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We present a complete theory for laser cooling of a macroscopic radio-frequency LC electrical circuit by means
of an optoelectromechanical system, consisting of an optical cavity dispersively coupled to a nanomechanical
oscillator, which is in turn capacitively coupled to the LC circuit of interest. The driven optical cavity cools the
mechanical resonator, which in turn sympathetically cools the LC circuit. We determine the optimal parameter
regime where the LC resonator can be cooled down to its quantum ground state, which requires a large optome-
chanical cooperativity, and a larger electromechanical cooperativity. Moreover, comparable optomechanical and
electromechanical coupling rates are preferable for reaching the quantum ground state.
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I. INTRODUCTION

Over the past decade, the experimental realization of
quantum states of macroscopic objects has made significant
progress in the fields of opto- and electromechanics. These
include mechanical ground state cooling [1–5], mechanical
squeezing [6,7], and entanglement between mechanical, mi-
crowave, and optical modes [8–12]. Also facilitated by this
progress, hybrid quantum systems [13] provide interesting
opportunities and a variety of novel platforms for new tech-
nological applications. In particular, optoelectromechanical
devices has received significant attention, especially in trans-
ducing radio-frequency (rf) and microwave signals to the
optical domain [14–32].

However, most of optoelectromechanical systems are us-
ing a gigahertz microwave resonator. Here, we focus on the
case of a megahertz rf resonator, for which operation in the
quantum domain is more difficult because, due to the lower
resonance frequency, it is normally in a thermally excited state
even at ultracryogenic temperatures. Radio-frequency signals
in the megahertz and kilohertz regimes are used in a large
variety of research fields and applications [14], ranging, for
example, from astronomical signal detection at long wave-
length (astronomical plasmas, sun activity, and exoplanets
research) [33] to ultralow magnetic field nuclear magnetic res-
onance and imaging (superconducting quantum interference
device coupled to an LC circuit) [34]. Therefore the possibility

of operating in a quantum regime at the megahertz and even
kilohertz range with extremely low noise can be advantageous
for positioning, timing, and sensing (imaging) applications,
and for more fundamental science applications, such as the
sensitive detection of rf signals of astrophysical nature.

Quantum operation of rf circuits requires cooling them
close to their quantum ground state, and here we show that
this can be achieved by appropriately engineering the interac-
tions in a hybrid tripartite optoelectromechanical system. This
result could be considered as a further example of quantum
manifestation at macroscopic level, involving photons with
macroscopic wavelengths and typically realized with macro-
scopically sized circuit elements.

Laser cooling of an LC circuit via the intermediate cou-
pling to a mechanical resonator has been first proposed in
Ref. [15]. Here we extend that analysis, showing that one
can cool down the LC resonator to its quantum ground state,
providing an alternative route to what has been recently
demonstrated through the coupling to a superconducting qubit
[35], or to an ultracryogenic microwave cavity [36]. In this
paper we provide a detailed analysis of the system, by first
determining its optimal working point, and then analyzing its
stationary state, focusing on the parameter regime in which
the rf LC resonant circuit can be ground state cooled. From a
physical point of view, this occurs when the energy exchange
process of the LC circuit with its own thermal reservoir is
dominated by the exchange process with the much colder
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reservoir represented by the mechanical resonator cooled by
the driven optical cavity mode. In more intuitive terms, the
driven cavity cools the mechanical resonator, which in turn
sympathetically cools the rf resonator [37]. In general, we find
that ground state cooling of the rf resonator is possible when
the optomechanical cooperativity is large, and the electrome-
chanical cooperativity is even larger. A preliminary study
of the quantum behavior of the same optoelectromechanical
system has been recently shown in Ref. [38], which, however,
focused only on the entanglement between the mechanical
and the rf resonator. Ground state cooling and stationary en-
tanglement are generally related quantum phenomena, but, as
already verified in optomechanics [39,40], they are optimized
under quite different conditions.

The paper is organized as follows. In Sec. II, we intro-
duce our tripartite optoelectromechanical system and provide
its Hamiltonian and the corresponding Langevin equations.
In Sec. III we determine the working point of the system
and derive the linearized equations for the system quantum
fluctuations. In Sec. IV we show how to exactly solve these
linearized equations and determine the steady state of the
system, while in Sec. V we provide an approximate analytical
theory for the steady-state occupancy of the rf resonator. In
Sec. VI we describe the results and determine the optimal
parameter regime for laser cooling the LC circuit to its quan-
tum ground state. Then, in Sec. VII we discuss in detail the
challenges one has to face for an unambiguous detection of
the stationary state of the rf resonator, while Sec. VIII is for
concluding remarks.

II. THE SYSTEM

We consider a generic hybrid optoelectromechanical sys-
tem, which consists of an optical cavity, a nanomechanical
oscillator, and a (rf resonant circuit. Different kinds of systems
and configurations have been already proposed and character-
ized experimentally [15–22,24,25,27–31] and the treatment
presented here can be applied to all the cases in which the
electromechanical coupling is capacitive, and the optome-
chanical coupling is dispersive. Nonetheless, in order to be
more specific, we will refer to the configuration in which
the optomechanical system is the membrane-in-the-middle
one [41–45], i.e., a driven optical Fabry-Perot cavity with
a thin semitransparent membrane inside. The membrane is
metallized [15,19,20,24,46] and capacitively coupled via an
electrode to an LC resonant circuit formed by a coil and addi-
tional capacitors (see Fig. 1). The Hamiltonian of the system
can be written in general as the sum of an optical, mechanical,
and electrical term,

