam. 2017.

Spintronics based random access memory: A review. Materials Today 20, 9 (2017), 530–548.

[11] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite: Character-

ization and architectural implications. In Proceedings of the 17th International Conference on Parallel Architectures

and Compilation Techniques. ACM, 72–81.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

Derek R. Hower, Tushar Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer

Architecture News 39, 2 (2011), 1–7.

[13] Evgeny Bolotin, David Nellans, Oreste Villa, Mike O’Connor, Alex Ramirez, and Stephen W. Keckler. 2015. Designing

efficient heterogeneous memory architectures. IEEE Micro 35, 4 (2015), 60–68.

[14] Julien Borghetti, Gregory S. Snider, Philip J. Kuekes, J. Joshua Yang, Duncan R. Stewart, and R. Stanley Williams.

2010. Memristive switches enable stateful logic operations via material implication. Nature 464, 7290 (2010), 873–876.

[15] S. Borkar. 1999. Design challenges of technology scaling. IEEE Micro 19, 4 (July 1999), 23–29. DOI:https://doi.org/10.

1109/40.782564

[16] Rafmag Cabrera, Emmanuelle Merced, and Nelson Sepúlveda. 2013. A micro-electro-mechanical memory based on

the structural phase transition of VO2. Physica Status Solidi (a) 210, 9 (2013), 1704–1711.

[17] Meng-Fan Chang, Ching-Hao Chuang, Min-Ping Chen, Lai-Fu Chen, Hiroyuki Yamauchi, Pi-Feng Chiu, and Shyh-

Shyuan Sheu. 2012. Endurance-aware circuit designs of nonvolatile logic and nonvolatile SRAM using resistive

memory (memristor) device. In 2012 17th Asia and South Pacific Design Automation Conference (ASP-DAC’12). IEEE,

329–334.

[18] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.

Rodinia: A benchmark suite for heterogeneous computing. In IEEE International Symposium on Workload Charac-

terization, 2009 (IISWC’09). IEEE, 44–54.

[19] E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis, V. Nikitin, X. Tang, S. Watts, S. Wang, et al. 2010.

Advances and future prospects of spin-transfer torque random access memory. IEEE Transactions on Magnetics 46,

6 (2010), 1873–1878.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

https://doi.org/10.1109/40.782564
https://doi.org/10.1109/40.782564

13:22 H. A. Du Nguyen et al.

[20] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui

Sun, et al. 2014. Dadiannao: A machine-learning supercomputer. In IEEE/ACM International Symposium on Microar-

chitecture. IEEE Computer Society, 609–622.

[21] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. 2016. PRIME: A

novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In ACM

SIGARCH Computer Architecture News, Vol. 44. IEEE Press, 27–39.

[22] Gianni Conte, Stefano Tommesani, and Francesco Zanichelli. 2000. The long and winding road to high-performance

image processing with MMX/SSE. In Proceedings of the 5th IEEE International Workshop on Computer Architectures

for Machine Perception, 2000. IEEE, 302–310.

[23] Joao Paulo C. de Lima, Paulo Cesar Santos, Marco A. Z. Alves, Antonio C. S. Beck, and Luigi Carro. 2018. Design

space exploration for PIM architectures in 3D-stacked memories. In Computer Frontier. ACM, 295–308.

[24] Jaffrey Draper, J. Tim Barrett, Jeff Sondeen, Sumit Mediratta, Chang Woo Kang, Ihn Kim, and Gokhan Daglikoca.

2005. A prototype processing-in-memory (PIM) chip for the data-intensive architecture (DIVA) system. Journal of

VLSI Signal Processing Systems for Signal, Image and Video Technology 40, 1 (2005), 73–84.

[25] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff LaCoss, John Granacki, Jaewook Shin, Chun

Chen, Chang Woo Kang, et al. 2002. The architecture of the DIVA processing-in-memory chip. In Proceedings of the

16th International Conference on Supercomputing. ACM, 14–25.

