
Sample-e�cient reinforcement
learning for quadcopter �ight
control

L. Koomen

Sample-
efficient

reinforcement
learning for
quadcopter
flight control

by

L. Koomen
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday June 25, 2020 at 09:30 AM.

Student number: 4098730
Project duration: May 1, 2018 – June 25, 2020
Thesis committee: Dr. ir. G.C.H.E. de Croon, TU Delft, chair

Dr. ir. E. van Kampen, TU Delft, supervisor
Dr. A. Sharpanskykh, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This thesis is the culmination of my studies at the TU Delft, which have been the main focus of my life for a
long time now. While I have enjoyed most of my time here, I am looking forward to move on and apply what I
have learned to solve problems in the real world (and get paid). First of all, I would like to thank my supervisor,
Erik-Jan, for patiently guiding me through the thesis process. Secondly, special thanks to my parents, Nico
and Myrjam, for their unwavering support during my studies and throughout life in general, without which I
would certainly not be where I am right now. Also, thanks to my siblings, Mick and Annemarie, for lifting me
up whenever I come to visit. Furthermore, thanks to the rest of my family, friends, and colleagues for being
a part of my life. And last, but certainly not least, I want to thank my girlfriend, Pat, for being my greatest
supporter and keeping me sane when the going got tough.

L. Koomen
Delft, June 2020

iii

Contents

Acronyms vii

1 Introduction 1

1.1 Research questions . 2

1.2 Outline . 3

2 Research questions 5

I Scienti�c paper 11

II Literature review and Preliminary analysis 33

3 Reinforcement learning 35

3.1 Motivation . 35

3.2 Important concepts . 35

3.2.1 Framework. 35

3.2.2 Accumulated reward . 37

3.2.3 Value functions . 37

3.2.4 State-value functions . 37

3.2.5 Action-value functions . 38

3.2.6 Dynamic Programming . 39

3.2.7 Monte Carlo methods . 40

3.2.8 Temporal-Difference methods . 41

3.2.9 Approximate methods . 42

3.2.10 Policy-gradient methods . 42

3.3 State-of-the-art . 43

4 Learning from Demonstration 45

4.1 Definition and framework. 45

4.1.1 Definition . 45

4.1.2 Framework. 46

4.1.3 Important concepts . 48

4.2 History and state-of-the-art . 50

4.2.1 Programming by Demonstration. 50

4.2.2 Behavioral cloning . 51

4.2.3 Imitation learning . 51

4.2.4 Applications in reinforcement learning . 52

5 Guided Policy Search 55

5.1 Motivation . 55

5.2 Rough outline . 56

5.3 Mirror Descent Guided Policy Search . 57

6 Preliminary results 67

6.1 Methods . 67

6.1.1 Pendulum . 67

6.1.2 Point mass - full view . 68

6.1.3 Point mass - partial view . 68

v

vi

6.2 Results . 69
6.3 Analysis . 72

6.3.1 Proof of concept . 72
6.3.2 Unobservable states . 73
6.3.3 Generalization to unseen states . 73
6.3.4 Failure of trajectory optimization . 74

III Additional results and Discussion 75

7 Additional results and discussion 77

7.1 Research question 5. 77
7.2 Research question 6. 79
7.3 Research question 7. 80

IV Closure 83

8 Conclusion 85

9 Recommendations 89

Bibliography 91

V Appendices 97

A List of GPS applications 99

B Preliminary experiments neural networks 101

B.1 Point-mass . 101

C Default parameter settings 103

C.1 General . 103
C.2 Sub-policies. 104
C.3 Trajectory optimization . 104
C.4 Dynamics models . 104
C.5 Global-policy . 105

D Quadcopter model and controller 107

D.1 Dynamic model . 107
D.2 Controller . 108

D.2.1 System Simplification . 112
D.2.2 Simulation Results . 113

Acronyms

A

AC actor-critic.
AggeVaTe aggregate values to imitate.
AIS-GPS adaptive importance sampled GPS (IS-GPS).
ANN artificial neural network.
API approximate policy iteration.
APID approximate policy iteration with demonstration.

B

BADMM Bregmann alternating direction method of multipliers.
BADMM-GPS Bregmann alternating direction method of multipliers (BADMM)-GPS.
BC behavioral cloning.

C

C-GPS constrained GPS.
CNN convolutional neural network.
CPG central pattern generator.

D

DAgger dataset aggregation.
DDP differential dynamic programming.
DDPG deep deterministic policy gradients.
DGD dual gradient descent.
DP dynamic programming.

E

ELU exponential linear unit.

G

GAIL generalized adversarial imitation learning.
GMM Gaussian mixture model.
GMR generative motor reflexes.
GPI generalized policy iteration.
GPS guided policy search.

H

HMM hidden Markov model.

I

IL imitation learning.
iLQG iterative linear quadratic Gaussian.
iLQG-FLM iterative linear quadratic Gaussian (iLQG) with fitted linear models.
IM-TRPO trust-region policy optimization with imitation learning.
IRL inverse reinforcement learning.

vii

viii

IS-GPS importance sampled GPS.

K

KL Kullback–Leibler.

L

LfD learning from demonstration.
LQG linear quadratic Gaussian.
LSPI least-squares policy iteration.

M

MAV micro air vehicle.
MC Monte Carlo.
MD mirror-descent.
MD-GPS mirror descent guided policy search.
MDP Markov decision process.
MPC model predictive control.
MSE mean squared error.

P

PbD programming by demonstration.

R

RAIL reduction-based active imitation learning.
RL reinforcement learning.
RLS recursive least-squares.
RNN recurrent neural network.

S

SGD stochastic gradient descent.
SMILe stochastic mixing iterative learning.
SOTA state-of-the-art.
SVM support vector machine.

T

TD temporal difference.
TL transfer learning.
TRPO trust region policy optimization.
TVLG time-varying linear Gaussian.

U

UAV unmanced aerial vehicle.

V

V-GPS variational GPS.

1
Introduction

Ever since the invention of fixed-wing flight, stabilization and control of an aircraft has been of utmost importance
for safety and performance. To reduce pilot workload, automatic flight controllers were developed not long
after the first successful powered flight by the Wright brothers. Lawrence Sperry and others invented a mechanical
autopilot, which was used in the first artificially controlled flight[82]. This mechanical system was eventually
followed by analog- and finally digital autopilots using fly-by-wire.

Flight control is very relevant for safety in modern aviation, as shown by a summary of jet airplane accidents;
more than 25% of fatal commercial jet accidents occur because of loss of control in flight [8]. This makes it the
most frequently occurring type of accident and signifies a need for more research into intelligent, adaptive,
and fault-tolerant control. Additionally, the rise of unmanced aerial vehicle (UAV) and micro air vehicle
(MAV) use has lead to an increased demand for autonomous control, because there is no on-board pilot and
air-ground communication is limited. Finally, high-performance aircraft and MAVs alike are prone to highly
nonlinear- and rapidly changing dynamics, which require much effort to analyze, model, and synthesize
controllers for. These issues lead to a need for self-learning and flexible control schemes, without a need
for human input.

The problem of adaptive control has been studied extensively, leading to many useful techniques. However,
many methods require a controller-structure to be defined a priori, adapting only the parameters on-line
either by means of a model-reference (model-reference adaptive control), stability criterion (direct Lyapunov-
based adaptive control), or an identified model (model identification adaptive control). Also, direct Lyapunov-
based control requires the system dynamics to be known and model identification based control requires the
dynamics to be modeled accurately to achieve high performance.

Another paradigm which could provide autonomous adaptive flight control, while circumventing some of
the issues mentioned previously, is reinforcement learning (RL). Inspired by nature, RL mimics how humans
and animals learn from interactions with their environment. The continuously self-learning algorithm is
inherently adaptive, being a form of adaptive- and optimal control[73]. Since it can learn model-free, it
can be applied to arbitrary dynamics and problem-structures, making it very flexible. Also, the amount of
human input is small as only a reward signal needs to be defined. Mainly focused on robotics, RL has been
applied to flight control as well; aerobatic helicopter flight[4, 61], perched UAV landings[83], autonomous
UAV navigation[37], and simulated business jet flight control[22] among others.

Although RL seems to hold great promise for creating more intelligent control algorithms, it is not without
its flaws. For example, many RL algorithms are known for requiring an inordinate amount of data to learn
effectively , often leading to experiments and applications where data is abundant, such as simulations[72,
86]. This flaw is called having low sample-efficiency and the main goal of this thesis will be improving it in a
flight control application.

There are many ways of improving sample-efficiency, one of which is called learning from demonstration
(LfD). LfD is an umbrella-term for many techniques which all try to jump-start learning by imitating a, often
supposed to be expert, teacher. These methods rely on the idea that the teacher is able to more quickly
guide the student towards regions of high reward in the space of trajectories, circumventing a substantial
amount of trial-and-error. These techniques have been applied successfully to autonomously traverse rough
terrain using a robotic vehicle[40], reproduce demonstrated trajectories using a robotic arm[81], and learn a
controller for a multi-rotor UAV[15].

1

2

The main goal of this thesis is to:

Main goal

Investigate how learning from demonstration can be used to improve the sample-efficiency of
reinforcement learning applied to flight control.

This leads to several research questions which are investigated and answered in this work, using both
literature review and experiments on a simulated quadcopter system.

1.1. Research questions
This section will provide a short overview of the research questions answered in this work.

To reach the main goal, first, a specific RL algorithm needs to be chosen that fits well with a flight control
application, and preferably has a relatively high baseline sample-efficiency. Therefore, the first research
question is:

Research question 1

What is an RL algorithm that fits well with a flight control application, is a good fit to be combined
with LfD, and preferably has high baseline sample-efficiency?

This initial research question is key in formulating the remaining ones posed in this thesis report and it
will be answered by literature review and preliminary analysis, as presented in part II. To better introduce the
remaining research questions, the result from this review and analysis is presented here; the RL algorithm
that is used in this work is mirror descent guided policy search (MD-GPS)[56]. This choice leads to six more
refined research questions, specific to MD-GPS, which are presented here to provide a central point at which
all research questions are posed. Three of these questions are handled in the scientific paper presented at
part I; research question 2, 3, and 4, while the rest are answered in the remainder of the thesis document at
part III. For a more thorough explanation of all research questions, see chapter 2.

As it turns out, MD-GPS is an iterative optimization algorithm that can be initialized using demonstrations.
The effect of this intervention on the sample-efficiency will be investigated by the second research question,
which is answered in part I:

Research question 2

How does initializing the sub-policies of MD-GPS with high-quality demonstrations affect the
sample efficiency?

Although demonstrations are usually provided by an expert teacher, in general they are not optimal.
Therefore, it is necessary to investigate the robustness of MD-GPS to sub-optimal demonstration. The third
research question investigates this robustness:

Research question 3

How robust is MD-GPS to sub-policies initialized using sub-optimal demonstrations?

The MD-GPS algorithm as specified in [56] has a certain training structure, which can be altered slightly to
improve sample-efficiency. The specifics of this structure are explained more thoroughly in section 3 of part I.
The fourth research question investigates the effect of alterations to this structure on the sample-efficiency:

Research question 4

How does the specific training structure affect the sample-efficiency of MD-GPS?

The remaining questions are treated in the remainder of the thesis report, with results and discussion
presented in chapter 7. As it turns out, MD-GPS uses model-based trajectory-centric RL, based on local
dynamic models. These models can be trained beforehand using data from demonstrations, the effect of
this pre-training on the sample-efficiency is investigated by the fifth research question:

3

Research question 5

Howdoespre-training the dynamics prior and time-varying linearGaussian (TVLG)models, using
demonstrations, affect the sample efficiency of MD-GPS?

Inspired by the field of inverse RL, which reverses the RL paradigm and sets out to find a reward-function
from (optimal) behavior, instead of inferring behavior from a reward-function, demonstrations can be used to
define a custom cost-function. The effect on using such a cost-function on the sample-efficiency is investigated
by the sixth research question:

Research question 6

How does utilizing demonstrations to create a cost-function affect the sample-efficiency of MD-
GPS?

As is explained in section 2 of part I and section 5.3, MD-GPS uses a Kullback–Leibler (KL)-divergence
constraint during optimization, which acts similar to a step size of an iterative optimization algorithm. The
final research question investigates the robustness of MD-GPS to different values of this step size:

Research question 7

How robust is MD-GPS to different settings of the KL-divergence step size increase/decrease
factor?

1.2. Outline
This section will outline the structure of the remainder of this thesis. First, the main scientific contribution
is presented in part I. This is followed by a literature review and preliminary analysis in part II. The literature
review starts with a presentation of the fundamentals of RL and an overview of the state-of-the-art (SOTA)
in chapter 3. Secondly, the fundamentals of LfD and an overview of the history and SOTA is presented in
chapter 4. The literature review is finalized by an in-depth explanation of the MD-GPS algorithm in chapter 5.
The preliminary analysis is presented in chapter 6, and the preliminary conclusions are combined with the
conclusions regarding the entire thesis report presented in chapter 8. In part III, additional results and
analysis are presented. Finally, the thesis is concluded and recommendations for further research are provided
in part IV, starting with the conclusion in chapter 8, followed by the recommendations in chapter 9.

2
Research questions

This chapter will present the sub-questions that will help to answer the main research question. Each posed
sub-question will be followed by a hypothesis and a descriptions of the experiments that will be performed.

As stated in the introduction, the main goal of the thesis is to:

Main goal

Investigate how learning from demonstration can be used to improve the sample-efficiency of
reinforcement learning applied to flight control.

Research question 1
To achieve this goal, a RL algorithm needs to be chosen first. This choice will be the base for the choice of the
specific LfD methods will be used, and any, more specific, research questions. This leads to the following first
question:

Research question 1

What is an RL algorithm that fits well with a flight control application, is a good fit to be combined
with LfD, and preferably has high baseline sample-efficiency?

As mentioned already in chapter 1, this question will be answered by a literature review in combination
with several preliminary experiments. The result of this analysis is the choice of MD-GPS as the RL algorithm,
which leads to the more specific research questions that follow.

During the LfD literature review it is noted that there are several ways of utilizing the information provided
by demonstrations in a RL context; state-action mapping, reward function learning, system identification,
and feature extraction (see section 4.1.2). Ignoring the latter during this work, these points can be mapped to
the MD-GPS algorithm as follows:

• State-action mapping

– Initialize sub-policies: demonstrations can be used to construct an initial TVLG sub-policy, providing
a high-quality starting point in trajectory space.

– Pre-train global-policy: demonstrations can be used to pre-train the global-policy, leading to a
better baseline performance at the beginning of the training process.

• Reward function learning

– Demonstration based cost-function: demonstrations can be used to specify a specific cost-function
that forces the agent to follow that particular trajectory.

• System identification

5

6

– Pre-fit dynamics models: demonstrations can be used to pre-fit the dynamics models, both the
Gaussian mixture model (GMM) prior and the TVLG local models.

To determine the effect of these demonstration-based interventions, experiments will be performed and
the results analyzed. In each experiment the goal is to change one (or at most a few) key-parameter(s), while
keeping all others the same. This will provide a first-order approximation of the effect of parameters around
the nominal values. These nominal values are referred to as the "default" values. They have been chosen
largely by trial-and-error, and lead to reasonable performance of the algorithm on the quadcopter system,
making them suitable as a baseline. The values of the default parameters are presented both in section 3.G in
part I, and in more detail in appendix C.

Research question 2
The C-step of the MD-GPS algorithm uses iterative linear quadratic Gaussian (iLQG) with fitted linear models
(iLQG-FLM); a local trajectory optimization algorithm which uses local models to incrementally improve
upon its current solution. Therefore, it can get stuck in local optima. In previous research like [48], demonstrations
have been used to initialize the sub-policies to improve training performance, improving sampling-efficiency
and being required for convergence to a good solution. The second research question aims to determine the
effect on sample-efficiency:

Research question 2

How does initializing the sub-policies of MD-GPS with high-quality demonstrations affect the
sample efficiency?

It is expected that initializing the sub-policies using high-quality demonstrations allows the trajectory-
optimization to converge to a good solution faster than normal. Depending on the complexity of the system,
it might even be crucial for convergence. The effect would be a starting performance that is much better than
when initializing the sub-policies (semi-)randomly, skipping ahead in the cost-iteration curve.

To answer this question, two experiments will be run with the only difference being the initialization of
the sub-policies:

experiment code sub-policy initialization method

RQ2-A (E1) random
RQ-CTRL (E2) high-quality demonstrations (default)

Note that behind the experiment codes used in this thesis report, the corresponding experiment codes
used in the scientific paper in part I are shown in parentheses. High-quality demonstrations will be generated
using the nonlinear quaternion-based controller as presented in appendix D.

Research question 3
Generally, demonstrations are not the optimal solution as judged by the cost-function; there must always be
some amount of additional optimization. The sensitivity of the algorithm to different levels of demonstration
sub-optimality, i.e. difference between the demonstration and the optimal solution, will be referred to as its
robustness. The more robust the algorithm, the easier it is to obtain a certain level of performance even when
using quite sub-optimal demonstrations. Since the main goal of the thesis is to improve sample-efficiency
using demonstrations, the robustness of the algorithm to sub-optimal demonstrations is important. The
third research question aims to assess this robustness:

Research question 3

How robust is MD-GPS to sub-policies initialized using sub-optimal demonstrations?

As mentioned before, iLQG-FLM is a local trajectory optimization method and analogous to local gradient-
based optimization there will be a region of convergence around a local optimum. The question becomes
whether the initial demonstration lies within the region of convergence of the optimal solution in trajectory

7

space. As long as the demonstration is reasonably close to the optimal trajectory, it is expected to converge to
this solution.

To answer this question, five experiments will be run with differences in the quality of the demonstrations
with which the sub-policies are initialized. Behind the experiment codes used in this thesis report, the
corresponding experiment codes used in the scientific paper in part I are shown in parentheses:

experiment
code

sub-policy initialization method global-policy pre-training target

RQ-CTRL (E1) high-quality demonstrations (default) high-quality demonstrations (default)
RQ3-B (E3) demonstrations with 0.25 m target offset demonstrations with 0.25 m target offset
RQ3-C (E4) demonstrations with 1.00 m target offset demonstrations with 1.00 m target offset
RQ3-D (E5) squiggly demonstrations with 7.5 noise

variance
squiggly demonstrations with 7.5 noise
variance

RQ3-E (E6) squiggly demonstrations with 7.5 noise
variance

squiggly demonstrations with 15.0 noise
variance

High-quality demonstrations will be generated using the quaternion-based controller as presented in
appendix D. The squiggly demonstration is generated by adding noise to output of the quaternion-based
controller, while the demonstrations with target offset are created by using quaternion-based controller with
a target-position that is offset from the actual target.

Research question 4
Due to the unstable nature of the quadcopter system, no stability guarantees provided by neural networks,
and the fact that iLQG-FLM does not provide any way to robustly restore itself back to a previous solution, a
global-policy with poor performance can completely derail the training process. The way a poor global-policy
can affect training is either by being used to sample, or by being involved in the KL-divergence constraint.
Therefore, it is expected to be vital that the global-policy leads to stable trajectories before it is involved in
these ways.

To this end, the training process can be structured in a certain way. Where structure refers to the choices
made concerning the exact training iterations during which the following actions are undertaken:

• constrain w.r.t. previous sub-policies or global-policy

• sample using sub-policies or global-policy

• start supervised learning of the global-policy

An additional choice is whether to pre-train the global-policy using demonstrations.
The fourth research question asks what the effect is of different structure-settings:

Research question 4

How does the specific training structure affect the sample-efficiency of MD-GPS?

It is expected that the best way of structuring training is to begin by both sampling and constraining
w.r.t. sub-policies, moving to constraining sub-policies w.r.t. the global-policy when it has been trained for a
number of iterations, while finally moving to using the global-policy for sampling. Supervised learning of the
global-policy should take place only when the sub-policies show good behavior. By using demonstrations to
initialize the sub-policies, supervised training could start at the first iteration. Also, using demonstrations to
pre-train the global-policy would be expected to reduce the training iterations needed to get the global-policy
to generate stable trajectories and be useful to sample from.

In the interest of time the experiments will all follow the same general progression: constrain w.r.t. sub-
policy → constrain w.r.t. global-policy → sample using global-policy Keeping the decision whether to pre-
train the global-policy as a separate choice. The settings for each experiment are as follows:

8

experiment
code

pre-train global-policy? constrain w.r.t. sub-policy sample using sub-
policies

RQ4-B (E7) no iteration 0-4 iteration 0-9
RQ-CTRL (E8) yes (default) iteration 0-4 (default) iteration 0-9 (default)
RQ4-C (E9) no iteration 0-9 iteration 0-19
RQ4-F (E10) yes iteration 0-9 iteration 0-19
RQ4-A (E11) no - -
RQ4-D (E12) yes - -

Note that behind the experiment codes used in this thesis report, the corresponding experiment codes
used in the scientific paper in part I are shown in parentheses.

Research question 5
Since MD-GPS utilizes a model-based trajectory optimization technique, it relies on good dynamical models.
Demonstrations provide a dataset of world interactions, which are useful for pre-training the dynamic models.
The fifth research question aims to measure the effect this has on sample-efficiency:

Research question 5

How does pre-training the dynamics prior and TVLG models, using demonstrations, affect the
sample efficiency of MD-GPS?

Pre-fitting the dynamics prior and models is expected to improve training performance since normally
the models still need to be fit during the first few iterations, leading to worse optimization steps. The effect is
expected to be that the cost will more quickly improve during the first few iterations, leading to slightly faster
convergence overall.

To answer this question, three experiments will be run with the only difference being the quality of the
demonstrations with which the sub-policies are initialized:

experiment code pre-train dynamics?

RQ5-A no
RQ-CTRL yes (default)

Research question 6
Although the final goal of RL is to obtain a global-policy that optimizes the cost-function, it is always possible
to utilize an altered cost-function during training to help the agent learn, akin to curriculum learning. Demonstrations
can be used to define a cost-function that is optimized when the agent exactly follows the demonstration
trajectory, which might help the agent during training by providing a more informative cost-function. The
aim of the sixth research question is to measure the effect of such a cost-function on sample-efficiency:

Research question 6

How does utilizing demonstrations to create a cost-function affect the sample-efficiency of MD-
GPS?

The demonstration-based cost-function would specify a target-state for each time step based on the
demonstration trajectories. This would in principle provide more useful information to the algorithm as
compared to only specifying a constant target-position for every time step. This extra information is expected
to more quickly lead to good performance, but of course the performance will be limited by the performance
of the demonstration. Therefore, there should be a point at which the cost-function switches back to normal,
so performance can be further improved.

To answer this question, three experiments will be performed; one control, and two utilizing a demonstration-
based cost-function up to different iterations:

9

experiment code demonstration-based cost

RQ-CTRL - (default)
RQ6-B iteration 0-5
RQ6-C iteration 0-10

Research question 7
The trajectory-optimization algorithm used by MD-GPS, iLQG-FLM, incrementally improves upon solutions
by optimizing an augmented cost-function that, in addition to the normal cost-function, penalizes deviation
from the current solution as measured by the KL-divergence. Each iteration the algorithm updates the trajectories
to a point in trajectory-space that is a certain KL-divergence away from the old solution; a step size. The
step size is adapted on-line, it is in- or decreased by some factor depending on some heuristic. While the
main goal of this thesis is to improve sample-efficiency using demonstrations, it is important to assess the
sensitivity of these improvements to the adaptation factor. The seventh research question aims to determine
the robustness of MD-GPS training performance with respect to this factor:

Research question 7

How robust is MD-GPS to different settings of the KL-divergence step size increase/decrease
factor?

The learning-rate modification factor determines the speed at which the algorithm adapts to either good
or bad optimization results. The higher the factor, the faster the adaptation and the better the optimization
performance. However, as the modification factor is increased there comes a point where the algorithm is
destabilized, similar to destabilization of gradient-based learning would when choosing a step size that is too
large.

To answer this question different values for the modification factor will be compared. To reduce the
number of parameters, the adaptation factor will be simplified by making the decrease factor equal to the
inverse of the (increase) factor.

experiment code learning-rate modification factor

RQ7-A 1.15
RQ-CTRL 1.33 (default)
RQ7-C 1.5
RQ7-D 2.0
RQ7-E 4.0

I
Scientific paper

11

1

Improving sample-efficiency of mirror-descent guided policy
search for flight control using demonstrations

L. Koomen ∗

Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

The combination of reinforcement learning and deep neural networks has the potential to
train intelligent autonomous agents on high dimensional sensory inputs, with applications in
flight control. However, the amount of samples needed by these methods is often too large
to use real-world interaction. In this work, mirror-descent guided policy search is identified
as a promising algorithm to train high-dimensional policies on real-world samples. Several
experiments are conducted to investigate how the use of expert-demonstrations can further
improve the sample-efficiency of this algorithm when applied to the control of a quadcopter in
simulation. It is shown how demonstrations, when combined with certain alterations in the
mirror descent guided policy search algorithm, can significantly reduce the amount of samples
needed to achieve good performance. Additionally, it is shown how these improvements are
robust to sub-optimal demonstrations.

Nomenclature

Symbol Explanation
xC Markovian state vector at time C ∈ [0,) − 1]
oC Observation vector at time C ∈ [0,) − 1]
uC Action vector at time C ∈ [0,) − 1]
3 Trajectory: 3 = ({xC , oC , uC }, · · · , u) −1}), inclusion of observations depends on the context
ℓ(3) The cost of a trajectory
?(xC+1 |xC , uC) Unknown system dynamics
?8 (uC |xC) Action distribution of the 8Cℎ trajectory distribution, also called the 8Cℎ sub-policy, which starts at

x80 ∼ ?(x0)
?8 (3) The 8Cℎ trajectory distribution, induced by ?8 (uC |xC) when starting at x80
3 98 The 9 Cℎ realization of ?8 (3)
?8 (xC+1 |xC , uC) Linearized system dynamics around ?8 (3), in the form of a linear-Gaussian model
c\ (uC |oC) Global policy, action distribution conditioned on the observation, parameterized by weight vector)
c\,8 (3) The trajectory distribution induced by the global policy, while starting at x80
c̄\,8 (3) The trajectory distribution induced by a policy which is the result of linearizing the global policy

around ?8 (3), or c\,8 (3), while starting at x80
D8 Set of sampled trajectories {38, 9 }
n Kullback–Leibler (KL)-divergence step size

I. Introduction
In recent years, micro air vehicle (MAV) technology has become more affordable and accessible, which has lead to

a surge of interest in adaptive, autonomous, and intelligent flight control systems. Simultaneously, the field of deep
∗Graduate student, Faculty of Aerospace Engineering, Control and Simulation division, Delft University of Technology

2

learning has revolutionized computer vision. The combination of these fields promises intelligent flight control policies
trained directly on high-dimensional observations.

An optimal control paradigm that shows promise in training expressive policies is reinforcement learning (RL).
Inspired by nature, RLmimics how humans and animals learn from interactions with their environment. The continuously
self-learning algorithm is inherently adaptive, being a form of adaptive- and optimal control[1]. Since it can learn
model-free, it is applicable to arbitrary dynamics and problem-structures, making it very flexible. Also, the degree of
required human input is small as only a reward signal needs to be defined. Mainly focused on robotics, RL has been
applied to flight control as well; aerobatic helicopter flight[2, 3], perched unmanced aerial vehicle (UAV) landings[4],
autonomous UAV navigation[5], and simulated business jet flight control[6] among others.

Although RL hods great promise for creating more intelligent control algorithms, it is not without its flaws. For
example, many RL algorithms are known for requiring an inordinate amount of data to learn effectively, leading to a
focus on experiments and applications where data is abundant, such as simulations and games[7, 8].

A way of improving sample-efficiency is learning from demonstration (LfD), an umbrella-term for many techniques
which try to jump-start learning by imitating an, often supposed to be expert, teacher. These methods rely on the idea
that the teacher is able to more quickly guide the student towards regions of high reward in the space of trajectories,
circumventing a substantial amount of trial-and-error. These techniques have been applied successfully to autonomously
traverse rough terrain using a robotic vehicle[9], reproduce demonstrated trajectories using a robotic arm[10], and learn
a controller for a multi-rotor UAV[11].

A family of methods named guided policy search (GPS), originally devised by Levine and Koltun in [12], combines
model-based RL in a low-dimensional state-space with supervised learning to efficiently train high-dimensional policies
in continuous-state and action RL tasks. Because of this two-step approach, these methods are sample-efficient enough
to train vision-based robotic-arm controllers using real-world interaction [13]. Because of its simplicity, ability to
handle continuous state- and action-spaces, sample-efficiency, mirror descent GPS (MD-GPS) has been identified as a
promising RL algorithm for a flight control application. Additionally, these methods are easily combined with expert
demonstrations, by initializing the model-based trajectory optimization with them[12].

The main contribution of this paper is an investigation into the effect of utilizing expert demonstrations to improve
the sample-efficiency of the MD-GPS algorithm. To this end, experiments will be conducted on a simulated quadcopter
system, while expert demonstrations are generated using a nonlinear quaternion-based controller.

In the remainder of this paper, the MD-GPS algorithm will be explained in section II, followed by a presentation of
the methods used in this paper in section III. In section IV, the results of the experiments are show and discussed in
section IV. Finally, the paper is concluded in section V.

II. Foundations

The specific GPS algorithm which will be used during this research is MD-GPS, using iterative linear quadratic
Gaussian (iLQG) with fitted linear models (iLQG-FLM) for trajectory optimization under unknown dynamics,

while utilizing a nonlinear global policy, from [14]. However, a summary of the history of GPS methods in general is
presented first, followed by a thorough explanation of the MD-GPS algorithm.

A. History
In [12], Levine and Koltun state that training policies directly can scale to high dimensional inputs and

parameterization, but training requires an inordinate amount of samples and frequently falls into poor local optima. To
remedy this problem they have created a family of off-policy RL methods under the name of GPS, which uses trajectory
optimization to obtain samples that guide the policy search to regions of high reward. The trajectory optimization
is a form of model-based (as opposed to random) exploration and can also be initialized using demonstrations. The
importance sampled GPS (IS-GPS) algorithm can be simplified as having two steps, starting with the assumption of
known dynamics, a differential dynamic programming (DDP) method called iLQG is used to provide a distribution over
trajectories which optimize reward. These trajectories are generated by local time-varying linear Gaussian (TVLG)
controllers. The second step is a supervised learning step which minimizes the Kullback–Leibler (KL)-divergence
between the global policy and the local sub-policies. Importance sampling (IS) is applied to estimate the returns of
the global policy using the trajectories generated by iLQG. Additionally, on-policy samples are added to the set of
trajectories each iteration, which ensures higher IS weights.

In the same paper an extension of the algorithm is proposed which adapts the guiding trajectories to the global
policy at each iteration by optimizing the log-probability of actions under said global policy. This method will be called

3

adaptive IS-GPS (AIS-GPS). It requires new trajectories to be generated at each iteration and is necessary when the
global policy cannot replicate the initial guiding trajectories. Adapting guiding samples to the capabilities of the global
policy also provides the ability of altering the information to which it has access. For instance the local policies might
have access to full-state feedback, while the global one has access to either a subset or a different representation.

In [15], a new algorithm is proposed based on AIS-GPS. Instead of optimizing the expected reward, the optimization
is posed as an inference problem. A binary random stochastic variable is introduced which indicates whether a
state-action pair is optimal. A Bayesian network is defined which relates states, actions, and this optimality indicator. By
setting the latter to 1 for all time steps, the maximum-likelihood value of the policy parameter vector can be determined
using an objective function equal to the log-probability of the optimality indicator conditioned on the policy parameter
vector. This objective function is decomposed into a variational lower bound and a KL divergence term, the first one
being maximized w.r.t. the policy parameters and the latter minimized w.r.t. the guiding trajectories obtained by iLQG.
The on-policy return is not needed in this algorithm, which removes the need for IS. According to the authors this leaves
variational GPS (V-GPS) less prone to local optima than AIS-GPS, while also being less complex in its implementation.