Ĥ = Ĥopt + Ĥmech + ĤLC, (1)

where

Ĥopt = h̄ω(x)â†â + ih̄E (â†e−iωLt − âeiωLt ), (2)

Ĥmech = p̂2

2m
+ mω2

0 x̂2

2
, (3)

ĤLC = φ̂2

2L
+ q̂2

2C(x̂)
− q̂V̂ . (4)

FIG. 1. Schematic description of the system. A metal coated
nanomembrane is coupled via radiation pressure to a cavity field,
and capacitively coupled to an rf resonant circuit via the position-
dependent capacitance Cm(x). The rf resonator is modeled as a
lumped-element RLC series circuit with an additional tunable capac-
itance C0 in parallel with Cm(x), a resistance R, and an inductance L.
The rf circuit is driven by a DC bias VDC and by the Johnson-Nyquist
voltage noise δV .

In the optical contribution we consider a specific cavity mode,
with photon annihilation (creation) operator â (â†), with the
usual bosonic commutation relations [â, â†] = 1, which is
driven by a laser of frequency ωL and input power P. Conse-
quently, the driving rate can be written as E = √

2κinP/h̄ωL,
with κin the cavity amplitude decay rate through the input port.
The mechanical Hamiltonian corresponds to a resonator with
mass m, displacement operator x̂, and conjugated momentum
p̂, with commutation relation [x̂, p̂] = ih̄, which is associated
to a given vibrational mode of the metallized membrane with
bare frequency ω0. The dispersive optomechanical coupling
arises due to the dependence of the cavity mode frequency
ω(x̂) upon the membrane displacement x̂, as discussed in
Refs. [41–45].

The electrical contribution ĤLC refers to the rf resonator,
which we will describe here as a lumped-element series RLC
circuit (see Fig. 1), whose dynamical variables are given by
the concatenated flux φ̂ and the total capacitor charge q̂, with
the canonical commutation relation [q̂, φ̂] = ih̄. We have also
included a driving term associated with the possibility to con-
trol the circuit via a voltage bias V̂ . The electromechanical
coupling is capacitive and it arises from the displacement
dependence of the effective circuit capacitance C(x̂). In the
case of the chosen optoelectromechanical setup based on a
metallized membrane, such as those of Refs. [15,19,20,24],
one can write

C(x̂) = C0 + Cm(x̂) = C0 + ε0Aeff

h0 + x̂
, (5)

i.e., the effective capacitance is the parallel of a tunable ca-
pacitance C0 with the capacitor formed by the metallized
membrane together with the electrodes in front of it. As shown
in Refs. [20,24], we can assume a parallel plate model and
define the effective area Aeff of the membrane capacitor; h0

is the steady-state distance between the membrane and the
electrodes, in the absence of any bias voltage and cavity laser
driving, while ε0 is the vacuum permittivity.

A realistic RLC circuit is always quite involved, with its
behavior determined by a number of parasitic capacitances
and resistances whose values depend upon the specific circuit
implementation. However, the simplified description adopted
here in terms of the three lumped-element effective quantities,
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the inductance L, the resistance R, and the capacitance C(x̂), is
possible and perfectly suited for our purposes. In fact, our goal
is to laser cool the rf circuit via its quasiresonant interaction
with the mechanical resonator, and the dynamical behavior is
essentially determined by the frequency components around
the rf resonance peak, which is characterized by two easily
measurable quantities, the rf-resonant frequency ω

(0)
LC and the

width γLC of the uncoupled resonator. The two quantities de-
fine the rf-circuit quality factor QLC = ω

(0)
LC/γLC , which must

be large enough, QLC � 1, in order to achieve an appreciable
cooling [15]. A third circuit quantity that can be directly
measured is its effective inductance L, which can be obtained
from the low-frequency behavior of the circuit. Therefore,
since in a high-Q series RLC circuit one has ω

(0)
LC = 1/

√
LC

and γLC = R/L, once the value of the circuit inductance L has
been measured, one can define the other two effective circuit
parameters as

C(0) = C0 + ε0Aeff

h0
≡ 1

L
[
ω

(0)
LC

]2 , (6)

R ≡ LγLC . (7)

The full quantum dynamics of the system and its stationary
state can be determined from the Heisenberg-Langevin equa-
tions of the system which are obtained from the Hamiltonian
of Eq. (1) and by including fluctuation-dissipation processes
for the three resonators, which in the frame rotating at the laser
frequency ωL, are given by

˙̂x = p̂/m, (8)

˙̂p = −mω2
0 x̂ − γm p̂ − h̄

∂ω

∂ x̂
(x̂)â†â

− q̂2

2

ε0Aeff

[C0(h0 + x̂) + ε0Aeff ]
2 + F̂ , (9)

˙̂q = φ̂

L
, (10)

˙̂φ = − q̂

C0 + ε0Aeff/(h0 + x̂)
− γLCφ̂ + VDC + δV̂ , (11)

˙̂a = i[ωL − ω(x̂)] â − κ â +E +
√

2κinâin+
√

2κexâex, (12)

where γm is the mechanical damping rate, and κ = κin + κex

is the total cavity amplitude decay rate, given by the sum of
the decay rate though the input port κin and the decay rate
through all the other ports κex. The latter optical loss processes
are associated with the corresponding input noise operators
âin and âex, which are uncorrelated and whose only nonzero
correlation is 〈âj(t ) â†

j (t ′)〉 = δ(t − t ′), j = in, ex.
We have included two zero-mean noise terms in the equa-

tions: F̂ (t ) is the Langevin force operator which accounts
for the Brownian motion of the mechanical oscillator, whose
symmetrized correlation function is in general equal to [47,48]