[26] H. A. Du Nguyen, Jintao Yu, Lei Xie, Mottaqiallah Taouil, Said Hamdioui, and Dietmar Fey. 2017. Memristive devices

for computing: Beyond CMOS and beyond von Neumann. In 2017 IFIP/IEEE International Conference on Very Large

Scale Integration (VLSI-SoC’17). IEEE, 1–10.

[27] Hoang Anh Du Nguyen, Lei Xie, Mottaqiallah Taouil, Razvan Nane, Said Hamdioui, and Koen Bertels. 2017. On the

implementation of computation-in-memory parallel adder. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 25, 8 (2017), 2206–2219.

[28] P. Dudek and S. J. Carey. 2006. General-purpose 128/spl times/128 SIMD processor array with integrated image

sensor. Electronics Letters 42, 12 (2006), 678–679.

[29] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer, Dennis Sylvester, David Blaauw,

and Reetuparna Das. 2018. Neural cache: Bit-serial in-cache acceleration of deep neural networks. arXiv preprint

arXiv:1805.03718 (2018).

[30] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L. Stamm, and Dean M. Tullsen. 1997. Simultaneous

multithreading: A platform for next-generation processors. IEEE Micro 17, 5 (1997), 12–19.

[31] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam Sung Kim. 2015. DRAMA: An architecture

for accelerated processing near memory. IEEE Computer Architecture Letters 14, 1 (2015), 26–29.

[32] Tim Finkbeiner, Glen Hush, Troy Larsen, Perry Lea, John Leidel, and Troy Manning. 2017. In-memory intelligence.

IEEE Micro 37, 4 (2017), 30–38.

[33] Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shihjong Kuo. 2008. Intel AVX: New frontiers in per-

formance improvements and energy efficiency. Intel White Paper 19 (2008), 20.

[34] Randall James Fisher. 2003. General-purpose SIMD within a register: Parallel processing on consumer microproces-

sors. Doctoral Dissertation.

[35] M. Flynn. 1966. Very high-speed computing systems. Proceedings of the IEEE 54, 12 (Dec. 1966), 1901–1909. DOI:
https://doi.org/10.1109/PROC.1966.5273

[36] G. D. Fuchs, N. C. Emley, I. N. Krivorotov, P. M. Braganca, E. M. Ryan, S. I. Kiselev, J. C. Sankey, D. C. Ralph, R.

A. Buhrman, and J. A. Katine. 2004. Spin-transfer effects in nanoscale magnetic tunnel junctions. Applied Physics

Letters 85, 7 (2004), 1205–1207.

[37] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2018. In-memory data parallel processor. In Proceedings of the 23rd

International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 1–14.

[38] Pierre-Emmanuel Gaillardon, Luca Amar, Anne Siemon, Eike Linn, Rainer Waser, Anupam Chattopadhyay, and

Giovanni De Micheli. 2016. The programmable logic-in-memory (PLiM) computer. In 2016 Design, Automation &

Test in Europe Conference & Exhibition (DATE’16). IEEE, 427–432.

[39] Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical near-data processing for in-memory analytics

frameworks. In 2015 International Conference on Parallel Architecture and Compilation (PACT’15). IEEE, 113–124.

[40] Simcha Gochman, Avi Mendelson, Alon Naveh, and Efraim Rotem. 2006. Introduction to Intel core duo processor

architecture. Intel Technology Journal 10, 2 (2006), 89–97.

[41] Jonathan E. Green, Jang Wook Choi, Akram Boukai, Yuri Bunimovich, Ezekiel Johnston-Halperin, Erica DeIonno,

Yi Luo, Bonnie A. Sheriff, Ke Xu, Young Shik Shin, et al. 2007. A 160-kilobit molecular electronic memory patterned

at 10 11 bits per square centimetre. Nature 445, 7126 (2007), 414.