In [16], the GPS algorithm is cast as a constrained optimization problem, called constrained GPS (C-GPS). The
Lagrangian of the constrained problem is solved by using dual gradient descent (DGD), which amounts to alternating
between two steps. First, the trajectories are optimized w.r.t. cost using iLQG. Secondly, the global policy is optimized
to match the local policies. A difference with IS-GPS and AIS-GPS methods is that no IS is used, which leaves it less
vulnerable to degeneracies. An additional difference lies in the second optimization step. Similar to V-GPS, it amounts
to a minimization of the KL-divergence between the global- and sub-policies. However, where V-GPS optimizes the
global policy by performing a moment (M-) projection of the sub-policies onto the set of distributions spanned by the
global policy’s parameterization, C-GPS performs an information (I-) projection. The former being moment-matching;
leading to a policy which optimizes the exponent of the negative cost, while the latter is mode-seeking; leading an
optimization of the expected cost. The results obtained by the I-projection are shown to be superior.

Previously mentions GPS methods have all assumed known dynamics, which are used during the trajectory
optimization by iLQG. In [17] an on-line system-identification method is combined with C-GPS to handle unknown
dynamics. This trajectory optimization approach will be referred to as iLQG-FLM. Each iteration, the dynamics are
fitted to the samples of the previous off-policy trajectories. Dynamics are modeled to be TVLG and are fitted each
iteration using linear regression. To reduce the amount of samples needed to obtain a good fit a global Gaussian mixture
model (GMM) prior is used. Since the assumption of linear dynamics falls apart when straying too far away from
the linearization point, the cost function used in the trajectory optimization step includes a term that maximizes the
log-probability of actions under sub-policies from the previous iteration. This is equivalent to a trust-region approach
using the KL-divergence between sub-policies from successive iterations.

In [13], an augmented Lagrangian method called Bregmann alternating direction method of multipliers (BADMM)
is used for GPS. The Lagrangian is augmented with a Bregmann-divergence term, being the KL-divergence between the
sub-policies and the global-policy. The general process can be summarized as alternating optimization of the primals
(sub-policies and global policy), folled by incrementing the Lagragne multipliers. As it is an implementation of BADMM,
it inherits all its convergence properties outlined in [18]. In contrast with C-GPS, BADMM-GPS (BADMM-GPS)
is able to employ the usual iLQG update steps, which are much faster than the extra steps the former method has to
undertake. The difference lies in the KL-divergence terms used in the cost functions of the trajectory optimization.
BADMM-GPS always optimizes the divergence w.r.t. its first argument, which leads to a convex optimization problem
which can be directly solved by iLQG.

An interesting aerospace application of BADMM-GPS is presented in [19]. Zhang et al. state that previous GPS
methods are not suitable for safety-critical applications, such as controlling flying agents, when either the dynamics are
unknown or the model is sufficiently bad. The problem is that trajectory optimization is performed offline in the case of
known dynamics, or identified online in the case of unknown dynamics. Since the dynamics model can be inaccurate
and online identification takes time to converge, both methods can potentially lead to unstable or unsafe behavior. As a
solution to this problem, online model predictive control (MPC) is used to track trajectories generated offline, providing
improved robustness to model errors.

In [14], previously mentioned GPS methods are shown to all be variants of approximate mirror descent and a new
algorithm is proposed called MD-GPS. Improvements over older methods are a reduced number of hyperparameters
and a simpler algorithm. Performance is compared to previous methods and is shown to be the same or better, while
requiring substantially less tuning.

Aforementioned methods have all assumed a known reward function to optimize, even when trajectory optimization
was paired with demonstration trajectories. However, as mentioned before, some tasks are too complex to design a cost

4

function for and inverse reinforcement learning (IRL) or inverse optimal control (IOC) can be used to infer the reward
function. In [20], BADMM-GPS under unknown dynamics from [17] is combined with a nonlinear generalization of
maximum entropy IOC to infer a cost function from demonstrations. The result is a method called guided cost learning,
which simultaneously obtains a highly nonlinear, high dimensional cost function directly from human demonstrations,
and a policy which optimizes said cost. The main contribution is the fact that there is no need for task-specific
cost-features, the cost is obtained directly from demonstrations. This is an improvement over prior IOC and IRL methods
which often use predefined features in a linear cost-model.

Every GPS method mentioned up to now has made use of iLQG to optimize local linear time-varying Gaussian
controllers to act as sub-policies. However, there is no reason no other trajectory optimization methods can be used in
case they are a better fit to the task. In [21], a model-free method based on path integral stochastic optimal control, called
PI2, is used in the MD-GPS method to learn only the feedforward parameters of linear Gaussian controllers (feedback
and covariance parameters are initialized by human demonstrations and kept constant during training). It is shown that
this method is better suited to discontinuous dynamics than iLQG. Also, it is shown that by using on-policy sampling a
new task-instance can be used at each iteration, improving generalization performance. The authors recognize that
sampling a freshly initialized artificial neural network (ANN) policy on a real physical system can be dangerous, which
is why in the beginning of the training procedure off-policy sampling is used instead.

In [22], a major assumption of prior GPS algorithms is relaxed; the ability to reset the agent to a specified set
of initial states each episode. The new algorithm builds on MD-GPS and extends the method to allow for stochastic
initial states, which increases the ability to generalize to unseen parts of the state-space. The method is similar to the
previously mentioned PI2-based MD-GPS approach, since both use on-policy sampling to remove the need for consistent
initial states across episodes. However, in this work iLQG is used and therefore an explicit dynamics model is needed.
Dynamics are identified online using a linear Gaussian model assumption, using the method outlined in [17]. To reduce
computational cost, on-policy trajectories are assigned to clusters; each cluster owns one fitted dynamics model and
linearized version of the global policy, which are used in the MD-GPS algorithm. It is shown the new method performs
better than prior GPS methods in learning speed and generalization to unseen task instances.

Most GPS algorithms use iLQG for model-based trajectory optimization, with the exception of the model-free
PI2-based approach presented in [21]. A hybrid method is proposed in [23], which combines iLQG-FLM and PI2 to
perform trajectory optimization under unknown dynamics; PI2-iterative linear quadratic regulator (iLQR) (PILQR).
The hybrid method uses the model-based iLQG∗ approach to optimize a modeled cost, while the difference between
this approximation and the encountered sample-based cost is optimized by the model-free PI2-based approach. The
combination provides the speed of model-based methods and the flexibility of model-free methods in instances where
the model assumptions are violated. The hybrid method is combined with MD-GPS to learn high-dimensional policies.
Performance is compared to prior methods on several tasks which suffer from discontinuous dynamics which are hard to
handle using iLQG-FLM alone. Results show the hybrid method reliably outperforms purely model-based methods in
such tasks.

In prior GPS methods, generalization and robustness to unseen states is entirely obtained by relying on the
generalization capacity of the global policy (usually an ANN) trained on a set of training trajectories. In [24], Ennen
et al. state that prior GPS methods lack robustness when encountering states outside of their training set. To solve
this issue, the authors propose a new method which combines MD-GPS with generative motor reflexess (GMRs),
which provide stabilizing behavior even outside the set of training trajectories. In contrast with prior GPS methods, the
global policy is not given by a ANN which generates actions directly from the state; actions are generated by GMRs
with parameters determined by a ANN. First, a latent representation of the state-space is learned using a variational
autoencoder (VAE), this provides robustness as it is able to generalize over multiple states. Secondly, a ANN is used
to transform the latent space vector into parameters of the GMR. The GMR, which is actually a TVLG controller,
outputs an action conditioned on its parameters and the uncompressed state. The complete global policy is therefore the
combination of the VAE, ANN, and the GMR, and can be straightforwardly implemented into the MD-GPS method.
Results show that the proposed method outperforms standard MD-GPS by standards of variance and robustness to
unseen states and state disturbances.

∗Although the name indicates otherwise, the actual method used is indeed iLQG and not iLQR. The difference being that the former explicitly
assumes Gaussian noise, while the latter is derived by assuming deterministic actions. Both methods lead to the same equations to obtain the optimal
sub-policy. In the relevant literature the terms are used almost interchangeably.

5

B. Algorithm
This section will explain the workings of the MD-GPS algorithm. The complete algorithm is shown in algorithm 1,

and consists of 6 steps, which will be treated one by one. Additionally, a stylized graphical explanation of the algorithm
is presented in fig. 1, which illustrates every step except for the last.

Algorithm 1 Mirror descent GPS (MD-GPS): unknown dynamics, nonlinear global policy[14].
0: for : = 1 to do
1: Generate samples D8 = {38, 9 } by running either ?8 (u |x) or c\,8 (u |o)
2: Fit linear-Gaussian dynamics ?8 (xC+1 |xC , uC) using samples in D8
3: Fit linearized global policy c̄\,8 (u |o) using samples in D8
4: C-step: ?8 ← arg min?8 E?8 (g)

[
ℓ(3)] such that � ! (?8 (3) | | c̄\,8 (3)) ≤ n

5: S-step: c\ ← arg min)
∑
C ,8, 9 � ! (c\,8 (uC |xC ,8, 9) | | ?8 (uC |xC ,8, 9)) via supervised learning

6: Adapt n
7: end for

Fig. 1 Stylized representation of the MD-GPS algorithm, corresponding to algorithm 1. Trajectories sampled
on the real system have a solid outline, Gaussian approximations are dashed and are ellipse-shaped. The light
red area represents the constraint manifold of the global policy parameterizationΠΘ. Distances in this space can
be roughly interpreted as a KL-divergence, as it is a measure of difference between two probability distributions.

Step 1: Sample trajectories
The first step is to sample trajectories on the real system, using either the sub-policies or global policy, of the

previous iteration. By using multiple different, but consistent, initial states x0,8 ∼ ?(x0), generalization is improved[14].
The 8Cℎ initial state will be the starting point of a trajectory distribution from which multiple trajectories are sampled:
3 98 for 9 = [1, 2, 3, · · ·], stored in set D8 . Depending on whether trajectories are sampled by sub-policies or the
global policy, the distribution is ?8 (3) or c\,8 (3), respectively. In fig. 1 the sampled trajectories presented as the oddly
shaped dark-red area.

Step 2: Approximate dynamics
A TVLG model of the local dynamics around the nominal trajectory is estimated at each iteration. In fig. 1

this is denoted by the green dashed ellipse that roughly covers the sampled trajectories. Since the model is a linear
approximation, the iLQG objective includes a term that penalizes distance from the nominal trajectory; the KL-divergence
upper bound n in eq. (2). Dynamics are approximated around each set of trajectories D8 separately, which have been
sampled in the previous step. The dynamics models take the form of TVLGs:

?8 (xC+1 |xC , uC) = N(f GCxC + f DCuC + f 2C , LC) (1)

6

Matrices f GC , f DC , f 2C , and LC will be estimated by fitting Gaussian distributions to the state transitions (x8, 9C , u8, 9C , x8, 9C+1)
at every time step, using multiple samples of the trajectory distribution: 3 98 ∈ D8 , and then conditioning the distributions
on (x8, 9C , u8, 9C) to obtain ?8 (xC+1 |xC , uC).

This approach amounts to linear regression, which requires at least #G (#G + #D + 1) = 13 · (13 + 4 + 1) = 234
samples, which is prohibitively expensive. To combat this issue, a global model is fitted alongside the local dynamics,
which will act as a prior and reduce the number of samples needed. A normal-inverse-Wishart distribution is used to
combine the prior with new information.

Step 3: Linearize global policy
The objective optimized during the C-step, see line 4 of algorithm 1, includes a KL-divergence constraint of the

sub-policies w.r.t. the global policy. This leads to a surrogate cost function for the iLQG trajectory optimization in the
next step, as presented in eq. (10). Needed for the surrogate cost is the logarithm of the action distribution, induced by
the global policy log c\,8 (uC |xC), which will be approximated by its second order Taylor expansion. In the case of highly
nonlinear global policies, this approximation can be quite jagged during the beginning of the learning procedure[15],
and prevent convergence[16]. To combat this, a TVLG approximation of the global policy, denoted c̄\,8 , will be fitted
for each sub-policy, in exactly the same way as for the dynamics as explained in section II.B. In fig. 1 this linearization
is denoted by the green dashed ellipse, which roughly covers the sampled trajectories.

Step 4: C-step
At this point the trajectories have been sampled, the dynamics fitted, and the global policy approximated, the next

step is the optimization of the TVLG sub-policies using the iLQG algorithm from [25]; the C-step. This iterative process
is denoted in fig. 1 by the blue dashed ellipses. The objective of this optimization is shown on line 4 of algorithm 1 and
will be repeated here for convenience:

?8 ← arg min
?8

E?8 (g)
[
ℓ(3)] s.t. � ! (?8 (3) | | c̄\,8 (3)) ≤ n (2)

The objective is to minimize the expectation of some cost function over a distribution of finite trajectories induced
by a sub-policy and corresponding initial state:

min
?8

E?8 (g)
[
ℓ(3)] , where ℓ(3) =

) −1∑
C=0

ℓ(xC , uC), and where ℓ(xC , uC) = 2(xC , uC) (3)

In [26], iLQG is explained as follows: given a nominal trajectory:

3̄ =
({x̄0, ū0}, {x̄1, ū1}, · · · , {x̄) −1, ū) −1}

)
(4)

define deviations as: x̂C = xC − x̄C , and ûC = uC − ūC . The deviation’s dynamics and cost function are approximated
as follows:

x̃C+1 = f 2C +
[
f GC
f DC

]) [
x̂C

ûC

]
ℓ̃(x̂C , ûC) = ℓ̄ +

[
ℓGC

ℓDC

]) [
x̂C

ûC

]
+ 1

2

[
ℓGGC ℓGDC

ℓDGC ℓDDC

]
(5)

Where subscripts w.r.t. x and u denote Jacobians and Hessians, which can be obtained in multiple ways; finite
differences, automatic differentiation, or analytical methods. It has already been explained how the dynamics are
approximated in section II.B. Using the method explained there, the terms f 2C , f GC , and f DC are obtained. As for the
cost approximation, it is obtained using finite differences.

The state- and action-value functions are approximated up to second order and are defined :

&(x̂, û) = &̄ +
[
WG
WD

]) [
x̂

û

]
+ 1

2

[
x̂

û

]) [
WGG WGD
WDG WDD

] [
x̂

û

]
+ (x̂) = +̄ + \)G x̂ +

1
2
x̂)\GG x̂ (6)

By starting at the final state and iterating backwards through time, each component of the state- and action-value
functions is computed:

WGGC = ℓGGC + f)GC\GGC+1 f GC
WDDC = ℓDDC + f)DC\GGC+1 f DC
WDGC = ℓDGC + f)DC\GGC+1 f GC

WGC = ℓGC + f)GC\GC+1
WDC = ℓDC + f)DC\GC+1

\GC = WGC − W)DGCW−1
DDCWD

\GGC = WGGC − W)DGCW−1
DDCWDG

(7)

7

When optimizing the objective shown in eq. (3), the locally optimal sub-policy can then be described by the following
time-varying linear controller:

6(xC) = ūC + QC (xC − x̄C) + kC QC = −W−1
DDCWDGC kC = −W−1

DDCWDC (8)

However, the C-step optimizes a slightly different objective from eq. (3); it includes a KL-divergence constraint as
in eq. (2). It turns out this objective can be optimized using iLQG as well. To this end, the constrained problem is
transformed to its Lagrangian:

L(?8 , [) = E?8 (g)
[
ℓ(3)] + [(� ! (?8 (3) | | c̄\8 (3)) − n)

=
) −1∑
C=0

E?8 (GC ,DC)
[
ℓ(xC , uC) − [log c̄\8 (uC |xC)

] − [H(?(uC |xC)) − [n (9)

Where the second line follows from the assumption of conditional Gaussian policies, identical TVLG dynamics, and
identical initial states, as in [14, 17]. This Lagrangian can be optimized by changing the cost function to the following:

ℓ(xC , uC) = 1
[
2(xC , uC) − log c̄\8 (uC |xC) (10)

The deterministic sub-policy in eq. (8) is adapted to be a TVLG. The optimal sub-policy becomes a TVLG controller,
which stabilizes the state around the nominal trajectory:

IC ,8 = −W−1
DDC ?8 (uC |xC) = N(ūC ,8 + QC ,8 (xC − x̄C ,8) + kC ,8 ,IC ,8) (11)

This way iLQG optimizes the following objective:

?8 = arg min
?8

E?8 (GC ,DC)
[
ℓ(xC , uC)

] −H(?8 (uC |xC)) (12)

The Lagrangian is optimized using DGD, iteratively optimizing ?8 using iLQG and incrementing the dual variable
[. Since the dual function is convex and there is only one dual variable, a bracketed quadratic-fit line-search method can
efficiently find the optimum[14]. To update [, the constraint violation is estimated, which requires the KL-divergence
over trajectories in eq. (2). In the case of identical initial states and dynamics, as well as conditional Gaussian policies,
the divergence reduces to an operation over the Gaussian policies directly[14, 17], and the KL-divergence is calculated
efficiently.

As shown in eq. (11) and eq. (11), the optimal sub-policy depends on the inverse of &DDC , which is the Hessian of
the action-value function w.r.t. the input. Care must therefore be taken to ensure this matrix is invertible, which is done
by increasing the dual variable [until &DDC becomes positive definite for all C.

To conclude the explanation of the C-step, its pseudocode is presented in algorithm 2, explaining every step of this
sub-routine.

Step 5: S-step
The final step of a MD-GPS iteration is the S- or supervised step, its goal is to optimize the global policy by

minimizing the KL-divergence between the trajectory distributions induced by itself and the sub-policies. This step
amounts to an approximate projection of the sub-policies onto the constraint manifold formed by the global-policy
parameterization, and is denoted in fig. 1 by the dashed red blob.

By again assuming identical TVLG dynamics, conditional Gaussian policies, and identical initial states, the
KL-divergence over trajectories reduces to a divergence over the action distributions of the policies[14, 17]:

c\ ← arg min
)

∑
C ,8, 9

� ! (c\,8 (uC |xC ,8, 9) | | ?8 (uC |xC ,8, 9)) (13)

This step amounts to an approximate projection of the sub-policies on the constraint manifold induced by the
parameterization of the global policy. As explained previously in eq. (11), if the global-policy is chosen to be a
(nonlinear) conditional Gaussian in the form of:

c\ (uC |oC) = N(`c (oC),Σc (oC)) (14)

8

Algorithm 2 C-step pseudocode for the 8Cℎ sub-policy.
Require:
1: • Initial sub-policy ?8 (u |x)

• A set of trajectories D8 sampled by either ?8 (u |x) or c\,8 (u |o)
• A TVLG model of system dynamics, approximated around D8; ?8 (xC+1 |xC , uC)
• A TVLG model of the global policy, approximated around D8; c̄\,8 (u |x)
• A KL-divergence step size n , obtained from eq. (17)

2: Initialize [← [0
3: while not converged do
4: Set ℓ(x, u) according to eq. (10)
5: Approximate ℓ(x, u) as in eq. (5)
6: while not converged do
7: iLQG backward pass to determine V- and Q-function components as in eq. (7), and local optimal sub-policy as

in eq. (11)
8: Use new sub-policy and the TVLG dynamics model to obtain new open-loop trajectory
9: end while
10: Update [using a bracketed quadratic-fit line-search
11: end while
12: return Sub-policy optimized as in eq. (2)

where `c and Σc are arbitrary functions (e.g. ANNs) that determine the mean and covariance of the Gaussian
distribution, then, in combination with the TVLG sub-policies, there is an elegant equation for the KL-divergence in
eq. (13), in terms of the means and covariances of the distributions:

∑
C ,8, 9

� ! (c\ (uC |xC) | | ?8 (uC |xC)) = · · ·

∑
C ,8, 9

E?8 (xC ,oC)
[covariance terms︷ ︸︸ ︷

Tr[I−1
C8 Σ

c (oC)] − log|Σc (oC) | +
(
`c (oC) − `?C8 (xC)

))
I−1
C8

(
`c (oC) − `?C8 (xC)

)
︸ ︷︷ ︸

mean terms

]
(15)

Where `?C8 (xC) and IC8 are the mean and covariance matrix of the 8Cℎ sub-policy, at time step C (see eq. (11)).

Step 6: Adapt n
The parameter n in eq. (2) places a constraint on the maximum difference between the trajectory distributions of the

sub-policy and the previous global policy (linearized around sampled trajectories).
To ensure fast convergence, the constraint is adapted online using one of two update rules, both based on differences

in expected- and measured cost:

ℓ:< =
) −1∑
C=0

E?: (GC ,DC)
[
ℓ(xC , uC)

]
ℓ:, c< =

) −1∑
C=0

E c̄:
\ (GC ,DC)

[
ℓ(xC , uC)

]
(16)

Where ?: (xC , uC) and c̄:\ (xC , uC) are the marginals of the local policy and linearized global policy at iteration : ,
respectively, when subject to dynamics fitted at iteration <. Since the sub-policy, global policy, and dynamics model are
all linear Gaussians, the expectations in eq. (16) can be efficiently calculated by propagating the Gaussian distributions
forward in time[14].

The adaptation heuristics takes into account both the inaccuracies in the dynamics model and the inability of the
global-policy to reproduce sub-policy trajectories:

n ′ =
n

2
ℓ::−1 − ℓ:−1, c

:−1

ℓ:−1
: − ℓ:, c:

(17)

9

III. Methods

This chapter describes the methods used during the experiments that have been conducted. First, a general outline
of the conducted experiments is given in section III.A, followed by an explanation of the training structure used in

this work (section III.B). In section III.C, the methods which are used in demonstration-based sub-policy initialization
are explained, followed by a short section on the methods used to generate example trajectories in section III.D. In
section III.E, the global-policy parameterization that is used in this work is presented, followed by a short section on the
quadcopter model and controller in section III.F.

A. General experiment outline
In this work, the effect of expert demonstrations on the sample-efficiency of MD-GPS is investigated. To this end,

experiments are conducted on a simulated quadcopter system. To reduce the effect of randomness, each experiment is
run a total of 5 times, with different but consistent seeds. The experiments use 4 initial-conditions, which depend only
on the random seed. Each run has 50 training iterations, 80 time steps, and a sampling time of 3 × 10−2 s. The cost
function that is used is the mean of the square of the difference between actual- and target-position. A more thorough
list of the default parameter settings used in this work is presented in section III.G.

A list of the different experiments is presented below:
• E1: High-quality demonstrations: This experiment initializes the sub-policies using high-quality demonstrations.
• E2: Random initialization: This experiment initializes the sub-policies randomly.
• E3: 0.25 m target-offset: This experiment initializes the sub-policies using the high-quality demonstrations, but
the target during demonstrations has been off-set by 0.25 m.

• E4: 1.0 m target-offset: This experiment initializes the sub-policies using the high-quality demonstrations, but
the target during demonstrations has been off-set by 1.0 m.

• E5: Squiggly with 7.5 input-noise variance: To generate the demonstrations with which the sub-policies are
initialized, input-noise is added to the actions chosen by the nonlinear quaternion-based controller. This results in
demonstrations that stochastically move around the nominal trajectory.

• E6: Squiggly with 15.0 input-noise variance: This experiment is the same as the above, but with an input-noise
variance of 15.0.

• E7: No global-policy pre-training - default: This experiment uses the default settings, but without global-policy
pre-training.

• E8: With global-policy pre-training - default: This experiment is equal to E1
• E9: No global-policy pre-training - delayed: This experiment uses no global-policy pre-training. Furthermore,
the first 9 iterations sub-policies are constrained w.r.t. the previous sub-policies (up from 4) and the global-policy
is used to sample from iteration 20 onward (up from 10).

• E10: With global-policy pre-training - delayed: Same as the above, but with global-policy pre-training.
• E11: No global-policy pre-training - vanilla MD-GPS: This experiment has no global-policy pre-training.
Additionally, it does not have any iterations at which the optimization of the sub-policies is constrained w.r.t. the
previous ones and the global-policy is used to sample from iteration 1 onward.

• E12: With global-policy pre-training - vanillaMD-GPS: Same as the above, but with global-policy pre-training.

B. Training structure
In MD-GPS, the global-policy is both used to sample trajectories, and constrain the trajectory optimization. However,

due to the unstable nature of the quadcopter system, no stability guarantees provided by neural networks, and the fact
that iLQG-FLM does not provide any way to robustly restore itself back to a previous solution, a global-policy with
poor performance can completely derail the training process. In the case of sufficiently complex or unstable system
dynamics, the algorithm might get stuck in a local-optimum, this has also been observed in [12] and Levine and Koltun
advise to initialize sub-policies using demonstrations. In general, a poor global-policy can affect training either by
being used to sample trajectories, or by being involved in the KL-divergence constraint. Therefore, it is vital that the
global-policy generates stable trajectories before it is involved in those ways.

To this end, the training process can be structured in a certain way. Where structure refers to the choices made
concerning the exact training iterations during which the following actions are undertaken:

• Constrain trajectory optimization w.r.t. previous sub-policies or global-policy?
• Sample trajectories using sub-policies or global-policy?
• At what iteration to start supervised learning of the global-policy?

10

An additional choice is whether to pre-train the global-policy using demonstrations, or not.
It is expected that the best way of structuring training is to begin by both sampling using- and constraining w.r.t.

sub-policies, moving to constraining sub-policies w.r.t. the global-policy when it has been trained for a number of
iterations, while finally moving to using the global-policy for sampling. Supervised learning of the global-policy should
take place only when the sub-policies already show good behavior. By using demonstrations to initialize the sub-policies,
supervised training could start at the first iteration. Also, using demonstrations to pre-train the global-policy would be
expected to reduce the training iterations needed to get the global-policy to generate stable trajectories and be useful to
sample from.

The default training structure is to pre-train the global-plicy, start supervised-learning of the global-policy at the first
training iteration, constrain the trajectory optimization w.r.t. the previous sub-policies until the 5Cℎ iteration, and start
using the global-policy to sample trajectories on the 10Cℎ training iteration. This structure is used in experiments E1,
E2, E3, E4, E5, E6, E7 (without global-policy pre-training), and E8. Experiments E9 and E10 keep constraining the
trajectory optimization w.r.t. the previous sub-policies until the 10Cℎ iteration, and delay the use of the global-policy to
sample trajectories until iteration 20. Finally, experiments E11 and E12 use the global-policy to sample trajectories and
constrain the trajectory optimization for the entire training process.

C. Demonstration-based sub-policies
This section explains how demonstration policies can be transformed into TVLG sub-policies, to be used as the

starting point of the iLQG-FLM trajectory optimization. In this work, the focus will be on demonstration trajectories
generated by a nonlinear quaternion-based controller inspired by [27].

Irrespective of the initial form of the demonstrations (trajectories, a controller, etc), to be used in the iLQG-FLM
algorithm, they need to be in the form of a TVLG sub-policy, which can be parameterized as follows:

?8 (uC |xC) = N(ūC ,8 + QC ,8 (xC − x̄C ,8),IC ,8) (18)

= N(QC ,8xC + k̂C ,8 ,IC ,8) (19)

Where 8 denotes the initial-condition and C the time step.
To create a TVLG sub-policy from the demonstration trajectories, parameters that determine the mean need to be

estimated. Since the mean is a linear function of the state, this means the demonstration controller must be linearized.
However, the linearization must take place along the trajectory that results when an agent follows the demonstration
policy while interacting with the quadcopter simulation. This trajectory is obtained by simply initializing the agent at the
initial-conditions and using the demonstration policy as a controller in a feedback-loop with the quadcopter simulation.
The result is a trajectory with (ūC ,8 , x̄C ,8) tuples, such as in eq. (18).

The gain matrix in eq. (18) is simply the jacobian of the controller w.r.t. the state, which can be obtained in multiple
ways: analytical-, numerical-, or automatic differentiation. However, in this work the choice was made to go with
a fourth method: linear regression. To this end, multiple demonstration trajectories are needed that are close to the
nominal trajectory. These are generated by injecting input noise in the feedback system, while storing the unmodified
outputs of the controller alongside the encountered states. The additive input noise results in stochastic state-action
trajectories that stay within a certain distance of the nominal trajectory, depending on the variance of the noise.

At every time step a total of 56 ((#G + 1) · #D = (13 + 1) · 4 = 56) parameters need to be estimated. Using simple
linear regression, this would require a bare minimum of 56 trajectory samples per initial-condition. However, using
Tikhonov regularization with a _ value of 1 × 10−6, this number can be greatly reduced. The choice has been made
to use a quite large number of 40 demonstration trajectories per initial-condition, since this improves the estimates
and generating trajectories in simulation is quite fast. It is expected that this number could be reduced in a real-world
application, with little loss in estimation quality.

Although the parameters that define the means of the TVLG sub-policies are estimated, the covariance matrices are
initialized manually and are based on prior experimentation. Higher variance promotes exploration and can improve
convergence rates, but it can also lead the agent outside of the stable region of the sub-policy. So care is taken to balance
exploration with stability. Prior experiments indicate deviations of initial sub-policy trajectories w.r.t. their nominal
trajectory increase with time. To counter this effect and equalize exploration over the initial sub-policy trajectory, the
initial variance is scaled at each time step according to the following equation:

f̂2
C =

f2

4 (−:) X
: = 1, 2, · · · ,

X = 3f/(− 1)
(20)

11

During the experiments there are three types of demonstration-based sub-policies, these are defined as follows:
• High-quality: This is the sub-policy that results from the nonlinear quaternion-based controller and is used as the
default option. It is used in experiment E1, E7, E8, E9, E10, E11, and E12.

• Random: These sub-policies are randomly initialized and are used in experiment E2.
• Target-offset: This is equal to the high-quality demonstration, but the target provided to the controller is offset
w.r.t. the real target with either 2.5 × 10−1 m or 1.0 m along each axis. This is used in experiment E3 and E4.

• Squiggly: This is equal to the high-quality demonstration, but input noise with variance 7.5 or 15.0 is added in
the feedback system to generate demonstration trajectories that stochastically move around the nominal trajectory
of the high-quality demonstration. This is used in experiment E5 and E6.

D. Generating pre-training examples
This section explains how pre-training examples are generated for both the dynamics- and global-policy pre-training,

starting with the former.
To effectively pre-train the dynamics priors and TVLG models, a dataset of varied state-action-state tuples is needed,

that are located around the nominal trajectory at the first iteration. To obtain this dataset the same process is used
as described in section III.C: a generating policy can be used as a controller in a feedback-loop with the quadcopter
simulation. To provide samples that are randomly spread around the nominal trajectory, input noise is added to the
system.

To obtain a global-policy pre-training dataset, the same tactic is used as for the dynamics pre-training data.
To pre-train the global-policy most effectively, a dataset is needed with state-action tuples around the nominal

trajectory that would be generated by the global-policy itself, which essentially amounts to solving the optimal control
problem and cannot be done off-line. Instead, global-policy pre-training state-action tuples are generated by querying
the policy-to-be-imitated (the imitation-policy) at states around the nominal trajectory generated by some generating
policy plus input noise in the same way as explained above for the dynamics pre-training examples. The supervised
learning method used to pre-train the global-policy is the same as the method used during normal training.

E. Global-policy parameterization
In this work, the global-policy is parameterized by a feedforward ANN. This choice is based on the relevant literature,

and the fact that ANNs are expressive function approximators. Since the observation consists of the full state of the
quadcopter, a simple, fully-connected, architecture is chosen, sporting an input layer of 13 neurons (one for each state
variable), two hidden layers of 200 and 100 neurons, respectively. The output layer naturally consists of 4 neurons,
equal to the length of the input vector. The activation functions are chosen to be exponential linear units (ELUs).

F. Quadcopter model and controller
The experiments in this work are conducted in simulation, using a quadcopter model with nonlinear dynamics,

using a quaternion to parameterize the attitude to prevent gimbal-lock. It is assumed the quadcopter can generate any
combination of moments and total thrust[27]. Therefore, propeller dynamics are ignored and the agent can directly
control the force and moments in the body frame. This also allows the simulation time step to be increased significantly
to 3 × 10−2 s, as the quadcopter body dynamics are much slower than its propellers. This leads to the following input
vector:

u =
[
� "1,G "1,H "1,I

])
(21)

The force and moments are clamped using the following maximum absolute values:

�<0G = 8.36 × 101 N "1,G,<0G = 1.88 × 101 N·m "1,H,<0G = 1.88 × 101 N·m "1,I,<0G = 3.20 N·m
(22)

Themass and inertia parameters of the quadcopter model are presented in section III.F. Note that the themass-moment
of inertia tensor has zero-valued off-diagonal entries.

