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Abstract
We live in a world where much of our interactions with the environment around us depend on us being
physically close to them. For instance, we have proximity­based tokens (e.g., keys and smartcards) for
access systems installed at various places such as in cars, at contactless payment terminals, and in
electronic passports. Moreover, such systems exist in critical environments like nuclear power plants.
Unfortunately, the current systems used to detect proximity between devices and/or users are rife with
vulnerabilities. Numerous attacks, such as Relay attack, Preamble Injection attack, Early Detect/Late
Commit, and Cicada, exist that let an attacker maliciously alter the measured distance. The research
community has proposed several solutions to address these problems and based on their inputs, the
IEEE 802.15.4a standard was recently amended. Nevertheless, we show that the newer amendment
(i.e., IEEE 802.15.4z) is however not entirely secure and still vulnerable to being exploited.

In this work, we evaluate and address the vulnerabilities present in the recently introduced standard,
IEEE 802.15.4z amendment for Ultra­Wide Band (UWB). This standard forms the basis of proximity
detection in a majority of new devices such as keyfobs for cars, access control systems, smartphones
like Samsung S21 and Google Pixel 6, and even medical equipment to monitor patients. First, we
mount two attacks, namely the Cicada­TF and the Adaptive Injection, against UWB­based proximity
detection systems. Second, we propose a novel approach to detect the presence of these attacks. We
create a real­world testbed using DWM3000 ICs mounted on NRF52840­devkits to launch the attacks
and implement our proposed detection approach. We evaluate the efficacy of our approach in three
different environments: an indoor residence, a large outdoor passageway, and an office space. These
environments were selected to represent the most commonly used places and were based on the
802.15.4a channel models document by IEEE. Our experiment results show that the proposed model
can detect the presence of attacks with high accuracy (94%) in all three environments. To the best of
our knowledge, this is the first research work that presents a way to detect the presence of such attacks
and also to be verified on hardware.
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1
Introduction

In this chapter, we provide an introduction to the research topic and the motivation behind our work.
We also provide a description of our proposed model and present our major contributions.
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We live in a world where we largely interact with the world around us. Noticeably, there has been
a strong shift towards contactless systems. Such systems are pervasive in our daily lives. We have
proximity based doors, cars that utilize keyless entry systems (where a user does not need to physi­
cally open the car door), contactless payment terminals, and even medical devices. Consider a normal
example: you go to your neighbourhood grocery store, grab a shopping cart, the doors automatically
open to let you in. You finish your shopping, scan your items, and then hold your card near the payment
terminal and you have paid for your groceries ­ no need to enter your pin. You live in the future now,
where you do not need to interact with systems. But why stop there? Why do you have to physically
bring your card to the payment terminal? Surely we have the technology to eliminate that? Unfortu­
nately, a lot of these systems that we rely upon are based on preexisting technologies that are rife with
vulnerabilities and not suitable for such applications.

News articles are peppered with theft reports of cars with keyless systems [1, 37]. Extant solutions
use signal characteristics such as Time Of Flight (ToF), Angle of Arrival (AoA), and Received Signal
Strength Indicator (RSSI) to measure the proximity between devices and/or users and are susceptible
to relay attacks, as shown in Figure 1.1 [21].

Figure 1.1: Relay attack on Keyless Cars, Image from Which News Co. UK [42]

Relay attacks occur when an attacker who uses a proxy device relays the communication between
two devices without necessarily knowing the content of the messages being exchanged. In theft of key­
less cars, the hackers first amplify the weak signal from the keyfob present in the house, and then relay
it to the car thereby causing the system to unlock. Researchers have also shown such relay attacks
being successful on contactless payment systems [16]. There are also other types of attacks that allow
the attackers to manipulate the measured distance by utilizing special radio equipment [39]. Recent
systems that rely upon the latest Ultra­Wide Band (UWB) standard (IEEE 802.15.4z) are unfortunately
also susceptible to similar attacks, namely Cicada++ and Adaptive Injection [47]. In both these attacks,
the adversary emits a constant chirp of radio signals that interfere with the genuine signals received by
the transmitter, leading to the alteration in the distance measurement. Systems that implement these
proximity detection mechanisms hinge their security on weakly transmitted signals and on the notion
that encrypted communication implies proximity. The research community has proposed several dif­
ferent methods to combat these problems [46, 48, 32] and an overview of these techniques along with
their pros and cons is presented in Chapter 3.

In this thesis, we propose a model to identify the above mentioned new attacks (i.e., Cicada­TF:
a modification of the Cicada attack, and Adaptive Injection attack) on the proximity detection systems
based on the latest UWB standard. Our proposed model utilizes contextual information and radio sig­
nal characteristics that are observed from each ranging session and compares them to historical data
that is collected before to identify anomalies that are present.
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To summarize, this thesis makes the following contributions:

• We propose an approach that observes and learns the characteristics of genuine ranging ses­
sions. The approach uses these observations, extracts radio signal characteristics and compares
them to the earlier recorded datasets of ranging sessions in an environment. We utilize machine
learning classifiers that are trained on these recorded datasets to look out for markers of anoma­
lies during subsequent ranging sessions.

• We identify three different real­world environments (Indoor Residence, Outdoor Residence Pas­
sageway, and an Office space), where we record the genuine signals at several points within
(fingerprint) to accurately account for different variations of ranging that may occur. Our experi­
ments show that our model is capable of identifying Cicada and Adaptive Injection attacks with
an accuracy of around 94% in all these environments.

• We mount two attacks on the system to evaluate its efficacy, including a newer attack that
is present on the recent IEEE 802.15.4z standard. Furthermore, we evaluate two algorithms
namely, Jump­Back Search­Forward and Search­Back [13], proposed by the research commu­
nity to measure the time­of­arrival (ToA) of received signals. These algorithms are used to ac­
count for cases where the strongest signal does not reach the receiver first, such as in Non Line of
Sight (NLoS) conditions between the transmitter and receiver. Our results show that Jump­Back
Search­Forward algorithm performs consistently better than Search­Back in all three evaluated
environments.

In this work, our novel contribution is addressing attacks on proximity detection systems, more
specifically on identifying attacks exploiting the vulnerabilities present in the IEEE 802.15.4z standard.
Our proposed model does not require special equipment and can be integrated into extant hardware
that are built upon the standard.



2
Background

In this chapter, background information on different concepts and techniques that our work relies upon
is provided. It includes a short overview on the history of proximity detection systems, basics of Radio
Frequency Signal Processing, machine learning concepts, and different secure proximity detection
methodologies (i.e., Contextual and Distance Bounding methods). An explanation of the related works
that use these methods is provided in the Chapter 3.

4



5

Identifying proximity between devices is not a new requirement. The earliest commercial device that
implemented a rudimentary form of detecting proximity was a garage door opener with dip switches.
The remote (keyfob) for such a system contained a set of 9­12 switches that could be flipped to on/off
to set the code that it would transmit. If the switch patterns between the transmitter and the receiver
match, the door opens. The transmitted signal was emitted weakly i.e. the transmission energy was
limited. This resulted in the signal becoming weak and attenuated over a short distance and hence its
range was limited. Such devices did not offer much concerning security as any attacker would be able
to brute­force all combinations in a short time. They were also vulnerable to replay attacks, where an
attacker could record the signal and replay it later as the content of the signal did not change.

To address the replay attack, newer form of keyless entry systems were introduced that utilize a
rolling code, an algorithm which generates a new key each time its used, wherein each transmitted
signal is encrypted using a fresh key. These were used in both the traditional Remote Keyless Entry
(RKE) systems and the newer Passive Keyless Entry systems (PKES). These keys offered more se­
curity as they were not vulnerable to replay attacks, but they were susceptible to newer form of attack
called relay attack. In this attack, the adversary establishes a communication channel between the
prover (key) and the verifier (car), and subsequently amplifies the power of the emitted signals from the
keyfob. This results in the car being able to receive signals from the far away keyfob, and unlocking.
The attack is successful due to the fact that the physical distance between the devices is not measured,
the system only checks if the car is able to communicate with the keyfob using a challenge­response
mechanism. A common PKES protocol is shown in Figure 2.1. The Low Frequency (LF, 125 ­ 135kHz)
waves sent by the vehicle are short range, less than 2 meters, whereas the Ultra­High Frequency (UHF,
315MHz ­ 433.92MHz) response sent by the keyfob has a range of around 100m [29].

Figure 2.1: Passive Keyless Entry System, Image from Hold the Door! [29]

The research community has proposed several alternate solutions to overcome the above men­
tioned problems. These solutions can be broadly classified into two categories:

• Contextual methods: Here, the devices exchange environmental contexts that they can sense
from their surrounding environment, and measure a similarity index to detect if they are in prox­
imity. The context includes radio signals such as WiFi, Bluetooth, and Global Positioning System
(GPS), and sensor data like temperature, humidity, light, and pressure.

• Distance Boundingmethods: Here, the proximity of devices is measured by translating a variety
of different parameters such as Time of Flight (ToF), Received Signal Strength (RSS), Angle of
Arrival (AoA), and Time Difference of Arrival (TDoA) of the underlying radio signal to distance,
and thereby providing a strong upper bound on the distance between two devices.
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2.1. Contextual Proximity Detection Methods
Authors in [14] collate a list of several methodologies proposed to detect proximity using contextual
information. Commonly used implementations utilize a combination of different sensor’s data that can
be gathered from the contexts around the transmitter and the receiver. For example, authors in [54] use
a combination of different radio signal measurements such as GPS co­ordinates, and list of common
WiFi access points read by them, in addition to signal parameters such as RSSI.

Contextual proximity verification schemes, while they boast high accuracies are however suscepti­
ble to context manipulating adversaries and can easily be manipulated into verifying devices using off­
the­shelf hardware [45, 14]. The adversary can inject radio signals, block signals from the transmitter
reaching the receiver, and also perform other context manipulation attacks like altering the environment
(e.g., temperature, humidity, and acoustic signals) around the two devices. Also, it does not mathemat­
ically guarantee an upper bound on the distances observed between the two devices and as such their
security cannot be formally proven. Solutions that attempt to combat context manipulating adversaries
utilize machine learning models such as decision classifiers or clustering algorithms to detect anoma­
lous behaviour and prevent relay attacks. Some of these solutions achieve high accuracies [45, 54, 29,
51, 55].