[42] Beat Halg. 1990. On a micro-electro-mechanical nonvolatile memory cell. IEEE Transactions on Electron Devices 37,

10 (1990), 2230–2236.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

https://doi.org/10.1109/PROC.1966.5273

A Classification of Memory-Centric Computing 13:23

[43] Said Hamdioui, Koenraad Laurent Maria Bertels, and Mottaqiallah Taouil. 2017. Computing Device for Big Data

Applications Using Memristors. US Patent 9,824,753.

[44] Said Hamdioui, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Abu Sebastian, Manuel Le Gallo, Sandeep Pande,

Siebren Schaafsma, Francky Catthoor, Shidhartha Das, Fernando G. Redondo, et al. 2019. Applications of

computation-in-memory architectures based on memristive devices. In 2019 Design, Automation & Test in Europe

Conference & Exhibition (DATE’19). IEEE, 486–491.

[45] Said Hamdioui, Shahar Kvatinsky, Gert Cauwenberghs, Lei Xie, Nimrod Wald, Siddharth Joshi, Hesham Mostafa

Elsayed, Henk Corporaal, and Koen Bertels. 2017. Memristor for computing: Myth or reality? In Proceedings of the

Conference on Design, Automation & Test in Europe. European Design and Automation Association, 722–731.

[46] Said Hamdioui, Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Koen Bertels, Henk Corporaal, Hailong Jiao,

Francky Catthoor, Dirk Wouters, Linn Eike, et al. 2015. Memristor based computation-in-memory architecture for

data-intensive applications. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition.

EDA Consortium, 1718–1725.

[47] JongWook Han, Choon-Sik Park, Dae-Hyun Ryu, and Eun-Soo Kim. 1999. Optical image encryption based on XOR

operations. Optical Engineering 38, 1 (1999), 47–55.

[48] Adib Haron, Jintao Yu, Razvan Nane, Mottaqiallah Taouil, Said Hamdioui, and Koen Bertels. 2016. Parallel matrix

multiplication on memristor-based computation-in-memory architecture. In 2016 International Conference on High

Performance Computing & Simulation (HPCS’16). IEEE, 759–766.

[49] John L. Hennessy and David A. Patterson. 2011. Computer Architecture: A Quantitative Approach. Elsevier.

[50] HMC. 2018. Hybrid Memory Cube Specification 2.1. Retrieved from http://hybridmemorycube.org/.

[51] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C.

Fukumoto, et al. 2005. A novel nonvolatile memory with spin torque transfer magnetization switching: Spin-RAM.

In IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE, 459–462.

[52] Rotem Ben Hur and Shahar Kvatinsky. 2016. Memristive memory processing unit (MPU) controller for in-memory

processing. In IEEE International Conference on the Science of Electrical Engineering (ICSEE’16). IEEE, 1–5.

[53] IBM. 2014. Power 4 - The First Multi-Core, 1GHz Processor.

[54] ITRS. 2010. ITRS ERD Report. Retrieved from http://www.itrs.net.

[55] Subramanian S. Iyer and Howard L. Kalter. 1999. Embedded DRAM technology: Opportunities and challenges. IEEE

Spectrum 36, 4 (1999), 56–64.

[56] Shubham Jain, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. 2017. Computing in memory with spin-

transfer torque magnetic RAM. arXiv preprint arXiv:1703.02118 (2017).

[57] Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new DRAM architecture increases density and perfor-

mance. In 2012 Symposium on VLSI Technology (VLSIT’12). IEEE, 87–88.

[58] Zhang Jianwu, Zhao Danying, et al. 2008. Survey on microprocessor architecture and development trends. In 11th

IEEE International Conference on Communication Technology, 2008 (ICCT’08). IEEE, 297–300.

[59] David Judd, Katherine Yelick, Christoforos Kozyrakis, David Martin, and David Patterson. 2001. Exploiting on-chip

memory bandwidth in the VIRAM compiler. In Intelligent Memory Systems. Springer, 122–134.

[60] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho Jin, and Keith Kim. 2017. HBM (high

bandwidth memory) DRAM technology and architecture. In 2017 IEEE International Memory Workshop (IMW’17).

