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A New Hybrid Method for Magnetic Field
Calculation in IPMSM Accounting for

Any Rotor Configuration
Baocheng Guo , Member, IEEE, Yunkai Huang , Fei Peng, Member, IEEE,

and Jianning Dong , Member, IEEE

Abstract—In this paper, a new hybrid model is proposed
for the prediction of air gap magnetic field distribution (MFD)
in interior permanent magnet machines with any rotor con-
figuration. The slotless magnetic field is first predicted by
finite-element method (FEM) with automatic scripting in
MATLAB to consider saturation in the rotor iron. Afterward,
the conformal mapping viz., Schwarz–Christoffel mapping
is introduced to take the slotting effect into account. Con-
sequently, the MFD could be calculated. The back electro-
magnetic forces, cogging torque, and output torque are ob-
tained accordingly. Then a subdomain model is developed
to consider the armature reaction. The results show that
the proposed hybrid approach agrees well with the FEM.
The model is further verified by experiments. The main con-
tribution of this paper is to reduce the computation time
remarkably while maintaining the calculation accuracy.

Index Terms—Finite-element (FE) model, hybrid model,
interior permanent magnet (IPM) machines, Schwarz–
Christoffel (SC) mapping.

I. INTRODUCTION

INTERIOR permanent magnet (IPM) machines, due to their
high efficiency, high power density as well as wide constant

power speed range, are widely used in industrial [1] and home
applications, especially in electric vehicles [2]. For both the
spoke-type permanent magnet machines and any other IPM with
different topologies, their design and optimization are of great
importance. However, the considerable long computation time
is still remaining as one of the major problems for IPM motor
designers because of the complex rotor configuration.

A significant amount of work has been done concerning the
design for IPM. At present, the numerical approach, such as
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finite-element method (FEM), is widely used in motor design
since it is regarded as the most accurate method. It is able to
consider both saturation and complex geometries. For example,
Liu et al. studied the performance of the IPM machine used for
electric vehicles using FEM [3], while Shin et al. performed a
similar study in [4]. An alternative method to reduce the compu-
tation time is the field reconstruction (FR) method proposed in
[5], which is partly based on the FEM model. In [6], the author
adopted the FR approach to study the electromagnetic vibra-
tions. Although it is much faster than three-dimensional/two-
dimensional (3-D/2-D) finite-element (FE) models, it still re-
quires considerable computation time. Moreover, the optimiza-
tion of IPM needs large number of iterations to vary geometry
dimensions, which takes more time [7].

Analytical or semianalytical approaches, due to their fast and
acceptable accuracy, are still regarded as efficient and favorable
methods among electrical machine designers.

The magnetic equivalent circuit (MEC) method [8], [9] can
calculate the average magnetic field but not the detailed distri-
bution. Moreover, the MEC is not accurate enough for some
qualities such as cogging torque and forces because the accu-
racy is largely affected by the number of nodes and the simu-
lation strategy. In addition, the model needs to be rearranged
at each simulation step due to the variations of stator and rotor
reluctances.

Alternative analytical solutions are appearing in the literature
[10], which is based on the solution of Poisson’s and Laplace’s
equations. In [11], the air gap magnetic field distribution (MFD)
of a spoke-type motor is calculated by a subdomain model with
assumptions of iron relative permeability with linear equations,
which limits the application of the method. In [12], the iterative
technique is adopted to consider the permeability, but the model
is not applicable to complex rotor structures.

Most general approaches are combining with MEC model to
consider the leakage flux [13]–[15] for specific structure. None
of the previous studies provide simple and general solutions
for MFD of IPM machines. To overcome the aforementioned
problems, a hybrid analytical model is proposed to predict the
MFD and performance.

A flowchart describing the proposed approach is shown in
Fig. 1. It shows that FE model is introduced to obtain the slot-
less magnetic field, and it should be noted that the FE model
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Fig. 1. Flowchart of the hybrid method.

Fig. 2. Prototype of the IPM electrical machines for fan blower.
(a) Prototype. (b) Configuration of rotor.

is used only once; moreover, it is simplified since it no longer
needs to consider the slot. After introducing the SC mapping
and subdomain, the dynamic magnetic performance can be cal-
culated. This technique can reduce the computation time and
maintain the accuracy.

This paper is organized as follows. In Section II, the pa-
rameters of prototype are provided. Section III introduces the
automatic modeling of FE model. The slotting effect is consid-
ered by Schwarz–Christoffel (SC) mapping and the armature
reaction is presented in Section IV. Afterward, the results are
then discussed in Section V. In Section VI, the experimental
results are presented and compared with the results obtained
from the proposed hybrid approach. Conclusions are drawn in
Section VII.