1

2
〈F̂ (t )F̂ (t ′) + F̂ (t ′)F̂ (t )〉

= mγm

∫
dω

2π
cos ω(t − t ′)h̄ω coth

(
h̄ω

2kBT

)
, (13)

which, in the case of a large mechanical quality fac-
tor Qm = ω0/γm�1 valid here, can be approximated with

the Markovian expression [48], 〈F̂ (t )F̂ (t ′) + F̂ (t ′)F̂ (t )〉/2 �
mγmh̄ω0(2n̄m + 1)δ(t − t ′), where n̄m = [eh̄ω0/kBT − 1]−1 is
the equilibrium mean thermal phonon number, with kB the
Boltzmann constant and T the environmental temperature. We
have also rewritten the external bias voltage as V̂ (t ) = VDC +
δV̂ (t ), i.e., the sum of a DC bias and the Johnson-Nyquist volt-
age noise operator δV̂ with autocorrelation function [47,49],

1

2
〈δV̂ (t )δV̂ (t ′) + δV̂ (t ′)δV̂ (t )〉

= R
∫

dω

2π
cos ω(t − t ′)h̄ω coth

(
h̄ω

2kBT

)
, (14)

which again, in the case of a large LC quality factor can be
approximated with the Markovian expression 〈δV̂ (t )δV̂ (t ′) +
δV̂ (t ′)δV̂ (t )〉/2 � Rh̄ω

(0)
LC (2n̄LC + 1)δ(t − t ′), where n̄LC =

[eh̄ω
(0)
LC/kBTLC − 1]−1 is the mean thermal rf photon number. We

have assumed in general TLC 	= T because the rf circuit tends
to pick up ambient noise and the effective rf noise temperature
can be larger than ambient temperature.

III. WORKING POINT AND LINEARIZED DYNAMICS
OF THE QUANTUM FLUCTUATIONS

In order to look for the possibility to reach the quantum
regime for the macroscopic rf resonator, we have to evalu-
ate the stationary quantum fluctuations around the classical
steady state of the system, which is obtained by replacing all
the operators in the Heisenberg-Langevin equations (8)–(12)
with the corresponding average values, neglecting all noise
terms, and setting all the derivatives to zero. In this way one
defines the working point of the system, which is determined
by the two external drivings, i.e., the laser driving rate E and
the DC bias voltage VDC. If stability conditions are satisfied
(see Appendix), the steady state is characterized by the cavity
mode in a coherent state with amplitude αs, the membrane in
an equilibrium position displaced by xs, the rf circuit with no
current, and the capacitor with a stationary charge qs. Using
the fact that ps = φs = 0, one can express the working point
parameters in terms of xs only, i.e.,

αs = E

κ + i�
, (15)

qs = C(xs)VDC, (16)

where � = ω(xs) − ωL is the effective cavity mode detuning,
and it is the parameter which is actually fixed in an experi-
ment by the cavity stabilization system. The static membrane
displacement xs is the solution of the equilibrium condition for
the three forces applied to the membrane, i.e., the membrane
elastic force, the electrostatic force, and the radiation pressure
force,

mω2
0xs = − ε0AeffV 2

DC

2(h0 + xs)2
− h̄

∂ω

∂x
(xs)ncav, (17)

where ncav = |αs|2 = E2/(κ2 + �2) is the intracavity photon
number.

The quantum fluctuations dynamics can be described with
very good approximation by linearizing the exact Heisenberg-
Langevin equations (8)–(12) around the classical stationary
state defining the system working point, i.e., by keeping only
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first-order terms in such fluctuations. In fact, if stability condi-
tions are satisfied, the system dynamics will not significantly
depart from the steady state defined above, and higher-order
terms in the fluctuation operators can be neglected [39,40]. It
is convenient to express these equations in terms of dimen-
sionless fluctuation operators, scaled by the corresponding
quantum zero-point fluctuation units, i.e., by redefining

x̂ → xs + xzpfδx̂ = xs +
√

h̄

mω0
δx̂, (18)

p̂ → ps + pzpfδ p̂ =
√

h̄mω0δ p̂, (19)

q̂ → qs + qzpfδq̂ = qs +
√

h̄

Lω
(0)
LC

δq̂, (20)

φ̂ → φs + φzpfδφ̂ =
√

h̄Lω
(0)
LCδφ̂, (21)

so that the commutation relations are rewritten as [δx̂, δ p̂] =
[δq̂, δφ̂] = i. By introducing also the two intracavity quadra-
ture fluctuation operators

δX̂ = δâeiθ + δâ†e−iθ

√
2

, (22)

δŶ = δâeiθ − δâ†e−iθ

i
√

2
, (23)

where θ = arctan �/κ , one gets the following linearized
Heisenberg-Langevin equations:

δ ˙̂x = ω0δ p̂, (24)

δ ˙̂p = −ω2
m

ω0
δx̂ − γmδ p̂ + GδX̂ − gδq̂ + ξ̂ , (25)

δ ˙̂q = ω
(0)
LCδφ̂, (26)

δ ˙̂φ = −ω2
LC

ω
(0)
LC

δq̂ − γLCδφ̂ − gδx̂ + δV̂, (27)

δ ˙̂X = �δŶ − κδX̂ +
√

2κX̂vac, (28)

δ ˙̂Y = −�δX̂ − κδŶ + Gδx̂ +
√

2κŶvac. (29)