The controller used to generate expert demonstrations is inspired by [27]; quaternion-based tilt-prioritized control.

G. Default parameters
In table 4 the default settings of the MD-GPS algorithm used in this work are described, which are used as a nominal

point during the experiments.

12

Parameter Description Value
< mass 4.68 × 10−1 kg
�GG principal mass-moment of inertia around body x-axis 4.856 × 10−3 kg·m2

�HH principal mass-moment of inertia around body y-axis 4.856 × 10−3 kg·m2

�II principal mass-moment of inertia around body z-axis 8.801 × 10−3 kg·m2

Table 2 Quadcopter model parameters, which have been copied from [28].

IV. Results and discussion

To investigate the sample efficiency, the cost-iteration curves are plotted in fig. 2, for both the demonstration-based-
and random sub-policy initialization. Sample efficiency can be defined as the amount of real-world samples are

needed to achieve some level of cost. As the amount of real world samples are equal for both curves, they can be
compared directly. From the plot it can be seen that the median cost-iteration curve of the random initialization lies
almost two order of magnitude above the demonstration-based curve. The demonstration-based cost improves most in
the first 10 iterations, after which improvements gradually taper off and seem to converge around the 20Cℎ iteration.
The random initialization cost shows a steep decrease in the first five iterations, but then bounces back up and starts to
decrease very slowly over the next 45 iterations. However, the slope is so small that it would take an unpractical amount
of samples for the random-initialization to obtain the cost-level of the demonstration-based method.

10 20 30 40iteration
10 1

100

101

102

co
st

Cost vs iteration

E1
E2

Fig. 2 A plot of the cost versus training iteration curves, for demonstration-based- (E1) and random
initialization E2). The plots show a thick line, which signifies the median, and a shaded area which signifies the
68.27% confidence interval. Take note of the log-scale on the y-axis.

To investigate the stability of the agents, the percentage of trajectories that were unstable have been recorded and
plotted in the bar-plot presented in fig. 3. The demonstration-based initialization has lead to zero unstable trajectories
during training, while random initialization starts out on the first iteration with almost 100 % of its trajectories being
unstable, which is reduced steadily during training to a value of 75 %.

13

Parameter Value
Number of seeds 5
Number of training iterations 50
Number of initial-conditions 4
Number of trajectory samples 5
Number of time steps 80
Time step 3 × 10−2 s
Iteration at which to start supervised learning 1
Iterations at which to constrain trajectory-optimization w.r.t. sub-policies 1-4
Iterations at which to sample using sub-policies 1 - 9

Target-position
[
0 0 0

])
Initial sub-policy variance 1 × 10−2

Initial sub-policy variance discount 1.0
Initial KL-divergence step size 1 × 10−1

KL-divergence adaptation factor 1.33
Perform dynamics pre-training? TRUE

Pre-training example gathering policy High-quality demonstration

Number of dynamics pre-training samples 30
Dynamics prior GMM maximum clusters 1000
Dynamics prior GMM minimum samples per cluster 20
Dynamics prior GMM maximum trajectory storage 10
Perform global-policy pre-training? TRUE

Global-policy pre-training example gathering policy High-quality demonstration

Global-policy pre-training imitation policy High-quality demonstration

Global-policy pre-training samples 30
Global-policy prior GMM maximum clusters 1000
Global-policy prior GMM minimum samples per cluster 20
Global-policy prior GMM maximum trajectory storage 10

Table 4 Default parameters of the MD-GPS algorithm used in this work.

0 10 20 30 40 50
iteration

0

20

40

60

80

100

un
st

ab
le

 tr
aj

ec
to

rie
s [

%
] Unstable trajectories vs iteration

E1
E2

Fig. 3 A bar-plot showing the percentage of sampled trajectories that is "unstable", comparing demonstration-
based- (E1) and random initialization (E2). A trajectory is unstable if at any time step the distance to the target
is larger than 6 m.

14

To investigate the difference in the types of trajectories during both experiments, the target-distance is plotted versus
time in fig. 4. This gives an indication of the difference in behavior of the agents during the training process. As can
be seen, the demonstration-based initialization starts out at the first iteration with trajectories that are already quite
performant; target-distance decreases quickly up to 1.5 s and then levels off. At the 15Cℎ iteration the target-distance
curve has slightly improved by reducing the time needed to reach a distance of 1 m and converging to a lower final value.
At the 49Cℎ iteration these aspects have been improved slightly more. In contrast, the random initialization leads to
trajectories that almost immediately diverge from the target. During training the improvements seem to lie in the fact
that the agent stays closer to its initial target-distance for longer, before diverging.

0.0 0.5 1.0 1.5 2.0
time [s]

10 2

10 1

100

101

ta
rg

et
-d

ist
an

ce
 [m

]

iteration #1

E1
E2

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #15

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #49
Target-distance vs time

Fig. 4 Three plots of target-distance versus time plots at different iterations, that compare demonstration-
based- (E1) with random initialization (E2). The plots show a thick line, which signifies the median, and a
shaded area which signifies the 68.27% confidence interval. Take note of the log-scale on the y-axis.

MD-GPS with demonstration-based initialization needs much fewer iterations to converge and obtains much lower
cost than with random-initialization, even when given 50 iterations. Furthermore, the agents behave qualitatively
different, demonstration-based initialization leading to stable-controller-like behavior, while random initialization leads
to policies that diverge from the target and fail to converge.

To investigate the robustness of MD-GPS to sub-policy initialization with sub-optimal demonstrations, the cost-
iteration curves for two different kinds and degrees of demonstration sub-optimality; target-offset and squiggly (explained
in section III.C), are presented in fig. 5.

The curves that are the result of initializing the sub-policies using high-quality demonstrations will be used as
a control during this analysis. As can be seen in fig. 5a, when initialized with a 0.25 m target offset the median
cost-iteration curve starts out at a significantly higher cost than the control, but it quickly decreases and even overtakes it
at iteration 15, converging to a slightly lower value. Cost variance is comparable to the control over the entire training
process. When the target-offset is 1.00 m median cost improves quickly as well, but does not converge to the control
value. Additionally, cost-variance is much higher from iteration 5 onward, peaking between iteration 5 and 17 to an
upper bound that exceeds the boundaries of the plot.

The cost-iteration curves resulting from sub-policy initialization with squiggly demonstrations are shown in fig. 5b,
using the high-quality demonstration curve as a control. As expected, initializing with squiggly demonstrations leads to
higher initial cost, but in both cases decreases quickly. However, in neither case the cost converges to the control value
within 50 iterations. Interestingly, the cost at the final iteration is almost equal for both values of input-noise variance.
As for the cost-variance, the 15.0 input-noise variance curve shows a spike at the 5Cℎ iteration, with seemingly increased
variance up to the 17Cℎ iteration.

To investigate the differences in the trajectories resulting from different sub-policy initializations, the target-distance
versus time curves are plotted. As can be seen in fig. 6, the 0.25 m and 1.00 m target-offset demonstrations lead to a
target-distance of 0.43 m and 1.73 m at the first iteration, respectively. This is to be expected since this is equal to

15

10 20 30 40
iteration

10 1

100

co
st

Cost vs iteration - Target-offset demonstration
E1
E3
E4

(a) Cost-iteration curves for high-quality- (E1), 0.25 m target-
offset- (E3), and 1.00 m target-offset demonstrations (E4).

10 20 30 40
iteration

10 1

100

co
st

Cost vs iteration - Squiggly demonstration
E1
E5
E6

(b) Cost-iteration curves for high-quality- (E1), and squiggly
demonstrations with an input-noise variance of both 7.5 (E5)
and 15.0 (E6).

Fig. 5 The plots show a thick line and shaded area, which signify the median and 68.27% confidence interval,
respectively. Take note of the log-scale on the y-axes.

‖d‖, where d is the target-offset vector. After 15 iterations, the target-distance curve when using 0.25 m target-offset
demonstrations has almost completely matched the high-quality demonstrations, a trend that continues into the 49Cℎ
iteration. The target-distance curve when using 1.00 m target-offset demonstrations improves much less, and converges
to an offset of 0.3 m at iteration 49.

0.0 0.5 1.0 1.5 2.0
time [s]

10 2

10 1

100

101

ta
rg

et
-d

ist
an

ce
 [m

]

iteration #1

E1
E3
E4

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #15

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #49
Target-distance vs time

Fig. 6 Three plots of target-distance versus time plots for high-quality- (E1), 0.25 m target-offset- (E3), and
1.00 m target-offset demonstrations (E4). The plots show a thick line, which signifies the median, and a shaded
area which signifies the 68.27% confidence interval. Take note of the log-scale on the y-axis.

The target-distance curves for the squiggly demonstrations can be seen in fig. 7. For both an input-noise variance
of 7.5 and 15.0, the target-distance curves improve during the training process. However, the performance of neither
matches the high-quality demonstrations, even at iteration 49. Interestingly, the target-distance curves at iteration 49 are
of very similar performance.

16

0.0 0.5 1.0 1.5 2.0
time [s]

10 2

10 1

100

101

ta
rg

et
-d

ist
an

ce
 [m

]
iteration #1

E1
E5
E6

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #15

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #49
Target-distance vs time

Fig. 7 Target-distance versus time plots for high-quality- (E1), and squiggly demonstrations with an input-noise
variance of both 7.5 (E5) and 15.0 (E6). The plots show a thick line, which signifies the median, and a shaded
area which signifies the 68.27% confidence interval. Take note of the log-scale on the y-axis.

As noted before, the variance of the cost spikes for both the 1.00 m target-offset and 15.0 input-noise variance
demonstrations. The reason for this is likely an increase in the number of unstable trajectories, which can be observed in
fig. 8. For these demonstrations with a higher degree of sub-optimality the number of unstable trajectories suddenly
increases around iteration 6. This is probably linked to the fact that at iteration 5 the switch is made from constraining
the trajectory optimization w.r.t. the previous sub-policy, to constraining w.r.t. the global-policy.

0 10 20 30 40 50iteration
0

20

40

60

80

100

un
st

ab
le

 tr
aj

ec
to

rie
s [

%
]

E4
E6

Unstable trajectories vs iteration

Fig. 8 A plot of the percentage of "unstable" trajectories, for both 1.00 m target-offset demonstrations (E4)
and squiggly demonstrations with input-noise variance of 15.0 (E6). A trajectory is unstable if at any time step
the distance to the target is larger than 6 m. For high-quality- (E1), 0.25 m target-offset- (E3), and squiggly
demonstrations with input-noise variance of 7.5 (E5), no trajectories were unstable.

From this analysis, it can be concluded that MD-GPS is moderately robust to being initialized using sub-optimal
demonstrations. The degree of sub-optimality seems dictates whether the solutions converge to the same cost, analogous
to the region-of-attraction in control theory. This can be observed in fig. 5, where the least sub-optimal demonstrations
lead to similar performance as high-quality demonstrations, while the 1.00 m target-offset does not. As for the squiggly
demonstrations, both degrees of sub-optimality converge to similar cost values, which are slightly above the cost for the
high-quality demonstrations.

To investigate the effect of different training structures on the sample-efficiency, the cost-iteration curves are plotted
in fig. 9. When using default settings, pre-training the global-policy has the effect of very slightly reducing cost between

17

the 5Cℎ and 10Cℎ iteration. However, after iteration 10 the two curves are practically identical. Regarding the delayed
settings, the pre-training has almost no discernible effect on the cost, except for the significant increase in cost-variance
when omitting pre-training. Finally, while pre-training leads to a rapid decrease in cost at the start of training when
using vanilla MD-GPS settings, the improvements stop around iteration 5 and cost starts to increase. In contrast, the
cost-iteration curve when performing no pre-training converges to a much lower cost, which is higher but comparable to
the level to which the default settings converge. However, both with- and without pre-training vanilla MD-GPS shows
increased cost-variance as compared to the default settings.

10 20 30 40
iteration

10 1

100

101

co
st

Cost vs iteration comparison
MD-GPS

E7 E8 E9 E10 E11 E12

Fig. 9 Cost-iteration curves, for experiment E7 (no global-policy pre-training, default), E8 (with global-policy
pre-training, default), E9 (no global-policy pre-training, delayed), E10 (with global-policy pre-training, delayed),
E11 (with global-policy pre-training, vanilla), and E12 (with global-policy pre-training, vanilla). The plot shows
thick lines, which signify the median, and shaded areas which signify the 68.27% confidence intervals. Take
note of the log-scale on the y-axis.

In fig. 10, target-distance versus time plots are shown for different training structures. As can be seen, median target-
distance curves of the default- and the delayed settings are comparable, both with- and without pre-training. However,
when omitting pre-training with the delayed settings the target-distance variance is significantly increased. Regarding
the vanilla MD-GPS settings, when omitting pre-training the target-distance curve diverges almost immediately, while
the use of pre-training causes the target-distance to decrease sharply before diverging as well. At the 15Cℎ iteration,
the target-distance curves both with and without pre-training have improved, decreasing until around 1.0 s and then
converging. However, the final target-distance is still much larger than for the default- and delayed-settings. At the
49Cℎ iteration, the vanilla MD-GPS without pre-training has almost converged to the same level as the default- and
delayed-settings, to a cost of 3.58 × 10−1. With pre-training and using the default structure, this cost is obtained
significantly earlier; at the eighth iteration. However, when utilizing global-policy pre-training with the vanilla MD-GPS
settings, the target-distance curve almost immediately diverges.

18

0.0 0.5 1.0 1.5 2.0
time [s]

10 2

10 1

100

101

ta
rg

et
-d

ist
an

ce
 [m

]
iteration #1

E7
E8
E9
E10
E11
E12

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #15

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #49
Target-distance vs time comparison - MD-GPS

Fig. 10 Three plots of target-distance versus time plots at different iterations, for experiment E7 (no global-
policy pre-training, default), E8 (with global-policy pre-training, default), E9 (no global-policy pre-training,
delayed), E10 (with global-policy pre-training, delayed), E11 (with global-policy pre-training, vanilla), and E12
(with global-policy pre-training, vanilla). The plots show a thick line, which signifies the median, and a shaded
area which signifies the 68.27% confidence interval. Take note of the log-scale on the y-axis.

In fig. 11, the percentage of unstable trajectories is shown for the experiments with differing training structures. As
can be seen, the default-settings do not lead to any unstable trajectories, this is also true when utilizing pre-training with
the delayed-settings. Without pre-training, the delayed-settings lead to a percentage of unstable trajectories around 18%,
starting at the tenth iteration. This is probably linked to the fact that at the tenth iteration the trajectory-optimization
constraint is switched from using the previous sub-policy, to the global-policy. Without pre-training the global-policy
might still lead to unstable trajectories. When performing pre-training in combination with the vanilla MD-GPS settings,
the percentage of unstable trajectories starts out around 50% and decreases up to the twelfth iteration, followed by
a steady increase afterwards. Since vanilla MD-GPS does not use constraint switching, this cannot be explained as
such. Interestingly, while the percentage of unstable trajectories when foregoing pre-training with the vanilla MD-GPS
settings starts out around 90%, it steadily decreases over the next 15 iterations, converging to a value around 3%.

From this analysis, it can be concluded that pre-training of the global-policy can significantly improve the sample-
efficiency of MD-GPS, provided that both constraining the trajectory optimization w.r.t. the global-policy and using the
global-policy to sample trajectories is delayed as in E8 and E10. This leads to significantly higher rates of convergence
and lower rates of unstable trajectories. Of these experiments, E10 converges to a slightly lower cost, but takes a bit
longer to converge. Without these delays, pre-training the global-policy leads to instability issues from which the
algorithm cannot recover. Compared to E11, which eventually converges to a low cost of 3.58 × 10−1, E8 and E10 are
significantly more sample-efficient, requiring only 8 and 13 iterations to achieve this level, respectively.

V. Conclusion

In this work, it is investigated how the sample-efficiency of MD-GPS can be further improved by making use of expert
demonstrations, by conducting experiments on a simulated quadcopter.
It is shown that by initializing the trajectory-optimization with demonstration-based sub-policies, both the initial- and

final cost are reduced significantly. As a matter of fact, with random sub-policy initialization the algorithm is not able to
find a policy that converges to the target-position at all and never even reaches the initial cost-value corresponding to

19

0 10 20 30 40 50iteration
0

20

40

60

80

100

un
st

ab
le

 tr
aj

ec
to

rie
s [

%
] E7 E8 E9 E10 E11 E12

Unstable trajectories vs iteration

Fig. 11 A bar-plot showing the percentage of sampled trajectories that is "unstable", for experiment E7
(no global-policy pre-training, default), E8 (with global-policy pre-training, default), E9 (no global-policy pre-
training, delayed), E10 (with global-policy pre-training, delayed), E11 (with global-policy pre-training, vanilla),
and E12 (with global-policy pre-training, vanilla). A trajectory is unstable if at any time step the distance to the
target is larger than 6 m.

demonstration-based sub-policy initialization. To find a controller that stabilizes the quadcopter system, it is necessary
to initialize the sub-policies using demonstrations. Also, it is shown that, for a small target-offset in the demonstrations
(0.25 m), the global-policy converges to a similar solution as when initialized by a high-quality demonstration. While,
for the tested noisy (squiggly) demonstration initialization, the resulting solution has slightly worse cost.

Results show that without any alterations and while omitting global-policy pre-training, MD-GPS converges to
a solution. However, by delaying the point at which the global-policy is used for the KL-divergence constraint to
the fifth iteration, and global-policy sampling to the tenth iteration, the final cost value is slightly lowered and the
sample-efficiency is greatly improved; using roughly six times fewer samples to obtain the final cost value achieved
when using MD-GPS without any alterations. Finally, performing pre-training while omitting the alterations, causes the
algorithm to diverge.

Summarizing, it is shown that by combining MD-GPS with demonstrations and making certain alterations in training
structure, sample-efficiency is improved significantly and robustly. This opens up the way for more applications in
UAV flight control. Reducing the need for samples allows a policy to be trained using real-world interactions, which
circumvents the issue of having to accurately model the system dynamics and the associated reality-gap.

References
[1] Sutton, R. S., Barto, A. G., and Williams, R. J., Reinforcement Learning Is Direct Adaptive Optimal Control, Vol. 12, 1992.

https://doi.org/10.1109/37.126844.

[2] Bagnell, J., and Schneider, J., “Autonomous Helicopter Control Using Reinforcement Learning Policy Search Methods,”
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Vol. 2, 2001, pp.
1615–1620. https://doi.org/10.1109/ROBOT.2001.932842.

[3] Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., and Liang, E., “Autonomous Inverted
Helicopter Flight via Reinforcement Earning,” Springer Tracts in Advanced Robotics, Vol. 21, 2006, pp. 363–372.
https://doi.org/10.1007/11552246_35.

[4] Waldock, A., Greatwood, C., Salama, F., and Richardson, T., Learning to Perform a Perched Landing on the Ground Using
Deep Reinforcement Learning, 2017. https://doi.org/10.1007/s10846-017-0696-1.

[5] Imanberdiyev, N., Fu, C., Kayacan, E., and Chen, I.-M., “Autonomous Navigation of UAV by Using Real-Time Model-Based
Reinforcement Learning,” 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Vol.
2016, 2016, pp. 1–6. https://doi.org/10.1109/ICARCV.2016.7838739.

[6] Ferrari, S., and Stengel, R. F., “Online Adaptive Critic Flight Control,” Journal of Guidance, Control, and Dynamics, Vol. 27,
No. 5, 2004, pp. 777–786. https://doi.org/10.2514/1.12597.

20

[7] Yu, Y., “Towards Sample Efficient Reinforcement Learning ∗,” International Joint Conference on Artificial Intelligence (ĲCAI),
2018, pp. 5739–5743.

[8] Spector, B., and Belongie, S., “Sample-Efficient Reinforcement Learning through Transfer and Architectural Priors,” , No. 3,
2018.

[9] Kadous, M., Sammut, C., and Sheh, R., “Autonomous Traversal of Rough Terrain Using Behavioural Cloning,” the 3rd
International Conference on Autonomous Robots and Agents, , No. June, 2006.

[10] Vakanski, A., Mantegh, I., Irish, A., and Janabi-Sharifi, F., “Trajectory Learning for Robot Programming by Demonstration
Using Hidden Markov Model and Dynamic Time Warping,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, Vol. 42, No. 4, 2012, pp. 1039–1052. https://doi.org/10.1109/TSMCB.2012.2185694.

[11] Choi, S., Kim, S., and Jin Kim, H., “Inverse Reinforcement Learning Control for Trajectory Tracking of a Multirotor UAV,”
International Journal of Control, Automation and Systems, Vol. 15, No. 4, 2017, pp. 1826–1834. https://doi.org/10.1007/s12555-
015-0483-3.

[12] Levine, S., and Koltun, V., “Guided Policy Search,” International Conference on Machine Learning, 2013, pp. 1–9.

[13] Levine, S., Finn, C., Darrell, T., and Abbeel, P., “End-to-End Training of Deep Visuomotor Policies,” arXiv:1504.00702 [cs],
2015.

[14] Montgomery, W., and Levine, S., “Guided Policy Search as Approximate Mirror Descent,” arXiv:1607.04614 [cs], 2016.

[15] Levine, S., and Koltun, V., “Variational Policy Search via Trajectory Optimization,” Advances in Neural Information Processing
Systems, 2013, pp. 207–215.

[16] Levine, S., and Koltun, V., “Learning Complex Neural Network Policies with Trajectory Optimization,” International Conference
on Machine Learning, 2014, pp. 829–837.

[17] Levine, S., and Abbeel, P., “Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics,” Advances
in Neural Information Processing Systems, 2014, pp. 1071–1079.

[18] Wang, H., and Banerjee, A., “Bregman Alternating Direction Method of Multipliers,” arXiv:1306.3203 [cs, math, stat], 2013.

[19] Zhang, T., Kahn, G., Levine, S., and Abbeel, P., “Learning Deep Control Policies for Autonomous Aerial Vehicles with
MPC-Guided Policy Search,” arXiv:1509.06791 [cs], 2015.

[20] Finn, C., Levine, S., and Abbeel, P., “Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization,”
International Conference on Machine Learning, 2016, pp. 49–58.

[21] Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S., and Levine, S., “Path Integral Guided Policy Search,”
arXiv:1610.00529 [cs], 2016.

[22] Montgomery, W., Ajay, A., Finn, C., Abbeel, P., and Levine, S., “Reset-Free Guided Policy Search: Efficient Deep Reinforcement
Learning with Stochastic Initial States,” arXiv:1610.01112 [cs], 2016.

[23] Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal, S., and Levine, S., “Combining Model-Based and Model-Free
Updates for Trajectory-Centric Reinforcement Learning,” arXiv:1703.03078 [cs], 2017.

[24] Ennen, P., Bresenitz, P., Vossen, R., and Hees, F., “Learning Robust Manipulation Skills with Guided Policy Search via
Generative Motor Reflexes,” arXiv:1809.05714 [cs], 2018.

[25] Todorov, E., and Weiwei Li, “A Generalized Iterative LQG Method for Locally-Optimal Feedback Control of Constrained
Nonlinear Stochastic Systems,” Proceedings of the 2005, American Control Conference, 2005., IEEE, Portland, OR, USA,
2005, pp. 300–306. https://doi.org/10.1109/ACC.2005.1469949.

[26] Han, W., Levine, S., and Abbeel, P., “Learning Compound Multi-Step Controllers under Unknown Dynamics,” 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE, Hamburg, Germany, 2015, pp. 6435–6442.
https://doi.org/10.1109/IROS.2015.7354297.

[27] Mueller, M. W., “Multicopter Attitude Control for Recovery from Large Disturbances,” arXiv:1802.09143 [cs], 2018.

[28] Luukkonen, T., “Modelling and Control of Quadcopter,” Independent research project in applied mathematics, Espoo, Vol. 22,
2011.

II

This part of the thesis report has already been graded for the course AE4020.

33

3
Reinforcement learning

This chapter will present a general explanation and exploration of the SOTA, regarding RL. First, the motivation
for RL as a research field is presented in section 3.1, followed by an explanation of multiple important concepts
in section 3.2, and finally an exploration of the SOTA in section 3.3.

3.1. Motivation
One of the quintessential problems in the world is how to act optimally, meaning; how to act in a way that
maximizes some performance criterion. This criterion can be anything; how to invest money in such a way
to optimize profit? What moves to play in a game of chess to ensure victory? How to improve social standing
in a group? But also; how to control a vehicle in such a way to optimize fuel efficiency, travel time, or safety.

Problems like these have been studied extensively throughout the years in fields like optimal control
theory, linear programming, and dynamic programming (DP). However, these approaches either require an
accurate model of the problem dynamics, or expert knowledge and design. These requirements impose a
significant burden; an accurate mathematical model of the problem may be unavailable and many problems
are too complex for humans to design optimal solutions. Additionally, nature shows these biases are unnecessary;
humans and animals can learn how to act near-optimally without external help.

Inspired by animal and human learning, RL aims to learn to act optimally by interacting with the environment
and receiving feedback in the form of reward. Over time, in a process of trial-and-error, the system learns
how to act in a way that optimizes the cumulative reward. One can think of a dog that receives a treat
when it fetches a stick or sits when told to do so; over time it will perform these actions on command as
it has learned that they are followed by a reward. Interestingly, animal brain structures have been found that
operate analogous to a RL approach called temporal difference (TD) learning[71].

3.2. Important concepts
This section explains multiple important concepts in the field of RL, starting with the framework in which it
operates, followed by an explanation of accumulated reward, value functions, state-value functions, dynamic-
programming, Monte-Carlo methods, temporal-difference methods, and finally approximate methods.

3.2.1. Framework
This section explains the mathematical framework through which we will view the RL problem, laying the
foundation for further analysis. This section relies heavily on the works of Sutton and Barto in [75].

Reinforcement learning can be seen as a sequential decision making process and can be cast in a finite
Markov decision process (MDP) framework. MDPs are a classical formalization of sequential decision making,
where actions influence not just immediate rewards, but also subsequent situations, or states, and through
those future rewards [75]. An MDP consists of two separate entities, the agent and environment, which
interact sequentially using three signals; state, action, and reward. These interactions occur in a fixed order;
the environment sends a state and scalar reward to the agent at time t , followed by the agent sending an
action to the environment1. The receiving of the action by the environment leads to a subsequent state and

1The concept of sending a state, reward, or action must not be taken literally, but rather be seen in a systems-context.

35

36

Figure 3.1: A graphical representation of the interactions in an MDP.[75]

reward at time t +1, starting the sequence anew. This process is graphically explained by fig. 3.1.
The three signals can be explained as follows:

• State
The state, denoted by S, describes the environment at each time step. An important assumption of
MDPs concerning the state is: the future is independent of the past given the present. This is known as
the Markov assumption and can be taken to mean the state must hold all relevant information about
the environment. This allows the entire environment to be described by only the present state, while
past states can be ignored.

• Action
An action, denoted by A, is a signal the agent sends to the environment based on the current state and
its policy, influencing the transition to the next state. The goal of RL algorithms is to find a way to pick
actions such that the accumulated reward is maximized.

• Reward
A reward, denoted by R, is a scalar valued signal the agent receives from the environment to indicate
whether the agent is performing optimally. Rewards are specified by the researcher and implicitly
define the task the agent is supposed to complete. Although not strictly a feature of the environment
in the usual sense, in this framework it is seen as such, since the agent should usually not be able to
change rewards and therefore the task it is burdened with. Also, the reward due to a certain action and
state at time t will be received one time step later, at time t +1. Both decisions follow the conventions
of [75].

The two interacting entities, agent and environment, are described as follows:

• Agent
The agent is the learner and decision maker [75] and governs the following variable and function:

– An action set A , which contains the actions available to the agent. This may be a function of the
state, since some actions may be unavailable in certain states.

– A policyπ, which maps states to probabilities over the action set. This defines the agent’s behavior
and is described mathematically as follows:

π(a|s) = Pr{At = a|St = s} (3.1)

The ultimate goal of RL algorithms is to find a policy that maximizes the accumulated reward.

• Environment
The environment is everything outside direct control of the agent, described by the following variables
and function:

– A state set S , which contains all possible states.

– A reward set R, which contains all rewards.

37

– Transition probabilities p, which give the probability of encountering subsequent states and rewards,
given the current state and action. This is described mathematically as follows[75]:

p(s′,r |s, a)
.= Pr{St = s′,Rt = r |St−1 = s, At−1 = a} (3.2)

The transition probabilities fully describe the dynamics of the environment, and implicitly the
task.

3.2.2. Accumulated reward
As mentioned before, informally, the goal of RL algorithms is to find a policy that maximizes the accumulated
reward. This is called the return, denoted by G , and is some function of future rewards. In the simplest case a
straightforward total sum of rewards may be used[75]:

Gt = Rt+1 +Rt+2 +Rt+3 +·· ·+RT

= Rt+1 +Gt+1
(3.3)

Note how the return can be written as a recursive relation, this is an important feature of RL algorithms
and DP.

To ensure the simple sum converges the sequence has to be finite, ending at some time T . This definition
of return therefore naturally lends itself to tasks with a well defined ending, called episodic tasks. These kinds
of tasks have states where the sequence ends, called terminal states. Natural examples of this are games, like
chess, tic-tac-toe, or soccer.

In contrast, tasks without a clear ending are called continuing tasks. These are tasks that last for so many
time steps it is no longer feasible to use eq. (3.3). Without a clear end, the final time step might be at T =∞,
risking a divergent sum. There exist many ways of handling the return of a task without a clearly defined
ending, usually involving some kind of weighting of the different elements of the reward sequence. Simple
exponential discounting of rewards is used the most, described by:

Gt = Rt+1 +γRt+2 +γ2Rt+3 +·· · =
∞∑

k=0
γk Rt+k+1, 0 ≤ γ≤ 1

= Rt+1 +γGt+1

(3.4)

The parameter γ is called the discount rate and controls to which extend the agent takes into account
more temporally distant rewards in a smooth way. It can be used to interpolate between a myopic agent,
which cares only aboute immediate reward (γ→ 0), and an agent which cares equally about immediate and
future reward (γ→ 1). The latter ends up being equal to the simple sum from eq. (3.3).

In general, the more far away in time an event will take place, the more uncertain it is. Discounting
rewards can therefore be thought of as a simplified way of representing the uncertainty about the future.
In practice the optimal value of γ depends on the problem, being a trade-off between going for the more
certain, but small, immediate reward, or the more uncertain, but large, long-term gain.

3.2.3. Value functions
As mentioned in section 3.2.2, RL algorithms try to optimize the return. To this end, information is gathered
by interacting with the environment regarding rewards. This information is often stored in so-called value
functions; functions which provide an estimate of the expected return. Since the value of a state depends
heavily on the policy which is followed, value functions are always defined w.r.t. a policy. Two types of value
functions exist, state-value function, which are a function of state only, and action-value functions, which are
a function of state and action as well.

3.2.4. State-value functions
The state-value function for policy π; vπ(s), is an estimate of the expected return when following policy π,
starting in state s. It is defined as follows:

vπ(s)
.= Eπ

[
Gt |St = s

]= Eπ
[
Rt+1 +γGt+1|St = s

]
, ∀s ∈S (3.5)

Note how the recursive relation of the return leads to a recursive state-value function, again, this is an
important property.

38

Using the policy and transition probabilities the expectation in eq. (3.5) can be written out explicitly:

vπ(s) =∑
a
π(a|s)

∑
s′

∑
r

p(s′,r |s, a)
[
r +γvπ(s′)

]
, ∀s ∈S (3.6)

The summations in this equation are implicitly over the action set in state s; A (s), the entire state set S ,
and reward set R.