II. DESCRIPTION OF PROTOTYPE

In this paper, a 12-slot/8-pole spoke-type IPM is introduced
to verify the proposed method. The machine has 12-slots stator
with a concentered winding, and four-pole pairs spoke-type
permanent magnet rotor. The major design objectives are as
follows: high efficiency; high thermal endurance; reasonable
rotor mechanical behavior; and low cost. The main dimensions
and parameters of the studied machine are shown in Table I.

The prototype and its components are shown in Fig. 2. In
order to decrease the cost and the PM eddy current loss, the
ferrite PMs are adopted. Fig. 3 shows the detailed geometry
with rectangle magnets and magnetic bridges.

TABLE I
MAIN DIMENSIONS AND PARAMETERS OF THE STUDIED MACHINE

Fig. 3. Configuration of a 12-slot/8-pole spoke-type motor.

Fig. 4. Geometry of rotor models. (a) Initial model. (b) Simplified model.

III. AUTOMATIC GENERATION OF SLOTLESS FEM MODEL

A. Simplification of Rotor Structure

Fig. 4(a) shows the initial configuration of rotor geometry.
In the aspect of design, the linkage fluxes pass the magnetic
bridges resulting in saturation, which makes the permeability
distribution uniform. In the meanwhile, the linkage flux makes
the magnetic flux density decreased. Hence, the top magnetic
bridge is always thin to limit the leakage, and the bottom is thick
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TABLE II
CALCULATED SIMPLIFIED DIMENSIONS OF ROTOR STRUCTURE

Fig. 5. Data communication between MATLAB and JMAG.

to ensure the mechanical stress. This phenomenon is difficult to
be considered in the pure analytical model. However, it can be
calculated from an FEM model directly. Therefore, the magnetic
bridge area is not simplified.

The rotor chamfer edge is simplified as a rectangle shape as
shown in Fig. 4(b). By doing the simplification, the geometry can
be easily parametrized, which is good for further optimization.

The dimensions of the simplified rotor structure are shown in
Table II.

B. Automatic FEM Modeling Using MATLAB and
JMAG-Designer

To speed up the modeling process, a user interface is built
between the FEM model and MATLAB. JMAG-Designer is
used as the FEM tool.

Fig. 5 shows the process of automatic modeling, which also
illustrates the interfaces between MATLAB and JMAG. Dif-
ferent scripts are used for functionalities from preprocessing to
postprocessing. The scripts are generated in MATLAB dynami-
cally based on previous inputs. It should be noted that any rotor
topologies could be calculated based on this approach.

To speed up the calculation, a 1/8 slotless model is adopted,
and the stator is replaced with a slotless cylinder, as shown
in Fig. 6. The antiperiodic boundary condition is set on both
sides, the FE model has 8193 elements and is calculated under
static analysis. Since the nonlinear magnetic material is used
in the FE model, the saturation of the bridge can be directly
considered without manual iterative process. It can be seen that
the magnetic flux density at bridge area is 2.4 T.

Fig. 6. Magnetic flux density and meshing of prototype.

Fig. 7. Slotless air gap flux density waveforms of FE model. (a) Radial
component. (b) Tangential component.

Afterward, the flux density can be extracted from FEM soft-
ware to a text file (∗.csv) and imported to MATLAB. Fig. 7
shows the no-load air gap flux density waveforms of FE model.

IV. SLOTTING EFFECT AND ARMATURE REACTION

In order to simplify the calculation, the tooth body has
uniform width [see Fig. 8(a)] is simplified to the one has
equal width angle as shown in Fig. 8(b). It should be noted
that this simplified structure should fulfill the standard bound-
ary conditions of Poisson’s and Laplace’s equations, which is
used to calculate the relative air gap permeance and armature
reaction.

The simplified parameters of stator structure, which are used
to calculate the relative air gap permeance and armature reaction,
are shown in Table III.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 09,2021 at 14:19:10 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 8. Geometry of stator models. (a) Initial model. (b) Simplified
model.

TABLE III
CALCULATED SIMPLIFIED PARAMETERS OF STATOR STRUCTURE

A. Complex Relative Air Gap Permeance

There are several approaches which consider the slotting ef-
fect shown in [16] viz., lateral force (LF) and complex per-
meance (CP) techniques. Although LF is convenient and fast, it
cannot predict the tangential component, for which the accuracy
of torque is not good enough.