We have introduced the two relevant coupling rates, the op-
tomechanical coupling rate

G = −xzpf
∂ω(xs)

∂x

√
2ncav, (30)

and the electromechanical coupling rate

g = ε0AeffVDC

C(xs)(h0 + xs)2
√

mLω
(0)
LCω0

. (31)

We notice that both the mechanical and the LC resonance
frequencies, ω0 and ω

(0)
LC , respectively, are modified when the

cavity is driven and the DC voltage bias is applied, acquiring
new values: from Eqs. (5) and (6) one has

ω2
LC = [LC(xs)]−1 =

[
L

(
C0 + ε0Aeff

h0 + xs

)]−1

, (32)

FIG. 2. Electromechanical coupling g versus the DC voltage
VDC and the membrane-electrode distance h0. The black dotted line
indicates the value of h0 which is used in the plots of Sec. VI,
corresponding to 2 μm. The other electromechanical parameters
are ω0/2π = ω

(0)
LC/2π = 1 MHz, Qm = 106, m = 0.7 × 10−10 kg,

L = 1 mH, and Aeff = 1.1 × 10−7 m2.

while the modified mechanical resonance frequency ωm is
given by the expression

ω2
m = ω2

0 + h̄

m

∂2ω(xs)

∂x2
ncav − V 2

DCε0Aeff

m(h0 + xs)3
. (33)

We recall that the system is stable provided that ω2
m > 0

and the latter expression shows that there is a maximum
value for VDC, the pull-in voltage, beyond which the effective
mechanical frequency ωm becomes imaginary and the mem-
brane is pulled onto the other electrode of the capacitor (see
Appendix A). We also notice that for physically interesting
parameter regimes, the shift xs may be not negligible with
respect to h0 and tends to −h0/3 when approaching the pull-in
voltage (see Appendix A). As a consequence, due to Eqs. (17)
and (31), the coupling g has a nonlinear dependence upon
VDC, and it never surpasses a maximum value when VDC ap-
proaches its maximum value Vpull. This is explicitly shown
in Fig. 2, where the electromechanical coupling g is shown
versus the electrode distance h0 and VDC. The stationary mem-
brane shift xs is determined by the equilibrium between the
mechanical stress, the electrostatic force, and the radiation
force. As shown in Appendix B, where we provide the explicit
expressions for the membrane-in-the-middle case based on the
treatment of Ref. [44], the contribution of the radiation force
on xs is negligible.

Finally we have also introduced rescaled noise operators:
(i) the mechanical thermal noise term ξ̂ (t ) = F̂ (t )/pzpf , with
symmetrized autocorrelation function (in the high Qm Marko-
vian limit),

1
2 〈ξ̂ (t )ξ̂ (t ′) + ξ̂ (t ′)ξ̂ (t )〉 = γm(2n̄m + 1)δ(t − t ′); (34)

(ii) the rescaled Nyquist noise operator on the rf circuit δV̂ =
δV̂ (t )/φzpf , with symmetrized autocorrelation function (in the
high QLC Markovian limit)

1
2 〈δV̂(t )δV̂(t ′) + δV̂(t ′)δV̂(t )〉 = γLC (2n̄LC + 1)δ(t − t ′);

(35)
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and (iii) the two vacuum optical noises

X̂vac = 1√
2κ

[
√

κin(âineiθ + â†
ine−iθ )

+√
κex(âexeiθ + â†

exe−iθ )], (36)

Ŷvac = −i√
2κ

[
√

κin(âineiθ − â†
ine−iθ )

+√
κex(âexeiθ − â†

exe−iθ )], (37)

which are uncorrelated and possess the same autocorrelation
function

1
2 〈X̂vac(t )X̂vac(t ′) + X̂vac(t ′)X̂vac(t )〉

= 1
2 〈Ŷvac(t )Ŷvac(t ′) + Ŷvac(t ′)Ŷvac(t )〉 = 1

2δ(t − t ′). (38)

IV. DETERMINATION OF THE STEADY STATE

The linearized Heisenberg-Langevin equations in (24)–
(29) can be rewritten in the following compact matrix form:

˙̂u(t ) = Aû(t ) + n̂(t ), (39)

where û(t ) = [δx̂(t ), δ p̂(t ), δq̂(t ), δφ̂(t ), δX̂ (t ), δŶ (t )]T

is the column vector of fluctuations (the su-
perscript T denotes transposition), n̂(t ) =
[0, ξ̂ (t ), 0, δV̂(t ),

√
2κX̂vac(t ),

√
2κŶvac(t )]T is the corre-

sponding column vector of noises, and A is the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ω0 0 0 0 0

−ω2
m

ω0
−γm −g 0 G 0

0 0 0 ω
(0)
LC 0 0

−g 0 −ω2
LC

ω
(0)
LC

−γLC 0 0

0 0 0 0 −κ �

G 0 0 0 −� −κ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (40)

The formal solution of Eq. (39) is

û(t ) = M(t )û(0) +
∫ t

0
ds M(s)n̂(t − s),

where M(t ) = exp{At}. The system is stable and reaches its
steady state for t → ∞ when all the eigenvalues of A have
negative real parts so that M(∞) = 0. Here we will consider
the parameter region where the driven cavity mode cools
the mechanical resonator, corresponding to a driving laser
red-detuned with respect to the cavity, � > 0 [40]. Within
this parameter region, the stability condition is violated only
at very large values of the optomechanical coupling G, which
are detrimental for cooling, correspond to the onset of optical
bistability [50], and which are of no interest here.