3.2.5. Action-value functions
The action-value function for policy π; qπ(s, a), is an estimate of the expected return when, while in state s,
first taking action a and subsequently following policy π. This is formally defined as follows:

qπ(s, a)
.= Eπ

[
Gt |St = s, At = a

]= Eπ
[
Rt+1 +γGt+1|St = s, At = a

]
, ∀s ∈S ,∀a ∈A (s) (3.7)

Unsurprisingly, state- and action-values are closely related, since after the initial action a and transition
from s to s′, policy π is simply followed. The expected return of following policy π from a state is simply the
value function, leading to the following relation:

qπ(s, a)
.= Eπ

[
Gt |St = s, At = a

]
= Eπ

[
Rt+1 +γGt+1|St = s, At = a

]
= E

[
Rt+1 +γvπ(St+1)|St = s, At = a

]
, ∀s ∈S ,∀a ∈A (s)

(3.8)

Again, using the transition probabilities, the expectation in eq. (3.7) can be written out explicitly:

qπ(s, a) =∑
s′

∑
r

p(s′,r |s, a)
[
r +γvπ(s′)

]
, ∀s ∈S ,∀a ∈A (s) (3.9)

Note that the only difference, when comparing to eq. (3.6), is the summation over actions and weighting
by the policy has disappeared.

Optimality
Informally, the optimal policy is the one which acquires the largest return. More specifically, a policy is better
than or equal to another if the expected return from any state is greater than or equal[75]. This is formally
defined using value functions:

π≥π′ ⇐⇒ vπ(s) ≥ vπ′ (s) ∀s ∈S (3.10)

The optimal policy, π∗, is simply the policy of which the value function is greater than or equal to all
others:

π=π∗ ⇐⇒ vπ(s) ≥ vπ′ (s) ∀s ∈S ,∀π′ (3.11)

There is at least one optimal policy, but they all share the same optimal value function.
The optimal value function, v∗, is defined as follows:

v∗(s)
.= max

π
vπ(s), ∀s ∈S (3.12)

The intuition that the optimal policy should, at each state, chose the action with greatest expected return
leads to the Bellman optimality equations for the state-value function:

v∗(s) = max
a

Eπ∗
[
Gt |St = s, At = a

]
, ∀s ∈S

= max
a

Eπ∗
[
Rt+1 +γv∗(St+1)|St = s, At = a

]
, ∀s ∈S (3.13)

= max
a

∑
s′

∑
r

p(s′,r |s, a)
[
r +γv∗(s′)

]
, ∀s ∈S (3.14)

The optimal action-value function is defined as follows:

q∗(s, a)
.= max

π
qπ(s, a), ∀s ∈S ,∀a ∈A (s) (3.15)

It provides the expected return after, while in state s, choosing action a and subsequently following an
optimal policy. The Bellman equations for the action-values are as follows:

q∗(s, a) = E
[
Rt+1 +γmax

a′ q∗(St+1, a′)|St = s, At = a
]
, ∀s ∈S ,∀a ∈A (s) (3.16)

=∑
s′

∑
r

p(s′,r |s, a)
[
r +γmax

a′ q∗(s′, a′)
]
, ∀s ∈S ,∀a ∈A (s) (3.17)

39

3.2.6. Dynamic Programming
DP here refers to an umbrella term for methods that use perfect knowledge of the MDP’s transition probabilities
to iteratively find value functions and improve policies. Although this is almost never the case in practical RL
problems, the general ideas and methods still are useful to understand as most RL algorithms can be traced
back to them.

DP uses a process called generalized policy iteration (GPI) to iteratively estimate value functions and
improve policies. Generalized policy iteration consists of two separate processes which are applied sequentially;
policy evaluation, and policy improvement. This is explained graphically by fig. 3.2a.

(a) A graphical representation of GPI.[75] (b) A graphical representation of how GPI converges to the optimal value
function and policy.[75]

Policy evaluation tries to estimate the value function for a certain policy. This is done by turning the
Bellman equations (see eqs. (3.13), (3.14), (3.16) and (3.17)) into update equations. The algorithm will initialize
the value function arbitrarily, go through each state in S and by using perfect knowledge of both policy and
transition probabilities ensure the estimate will eventually converge to the value function of the policy. The
Bellman update equation for the state- and action-value function estimates are the following, respectively:

vk+1(s)
.= E

[
Rt+1 +γvk (St+1)|St = s)

]
, ∀s ∈S

=∑
a
π(a|s)

∑
s′

∑
r

p(s′,r |s, a)
[
r +γvk (s′)

]
, ∀s ∈S (3.18)

qk+1(s, a) = E
[
Rt+1 +γmax

a′ qk (St+1, a′)|St = s, At = a
]
, ∀s ∈S ,∀a ∈A (s)

=∑
s′

∑
r

p(s′,r |s, a)
[
r +γmax

a′ qk (s′, a′)
]
, ∀s ∈S ,∀a ∈A (s)

(3.19)

The iterative process of improving the value function estimate eventually converges to the one corresponding
to the followed policy. After converging, the policy can be improved by making use of its value function; the
process of policy improvement.

The policy improvement theorem states that when taking a different action then the policy dictates improves
the value function, the policy can be improved. Fortunately, the action-value function can answer this question
straightforwardly:

qπ(s,π′(s)) ≥ vπ(s) =⇒ vπ′ (s) ≥ vπ(s), wher e π′(x) =π(x) ∀x 6= s (3.20)

This result leads to the two greedy update equations for improving policies based on value functions.
When the state-value function is known it is a straightforward maximization over actions to improve the
policy, shown in eq. (3.21). The policy improvement equation by using state-values is obtained by expanding
the action-values using eq. (3.9), shown in eq. (3.22). As can be seen an improved policy can be obtained from

40

action values directly without using the transition probabilities, this simplification is paid for having to find
values for every combination of state and action.

π′(s) = argmax
a

qπ(s, a), ∀s ∈S (3.21)

= argmax
a

∑
s′

∑
r

p(s′,r |s, a)
[
r +γvπ(s′)

]
, ∀s ∈S (3.22)

By alternating between policy evaluation and improvement, the policy is gradually improved, abstractly
shown in fig. 3.2b. Policy evaluation is guaranteed to converge after infinitely many steps, however in practice
some stopping criterion is used on the maximum difference between successive value estimates. Waiting for
the value function to converge in this sense is called policy iteration, however, it turns out this is not necessary
to find the optimal policy. In fact, a single policy evaluation iteration over the state set works as well, this is
called value iteration. In this case the evaluation and improvement steps can be combined into one neat
formula for state-value improvement:

vk+1(s) = max
a

E
[
Rt+1 +γvk (St+1)|St = s, At = a

]
= max

a

∑
s′

∑
r

p(s′,r |s, a)
[
r +γvk (s′)

]
, ∀s ∈S

(3.23)

3.2.7. Monte Carlo methods
In section 3.2.6 it was shown how, when transition probabilities are known, DP methods can be used to find
value functions and improve policies. However, in most practical RL problems this knowledge is unavailable.
There are multiple techniques able to learn exclusively from experience, of which Monte Carlo (MC) methods
will be explained in this section.

Although MC methods learn from experience, the principle of GPI introduced in section 3.2.6 can still be
applied. Again, policies are optimized by alternating between policy evaluation and improvement.

Policy evaluation and improvement
MC methods learn value functions by sampling experience from an MDP, this can be the actual process, but a
simulation works as well. In the case of a simulated MDP a reasonable accurate model is needed, but explicit
transition probabilities are unnecessary. Instead, the model must only provide samples, which is usually
easier.

State-value function estimation is done by starting in some state and following the to-be-evaluated policy
thereafter. If a state occurs at least once during the episode, the return is added to a list of returns for that
state. After each episode the set of returns is averaged and stored in the value-function.

State-values are useful, but since transition probabilities are unavailable it is not possible perform the
policy update from eq. (3.22). Because of their straightforward policy update (see eq. (3.21)), it is more
convenient to estimate action-values. Fortunately, the algorithm mentioned above can still be used, averaging
returns per state-action pair instead of state.

Usually, instead of rolling out episodes until the action-values converge completely, policy evaluation is
cut short after one episode. This is somewhat akin to the concept of value iteration introduced in section 3.2.6.
Even though the true value function is not reached after one episode, the policy still improves. After each
episode the action-values are used to update the policy using eq. (3.21).

Exploration
To find the optimal policy, every state-action pair needs to be visited continually, a requirement which works
against the concept of acting according to the optimal policy. This dichotomy is inherent to RL problems and
has been dubbed "exploration vs. exploitation", also called the dual control problem.

Exploration in MC methods can be handled in several ways:

• Exploring starts
Exploring starts explore the state-action space by starting each episode with a random state-action pair.
After this one exploring action the policy is followed.

• Soft policies
Soft policies are stochastic policies which have nonzero probability for every state-action pair, ensuring
that they are all visited eventually. The most common example is ε-greedy, which has a chance of 1−ε
the actual policy is followed, and an ε chance a random action is chosen.

41

Off- and on-policy learning
A problem with using a soft policies is the fact that exploration becomes part of the policy which is evaluated,
even though its exploratory actions are known to be suboptimal and are not part of the policy we are actually
interested in. In RL the policy which generates behavior is called the behavior policy, while the one being of
interest, the one being learned about, is called the target policy. The problem mentioned above is a problem
of so-called on-policy learning; the behavior policy is equal to the target policy. To circumvent this problem,
off-policy learning can be used; RL algorithms which are able to learn about a policy different from the one
generating behavior.

Off-policy- are more powerful and general than on-policy methods, but usually have higher variance and
are slower to converge[75]. The only thing off-policy requires is that the behavior policy has has nonzero
probability of choosing action a in state s where the target policy does. This is called the assumption of
coverage, formally defined as follows:

π(a|s) > 0 =⇒ b(a|s) > 0, ∀s ∈S ,∀a ∈A (s) (3.24)

Where b is the behavior policy.
A common way of doing off-policy learning is to weight returns by the relative ratio of the probability of

their trajectory following either behavior- or target-policy, this is called importance sampling. When there is
a lower chance of encountering some trajectory if the target policy would be followed instead of the behavior
policy, the return is given low weight and vice-versa. This relative probability of the trajectory from time step
t to T −1 is determined by the following equation:

ρt :T−1 =
T−1∏
k=t

π(Ak |Sk)

b(Ak |Sk)
(3.25)

Since, except for the assumption of coverage, the target policy has no dependence on the behavior, off-
policy methods are able to learn about multiple target policies at the same time, making much better use of
the available experience. This opens up the ability of learning from data gathered using experts or conventional
controllers, learning extensive predictive models of the world, and increasing sample-efficiency significantly[74,
75].

3.2.8. Temporal-Difference methods
Another method which is able to learn directly from experience without requiring a model of the environment
is TD learning. Where MC methods wait until the end of an episode to make updates to the value function, TD
methods perform value updates immediately after receiving rewards using a technique called bootstrapping;
making value updates partly based on other estimated values. Just like DP and MC methods, TD learning
makes use of GPI; alternating value function estimation and greedy policy improvement.

TD methods perform iterative value updates by calculating a TD target; a new value function estimate
made by integrating received rewards with an old estimate. The value function is updated by interpolating
between the old value and the TD target based on a step-size parameter α, the difference between the old-
and new estimate is called the TD error. The update rule of n-step TD for state-value learning is as follows:

Vt+n(St) ←−Vt+n−1(St)+α[TD target︷ ︸︸ ︷
Gt :t+n −Vt+n−1(St)︸ ︷︷ ︸

TD error

]
(3.26)

Where the subscript of the state-value function denotes the time step at which the function is evaluated
and the n-step return estimate Gt :t+n is defined as follows:

Gt :t+n = Rt+1 +γRt+2 +γ2Rt+3 +·· ·+γn−1Rt+n +γnVt+n−1(St+n) (3.27)

Naturally, TD methods can be used to learn action-values as well, which is more convenient for finding
optimal policies. Slightly different from the state-value update shown in eq. (3.26), the general idea of incrementally
moving the value function towards a bootstrapped estimate still applies.

As can be seen TD target of the state-value of a state at time t is determined using n rewards and the
state-value estimate at time t +n −1, therefore, n determines the amount of new information incorporated
into each update. If set to 1, the algorithm becomes one-step TD, if set to ∞ one obtains an MC method.

42

Since the n-step update for a state at time t requires information from a later time, it is delayed by n
steps. This is called a forward view algorithm and in a control setting this delay is unwanted; new information
should be incorporated sooner rather than later. To solve this problem (and offer a computational advantage[75])
eligibility traces can be used, offering a backward view version of n-step TD.

Eligibility traces refer to a trace vector, which estimates which states are eligible for a value update due
to newly received rewards. The eligibility of each state decays exponentially over time, using the trace-decay
parameterλ, valued between 0 and 1. Analogous to the parameter n in n-step TD,λ can be used to interpolate
between one-step TD and MC methods. TD methods which incorporate eligibility traces and the trace-decay
parameter are called TD(λ).

3.2.9. Approximate methods
The methods mentioned before have all been so-called tabular methods; the state- and action-spaces are
finite and discrete. Tabular methods are useful to showcase the basics of RL, but are not convenient for flight
control because of the continuous state- and action-space. Although it is possible to simply discretize every
state and use tabular methods, the amount of states and the resolution needed make it infeasible. Instead,
methods can be used which use function approximation to parameterize policies and value functions; approximate
methods.

Approximate methods usually apply stochastic gradient-based optimization techniques to find value functions
and optimize policies, this requires the parameterizations to be differentiable w.r.t. the parameters. Except
for this requirement, any parameterization can be used; linear models, artificial neural networks (ANNs),
decision trees, etcetera.

Gradient-based methods for finding value functions require a performance metric which specifies how
well the estimated value function approximates the actual values, for which the mean squared error (MSE)
of the actual and approximated value function is an obvious choice. However, the real value function is not
known in advance, which is why an approximation will be used; U (s). The resulting objective function to be
minimized is as follows:

V̄ (w) = 1

2

∑
s∈S

[
U (s)− v̂π(s, w)

]2 (3.28)

Where w is a parameter vector, and v̂π is the state-value function estimate given by the parameterized
model.

This performance metric leads to the following one-step stochastic gradient descent (SGD) update of the
state-value function:

w t+1 = w t +α
[
Ut (St)− v̂π(St , w t)

]∇w v̂π(St , w t) (3.29)

Where α is a step size parameter, and ∇v̂π(St , w t) is a vector of partial derivatives of v̂ w.r.t. w t .
The same can be done to estimate action-values, leading to the following update equation:

w t+1 = w t +α
[
Ut (St , At)− q̂π(St , At , w t)

]∇w q̂π(St , At , w t) (3.30)

The value approximations U (s) and U (s, a) can be any value approximation. When using observed- or
bootstrapped returns this results in MC- and TD-like methods, respectively. However, when using a bootstrapped
estimate, the method becomes a so-called semi-gradient method and does not converge as robustly. Still,
there are benefits to using semi-gradient methods, such as faster learning and a natural application to continuing
tasks, which is why they are widely used.

3.2.10. Policy-gradient methods
The techniques mentioned before all learn optimal policies by applying some form of GPI, which alternates
between finding value functions and optimizing the policy. However, it is also possible to skip value functions
and optimize the policy directly using the gradient and returns. These methods are called policy-gradient
methods.

By using the policy-gradient theorem, an equation for updating the policy, parameterized by θ, based only
on the observed return and the policy itself is obtained:

θt+1 = θt +αGt∇θ lnπ(At |St ,θt) (3.31)

These parameter updates are used by the REINFORCE algorithm and although value functions are not
necessary for the policy to be optimized this way, the algorithm can be improved by subtracting a baseline
from the return; the state-value estimate.

43

Other methods which use both policy-gradient and value functions are actor-critic (AC) methods. The
difference with the aforementioned method being that instead of using the full return over an episode, the
returns are bootstrapped like in TD methods. The state-value function is used in the bootstrapped return
estimate and is learned alongside the policy improvement, following the GPI paradigm.

The principle of AC methods is general and there are many variations, for instance the policy update
equation of one-step AC is as follows:

θt+1 = θt +α
[
Rt+1 +γv̂(St+1, w t)− v̂(St , w t)

]∇θ lnπ(At |St ,θt) (3.32)

With the following update equation for the state-value function estimate:

w t+1 = w t +α
[
Rt+1 +γv̂(St+1, w t)− v̂(St , w t)

]∇w v̂(St , w t) (3.33)

3.3. State-of-the-art
RL methods have been applied to flight control because of their inherent adaptive capabilities, ability to learn
policies model-free, and flexibility. This section will give a short overview of the SOTA of RL methods for flight
control.

A problem with using RL methods for aircraft is that initial suboptimal policies may lead towards states
which cause complete loss of the vehicle. A way of solving this problem is by using samples of some expert
controller to guide learning of the policy; guided policy search (GPS). In [89], Zhang et al. use GPS to safely
learn optimal policies for UAV control using only on-board sensors. At training time the quadcopter is controlled
by model predictive control (MPC) in conjunction with full state feedback provided by a testing rig. The
trajectories which are followed by the behavior policy are chosen such that they simultaneously maximize a
performance criterion and minimize the deviation with the current target policy, thus providing good guiding
samples. The target policy is a ANN which is trained using supervised learning on the guiding samples, using
only raw on-board measurements. The learned controller is able to effectively navigate hallways and avoid
cylindrical obstacles using limited state feedback, while being computationally cheaper than MPC.

In [35], Hwangbo et al. control a quadcopter using an actor-critic RL scheme, where both actor and critic
are parameterized by separate fully-connected ANNs with full-state input. The actor and critic are trained
using MC-style GPI; each iteration consists of a rollout of the current policy until termination, optimizing the
critic network using a gradient-based method on the observed on-policy samples, followed by updating the
policy using a natural policy gradient method on all samples. Since the actor is deterministic, exploration
is handled by interrupting the on-policy trajectories with off-policy ones, using randomized actions. To
stabilize the vehicle during learning the control output of the actor is added to the control output of a simple
attitude PD controller. As for the learning procedure; first, a simplified model of the MAV is used to train the
agent in a simulation. Afterwards, without further training the controller deployed on a real drone and tested
again using a testing rig which provides full-state feedback. The learning performance of the natural policy
gradient method is compared to both deep deterministic policy gradients (DDPG)[53] and trust region policy
optimization (TRPO)[70], and shown to outperform both. The learned policy was compared to a linear MPC
controller and found to have much higher success rates when subjected to bad initial states. The move from
simulation to reality shows that the dynamics of the real world affect performance of the policy negatively,
since engine dynamics and the ground-effect have not been modeled. However, the agent is able to follow
waypoints, albeit with worse tracking error than a conventional controller. Also, the agent is able to recover
from bad initial states, like a downward velocity of 5 m/s upside down, even better than in simulation, which
is attributed to unmodeled stabilizing drag forces.

A recursive least-squares (RLS) based RL method is used in [62] to transport a suspended load along a
predetermined trajectory by quadcopter. First, the agent is trained in simulation using a GPI scheme. The
learning procedure, called least-squares policy iteration (LSPI)[45], consists of updating the auto-covariance
matrices each time step using RLS, re-estimating the action-value function once every K steps, followed by
a greedy policy optimization. For exploration an ε-soft behavior policy is used, while the ε decays over time.
The reward is a linear function of control-action magnitude, deviation from the reference path, and swing-
angle of the suspended load. Training is performed in simulation, while later validated in an experiment
without re-training. In both cases full-state feedback is available, using a testing rig with motion-capture
capabilities. Results show the algorithm is able to keep the deviation from the reference path within a couple
of centimeters, both on straight lines and more complex trajectories.

4
Learning from Demonstration

As explained in chapter 3, humans and animals are able to optimize their behavior based on their experiences,
through a process of trial-and-error. This kind of learning inspired the creation of RL techniques for policy
optimization. However, there exist other modes of learning new behavior in the animal kingdom, one of
which is learning by imitation.

Instead of learning from one’s own experiences, policies can be inferred from observed behavior of others,
that animals and humans employ this strategy to learn from their peers is well understood[87]. Partly inspired
by nature, and partly because of the need of transferring knowledge from man to machine in a intuitive way,
researchers have employed learning by imitation in many shapes and forms to teach machines all kinds of
tasks; from block stacking to flight control. Over the years many different terms have been used to convey the
general idea of learning by imitation, some of them mentioned in section 4.1.1. For the rest of this research
the term LfD will be used to refer to these methods in general.

This section presents an overview of these types of learning, which will be referred to as LfD. Starting
with an explanation of the relevancy to this research, followed by a definition of what exactly is meant by
the term. Thirdly, a short summary of how LfD techniques are generally applied, together with explanations
of recurring themes and issues, is given. Finally, the history of several lines of research and the SOTA are
investigated.

4.1. Definition and framework
Before investigating the different methods and applications from the literature, a general explanation of LfD
methods will be presented. First, a proper definition of what is mean by LfD is given. This is followed by a
framework through which LfD will be viewed and finally some recurring themes and issues encountered in
the literature.

4.1.1. Definition
As it turns out there are many lines of research into the general idea of learning by imitation, using different
taxonomies and applications. To allow a structured discussion of the field, an overview of definitions is given,
followed by the definition used in this research.

The following definitions can be found in the relevant research:

• Argall et al. [3] define LfD as follows: "Within LfD, a policy is learned from examples, or demonstrations,
provided by a teacher. We define examples as sequences of state-action pairs that are recorded during
the teacher’s demonstration of the desired robot behavior. LfD algorithms utilize this dataset of examples
to derive a policy that reproduces the demonstrated behavior.".

• Hussein et al. define imitation learning as follows: "The process of imitation learning is one by which
an agent uses instances of performed actions to learn a policy that solves a given task."[34].

• In their work on imitative learning[28], Hayes and Demiris first define imitation as "being a phenomenon
which leads to some sort of similarity in behavior among two or more individuals". In this sense
they presumably define imitative learning as learning behaviors by making use of imitation, without

45

46

explicitly stating so. They go on to describe a particular type of imitative learning, matched dependent
behavior, as follows: "...rats negotiating a maze receive reinforcement faster if they match their behaviour
to that of a leader rat, and then learn to associate the other stimuli in the environment at the time with
the appropriate action.".

• In [7], Kang mentions: "The simplest manner an operator can program a robot is to demonstrate
the task in front of the system and expect the system to replicate the task with little other human
intervention. This is the method that we adopt in task programming; it is also known as the Assembly
Plan from Observation (APO)". Later he defines programming by demonstration (PbD) as follows:
"The APO approach of programming a robot belongs to a class of what we term as a programming-by-
demonstration approach. This class of robot programming approach involves a user-friendly interface
that allows the user to easily specify the task in a simple and intuitive manner without resorting primarily
to hand-coding programs.".

• Ng and Russell define apprenticeship learning as follows: "The task of learning from an expert is called
apprenticeship learning (also learning by watching, imitation learning, or learning from demonstration)"[2].

• In [21], Esmaili et al. define behavioral cloning (BC) to be "the process of reconstructing the skills from
operators’ behavioural traces by means of machine learning techniques.".

From the aforementioned definitions, it becomes apparent that in fact these authors are talking about
roughly the same concept; LfD, imitation learning, imitative learning, PbD, apprenticeship learning, learning
by watching, and BC are different names for the same idea. In this work these methods will be referred to as
LfD, using the following definition:

LfD methods are methods which transfer task knowledge from one agent to another through experience tuples,
called demonstrations.

4.1.2. Framework
To allow a structured discussion of LfD, this section will present a framework through which these methods
are viewed. In fig. 3.1, the MDP framework was introduced graphically, an augmented version is used to aid
the discussion here, shown in fig. 4.1.

The usual RL agent can be seen on the left side of fig. 4.1. In the usual framework the agent lives in the
environment, which is everything outside its direct control. However, to facilitate the discussion concerning
LfD, an explicit distinction will be made between the part of the environment which is close and unique
to similar agents, and the world around them. This is intuitively understood as follows: humans are similar
agents, however each has slightly different (1) physical attributes; limb length, muscle strength, etc, (2) sensors;
differences in sensitivity of hearing, color-blindness, (3) state representation; differences in exact state representations
formed in the brain are inevitable because of differences in experience and genetics. Despite these differences
on a local level, all humans inhabit the same external world; the universe, which has the same dynamics and
state for everyone.

The distinction is made explicit in the augmented framework by dividing up the environment into two
pieces; the internal- and external part. The first is determined by the agent’s embodiment; its sensors and
actuators, and its interpreter, which determines the state representation and reward function. The external
environment is the world outside of the agent, which has a world state, being much larger than the observed
state and its representation, and state transition function.

In general LfD applications can be viewed as a transfer of knowledge from one MDP to another, each
formed by the combination of an agent and environment as shown in fig. 4.1. There are three levels at which
one can characterize LfD methods; MDP difference, MDP interface, use of transferred information.

• MDP difference
In LfD problems, the differences between the two MDPs are chiefly due to a difference in the agents;
the teacher and student. The fundamental difference being that the teacher has a (supposedly optimal)
policy, which must be communicated to the student.

Another difference lies in the embodiment of the agents; sensors, actuators and state representations
are generally different for teacher and student. This has an important effect on the ease of imitation;
a teacher which is too different from the student may not be able to provide useful information, or at
least require some mapping to the student’s coordinate frame.

47

Observation

Embodied
action

Reward

Action

Agent
World state

World

Embodied agent

Environment

State Interpreter

Figure 4.1: An augmented form of the basic MDP framework. The difference between the internal- and external environment is made
explicit by the embodiment of the agent. The world state is viewed through an interpreter and actions are transformed into embodied
actions by the agents actuators.

Also, the student does not have the same reward function as the teacher or might not even have a reward
function at all. The teacher has no way of communicating its reward function directly and must rely on
demonstrations to transfer that knowledge implicitly if needed.

In general the teacher and student inhabit the same external world, having the same state-set and
transition probabilities.

• MDP interface
LfD methods exclusively transfer knowledge using demonstrations, which are simply a kind of experience
tuples; (s, a, s′). In this work it is assumed demonstrations are the result of a policy which, according to
the teacher, optimizes behavior to complete the student’s task. A setting where this requirement is not
met ventures into the territory of transfer learning (TL) and is outside of the scope of this thesis.

Using the framework from [3] by Argall et al, the interface between teacher and student is divided up
into two-dimensions:

– Record mapping is the mapping from the behavior of the teacher to the raw observations by the
student.

– Embodiment mapping is the mapping from the raw observations to the coordinate frame of the
student.

Subsequently, these mappings can be divided up into two cases; the case where the mapping is the
identity function, and where it is not. The resulting subdivision of the interface is shown in fig. 4.2.

The first of the four cases occurs when both record- and embodiment mapping are the identity function,
called teleoperation. This setting applies when the teacher is able to demonstrate the behavior using
the students own actuators and sensors, for instance when a pilot (teacher) is flying an aircraft to
demonstrate correct behavior to an on-board learning system (student).

When the sensors are placed on a teacher’s body, the record mapping is the identity function, but
the student has to deal with a non-identity embodiment mapping. Depending on the differences in
embodiment between the two, this may require significant additional processing. An example of this
case would be a setting where demonstrations are performed and logged on one aircraft, while the
learning system is embodied by another, not necessarily the same one.

Shadowing occurs when teacher and student have the same embodiment, while the behavior of the
teacher is observed through some non-identity mapping. For instance, a student is observing demonstrations

48

Figure 4.2: A subdivision of the MDP interface in LfD into four cases, based on the record- and embodiment mapping, taken from[3].
Note that Argall et al. separate demonstration from imitation, a distinction which does not fit with this work and can be ignored.

by an identically embodied teacher through a camera. The student will need to find a mapping from
visual images to his own coordinate frame to be able to efficiently use the information.

The final, and arguably most difficult, case happens when both record- and embodiment mapping are
non-identity, during which the student must find both a mapping from the observed data to states and
actions of the teacher, and from the teachers coordinate frame to its own. An example of this setting
would be when a civil aircraft observes demonstrations by a fighter jet using a camera feed.

Of course, this framework provides a simplified view, since the distinction between identity- and non-
identity mapping is usually not clear-cut and there exists a spectrum.

• Use of transferred information

LfD algorithms make use of demonstrations in several ways, the most prominent one being to directly
obtain a mapping of states to actions, assuming the demonstrations are the result of an optimal policy.
In this case the student tries to directly imitate the teacher.

Secondly, demonstrations can be used to infer a reward function for the task at hand. This flips the RL
problem upside down, which is useful in situations where the reward function corresponding to the
task is too complex to state manually.

Also, demonstrations can simply be used as transition information to create a dynamic model of the
world, which can be used later to plan ahead and learn policies.

Lastly, important task-specific features can be distilled by correlating states with actions. By employing
these features within an RL algorithm, learning performance can be improved.

4.1.3. Important concepts
In this section several important concepts in LfD research will be explained, alongside several recurring issues
and problems.

Embodiment and correspondence
In the classic MDP framework, the agent interacts with the environment, which is everything outside of its
direct control. To facilitate the discussion about LfD, a distinction (presented in fig. 4.1) was made between
the external- and internal environments, or; the world and the agent’s embodiment. The latter is comprised

49

of the interpreter, sensors and actuators, it can be viewed as the agent’s body. In the context of LfD the
embodiment of the agent is important since it is often different for teacher and student, while the external
environment is the same.

Differences in embodiment necessitate a mapping of the teacher’s- to the student’s coordinate frame
to be able to utilize the information stored in the demonstrations. The problem of finding this mapping is
called the correspondence problem. An example is a human teacher demonstrating behavior to a humanoid
robot; although similar in embodiment, the robot has different limb-lengths, proportions, and joint ranges of
motion from the teacher. As explained in section 4.1.2, the robot will first need to map the raw observations
to the coordinate system of the teacher, followed by a mapping to its own coordinate frame. Due to the
humanoid embodiment the correspondence problem is more easily solved, more serious problems arise
when a six-legged robot would be used.

Motor primitive
Motor primitives, but also movement primitives or motion primitives, are elementary building blocks of
behavior, of which the level of abstraction varies and is usually arbitrated by the researcher. An example
of motion primitives in the context of fighting can be "punch", "kick". By viewing behavior as built up from
these blocks, the task of recognizing and generating complex behavior is made more tractable, primitives
can therefore be viewed as features, or abstractions, of behavior. In keeping with the fighting example, a
demonstration of a fight might be represented by a sequence of punches and kicks, which makes it easier to
understand what happened as compared to working simply with the raw movement sequences.

Active vs Passive
Based on the amount of interaction between teacher and student, LfD methods can be separated into two
classes; active and passive. Passive, also called "batch", refers to the case when the student simply observes
the teacher and has no way of influencing which demonstrations are performed. This requires the least
amount of attention from the teacher, as demonstrations can be generated offline.

However, learning performance might be improved if the student could point out situations in which the
demonstrations are lacking and it is unsure what to do (the "incomplete" area in fig. 4.3), i.e. the student has
a way of influencing what demonstrations are provided. This mode of LfD is called (inter)active, and requires
a feedback loop in which the student can query the teacher for demonstrations when and where needed.

The trade-off between active and passive demonstrations depends on the cost of teacher attention, which
might be high in the case of a human, and the need for fast learning performance.

Quality of demonstrations
In LfD information about the teacher’s policy is transferred to the student by executing it and allowing the
student to observe, thus the quality of these demonstrations is an important factor in the success of these
methods.

A fundamental problem is the fact that demonstrations cannot cover the entire state space, either because
of the cost associated to provide them and/or the fact that it is a continuous domain. This requires the teacher
to efficiently use demonstrations, which is influenced by which parts of the state-space are visited and how
accurate this information is conveyed by the recordings/observations.

Maximizing the overlap of demonstrations with the parts of the state-space likely to be visited by the
student increases the usefulness, graphically explained by fig. 4.3.

Visited by student

Demonstrations
WastedUsefulIncomplete

Figure 4.3: Simplified representation of the state-space and the parts visited by the student and the teacher during demonstrations,
maximizing the size of the intersection improves demonstration usefulness.

50

When there are no demonstrations available for certain parts of the state-space visited by the student the
demonstrations are incomplete, leaving the student unable to infer the policy of the teacher.

On the other hand, visiting parts of the state-space which will probably not be visited by the student
wastes valuable resources. This is similar to the problem of ensuring demonstrations contain only actions
part of the policy corresponding to the task at hand, avoiding any unnecessary actions.

Other factors which influence demonstration quality on the side of the teacher is avoiding ambiguous
demonstrations, which might confuse the student. These occur when, in the same state, different actions are
demonstrated.

The scarcity of demonstrations affects not only the teacher, but the student as well. Since, in practice, for
much of the state-space there are no demonstrations available, the student is required to generalize to other
states. The degree to which one can generalize across states and actions is determined by the amount of
structure in these sets. Continuous domains are quite structured in the sense that similar states often require
similar actions, while generalizing across discrete or abstract domains is much more difficult.