The conformal mapping (CM) adopted in [16] is one of the
CP methods and always used to calculate the relative air gap
permeance to obtain the air gap magnetic field with slotting
based on the slotless results. In [17], Zarko used this method to
calculate the relative permeability of the air gap considering the
slotting effect, but one of the main assumptions is that the motors
have an infinite slot opening, which implies that the shape of slot
is ignored. Moreover, the interaction between adjacent slots is
also neglected. In this paper, the numerical SC mapping is used
with MATLAB SC Toolbox to exempt the previous assumptions
[18]. The SC mapping is better than the traditional CM shown
in [16], because of its versatility and accuracy.

The complex relative air gap permeance for the slotted air
gap can be calculated as

λ =
∂ς

∂w
· ∂w

∂z
· ∂z

∂s
· 1
λ0

(1)

λ = λr + jλt (2)

where λ0 is the relative permeance in the slotless air gap, λr

and λt stand for the radial and tangential components of the
complex relative air gap permeance, respectively. Moreover, s,
z, w, and ς represent the s-plane, the z-plane, the w-plane, and
the ς-plane, respectively.

To obtain the relative air gap permeance, the points of each
domain can be mapped as shown in Fig. 9. First, the modified
motor geometry (s-plane) is mapped to the multilateral geometry

Fig. 9. Illustration of mapping between different domains in SC method.

in the z-plane by using one logarithmic equation as

z = log(s). (3)

The canonical rectangle in the w-plane can be mapped to the
interior of polygon in the z-plane using the SC mapping as

z = f(w) = A0 + C0

∫ n−1∏
k=1

(w − wk )αk −1dw (4)

where A0 and C0 are the integration constants, n is the number
of polygon corners in the z-plane, w presents the points in the
canonical rectangle, and αk are the interior angles. These points
and unknown parameters can be calculated by SC Toolbox.

The interior of annular domain in ς-plane is mapped to the
canonical rectangle in the w-plane using

w = j

(
log(ς)

Δx

2π
+

Δy

2
− j

Δx

2

)

Δx = w(2) − w(1), Δy = w(3) − w(2). (5)

After reaching the annular domain, Hague’s solution is then
used to calculate the slotless air gap field in ς-plane. It should
be noted that every mapping function can be inversed. Hence,
the CP for slotted air gap is presented by

λ1 =
∂ς

∂w
· ∂w

∂z
· ∂z

∂s
. (6)

In order to obtain the final relative permeance by (1), the
CP under slotless air gap should be calculated by the same
procedure, and the radial and tangential components of complex
relative permeance in the middle air gap are shown in Fig. 10.
It should be noted that in order to obtain accurate results, all
slots should be drawn in SC Toolbox to consider the effect of
adjacent slots.

Having the slotless air gap flux density (Bu ) obtained by FE
model, the slotted air gap flux density (Bs) can be calculated
using the complex relative air gap permeance

Bs = Bu · λ = (Br + jBt) · (λr + jλt) (7)

where Bu is the complex conjugate, Br and Bt are the no-load
radial and tangential components, respectively.

It can be seen from previous description that the static FE
step is independent from the analytical step. Since complex
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Fig. 10. Complex relative permeance in the middle of air gap with 5.8°
slot opening. (a) Radial component. (b) Tangential component.

Fig. 11. Exact SD model.

rotor structures can be directly modeled in FEM, the proposed
hybrid method can be applied to machines with arbitrary PM
rotor structures. After obtaining the no-load field distribution,
the armature reaction should be calculated in order to obtain the
on-load MFD.

B. Model of Armature Reaction

To take armature reaction into account, the subdomain model
is selected since it provides more accurate results. Normally,
several assumptions are made to simplify the calculation: 1)
the iron materials have infinite permeablity; 2) the end effect is
ignored; and 3) simplified slots as shown in Fig. 8(b).

Afterward, the exact SD model can be separated into three
domains as shown in Fig. 11 viz., air gap (region 1), winding slot
(region 2i), and slot openings (region 3i). The angular position

of the ith stator slot-opening is defined as

θi = −β

2
+

2iπ

Q
, 1 ≤ i ≤ Q. (8)

By using separation of technique, the solution of Poisson
and Laplace equations can be obtained. In order to avoid ill-
conditioned matrix, the scaling technique is introduced as

Pω (u, v) =
(u

v

)ω

+
( v

u

)ω

, Eω (u, v) =
(u

v

)ω

−
( v

u

)ω

.