IEEE, 1–4.

[61] Ron Kalla, Balaram Sinharoy, William J. Starke, and Michael Floyd. 2010. Power7: IBM’s next-generation server

processor. IEEE Micro 30, 2 (2010), 7–15.

[62] Yi Kang, Wei Huang, Seung-Moon Yoo, D. Keen, Zhenzhou Ge, V. Lam, P. Pattnaik, and J. Torrellas. [n.d.]. FlexRAM:

Toward an advanced intelligent memory system. In 2012 IEEE 30th International Conference on Computer Design

(ICCD’12). 5–14. DOI:https://doi.org/10.1109/ICCD.2012.6378608

[63] Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen, Zhenzhou Ge, Vinh Lam, Pratap Pattnaik, and Josep Torrellas.

2012. FlexRAM: Toward an advanced intelligent memory system. In 2012 IEEE 30th International Conference on

Computer Design (ICCD’12). IEEE, 5–14.

[64] Doris Keitel-Schulz and Norbert Wehn. 1998. Issues in embedded DRAM development and applications. In Proceed-

ings of the 11th International Symposium on System Synthesis. IEEE Computer Society, 23–31.

[65] Doris Keitel-Schulz and Norbert Wehn. 2001. Embedded DRAM development: Technology, physical design, and

application issues. IEEE Design & Test of Computers 18, 3 (2001), 7–15.

[66] Kyosun Kim, Sangho Shin, and Sung-Mo Kang. 2011. Stateful logic pipeline architecture. In 2011 IEEE International

Symposium of Circuits and Systems (ISCAS’11). IEEE, 2497–2500.

[67] David Kirk et al. 2007. NVIDIA CUDA software and GPU parallel computing architecture. In ISMM, Vol. 7. 103–104.

[68] Christoforos Kozyrakis. 2002. Scalable Vector Media-Processors for Embedded Systems. Technical Report. California

University Berkeley Computer Science Division.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

http://hybridmemorycube.org/
http://www.itrs.net
https://doi.org/10.1109/ICCD.2012.6378608

13:24 H. A. Du Nguyen et al.

[69] Christoforos Kozyrakis and David Patterson. 2002. Vector vs. superscalar and VLIW architectures for embedded

multimedia benchmarks. In Proceedings of the 35th Annual ACM/IEEE International Symposium on Microarchitecture.

IEEE Computer Society Press, 283–293.

[70] Christoforos E. Kozyrakis, Stylianos Perissakis, David Patterson, Thomas Anderson, Krste Asanovic, Neal Cardwell,

Richard Fromm, Jason Golbus, Benjamin Gribstad, Kimberly Keeton, et al. 1997. Scalable processors in the billion-

transistor era: IRAM. Computer 30, 9 (1997), 75–78.

[71] Nasser Kurd, Muntaquim Chowdhury, Edward Burton, Thomas P. Thomas, Christopher Mozak, Brent Boswell,

Praveen Mosalikanti, Mark Neidengard, Anant Deval, Ashish Khanna, et al. 2014. Haswell: A family of IA 22nm

processors. IEEE Journal of Solid-State Circuits 50, 1 (2014), 49–58.

[72] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald, Eby G. Friedman, Avinoam Kolodny,

and Uri C. Weiser. 2014. MAGIC–Memristor-aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs

61, 11 (2014), 895–899.

[73] Shahar Kvatinsky, Guy Satat, Nimrod Wald, Eby G. Friedman, Avinoam Kolodny, and Uri C. Weiser. 2014. Memristor-

based material implication (IMPLY) logic: Design principles and methodologies. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 22, 10 (2014), 2054–2066.

[74] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2010. Phase change memory architecture and the quest

for scalability. Communications of the ACM 53, 7 (2010), 99–106.