Contextual proximity verification schemes utilize a wide variety of information that can be discerned
from the contexts to identify anomalies. They collect information from a wide variety of available differ­
ent sensor data, and due to the fact that some contextual parameters indirectly impact other parameters
of the environment [45], they are useful for detecting the presence of attacks. This is particularly appli­
cable in UWB, as existing systems do not take any contextual information into account. Therefore, we
build upon the research work proposed in contextual techniques and adapt them to bolster the security
of devices that utilize UWB.

2.2. Distance Bounding Protocols
In distance bounding protocols, a mathematical upper bound on the distances between the two devices
is calculated. These protocols were specifically designed to address relay attacks, and are aimed at
preventing distance shortening and enlargement attacks. RSS or Phase of Arrival characteristics used
to model distances are susceptible to being modified by an attacker without detection [7, 36]. ToF
based methods are more secure against these issues (provided the underlying PHY layer does not
compromise the security), as an attacker cannot reduce the ToF.

Figure 2.2: Distance Bounding Protocol, Image from [11]

Distance bounding protocols were first proposed by authors in [10]. The design of the protocol
outlined by them bounds the distance between the parties by using the round­trip­time (RTT) of single­
bit challenges and responses. The protocol runs in three phases. In the first phase, the verifier and the
prover exchange their generated nonces followed by the prover committing to a randomly generated
string that will be used to calculate responses. In the second phase, also known as the rapid bit
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exchange phase, the verifier sends “n” single bit challenges to the prover. The prover responds to
these challenges by XORing them with the committed string. In the third phase, or the verification
phase, the prover signs a message containing the sent challenges and corresponding responses. The
verifier utilizes a pseudo­random function to generate the challenges, and the security of the system is
directly proportional to the number of rounds. This protocol is shown in Figure 2.2.

While the protocol eliminated the occurrence of relay attacks, newer form of frauds were discovered
that were probable depending upon the maliciousness of the different actors involved. Subsequent
research work in distance bounding addresses these various concerns and modifies the design of the
protocol to address these vulnerabilities [7]. Some common form of fraud outlined are:

1. Impersonation fraud: An attacker attempts to convince the verifier that they are legitimate.
2. Distance Fraud: A dishonest prover attempts to convince the verifier that they are in the vicinity.
3. Mafia Fraud: An attacker launches aman­in­the­middle attack between the verifier and the prover.

This is also known as a relay attack.
4. Terrorist Fraud: The adversary launches a man­in­the­middle attack and also colludes with a

dishonest prover who is located outside the proximity of verifier. The prover actively helps the
adversary to maximize the success probability, for example, by providing the nonces used while
ensuring that the adversary cannot launch future man­in­the­middle attacks without further help
i.e., they do not hand over key material that allow the adversary launch attacks independently.

Distance bounding techniques offer provable security and guarantee an upper bound on the dis­
tances between the transmitter and the receiver. Contextual techniques do not offer such solutions.
UWB was designed and introduced particularly for the implementation of distance bounding in prox­
imity detection systems to increase their security, as existing devices depended upon non­secure or
non­accurate ways to measure distances such as the path loss equation or carrier­phase based rang­
ing. Hence we discuss an overview of existing distance bounding methods and the different threat
models that are proposed by the research community.

2.3. Machine Learning Classifiers
Algorithms in machine learning that are capable of identifying different categories in a dataset are
referred to as classifiers. In this work, evaluation is done using supervised learning algorithms. In
supervised learning, the dataset used to train the model include labels that help them classify or predict
data accurately. The model adjusts the weights of the data input to it until it is fitted properly using
methods such as cross­validation [18]. These labelled values depict the object’s characteristics and
are also referred to as feature values. The training data consists of both inputs and the outputs which
allows for continuous learning. Common classification algorithms attempt to recognize entities within
the dataset that conform to one pattern, and conclusions are drawn based on these observations.

Some common classification models used are linear classifiers, support vector machines, decision
trees, k­nearest neighbours, and random forest. A short description of machine learning models used in
this work are presented here. These models were chosen based on the survey of different classification
models used in the related works that this work builds upon.

• Logistic Regression: It is used to estimate discrete values that are based on a given set of
independent variables. It measures the relationship between the dependent variable and the
others by estimating the probability of occurrence using its builtin logistics function.

• K­Nearest Neighbour: It classifies observations based on their proximity to other points in the
data. It works on the presumption that the data points that belong to the same category have char­
acteristics that make them similar. It uses a distance measurement algorithm such as euclidean
distance, to measure the proximity to the closest category.

• Random Forest: In this, the algorithm creates a collection of decision trees from the dataset.
The collection of trees is then merged together to identify the collection with the lowest variance,
which results in more accurate data predictions.

Machine learning classifiers are commonly used with large amounts of data, and in this case they
are often used in contextual proximity detection methods to identify anomalies and primarily thwart relay
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attacks. These classifiers are shown to be highly accurate as they build upon genuine datasets col­
lected in the environment, and use them as the basis to detect the veracity of subsequent observations.
They are particularly useful in case of UWB, as several important features and signal characteristics
can be observed from the radio signals received during ranging. These parameters can then be used
for training of the classifier and identification of anomalies.

2.4. Radio Frequency Signal Processing
In this section, we present an overview of fundamentals of radio frequency signal processing. These
basic principles are used for the basis for concepts introduced in the later chapters. In wireless com­
munication systems, the typical architecture for a receiver and transmitter is shown in Figure 2.3

Figure 2.3: Wireless Communication Systems, Image from RF Basics by Texas Instruments

RF signals are electromagnetic radiation waves that are emanated from antennae by an alternating
current with a particular frequency. They are mathematically represented by the equation:

v(t) = Asin(2 ∗ π ∗ f ∗ t+ ϕ) (2.1)

A ­ amplitude of the signal
f ­ frequency of the signal
ϕ ­ phase of the signal

The Wavelength of the signal is given by (λ):

λ = c/f (2.2)

c ­ the speed of light
f ­ frequency of the signal

The bandwidth of a signal refers to the frequency range it spans or in other words, the capacity of
a link to transmit the maximum amount of data from one point to another over a connection in a given
amount of time. For example, Human voice has a bandwidth from 20 Hz to 20 KHz, and 2.4 GHz WiFi
has a bandwidth of 22 MHz.

The original data (information signal) that has to be sent wirelessly is referred to as the baseband
signal. Usually, a low frequency signal acts as the information signal, that is then converted to a higher
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frequency before it is propagated over free space. The carrier wave is the signal that is at a steady base
frequency (usually higher than baseband), it “carries” the basebandwave to the receiver. The baseband
wave is loaded onto the carrier wave using the process of modulation. There are different types of
modulation schemes available: Amplitude Modulation, Frequency Modulation, Phase Modulation. The
receiver demodulates the observed carrier signal from its antenna to get back the original baseband
signal.

Figure 2.4: Inside the Radio wave spectrum, Image from New America foundation

The energy of radio signals attenuates as it propagates through free space, this loss in energy is
proportional to the square of the distance travelled. It can be mathematically represented by the Friis
Free Space Path Loss (FSPL) equation. The behaviour of these waves as they propagate in space
depends on the frequency of the carrier wave. For example, radio waves in 2.4 GHz can pass through
people and smaller rooms in buildings easily, but UWB waves in 8GHz spectrum are impacted more
strongly by reflections and obstacles. Figure 2.4 shows the radio wave spectrum and the behaviour of
waves at different frequencies.

FSPL = (4dfc)2 (2.3)
c ­ the speed of light
f ­ frequency of signal

d ­ the distance travelled by signal
When the receiver and the transmitter have a clear line of communication, its referred to as Line of

Sight (LoS). When there are obstructions or obstacles between the path of the transmitter and receiver,
its referred to as Non Line of Sight (NLoS).



3
Related Work

In this chapter, we present a detailed discussion on the related work that form the basis of our proposed
approach. These research articles can be classified broadly into two categories, context­based and
distance bounding­based secure proximity detection techniques.

10
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3.1. Contextual Proximity Detection
In [45], the authors evaluate the security of contextual proximity detection methods against context ma­
nipulating adversaries. They highlight the weakness of systems that rely solely on such contexts, and
present a decision classifier that is trained on and utilizes all the individual sensors available to iden­
tify potential anomalies. When relying upon multiple sensors, their machine learning based approach
achieves higher resistance to attacks. They mount relay attacks against their system and evaluate the
efficacy of their machine learning model using different combinations of available sensor data. While
their solution achieves good accuracies, they do not completely test their model against stronger con­
text manipulating adversaries. Such adversaries can influence several, if not all the used contexts
around the environments, and can falsely convince the system into classifying the malicious ranging
sessions as legitimate. A ranging session is defined as the set of messages the transmitter and the
receiver exchange, that lets them measure the distance between them.

In [51], the authors present a similar multi­modal decisions­fusion classifier that relies on multiple
sensors to achieve high accuracies against relay attacks. However, both these methods do not provide
a strong upper bound on distances. Authors in [54] provide another context based machine learning
approach that utilizes multiple sensors available and a decision tree classifier to achieve high accura­
cies with low False Positive Rate (FPR). The authors train the classifier using normal use­cases and
mount attacks to simulate abnormal ones. However, they also acknowledge that an adversary that
can manipulate a larger majority of the sensors can circumvent the system, and hence their proposed
model has the same vulnerabilities as the one proposed by authors in [45].