(9)

Taking into account the boundary conditions shown in Fig. 11
(Ht = 0), the general solution of vector potential A in region 1
(air gap) is simplified as

AI (r, θ) =
∞∑

n=1

(
A1

n

Pn (r,Rr )
Pn (Rs,Rr )

)
cos(nθ)

+
∞∑

n=1

(
C1

n

Pn (r,Rr )
Pn (Rs,Rr )

)
sin(nθ). (10)

The general solution of region 2i (slot opening) is

A2i = A2i
0 + B2i

0 ln r

+
∞∑

k=1

(
A2i

k
Ek π / β (r,R s t )

Ek π / β (Rs ,R s t )
− B2i

k
Ek π / β (r,R s t )

Ek π / β (Rs ,R s t )

)

· cos (kπ(θ − θi)/β) .

(11)

The same boundary condition shown in Fig. 11 (Ht = 0), the
general solution of region 3i (winding slot) can be expressed as

A3i(r, θ) = A3i
0 +

1
2
μ0Jj

(
R2

sb ln r − 1
2
r2

)

+
∞∑

m=1

(
A3i

m

δRst

mπ

Pmπ/β (r,Rsb)
Emπ/β (Rst , Rsb)

)

· cos
(

mπ

δ

(
θ − θi − 1

2
(β − δ)

))
(12)

where A1
n , C1

n , A2i
0 , B2i

0 , A2i
k , B2i

k , A3i
0 , and A3i

m are coeffi-
cients to be determined. n, k, and m are harmonic order in each
computed domain.

It should be noted that each domain is connected by the
continue boundary condition. The one between region 1 and
region 2i at Rs is

A1(R, θ) = A2i(R, θ), θi − β

2
≤ θ ≤ θi +

β

2
(13)

{
Hx1(R, θ) = Hx2i(R, θ), θi − β

2 ≤ θ ≤ θi + β
2

Hx1(R, θ) = 0, elsewhere.
(14)

The boundary condition between region 2i and region 3i at
Rst is

A3i(R, θ) = A2i(R, θ), θi − β

2
≤ θ ≤ θi +

β

2
(15)

{
Hx3i(R, θ) = Hx2i(R, θ), θi − β

2 ≤ θ ≤ θi + β
2

H2ix(R, θ) = 0, elsewhere.
(16)
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Fig. 12. FE model. (a) Slot opening with 5.8°. (b) Slot opening with
11.6°.

The unknown coefficients can be obtained by applying
Fourier series expansion and boundary conditions. The detailed
calculation method can be seen in [19].

Afterward, the radial and tangential flux density components
are derived from A as shown in the following:

Br =
1
r

∂A

∂θ
, Bt = −∂A

∂r
. (17)

Hence, the on-load flux density distribution could be obtained
by superposition principle [20], and it becomes


Bon−load = 
BPM + 
BAR (18)

where 
BPM is the flux density produced by the PMs and 
BAR
is the flux density of the armature reaction.

V. RESULTS AND ANALYSIS

The proposed method is verified by 2-D nonlinear FEM model
as shown in Fig. 12. In order to validate the proposed method
with different stator configurations, an FEM model with a slot
opening of 11.6° is also built and considered in the comparison.
It should be noted that there are some structural simplifications
in the FEM model to verify the results calculated by the proposed
method. To speed up the calculation, only one-fourth model is
developed and the mesh at the air gap is refined as shown in
Fig. 12.

A. No-Load Performance

Fig. 13 compares the flux density in the middle circle of the air
gap. It shows that the results predicted by the proposed method
agree well with those obtained from the FEM model even with
large slot opening.

Fig. 13. No-load air gap flux density waveforms of proposed method
and FEM. (a) Slot opening with 5.8°. (b) Slot opening with 11.6°.

The phase flux vector can be given by

⎛
⎜⎝

Ψa

Ψb

Ψc

⎞
⎟⎠ = Nc [C] (ϕ1 ϕ2 . . . ϕQ ) (19)

where Nc is the number of turns in series per phase and [C]
is a connecting matrix that illustrates the windings distribution.
Under no-load condition, the flux over each slot (ϕj ) is

ϕj = L ·
∫ θ0 +θc

θ0

Br (Ra, θ)dθ (20)

where L is the axial length, θ0 is the coil starting side angle from
the origin, θc is the expansion angle of the coil pitch, and Ra is
the average radius of air gap.

The connecting matrix C is given by

C =

⎡
⎢⎣

1 −1 0 1 −1 0
0 1 −1 0 1 −1

−1 0 1 −1 0 1

1 −1 0 1 −1 0

0 1 −1 0 1 −1

−1 0 1 −1 0 1

⎤
⎥⎦ . (21)
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Fig. 14. Comparison of back EMF. (a) Slot opening with 5.8°. (b) Slot
opening with 11.6°.