In the linearized regime, the steady state of the tripar-
tite optoelectromechanical system can be fully characterized
because the noise terms are zero-mean quantum Gaussian
noises, and as a consequence, the steady state of the sys-
tem is a zero-mean tripartite Gaussian state, fully determined
by its 6 × 6 correlation matrix (CM) Vi j = (〈ûi(∞)û j (∞) +
û j (∞)ûi(∞)〉)/2.

Starting from Eq. (39), this steady-state CM can be de-
termined in two equivalent ways, either as an integral [see
Eqs. (45) and (46) below], or as solution of a matrix equation

[see Eq. (47) below]. Using the Fourier transforms ûi(ω) of
ûi(t ), one has

Vi j (t ) =
∫ ∫

dω dω′

(2π )2
e−it (ω+ω′ )1

2
〈̂ui(ω)û j (ω

′)+û j (ω
′)ûi(ω)〉.

(41)
Then, by Fourier transforming Eq. (39) and the correlation
functions of the noises in the Markovian limit, Eqs. (34), (35),
and (38), one gets

〈ûi(ω)û j (ω′)+û j (ω′)ûi(ω)〉
2

= [M(ω)DM(ω′)T ]i jδ(ω+ω′),
(42)

where we have defined the 6 × 6 matrix

M(ω) = (iω + A)−1, (43)

and the diagonal diffusion matrix

D =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 γm(2n̄m + 1) 0 0 0 0
0 0 0 0 0 0
0 0 0 γLC (2n̄LC + 1) 0 0
0 0 0 0 κ 0
0 0 0 0 0 κ

⎞
⎟⎟⎟⎟⎟⎠.

(44)
The δ(ω + ω′) factor is a consequence of the stationarity of
the noises, and inserting Eq. (42) into Eq. (41), one gets the
following expression for the stationary correlation matrix:

V ∞ =
∫ ∞

−∞

dω

2π
M(ω)DM(ω)†, (45)

which can be equivalently rewritten as an integral in the time
domain as

V ∞ =
∫ ∞

0
dt M(t )DM(t )T . (46)

From the latter expression one can derive an alternative way
to get the stationary CM V ∞. In fact, when the stability
conditions are satisfied [M(∞) = 0], one can verify, by an
explicit integration, that Eq. (46) is equivalent to the following
Lyapunov equation for the steady-state CM,

AV ∞ + V ∞AT = −D. (47)

This is a linear equation for V ∞ which can be analytically
solved, but the general exact expression of the matrix elements
is too cumbersome and will not be reported here. We have
adopted this latter method, and the numerical analysis and the
plots of Sec. VI are obtained from the numerical solution of
Eq. (47).

In this paper we are interested only in the stationary state
of the rf resonator and in its stationary energy in particular,
which is equal to

ULC = h̄ω
(0)
LC

2
[〈δq̂2〉 + 〈δφ̂2〉] = h̄ω

(0)
LC

2

(
V ∞

33 + V ∞
44

)
≡ h̄ω

(0)
LC

(
n̄eff

LC + 1

2

)
, (48)

where n̄eff
LC is the effective mean occupation number of the LC

oscillator.
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V. APPROXIMATE EXPRESSION FOR THE rf
RESONATOR OCCUPANCY

One can adapt standard resolved sideband cooling the-
ory of optomechanical systems for the derivation of an
approximate expression of the stationary occupancy of the rf
resonator. In the case of a standard optomechanical system,
the stationary occupancy of the mechanical resonator, far from
the strong-coupling regime, can be very well approximated as
[51–53]

n̄eff
m = γmn̄m + �mn̄c + A+

γm + �m
, (49)

where n̄c � 0 is the mean excitation of the optical reservoir at
zero temperature, �m = A− − A+ > 0 is the net laser cooling
rate, with

A± = G2κ/2

κ2 + (� ± ωm)2
(50)

the scattering rates into the Stokes (A+) and anti-Stokes (A−)
sidebands, corresponding respectively to the absorption or
emission of a mechanical vibrational quantum. Equation (49)
can be seen as the result of the balance between the two energy
exchange processes involving the mechanical resonator: (i)
the one with rate γm with its thermal reservoir with n̄m mean
excitations; (ii) the other one with rate �m with the effective
optical reservoir at zero temperature (n̄c � 0) represented by
the driven and decaying cavity, and which is responsible for
cooling. The scattering rate A+ is responsible for the quantum
back-action limit associated with the quantum fluctuations of
the radiation pressure force.

In the optoelectromechanical system under study, the rf
resonator we are interested in is directly coupled to the me-
chanical resonator, which is in turn coupled to the driven
optical cavity. In the proposal of Ref. [15] one can laser cool
the rf resonator by driving on the red sideband of the optical
cavity as in the usual optomechanical sideband cooling, and
then exploiting the resonant electromechanical interaction in
order to extend cooling to the rf circuit. This is why one
can view this process as sympathetic cooling [37] of the LC
resonator by means of the laser cooling of the mechanical
resonator.