[75] Jong Chern Lee, Jihwan Kim, Kyung Whan Kim, Young Jun Ku, Dae Suk Kim, Chunseok Jeong, Tae Sik Yun,

Hongjung Kim, Ho Sung Cho, Yeon Ok Kim, et al. 2016. 18.3 A 1.2 V 64Gb 8-channel 256GB/s HBM DRAM with

peripheral-base-die architecture and small-swing technique on heavy load interface. In 2016 IEEE International Solid-

State Circuits Conference (ISSCC’16). IEEE, 318–319.

[76] Eero Lehtonen, Jussi H. Poikonen, and Mika Laiho. 2014. Memristive stateful logic. In Memristor Networks. Springer,

603–623.

[77] John D. Leidel and Yong Chen. 2016. Hmc-sim-2.0: A simulation platform for exploring custom memory cube op-

erations. In 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW’16). IEEE,

621–630.

[78] Chao Li, Wendy Fan, Bo Lei, Daihua Zhang, Song Han, Tao Tang, Xiaolei Liu, Zuqin Liu, Sylvia Asano, Meyya

Meyyappan, et al. 2004. Multilevel memory based on molecular devices. Applied Physics Letters 84, 11 (2004), 1949–

1951.

[79] Chao Li, Daihua Zhang, Xiaolei Liu, Song Han, Tao Tang, Chongwu Zhou, Wendy Fan, Jessica Koehne, Jie Han,

Meyya Meyyappan, et al. 2003. Fabrication approach for molecular memory arrays. Applied Physics Letters 82, 4

(2003), 645–647.

[80] Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob Brennan, and Yuan Xie. 2017. DRISA: A

DRAM -based reconfigurable in-situ accelerator. In Proceedings of the 50th Annual IEEE/ACM International Sympo-

sium on Microarchitecture. ACM, 288–301.

[81] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016. Pinatubo: A processing-in-memory

architecture for bulk bitwise operations in emerging non-volatile memories. In Proceeding of ACM/EDAC/IEEE Design

Automation Conference (DAC). IEEE, 173–178.

[82] E. Linn, R. Rosezin, S. Tappertzhofen, R. Waser, et al. 2012. Beyond von Neumann–logic operations in passive cross-

bar arrays alongside memory operations. Nanotechnology 23, 30 (2012), 305205.

[83] Andrea Lodi, Mario Toma, Fabio Campi, Andrea Cappelli, Roberto Canegallo, and Roberto Guerrieri. 2003. A VLIW

processor with reconfigurable instruction set for embedded applications. IEEE Journal of Solid-state Circuits 38, 11

(2003), 1876–1886.

[84] Joe Macri. 2015. AMD’s next generation GPU and high bandwidth memory architecture: FURY. In 2015 IEEE Hot

Chips 27 Symposium (HCS’15). IEEE, 1–26.

[85] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark Horowitz. 2000. Smart memories: A

modular reconfigurable architecture. ACM SIGARCH Computer Architecture News 28, 2 (2000), 161–171.

[86] Ariel Maislos et al. 2011. A new era in embedded Flash memory. In Flash Memory Summit.

[87] Jack A. Mandelman, Robert H. Dennard, Gary B. Bronner, John K. DeBrosse, Rama Divakaruni, Yujun Li, and Carl

J. Radens. 2002. Challenges and future directions for the scaling of dynamic random-access memory (DRAM). IBM

Journal of Research and Development 46, 2.3 (2002), 187–212.

[88] Pedro Marcuello, Antonio González, and Jordi Tubella. 1998. Speculative multithreaded processors. In Proceedings

of the 12th International Conference on Supercomputing. ACM, 77–84.

[89] Sparsh Mittal. 2018. A survey of ReRAM-based architectures for processing-in-memory and neural networks. Ma-

chine Learning and Knowledge Extraction 1, 1 (2018), 75–114. DOI:https://doi.org/10.3390/make1010005

[90] Amir Morad, Leonid Yavits, and Ran Ginosar. 2014. Efficient dense and sparse Matrix multiplication on GP-SIMD. In

2014 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS’14). IEEE,

1–8.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

https://doi.org/10.3390/make1010005

A Classification of Memory-Centric Computing 13:25

[91] Amir Morad, Leonid Yavits, and Ran Ginosar. 2015. GP-SIMD processing-in-memory. ACM Transactions on Archi-

tecture and Code Optimization (TACO) 11, 4 (2015), 53.