4.2. History and state-of-the-art
This section will investigate the history of LfD methods, followed by a short overview of the SOTA.

4.2.1. Programming by Demonstration
Research on using human demonstrations to learn optimal policies started around 1980, applied mainly to
robotic manipulators, generally called PbD. Looking for ways of circumventing the arduous task of programming
robots for more complex behaviors, researchers reasoned that task information is more conveniently transferred
from human to machine by imitation. Based on AI research of the time, policies were usually learned using
symbolic reasoning[69], and tasks were demonstrated using teleoperation by a human. An example is [18],
where a policy for mating two parts via a robotic manipulator was learned from demonstrations. The applied
method is two-phase; a training phase followed by an induction phase. During the first phase demonstrations
are generated by teleoperation by a human operator, while logging sensor readings, obstacle- and goal positions.
During the second phase primitive actions and goals are inferred from the demonstrations in the form of if-
then rules and predefined motion state definitions. These are used to construct graph-based descriptions of
each task, encoding the policy.

Using teleoperation for task demonstration is restricting, which lead to research into more convenient
modes of demonstration, such as visual demonstrations [17, 36], sensor-rigged gloves called datagloves[79],
and more recently kinesthetic guiding[43]. For instance in [44], visual recordings of human demonstrations of
assembly tasks are used to form reusable task plans. First, a human is recorded by camera while performing
the task by hand, the hand and objects are recognized by a computer vision algorithm. Secondly, the task
is segmented into movement primitives, which are grouped into sub-procedures and finally a task plan by
bottom-up plan inference. Finally, the task is reproduced by matching the initial state of objects with the
relevant task plan and running it.

Gradually, symbolic methods have become more popular, both for segmenting tasks into motion primitives
and to be used as policies. This lead to the use of fuzzy logic[17] for task segmenting, hidden Markov models
(HMMs)[11, 33, 63, 78], and ANNs[6, 26, 54]. In [65], imitation learning is framed as an multi-class classification
problem; actions are labels corresponding to states. State-action pairs found in demonstrations are assumed
to be correct and a classifier, a ANN, is trained to assign them higher scores than other combinations. To
generalize across unseen states the method relies on the generalization capabilities of the regression method
and the classifier. To improve generalization a structured-margin loss function is used which exacerbates the
loss differences between state-action combinations proportional to their score; similarity to demonstrated
combinations. The method is applied to two problems; foot placement prediction of a quadruped robot, and
optimal grasp orientation prediction of a three-fingered gripper grabbing a plethora of objects.

Inspired by advances in the field of neuroscience such as evidence for mirror neurons, bio-inspired methods
gained in popularity. With an emphasis on biologically grounded methods of perception and computation,
often explicitly modelling certain brain regions or parts of the nervous system of humans or primates[6, 26].
For instance, in [59] a method for learning biped locomotion is proposed. The method uses dynamical
movement primitives as a central pattern generator (CPG), which is inspired by certain neurons found in
humans. The movement primitives are fitted to demonstrations using locally weighted regression and a novel
frequency adaptation algorithm. The method is applied to a bipedal robot succesfully, both in simulation and
on a physical system.

51

More recent papers on PbD include [81], where generalized motion-trajectories for a robotic arm are
inferred from human demonstrations. First the so-called "key points" are distilled from the data using a
clustering algorithm, these are parts of the trajectory which are most important for generating the behavior.
A feature vector is constructed from these clusters, which is used by a HMM

4.2.2. Behavioral cloning
Another line of research on using demonstrations to learn policies lead to methods dubbed BC, being focused
more on policies for flight- and vehicle control. Early work on this was performed by Chambers and Michie,
in [12] they used BC to obtain a pole-balancing policy from human examples. Years later, in [68] Sammut et
al. use BC to obtain a flight controller using logged state-action pairs from human performance in a flight
simulator. Esmaili et al. (including Sammut), have used two BC techniques to learn an obstacle avoidance
policy for a small autonomous robot in [21]. First, data was gathered by letting a human operator perform
obstacle avoidance for many runs. The data was cleaned and used by two different knowledge acquisition
techniques to construct decision trees that best explained the dataset.

Bratko, Urbançiç, and Sammut publish their analysis of BC methods and their results and problems in
[10]. According to their analysis, earlier BC applications have issues with brittleness and interpretability of
learned controllers. Bain and Sammut attempt to address both of these issues in [5], where they conjecture
that the fact BC methods are able to learn without the notion of the ultimate goal of the demonstrated policy,
leads to the lack of robustness of its solutions. Therefore, their method learns, in addition to a state-action
mapping, goals to assist in dealing with previously unseen states as well as interpretability. To increase
interpretability even more, high level features are learned and the policy has the form of a decision tree with
if-then rules. The method is again used for a simulated flight-control application. The goal of interpretable
and robust BC methods is further pursued by Isaac and Sammut in [38], where they opt for combining PID
controllers with their goal-directed hierarchy. Joining the robustness of traditional control algorithms with
interpretability.

4.2.3. Imitation learning
In [66], Ross and Bagnell note that most imitation learning (IL) methods simply apply supervised learning
methods to mimic the actions the teacher takes at each state, implicitly assuming i.i.d. states. They further
note that this assumption is actually violated, as the state distribution over which the training takes place is
affected by the learned policy, leading to the problem of compounding errors. To mitigate this problem, they
propose the forward training algorithm. Each iteration it learns a different policy based on the previous one
and a query of the teacher, over the state distribution caused by the previously learned policy. This iteratively
changes the training distribution from one caused by the teacher, to one induced by the student.

The forward training algorithm learns a policy for each time step and is therefore non-stationary. The
second algorithm presented in [66], stochastic mixing iterative learning (SMILe), learns a stationary policy to
better be able to handle infinite time horizons. Instead of learning a different policy each time step, SMILe
constructs a stochastic policy which mixes each policy in way that ensures the new one is chosen with a small
probability. Again, the initial policy is simply querying the teacher, but as the number of iterations increases
to infinity the probability of choosing the teacher’s policy goes to zero. Also, at any time step the learned
policy can be normalized so the reliance on the teacher is removed.

Instead of learning a stochastic policy, the dataset aggregation (DAgger) algorithm in [67], by Ross et al.,
obtains a deterministic one. Each iteration a distribution-generating policy is formed based on a mix of the
previous one and the teacher. This new dataset is added to the preexisting one, which is used to train a new
policy based on the actions of the teacher in those states. In this way each new policy is trained on the entire
state distribution encountered over all previous iterations.

The fact that these IL algorithms do not require the notion of a reward function to be able to find policies
is usually viewed as a feature. However, when a reward function is readily available, it would be unwise to not
incorporate that information into the learning process; the aggregate values to imitate (AggeVaTe) algorithm
does exactly that. Based on DAgger, this method does not try to minimize the classification loss of the policy
w.r.t. actions taken by the teacher, but the cost-to-go when first following the learned policy while switching
to the teacher at a random time step.

The aforementioned methods are so-called active LfD methods and require extensive interaction with the
teacher, something which is not feasible in cases where the teacher is human[39]. To remedy this problem
Judah et al. propose a method which tries to minimize the amount of teacher queries necessary for learning
a policy; reduction-based active imitation learning (RAIL). This method learns a non-stationary policy each

52

iteration by querying the teacher at all states contained in the distribution under the previous policy. The
practical version of this algorithm; RAIL-DW, where DW stands for density weighted, queries the teacher for
only one state per iteration. This sample is taken from a state distribution which is the result of combining
the the one under the new policy with a Bayesian prior formed from the distributions in previous iterations.
The single queried state is determined using a density-weighted learning algorithms to identify queries which
would provide the most useful information.

Different from the active methods mentioned before, Ho and Ermon apply generative adversarial learning
to imitate demonstrations in [31]. Their method; generalized adversarial imitation learning (GAIL), pits
two ANNs against each other; the generator learns a policy which mimics the state-action distribution of
the demonstrations, while the discriminator learns to differentiate between actual demonstrations and the
student. In this interaction "the discriminator network can be interpreted as a local cost function providing
learning signal to the policy"[31]. Both networks are iteratively improved using policy gradient methods
until the policy matches the state-action distribution from the demonstrations and the discriminator cannot
differentiate between the two. Additionally, Ho and Ermon draw a connection between IL as a combination
of inverse reinforcement learning (IRL) and RL, and GAIL. Experiments on several MuJoCo environments
show that GAIL achieves the teacher’s score on almost all tasks, performing well even with a small amount
of demonstrations. While efficient in the amount of demonstrations, GAIL does require a large amount of
environment interaction, leading to a training time equivalent to learning the task from reinforcement using
TRPO.

4.2.4. Applications in reinforcement learning
The combination of RL and LfD has been studied mainly in the context of deriving a reward function from
the behavior of a teacher; IRL. The roots of these methods lie in research by Kalman, in [41] he introduces the
inverse optimal control problem; finding a performance criterion for which the control law is optimal. The
problem is constrained to constant linear plants and control laws, with a quadratic cost function and a single
control variable, as well as full-state feedback.

Early work by Ng and Russell attempts to solve a less-constrained version of this problem in the MDP
framework. In [60] they first investigate the case where the teacher’s policy is completely known and states
and actions are discretized. The solution to the problem is not unique and degenerate, which is solved by
adding certain heuristics. The authors posit some characteristics of a good reward solution; it maximizes
the cost of a one-step deviation from the policy and generally has small reinforcement values. The latter is
accomplished by adding a weight-decay term based on the `1-norm of the reinforcement values. In the case
of continuous states and actions the reward function is assumed to be a linear function of a set of features,
which are predefined by the authors. In the more realistic case of not knowing the exact teacher’s policy,
the assumption is made that the teacher is available to make roll-outs in the MDP from any state required,
this is used to obtain feature expectations under the teacher’s policy. Linear programming is used to find
multiple reward functions which the teacher’s policy optimizes, which are then used to train the student’s
policy. Experiments using the mountain car problem show the student is able to learn a policy which solves
the initial task equally good as the teacher in most cases.

In [2], Abbeel and Ng use IRL explicitly to imitate a teacher. Again, the reward function is assumed to
be a linear function of predefined features and the teacher is available to generate feature expectations via
demonstrations. In this research the reward weight vector is constrained to a `2-norm of at most 1. The goal
of the method is to find a policy with the same feature expectation as the teacher’s. First, a method akin to
support vector machine (SVM) is proposed, but a simplified algorithm which does not require a quadratic
program solver is also presented, which uses a projection method. After each weight vector update a policy
is learned based on the resulting reward function, the feature expectations of this new policy are used in the
next iteration of the algorithm.

Another way of dealing with the non-uniqueness of reward functions which are optimized by a given
policy is presented by Ziebart et al. in [90]. To resolve the ambiguity present in the problem they propose the
use of a solution that maximizes entropy. Their algorithm finds a stochastic policy which matches the feature
expectations of the teacher in a way that minimizes any further preferences over trajectories.

The aforementioned methods require intensive access to the MDP to obtain feature expectations, the
methods in [2, 60] even find an optimal policy corresponding to an MDP each iteration. In contrast, the
algorithm presented in [9] is more efficient w.r.t. the teacher’s resources. The method finds a policy that
minimizes the relative entropy between the distribution over demonstrated trajectories and its own using
SGD. Each iteration the current learned policy is used to generate several trajectories, while importance

53

sampling is used to estimate the gradient of the learned- w.r.t. the teacher’s policy.
Different from the methods mentioned up to now, the algorithm described in [51] by Levine et al. makes

no assumption about the linearity of the reward w.r.t the features. Instead, the reward function is modeled as
a Gaussian process which can express nonlinear functions of features.

In [84], Wulfmeier et al. apply ANNs to remove the need for predefined features, as used by most IRL
algorithms. A fully-connected convolutional ANN is applied in combination with the maximum entropy IRL
algorithm by Ziebart et al. [90]. The method uses end-to-end learning of a reward function from the raw input
state, based on the gradient of the maximum entropy loss.

A method called approximate policy iteration with demonstration (APID), combines LfD and RL by using
demonstrations to provide linear constrains for an approximate policy iteration (API) optimization method[42].
Utilizing both demonstrations and interaction, APID is able to find good policies even with very few demonstrations
and is shown to outperform API, supervised learning, and the DAgger algorithm on several tasks.

In [32], Ho et al. combine TRPO with demonstrations in a method named IM-TRPO to obtain parameterized
stochastic policies. The optimization objective requires a measure of the reward gained by the learned and
teacher policy, however using importance sampling the need for extensive policy evaluation is avoided. Trajectories
of the current policy are generated, but only used to approximate the KL-divergence between the old and new
policy, which requires less samples.

An interesting family of methods named GPS, originally devised by Levine and Koltun, combines model-
based trajectory optimization in a low-dimensional state-space with supervised learning to efficiently train
high-dimensional policies in continuous-state and action RL tasks. These methods appear particularly promising
and therefore they are explained in detail in the coming chapter.

5
Guided Policy Search

In section 4.2.4 a review of the literature concerning the improvement of sample-efficiency of RL methods for
aerospace applications using LfD has been presented. From the many methods explored in this review, The
family of methods which is seen as most promising for further investigation is GPS, which will be investigated
in a more in-depth way in this chapter. For a history of the GPS family of algorithms, see section 2.A of
the scientific paper in part I. In section 5.1, a short analysis that explores how well GPS fits flight control
applications is presented. In section 5.2, a rough outline of GPS methods is provided, followed by a more
thorough presentation on MD-GPS in section 5.3.

5.1. Motivation
The goal of this thesis is to find a way to improve the sample-efficiency of RL methods for aerospace applications,
using LfD. An interesting application lies in the usage of high-dimensional policies, used to cope with a
high-dimensional or complex state-space. An obvious use-case would be incorporating vision into a flight-
controller, which requires a policy with many parameters and high expressive value; i.e. an ANN. The goal of
this section is to explain why GPS methods are a feasible solution to improving the sample-efficiency of RL
methods in these kinds of applications.

To go forward we must first go back; in the last decade, there has been a significant resurgence of interest
towards ANNs. This arguably started with Hinton and Osindero’s paper, showing how multi-layer ANNs
could be trained efficiently using their pretraining approach[30]. The ability to train "deep" ANNs lead to
the coining of the term "deep learning"; an umbrella term for any machine learning approach in which a
ANN was used with more than three layers. Another important milestone was the success of deep learning
based speech recognition, becoming the SOTA in the field[29]. The same year Krizhevsky et al. beat the SOTA
on the Imagenet database[16] by a large margin, using a deep convolutional neural network (CNN). These
advances lead to a host of deep learning based approaches mainly in computer vision, speech recognition,
natural language processing, and... RL.

Following the advances in supervised deep learning, the RL research field has incorporated large ANNs
as high-dimensional policies, to handle a large amount of state-dimensions (mainly, but not constrained
to, images). These have been successful in several challenging simulated environments, as presented in
section 3.3. However, the amount of samples needed to train these high-dimensional policies is very large
when using RL methods, which makes them infeasible for real-world tasks. This is where GPS comes in; it’s
raison d’être is to efficiently train high-dimensional policies in optimal control tasks. GPS has been proven to
work on many physical real-world and simulated tasks, a list of applications is presented in appendix A.

Not only should GPS be able to improve sample efficiency in general RL tasks, it should also be a good fit
with the unique needs of a flight-control application. This introduces additional requirements, which GPS
can meet as well:

• Continuous state- and action-space
As most physical systems, aerospace systems live in continuous state- and action-spaces. Additionally,
the dynamics of these systems are generally continuous as well.
As for the first point, GPS methods naturally handle continuous state- and action-spaces. These methods
stem from robotics, and are proven to work on multiple simulated RL environments and physical

55

56

robotics tasks as outlined in appendix A. The iLQG trajectory optimization method used in most GPS
implementations is actually constrained to continuous states and actions. Additionally, since iLQG
assumes local linear dynamics and a quadratic cost function, it lends itself to systems with smooth
dynamics. As for the global policy, it can be chosen to handle continuous states and actions easily.
Most GPS methods employ a conditional Gaussian as the global policy (usually a in the form of a ANN),
which outputs a mean and covariance of a Gaussian from which an action is sampled.

• Safety of the agent
Aerospace tasks share the unfortunate feature that poor policies can lead to unstable behavior and ultimately
a complete loss of the agent. This poses a problem for most RL methods as they rely on trial-and-error to
learn.
The second feature concerns safety of the agent during training and thereafter, important in any application
of a method on a real physical aerospace system. The GPS methods proposed up to MD-GPS (so:
importance sampled GPS (IS-GPS), adaptive IS-GPS (AIS-GPS), variational GPS (V-GPS), constrained
GPS (C-GPS), Bregmann alternating direction method of multipliers (BADMM)-GPS (BADMM-GPS))
do not use on-policy sampling during the training phase. This improves safety because it removes the
need for sampling from a poor global policy on a real system and risking crashing the agent. Instead,
TVLG controllers are used to sample from, which are less complex and easier to stabilize than a highly
nonlinear high-dimensional global policy. However, as stated in [89], in the case of an inaccurate
dynamic model or fitted dynamics (as in iLQG-FLM), the offline trajectory optimization performed
by iLQG does not guarantee stable behavior. A proposed solution is to employ MPC online to follow the
generated trajectories, even in the case of inaccurate models. As for more contemporary GPS methods,
which are often based on MD-GPS, on-policy sampling is needed and in fact is shown to improve
performance as it allows for stochastic initial states. However, in [13] the authors recognize the fact
that on-policy sampling in the initial stages of training is unsafe, and off-policy sampling in the style
of prior GPS methods is used instead. A different way GPS methods can improve safety is by using the
generative motor reflexes (GMR)-based global policy as presented in [20]. The improvement is twofold;
first, the global policy inherits parts of the stabilizing properties of linear controllers. Secondly, the
policies are more robust to state disturbance and unseen states, improving generalization capacity.

• Robustness to disturbance and unseen states
Optimized policies need to be able to handle disturbance and parts of the state-space outside of the
(limited) training data, since it is not feasible to train over the entire state-space.
The points about safety also tie into the third feature; robustness and generalization. Robustness and
generalization of GPS methods is a function of the amount and variety of training trajectories, as well
as the ability of the global policy parameterization (usually an ANN) to generalize to unseen states.
As stated in [20], the policies found by these methods often perform well only near the set of training
trajectories and fail to generalize. This means that a robust policy would require a large amount of
training trajectories which span most of the state-space, which is undesirable and infeasible in high-
dimensional state-spaces. Also, Ennen et al. state: "Usually, the MDGPS policy starts to oscillate even
by small state disturbances.". Again, this can be solved by forcing the global policy to be a TVLG
controller, leading to improved robustness and generalization when compared to a conditional Gaussian
policy[20].

5.2. Rough outline
In this section the general structure of GPS algorithms is explained, followed by a more thorough investigation
of the MD-GPS algorithm later.

As mentioned by Levine and Koltun in their seminal paper on GPS, direct policy search methods appear
attractive to be applied in high-dimensional domains, but 1) require an inordinate amount of samples to
train high-dimensional, flexible policies such as ANNs, and 2) are prone to bad local optima[48]. The authors
argue this is due to the random exploration strategies utilized by these methods, which do not scale to high-
dimensional state- and action- spaces, or expressive policies. Instead, GPS applies (model-based) trajectory-
optimization in a lower dimensional state-space, which finds regions of high reward much more efficiently.
These trajectories are subsequently used to train a complex and expressive global policy using supervised
learning techniques. This policy is conditioned not on the low-dimensional state, but on an observation,
which is generally of much higher dimension. Examples of observations are images, but in principle any

57

source of information can be used. In summary, GPS instead divides direct policy search up into two alternating
GPS steps[56];

1. Control-phase (or C-step)
During this phase trajectories are generated using a trajectory optimization algorithm, which optimizes
not only the cost, but also forces the distribution of actions conditioned on the state p(u|x) (called
local- or sub-policies) to be similar to the global policy πθ(u|o), which is being trained. This is achieved
by either including a second cost term, or constrain the optimization using some measure of similarity.
The trajectories are recorded as sets of state, observation, action triples, needed in the second step.

2. Supervised-phase (or S-step)
During this phase the global policy πθ(u|o) is trained to match the action distributions of the sub-
policies p(u|x), which have been recorded during the C-step, in a supervised way.

The fact that during the C-step trajectories are not optimized w.r.t. cost, but also similarity to the global
policy is an important aspect of GPS. By adapting the trajectories to the global policy, limitations of it’s
parameterization and available information are taken into account. Compare this to an imitation learning
method like DAgger[67], which assumes that for any teacher, the policy is able to achieve bounded error[56].
Obviously, this assumption does not hold in general, an example being the case of a piano teacher and his
one-armed student. In this case the "parameterization" of the student prevents him to always be able to
imitate his teacher with bounded error. Instead, the teacher should account for the difference in capability
and show the students ways in which some piece of music can be played with one hand, or when that fails
switch to pieces which are suitable to be played one-handed. The same principles apply when the student
cannot differentiate some states from each other, a problem of observability. Both cases are accounted for by
optimizing trajectories not only w.r.t. cost, but also similarity to the global policy.

As explained before, trajectory optimization takes place in a state-space which is generally of much lower
dimension than the observation-space. This allows the sub-policies to be much simpler than the global
policy, and it makes their optimization significantly more efficient than optimization in the observation-
space directly. Additionally, the state-space can be chosen such that it is much more amenable to model-
based optimization methods, which improves the efficiency of exploration substantially.

5.3. Mirror Descent Guided Policy Search
The specific GPS algorithm which will be used during this research is MD-GPS, using iLQG-FLM for trajectory
optimization under unknown dynamics, while utilizing a nonlinear global policy, from [56]. In this section
the algorithm will be explained thoroughly, starting by a summary of important symbols and notation in
table 5.1, and an outline of the algorithm in algorithm 1. Although part I already contains an in-depth look at
the MD-GPS algorithm, the explanation in this section of the thesis goes a bit deeper still.

Algorithm 1 Mirror descent guided policy search (MD-GPS): unknown dynamics, nonlinear global policy[56].

1: for k = 1 to K do
2: Generate samples Di = {τi , j } by running either pi (u|x) or πθ,i (u|o)
3: Fit linear-Gaussian dynamics pi (x t+1|x t ,u t) using samples in Di

4: Fit linearized global policy π̄θ,i (u|o) using samples in Di

5: C-step: pi ← argminpi Epi (τ)
[
`(τ)

]
such that DK L(pi (τ) || π̄θ,i (τ)) ≤ ε

6: S-step: πθ ← argminθ
∑

t ,i , j DK L(πθ,i (u t |x t ,i , j) || pi (u t |x t ,i , j)) via supervised learning
7: Adapt ε
8: end for

58

Table 5.1: A summary of important symbols and notation used in the explanation of MD-GPS under unknown dynamics, utilizing a
nonlinear global policy. Heavily inspired by [52].

Symbol Explanation Examples
x t Markovian state vector at time t ∈ [0,T −

1]
3-dimensional position, velocity,
attitude, and angular rate vectors.

ot Observation vector at time t ∈ [0,T −1] Camera images, laser range
measurements.

u t Action vector at time t ∈ [0,T −1] Motor torques, aileron/elevator
deflection.

τ Trajectory:
τ = ({x t ,ot ,u t }, · · · ,uT−1}), inclusion of
observations depends on the context

Notational shorthand for a sequence of
states, observations, and actions.

`(τ) The cost of a trajectory Notational shorthand for cost functions
over trajectories.

p(x t+1|x t ,u t) Unknown system dynamics System dynamics of a drone, or other
aircraft.

pi (u t |x t) Action distribution of the i th trajectory
distribution, also called the i th sub-
policy, which starts at x i

0 ∼ p(x0)

A TVLG controller, optimized by iLQG.

pi (τ) The i th trajectory distribution, induced
by pi (u t |x t) when starting at x i

0

Notational shorthand for a trajectory
distribution induced by a sub-policy.

τ
j
i The j th realization of pi (τ) Each sub-policy is used to generate

multiple trajectories.
pi (x t+1|x t ,u t) Linearized system dynamics around

pi (τ), in the form of a linear-Gaussian
model

Linearized aircraft dynamics around a
nominal trajectory.

πθ(u t |ot) Global policy, action distribution
conditioned on the observation,
parameterized by weight vector θ

An ANN, which outputs a mean and
covariance of a Gaussian distribution
from which an action is sampled.

πθ,i (τ) The trajectory distribution induced by
the global policy, while starting at x i

0

Notational shorthand for a trajectory
distribution induced by the global policy.

π̄θ,i (τ) The trajectory distribution induced by a
policy which is the result of linearizing
the global policy around pi (τ), or πθ,i (τ),
while starting at x i

0

Notational shorthand for a trajectory
distribution induced by a linearized
global policy.

Di Set of sampled trajectories {τi , j } A set of trajectories sampled on the
quadcopter system

ε KL-divergence step size N/A

In fig. 5.1, a stylized representation of the MD-GPS is shown. The steps 1 to 5 are explained in further
detail below:

1. Sample trajectories on the real system, using either the previous sub-policy or the global policy.
A quadcopter is used to generate trajectories, controlled by a sub-policy (open-loop) or the global-policy
(closed-loop). States (positions, velocities), inputs (rotor speed or voltage), and observations (camera
images) will be logged at each time step. States can be measured on-line by motion-capture systems or on-
board sensors, but are not required by the controller during flight and therefore allow off-line processing.
However, when the global-policy is used to control the quadcopter, the observations are needed inside the
control loop.

2. Fit TVLG model of the dynamics, around the sampled trajectories.
The state-action-state tuples contained in the sampled quadcopter trajectories are used to fit a model of
the quadcopter dynamics. This model will be used by the model-based trajectory optimization, instead
of sampling the real system.

3. Fit TVLG model of the global policy, around the sampled trajectories.

59

Figure 5.1: Stylized representation of the MD-GPS algorithm, corresponding to algorithm 1. Trajectories sampled on the real system have
a solid outline, Gaussian approximations are dashed and are ellipse-shaped. The light red area represents the constraint manifold of the
global policy parameterizationΠΘ. Distances in this space can be roughly interpreted as a KL-divergence, as it is a measure of difference
between two probability distributions.

To enable efficient trajectory optimization with a KL-divergence constraint, a locally linearized version
of the global-policy is needed.

4. Optimize sub-policies using dual gradient descent (DGD), minimize the surrogate cost using iLQG in
combination with the dynamics model, and increment the dual variable to reduce KL-divergence, until
convergence.
Sub-policies are optimized using the iLQG algorithm, using locally modeled dynamics and a locally
linearized global-policy. By using a model of the dynamics, trajectory optimziation is done off-line,
without further sampling by the quadcopter.

5. Use supervised learning to match the global-policy to the sub-policies. This amounts to an approximate
projection onto the constraint manifoldΠΘ.
The final step is to train the global-policy by supervised learning, which is naturally done off-line using
gradient-based optimization.

Step 1: Sample trajectories
The first step is to sample trajectories using the real dynamics of the system to control, obtained by either
running the sub-policies or global policy, of the previous iteration. By using multiple different, but consistent,
initial states x0,i ∼ p(x0), generalization is improved[56]. The i th initial state will be the starting point of a

trajectory distribution from which multiple trajectories are sampled: τ j
i for j = [1,2,3, · · ·], stored in set

Di . Depending on whether trajectories are sampled by sub-policies or the global policy, the distribution is
pi (τ) or πθ,i (τ), respectively. According to Montgomery and Levine, on-policy sampling reduces learning
speed as the global policy lags behind the sub-policies in performance, due to the approximate projection
during the S-step of the algorithm[56]. As mentioned in [57], an advantage of on-policy sampling is that it
can be utilized to allow stochastic initial states, which improve generalization and ease of application of these
methods. However, this would require additional steps (as presented in [57]), and will not be considered in
this work.

60

Step 2: Approximate dynamics
In this instantiation of MD-GPS, iLQG is used for trajectory optimization, under unknown nonlinear dynamics.
This method requires a TVLG model of the dynamics, which is assumed to be unavailable beforehand, and so
requires dynamics to be estimated online. Fortunately, iLQG requires only a local dynamics approximation,
which allows the use of much easier to fit local dynamics models, provided trajectories do not stray too far
from the nominal one. This caveat requires the iLQG objective to include a term that penalizes distance from
the nominal trajectory, which is handled by the KL-divergence upper bound ε in eq. (5.3).

Dynamics are approximated around each set of trajectories Di separately, which have been sampled in
the previous step. The dynamics models take the form of TVLGs:

pi (x t+1|x t ,u t) =N (f xt x t + f ut u t + f ct ,F t) (5.1)

Matrices f xt , f ut , f ct , and F t will be estimated by fitting Gaussian distributions to the state transitions

(x i , j
t ,ui , j

t , x i , j
t+1) at every time step, using multiple samples of the trajectory distribution: τ j

i ∈ Di , and then
conditioning the distributions to obtain pi (x t+1|x t ,u t).

This approach amounts to linear regression, the complexity of which grows linearly with the number of
states, which causes the amount of sampled trajectories to grow quite large for more complex systems. To
combat this issue, a global model is fitted alongside the local dynamics, which will act as a prior and reduce
the number of samples needed.

Firstly, in the case of a multivariate Gaussian distribution, a normal-inverse-Wishart distribution can be
used to combine prior- with new information:

Σ= Φ+N Σ̂+ N m
N+m (µ̂−µ0)(µ̂−µ0)T

N +n0
µ= mµ0 +n0µ̂

m +n0
Φ= n0Σ̄ µ0 = µ̄ (5.2)

Where, respectively, µ̂ and Σ̂ are the sample mean and variance of the Gaussian distributions which have
been fitted to the newly sampled vectors

[
x t ;u t ; x t+1

]
i . Where, for the i th trajectory distribution, there is one

distribution per time step, which has been fitted using multiple trajectory samples. Additionally, n0 is the
amount of new data points over which the dynamics are being fitted, m is the number of points over which
the prior mean µ0 has been determined, and N is the number of points over which the prior covariance Φ
has been determined (in this case equal to m).

Secondly, a GMM is constructed over vectors [x t ;u t ; x t+1], modeling the transition tuples as coming from
a mixture model with hidden state h. The elements of h encode the membership of a transition tuple to a
particular conditional linear-Gaussian distribution (or mixture element), which corresponds to a stochastic
linear dynamics model. By using the membership fractions in h a weighted average over the means and
covariances of all mixture elements is used to determine Σ̄, and µ̄, to finally calculateΣ, andµ using eq. (5.2).
The Gaussian distribution with this mean and covariance is then conditioned on [x t ;u t] to obtain pi (x t+1|x t u t).

Step 3: Linearize global policy
The objective optimized during the C-step, see line 5 of algorithm 1, includes a KL-divergence constraint
of the sub-policies w.r.t. the global policy. This leads to a surrogate cost function for the iLQG trajectory
optimization in the next step, as presented in eq. (5.14). Needed for the surrogate cost is the logarithm of
the action distribution, induced by the global policy logπθ,i (u t |x t), which will be approximated by its second
order Taylor expansion (since iLQG approximates cost up to second order). In the case of highly nonlinear
global policies, this approximation can be quite jagged during the beginning of the learning procedure[49],
and prevent convergence[50]. To combat this, a TVLG approximation of the global policy, denoted π̄θ,i , will
be fitted for each sub-policy, in exactly the same way as for the dynamics.

Step 4: C-step
At this point the trajectories have been sampled, the dynamics fitted, and the global policy approximated, the
next step is the optimization of the sub-policies; the C-step. The objective of this optimization is shown on
line 5 of algorithm 1 and will be repeated here for convenience:

pi ← argmin
pi

Epi (τ)
[
`(τ)

]
s.t. DK L(pi (τ) || π̄θ,i (τ)) ≤ ε (5.3)

In concordance with prior work, the sub-policies are chosen to be TVLG controllers, shown in eq. (5.16),
which allow for efficient optimization using the iLQG algorithm[76].