An equivalent description of the desired cooling process is
the following: the rf resonator is cooled because the energy
exchange process at rate γLC with its own thermal reservoir
with n̄LC mean excitations is dominated by the exchange pro-
cess with the much colder “polariton” reservoir represented
by the mechanical resonator hybridized with the driven optical
cavity mode in the regime of efficient sideband cooling. This
latter effective reservoir is characterized by an effective decay
rate γ eff

m = γm + �m, a nonzero mean number of excitations
n̄eff

m [see Eq. (49)], and the LC resonator will scatter polaritons
into the corresponding Stokes and anti-Stokes sidebands with
rates that are respectively given by

ALC
± = g2γ eff

m(
γ eff

m

)2 + 4(ωm ± ωLC )2
. (51)

An intuitive explanation of the present expression is the
fact that, when comparing with the optomechanical case of
Eq. (50), the rate γ eff

m /2 plays the role of the cavity decay

rate κ , and the electromechanical coupling g plays the role
of the optomechanical coupling G. As a consequence one has
an effective polariton cooling rate

�LC = ALC
− − ALC

+ > 0. (52)

One can then apply the same arguments used for deriving
Eq. (49) to the present situation, and arrive at the following
expression for the rf resonator occupancy

n̄eff
LC = γLCn̄LC + �LCn̄eff

m + ALC
+

γLC + �LC
. (53)

This is the desired approximation we were looking for.
It works in the optimal regime for sideband cooling, that
is, � ∼ ωm ∼ ωLC > κ > G as well as γ eff

m /2 ∼ G2/4κ >

g. From Eq. (53) one can see that the rf resonator can-
not be cooled more than the mechanical resonator and that
therefore at best one can achieve n̄eff

LC ∼ n̄eff
m . The latter

condition is achieved when �LC ∼ ALC
− � ALC

+ , γLC , which
is obtained at resonance � ∼ ωm ∼ ωLC � γ eff

m ∼ G2/2κ ,
when 2g2κ/G2 � γLC . Defining the two relevant cooper-
ativities, the optomechanical cooperativity Com = G2/2κγm

and the electromechanical cooperativity Cem = g2/γLCγm, the
necessary condition to achieve simultaneous ground state
cooling, n̄eff

LC ∼ n̄eff
m < 1, can be written as

Cem � Com � 1. (54)

This latter condition for the cooperatives can be satisfied only
for an LC circuit with a large enough value of its quality factor,
so that γLC 
 g, κ , because the electromechanical coupling g
cannot be too large with respect to G2/κ for the validity of the
above expressions. Nonetheless, the results of Sec. VI based
on the exact numerical solution of the Lyapunov equation of
Eq. (47) show that cooling of the rf resonator close to the
quantum regime is possible also when the above assumptions
are not fully satisfied and Eq. (53) is not too accurate.

VI. RESULTS FOR THE COOLING
OF THE LC RESONATOR

Let us now determine the optimal parameter conditions
under which one can cool a megahertz rf circuit down to its
quantum ground state. We show the main results in Figs. 3
and 4, where we apply the exact treatment of Eqs. (47) and
(48). Then in Fig. 5 we compare these results with the approx-
imate treatment of Sec. V and the corresponding analytical
prediction of Eq. (53), showing a satisfactory agreement be-
tween them.

As we have seen above, the most relevant parameters one
has to optimize are the optomechanical coupling G, the elec-
tromechanical coupling g, the ambient temperatures T and TLC

(which here will be taken to be identical for simplicity), and
the quality factor of the rf resonant circuit, QLC .

The other parameters will be kept fixed and corre-
sponding to typical experimental values for a metallized
membrane-in-the-middle configuration [20,24], that is, laser
optical wavelength λ = 1064 nm, membrane effective mass
m = 0.7 × 10−10 kg, membrane intensity reflectivity (in the
nonmetallized section) R = 0.4, bare mechanical resonance
frequency ω0 = 2π × 1 MHz, mechanical quality factor
Qm = 106, optical cavity length Lc = 8 × 10−3 m, optical
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FIG. 3. (a),(c) Stationary LC circuit occupancy n̄eff
LC from the

solution of the Lyapunov equation, Eq. (47), as a function of the
scaled electromechanical coupling g/κ , and of the scaled optome-
chanical coupling G/κ . (b),(d) n̄eff

LC versus g/κ , at fixed values of
the optomechanical coupling rate, corresponding to the horizontal
lines in (a)–(c): G/κ = 0.2 (full yellow lines), G/κ = 0.5 (dashed
red lines), G/κ = 0.8 (dash-dotted blue lines), G/κ = 1.1 (dotted
black lines). The upper plots (a) and (b) refer to the resonance of
the bare mechanical and LC frequencies, ω0 = ω

(0)
LC , while the lower

plots (c) and (d) refer to the resonance of the effective mechanical and
LC frequencies, ωm = ωLC . We have chosen a quality factor of the rf
resonator QLC = 4 × 104 and a temperature T = 10 mK (see text for
the other system parameters). The dash-dotted black horizontal line
in (b) and (d) refers to n̄eff

LC = 1.

cavity finesse F = 5 × 104, yielding a total optical cavity
amplitude decay rate κ = 2π × 374.74 kHz. We have also
chosen κin = 0.4κ and a laser driving around the red me-
chanical sideband, that is, � � ω0. Finally, we have chosen
an equivalent circuit inductance L = 1 mH, and a membrane

FIG. 4. Stationary LC circuit occupancy n̄eff
LC from the solution of

the Lyapunov equation, Eq. (47), as a function of the rf resonator
quality factor QLC and of temperature T (we have assumed here T =
TLC), for a chosen value of the optomechanical coupling, G/κ = 0.8
(dash-dotted blue line of Fig. 3), choosing ω0 = ω

(0)
LC , and by fixing,

for any given pair of values of QLC and T , the optimal value of the
electromechanical coupling g minimizing n̄eff

LC . The dash-dotted line
refers to the upper bound of the “quantum region,” n̄eff

LC = 1.