Afterward, the back EMFs are calculated by⎛
⎜⎝

Ea

Eb

Ec

⎞
⎟⎠ = ns

d

d �

⎛
⎜⎝

Ψa

Ψb

Ψc

⎞
⎟⎠ . (22)

The back EMFs are shown in Fig. 14. The computa-
tion is done at rated speed 3000 r/min. The results obtained
from the proposed method are in agreement with the FEM
ones.

According to the Maxwell tensor equation, the torque can be
computed by

T =
LR2

a

μ0

∫ 2π

0
Br (Ra, θ) · Bt(Ra, θ)dθ. (23)

Fig. 15 shows the cogging torque of prototype. As shown, the
proposed method is able to predict the cogging torque with high
degree of accuracy for both slot opening.

B. On-Load Permeance

Fig. 16 compares the flux density in the middle air gap. It
shows that the results predicted by the proposed method match
those from FEM model. It should be noticed that the errors in-
crease compared to those of EMF and cogging torque, which
is mainly caused by the simplification of the rotor when calcu-
lating the armature effect. More specifically, the groove at the
rotor surface is neglected in order to reach the balance between
computation time and accuracy.

Fig. 15. Comparison of cogging torque. (a) Slot opening with 5.8°.
(b) Slot opening with 11.6°.

Fig. 16. On-load air gap flux density waveforms of proposed method
and FEM. (a) Slot opening with 5.8°. (b) Slot opening with 11.6°.

Fig. 17 shows the electromagnetic torque waveforms calcu-
lated by the proposed method and the FEM model under 10 A
current. The average value of the hybrid method is 0.50 N�m
and that of the FEM is 0.53 N�m for the slot opening of 5.8°.
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Fig. 17. Comparison of torque. (a) Slot opening with 5.8°. (b) Slot
opening with 11.6°.

The average value of the hybrid method is 0.536 N�m and that of
the FEM is 0.532 N�m for the slot opening of 11.6°. The errors
are 6% and 0.7%, respectively, which is in acceptable range.
The waveform error is caused by neglecting of rotor grooves
and stator local saturation.

C. Computation Time

In terms of the computation time, the FEM model has 11 713
elements and it requires 377 and 817 seconds to obtain the basic
no-load and on-load performances [i7-4800 MQ @ 2.70(GHz)
CPU, 32 (GB) RAM], respectively. The hybrid method proposed
in this paper, on the other hand, require only 13 seconds to get the
no-load results and 31 seconds for on-load results. Therefore,
the hybrid model is about much faster than FEM.

VI. EXPERIMENTAL VALIDATION

Fig. 18 shows the prototype machine (slot opening of 5.8°)
and the experimental set-up and devices. The prototype machine
is driven by a driving motor via a shaft coupling.

The no-load EMF is measured at 1200 r/min. The measured
waveforms are shown in Fig. 19(b). The calculated results are
quite close to the measured ones, as shown in Fig. 19(a).

The rms value of experimental results is 3.1 V, while the
value calculated by proposed method is 3.2 V. However, there
is a little difference between the waveform shapes obtained
from the proposed method and the measured ones. It is mainly
caused by the chamfering of the rotor. It results in the differ-
ence of the MFD, and this phenomenon is confirmed by Fig. 11.
Although the proposed results show certain error with the ex-
periments, the work in this paper is still meaningful since the

Fig. 18. Prototype machine and the experimental setup.

Fig. 19. EMF results of slot opening with 5.8°. (a) Calculated result.
(b) Experimental result.

hybrid model can achieve accurate enough results in a very short
time.

The cogging torque is relatively small and it is hard to test
using torque sensor; therefore, the method presented in [21] is
adopted. The test rig is shown in Fig. 20(a). The prototype is
clamped by a dividing dial and a beam is fixed to the rotor shaft.
A weight is fixed on one side of beam in order to keep the force
acting on the scale at any rotor position; moreover, the weight
can reduce the influence of friction.

The cogging torque waveform can be obtained by the
lever principle. Fig. 20(b) shows the comparison between the
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Fig. 20. Cogging torque result of slot opening with 5.8°. (a) Test rig.
(b) Experimental result.

predicted proposed method and the measured cogging torque
waveforms. An acceptable agreement has been achieved.

VII. CONCLUSION

The IPM machine has been emerging in various industrial
applications, thanks to its wide constant power speed range.
However, it has a critical problem with design and optimization
process because of the long computation time if the calculation
is done in FEM.

This paper proposed a hybrid method combining FEM and
analytical method, which reduced the computation time remark-
ably while maintaining the high accuracy as that of the FE
model. The hybrid results of MFD, back EMF, and the torque
matched well with those of FEM, which confirmed the validity
of the proposed model.

Moreover, the approach proposed in this paper can be re-
garded as an effective design and optimization tool for the IPM
machine.
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