In [29], the authors implement a RF fingerprinting method that can be trained to identify legitimate
and malicious key attempts in PKES and RKES. They utilize a k­NN (K Nearest Neighbours) classi­
fier that is initially trained using legitimate keyfobs, and then they mount several attacks such as relay
attacks, amplification attacks, battery aging and temperature variation attacks by context manipulat­
ing adversaries, against it to test its efficacy. Authors also claim high accuracies with low FPRs with
sufficiently larger training dataset. The authors however acknowledge that relay attacks are possible
with sufficient equipment and do not offer a clear upper bound on distances. The general consensus
amongst them is that contextual multi­modal techniques are more accurate i.e., higher the number of
the contexts being taken into account, better the accuracies of the classifiers at detecting anomalies.
However, just increasing the number of sensors that the machine learning classifier considers intro­
duces several limitations. Firstly, each device used for ranging must possess all the sensors that are
being taken in consideration leading to the increase in costs per device. Secondly, increasing the num­
ber of features may lead to the problem of over­fitting where the classifier incorrectly depends on very
specific values of the features used. This can be alleviated by utilizing larger datasets. Thirdly, utilizing
many sensors adds severe latency to the processing overhead. Since the devices utilized for ranging
must be highly accurate (in the order of nanoseconds), dependence on several sensors may lead to a
drop in accuracy.

Biometric contexts, on the other hand, while being more accurate and resistant to context manipu­
lating adversaries, are however more expensive to accurately measure. For example, estimating gait
biometrics requires the presence of multiple sensors and/or devices mounted upon the user [30, 43,
44]. In these research works, the proposed models take different biometric contexts into account such
as the path a transmitter takes when a ranging session is performed and/or the gait biometrics of the
user (the one possessing the transmitter).

Other contextual proximity schemes rely upon audio to verify location [52, 56]. In [51], the authors
use audio signals to measure the room impulse response of the surroundings of the prover and verifier
by sending an audio signal, and comparing the echos received by both devices. They achieve high
accuracies with low FPR, but they do not evaluate their model against active adversaries who can
manipulate the audio signals around the devices.

In [56], the authors propose a two factor authentication scheme that utilizes audio signals and is
resistant to co­location and relay attacks. In both the proposed models, the authors do not evaluate
the security against context manipulating adversaries. Such an adversary can inhibit the working of
their system by flooding the environment with ultrasonic sound signals that interfere with the genuine
ranging sessions. This causes the same “echo” to be observed by both the transmitter and the receiver,
leading to malicious ranging sessions succeeding.

In summary, contextual proximity techniques utilize a wide variety of sensor data gathered from the
environment around the devices which can be used for the identification of anomalies during ranging
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sessions. However the security of such systems are not provable, as they are susceptible to context
manipulating adversaries. Additionally, they also do not measure the distances between the transmitter
and receiver and thus do not guarantee an upper bound. The model proposed in this thesis addresses
these concerns, as it offers a strong upper bound on the measured distances in addition to utilizing the
available context information around the transmitter and the receiver to look for anomalies.

3.2. Distance Bounding
Extant distance bounding methodologies that provably guarantee upper bounds on the distances re­
quire the use of specialized hardware, i.e., hardware that is designed to be accurate at measuring time
in the order of nanoseconds. Such specialised hardware also have low level access to the radio hard­
ware to minimise processing time while communicating with other devices. An upper bound of 15cm
on the distances observed require that devices be able to receive, process, and transmit signals in less
than 1 ns [41, 40, 2, 17, 53]. For example, in Android devices, access to the low­level hardware is
provided by the Hardware Abstraction Layer (HAL) which interacts with android’s Linux kernel and acts
as a general interface to the low­level drivers of the sensors. Due to the abstraction of the lower layers,
the usage of higher layer APIs (Application Programming Interfaces) increase the latency and thereby
the processing times when being leveraged. Therefore, it corresponds to an increase in the upper
bound offered. This increase in the processing delay introduced is observed, especially when utilizing
the abstracted NFC stack that android offers in the proof­of­concept implementation of the Swiss­Knife
distance bounding protocol in an android smartphone [23, 31]. The processing duration after all the
abstractions introduced by the android stack results in a latency of 1.4 ms, which results in an upper
bound of 300 Kms.

Minimizing the advantage for the adversaries under different threat models while achieving low
space and time complexities is a major focus for the upcoming distance bounding protocols, which
already guarantee security against distance fraud and mafia fraud at the logical layers, with the recent
methodologies also offering security against distance hijacking and terrorist fraud [7]. In this work, the
authors present a survey of all proposed distance bounding authentication schemes. They compare
and contrast these distance bounding techniques in terms of security against different threat models,
the processing overhead incurred and the success rates of an adversary mounting attacks. These
systems are being widely implemented in UWB based radio peripherals, these hardware primarily utilize
the UWB to send their radio signals and measure distance using ToF as opposed to RSS. These
devices although in existence since 2003 [4] were quite expensive and thus found usage only in certain
conditions despite their potential pervasive applications. However, the availability of these devices or
chipsets are now increasingly becoming more common, with them now being included in off­the­shelf
mobile devices. Major device manufacturers include these UWB chipsets in their devices and operating
systems such as Android [5], and iOS [6] also have added API support to leverage UWB chips.

Protocols such as WiFi, NFC (Near­Field Communication), and PKES have underlying security
vulnerabilities that make it possible for an attacker to circumvent the bounded distances by exploiting
the PHY layer to perform relay attacks [33, 19, 21, 22]. Currently, such systems are implemented
using the UWB protocol, which was designed in consideration of such vulnerabilities. Unfortunately,
similar attacks that attempt to decrease or increase the measured distance exist even in UWB­based
methodologies [13, 48] where it is prone to attacks such as Cicada, and Early Detect/Late Commit
(ED/LC) [38]. These attacks exploit the predictable nature of the symbols used in the frames exchanged
during ranging i.e., the messages that are sent by a genuine transmitter to synchronise with the receiver
are made of up publicly known sequences leading to an adversary who can manipulate the measured
distances using sufficient radio equipment. However, UWB can be modified to account for such attacks,
authors in [46] use pulse reordering and cryptographic pulse blinding to prevent mafia­fraud like attacks
at the physical layer, and in [48], they provide a way to detect distance enlargement attacks. Both these
solutions attempt to solve the vulnerabilities that existed in the IEEE 802.11.4a standard for UWB.

The revised and updated standard namely 802.11.4z now includes inbuilt protection against Cicada
and ED/LC attacks in the form of Scrambled Timestamp Sequence (STS). While they greatly increase
security against such attacks, their security is not formally defined. Other methods such as Message
Time Authenticated Codes (MTACs) have been proposed by the research community, to preserve the
integrity of message arrival times where the receiver can cryptographically check the consistency of
modulation [32]. Recently, in [47], authors present a security analysis of the IEEE 802.15.4z UWB HRP
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(High Rate Pulse) PHY layer, specifically the High Pulse Repetition Frequency (HPRF) standard. They
introduce two new advanced attacks, Cicada++ and Adaptive Injection Attack and evaluate the secu­
rity with regards to the success rates of the attacker. They show that depending upon the threshold
parameters selected, an attacker will be able to gain up to 25% success rates when injecting signals.
They perform experiments of the proposed attacks using simulations in Matlab and evaluate the perfor­
mances in different environments. The environments chosen for simulations are chosen based on the
IEEE channel models document. This document contains assessments and models of the behaviour
of UWB waves in a variety of several common environments where such systems might find applica­
tions in. Details about the original standard, the amendment, and vulnerabilities that exist in them are
elaborated upon in Chapter 4.

In summary, the current UWB standard used in devices for proximity detection has several vulner­
abilities present. The research community has proposed several solutions to combat these problems,
but the latest IEEE standard designed specifically around these considerations, does not yet fully solve
the security concerns. This work is motivated by these concerns and we present a solution to identify
and mitigate the occurrence of such attacks by considering the contextual channel information. This
is in contrast to extant methods, where the time of flight algorithm does not consider the environment
characteristics into account when identifying the first path.



4
Ultra­Wide Band

In this chapter, we provide an overview of the Ultra­Wide Band standard as defined by the IEEE working
group. This groupwas established primarily to create a new protocol that was aimed at low­rate wireless
devices with limited battery capacities to achieve proximity detection. We discuss the symbol structure,
the frame format, the types of UWB standards, and also their security implications. We then present
an overview of the different vulnerabilities that exist in these standards, and the amendments that were
proposed to address them.

14
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4.1. Design of Ultra­Wide Band
The design of UWB was to enable low­rate communication (IEEE 802.15.4) between devices in close
proximity to each other, under the umbrella of wireless personal area networks (IEEE 802.15 PAN). The
IEEE 802.15.4 standard documents and describes the Physical Layer (PHY) and the Medium Access
Control (MAC) sublayer. More specifically, it was introduced to address the need to communicate with
portable, low­powered devices with limited or no­battery capacity and also enable precision ranging.
And as such, the design and regulations of the transmitted carrier wave have been modelled after
these considerations.

Figure 4.1: Spectral Density of common Radio Signal Protocols, Image from [25]

Figure 4.2: Spectral Density of common Radio Signal Protocols, Image from Fira Consortium

UWB signals are defined as radio signals with an instantaneous bandwidth that is larger than 500
MHz or with a fractional bandwidth that is larger than 20% [57]. The signal power parameters are
dictated by FCC (Federal Communications Commission) and ETSI (European Telecommunications
Standards Institute) regulations which dedicate certain bands of frequencies for specific applications.
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GPS, Bluetooth, Cordless phones, Wifi (2.4 and 5.0 GHz) and other commercial radio devices are
confined to specific frequencies, within which all transmission must occur.

Radio technologies such as Bluetooth andWiFi aren’t regulated on their transmitted RF energy, and
thus are suitable for continuous high data rate communications. However, the transmission of UWB is
limited strictly by the regulations and must adhere mainly to the following:

1. The mean Power Spectral Density, i.e., the radiated power of the signal within a given bandwidth,
must not exceed PSD = −41.3dBm/Hz when averaged over the duration of 1ms.