FIG. 5. LC resonator photon occupation number n̄eff
LC versus g/κ ,

at the same value of the optomechanical coupling, G/κ = 0.8, cho-
sen in Fig. 4, at temperature T = TLC = 300 K, choosing ω0 = ω

(0)
LC ,

and for two different values of the quality factor, QLC = 102 (red full
and dashed upper curves) and QLC = 103 (blue full and dashed lower
curves). Full lines refer to the exact numerical solution of Eq. (47),
while dashed lines refer to the approximate treatment of Sec. V [see
Eq. (53)].

capacitor with an effective area Aeff = 1.1 × 10−7 m2 and
distance between the electrodes equal to h0 = 2 μm. As a
consequence, the two coupling rates G and g, and the cor-
responding system working point, can be tuned by varying
the two external parameters, the driving laser power P which
fixes the intracavity photon number ncav, and the DC voltage
bias VDC.

In Fig. 3 we assume a cryogenic temperature T = TLC =
10 mK, and a rf resonator quality factor QLC = 4 × 104. Then
in Figs. 3(a) and 3(b) we take identical bare frequencies of
the LC and mechanical resonators, ω

(0)
LC = ω0, and display the

behavior of the stationary rf circuit occupancy n̄eff
LC predicted

by Eqs. (47) and (48). In Fig. 3(a) n̄eff
LC is plotted versus the

scaled electromechanical and optomechanical coupling rates,
g/κ and G/κ , respectively, while in Fig. 3(b) we plot n̄eff

LC
versus g/κ at four fixed values of G/κ corresponding to the
horizontal lines with the same color and style in Fig. 3(a).
These plots clearly show that an experimentally achievable pa-
rameter region exists where it is possible to reach the quantum
regime with an LC resonator occupation number below 1.

However, the analysis of Sec. V predicts that optimal laser
cooling of the LC resonator occurs when the modified me-
chanical and rf resonance frequencies of Eqs. (32) and (33)
are resonant, ωm = ωLC , rather than their bare counterparts,
ω

(0)
LC and ω0. Therefore, in Figs. 3(c) and 3(d) we display

the same plots of Figs. 3(a) and 3(b) but now under the
optimal resonance condition ωm = ωLC , which can always be
obtained by adjusting, at each working point, the value of
ωLC by means of the tuning capacitance C0 [see Eq. (32)].
As expected, cooling of the LC resonator is improved, with a
wider parameter region where laser cooling is efficient, even
though the qualitative behavior is not appreciably modified.

033516-7



NICOLA MALOSSI et al. PHYSICAL REVIEW A 103, 033516 (2021)

By comparing the upper and lower plots in Fig. 3, we
notice that the coupling g spans a shorter interval of possible
values in the latter resonant case. In fact, for a given choice
of h0 and Aeff , g is already upper limited by the maximum
VDC that can be applied before the pull-in effect (see Fig. 2);
when we impose the resonance condition ωm = ωLC , since the
mechanical frequency ωm decreases due to the applied DC
bias [see Eq. (33)], the overall capacitance of the LC circuit
must be increased, implying a further limitation to the value of
g [see Eq. (31)]. From Fig. 3 we can conclude that ground state
cooling of the LC circuit is achievable for comparable values
of the coupling rates G and g, with the latter ones obtained
with a voltage bias VDC always far enough from the pull-in
voltage (see Fig. 2).

The more demanding experimental condition assumed in
Fig. 3 is the one on the rf resonator quality factor, because
typical values are in the range 102 � QLC � 103 [20,35], even
though very recently Ref. [36] demonstrated a rf resonator
with QLC ∼ 1.7 × 104. For this reason in Fig. 4 we have stud-
ied the LC circuit occupancy n̄eff

LC also as a function of the rf
resonator quality factor QLC and of temperature T = TLC , at a
fixed value of the optomechanical coupling, G/κ = 0.8 (blue
dash-dotted line of Fig. 3) and ω

(0)
LC = ω0 for simplicity. At

each point of the plot, we have chosen the optimal value of the
electromechanical coupling g minimizing n̄eff

LC . As expected,
cooling improves for lower temperature and larger QLC , and
the dash-dotted line sets the boundary of the “quantum region”
where n̄eff

LC � 1.
Finally, in Fig. 5 we compare the exact numerical result

of Eq. (47) with the approximate analytical theory developed
in Sec. V. We show the mean rf photon number n̄eff

LC ver-
sus g/κ for the numerical solution (full lines) and for the
approximate analytical theory of Eq. (53) (dashed lines) at
T = 300 K, choosing again ω

(0)
LC = ω0, and for two different,

realistic values of the LC quality factor, QLC = 102 (red upper
curves) and QLC = 103 (blue lower curves). The approximate
theory well reproduces the numerical solution for relatively
low values of the electromechanical coupling g, up to the
value roughly corresponding to the minimum occupancy. For
larger g, the prediction of Eq. (53) increases more than the
numerical solution, which is somehow expected because the
approximated theory is valid as long as g is not larger than
the effective optomechanical decay rate G2/2κ . Nonetheless,
the approximate theory provides a very good estimate of the
achievable cooling limit as well as of the g interval where the
minimum rf-photon occupancy could be achieved.