61

Figure 5.2: A 2-D representation of an example transition-space, in which two GMM mixture elements reside. The red ellipse is the
Gaussian distribution N (µ̂i ,t ,Σ̂i ,t) fitted to the transitions of the trajectories in Di , at time step t ; denoted by Ti ,t , represented by the
black vectors. The two mixture elements are represented by the blue ellipses, and have been fitted using previous transition samples,
represented by the grey crosses filling the space. The set Ti ,t is assigned a hidden state h, which contains membership fractions for both
mixture elements, which are used as weightings to determine µ̄ and Σ̄ for eq. (5.2). In this case the sampled vectors lie approximately
between the two mixture elements, leading to the following hidden state: h ≈ [1

2 , 1
2]T .

เลนนา

The general structure of the iLQG algorithm used in this work is presented in algorithm 2. It deviates
slightly from normal iLQG, since there is no global model of the dynamics and sampling on the real system
does not take place during the trajectory optimization. Only a local approximation of the dynamics is available,
which is reused each iLQG iteration. To maintain model accuracy, trajectories are kept close to the nominal
by inclusion of a KL-divergence term in the objective. Additionally, the forward pass does not take place on
the system itself, but is instead performed using the local dynamics model.

Algorithm 2 Outline of the variant of iLQG used in this work.

Require: Initial nominal trajectory
1: Approximate dynamics around the nominal trajectory
2: while not converged do
3: Approximate cost around the nominal trajectory
4: Backward pass: determine optimal sub-policy around the nominal trajectory
5: Forward pass: use local dynamics model and the new sub-policy to obtain an open-loop trajectory
6: end while

The goal of iLQG is to minimize the expectation of some cost function over a distribution of finite trajectories
induced by a sub-policy and corresponding initial state:

min
pi

Epi (τ)
[
`(τ)

]
, where `(τ) =

T−1∑
t=0

`(x t ,u t), and where `(x t ,u t) = c(x t ,u t) (5.4)

Where, for now, c(x t ,u t) is the usual cost/reward function used in optimal control and RL problems.
At each time step, using the system dynamics and cost function approximations, a linear quadratic Gaussian

(LQG) controller is optimized. It is a method similar to differential dynamic programming (DDP), which
approximates both up to second order, but only includes the linear term in the dynamics approximation
instead.

In [27], iLQG is explained as follows: given a nominal trajectory:

τ̄= (
{x̄0, ū0}, {x̄1, ū1}, · · · , {x̄T−1, ūT−1}

)
(5.5)

62

define deviations as: x̂ t = x t − x̄ t , and û t = u t − ū t . The deviation’s dynamics and cost function are
approximated as follows:

x̃ t+1 = f ct +
[

f xt
f ut

]T [
x̂ t

û t

]
˜̀(x̂ t , û t) = ¯̀+

[
`xt

`ut

]T [
x̂ t

û t

]
+ 1

2

[
`xxt `xut

`uxt `uut

] (5.6)

Where subscripts w.r.t. x and u denote Jacobians and Hessians, which can be obtained in multiple ways;
finite differences, automatic differentiation, or analytical methods. It has already been explained how the
dynamics are approximated in section 5.3. Using the method explained there, the terms f ct , f xt , and f ut are
obtained. As for the cost approximation, it is obtained using finite differences.

The state- and action-value functions are approximated up to second order and are defined :

V (x̂) = V̄ +V T
x x̂ + 1

2
x̂T V xx x̂ (5.7)

Q(x̂ , û) = Q̄ +
[

Q x
Qu

]T [
x̂
û

]
+ 1

2

[
x̂
û

]T [
Q xx Q xu
Qux Quu

][
x̂
û

]
(5.8)

By starting at the final state and iterating backwards through time, each component of the state- and
action-value functions is computed:

Q xxt =`xxt + f T
xt V xxt+1 f xt

Quut =`uut + f T
ut V xxt+1 f ut

Quxt =`uxt + f T
ut V xxt+1 f xt

Q xt =`xt + f T
xt V xt+1

Qut =`ut + f T
ut V xt+1

(5.9)

V xt =Q xt −QT
uxt Q−1

uut Qu

V xxt =Q xxt −QT
uxt Q−1

uut Qux

(5.10)

When optimizing the objective shown in eq. (5.4), the locally optimal sub-policy can then be described by
the following time-varying linear controller:

g (x t) = ū t +K t (x t − x̄ t)+k t (5.11)

Where:
K t =−Q−1

uut Quxt k t =−Q−1
uut Qut (5.12)

However, the C-step optimizes a slightly different objective from eq. (5.4); it includes a KL-divergence
constraint as in eq. (5.3). It turns out this objective can be optimized using iLQG as well. To this end, the
constrained problem is transformed to its Lagrangian:

L (pi ,η) = Epi (τ)
[
`(τ)

]+η(DK L(pi (τ) || π̄θi (τ))−ε)

=
T−1∑
t=0

Epi (xt ,ut)
[
`(x t ,u t)−η log π̄θi (u t |x t)

]−ηH (p(u t |x t))−ηε (5.13)

Where the second line follows from the assumption of conditional Gaussian policies, identical TVLG
dynamics, and identical initial states, as in [47, 56]. This Lagrangian can be optimized by changing the cost
function to the following:

`(x t ,u t) = 1

η
c(x t ,u t)− log π̄θi (u t |x t) (5.14)

When the deterministic sub-policy in eq. (5.11) is adapted to be a TVLG, by using the same feedback and
feedforward terms and by setting its covariance to:

C t ,i =−Q−1
uut (5.15)

The optimal sub-policy becomes a TVLG controller, which stabilizes the state around the nominal trajectory:

pi (u t |x t) =N (ū t ,i +K t ,i (x t − x̄ t ,i)+k t ,i ,C t ,i) (5.16)

63

This way iLQG optimizes the following objective:

pi = argmin
pi

Epi (xt ,ut)
[
`(x t ,u t)

]−H (pi (u t |x t)) (5.17)

The Lagrangian is optimized using DGD, iteratively optimizing pi using iLQG and incrementing the dual
variable η. Since the dual function is convex and there is only one dual variable, a bracketed quadratic-fit line-
search method can efficiently find the optimum[56]. To further speed up convergence, the DGD optimization
is stopped when the KL-divergence is within 10% of the constraint, and the line-search is performed in log-
space[47].

To update η, the constraint violation is estimated, which requires the KL-divergence over trajectories in
eq. (5.3). In the case of identical initial states and dynamics, as well as conditional Gaussian policies, the
divergence reduces to an operation over the policies directly[47, 56], and the KL-divergence can be calculated
as follows:

DK L(pi (τ) ||πθ,i (τ)) = ∑
t ,i , j

DK L(pi (u t |x t) ||πθ(u t |x t)) = ·· ·
∑

t ,i , j
Epi (x t ,ot)

[
Tr[Σπ(ot)−1C t i]− log|C t i |+ · · ·

(
µ

p
ti (x t)−µπ(ot)

)T
Σπ(ot)−1(µp

ti (x t)−µπ(ot)
)]

(5.18)

Where µπ(ot) and Σπ(ot) are the global policy mean and covariance, and µ
p
ti (x t) and C t i are the sub-

policy mean and covariance. The expectation over pi (x t ,ot) can either be approximated by using a TVLG
model of the global model[56], or by estimating the mean and covariance of the global policy by MC sampling[50].

The parameter ε in eq. (5.3) places a constraint on the maximum difference between the trajectory distributions
of the sub-policy and the previous global policy (linearized around sampled trajectories). It serves two purposes;
firstly, while sub-policies seek out low cost trajectories, it ensures their behavior is somewhat reproducible by
the global policy. As mentioned in section 5.2, this is important in handling arbitrary global policy parameterizations
and observability issues. The second purpose deals with the assumption that no global dynamics model is
available and dynamics are estimated locally, around the sampled trajectories. Local models have the benefit
of being much easier to fit, with the disadvantage that they are only valid in a small region around the samples.
Large steps in trajectory space cause the dynamics model to fail, which is prevented by keeping ε sufficiently
small.

To ensure fast convergence, the constraint is adapted online using one of two update rules, both based on
differences in expected- and measured cost:

`k
m =

T−1∑
t=0

Epk (xt ,ut)

[
`(x t ,u t)

]
`k,π

m =
T−1∑
t=0

Eπ̄k
θ

(xt ,ut)

[
`(x t ,u t)

]
(5.19)

Where pk (x t ,u t) and π̄k
θ

(x t ,u t) are the marginals of the local policy and linearized global policy at iteration
k, respectively, when subject to dynamics fitted at iteration m. Since the sub-policy, global policy, and
dynamics model are all linear Gaussians, the expectations in eq. (5.19) can be efficiently calculated by propagating
the Gaussian distributions forward in time, using the procedure presented in appendix B.3 of [56].

The first update rule only takes into account differences due to inaccuracies in the dynamics model and
is called the "classic" step size[56]:

ε′ = ε

2

`k
k−1 −`k−1,π

k−1

`k−1
k −`k

k

(5.20)

While the second rule expands the first by including differences due to an inability of the global policy
to reproduce behavior by the sub-policy exactly, called the "global" step size[56], which leads to a more
conservative constraint update:

ε′ = ε

2

`k
k−1 −`k−1,π

k−1

`k−1
k −`k,π

k

(5.21)

As shown in eq. (5.12) and eq. (5.15), the optimal sub-policy depends on the inverse of Quut , which is the
Hessian of the action-value function w.r.t. the input. Care must therefore be taken to ensure this matrix is
invertible, which is done by increasing the dual variable η until Quut becomes positive definite for all t .

To conclude the explanation of the C-step, it’s pseudocode is presented in algorithm 3, explaining every
step of this sub-routine.

64

Algorithm 3 C-step pseudocode for the i th sub-policy.

Require:
1: • Initial sub-policy pi (u|x)

• A set of trajectories Di sampled by either pi (u|x) or πθ,i (u|o)

• A TVLG model of system dynamics, approximated around Di ; pi (x t+1|x t ,u t)

• A TVLG model of the global policy, approximated around Di ; π̄θ,i (u|x)

• A KL-divergence step size ε, obtained from eq. (5.20), or eq. (5.21)
2: Initialize η← η0

3: while not converged do
4: Set `(x ,u) according to eq. (5.14)
5: Approximate `(x ,u) as in eq. (5.6)
6: while not converged do
7: iLQG backward pass to determine V- and Q-function components as in eqs. (5.9) and (5.10), and local

optimal sub-policy as in eq. (5.16)
8: Use new sub-policy and the TVLG dynamics model to obtain new open-loop trajectory
9: end while

10: Update η using a bracketed quadratic-fit line-search
11: end while
12: return Sub-policy optimized as in eq. (5.3)

Step 5: S-step
The final step of a MD-GPS iteration is the S- or supervised step, its goal is to optimize the global policy by
minimizing the KL-divergence between the trajectory distributions induced by itself and the sub-policies.

By again assuming identical TVLG dynamics, conditional Gaussian policies, and identical initial states,
the KL-divergence over trajectories reduces to a divergence over the action distributions of the policies[47,
56]:

πθ ← argmin
θ

∑
t ,i , j

DK L(πθ,i (u t |x t ,i , j) || pi (u t |x t ,i , j)) (5.22)

This step amounts to an approximate projection of the sub-policies on the constraint manifold induced
by the parameterization of the global policy. It is approximate because the dynamics used in the trajectory
optimization are actually not equal to the dynamics of the real system; the iLQG algorithm uses only a locally
fitted TVLG model. This makes MD-GPS an approximate instance of mirror-descent (MD)[56].

As explained previously in eq. (5.18), if the global policy is chosen to be a (nonlinear) conditional Gaussian
in the form of:

πθ(u t |ot) =N (µπ(ot),Σπ(ot)) (5.23)

where µπ and Σπ are arbitrary functions (e.g. ANNs) that determine the mean and covariance of the Gaussian
distribution, then, in combination with the TVLG sub-policies, there is an elegant equation for the KL-divergence
in eq. (5.22), in terms of the means and covariances of the distributions:∑

t ,i , j
DK L(πθ(u t |x t) || pi (u t |x t)) = ·· ·

∑
t ,i , j

Epi (x t ,ot)

[covariance terms︷ ︸︸ ︷
Tr[C−1

t i Σ
π(ot)]− log

∣∣Σπ(ot)
∣∣+·· ·

(
µπ(ot)−µp

ti (x t)
)T C−1

t i

(
µπ(ot)−µp

ti (x t)
)︸ ︷︷ ︸

mean terms

]
(5.24)

Where µ
p
ti (x t) and C t i are the mean and covariance matrix of the i th sub-policy, at time step t (see

eq. (5.16)).
Looking at eq. (5.24), it is easy to see that the S-step objective consists of two terms; one term which is

a weighted square difference in the means, and one which concerns the covariances. The weighting matrix
on the difference between means is equal to the curvature of the action-value function Quut (see eq. (5.15)),

65

which means that errors are weighted based upon the amount they increase the approximated cost-to-go.
The gradient of this quadratic cost term can easily be calculated using auto-differentiation or analytical
means.

The covariance of the global policy is set to a constant value in many GPS applications, it can be optimized
easily by a closed form solution that minimizes the objective as a function of a constant global policy covariance:

Σπ =
[

1

N T

N−1∑
i=0

T−1∑
t=0

C−1
t i

]−1

(5.25)

If the covariance was to be a function of the observationΣπ(ot), then the optimization would again involve
the calculation of derivatives and the application of some gradient descent method, as with the optimization
of the mean.

6
Preliminary results

In this section, preliminary results are shown to investigate the feasibility of MD-GPS for a flight control
application. To this end, two dynamical systems are investigated; a torque-controlled pendulum, and a force-
controlled two-dimensional point mass. The goals of this section are to:

• Show a proof of concept

• Investigate the case where the global-policy suffers from unobservable states

• Investigate the ability of the global-policy to generalize outside its training trajectories

• Investigate the case where the trajectory optimization fails to find good solutions

First, the used methods and environments will be explained, followed by a presentation of the results, and
finally an analysis.

6.1. Methods
In this work the GPS code implementation from [23], published by the authors of several GPS papers, is
used. This repository includes implementations of many of the algorithms mentioned in the literature review
presented in section 2.A of part I, including MD-GPS with iLQG trajectory optimization and fitted dynamics.
To simulate environments, several agent interfaces are available; the MuJoCo simulator[77], ROS[64], and the
Box2D physics simulator[1].

The tasks implemented in the preliminary analysis are all based on the Box2D simulator and the environments
published in [23]. They are slightly reworked, to simplify, standardize dynamics to force and torque control,
and implement rendered frames in the global policy. A description of the tasks is given below.

6.1.1. Pendulum
The pendulum environment consists of a frictionless torque-controlled pendulum subject to gravity, simulated
using Box2D, and is based on the 2-link arm environment as published in [23]. The pendulum is a homogeneous
rod of length 5.0 m, mass 0.4 kg·m−3, with a gravitational acceleration of 10.0 m·s−2. This results in a maximum
gravitational torque of 10.0 N·m, which the agent may or may not be able to overcome, based on the maximum
allowable torque input.

The state vector can be chosen in multiple ways, using either the angle of the pendulum w.r.t. the vertical;
θ, or expanding the angle into a sine- and cosine component; sinθ and cosθ. This has important consequences
for the system identification step, since it assumes a TVLG model and approximates the dynamics up to the
first order only. It also changes the definition of the cost function, which, during iLQG, is approximated as a
second-order polynomial as a function of the state.

The observation consists of a single image of the pendulum at time t , and θ̇. To reduce the computational
load, each frame has been downsampled from a 480 × 640 × 3 RGB image, to a 38 × 38 grayscale image.
Arguably, the velocity of the pendulum could also be encoded by providing multiple frames, but this requires
substantially more weights in the ANN and in the interest of time this has not been implemented.

67

68

(a) Raw image. (b) Image used as input to the global policy.

Figure 6.1: Comparison of the raw image and the downsampled image passed to the global policy as input, during the pendulum task.
Downsampling is a simple average over a block of 6× 6 pixels, resulting in a 38× 38 grayscale image to be used as input to the global
policy.

The goal of this task is to force it in an upright position and keep it there, an objective which is encoded
by a quadratic cost function on the difference between state and the target-state [0,1,0]T . The pendulum is
initiated in the downward position, with zero velocity.

6.1.2. Point mass - full view

The point mass environment consists of a force-controlled point mass acting in a square box on a plane, its
aim being to minimize its distance to some target position. It is a slightly altered version of the Box2D point
mass environment as published in [23].

The state vector is as follows: x = [
x, ẋ, y, ẏ

]
, which is simply a vector containing the two-dimensional

positions and their derivatives. The input is a two-dimensional vector with forces: u = [
Fx ,Fy

]
.

The observation consists of a single image of the point mass world at time t , and the position derivatives[
ẋ, ẏ

]
. The image is a top-down overview of the entire playing field, downsampled from a 401× 401 RGB

image, to a 41×41 RGB image. The agent’s position is encoded by a green triangle in the overview.

The goal of this task is to force the point mass to a target position and keep it there, an objective which
is encoded by a quadratic cost function on the difference between target- and actual position. The target
position is also shown in the image as a smaller green triangle.

6.1.3. Point mass - partial view

This experiment is similar to the one above, however, the input is changed to be a 100 × 100 RGB image
centered on the agent, downsampled to 50×50 to reduce computational load. This change in input prevents
the agent to infer the full state of the world as easily, a prolem which is solved by using a background image.
During the training phase the agent will have to learn to match different parts of the background image to
the actions as advised by the sub-policies. The structure of the image determines the observability of the
problem in this case.

69

(a) Raw overview image. (b) Image used as input to the global policy.

Figure 6.2: Comparison of the raw image and the downsampled image passed to the global policy as input, during the full view point
mass task. Downsampling is a simple average over a block of 10×10 pixels, resulting in a 41×41 RGB image to be used as input to the
global policy.

(a) Raw overview image, of partial-view point mass task using a background
image.

(b) Image used as input to the global policy.

Figure 6.3: Comparison of the raw image and the downsampled image passed to the global policy as input, for the partial view point
mass task. First, the image is zoomed into a 100× 100 pixel square, centered around the agent. This is followed by downsampling; a
simple average over a block of 2×2 pixels. The final product is an RGB image of 50×50 pixels, which will be passed to the global policy
as input.

6.2. Results
In this section the results of the preliminary experiments are shown, starting with the results of the full-view
point mass task. Secondly, the effect of different degrees of state observability is presented. Lastly, the results
of an investigation into the degree of generalization to unseen states are presented.

70

0 5 10 15 20 25
Iteration

103

104

Co
st

Point mass, full view, cost vs iteration

(a) Cost versus training iteration, for the full-view point mass task without any background image, note the log-scale on the y-
axis. Each line and corresponding shaded confidence intervals correspond to one experiment and 9 randomly chosen initial
conditions. As can be seen the cost converges after around 15 iterations.

5 0 5
x-position [m]

15

10

5

0

5

10

15

y-
po

sit
io

n
[m

]

iteration 2

5 0 5

Position trajectories during training
iteration 10

5 0 5

iteration 15

0.0 0.2 0.4 0.6 0.8
time [s]

0

5

10

15

20

25

30

35

40

sp
ee

d
[m

/s
]

0.0 0.2 0.4 0.6 0.8

Speed vs Time during training

0.0 0.2 0.4 0.6 0.8

State trajectories during training, full-view point mass

(b) The state trajectories at the second, tenth, and fifteenth training iteration of the full-view point mass experiment. The target is located at [0,0], starting-
and end-points are denoted by dots and crosses, respectively.

Figure 6.4: Results of the full-view point mass experiment, using no background image.

71

black background horizontal gradient
horizontal gradient

plus bi-color line radial gradient

20 0 20
x-position

20

10

0

10

20

y-
po

sit
io

n

Figure 6.5: Comparison of different background on the behavior of the global-policy after training, from left to right improving
observability of the state-space. Starting with no background, moving to a background offering only observability of the x-position,
then adding low-quality vertical information with a bi-color line, finishing with a background that offers complete observability.

15 10 5 0 5 10 15
x-position

15

10

5

0

5

10

15

y-
po

sit
io

n

full-view radial background

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a)

15 10 5 0 5 10 15
x-position

15

10

5

0

5

10

15

y-
po

sit
io

n

full-view target background

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b)

72

15 10 5 0 5 10 15
x-position

15

10

5

0

5

10

15
y-

po
sit

io
n

partial-view radial background

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c)

15 10 5 0 5 10 15
x-position

15

10

5

0

5

10

15

y-
po

sit
io

n

partial-view target background

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d)

Figure 6.6: Comparison of the extent to which the global-policy is able to generalize to the entire state-space. The red crosses are the
initial positions during training, the black dot the target position. The heatmap shows the cosine similarity of the action vector of the
converged global-policy and the vector pointing to target, at zero velocity. At zero velocity the optimal action vector should at least point
directly to the target; a cosine similarity of 1 denoted by a yellow color. From these plots the effect of background image and type of
observation (full or partial) on generalization can be investigated, "radial background" refers to the radial gradient in fig. 6.5, "target
background" refers to fig. 6.3a.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

er
ro

r

Total state error over time

Figure 6.7: Accuracy of estimated state trajectories degrades over time, caused by compounding model error.

6.3. Analysis
This section discusses the results of the preliminary point mass and pendulum experiments presented in
section 6.2.

6.3.1. Proof of concept
In fig. 6.4, the results of the point mass experiment, using a complete environment overview as observation
and no background image, are shown. As can be seen in fig. 6.4a, the training of the global-policy converges
around the 15th iteration (note the log-scale). Each color line and shaded area represent the mean and 95%
confidence intervals of the global-policy cost during the training of a single experiment, using 9 randomly
chosen initial conditions and therefore trajectories. Obviously, the cost at convergence depends on the specific
initial states of the experiment, however, the cost-iteration curves seem independent of this. This means the
speed of convergence is the same for any initial state.

From the state-trajectories in fig. 6.4b it becomes clear that already by training iteration 2 the global-policy

73

is able to move roughly towards the target position (located at [0,0]). However, it does not slow down when
near the goal as can be seen from the speed plots. At iteration 10, the global-policy is able to move towards
the target and stay there, the main difference after another 5 iterations is the velocity increase. The end result
is a global policy that is reliably able to move from the initial positions during training towards the target, and
stay there.

These results show that the point mass task is easily solved when the global policy is offered a static top-
down overview of the entire environment, in which it can see its own position at all times. An interesting
question is whether the task can still be solved when the global-policy is offered a top-down overview of the
agent’s immediate surroundings, as explained in fig. 6.3.

6.3.2. Unobservable states
In fig. 6.5, the effect of different background images on the converged behavior is shown. As can be seen,
a black background leaves the agent unable to distinguish between different states, leading to low-quality
trajectories. The next background offers only the ability to distinguish the x-position, which leads to the
agent moving towards the middle, but then drifting off. To provide a way for the global-policy to observe
something about its y-position, two differently colored bars are placed in the middle. As can be seen, this
leads the global policy to find the target for 2 of the 4 trajectories. It is interesting to see how the trajectories
start out in the same direction per side (left or right). This leads two of the trajectories to move directly to
the target, while the others move the wrong way. The trajectory starting in the upper right approaches the
upper edge and then starts moving in the right direction, but overshoots the target. The lower left trajectory
gets stuck near the boundary. The fact that the trajectories start out the same is a consequence of the initial
observation being invariant w.r.t. the y-position, resulting in the same initial behavior. Theoretically the task
should be solvable by simply moving towards the middle and then moving up or down when encountering
a red or blue bar, respectively. However, the correct solution appears only sporadically during training, and
the algorithm seems unable to settle. The final background image offers complete observability, since each
position has a unique corresponding observation. As can be seen, the resulting behavior is simply to move
directly towards the target and stay there.

As expected, the memory-less global-policy is unable to solve the task when suffering from unobservable
states. Depending on the observable information about the state, the algorithm is able to guide the global-
policy towards a solution that seems in line with the best solution available in that case. This is the result of
the fact that the sub-policies are not only optimized w.r.t. cost, but also the KL-divergence w.r.t. the global-
policy trajectory. Care should be taken to make sure the observations are such that the problem remains
fully observable, since this leads to the fastest convergence. However, the algorithm is able to handle partial
observability, as long as it leads the agent towards a region of observability as seen in the case of a horizontal
gradient with bi-colored bars in the middle.

6.3.3. Generalization to unseen states
Another interesting question is how well the converged global-policy is able to generalize to states outside
of its training trajectories. To this end, the plots in fig. 6.6 are made. What is shown is the extend to which
the action vector at a particular position, and zero velocity, is pointing towards the target. Since the velocity
is zero, the optimum action should always point directly towards the target, which makes it a measure of
optimality of at least the action direction. The cosine similarity of the action vector and the vector pointing
towards the target is presented as a heat map, yellow and blue signifying optimal and suboptimal behavior,
respectively.

In fig. 6.6a and fig. 6.6b, the results of full-view point mass tasks are shown for two different backgrounds;
the radial background from fig. 6.5 and the target background from fig. 6.3a, respectively. As seen in fig. 6.4b,
the trajectories of a converged agent during the full-view task move directly towards the target and stay there.
It seems the global policy is able to generalize quite well around these trajectories, as evidenced by the yellow
areas around the imagined trajectories. The only blue occurs at the positions far away from these straight
lines from the initial positions to the targets. In fig. 6.6c and fig. 6.6d, the results of the partial-view point mass
task are shown for the same backgrounds as mentioned above. The radial background leads to much better
generalization compared to the target background, which is probably a consequence of the fact that the radial
background changes much more gradually as a function of position. Also, it stands out how the difference
in generalization performance is much smaller for the full- than the partial-view task. This is probably a
consequence of the fact that during the former, the position information is encoded by the location of the
green triangle in the image, irrespective of the background. This is different from the partial-view task, where

74

the green triangle is ever-present at the same location in the image and thus provides no information, while
the position is encoded by the background image.

6.3.4. Failure of trajectory optimization
The final preliminary results involve the C-step of MD-GPS, which is fundamentally the part that solves the
task. It uses locally fitted TVLG models of the dynamics and a second-order model of the cost, combined
with a model-based optimal control method called iLQG. Since inaccurate dynamics and cost models are
used, long sequences potentially lead to inaccurate results. This is caused by compounding model error and
the fact that the models are local, increasing inaccuracy when straying too far from the state-trajectories at
which they have been fitted. In the case of linear dynamics and quadratic cost, like the point mass task, these
problems are mitigated. This can be explained by the fact that the dynamics are linear, and as long as the
sides of the environment are not touched, the locally fitted models are essentially global. However, when
attempting tasks that include non-quadratic costs and nonlinear dynamics, these issues do crop op, as seen
during the pendulum task.

Care must therefore be taken when choosing the exact state representation of the task. In the case of the
pendulum task, several distinct representations are possible, each with it’s own pros and cons. For instance,
when choosing the pendulum state simply as [θ, θ̇], with θ being continuous, this offers a nice simple integrator
description of the pendulum. However, since gravitational torque is proportional to the sine of the angle;
Tg ∝ sinθ, the effect of gravitational torque is a nonlinear (and actually periodic) function of the state. In
addition, these effects must be identified for each period of the sine separately; dynamics fitted in the θ

interval [0,2π) do not assist in the interval [2π,4π). As for the cost function, one could choose simply the sum
of squared differences between the current and goal state. The goal state being a pendulum that sits still in
an upright position, which can be encoded by a state of [0,0]. However, this constrains the solution to a θ
value of zero, while actually any integer multiple of 2π would satisfy the task. Another option is to set to cost
to (cosθ−1)2, which would more accurately represent the task. However, the periodic cost function will then
be modeled as a quadratic function of the state, which leaves it unable to capture the true character of the
cost far from the states at which it is fitted.

Another option is to wrap θ to the interval [0,2π). This would solve the problem of having to model
gravitational torque for every period separately, since the angle will never leave the one-period interval.
However, it introduces a discontinuity at the upright position, which cannot be accurately modeled by a
TVLG model.

The last option is to expand the state to 4 dimensions, using the Cartesian coordinates and velocities of
the end point of the pendulum as state; [x, y, ẋ, ẏ]. This allows the gravitational torque to be proportional to
the x coordinate and thus also solves the problem of having to fit these dynamics multiple times. Additionally,
the cost function becomes a quadratic of the state. However, this state representation does not capture the
constraints of the environment; the estimated pendulum end-points are not confined to a circle around the
origin. This poses the problem of quickly deteriorating state estimation when treading too far from the fitted
trajectories.

III
Additional results and Discussion

75

7
Additional results and discussion

From the research questions presented in chapter 2, the first has been answered in part II, while number
2, 3, and 4 have been handled in the scientific paper presented in part I. The results corresponding to the
remaining research questions (5, 6, and 7) and their analysis are answered in this chapter sequentially. The
experiments have been conducted using the methods explained in section 3 of part I, using the quadcopter
model and controller presented in appendix D, and the default parameters outlined in section 3.G of part I
and more thoroughly in appendix C.

7.1. Research question 5
This section shows and analyzes the results of experiments that are used to answer the fifth research. For
convenience, the research question is repeated below:

How does pre-training the dynamics prior and TVLG models, using demonstrations, affect the sample
efficiency of MD-GPS?

10 20 30 40
iteration

10 1

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

co
st

Cost vs iteration
RQ5-A
RQ-CTRL

Figure 7.1: Cost-iteration curves, for experiment RQ5-A (without using dynamics-model pre-training), and RQ-CTRL (with using
dynamics-model pre-training). The plot shows a thick line, which signifies the median, and a shaded area which signifies the 68.27%
confidence interval. Take note of the log-scale on the y-axis.

77

78

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #15

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #49

0.0 0.5 1.0 1.5 2.0
time [s]

10 2

10 1

100

ta
rg

et
-d

ist
an

ce
 [m

]
iteration #1

RQ5-A
RQ-CTRL

Target-distance vs time

Figure 7.2: Three plots of target-distance versus time plots at different iterations, for experiment RQ5-A (without using dynamics-model
pre-training), and RQ-CTRL (with using dynamics-model pre-training). The plots show a thick line, which signifies the median, and a
shaded area which signifies the 68.27% confidence interval. Take note of the log-scale on the y-axis.

0 10 20 30 40 50
iteration

0

20

40

60

80

100

un
st

ab
le

 tr
aj

ec
to

rie
s [

%
]

Unstable trajectories vs iteration
RQ5-A
RQ-CTRL

Figure 7.3: A bar-plot showing the percentage of sampled trajectories that is "unstable", for experiment RQ5-A (without using dynamics-
model pre-training), and RQ-CTRL (with using dynamics-model pre-training). A trajectory is unstable if at any time step the distance to
the target is larger than 6 m.

To investigate the effect of pre-training the dynamics models, the cost-iteration curves with- and without
pre-training are shown in fig. 7.1. As can be seen, the curves are almost identical, the non-pre-trained cost
even being a little lower. The same can be seen in fig. 7.2, where the target-distance curves are practically the
same for both initialization methods. In fig. 7.3 the percentage of trajectories that are unstable are presented
per training iteration. At the end of the training process (iteration 30 and up) the fraction of unstable trajectories
seems to slightly increase when omitting pre-training the dynamics models. However, this increase is very
minimal and stays below 6%.

Pre-training the dynamics models has no discernible effect on sample-efficiency, as the cost-iteration
curves are practically identical with- and without it. The only discernible difference is the slight up-tick

79

in unstable trajectories near the end of training when not performing dynamics models pre-training. This
contradicts the earlier hypothesis that stated the improved dynamics models would lead to better trajectory
updates at the start of training. This could be explained by the fact that the step size at the start of training
is deliberately set quite low, to prevent aggressive updates at a time when the dynamics models are still
inaccurate. It could well be that when the initial KL-divergence step size is increased, a difference would
be observable.

7.2. Research question 6
This section shows and analyzes the results of experiments that are used to answer the sixth research. For
convenience, the research question is repeated below:

How does utilizing demonstrations to create a cost-function affect the sample-efficiency of MD-GPS?

10 20 30 40
iteration

10 1

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

co
st

Cost vs iteration
RQ-CTRL
RQ6-B
RQ6-C

Figure 7.4: Cost-iteration curves, for experiment RQ-CTRL (using the normal cost-function), RQ6-B (using a demonstration-based cost-
function up to iteration 5), and RQ6-C (using a demonstration-based cost-function up to iteration 10). The plot shows a thick line, which
signifies the median, and a shaded area which signifies the 68.27% confidence interval. Take note of the log-scale on the y-axis.