[92] Amir Morad, Leonid Yavits, Shahar Kvatinsky, and Ran Ginosar. 2016. Resistive GP-SIMD processing-in-memory.

ACM Transactions on Architecture and Code Optimization (TACO) 12, 4 (2016), 57.

[93] Onur Mutlu. 2013. Memory scaling: A systems architecture perspective. In 2013 5th IEEE International Memory

Workshop (IMW’13). IEEE, 21–25.

[94] Ravi Nair. 2015. Evolution of memory architecture. Proceedings of the IEEE 103, 8 (2015), 1331–1345.

[95] Ravi Nair, Samuel F. Antao, Carlo Bertolli, Pradip Bose, Jose R. Brunheroto, Tong Chen, C.-Y. Cher, Carlos H. A.

Costa, Jun Doi, Constantinos Evangelinos, et al. 2015. Active memory cube: A processing-in-memory architecture

for exascale systems. IBM Journal of Research and Development 59, 2/3 (2015), 17–1.

[96] H. Noyes et al. 2014. Micron’s automata processor architecture: Reconfigurable and massively parallel automata

processing. In Proceedings of 5th International Symposium on Highly-Efficient Accelerators and Reconfigurable Tech-

nologies.

[97] NVIDIA. 2012. Tesla K20X GPU Accelerator Board Specification.

[98] Mark Oskin, Frederic T. Chong, and Timothy Sherwood. 1998. Active Pages: A Computation Model for Intelligent

Memory. Vol. 26. IEEE Computer Society.

[99] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton, Christoforos Kozyrakis,

Randi Thomas, and Katherine Yelick. 1997. A case for intelligent RAM. IEEE Micro 17, 2 (1997), 34–44.

[100] David A. Patterson. 2006. Future of computer architecture. In Berkeley EECS Annual Research Symposium (BEARS),

College of Engineering, UC Berkeley, US.

[101] J. Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In 2011 IEEE Hot Chips 23 Symposium (HCS’11). IEEE,

1–24.

[102] Alex Peleg and Uri Weiser. 1996. MMX technology extension to the Intel architecture. IEEE Micro 16, 4 (1996), 42–50.

[103] M. Radosavljević, M. Freitag, K. V. Thadani, and A. T. Johnson. 2002. Nonvolatile molecular memory elements based

on ambipolar nanotube field effect transistors. Nano Letters 2, 7 (2002), 761–764.

[104] R. M. Ramanathan. 2006. Intel® multi-core processors. In Making the Move to Quad-Core and Beyond.

[105] Simone Raoux, Feng Xiong, Matthias Wuttig, and Eric Pop. 2014. Phase change materials and phase change memory.

MRS Bulletin 39, 8 (2014), 703–710.

[106] John Reuben, Rotem Ben-Hur, Nimrod Wald, Nishil Talati, Ameer Haj Ali, Pierre-Emmanuel Gaillardon, and Shahar

Kvatinsky. 2017. Memristive logic: A framework for evaluation and comparison. In 2017 27th International Sympo-

sium on Power and Timing Modeling, Optimization and Simulation (PATMOS’17). IEEE, 1–8.

[107] Gurtej S. Sandhu. 2013. Emerging memories technology landscape. In 2013 13th Non-Volatile Memory Technology

Symposium (NVMTS’13). IEEE, 1–5.

[108] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk Huh, Doug Burger,

Stephen W. Keckler, and Charles R. Moore. 2003. Exploiting ILP, TLP, and DLP with the polymorphous TRIPS ar-

chitecture. In ACM SIGARCH Computer Architecture News, Vol. 31. ACM, 422–433.