2. The power of each individual pulse must not exceed 0dBm when the signal is passed through a
50MHz bandwidth filter.

The spreading of the signal over a larger bandwidth results in lesser interference with other existing
signals that occupy the same band. Thus having stronger resistance to impacts from multipath in
addition to having time domain resolution characteristics that enable accurate positioning and tracking
of the device [57]. The UWB used in IEEE 802.15.4 standard is also called impulse radio UWB because
it is based on pulses of RF energy.The two regulations mentioned above for UWB may be inferred as
a bucket of power that is available to be distributed, either in a few pulses (LRP, Low Rate Pulse) or
split over several pulses (HRP, High Rate Pulse). The number of transmitted pulses in HRP UWB is
more than in LRP UWB, but the individual pulse energy is proportionally weaker. Both LRP and HRP
use exactly the same transmitted RF energy. The number of pulses in 1ms is referred to as the pulse
repetition frequency (PRF). Correspondingly, depending on the PRF, UWB is split into LRP and HRP.

Figure 4.3: Difference between LRP and HRP, Image from [3]

The frequency spectrum allocated to UWB extends from 3.1 GHz to 10.6 GHz, with the allocated
spectrum split into 15 channels, and an additional channel allocated under the sub­GHz spectrum with
the same bandwidth of 499.2 MHz (referred to as channel 0). The channel allocations for UWB are
shown in Figure 4.4, the x axis indicates the centre frequency of the channel.

Figure 4.4: Band allocation for UWB, Image from Fira Consortium [27]

Owing to the multitude of research that corroborates that UWB is a major enabling technology for
low powered sensor network devices, capable of locating and tracking of objects[49], surveillance [24],
localization [20], and other proximity based interactions, the IEEE established a dedicated standard­
ization committee IEEE 802.15.4a to design a PHY layer that accommodates these requirements [12].
This standard defines the underlying PHY layer for HRP. LRP was introduced in an amendment later
called 802.15.4f.

The introduced PHY layer divides the spectrum into following three individual bands:

1. Band 0 ­ Sub­gigahertz channel
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2. Band 1 ­ Low­band HRP UWB channels
3. Band 2 ­ High­band HRP UWB channels

The use of a larger bandwidth allows for a longer range of communication and enhances the multi­
path resistance leading to more accurate measurements. The frequency gap between Band Group 1
and Band Group 2 was introduced to avoid interference between UWB and technologies in the 5 GHz
ISM band [27].

4.2. Characteristics of a UWB wave and IEEE frame structures
UWB systems are expected to be used in a multitude of different environments such as residential,
office, industrial, and outdoor areas. Such complex environments lead to a large degree of signal
reflection and diffraction. The signal undergoes all these reflections, diffraction, and attenuation and
when it arrives at the antenna of the receiver, it is a combination of weakened, delayed, and overlapping
versions of the original signal [27]. All these parts of the signal are called as multi­path components.
In the event of Non Line of Sight (NLoS), it is also possible that the strongest signal does not reach
the receiver first, and the antenna observes a weaker attenuated signal. This can be observed in
Figure 4.5.

Figure 4.5: Effects of Line of Sight on UWB and Non Line of Sight, Image from Fira Consortium [27]

Figure 4.6: Difference between modulation in Bluetooth and UWB, Image from Rohde&Schwarz webinar: Second life of UWB

UWB utilizes a modulation scheme that is much different to that of conventional schemes. For
example, Bluetooth utilizes a Gaussian Frequency Shift Keying (GFSK) mechanism where it passes
the data pulses through a Gaussian filter to make the transitions smoother in the narrow band where
the signals are transmitted. The channel bandwidth is around 22 MHz. UWB, on the contrary, encodes
the bits onto the carrier wave using a phase shift keying modulation (mode of operation dependent)
scheme, with each bit being sent as a symbol or a group of symbols using pulses of radio waves.
These pulses of waves spread the symbols over time, and due to the transitions being much clearer,
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the amount of inter­symbol interference is reduced. This lets the receiver observe and resolve the ToA
of these symbols clearly.

Figure 4.7: A UWB (Channel 9) compliant transmitted pulse (left), reference pulse (middle), magnitude of cross­correlation
(right), Image from IEEE 802.15.4 standard [26]

The IEEE 802.15.4 standard defines a reference UWB pulse as a root­raised­cosine pulse with
a roll­off factor of = 0.5. The transmitted pulse shape p(t) is constrained by the shape of its cross­
correlation function with a standard reference pulse, r(t). LRP pulses contain more energy but are
fewer in number, whereas HRP pulses are weakly powered but with a substantially larger number of
pulses. Over long distances, the receiver will be unable to see the individual pulses, in contrast to HRP
where the energy of the pulses is accumulated. This makes HRP resistant to attenuation over long
distances and extends range in addition to having higher data­rate capabilities.

Since the LRP’s individual pulses contain more power, the individual bits are encoded as single
pulses. However, to account for the larger number of pulses, the HRP mode encodes each bit into
several pulses, or symbols. In other words, LRP utilizes short symbols whereas HRP utilizes multiple
symbols to represent each bit. This has multiple security implications on distance bounding, explained
in Section 4.2.1. Figure 4.8 refers to the different types of UWB PHY outlined by the IEEE standards.

Figure 4.8: Flavors of UWB 802.15.4, Image from Rohde&Schwarz

Each of the two UWB PHY specifications are further grouped under RDEV (Ranging Device) or
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Enhanced Ranging Device (ERDEV). The RDEV specifications were introduced in the 802.15.4a, with
a newer specification outlined more recently for ERDEV in the 802.15.4z amendment. Details of this
amendment are discussed in Section 4.4. ERDEV devices are capable of more accuracy, and primarily
introduced to address security concerns that were present on ranging devices.

4.2.1. Low Rate Pulse
In Low Rate Pulse, support is provided for three transmission modes, each addressing a specific need.

1. Base mode for the highest data rate.
2. Extended mode for moderate data rate, but for improved sensitivity.
3. Long­range mode for the highest sensitivity.

A combination of On­Off Keying (OOK) modulation or Pulse Position Modulation (PPM) or Pulsed
Binary Frequency Shift Keying (PBFSK) is used to modulate the symbols. The individual bits are
represented by either 1, 4, or 16 symbols depending upon the transmission mode selected. A symbol
in base mode of transmission is shown in Figure 4.9. Due to the large spacing between each pulse,
any reflections caused fade out before the arrival of the subsequent pulse. This allows for the simple
and efficient processing of the incoming pulses to derive the ToA in ranging and data decoding.

Figure 4.9: Base mode LRP UWB PHY symbol structure, Image from IEEE 802.15.4 standards [26]

Security of LRP
The security of LRP is dependent on provably­secure primitives. These systems use authenticated
distance bounding protocols and commitment schemes that are formally proven to be resilient against
strong attackers [8, 50]. This is owing to the usage of short symbol sizes that prevents the attacker
from exploiting vulnerabilities which are present in the 802.15.4 standard. An overview of these vulner­
abilities is given in Section 4.3. In this work, we evaluate the security of the UWB HRP PHY and focus
on its vulnerabilities, and therefore will elaborate further on that specification.

4.2.2. High Rate Pulse
The HRP UWB PHY uses a combination of both Burst Position Modulation (BPM) and Binary Phase­
Shift Keying (PBSK) to modulate the signals. In this modulation scheme, each symbol can be used to
encode two bits of information. Each symbol consists of a group of consecutive chips called a burst.
The position of these bursts in the first or second half of the symbol duration denotes a single bit as
shown in Figure 4.10. The first bit is used to determine the position of a burst of pulses, and the second
bit is used to modulate the phase i.e., the polarity of the signal in this burst.

UWB communications are based on the transmission and reception of frames. Figure 4.11 shows
the general structure of the UWB frame. It begins with a synchronization header consisting of the
preamble and the Start of the Frame Delimiter (SFD), after which the PHY Header (PHR) defines the
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Figure 4.10: Base mode HRP UWB PHY symbol structure, Image from IEEE 802.15.4 standards [26]

Figure 4.11: UWB 802.15.4a UWB HRP Frame Format, Image from Decawave User Manual [17]

length and data rate of the data payload part of the frame [17]. The Synchronisation Header (SHR)
consists of the preamble and the Start of Frame Delimiter (SFD). The SHR is made up of single pulses
as opposed to the BPM/BPSK modulations used for the PHR and data. The symbol is divided into
approximately 500 “chip” time intervals, in which either a negative or a positive pulse may be sent, or
no pulse. The “chip” interval is 499.2 MHz which is a fundamental frequency within the UWB PHY [17].
The sequence of pulses sent during the preamble symbol interval is determined by the preamble code.
The standard defines 8 preamble codes of length­31 for use at 16 MHz PRF and 16 preamble codes
of length­127 for use at 64 MHz PRF. The preamble length and duration is defined by the number of
Preamble Symbol Repetitions (PSR) and it has four settings: 16, 64, 1024, and 4096.

The length­31 codes are spread by inserting 15 zeros after each pulse to give the 496 chip times
per symbol while the length­127 codes are spread by inserting 3 zeros after each pulse to give the
508 chip times per symbol. The SFD signals the end of the preamble and the beginning of the PHY
header [17]. The preamble sequence has a property of perfect periodic auto­correlation [28] which in
essence allows a coherent receiver, a receiver that tracks both phase and time of the carrier wave, to
determine the exact impulse response of the RF channel between transmitter and receiver [27].

The Channel Impulse Response (CIR) is a measure of all the aggregated radio signal energies
received over time. These aggregated signals, which may include early path and/or multi­path com­
ponents, are then correlated with a locally stored template to measure the similarity. This measure
of the correlated signal over time, as it includes the measure of these different components, may be
construed as an echo­gram of the environment around the antenna [27, 35]. ToF ranging systems are
very sensitive to the exact time of arrival of the signal, as each nanosecond causes an accuracy drop
of 30cm. In NLoS conditions, the first path component of received signals needs to be identified so that
the exact ToA may be calculated. For this purpose, leading edge algorithms are utilized.

There are two types of leading edge algorithms proposed by the research community, namely Jump­
Back Search­Forward and Search­Back as shown in figures 4.12 and 4.13. The two algorithms differ in
the way they operate. In Jump­Back Search­Forward, the algorithm jumps back by a set time­window
from the correlated highest peak observed in the CIR. It then searches forward for the first occurrence of
a peak that is above the noise threshold that is present before the highest peak. This is identified as the
first path of component of the signal. In Search­Back, the algorithm searches continuously backwards
from the highest correlated peak and identifies the first peak that occurs before the algorithm reaches
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a noise­only region.