To investigate the effect of demonstration-based cost on the sample-efficiency, the cost-iteration curves
are plotted in fig. 7.4. As can be seen, the cost when using a demonstration-based cost for 5 iterations is higher
than when using the normal cost, over the entire training process. As for using a demonstration-based cost
for 10 iterations, it seems to ultimately converge to the same cost as using a normal cost-function, but the rate
of convergence is much slower. This can also be observed in fig. 7.5, where the target-distance curves when
using demonstration-based cost for 5 iterations converges to a higher value than the control at iteration 15
and 49, while using it for 10 iterations leads to a curve almost identical to the control at iteration 49. As for the
occurrence of unstable trajectories, none of the experiments show any unstable behavior and therefore there
is no plot shown.

These results contradict the earlier hypothesis that said the demonstration-based cost-function would
improve sample-efficiency by providing more information than the standard position-based cost. A possible
explanation is that while a demonstration-based cost-function provides more information, it ultimately rewards
the wrong trajectories. Using the default settings, the cost decreases from iteration 1 onward, meaning
already at the start it has enough information to determine effective trajectory updates. In that case, a
demonstration-based cost-function will lead to sub-optimal trajectory updates.

80

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #15

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #49

0.0 0.5 1.0 1.5 2.0
time [s]

10 2

10 1

100

ta
rg

et
-d

ist
an

ce
 [m

]
iteration #1

RQ-CTRL
RQ6-B
RQ6-C

Target-distance vs time

Figure 7.5: Three plots of target-distance versus time plots at different iterations, for experiment RQ-CTRL (using the normal cost-
function), RQ6-B (using a demonstration-based cost-function up to iteration 5), and RQ6-C (using a demonstration-based cost-function
up to iteration 10). The plots show a thick line, which signifies the median, and a shaded area which signifies the 68.27% confidence
interval. Take note of the log-scale on the y-axis.

7.3. Research question 7
This section shows and analyzes the results of experiments that are used to answer the seventh research. For
convenience, the research question is repeated below:

How robust is MD-GPS to different settings of the KL-divergence step size increase/decrease factor?

10 20 30 40
iteration

10 1

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

co
st

Cost vs iteration
a=1.15 a=1.33 a=1.5 a=2.0 a=4.0

Figure 7.6: Cost-iteration curves, for experiment RQ7-A (using a learning rate adaptation factor of 1.15), RQ7-B (using a factor of 1.33),
RQ7-C (using a factor of 1.5), RQ7-D (using a factor of 2.0), and RQ7-E (using a factor of 4.0). The plot shows a thick line, which signifies
the median, and a shaded area which signifies the 68.27% confidence interval. Take note of the log-scale on the y-axis.

81

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #15

0.0 0.5 1.0 1.5 2.0
time [s]

iteration #49

0.0 0.5 1.0 1.5 2.0
time [s]

10 2

10 1

100

ta
rg

et
-d

ist
an

ce
 [m

]
iteration #1

a=1.15
a=1.33
a=1.5
a=2.0
a=4.0

Target-distance vs time

Figure 7.7: Three plots of target-distance versus time plots at different iterations, for experiment RQ7-A (using a learning rate adaptation
factor of 1.15), RQ-CTRL (using a factor of 1.33), RQ7-C (using a factor of 1.5), RQ7-D (using a factor of 2.0), and RQ7-E (using a factor of
4.0). The plots show a thick line, which signifies the median, and a shaded area which signifies the 68.27% confidence interval. Take note
of the log-scale on the y-axis.

0 10 20 30 40 50
iteration

0

20

40

60

80

100

un
st

ab
le

 tr
aj

ec
to

rie
s [

%
]

Unstable trajectories vs iteration
a=1.15
a=1.33
a=1.5
a=2.0
a=4.0

Figure 7.8: A bar-plot showing the percentage of sampled trajectories that is "unstable", for experiment RQ7-A (using a learning rate
adaptation factor of 1.15), RQ-CTRL (using a factor of 1.33), RQ7-C (using a factor of 1.5), RQ7-D (using a factor of 2.0), and RQ7-E (using
a factor of 4.0). A trajectory is unstable if at any time step the distance to the target is larger than 6 m.

To investigate the effect of the step size increase/decrease factor on the sample-efficiency, the cost-iteration
curves for different values are plotted in fig. 7.6. As can be seen, the cost-iteration curves for the factors 1.15,
1.33, and 1.5 are almost identical, having similar median and confidence intervals. However, the curves for
a value of 2.0 and 4.0 lead to a higher final cost value and a large increase in cost-variance. The rise in cost-
variance occurs sooner for a factor of 4.0 then 2.0, but the latter has a larger final cost. Also, a value of 4.0
achieves a relatively low cost-value around iteration 20, but subsequently performance degrades to end up at
a higher cost at iteration 49.

Looking at the target-distance curves in fig. 7.7, it is easy to see that the same trend occurs here; for factor
values of 1.15, 1.33, and 1.5 the target-distance shows the same progression. However, the target-distance

82

confidence intervals for factors of 2.0 and 4.0 are significantly increased, with the former converging to a
much larger distance than the other values.

In fig. 7.8, the percentage of unstable trajectories per iteration is shown for different factor values. As
can be observed, a general rule seems to be the larger the increase/decrease factor, the larger the fraction
of unstable trajectories. Interestingly, although the number of unstable trajectories for a factor of 2.0 starts
rising more slowly than for a value of 4.0, both converge to the same percentage. Also, for both a value of 1.15
and 1.33 there are no unstable trajectories.

These results support the previously hypothesis that stated that a higher step size decrease/increase factor
can lead to stability issues due to its aggressive trajectory updates. The results are as expected; large factor
values lead to high percentage of unstable trajectories. It was also hypothesized that the upside of aggressive
step size adaptation could be that it can increase the speed at which the algorithm adapts to new information,
possibly leading to faster convergence. This however is not observed in the results, as the median cost-
iteration curves are quite similar, with the lower factor values outperforming the higher. An explanation
could be that for this system the valid region of the dynamics models is too small to allow for large step sizes
and any changes in model validity are quite small, reducing the need for aggressive step size adaptations.

IV
Closure

83

8
Conclusion

This chapter concludes the thesis report, presenting the main results of the experiments, the outcome of
the analysis, and the answers to the research questions. This will include the questions that have been
handled in the scientific paper presented in part I. Firstly, the outcome of the literature study and preliminary
results (presented in part II) is discussed, followed by the conclusion with respect to the research questions
as specified in chapter 2.

The last decade there have been many exciting developments in machine learning; using expressive
function approximators like ANNs, combined with large amounts of data and stochastic optimization methods,
have lead to many interesting applications in computer vision and signal processing. Additionally, the field
of RL has been making use of these new techniques to train high-dimensional policies that act directly on
complex visual inputs, which has seen much use in creating agents that perform extremely well in a plethora
of computer games. The promise of using high dimensional sensory information directly as control input
has also lead to applications in the field of flight control, focusing mainly on UAVs. However, the amount of
data needed to train these policies tends to be orders of magnitude larger than what is feasible for real-world
systems. To solve this problem, the main goal of this thesis is to:

Main goal

Investigate how learning from demonstration can be used to improve the sample-efficiency of
reinforcement learning applied to flight control.

To this end, the following initial research question is posed, which then leads to the additional ones:

Research question 1

What is an RL algorithm that fits well with a flight control application, is a good fit to be combined
with LfD, and preferably has high baseline sample-efficiency?

As explained in chapter 1, this question is answered by a literature study into both RL and LfD, combined
with several preliminary experiments, which are presented in part II. This investigation start by listing the
main requirements a flight control RL algorithm needs to fulfill, in section 5.1. The first of which states that,
since the flight controller needs to handle continuous state- and action-spaces, the algorithm should as well.
This rules out any tabular RL methods, since these live in discrete state- and action-spaces. In general, model-
free methods are infeasible because of their over-reliance on trial-and-error and low sample-efficiency. This
naturally leads to the choice of model-based continuous RL methods.

Secondly, it is determined which type of LfD is the best fit when combined with the previously picked
family of RL methods. In section 4.2, many different LfD methods are investigated. For a flight control
application, the most practical use-case of LfD is when expert demonstrations are available in the form of
state-action-state tuples, generated by a teacher with he same embodiment as the student. This removes the
need for any mapping from observation to demonstration, or from demonstration to the student’s own state-
space. A desirable property of a good LfD method for flight control is one that allows the student to surpass

85

86

the master, a feature which many do not support. A family of methods which can effectively integrate LfD
into continuous model-based RL, while allowing the student to improve upon the demonstrations, is GPS.

The type of GPS deemed feasible for further exploration in this thesis is MD-GPS, which has relatively few
hyperparameters and shows good performance. This method efficiently trains a high-dimensional global-
policy for a control task by combining supervised learning with local system-identification and model-based
RL.

To investigate the feasibility and failure modes of MD-GPS, some preliminary experiments have been
conducted in section 6.2. It is shown how MD-GPS is able to accurately control a two-dimensional point-mass
using a vision-based control policy. Additionally, experiments show that when the global-policy suffers from
unobservable states, the information that ís available is used efficiently to maximize performance. Thirdly,
it is shown that the ability of MD-GPS to generalize to unseen states using vision-based control depends
heavily on the type of camera-viewpoint, and the characteristics of the background. When using a third-
person overview as the input, generalization is largely independent of background image characteristics,
while using a first-person camera-view leads to generalization that is dependent heavily on the background
image. Finally, it is shown how the total state-estimate error tends to increase over time, which is attributed
to compounding modeling errors. The fact that the true dynamics are unknown and MD-GPS makes use of
TVLGs impedes the use of long time horizons.

The answer to the initial research question leads to a more specified second set of questions that together
attempt to answer how the sample-efficiency of MD-GPS can be further improved by making use of demonstrations
by an expert; LfD. This main research question is divided up into six sub-questions, which have been researched
by performing multiple experiments in simulation, using a nonlinear dynamics model of a quadcopter. The
demonstrations take the form of state-action trajectories generated by a quaternion-based nonlinear controller,
which generates high quality examples. Of these six research questions, the first three are handled in the
scientific paper presented in part I, while the remaining ones are handled in part III. What follows now are
the main conclusions of analysis corresponding to the remaining research questions, starting with a recap of
each question.

Research question 2

How does initializing the sub-policies of MD-GPS with high-quality demonstrations affect the
sample efficiency?

It has been shown that by initializing the trajectory-optimization with demonstration-based sub-policies,
both the initial- and final cost are reduced significantly. As a matter of fact, with random sub-policy initialization
the algorithm is not able to find a policy that converges to the target-position at all; demonstration-based
sub-policy initialization appears necessary to find a controller that stabilizes the system.

Research question 3

How robust is MD-GPS to sub-policies initialized using sub-optimal demonstrations?

Although demonstrations are often examples of low-cost trajectories, in general they are not strictly optimal
as judged by the cost-function of the agent. Therefore, the robustness of MD-GPS to sub-policy initialization
with sub-optimal demonstrations is investigated. It has been shown that when the degree of sub-optimality
is within certain bounds, the policy converges to a similar solution as when initialized by a high-quality
demonstration. In fact, when the sub-optimality is a 0.25 m target-offset, the cost-value converges to the
same solution as when using the high-quality demonstration. With a higher target-offset of 1.00 m, the
solution converges to a solution that is worse, which indicates the degree of sub-optimality is too high and the
initial trajectories lie outside the region of attraction of the optimal solution. In the case of a demonstration
that is more noisy ("squiggly"), the cost reaches a slightly worse cost-value at the 49th iteration, for both an
input-noise variance of 7.5 and 15.0. This indicates that both variance levels are too large to allow convergence
to the cost-value reached when using the high-quality demonstration.

Research question 4

How does the specific training structure affect the sample-efficiency of MD-GPS?

87

Demonstrations can also be used to train the global-policy before the MD-GPS training process starts;
global-policy pre-training. Several experiments are conducted to compare different ways of structuring the
training process, with and without pre-training. The MD-GPS algorithm uses the global-policy to sample
trajectories in the real-world and constrain trajectory-optimization. However, results show that delaying
the point at which the global-policy is used for the KL-divergence constraint to the fifth-, and global-policy
sampling to the tenth iteration, sample-efficiency is greatly improved when compared to the unaltered algorithm.
With alterations and pre-training, the amount of samples needed to achieve the cost-value that the unaltered
algorithm achieves at convergence, is reduced by a factor of six. Without these delays a pre-training causes
the solution to diverge.

Research question 5

How does pre-training the dynamics prior and TVLG models, using demonstrations, affect the
sample efficiency of MD-GPS?

The effect of using demonstrations to pre-train the dynamics models is investigated, but in this work no
effect on sample-efficiency was found. This can be explained by the fact that initial step size is set to a value
that is too low to see any effect on cost. The first few iterations allow the dynamics models to become more
accurate, after which step size increases.

Research question 6

How does utilizing demonstrations to create a cost-function affect the sample-efficiency of MD-
GPS?

Another use of demonstrations is to define a custom cost-function, that forces the optimization to match
the demonstration trajectories. Although it was hypothesized this could increase sample-efficiency by providing
more information to the trajectory-optimization algorithm, the experiments show that it worsens the training
performance instead. Leading to a slower convergence than when using the actual cost-function, but converging
to a similar final cost.

Research question 7

How robust is MD-GPS to different settings of the KL-divergence step size increase/decrease
factor?

Finally, the robustness of MD-GPS to step size adaptation factor has been investigated. Each iteration
the KL-divergence step size is adapted based on some heuristics, depending on the agreement between the
expected and actual cost-values. Results show that, for this particular quadcopter model, lower adaptation
factors (1.5 and below) lead to more stable trajectories and improved cost.

It has been shown that by combining MD-GPS with demonstrations, sample-efficiency can be improved
significantly, which is important for designing flight controllers. A frequent problem with synthesizing flight
controllers is that an accurate model of the system is needed. While this can already be a problem with
classical control, it is exacerbated when performing control in highly nonlinear regimes and using unorthodox
sensory modes such as vision or sound, which are hard to model accurately. These are circumstances that
occur more often in MAV control, which has been the focus of this thesis. Additionally, the complex nature
of these unorthodox inputs requires expressive control policies, which generally require a large amount of
samples when trained with RL methods. Combining MD-GPS and LfD opens up the way to improve sample-
efficiency to an extent that highly expressive flight controllers can be synthesized using real-world interactions,
which removes the need for accurate nonlinear models and circumvents the reality-gap problem. Also, the
algorithm is information-source agnostic; the use of supervised learning and an expressive global-policy
parameterization allows it to extract control-relevant information from essentially any continuous observation
space. This flexibility opens up the way for creative new control strategies to augment classical control
algorithms. Finally, this work has shown how demonstrations can be integrated into the MD-GPS algorithm
in various ways, using only demonstration trajectories. No requirements are placed on the source of these
trajectories, meaning both classical controllers and human experts can be used to obtain them. In conclusion,
this work shows how LfD methods can be used to significantly improve the sample-efficiency of MD-GPS for

88

a flight-control application, opening up the way for training high-dimensional flight-control policies using
real-world interactions.

9
Recommendations

The results from this thesis lead to the following recommendations for further research:

• Utilizing visual input
In this work the global-policy uses full-state input, further research could investigate using camera
images in combination with partial-state feedback, instead. This option has already been tested during
the preliminary analysis presented in this thesis, but this was in combination with only a toy-model of
a quadcopter. Visual input can be easily obtained by simulation, using of-the-shelf rendering tools.

• Training a policy using a real-world quadcopter
The approach in this work has been to utilize full-state feedback in a quadcopter simulation. However,
the amount of samples needed is such that it is definitely feasible to train a quadcopter controller using
real-world experiments. By applying sophisticated motion-capture systems to estimate the state in
real-time, the policy could the necessary state-feedback. Demonstrations could be generated by any
pre-existing controller or even a human pilot.

• Utilizing unorthodox sensory modes
MD-GPS makes no assumptions regarding the input to the global-policy, making it extremely flexible.
In addition to the aforementioned visual input, one could imagine sound-based control input, or for
instance LIDAR measurements.

• Control based on partial-state feedback
The global-policy in this work has been parameterized by a purely feedforward, reactive ANN, which
has no state. This kind of controller is able to achieve high performance because the full state was made
available to it. Naturally, real-world applications not always allow for full-state feedback, which is often
solved by employing explicit state-estimation techniques. It would be interesting to investigate using
stateful global-policy parameterizations (recurrent neural networks (RNNs) for instance) to perform
implicit state-estimation, trained end-to-end.

• Combining MD-GPS with safe-RL methods
MD-GPS has to explore the state-space in order to accurately estimate the dynamics, it can run into
problems regarding safety of the agent. This can perhaps be attributed to the fact that the origin of
the method lies in robotics, controlling robot arms. In flight control the agent always is at risk of a
crash, either into the ground or into a wall. An interesting avenue of research could be the integration
of safe-RL methods into MD-GPS.

89

Bibliography

[1] Box2D | A 2D Physics Engine for Games. https://box2d.org/.

[2] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Twenty-
First International Conference on Machine Learning - ICML ’04, page 1, 2004. ISBN 1581138285. doi:
10.1145/1015330.1015430.

[3] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009. ISSN 09218890. doi: 10.1016/j.
robot.2008.10.024.

[4] J.A. Bagnell and J.G. Schneider. Autonomous helicopter control using reinforcement learning policy
search methods. Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation
(Cat. No.01CH37164), 2:1615–1620, 2001. ISSN 1050-4729. doi: 10.1109/ROBOT.2001.932842.

[5] Michael Bain and Claude Sammut. A Framework for Behavioural Cloning. Machine Intelligence, 15
(June):103–129, 1996. doi: 10.1.1.25.1759.

[6] Aude Billard and Maja J. Matarić. Learning human arm movements by imitation: Evaluation of a
biologically inspired connectionist architecture. Robotics and Autonomous Systems, 37(2-3):145–160,
2001. ISSN 09218890. doi: 10.1016/S0921-8890(01)00155-5.

[7] Sing Bing Kang. Robot Instruction by Human Demonstration. (7597), 1994.

[8] Boeing Commercial Airplanes. Statistical Summary of Commercial Jet Airplane Accidents. Boeing
Commercial Airplanes, page 24, 2015.

[9] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pages 182–
189, 2011.

[10] Ivan Bratko, Tanja Urbančič, and Claude Sammut. Behavioural Cloning: Phenomena, Results and
Problems. IFAC Proceedings Volumes, 1995. ISSN 14746670. doi: 10.1016/S1474-6670(17)46716-4.

[11] Sylvain Calinon and Aude Billard. Learning of gestures by imitation in a humanoid robot. In
Imitation and Social Learning in Robots, Humans and Animals: Behavioural, Social and Communicative
Dimensions, pages 153–178. 2007. ISBN 978-0-511-48980-8. doi: 10.1017/CBO9780511489808.012.

[12] R A Chambers and Donald Michie. Man-Machine Co-operation on a Learning Task. In R D Parslow, R W
Prowse, and R Elliot Green, editors, Computer Graphics: Techniques and Applications, pages 179–185.
Springer US, Boston, MA, 1969. ISBN 978-1-4757-1320-6. doi: 10.1007/978-1-4757-1320-6_18.

[13] Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan Schaal, and Sergey Levine. Path
Integral Guided Policy Search. arXiv:1610.00529 [cs], October 2016.

[14] Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, and Sergey Levine.
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning.
arXiv:1703.03078 [cs], March 2017.

[15] Seungwon Choi, Suseong Kim, and H. Jin Kim. Inverse reinforcement learning control for trajectory
tracking of a multirotor UAV. International Journal of Control, Automation and Systems, 15(4):1826–
1834, August 2017. ISSN 20054092. doi: 10.1007/s12555-015-0483-3.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255,
Miami, FL, June 2009. IEEE. ISBN 978-1-4244-3992-8. doi: 10.1109/CVPR.2009.5206848.

91

92

[17] Rüdiger Dillmann, M Kaiser, and Ales Ude. Acquisition of elementary robot skills from human
demonstration. International Symposium on Intelligent Robotics Systems, 1(7274):185–192, 1995. ISSN
19232926. doi: 10.1.1.45.7236.

[18] Bruno Dufay and Jean Claude Latombe. An Approach to Automatic Robot Programming Based on
Inductive Learning. The International Journal of Robotics Research, 3(4):3–20, 1984. ISSN 17413176.
doi: 10.1177/027836498400300401.

[19] Yaakov Engel, Peter Szabo, and Dmitry Volkinshtein. Learning to Control an Octopus Arm with Gaussian
Process Temporal Difference Methods. In Proceedings of the 18th International Conference on Neural
Information Processing Systems, NIPS’05, pages 347–354, Cambridge, MA, USA, 2005. MIT Press.

[20] Philipp Ennen, Pia Bresenitz, Rene Vossen, and Frank Hees. Learning Robust Manipulation Skills with
Guided Policy Search via Generative Motor Reflexes. arXiv:1809.05714 [cs], September 2018.

[21] Nasser Esmaili, Claude Sammut, and G. M. Shirazi. Behavioural cloning in control of a dynamic system.
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 3:2904–2909, 1995.
ISSN 08843627.

[22] Silvia Ferrari and Robert F. Stengel. Online Adaptive Critic Flight Control. Journal of Guidance, Control,
and Dynamics, 27(5):777–786, 2004. ISSN 0731-5090. doi: 10.2514/1.12597.

[23] C. Finn, M. Zhang, J. Fu, W. Montgomery, X. Tan, Z. McCarthy, B. Stadie, E. Scharff, and S. Levine. Guided
Policy Search Code Implementation. 2016. Software available from rll.berkeley.edu/gps.

[24] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep Spatial
Autoencoders for Visuomotor Learning. arXiv:1509.06113 [cs], September 2015.

[25] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control via
policy optimization. In International Conference on Machine Learning, pages 49–58, 2016.

[26] P. Gaussier, S. Moga, M. Quoy, and J. P. Banquet. From perception-action loops to imitation processes:
A bottom-up approach of learning by imitation. Applied Artificial Intelligence, 12(7-8):701–727, 1998.
ISSN 10876545. doi: 10.1080/088395198117596.

[27] Weiqiao Han, Sergey Levine, and Pieter Abbeel. Learning compound multi-step controllers under
unknown dynamics. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6435–6442, Hamburg, Germany, September 2015. IEEE. ISBN 978-1-4799-9994-1. doi:
10.1109/IROS.2015.7354297.

[28] Gillian M. Hayes and John Demiris. A Robot Controller Using Learning by Imitation. University of
Edinburgh, Department of Artificial Intelligence, 1994.

[29] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, and B. Kingsbury. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The
Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 29(6):82–97, November 2012.
ISSN 1053-5888. doi: 10.1109/MSP.2012.2205597.

[30] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Algorithm for Deep Belief Nets.
Neural Computation, 18(7):1527–1554, July 2006. ISSN 0899-7667, 1530-888X. doi: 10.1162/neco.2006.
18.7.1527.

[31] Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. (Nips), 2016.

[32] Jonathan Ho, Stefano Ermon, Ermon Cs, and Stanford Edu. Model-Free Imitation Learning with Policy
Optimization. 48, 2016.

[33] Geir E. Hovland, Pavan Sikka, and Brenan J. McCarragher. Skill acquisition from human demonstration
using a hidden Markov model. Proceedings of IEEE International Conference on Robotics and
Automation, 3(April):2706–2711, 1996. ISSN 1050-4729. doi: 10.1109/ROBOT.1996.506571.

93

[34] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation Learning: A Survey
of Learning Methods. ACM Computing Surveys, 50(2):1–35, April 2017. ISSN 03600300. doi: 10.1145/
3054912.

[35] Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco Hutter. Control of a Quadrotor with
Reinforcement Learning. IEEE Robotics and Automation Letters, 2(4):2096–2103, 2017. ISSN 2377-3766.
doi: 10.1109/LRA.2017.2720851.

[36] K. Ikeuchi, M. Kawade, and T. Suehiro. Assembly task recognition with planar, curved and mechanical
contacts. [1993] Proceedings IEEE International Conference on Robotics and Automation, pages 688–694,
1993. ISSN 10504729. doi: 10.1109/ROBOT.1993.291879.

[37] Nursultan Imanberdiyev, Changhong Fu, Erdal Kayacan, and I-Ming Chen. Autonomous navigation of
UAV by using real-time model-based reinforcement learning. In 2016 14th International Conference on
Control, Automation, Robotics and Vision (ICARCV), volume 2016, pages 1–6, 2016. ISBN 978-1-5090-
3549-6. doi: 10.1109/ICARCV.2016.7838739.

[38] Andrew Isaac and Claude Sammut. Goal-directed Learning to Fly. 2003.

[39] Kshitij Judah, Alan Fern, and Thomas G. Dietterich. Active Imitation Learning via Reduction to IID Active
Learning. In UAI, pages 428–437, 2012.

[40] MW Kadous, Claude Sammut, and R. Sheh. Autonomous traversal of rough terrain using behavioural
cloning. the 3rd International Conference on Autonomous Robots and Agents, (June), 2006.

[41] R. E. Kalman. When Is a Linear Control System Optimal? Journal of Basic Engineering, 1964. ISSN
00219223. doi: 10.1115/1.3653115.

[42] Beomjoon Kim, Amir massoud Farahmand, Joelle Pineau, and Doina Precup. Learning from limited
demonstrations. In NIPS, pages 2859–2867, 2013. ISBN 0016-7037.

[43] Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell. Imitation learning of positional and force
skills demonstrated via kinesthetic teaching and haptic input. Advanced Robotics, 25(5):581–603, 2011.
ISSN 01691864. doi: 10.1163/016918611X558261.

[44] Yasuo Kuniyoshi, Masayuki Inaba, and Hirochika Inoue. Learning by Watching: Extracting Reusable
Task Knowledge from Visual Observation of Human Performance. IEEE Transactions on Robotics and
Automation, 10(6):799–822, 1994. ISSN 1042296X. doi: 10.1109/70.338535.

[45] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of Machine Learning
Research, 4(6):1107–1149, 2004. ISSN 15324435. doi: 10.1162/1532443041827907.

[46] S. Levine, N. Wagener, and P. Abbeel. Learning contact-rich manipulation skills with guided policy
search. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 156–163, May
2015. doi: 10.1109/ICRA.2015.7138994.

[47] Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In Advances in Neural Information Processing Systems, pages 1071–1079, 2014.

[48] Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference on Machine
Learning, pages 1–9, 2013.

[49] Sergey Levine and Vladlen Koltun. Variational policy search via trajectory optimization. In Advances in
Neural Information Processing Systems, pages 207–215, 2013.

[50] Sergey Levine and Vladlen Koltun. Learning complex neural network policies with trajectory
optimization. In International Conference on Machine Learning, pages 829–837, 2014.

[51] Sergey Levine, Zoran Popovic, Vladlen Koltun, Zoran Popovi\backslash’{c}, and Vladlen Koltun.
Nonlinear Inverse Reinforcement Learning with Gaussian Processes. Advances in Neural Information
Processing Systems 24 (NIPS 2011), pages 19–27, 2011. doi: 10.1177/1745691612459060.

94

[52] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-End Training of Deep Visuomotor
Policies. arXiv:1504.00702 [cs], April 2015.

[53] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Foundations and
Trends® in Machine Learning, 2(1):1–127, 2015. ISSN 1935-8237. doi: 10.1561/2200000006.

[54] S. Liu and H. Asada. Teaching and learning of deburring robots using neural networks. [1993]
Proceedings IEEE International Conference on Robotics and Automation, pages 339–345, 1993. ISSN
10504729. doi: 10.1109/ROBOT.1993.292197.

[55] Teppo Luukkonen. Modelling and control of quadcopter. Independent research project in applied
mathematics, Espoo, 22, 2011.

[56] William Montgomery and Sergey Levine. Guided Policy Search as Approximate Mirror Descent.
arXiv:1607.04614 [cs], July 2016.

[57] William Montgomery, Anurag Ajay, Chelsea Finn, Pieter Abbeel, and Sergey Levine. Reset-Free Guided
Policy Search: Efficient Deep Reinforcement Learning with Stochastic Initial States. arXiv:1610.01112
[cs], October 2016.

[58] Mark Wilfried Mueller. Multicopter attitude control for recovery from large disturbances.
arXiv:1802.09143 [cs], February 2018.

[59] Jun Nakanishi, Jun Morimoto, Gen Endo, Gordon Cheng, Stefan Schaal, and Mitsuo Kawato. Learning
from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 47(2-3):
79–91, 2004. ISSN 09218890. doi: 10.1016/j.robot.2004.03.003.

[60] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Icml, pages 663–
670, 2000.

[61] Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger, and Eric
Liang. Autonomous inverted helicopter flight via reinforcement earning. Springer Tracts in Advanced
Robotics, 21:363–372, 2006. ISSN 16107438. doi: 10.1007/11552246_35.

[62] Ivana Palunko, Aleksandra Faust, Patricio Cruz, Lydia Tapia, and Rafael Fierro. A reinforcement learning
approach towards autonomous suspended load manipulation using aerial robots. Proceedings - IEEE
International Conference on Robotics and Automation, pages 4896–4901, 2013. ISSN 10504729. doi:
10.1109/ICRA.2013.6631276.

[63] P.K. Pook and D.H. Ballard. Recognizing teleoperated manipulations. [1993] Proceedings IEEE
International Conference on Robotics and Automation, pages 578–585, 1993. ISSN 10504729. doi:
10.1109/ROBOT.1993.291896.

[64] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and
Andrew Y. Ng. ROS: An open-source Robot Operating System. In ICRA Workshop on Open Source
Software, volume 3, page 5, 2009.

[65] Nathan D Ratliff and J Andrew Bagnell. Imitation learning for locomotion and manipulation. Humanoid
Robots, 2007 \ldots, 2007.

[66] Stéphane Ross and J Andrew Bagnell. Efficient Reductions for Imitation Learning. Journal of Machine
Learning Research - Proceedings Track, 9:661–668, 2010. ISSN 15324435.

[67] Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning. Synlett, 15(10):1664–1666, November 2010. ISSN
09365214. doi: 10.1055/s-0029-1217330.

[68] Claude Sammut, Scott Hurst, Dana Kedzier, and Donald Michie. Learning to fly. In Derek Sleeman
and Peter Edwards, editors, In Proceedings of the Ninth International Conference on Machine Learning,
pages 385—-393. Morgan Kaufmann, San Francisco (CA), 1992. ISBN 1581138285. doi: 10.1016/
B978-1-55860-247-2.50055-3.

95

[69] Stefan Schaal. Is Imitation Learning the Route to Humanoid Robots?, volume 3. 1999. ISBN 1364-6613.
doi: 10.1016/S1364-6613(99)01327-3.

[70] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust Region Policy
Optimization. 2015. ISSN 2158-3226. doi: 10.1063/1.4927398.

[71] Wolfram Schultz, Peter Dayan, and P Read Montague. A Neural Substrate of Prediction and Reward.
page 8, March 1997.

[72] Benjamin Spector and Serge Belongie. Sample-Efficient Reinforcement Learning through Transfer and
Architectural Priors. (3), 2018.

[73] Richard S. Sutton, Andrew G. Barto, and Ronald J. Williams. Reinforcement Learning Is Direct Adaptive
Optimal Control, volume 12. 1992. ISBN 1066-033X. doi: 10.1109/37.126844.

[74] Richard S. Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M. Pilarski, Adam White, and
Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsupervised
sensorimotor interaction. In The 10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2, pages 761–768. International Foundation for Autonomous Agents and Multiagent
Systems, 2011.

[75] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. IEEE Transactions on Neural
Networks, 9(5):1054–1054, 1998. ISSN 1045-9227. doi: 10.1109/TNN.1998.712192.

[76] E. Todorov and Weiwei Li. A generalized iterative LQG method for locally-optimal feedback control
of constrained nonlinear stochastic systems. In Proceedings of the 2005, American Control Conference,
2005., pages 300–306, Portland, OR, USA, 2005. IEEE. ISBN 978-0-7803-9098-0. doi: 10.1109/ACC.2005.
1469949.

[77] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, Vilamoura-
Algarve, Portugal, October 2012. IEEE. ISBN 978-1-4673-1736-8 978-1-4673-1737-5 978-1-4673-1735-1.
doi: 10.1109/IROS.2012.6386109.