[109] Vivek Seshadri, Kevin Hsieh, Amirali Boroum, Donghyuk Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,

and Todd C. Mowry. 2015. Fast bulk bitwise AND and OR in DRAM. IEEE Computer Architecture Letters 14, 2 (2015),

127–131.

[110] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A.

Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. 2017. Ambit: In-memory accelerator for bulk bit-

wise operations using commodity DRAM technology. In Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture. ACM, 273–287.

[111] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul Strachan, Miao Hu, R. Stan-

ley Williams, and Vivek Srikumar. 2016. ISAAC: A convolutional neural network accelerator with in-situ analog

arithmetic in crossbars. ACM SIGARCH Computer Architecture News 44, 3 (2016), 14–26.

[112] M. A. Shami and A. Hemani. 2012. Classification of massively parallel computer architectures. In 2012 IEEE 26th

International Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW’12). 344–351. DOI:
https://doi.org/10.1109/IPDPSW.2012.42

[113] Patrick Siegl, Rainer Buchty, and Mladen Berekovic. 2016. Data-centric computing frontiers: A survey on processing-

in-memory. In Proceedings of the 2nd International Symposium on Memory Systems. ACM, 295–308.

[114] A. Siemon, S. Menzel, A. Chattopadhyay, R. Waser, and E. Linn. 2015. In-memory adder functionality in 1S1R arrays.

In 2015 IEEE International Symposium on Circuits and Systems (ISCAS’15). IEEE, 1338–1341.

[115] Anne Siemon, Stephan Menzel, Rainer Waser, and Eike Linn. 2015. A complementary resistive switch-based crossbar

array adder. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 5, 1 (2015), 64–74.

[116] Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan, Sander Stuijk, Roel Jordans, Henk Corporaal,

and Albert-Jan Boonstra. 2018. A review of near-memory computing architectures: Opportunities and challenges.

In Proceedings of the 21st Euromicro Conference on Digital System Design (DSD’18).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

https://doi.org/10.1109/IPDPSW.2012.42

13:26 H. A. Du Nguyen et al.

[117] D. B. Skillicorn. 1988. A taxonomy for computer architectures. Computer 21, 11 (Nov. 1988), 46–57. DOI:https://doi.

org/10.1109/2.86786

[118] G. Snider. 2005. Computing with hysteretic resistor crossbars. Applied Physics A: Materials Science & Processing 80,

6 (2005), 1165–1172.

[119] Kyomin Sohn, Won-Joo Yun, Reum Oh, Chi-Sung Oh, Seong-Young Seo, Min-Sang Park, Dong-Hak Shin, Won-

Chang Jung, Sang-Hoon Shin, Je-Min Ryu, et al. 2017. A 1.2 V 20nm 307GB/s HBM DRAM with at-speed wafer-level

IO test scheme and adaptive refresh considering temperature distribution. IEEE Journal of Solid-State Circuits 52, 1

(2017), 250–260.

[120] Harold S. Stone. 1970. A logic-in-memory computer. IEEE Transactions on Computing 100, 1 (1970), 73–78.

[121] Arun Subramaniyan, Jingcheng Wang, Ezhil R. M. Balasubramanian, David Blaauw, Dennis Sylvester, and Reetu-

parna Das. 2017. Cache automaton. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO-50’17). ACM, New York, NY, 259–272. DOI:https://doi.org/10.1145/3123939.3123986

[122] Jinwoo Suh, Eun-Gyu Kim, Stephen P. Crago, Lakshmi Srinivasan, and Matthew C. French. 2003. A performance

analysis of PIM, stream processing, and tiled processing on memory-intensive signal processing kernels. In ACM

SIGARCH Computer Architecture News, Vol. 31. ACM, 410–421.

[123] Mark R. Thistle and Burton J. Smith. 1988. A processor architecture for Horizon. In Proceedings of Supercomputing’88.

Vol. 1. IEEE, 35–41.

[124] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. 1995. Simultaneous multithreading: Maximizing on-chip

parallelism. In ACM SIGARCH Computer Architecture News, Vol. 23. ACM, 392–403.