Figure 4.12: Jump­Back Search­Forward Leading Edge Detection Algorithm, Image from [13]

Figure 4.13: Search­Back Leading Edge Detection Algorithm, Image from [13]

4.3. Security of 802.15.4a UWB HRP
Due to the usage of large symbol sizes for each bit representation, distance bounding methods as
described in Chapter 3 are not suitable. It is due to their susceptibility of being identified using the
initial few symbols for a given bit. This leads to the compromise of the protocol, although it offers
mathematical bounds on security, it cannot be utilized if the underlying physical layer is inherently
susceptible to vulnerabilities. This enables the attacker to sniff the bits being sent during the rapid bit
exchange phase and committing them earlier than when the original signal reaches. Thus leading to
the alteration of the time of commitment.

In [38], the authors show an attacker who could decrease the measured distance by more than
130m due to the predictable nature of the preamble and the payload data with extremely high accuracy
(99%). The attacker need not wait for the entire symbol to be transmitted as just knowing the initial
parts lets them guess the rest, and inject it in a way that the entire symbol reaches the genuine receiver
sooner than this.

In [13], the authors present a new vulnerability called Overshadowing attack where the attacker
inserts a larger peak, after the original peak present in the CIR. This lets an attacker effectively convince
the leading edge algorithm implemented by the receiver to choose the original peak as the first path
depending upon the leading edge algorithm used. This attack can be observed in Figure 4.14.

In [38], the authors present cicada attacks against UWB IEEE 802.15.4a. In this attack, the ad­
versary emits a periodic chirp of pulses with a higher power during the transmission of the preamble.
When these chirps coincide with the signal, there is a peak observed in the side lobes of the signal
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Figure 4.14: Overshadowing Attack, the red arrow indicates the attack peak. Image from [13]

Figure 4.15: Cicada Attack, Image from [38]

leading to a reduction in the distance when the leading edge algorithm estimates the ToF. The Cicada
attack is shown in Figure 4.15.

In an Early Detect/Late Commit (ED/LC) attack, the attacker predicts the bit early even before re­
ceiving the entire symbol. Prior to this detection, the attacker can inject noise into the channel until the
correct symbol can be predicted and committed. The attacker commits to this symbol later, leading to
an increase in the measured distance [38]. This is shown in Figure 4.16.

All these attacks attempt to exploit the working of the leading edge algorithm or the predictable
nature of the symbols. The IEEE standards committee took these issues into consideration and re­
cently passed an amendment to improve the security. This amendment is known as the 802.15.4z for
UWB HRP PHY. However, the standard document does not specify how to implement an algorithm to
identify the time­of­flight in early path settings. It is left as a proprietary implementation detail to the
manufacturers [47, 26].
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Figure 4.16: Early Detect/ Late Commit Attack, Image from [39]

4.4. 802.15.4z Amendment

Figure 4.17: UWB HRP PHY specified by the IEEE 802.15.4z amendment, Image from Decawave’s DWM3000 User
Manual [17]

The IEEE 802.15.4z amendment provides the HRP UWB PHY with means to address the above
attacks, by introducing the Scrambled Timestamp Sequence (STS) field into the packet, as shown in
Figure 4.17. The Ranging Marker (RMARKER) is used for the identification of the ToA from the received
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frame. The STS field consists of a set of pseudo­random Binary Phase Shift Keying (BPSK) modulated
pulses, transmitted in one or more segments, which are each bounded by gaps i.e., time intervals during
which the transmitter is silent. The pseudo­randomness of the BPSK modulation sequence is ensured
by a Cryptographically Secure Pseudo­Random Number Generator (CSPRNG), also referred to as
Deterministic Random Bit Generator (DRBG), as recommended by the National Institute of Standards
and Technology (NIST) [17]. The generation of the STS sequence is done by a 128 bit AES CSPRNG,
as shown in Figure 4.18. Due to the pseudo­randomness of the sequence, there is no periodicity,
allowing reliable, highly accurate, and artifact­free channel estimates to be produced by the receiver.
For efficient decoding of the STS, the receiver needs to have a copy of the sequence locally available
before the start of reception [27].

Figure 4.18: Key Generation for Scrambled Timestamp Sequence, Image from IEEE 802.15.4z standards [26]

4.4.1. Security of 802.15.4z
In [47], the authors present two new attacks, Cicada++ and Adaptive Injection Attack, that are possible
in the newer standard. Both these attacks are based on the Cicada attack introduced by [38].

Figure 4.19: Cicada++ attack, Image from [47]
The adversary sends (random) pulses at a fraction of the PRF of the legitimate STS. The adversarial pulses are K times

stronger.

In Cicada++, the attacker injects pulses at a fraction of the repetition frequency of the genuine
transmitter. This leads to the energy of each attack pulse being stronger than the legitimate pulse. The
adversary initially amplifies the legitimate signal to send it to the receiver in case the overall signal
power is low. The attacker transmits its pulses in such a way that it synchronises with the legitimate
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STS that is received by the receiver. They are presumed to possess knowledge of the received signal
strength at the receiver, which lets them estimate the power to transmit the attack pulses [47]. This
attack is shown in Figure 4.19.

In Adaptive Injection Attack, the attacker can control the granularity of the exact location of the
injected peak. They are able to inject a peak exactly α ± ϵ ns earlier than the correlated peak in the
CIR. α is the time advancement that the adversary wishes to achieve and ϵ is the inaccuracy. The
attacker follows the same principles as in Cicada++. However in this case, after the attacker has
relayed and injected a set number of pulses, they determine if they can succeed in injecting the peak at
the intended position by correlating the legitimate STS pulses and the superimposed attack pulse­train.
If the probabilities are in their favor, then they stop running their attack [47].

4.5. UWB Ranging

Figure 4.20: Single Sided Two­Way Ranging as specified by the IEEE standard, Image from IEEE standards on UWB [26]

In single sided two way ranging, there are two nodes. One acts as the initiator, beginning the range
measurement, while the other node listens and responds to the initiator calculating the range. Single
sided two­way ranging (SS­TWR) involves a simple measurement of the round trip delay of a single
message from one node to another and a response sent back to the original node [26]. The operation
of SS­TWR is shown in Figure 4.20, where device A initiates the exchange and device B responds to
complete the exchange and each device precisely timestamps the transmission and reception times of
the packets, and thus can calculate times Tround and Treply by simple subtraction [17].

In summary, the latest standard introduces a timestamp sequence to prevent prediction of symbols,
but the security parameters are not clearly defined. The leading edge detection algorithm to identify
first path is not defined by the standard. Although the amendment attempts to address some attacks,
it does not entirely solve all security concerns. There are two new proposed attacks that can lead to
a reduction in the measured distance. This provides the basis of motivation for our proposed model,
where we provide a solution to identify these anomalies.



5
CicadaSwat

In this chapter, we elaborate upon the system architecture of our proposed method, the threat model
considered to evaluate its security, the working model of the proposed machine learning classifier, the
environments considered to collect data, and the features processed from the gathered datasets to
train the classifier.

26
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A litany of research work in proximity detection methods exist that attempt to detect or measure
proximity by focusing entirely on only one aspect of implementation. Contextual systems utilize a wide
variety of radio signal information that is observed when the transmitter and the receiver exchange
messages wirelessly, and use that for ensuring security when measuring distances. However, a math­
ematical upper limit on the distance between the two devices that can be provably ascertained is not
possible on systems that utilize these methods.

Distance bounding based ranging techniques fit within this requirement, as they were specifically
designed for measuring distances securely. However, they suffer from side­channel vulnerabilities
due to being improperly realized. This is in part due to either their dependence on the underlying
wireless signal protocol that is inherently insecure and unsuited for implementing distance bounding
or due to latency issues such as processing delays that prevent the hardware that implements these
algorithms from being accurate at measuring smaller distances. They are only accurate up to a few
meters, which makes them unsuitable for critical solutions where security is paramount. Unfortunately,
these techniques are completely oblivious of the contextual environment where they are used, which
offer a lot of insight about the nature of the environment and radio signal characteristics.

The open­source algorithms proposed by the research community to account for the disparity in
arrival time of signals especially in environments with a lot of delay spread, which is the time delay
between the strongest signal and the earliest signal, do not consider any of contextual information that
can be discerned from the received signals. Typical environments that exhibit high delay spreads in­
clude industrial and outdoor environments where NLoS conditions between the transmitter and receiver
are prevalent. The cause of these delays may either be due to the presence of transient obstructions
such as a person walking in between the two nodes or static obstructions such as concrete or wooden
walls. The leading edge algorithm cannot differentiate between them and an adversary injecting signals
that maliciously impact the Channel Impulse Response (CIR), and since the algorithm only takes into
account the first path for ToA calculation, it makes the protocol vulnerable to exploitation by attackers.
Motivated by these considerations and the absence of research work that to identify vulnerabilities in
UWB HRP, we propose our model CicadaSwat.

5.1. System Architecture

Figure 5.1: System Model of CicadaSwat

In our proposed work, we utilize the CIR and several other features observed from radio signals,
and compare them to previously observed values in that environment to bolster the security during sub­
sequent measurements. CicadaSwat, shown in Figure 5.1, observes the CIR and signal characteristics
from each ranging session. A ranging session is defined as the set of messages exchanged by the two
nodes, transmitter/prover and receiver/verifier to complete one distance measurement.

In each ranging session, the verifier initiates the procedure by sending a poll message. The poll
message consists of the preamble, the STS, and the lower 32 bits of the IV used for seeding the
counter. The prover, upon receiving this frame, responds with a frame that contains the preamble,
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the STS generated by the next counter value, and the ToA of the poll frame as timestamped by the
prover’s leading edge algorithm. The verifier now estimates if the received STS is synchronised with the
sequence it was expecting, by checking if the correlation between the locally generated STS template
and the received STS is above a set threshold.