[78] S K Tso and K P Liu. Hidden Markov model for intelligent extraction of robot trajectory command
from demonstrated trajectories. In Industrial Technology, 1996. (ICIT ’96), Proceedings of The IEEE
International Conference On, pages 294–298, 1996. ISBN 0-7803-3104-4. doi: 10.1109/ICIT.1996.601593.

[79] C.P. Tung and A.C. Kak. Automatic learning of assembly tasks using a DataGlove system. Proceedings
1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and
Cooperative Robots, 1:1–8, 1995. ISSN 1600-5368. doi: 10.1109/IROS.1995.525767.

[80] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate Saenko,
and Trevor Darrell. Adapting Deep Visuomotor Representations with Weak Pairwise Constraints.
arXiv:1511.07111 [cs], November 2015.

[81] Aleksandar Vakanski, Iraj Mantegh, Andrew Irish, and Farrokh Janabi-Sharifi. Trajectory learning
for robot programming by demonstration using hidden markov model and dynamic time warping.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(4):1039–1052, 2012. ISSN
10834419. doi: 10.1109/TSMCB.2012.2185694.

[82] Michel Verhaegen, Stoyan Kanev, Redouane Hallouzi, Colin Jones, Jan MacIejowski, and Hafid Smail.
Fault Tolerant Flight Control - A Survey, volume 399. 2010. ISBN 978-3-642-11689-6. doi: 10.1007/
978-3-642-11690-2_2.

[83] Antony Waldock, Colin Greatwood, Francis Salama, and Thomas Richardson. Learning to Perform
a Perched Landing on the Ground Using Deep Reinforcement Learning. 2017. doi: 10.1007/
s10846-017-0696-1.

[84] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum Entropy Deep Inverse Reinforcement
Learning. arXiv:1507.04888 [cs], July 2015.

96

[85] Ali Yahya, Adrian Li, Mrinal Kalakrishnan, Yevgen Chebotar, and Sergey Levine. Collective Robot
Reinforcement Learning with Distributed Asynchronous Guided Policy Search. arXiv:1610.00673 [cs],
October 2016.

[86] Yang Yu. Towards Sample Efficient Reinforcement Learning ∗. International Joint Conference on Artificial
Intelligence (IJCAI), pages 5739–5743, 2018.

[87] Thomas R. Zentall. Imitation by animals: How do they do it? Current Directions in Psychological Science,
12(3):91–95, 2003. ISSN 09637214. doi: 10.1111/1467-8721.01237.

[88] Marvin Zhang, Xinyang Geng, Jonathan Bruce, Ken Caluwaerts, Massimo Vespignani, Vytas SunSpiral,
Pieter Abbeel, and Sergey Levine. Deep Reinforcement Learning for Tensegrity Robot Locomotion.
arXiv:1609.09049 [cs], September 2016.

[89] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning Deep Control Policies for
Autonomous Aerial Vehicles with MPC-Guided Policy Search. arXiv:1509.06791 [cs], September 2015.

[90] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum Entropy Inverse
Reinforcement Learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

V
Appendices

97

A
List of GPS applications

GPS has been used for a wide variety of simulated robotics tasks:

• Several MuJoCo[77] environments

– Planar hopper [48]

– Planar swimmer [47–50, 52]

– Planar bipedal walker [48–50]

– 2D navigation with obstacle avoidance [13, 25, 56]

– 3-link reacher [25, 57]

– 2D peg insertion [47, 52]

– 3D peg insertion [25, 47, 52, 56, 57]

• Octopus arm (see: [19]) [47, 52]

• Control of a quadcopter [89]

• SUPERball [88]

• 7-DoF 2-finger robot arm

– Reaching [85]

• OpenAI gym

– 2-DoF Reacher [14]

• Door opening [14]

• 4-DoF gripper/pusher [14]

As well as physical robotics tasks:

• 7-DoF PR2 robot arm

– Lego block stacking [24, 27, 46, 52]

– Putting a ring on a peg [46, 52]

– Toy airplane assembly [46, 52]

– Putting shoe tree in shoe [46, 52]

– Screwing top on pill bottle [46, 52]

– Screwing top on water bottle [46, 52]

– Applying a wrench to a bolt [27]

99

100

– Wrench grasping [27]

– Bag transfer [24]

– Rice scoop [24]

– Loop hook [24, 80]

– Dish placement [25]

– Cup pouring [25]

– Hammer claw placement [57]

– Block claw placement [57]

– Hockey [14]

– Power plug pulling [14]

• SUPERball [88]

• 7-DoF 2-finger robot arm

– Door opening [13, 85]

– Pick-and-place [13]

B
Preliminary experiments neural networks

In this chapter the structure of the ANNs used during the preliminary experiments are detailed.

B.1. Point-mass
Multi-modal input

1. 2-D convolutional layer:

• 5×5 filters

• 32 channels

• Stride of 1

• No padding

2. exponential linear unit (ELU) nonlinearity

3. 2×2 max-pooling

4. 2-D convolutional layer:

• 3×3 filters

• 32 channels

• Stride of 1

• No padding

5. ELU nonlinearity

6. 2×2 max-pooling

The output of this sub-network is then flattened, and concatenated with the position derivatives
[
ẋ, ẏ

]
,

this forms the input for a fully-connected ANN with the following structure:

1. Hidden layer of size 200

2. ELU nonlinearity

3. Hidden layer of size 20

4. ELU nonlinearity

5. Output layer of size 2

101

C
Default parameter settings

This appendix describes the default settings of the MD-GPS algorithm used in this work, are used as a nominal
point during the experiments.

C.1. General
• Number of seeds: 5

To reduce the effect of randomness, each experiment is run for five times with different but consistent
initial seeds.

• Training iterations: 50
Based on some experimentation, fifty training iterations is enough to let the cost converge for the
experiments that are performed in this thesis.

• Number of initial-conditions: 4
This is the number of initial conditions and therefore sub-policies that are used to train the global-
policy. For a real quadcopter application it would probably be better to train on a higher number of
initial conditions, since this will improve generalization of the global-policy to different states. However,
in the interest of time this number has been set to four.

• Number of trajectory samples: 5
This is the number of trajectory samples obtained per initial-condition per training iteration. The value
is based on available literature on GPS and prior experimentation shows it is a workable number.

• Sampling time: 3×10−2 s
Prior experiments have shown that for the used quadcopter system, this sampling time works well.

• Number of time steps: 80
With 80 time steps, each trajectory takes 2.4 s, which is enough time for the nonlinear controller to
reach and keep the target-position. Also, prior experiments indicate that this amount of time steps still
allows iLQG-FLM to optimize the trajectories.

• Iteration at which to start supervised-learning: 1
Supervised training of the global-policy can start as soon as the sub-policies show stable trajectories.
With the default settings this occurs at the first training iteration already.

• Iterations at which to constrain w.r.t. sub-policies: 1−4
These are the iterations at which the KL-divergence constraint in the trajectory optimization is calculated
w.r.t. the previous sub-policies, instead of the global-policy linearization. The choice has been made
to postpone constraining the optimization w.r.t. the global-policy linearization, since the global-policy
might still be unstable. For the first 4 iterations the global-policy is in no way involved in either constraining
or sampling.

103

104

• Iterations at which to sample using sub-policies: 1−9
From the 5th iteration the KL-divergence used in the constraint is calculated w.r.t. the linearized global-
policy. However, the global-policy is only being used to sample trajectories from the 10th iteration
onward. This will ensure the global-policy generates stable- and low-cost trajectories.

C.2. Sub-policies
• Initial variance: 1×10−2

Sub-policies are TVLGs, which are parameterized by k t , K t , C t , of which the first two are either generated
from demonstration data (demonstration-based sub-policy initialization) or generated randomly (random
sub-policy initialization). The covariance matrix at time t C t must be set manually, and determines the
amount of random variation in the trajectories, which can be thought of as exploration. Since sub-
policies are only stable around their nominal trajectory, care should be taken in balancing exploration
and stability.

The initial covariance matrices are diagonal, with a variance of 1×10−2 for each input. Prior experiments
have shown that this value gives good exploration while the quadcopter stays inside the stable region
of the demonstration-based initial sub-policy.

• Initial variance discount: 1
The initial variance discount is set to 1 which slightly equalizes variance along the nominal trajectory.

C.3. Trajectory optimization
• Initial KL-divergence step size: 1×10−1

When the dynamics- and cost-estimates are accurate, a large initial step size can speed-up training.
However, a large value can also destabilize the training process when the update is in the wrong direction
or it overshoots the optimum. Since the step size is adapted on-line and can quickly increase if performance
is improving, the initial value is chosen conservatively based on prior experimentation. A value of
1×10−1 does not lead to destabilization and can quickly increase when allowed by the adaptation rule.

• KL-divergence adaptation factor: 1.33
Each iteration the KL-divergence step size is adapted based on certain heuristics. The factor with which
the step size is either in- or decreased determines the speed the algorithm adapts to dynamics- and
cost-estimate accuracy. A large adaptation factor improves adaptation speed, but can also lead to
destabilization of the algorithm. Based on prior experimentation a factor of 1.33 does not destabilize
MD-GPS when applied to this quadcopter system, and still allows for moderately quick adaption.

C.4. Dynamics models
• Pre-train dynamics?: TRUE

Both the TVLG dynamics models and the GMM dynamics prior will be trained before the first training
iteration using demonstration trajectories. The algorithms used for training are the same as those
during the normal training process.

• Pre-training example gathering policy: High-quality demonstration

As mentioned before, dynamics pre-training examples are generated by adding input noise inside of
the control-loop while using a generating policy as the controller. The default generating policy is the
high-quality demonstration.

• Number of dynamics pre-training samples: 30
This is the number of dynamics pre-training example trajectories that are sampled per initial-condition.
Based on prior experimentation, it takes less than five iterations for the dynamics to be estimated
with sufficient accuracy to make successful trajectory updates, with five trajectory samples per initial-
condition per training iteration. To be conservative, the default number of dynamics pre-training
trajectory samples per initial-condition has been set to 30, which is equals six training iterations.

• Dynamics prior GMM maximum clusters: 1000
Each dynamics prior GMM has a maximum number of Gaussian clusters that it can define. The choice
was made to set the maximum number of clusters to a value that ensures the dynamics prior is never

105

limited by it. Based on prior experimentation, a conservative value of 1000 clusters has been chosen,
which ensures the limit is never reached with the default minimum samples per cluster and maximum
trajectory storage settings.

• Dynamics prior GMM minimum samples per cluster: 20
The minimum average amount of samples per GMM cluster. Based on prior experimentation a value
of 20 seems to work well, balancing cluster resolution and accuracy.

• Dynamics prior GMM maximum trajectory storage: 10
The maximum amount of trajectories a single GMM can remember. The choice was made to reduce
this number down from 20 to reduce wall-clock time requirements. Prior experimentation has shown
that the difference in training performance is quite small.

C.5. Global-policy
• Pre-train global-policy?: TRUE

Before the first training iteration, the global-policy is pre-trained on demonstration trajectories. The
training algorithm is the same as is being used during normal training iterations.

• Pre-training example gathering policy: High-quality demonstration

As mentioned before, global-policy pre-training examples are generated by adding input noise inside
of the control-loop while using a demonstration policy as the controller. The default demonstration
policy is the high-quality demonstration.

• Pre-training imitation-policy: High-quality demonstration

As mentioned before, dynamics pre-training examples are generated by adding input noise inside of
the control-loop while using a demonstration policy as the controller. At each time step of the resulting
trajectories, another (possibly different) demonstration policy is queried for its action based on the
state. The default target-policy is the high-quality demonstration policy.

• Global-policy pre-training samples: 30
This is the number of global-policy pre-training example trajectories that are sampled per initial-condition.
Prior experimentation shows that 30 trajectories lead to a global-policy that imitates the demonstration
behavior effectively enough to be useful to sample from.

• Global-policy prior GMM maximum clusters: 1000
Each policy prior GMM has a maximum number of Gaussian clusters that it can define. The choice
was made to set the maximum number of clusters to a value that ensures the dynamics prior is never
limited by it. Based on prior experimentation, a conservative value of 1000 clusters has been chosen,
which ensures the limit is never reached with the default minimum samples per cluster and maximum
trajectory storage settings.

• Global-policy GMM minimum samples per cluster: 20
The minimum average amount of samples per GMM cluster. Based on prior experimentation a value
of 20 seems to work well, balancing cluster resolution and accuracy.

• Global-policy GMM maximum trajectory storage: 10
The maximum amount of trajectories a single GMM can remember. The choice was made to reduce
this number down from 20 to reduce wall-clock time requirements. Prior experimentation has shown
that the difference in training performance is quite small.

D
Quadcopter model and controller

This chapter presents the non-linearl quadcopter model that is used during the main experiments of the
thesis.

D.1. Dynamic model
x = [

p ṗ q ωb ω̇b α
]T

(D.1)

Where p is the position vector in inertial coordinates, ṗ is the velocity vector w.r.t. the inertial frame in inertial
coordinates, q is a unit-quaternion that rotates vectors from body- to inertial-frame, ωb is the angular-rate
vector in body-coordinates, ω̇b is the angular-acceleration vector in body-coordinates, andα is the vector of
propellor angular-rates.

The system of ordinary differential equations is as follows:

ṗ = ṗ (D.2)

p̈ = 1

m
F +G (D.3)

q̇ = 1

2
q ⊗ωq

b (D.4)

ω̇b = I−1(M b −ωb × Iωb
)

(D.5)

α̇= 1

Ip

(
τ−τd

)
(D.6)

Where m is the quadcopter mass, F is the vector of forces in inertial coordinates, G is the vector of
gravitational acceleration in inertial coordinates,ωq

b is a quaternion with zero-valued scalar and complex part
equal to the angular rate vector of the quadcopter in body-coordinates, ⊗ denotes the quaternion product, I
is the mass-moment of inertia tensor, M b is a vector of external moments in body-coordinates, Ip is the mass-
moment of inertia of the propellers, τ is the vector of motor-torques, and τd is a vector of drag-moments per
propeller.

F = q ⊗F q
b ⊗ q̄ (D.7)

Where F q
b is a quaternion with zero-valued scalar part, and a complex part equal to the vector of external

forces in body-coordinates, and q̄ is the conjugate quaternion of q .

F b = F th,b +F d ,b (D.8)

Where F th,b is the force due to motor-thrust in body-coordinates, and F d ,b is the drag-force vector in body-
coordinates.

The total thrust vector is the sum of the 4 thrust vectors per motor:

F th,b =
4∑

i=1
f th,i ,b (D.9)

107

108

The thrust per engine is proportional to the square of the propeller angular rate, and acts along the thrust
unit vector, which is simply pointing along the body z-axis.

f th,i ,b = kl ·αi · |αi | · f̂ i ,b = [
0 0 klαi |αi |

]T
f or i = 1,2,3,4 (D.10)

Where kl is the lift factor of the propellers, f̂ i ,b is the unit vector pointing in the direction of positive thrust

for the i th propeller.
Drag forces are simply modeled by assigning an independent drag factor for each direction of movement

in the body frame, they are proportional to the square of the speed in each direction.

F d ,b =−kd ¯ ṗb ¯
∣∣ṗb

∣∣ (D.11)

Where kd is a vector of three independent drag factors for the x-, y-, and z-velocity in the body frame, ¯
denotes the Hadamard product, ṗb is the velocity vector w.r.t. the inertial-frame in body-coordinates, and
the absolute operator in

∣∣ṗb

∣∣ is acting in element-wise fashion.
The gravitational acceleration vector in inertial frame coordinates is simply pointing along the z-axis:

G I =
[
0 0 −g

]T
(D.12)

Where g is the constant of gravitational acceleration.
The moments around the body-axes of the quadcopter are split up into two terms:

M b = M th,b +Mτ,b (D.13)

Where M th,b is the moment caused by the thrust of the i th motor, and Mτ,b is the moment caused by the
torque of the i th motor.

M th,b =
4∑

i=1
r i ,b × f th,i ,b (D.14)

Where r i ,b is the moment-arm of the i th motor in body-coordinates.

Mτ,b =−
4∑

i=1
τi ·um,i ,b (D.15)

Where τi is the torque of the i th motor, and um,i ,b is the unit vector pointing in the direction of positive motor
torque for the i th motor in body-coordinates.

The drag moment around a motor is proportional to the square of the motor angular rate:

τd = kpd ·α¯|α| (D.16)

Where kpd is the drag-coefficient of the propellers, and the absolute operator in |α| is acting in element-wise
fashion.

D.2. Controller
This section presents the non-linear controller that is used to generate high-quality trajectories with the
quadcopter. It is inspired by proportional tilt-prioritized control by Mueller in [58], prioritizing tilt-control
(x- and y-axis) over control of rotation about the z-axis.

As stated in [58], quadcopters are characterized by an ability to generate much higher moments about
their x- and y-axis, then their z-axis. Control of the position of a quadcopter can be seen as control of
the direction and magnitude of the thrust vector. These two variables can be controlled separately, since
moments can be generated completely independent of the total thrust (up to motor saturation)[58]. By
assuming we can control the thrust vector much faster than the position dynamics, the position dynamics
can be made approximately linear and of second order:

p̈r e f = K T
p

(
pr e f −p

)+K T
ṗ

(
ṗr e f − ṗ

)
(D.17)

Where p̈r e f is the desired acceleration, K T
p and K T

ṗ are gain matrices, ṗr e f is the desired velocity, and pr e f is
the desired position.

109

By correcting for gravitational acceleration and knowing the mass, the desired thrust vector is calculated:

F r e f = m
(
p̈r e f −G

)
(D.18)

Where F r e f is the desired thrust vector in inertial frame coordinates, m is the mass of the quadcopter, and G
is the vector of gravitational acceleration in inertial frame coordinates.

Using the attitude quaternion q , the desired thrust vector in body coordinates is determined:

F r e f ,b = q ⊗F r e f ⊗ q̄ (D.19)

The goal is to rotate the thrust vector so it lies along the desired thrust vector, by tilting the quadcopter. To
this end, the quaternion of smallest rotation is found which rotates f̂ b to F r e f ,b , using the F i ndQuater ni on
function:

Function 1 F i ndQuater ni on finds a unit-quaternion with the smallest rotation arc that rotates a vector
parallel to u such that u′ = q ⊗u ⊗ q̄ is parallel to v

1: function FINDQUATERNION(u, v)
2: q̃ = (‖u‖ ·‖v‖+u ·v , u ×v

)
3: q = q̃

‖q̃‖
4: return q
5: end function

q x y,r e f = F i ndQuater ni on
(

f̂ b ,F r e f ,b
)

(D.20)

Where q x y,r e f is the unit quaternion that rotates f b to lie along F r e f ,b , with smallest rotation magnitude
possible.

After this tilting movement, the thrust vector (and therefore the body z-axis) will be aligned with the
reference thrust vector. However, the rotation about the z-axis is still left unconstrained. At low tilt, this
rotation is akin to the yaw-angle used in aeronautical navigation and it will be referred to as z-angle for the
remainder of this section. Usually, a control system is provided with some desired yaw-angle, but in this work
the z-angle will be constrained by using a reference body x-axis in inertial coordinates; a pointing direction.
By constraining the z-angle in this way, the same technique can be used as for the thrust (body z-axis) pointing
direction. The desired body x-axis in inertial coordinates will be chosen to be the following:

eb
x,r e f =

[
1 0 0

]T
(D.21)

Which we then express in body-coordinates using q :

eb
x,r e f ,b = q ⊗eb

x,r e f ⊗ q̄ (D.22)

Aligning the thrust vector with its desired direction is prioritized over controlling the z-angle, this is
facilitated by the fact that quadcopters can achieve much higher moments around the x- and y-axis than
the z-axis. To further ensure the z-angle-control does not interfere with tilt-control, only rotation about
the thrust-axis will be allowed. This is achieved by projecting eb

x,r e f ,b onto the plane defined by normal-

vector F r e f ,b , which is the same as projecting it onto the xy-plane of the body coordinate frame, as shown in
eq. (D.23).

Function 2 Pl anePr o j ect i on finds the projection w of u onto a plane defined by normal-vector v

1: function PLANEPROJECTION(u, v)
2: w = u − u·v

v ·v v
3: return w
4: end function

ẽb
x,r e f ,b = Pl anePr o j ect i on

(
eb

x,r e f ,b ,F r e f ,b
)= eb

x,r e f ,b ¯
[
1 1 0

]T
(D.23)

110

As for the tilt-control, the z-angle quaternion is the one that rotates the body x-axis to the projected
desired pointing direction, while using the shortest rotation arc:

q z,r e f = F i ndQuater ni on
(
eb

x,b , ẽb
x,r e f ,b

)
(D.24)

Where q z,r e f will always be a pure rotation around the body z-axis, since both eb
x,b and ẽb

x,r e f ,b lie in the

xy-plane.
To utilize q x y,r e f and q z,r e f for control, they will be converted into their axis-angle representations, as

shown in eqs. (D.26) and (D.27).

ln q =
ln

∥∥q
∥∥+ −→q

‖−→q ‖ arccos q0

‖q‖ ,
∥∥−→q ∥∥ 6= 0

ln
∥∥q

∥∥ ,
∥∥−→q ∥∥= 0

(D.25)

Function 3 Axi s Ang l eRepr esent ati on converts quaternion q to an axis-angle representation, where θ̂ and
ρ are a unit axis and the magnitude of rotation, respectively.

1: function AXISANGLEREPRESENTATION(q)
2: θ = 2ln q
3: ρ = ‖θ‖
4: θ̂ = θ

θ

5: return θ̂, ρ
6: end function

θ̂x y,r e f ,b , ρ̃x y,r e f ,b = Axi s Ang l eRepr esent ati on(q x y,r e f)

ρx y,r e f ,b = ρ̃x y,r e f ,b

π

(D.26)

Where θ̂x y,r e f ,b and ρx y,r e f ,b are the axis- and angle of rotation for tilt-control, respectively. The axis of
rotation is in body-coordinates and can be directly used as the direction of a desired moment-vector, while
the magnitude of rotation ρx y,r e f ,b can be interpreted as a difference between desired and actual orientation,
lying in the interval [0,1] since it has been normalized.

θ̂z,r e f ,b , ρ̃z,r e f ,b = Axi s Ang l eRepr esent ati on(q z,r e f)

ρz,r e f ,b = ρ̃z,r e f ,b

π

(D.27)

Where θ̂z,r e f ,b and ρz,r e f ,b are the axis- and angle of rotation for z-angle control, respectively.

In the case when F r e f ,b is almost equal to eb
x,r e f ,b , the projection onto the xy-plane becomes very small

and its direction becomes very sensitive to small changes in orientation. In this case it is quite useless to put
much force into controlling the z-angle. To adapt the control effort to this problem, the rotation magnitude
is multiplied by the norm of ẽb

x,r e f ,b . This value lies in the interval [0,1] and goes to zero as F r e f ,b becomes

equal to eb
x,r e f ,b :

ρ̃z,r e f ,b = ρz,r e f ,b

∥∥∥ẽb
x,r e f ,b

∥∥∥ (D.28)

Where ρ̃z,r e f ,b is the adapted rotation magnitude for the z-angle control.
Now, the reference value for the angular acceleration can be constructed:

ω̇r e f ,b = Kω(ωr e f −ω)−K x yρx y,r e f ,b θ̂x y,r e f ,b −K z ρ̃z,r e f ,b θ̂z,r e f ,b (D.29)

Where Kω, K x y , and K z are gain matrices.
Using the dynamics equation for angular acceleration from eq. (D.5) the desired moment vector can be

calculated:
M r e f ,b = I

(
I ω̇r e f ,b +ωb × Iωb

)
(D.30)

Since the thrust vector coincides with the body z-axis, the moment around the z-axis is fully generated by
the sum of motor torques:

τz,r e f =
Mz

4

[
1 −1 1 −1

]T
(D.31)

111

Where Mz is the moment around the body z-axis, and the vector of plus and minus ones is there to account
for the configuration of positive motor torque.

The x- and y-moment are generated by a thrust differential over the motors. The differential thrust vector
can be calculated as follows:

∆ f = Mx

4rx

[−1 −1 1 1
]T + My

4ry

[
1 −1 −1 1

]T
(D.32)

Where Mx and My are the moments around the x- and y-axis, respectively, rx and ry are the motor offsets from
the center of gravity in x- and y-direction, and the vectors with plus and minus ones are there to account for
the moment contribution of positive motor thrust.

The desired thrust per motor is the sum of the norm of the desired thrust vector F r e f and the differential
thrust vector. Since the mean of the latter is zero by construction, the total thrust will be equal in magnitude
to the norm of the desired thrust vector at all times. By using eq. (D.10), the desired motor angular rate can
be calculated:

β= 1

k f

(∥∥F r e f
∥∥

4
+∆ f

)
αr e f = signβ

√∣∣β∣∣ (D.33)

The input to the system is the motor torque vector τ, which is calculated using a proportional feedback
to force the motor angular rates towards their desired values. Also, the desired motor torque is added directly
for z-angle control. To force the motor dynamics to be invariant toα, the motor drag torque τd is added.

τ= Kα

(
αr e f −α

)+τz,r e f +τd (D.34)

Where Kα is a gain.

The parameters of the quadcopter model and their descriptions are presented in appendix D.2, while the
controller parameters are shown in appendix D.2.

Parameter Description Value

m mass 4.68×10−1 kg

g constant of gravitational acceleration 9.81 m·s2

Ixx principal mass-moment of inertia around body x-axis 4.856×10−3 kg·m2

Iy y principal mass-moment of inertia around body y-axis 4.856×10−3 kg·m2

Izz principal mass-moment of inertia around body z-axis 8.801×10−3 kg·m2

Ip propeller mass-moment of inertia around rotation axis 3.357×10−5 kg·m2

kl propeller lift factor 2.98×10−6 N·s2

kd ,x drag factor for movement along body x-axis 4.33×10−3 N·s2·m−2

kd ,y drag factor for movement along body y-axis 4.33×10−3 N·s2·m−2

kd ,z drag factor for movement along body z-axis 4.33×10−3 N·s2·m−2

rx motor offset from center of gravity in x-direction 2.25×10−1 m

ry motor offset from center of gravity in y-direction 2.25×10−1 m

rz motor offset from center of gravity in z-direction 0.0 m

kpd propeller drag factor 1.140×10−7 N·s2

τmax maximum motor torque 8.0×10−1 N·m

Table D.1: Quadcopter model parameters, which have been copied from [55].

As can be seen in fig. D.1, the dynamics of the propellers are such that a very high sampling frequency is
required to avoid aliasing. Some quick calculations show how the propeller dynamic are definitely operating

112

Parameter Description Value

Kp,x position feedback gain in x-direction 4.0

Kp,y position feedback gain in y-direction 4.0

Kp,z position feedback gain in z-direction 4.0

K ṗ,x velocity feedback gain in x-direction 4.0

K ṗ,y velocity feedback gain in y-direction 4.0

K ṗ,z velocity feedback gain in z-direction 4.0

Kω,x angular rate feedback gain in x-direction 1.75×101

Kω,y angular rate feedback gain in y-direction 1.75×101

Kω,z angular rate feedback gain in z-direction 4.9×103

Kx y,x tilt-control feedback gain in x-direction 5.0×102

Kx y,y tilt-control feedback gain in y-direction 5.0×102

Kx y,z tilt-control feedback gain in z-direction 5.0×102

Kz,x yaw-angle control feedback gain in x-direction 0.0

Kz,y yaw-angle control feedback gain in y-direction 0.0

Kz,z yaw-angle control feedback gain in z-direction 7.0×103

Kα motor angular rate feedback gain 1.0

Table D.2: Quadcopter nonlinear controller parameters.

at a different time scale than attitude- and position dynamics:

α̇max = τmax

Ip
≈ 2.38×104 rad·s−2

αmax =
√
τmax

kpd

ω̇max = 4rx klα
2
max

Ixx
≈ 3.88×103 rad·s−2

p̈max = klα
2
max

m
≈ 1.79×102 m·s−2

(D.35)

Where α̇max is the largest possible propeller rotational acceleration,αmax the largest possible propeller angular
rate, ω̇max the largest possible angular acceleration, and p̈max the largest possible linear acceleration.

D.2.1. System Simplification
The problem with the current quadcopter model is that the propeller dynamics operate at a very different
time scale from the rest of the dynamics. The sampling frequency required to prevent aliasing of the propeller
dynamics is too high to allow for any interesting quadcopter dynamics to show in a number of samples
that is still practical for use during trajectory-optimization. Therefore, the assumptions is made that the
quadcopter can generate any combination of moments and total thrust[58]. This assumptions allows the
propeller dynamics to be bypassed, using the desired moment vector M r e f ,b and total thrust Fr e f as inputs
directly. This leaves us with the problem of defining maximum (and minimum) values for this new input,
to prevent aliasing. Using the maximum motor torque and some other parameters, feasible input limits are
calculated, as shown in eq. (D.36).

Fmax = 4klα
2
max ≈ 8.36×101 N

Mx,max = 4ry klα
2
max ≈ 1.88×101 N·m

My,max = 4rx klα
2
max ≈ 1.88×101 N·m

Mz,max = 4τmax ≈ 3.20N·m

(D.36)

Summarizing, before the input is allowed to affect the system, its magnitude is clamped using the values
above.

113

Figure D.1: Motor angular rate response to a step input. Note that it takes less than 2.0×10−4 s to converge to the reference value,
requiring a very high sampling frequency to avoid aliasing (1.0×10−5 s in the run presented in this figure).

D.2.2. Simulation Results

This section shows the response of the quadcopter model when combined with the nonlinear controller.
Results have been generated for two cases:

• Attitude regulation, where position and velocity are ignored and F r e f is set parallel to the inertial z-
axis. The initial attitude quaternion is randomized. Furthermore:

F r e f =
[

0 0 1
]T

ω0,b =
[

0 0 0
]T

ωr e f ,b =
[

0 0 0
]T

(D.37)

• Position regulation, where the quadcopter is intialized with a position offset, which is either only in
x-direction or completely randomized in three directions. Furthermore:

ṗ0 =
[

0 0 0
]T

ṗr e f =
[

0 0 0
]T

q 0 =
[

1 0 0 0
]T

ω0,b =
[

0 0 0
]T

ωr e f ,b =
[

0 0 0
]T

(D.38)

For both cases the reference body x-axis pointing direction in inertial coordinates eb
x,r e f is set to

[
1 0 0

]T
.

114

Figure D.2: Attitude quaternion response to attitude regulation case. Note how q1 and q2 converge at around 0.4 s, much quicker than
q3 at 1.5 s; the effect of tilt-prioritized control.

(a) (b)

(c) (d)

Figure D.3: Attitude and position response to the position regulation case, for both an offset in x-direction only (figs. D.3a and D.3b) and
in all 3 directions (figs. D.3c and D.3d). Position converges around 2.0 s.

	Acronyms
	Introduction
	Research questions
	Outline

	Research questions
	I Scientific paper
	II Literature review and Preliminary analysis
	Reinforcement learning
	Motivation
	Important concepts
	Framework
	Accumulated reward
	Value functions
	State-value functions
	Action-value functions
	Dynamic Programming
	Monte Carlo methods
	Temporal-Difference methods
	Approximate methods
	Policy-gradient methods

	State-of-the-art

	Learning from Demonstration
	Definition and framework
	Definition
	Framework
	Important concepts

	History and state-of-the-art
	Programming by Demonstration
	Behavioral cloning
	Imitation learning
	Applications in reinforcement learning

	Guided Policy Search
	Motivation
	Rough outline
	Mirror Descent Guided Policy Search

	Preliminary results
	Methods
	Pendulum
	Point mass - full view
	Point mass - partial view

	Results
	Analysis
	Proof of concept
	Unobservable states
	Generalization to unseen states
	Failure of trajectory optimization

	III Additional results and Discussion
	Additional results and discussion
	Research question 5
	Research question 6
	Research question 7

	IV Closure
	Conclusion
	Recommendations
	Bibliography

	V Appendices
	List of gps applications
	Preliminary experiments neural networks
	Point-mass

	Default parameter settings
	General
	Sub-policies
	Trajectory optimization
	Dynamics models
	Global-policy

	Quadcopter model and controller
	Dynamic model
	Controller
	System Simplification
	Simulation Results