[125] Mario Vestias and Horácio Neto. 2014. Trends of CPU, GPU and FPGA for high-performance computing. In 2014

24th International Conference on Field Programmable Logic and Applications (FPL’14). IEEE, 1–6.

[126] Borui Wang, Martin Torres, Dong Li, Jishen Zhao, and Florin Rusu. 2016. Performance implications of processing-

in-memory designs on data-intensive applications. In 2016 45th International Conference on Parallel Processing Work-

shops (ICPPW’16). IEEE, 115–122.

[127] Jue Wang, Xiangyu Dong, Yuan Xie, and Norman P. Jouppi. 2014. Endurance-aware cache line management for

non-volatile caches. ACM Transactions on Architecture and Code Optimization (TACO) 11, 1 (2014), 4.

[128] Ying Wang, Yinhe Han, Lei Zhang, Huawei Li, and Xiaowei Li. 2015. ProPRAM: Exploiting the transparent logic

resources in non-volatile memory for near data computing. In Proceedings of the 52nd Annual Design Automation

Conference. ACM, 47.

[129] Rainer Waser. 2012. Redox-based resistive switching memories. Journal of Nanoscience and Nanotechnology 12, 10

(2012), 7628–7640.

[130] Rainer Waser and Masakazu Aono. 2007. Nanoionics-based resistive switching memories. Nature Materials 6, 11

(2007), 833.

[131] Stephan Wong, Thijs Van As, and Geoffrey Brown. 2008. ρ-VEX: A reconfigurable and extensible softcore VLIW

processor. In International Conference on ICECE Technology, 2008 (FPT’08). IEEE, 369–372.

[132] Wm A. Wulf and Sally A. McKee. 1995. Hitting the memory wall: Implications of the obvious. ACM SIGARCH

Computer Architecture News 23, 1 (1995), 20–24.

[133] Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, and Koen Bertels Said Hamdioui. 2015. Fast Boolean logic

mapped on memristor crossbar. In 2015 33rd IEEE International Conference on Computer Design (ICCD’15). IEEE,

335–342.

[134] Lei Xie, Hoang Anh Du Nguyen, Jintao Yu, Ali Kaichouhi, Mottaqiallah Taouil, Mohammad AlFailakawi, and Said

Hamdioui. 2017. Scouting logic: A novel memristor-based logic design for resistive computing. In IEEE Computer

Society Annual Symposium on VLSI (ISVLSI’17). IEEE, 335–340.

[135] Sheng Xu, Xiaoming Chen, Ying Wang, Yinhe Han, Xuehai Qian, and Xiaowei Li. 2018. PIMSim: A flexible and

detailed processing-in-memory simulator. IEEE Computer Architecture Letters 18, 1 (2018), 6–9.

[136] J. Joshua Yang, Dmitri B. Strukov, and Duncan R. Stewart. 2013. Memristive devices for computing. Nature Nan-

otechnology 8, 1 (2013), 13–24.

[137] Leonid Yavits, Shahar Kvatinsky, Amir Morad, and Ran Ginosar. 2015. Resistive associative processor. In CAL.

[138] Jintao Yu, Lei Xie, Mottaqiallah Taouil, and Said Hamdioui. 2018. Memristive devices for computation-in-memory.

In Design, Automation and Test in Europe (DATE’18).

[139] Shimeng Yu and Pai-Yu Chen. 2016. Emerging memory technologies: Recent trends and prospects. IEEE Solid-State

Circuits Magazine 8, 2 (2016), 43–56.

[140] Jian-Gang Zhu. 2008. Magnetoresistive random access memory: The path to competitiveness and scalability. Pro-

ceedings of the IEEE 96, 11 (2008), 1786–1798.

Received December 2018; revised September 2019; accepted October 2019

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 2, Article 13. Pub. date: January 2020.

https://doi.org/10.1109/2.86786
https://doi.org/10.1109/2.86786
https://doi.org/10.1145/3123939.3123986