The verifier calculates the ToF using the embedded timestamp in the response message. If the
measured distance matches the required threshold, it then extracts the CIR of the preamble and the
STS from the received frame and measures similarity. Since both parts of the frame arrive one after
the other in a short window of time and also take the same path to reach the antenna, they must exhibit
similar characteristics [17]. This similarity in characteristics can be expressed by different parameters
discerned from these two CIRs. For example, the ToF calculated using the preamble and the STS
must be within a certain threshold of similarity. The measured channel power of the preamble and the
STS must adhere to the FCC/ETSI standards, and the multi­path components as well as early path
components observed in the both these CIRs must also be within set tolerances of similarity.

The verifier then calculates several different features from the CIR and other observations made
from the received frame. A detailed overview of all features considered is provided in Section 5.4.
The verifier then uses these features and sends them to the trained machine classifier which looks for
anomalies in the observed data and then issues an accept/reject accordingly to complete the ranging
session. For a clear understanding on how CicadaSwat detects attacks, we present the adversarial
threat model in the following section.

5.2. System Adversary Model
In the case of NLoS conditions between the transmitter and the receiver, the highest correlation peak
observed in the CIR may not necessarily be caused by the signal that arrived first. The received signals
that the prover aggregates to measure the CIR may have been attenuated by several obstructions
and/or undergone severe transformations leading to a drop in their transmission energies. Thus, the
energy of the earliest component of the received signal may be attenuated, while the energy of the
multipath components may not necessarily be as severely impacted due to them taking a different path.
Since the receiver accounts for the earlier time of arrival using a leading edge algorithm, the attacker can
exploit the algorithm to spuriously alter the distance by injecting signals that result in peaks observed.

5.2.1. Attacks by Adversary
For launching Cicada­TF, we assume that the adversary and the prover collude to circumvent the sys­
tem i.e., the prover commits Terrorist Fraud, and the adversary is assumed to possess the knowledge
of the STS sequence for that particular session. In Terrorist Fraud, the adversary’s knowledge is only
limited for one session, as the prover does not hand over any key material that lets the adversary
launch future attacks independently. In this attack, the adversary and the prover are both outside the
distance threshold range from the verifier, and they work together to reduce the distance measured by
the receiver.

The attacker synchronises the transmission of their frame with that of the prover, but transmits
the signals with a higher power than allowed by the regulations set by FCC/ETSI. These frames are
received at the antenna of the verifier and the energies of all the individual pulses are aggregated.
These aggregated pulses are then correlated with the locally stored template to calculate the CIR and
identify the first path signal. However, due to interference caused by the presence of the malicious
signal, the measured CIR contains spurious peaks inserted before the highest correlated peak and
thus leads to the reduction in the measured distance. This attack works on the same principles as the
Cicada attack, but the adversary is assumed to possess information about the STS for that particular
session to overcome its unpredictability.

In Adaptive Injection attack, the adversary does not collude with anyone. The attack principles are
the same as explained in Section 4.4.1. The attacker injects signals that are emitted with a fraction of
the PRF of the transmitter thus leading to the larger energies of each individual malicious pulse being
higher. The attacker stops transmitting their signal at the precise moment where the injected peak in
the measured CIR leads to a reduction of required distance. The attacker can control this precision
due to their knowledge of the CIR measured by the receiver. The fraction of the transmission chosen
and We design our threat model around all these considerations.

We assume a strong attacker, who in addition to monitoring and injecting messages into the commu­
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nication channels utilized using sophisticated hardware (Dolev­Yao model) [15], can also manipulate
the channel contexts around the nodes i.e., manipulate environmental parameters such as the tem­
perature, humidity, sound, and available radio information around the nodes. Moreover, the attacker
can relay or block transmission of the genuine signals, and also possesses the knowledge of the CIR
observed at the receiver. The attacker can also synchronise their transmission along with the transmit­
ter, and their clocks. Finally, the attacker possesses an Additive White Gaussian Noise (AWGN) [9]
channel to the receiver and can control the CIR observed at the receiver’s antenna. In addition, the
attacker also does not adhere to the FCC/ETSI limitations on the power of the transmitted signals. This
threat model is similar to the one used by authors in [47].

5.3. Data collection
The classifier requires training data which it uses for identifying anomalies in the newer observations.
The training dataset used must be exhaustive and capture as many different variations of ranging
that may occur in an environment. In our work, the model is trained on labeled datasets. These
datasets also contain points where attacks occur, such that the classifier is trained on both genuine
and malicious runs. To prevent over­fitting of the classifier into one specific environment, the machine
learning algorithm must be trained on multiple different environments. These environments must be
diverse and must have different channel models. The IEEE 802.15.4a channel models report is used to
identify suitable environments [34]. This report provides distribution models for the behaviour of UWB
radio waves in different environments.

In this work we collect the datasets in three environments, namely an indoor environment, a closed
outdoor environment and an office space. The performance of the model is evaluated against the two
attacks in all three of these environments.

Figure 5.2: Environment 1, Indoor Residence

Figure 5.3: Environment 2, Outdoor passageway, Top
View

Environment 1, shown in Figure 5.2, is an indoor residential area of 9.28m x 10.18m. The transmitter
is placed at two locations in this environment, and the data was collected for each point from the system.
Environment 2, shown in figures 5.3 and 5.4, is an outdoor passageway 50m x 8m. It has two sets of
metal stairwells in the centre and has equally spaced doors on the left and right sides. Environment
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3, shown in Figure 5.5, is an office space 14m x 8m wide. It contains several cubicles and tables
separated from each other, and also concrete pillars on the right side. The numbered black triangle
with the arrows in each of the images represent the positions of the transmitter and the direction of the
antennae.

To gather an accurate fingerprint of the CIR within each environment, the data is collected at several
points. These points are located in increments of 1m (in case of obstructions such as walls/furniture,
they were placed at the closest possible location in increments of 50cm) from the transmitter. Reference
measurements were made using a tape measure. In each of these points, the data is collected over
the course of 15 minutes. The resultant dataset is pre­processed to remove any errors and spurious
peaks. The total number of recorded observations is around is around 30,000. Additionally, to evaluate
the efficacy of the model, different leading edge algorithms are used to compare performances, namely
Search­Back and Jump­Back Search­Forward.

Figure 5.4: Environment 2,Outdoor passageway, Side View

Figure 5.5: Environment 3, Office Space

The data collected during each ranging session contains the CIRs of the preamble and the STS. The
location of the peaks and the first paths and also their powers as identified by the hardware, the clock
offset between the two nodes, the ToA of the received signal identified by the leading edge algorithm and
the measured distance. Information about the collected data and the features extracted is presented
in the following section. Figures 5.6, 5.7, and 5.8 contain the fingerprints of the environments before
pre­processing for all three leading edge algorithms.
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Figure 5.6: Fingerprint of entire environment 1 before pre­processing, for all three leading edge algorithms

Figure 5.7: Fingerprint of entire environment 2 before pre­processing, for all three leading edge algorithms

Figure 5.8: Fingerprint of entire environment 3 before pre­processing, for all three leading edge algorithms

5.4. Data Processing and Feature Extraction
In the latter stage of each single­sided two way ranging session, the verifier upon receiving the response
sends the CIR of the received frame to the trained decision classifier, as shown in Figure 5.1. The CIR
measured for both the preamble and the STS must be similar as they are both parts of the same
frame, and take the same path to arrive. However, in the event of manipulation, it may be possible
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that there might be artefacts observed in the received signal wave. Therefore, the ToF calculated from
both the preamble and the STS must be similar within a certain threshold. The CIR can also be used
to identify the presence of a clear LoS between the transmitter and the receiver, and other channel
conditions such as the environment noise, multi­path components, and presence of early path signals.
Feature selection for the collected data was done based on extant literature that use machine learning
techniques to identify anomalies in observed radio signals as in [54, 29] and preliminary experiments
performed that offered insight into the different parameters that affect ranging sessions.

The following features were selected and calculated from the observed CIR:

• Noise Threshold: The measured signal noise in the channel that is observed. In environments
with a lot of noise, the leading algorithmmay incorrectly identify first path from the noise peaks and
a a high threshold results in first path components being ignored.The noise threshold is identified
per ranging session and it is the root mean squared value of the magnitudes in the initial parts
of the CIR. This was calculated as described by the [17]. An attacker may inject noise into the
channel in an attempt to make the leading edge algorithm choose a spurious peak and reduce
distance, thus it is a pertinent feature considered.

• Power of the Peak: The measured power at the highest correlated peak in the CIR. An adversary
not adhering to FCC/ETSI regulations may amplify the power of transmitted signals, and high
values of power at large distances may indicate the presence of attacks. Additionally, the loss in
energy of radio signals as they propagate in free spacemust be commensurate with themeasured
distance. The power also provides an insight into the observed power due to attenuation or
obstructions.

• Power of First Path Signal: The measured power of the identified first path of the signal. The
first path power can be used to gather insight about several things. For example, if the powers
of the peak and first path component are similar then it may indicate that the transmitter and the
receiver have a clear LoS. A very low first path power indicates that the energy was attenuated
heavily which may be due to several obstacles present between the two nodes, whereas a slightly
lower energy than the peak indicates the presence of simpler obstacles like walls.

• Signal to Noise Ratio : The ratio of the overall power of the received signal to the level of
background noise. SNR is expressed in decibels (dB). This ratio offers insight into the overall
signal quality of the received frame, a high value indicates the presence of low noise and a clear
distinction of the observed radio signal while a lower values signifies a drop in quality.

SNRdB = 10log10(PSignal/PNoise) (5.1)

PSignal ­ Power of signal
PNoise ­ Power of Noise

• Clock Offset: The offset between the clocks of the transmitter and the receiver. Measured in
parts per million as described in the IEEE standard. The clock offset is generated by the hard­
ware during reception of each packet as the receiver locks on and compensates for the frequency
offset of the transmitting device to successfully receive a packet. An attacker launching Adaptive
Injection attack would have to first synchronise with the receiver and then detect the original
transmission which is followed by amplifying it. The underlying radio signal undergoes several
transformations and since each hardware has imperfections due to which the exact carrier fre­
quency of the crystal oscillator is slightly different, the subsequently generated signal incorporates
all these features [29].

• First Path to Peak Delta: The distance between the peak and the first path observed in the frame
(in number of samples). This provides an indication into the delay spread observed in the ranging
session. Several insights can be discerned from this feature. A very low value indicates that the
identified first path and the peak are located close to each other which is a strong indication for
LoS, an extremely high value may indicate a possible occurrence of an attack if the observed
value does not correlate with the rest of the chosen features.

• Kurtosis: The kurtosis of the CIR. The kurtosis is a measure of the “peakedness” of the sampled
signal in the time domain [29]. The propagated signal that reaches the receiver may contain
several multipath components, in addition to being impacted by the noise present in the channel.
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The kurtosis of the CIR offers insight into the type and distribution of peaks that are present in
the dataset. A negative kurtosis value indicates that the CIR has several peaks that are similar
in magnitude, which may be used as a strong indication of an NLoS scenario where as a positive
value indicates LoS and a clear correlation peak observed from CIR. The kurtosis is defined as
the fourth standardized moment of a distribution, used for describing its shape.

Kurt[x] =
µ4

σ4
(5.2)

µ ­ Fourth central moment
σ ­ Standard Deviation

5.4.1. Model Training
The generated datasets along with their features are used for training the machine learning classifiers.
For the detection of anomalies during ranging, we evaluate three classifiers: Logistic Regression, Ran­
dom Forest and K­Nearest Neighbours. These classifiers were chosen based on extant literature that
exhibit high accuracies when utilizing them [54, 29] The machine learning classifier is trained using
10­fold nested cross­validation as the number of samples with successful attacks is low i.e., there is
a class imbalance caused by the dataset containing larger number of genuine ranging sessions than
attacks. The following hyperparameters are chosen to evaluate the classifiers:

• Logistic Regression: C: [1,5,10], solver : [newton­cg, lbfgs, liblinear]
• Random Forest: n estimators: [5,10, 50, 100, 200], max depth: [5,10,15,50], criterion: [gini,
entropy]

• K­Nearest Neighbours: n neighbors:[5,10,15,20], algorithm: [ball tree, kd tree]

The hyperparameters are tuned using gridsearch on all the considered classifiers. Details about the
experimental setup, the hardware used and results of evaluation of our proposed model are described
in Chapter 6.
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Experimental Setup and Result

Evaluation
In this chapter, we provide a description of our experimental setup, preliminary experiments and their
results, which act as the basis for data collection conducted in three separate environments selected.
Finally, we present the results of performance evaluation of CicadaSwat.
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For the implementation and experimental verification of our proposed model, the items described in
Table 6.1 are used. The DWM3000 Integrated Circuit (IC), manufactured by Decawave, is a 802.15.4z
certified UWB chip. It is the newer variant released recently as an upgrade over their DWM1000 IC,
which supported only the 802.15.4a protocol.

Hardware/Software Manufacturer
DWM3000 Decawave
NRF52840­DK Nordic Semiconductors
C API SDK for DWM3000, NRF52840­DK Decawave, Nordic Semiconductors
Scikit learn Python

Table 6.1: Hardware and Software used for the experimental setup

DWM3000, as shown in figures 6.1 and 6.2, is designed to be compliant to the FiRa PHY and MAC
specifications enabling interoperability with other FiRa compliant devices, it is further interoperable with
the Apple U1 chip. The current Pixel 6 devices incorporate this chip for their UWB requirements. The
DWM3000 module is compatible with the BPRF mode in UWB HRP PHY, and supports a PRF of 64
MHz. Currently, these ICs are being shipped as engineering samples and have not entered widespread
manufacturing yet.

Figure 6.1: DWM3000 UWB IC (White) mounted on NRF52840­DK (Blue) by Decawave

The NRF52840­DK, as shown in figures 6.1 and 6.2, is a versatile single board development kit
for Bluetooth Low Energy, Zigbee, 802.15.4 and other 2.4 GHz applications on the nRF52840 SoC.
It is Arduino Uno Revision 3 compatible, making it possible to mount 3rd­party shields with ease.
The DWM3000 shield interfaces with the NRF52840 which connects to a PC using USB. The API
SDKs (Software Development Kit) used are provided by the individual manufacturers of the chip i.e.,
DWM3000 API SDK is provided by Decawave, whereas NRF52840 API SDK is provided by Nordic
Semiconductors. The DWM3000 API SDK builds upon the NRF API SDK and is used to drive the IC.
These APIs are used to program the ICs as receivers/transmitters.

We use three such chips for all experiments performed, as shown in Figures 6.3, with two nodes
being used as the receiver and transmitter, and the third node being used to mount attacks on the
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Figure 6.2: Hardware used for CicadaSwat

Figure 6.3: Experimental Setup of CicadaSwat

system. For each ranging session, the DWM3000 writes metadata to the serial port. The PC is used to
monitor the serial output which is then written to a file and stored in a JSON (Javascript Object Notation)
format. The metadata output by DWM3000 includes the measured distance, power levels of the signal,
the contents of the diagnostics register, and the CIR of the preamble and the STS (as mentioned in the
user manual [17]). This experimental setup is shown in Figure 6.2.

The CIR measured by the DWM3000 chips is an estimate of the observed channel [17]. The mea­
sured channel power and the first path power of each frame at the end of an ranging session are also
both estimates, and vary slightly from the actual values. These values are estimated by using the
measurements from the DWM3000 hardware and the specifications outlined by the user manual [17].

6.1. Preliminary Experiments and Results
To characterise LoS and NLoS scenarios and study the effect of different obstacles, multiple experi­
ments were performed. Different obstructions were used during ranging to model the NLoS scenarios
such as open/closed doors, concrete walls/wooden walls, people walking, and the difference in CIRs



6.1. Preliminary Experiments and Results 37

Figure 6.4: Environment 1, Indoor Residence

is observed. In Figure 6.5, the experiment was performed at 5m with LoS, and then at 7.8m (point 1 on
Figure 6.4) with LoS and NLoS which was induced by opening and closing the door. There is a notice­
able yet small spike in the measured distance between the two nodes when the door was closed. The
individual transient spikes observed are caused due to people crossing the ranging session. The mea­
sured distances here are reported from the manufacturer’s proprietary leading edge algorithm, Channel
Impulse Analyzer (CIA) [17].

While there is a noticeable peak in the measured distance when the door was closed and opened,
the actual increase in distances is well within the tolerances of error of the measured distance (10 −
20cm). The tolerance of error is used for accuracy of the hardware, DWM3000 is accurate upto 10cm.
The impact on the Channel Impulse Response is also negligible. This is shown in figures 6.6 and 6.7.
In Figure 6.6, the measured distance is 7.87m, and in Figure 6.7 the measured distance is 8.02m. The
real distance was 7.80m.

When the same experiment is repeated at Point 2, shown in Figure 6.4, inside the room the observed
CIR is much different. This can be observed in the Figure 6.8, where a clear first­path component is
introduced into the signal. This is due to the signal passing through the several walls and getting
attenuated.

The two leading edge detection algorithms, jump­back­search­forward and search­back, are imple­
mented for identification of ToF. The distances measured by all three algorithms for the entire fingerprint,
before pre­processing for Environment 1 is shown in Figure 5.6. The tolerances of error for all three
algorithms are within the set threshold of 1.5m. This threshold is the same as chosen by authors in [47].
The CIA leading edge algorithm has the lowest error as observed from the graphs.
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Figure 6.5: Experiment to measure impact on NLoS due to obstacles

Figure 6.6: Impact on NLoS Point 1 Scenario 1: Door Open
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Figure 6.7: Impact on NLoS Point 1 Scenario 2: Door Closed

Figure 6.8: Impact on NLoS at Point 2
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6.2. Mounting Attacks
6.2.1. Cicada­TF

Figure 6.9: Cicada Attack in Environment 2, Each point consists of 15 minutes of normal ranging and 15 minutes of attacks

Figure 6.10: Cicada Attack in Environment 2, Channel Impulse Response

For mounting the Cicada­TF attack, the prover and the adversary DWM3000 ICs are synchronised
to each other using a jumper wire connecting two general purpose input/output pins. The Cicada­TF
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attack requires that the adversary chirps with signals alongside the genuine transmissions. This leads
to an early path component introduced when the receiver measures the aggregated energy received
at its antenna. In Cicada++, the adversary’s PRF (chirp rate) is a fraction of the actual PRF of the
genuine signal. Since the DWM3000 chip does not support a 16 MHz PRF (1/4th of 64 MHz PRF
in BPRF) when transmitting the STS, the number of ranging sessions in which a spurious first­path
signal is introduced is reduced. However, this attack can still be observed quite clearly. The adversary
also transmits signals with a higher power than the genuine transmitter and this was controlled using
the registers provided by DWM3000 for this purpose [17]. In Figure 6.9, the environment consists of
datapoints where 15 minutes of normal ranging sessions and 15 minutes of ranging sessions where
Cicada­TF was launched is shown. Figure 6.10 contains the equivalent channel impulse response for
a session where an attack has occured. The real distance is 7.1 meters, but the measured distance by
the leading edge algorithms is around 6m each.

6.2.2. Adaptive Injection Attacks

Figure 6.11: Effect of Adaptive Injection Attack on Channel Impulse Response

In this attack, the adversary uses a similar setup as in Cicada++, but the adversary has a higher
advantage and can precisely control where the spurious first path peak is to be injected. This is a much
stronger attack, as the adversary can control the reduction in distance that is desired. Furthermore,
no knowledge about the STS is required. The attacker possesses knowledge about the received CIR
power by the verifier, and can directly control what they receive. This attack requires also requires an
adversary to chirp at a fraction of the total rate. To overcome this requirement, the attack is simulated
by directly injecting spurious peaks at the required sample location of the CIR. This location is chosen
from the parameters with the highest success rate as shown in [47]. The injection of a peak indicates
an attack has succeeded and when the prover utilizes the inbuilt leading edge algorithm to measure the
distance, they incorrectly identify the malicious peak as the first path edge. The CIA algorithm cannot
be utilized in this case, as the IC automatically runs the algorithm when a ranging frame is received and
cannot be manually triggered. Evaluation for this attack is performed for only for the other two leading
edge algorithms. An example of a successful Adaptive injection attack is shown in Figure 6.11.
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6.3. Results
In this section we report the results achieved by CicadaSwat in the three environments against both
the attacks, Cicada­TF and Adaptive Injection Attack.

LDE/Classifier Random Forest Logistic Regression K Nearest Neighbours
Channel Impulse Analyzer (CIA) 95.3% 75.5% 81.5%
Jump­Back Search­Forward (JBSF) 94.1% 74.7% 79.3%
Search­Back (SB) 94.1% 74.4% 79.80%

Table 6.2: Results of evaluation of CicadaSwat against Cicada­TF in Environment 1

LDE/Classifier Random Forest Logistic Regression K Nearest Neighbours
Channel Impulse Analyzer (CIA) 98.8% 97.2% 94.39%
Jump­Back Search­Forward (JBSF) 97.39% 90.2% 91.2%
Search­Back (SB) 96.0% 90.10% 89.1%

Table 6.3: Results of evaluation of CicadaSwat against Cicada­TF in Environment 2

LDE/Classifier Random Forest Logistic Regression K Nearest Neighbours
Channel Impulse Analyzer (CIA) 99.3% 97.1% 98.2%
Jump­Back Search­Forward (JBSF) 97.39% 97.1% 94.6%
Search­Back (SB) 96.8% 92.0% 93.89%

Table 6.4: Results of evaluation of CicadaSwat against Cicada­TF in Environment 3

6.3.1. Cicada­TF
For the Cicada­TF attack, as shown in tables 6.2, 6.3 and 6.4, it can be discerned that the best classifier
was observed to be Random Forest and the leading edge algorithm with the highest accuracy was
Decawave’s Channel Impulse Analyzer (CIA) algorithm. This is not surprising as the CIA applies several
statistical tests before choosing the first path [17] and overall exhibited the highest accuracy. The CIA
takes multiple contexts gathered during ranging into consideration, performs statistical tests that these
contexts must adhere to before it allows for successful ranging. In Cicada­TF, the attacker does not
exercise clear control on the positions of the injected peaks. Unsurprisingly, the Search­Back algorithm
lead to the largest drops in accuracy in all observed classifiers. This is because of the nature of its
working, where a large noise only section must be observed before the first path signal is identified.
This use of the large back­search time window makes it susceptible to choosing spurious peaks as the
first path, as an attacker could inject signals into the channel that prevent this algorithm from reaching
a noise only region. Logistic Regression was the worst­performing classifier in all three environments,
especially when utilizing the Search­Back algorithm.
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Figure 6.12: Environment 1, Random Forest Criterion:
Gini, Max Depth:50

Figure 6.13: Environment 2, Random Forest Criterion:
Gini, Max Depth:15

Figure 6.14: Environment 3, Random Forest Criterion:
Entropy, Max Depth:50, N Estimators: 50

Figure 6.15: Best model selected for Cicada­TF Attack

6.3.2. Adaptive Injection Attacks
The performance can be observed to be similar to that of Cicada­TF. The model with the best perfor­
mance in this case was also Random Forest, albeit marginally. The overall accuracies of the model
in this attack were relatively lower, this may be attributed to the cause that the attacker is able to very
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LDE/Classifier Random Forest Logistic Regression K Nearest Neighbours
Jump­Back Search­Forward (JBSF) 94.1% 71.6% 79.1%
Search­Back (SB) 88.4% 70.23% 78.6%

Table 6.5: Results of evaluation of CicadaSwat against Adaptive Injection Attack in Environment 1

LDE/Classifier Random Forest Logistic Regression K Nearest Neighbours
Jump­Back Search­Forward (JBSF) 94.6% 89.2% 90.3%
Search­Back (SB) 92.39% 88.7% 89.8%

Table 6.6: Results of evaluation of CicadaSwat against Adaptive Injection Attack in Environment 2

LDE/Classifier Random Forest Logistic Regression K Nearest Neighbours
Jump­Back Search­Forward (JBSF) 91.24% 90.7% 88.79%
Search­Back (SB) 90.35% 88.4% 87.3%

Table 6.7: Results of evaluation of CicadaSwat against Adaptive Injection Attack in Environment 3

precisely control the nature and power of the peak that is injected. It can be discerned from the results
that utilizing statistical features to identify the presence of attacks is highly probable. The proposed
model exhibits robust accuracies in varied environments. More research work is required in this di­
rection, to confirm the efficacy of our model in environments with more NLoS conditions and channel
delay spreads. The drop in accuracies by the classifiers in the case of Adaptive Injection Attacks can
be attributed to the location and amplitude of the injected peaks.

Figure 6.16: Environment 1, Random Forest Criterion:
Gini, Max Depth:15, N Estimator: 200
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Figure 6.17: Environment 2, Random Forest Criterion:
Gini, Max Depth:15

Figure 6.18: Environment 3, Random Forest Criterion:
Entropy, Max Depth:50

Figure 6.19: Best model selected for Cicada­TF Attack

Environment 1 exhibited considerably lower accuracies with both logistic regression and k nearest
neighbours when compared to random forest. This can be attributed to the presence of several NLoS
locations with small passageways, walls, and other obstructions within environment 1. Furthermore,
environment 1 contains more locations with higher delay spreads than observed in other environments.
Environments 2 and 3 are have more points with a clear LoS between the prover and the verifier
due to which the accuracies are higher. The confusion matrices for the best models are shown in
figures 6.15 and 6.19.

The best features reported by the Random Forest classifier were found to be the first path to peak
delta, the first path to peak ratio, kurtosis and the measured distance. These features correlated highly
with the occurrence of attacks in the three environments. More work is needed in this direction to verify
the applicability of these features in other environments.



7
Conclusion and Future Work

7.1. Conclusion
In this report, we proposed CicadaSwat, a novel method to identify the presence of attacks in UWB
802.15.4z HRP. CicadaSwat observes the Channel Impulse Response (CIR) of each received frame
during ranging, and utilizes other observed signal characteristics to detect anomalies. We evaluated
the performance of our model by mounting two attacks proposed by the research community, namely
Cicada­TF and Adaptive Injection attacks. We verified it on a real test­bed using DWM3000 and
NRF52840 Development Kit hardware, and measure its efficacy in three separate environments. Ci­
cadaSwat detects the presence of attacks with upto 94% accuracy, even higher depending upon the
leading edge algorithm used.

7.1.1. Limitations
Since, the proposed model is the first solution aimed at addressing vulnerabilities in the UWB HRP
PHY, it could be used as the stepping stone for further research work in this domain. Expanding the
number of environments to also include outdoor and industrial locations would be useful, as they would
cover more NLoS scenarios. The DWM3000 IC can only measure the approximate power levels [17],
and since the hardware is currently sold as engineering samples, it is recommended that the antenna
delay is calibrated according to the use case. Furthermore, the IC contains several parameters that are
recommended by the manufacturer to be set after experimentation in the environment. For the purpose
of this experiment, the default values were used. The device currently only supports the BPRF mode,
with a PRF of 64 MHz. The performance of the proposed model needs to be evaluated for the higher
PRFs such as 125 and 250 MHz. Additionally, the datasets were collected when both the transmitter
and the receivers were stationary, more work is required to identify when the nodes are not static.

The lack of a Software Defined Radio (SDR) that operates within the UWB spectrum also inhibited
the experiments performed, as the successful reception of a frame could only be observed by a receiver,
in this case DWM3000, and verification of a successful attack was not possible until the measured
distances were obtained from the metadata. The DWM3000 also does not store the received signals
from the energy accumulator, and only the CIR is stored. This made observing signal characteristics
while mounting attacks difficult, as the physical signals could not be recorded or observed. Furthermore,
the number of 802.15.4z certified wireless ICs are severely limited, and as such all research work until
now has been done using older DWM1000 hardware or similar chips. For DWM3000, there was no
public information available.

7.2. Future Works
The proposed research work can be extended in multiple ways:

• The current work implements the Adaptive Injection Attack using a simulation. This is due to
the lack of capable devices that lets injection of signals at a specific fraction of the transmitting
frequency. A vector signal generator can be used for the creation of such radio signals. They

46
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can be used to mount physical attacks on the hardware, by transmitting very specific signals that
coincide with the genuine ones.

• The three environments considered, while they provide a strong indication of the applicability
of the proposed model in newer locations, however do not model all possible delay spreads as
explained in the IEEE channels document for 802.15.4a. The work can be extended to include
environments such as Industrial or outdoor areas with severe NLoS and for measuring the perfor­
mance of the proposed model. The documents states that in certain outdoor conditions a delay
spread of more than 300ns can occur. In such cases, the current model may not perform as well
due to the lack of training data.

• We perform the experiments for UWB HRP in BPRF mode on the hardware. The higher values of
PRF can be simulated and the performance of the model can be measured for all environments
as described in the IEEE channel models document. Authors in [47] present and evaluate the
success of their attacks using these simulations and environments. There is also a lack of HPRF
capable devices that are available for sale.

• Currently the system utilizes two nodes to perform ranging. The verifier could measure the Chan­
nel Impulse Response using multiple tags. They could use multiple antennae that are placed in
several different locations in an environment, and then utilize all the CIRs for the identification
of anomalies. An adversary injecting signals into the system has lower chances of mounting the
attacks without being identified.

• During experimentation, the noise threshold was low in the 8 GHz spectrum, as there were no
other devices. It would be interesting to evaluate the performance of CicadaSwat when the en­
vironments contain a high density devices that communicate within this channel, or in extremely
noisy conditions.

• In a system with multiple deployed verifiers, the path which the transmitter takes could also be
used to verify the authenticity of each ranging session. For example, a person may be expected
to pass a set of way­points while entering a building. During verification, the verifier ensures that
the path taken by the transmitter adhere to these requirements.
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