VII. DETECTION OF THE rf RESONATOR STEADY STATE

The effective mean photon number of the rf circuit at the
steady state can be measured following two ways: (i) mea-
suring directly the rf voltage signal between two points of
the circuit; and (ii) measuring the optical output of the cavity
and trying to get information about the rf circuit state from
it. In both cases these measurements are carried out in the
frequency domain and therefore here we will focus on the
solution of the Fourier transform of the Heisenberg-Langevin
equations, Eq. (39). This solution has been already given in
compact form in Sec. IV, but it will be convenient to reexpress
it in more physical terms using effective susceptibilities.

Solving separately the two quadrature equations for each
mode in equations from Eq. (24) to Eq. (29), we get

χ−1
c (ω)δX̂ (ω) = Gδx̂(ω) +

√
2κ

[κ − iω

�
X̂vac(ω)+Ŷvac(ω)

]
,

(55)

χ−1
m (ω)δx̂(ω) = GδX̂ (ω) − gδq̂(ω) + ξ̂ (ω), (56)

χ−1
LC (ω)δq̂(ω)=−gδx̂(ω) + δV̂(ω), (57)

where χc(ω), χm(ω), and χLC (ω) are the natural suscep-
tibilities of the cavity, mechanical, and electrical modes,
respectively, given by

χc(ω) = �

�2 + (κ − iω)2
,

χm(ω) = ω0

ω2
m − ω2 − iγmω

,

χLC (ω) = ω
(0)
LC

ω2
LC − ω2 − iγLCω

. (58)

The mutual interactions among the three modes lead to the
modification of their natural susceptibilities. Inserting δX̂ (ω)
and δq̂(ω) in Eq. (56) into the equation for δx̂(ω), we obtain

[
χ eff

m (ω)
]−1

δx̂(ω) = χc(ω)G
√

2κ
[κ − iω

�
X̂vac(ω) +Ŷvac(ω)

]
+ ξ̂ (ω) − χLC (ω)gδV̂(ω), (59)

where χ eff
m (ω) is the effective mechanical susceptibility, de-

fined by [
χ eff

m (ω)
]−1 = χ−1

mc (ω) − g2χLC (ω), (60)

with

χ−1
mc (ω) = χ−1

m (ω) − G2χc(ω), (61)

where χmc(ω) is the effective mechanical susceptibility in
the presence of only the optomechanical interaction. Equation
(59) together with δ p̂(ω) = −i(ω/ω0)δx̂(ω) provides the me-
chanical response of the system to external perturbations.

Following the same approach, for the electrical mode we
obtain[

χ eff
LC (ω)

]−1
δq̂(ω)

= δV̂(ω) − χmc(ω)g

×
{
χc(ω)G

√
2κ

[κ − iω

�
X̂vac(ω) + Ŷvac(ω)

]
+ ξ̂ (ω)

}
,

(62)

where χ eff
LC (ω) is the effective rf circuit susceptibility, given by[

χ eff
LC (ω)

]−1 = χ−1
LC (ω) − g2χmc(ω). (63)

In the same way Eq. (62) together with δφ̂(ω) =
−i(ω/ωLC )δq̂(ω) provides the rf response of the system to
external perturbations.
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Equation (48) can be rewritten as

n̄eff
LC = 〈δq̂2〉 + 〈δφ̂2〉 − 1

2
, (64)

that is, the effective stationary rf photon number can be
expressed in terms of the dimensionless charge and flux vari-
ances. In turn, using Eq. (45), these variances are given by the
integral over the corresponding noise spectra

〈δq̂2〉 =
∫ +∞

−∞

dω

2π
[M(ω)DM(ω)†]33 =

∫ +∞

−∞

dω

2π
Sδq(ω),

(65)

〈δφ2〉 =
∫ +∞

−∞

dω

2π
[M(ω)DM(ω)†]44 =

∫ +∞

−∞

dω

2π

ω2

ω2
LC

Sδq(ω).

(66)

Therefore laser cooling of the rf resonator can be experimen-
tally verified by measuring the charge noise spectrum Sδq(ω),
which can be explicitly written in terms of the effective sus-
ceptibilities defined above as

Sδq(ω) = ∣∣χ eff
LC (ω)

∣∣2
[g2|χmc(ω)|2 (Sr p + Sξ ) + SδV], (67)

where Sr p is the radiation pressure noise spectral contribution

Sr p(ω) = G2κ
�2 + κ2 + ω2

(�2 + κ2 − ω2)2 + 4κ2ω2
, (68)

and Sξ and SδV are, respectively, the Brownian force noise
and the voltage noise spectra, which are constant, white con-
tributions due to the Markovian approximation made on the
Brownian and Johnson-Nyquist noise,

Sξ = γm(2n̄m + 1), (69)

SδV = γLC (2n̄LC + 1). (70)

The charge noise spectrum can be measured by measur-
ing either the voltage noise across the circuit capacitance
C(xs), δVC (ω), or the voltage noise across the circuit
inductance L, δVL(ω). Since δVC (ω) = [qzpf/C(xs)]δq(ω),
δVL(ω) = −(ω2φzpf/ωLC )δq(ω), and both measurements will
be affected by an imprecision noise originating from the en-
vironment and the detection apparatus, one can write for the
two cases

SδVC = q2
zpf

C(xs)2
Sδq(ω) + SC

imp, (71)

SδVL = ω4φ2
zpf

ω2
LC

Sδq(ω) + SL
imp,

= ω4

ω4
LC

q2
zpf

C(xs)2
Sδq(ω) + SL

imp, (72)

where SC
imp and SL

imp are the voltage imprecision noise spectra
for the measurement cases, we have assumed that they are
uncorrelated from the other noise terms, and we have used
Eqs. (6) and (21) in Eq. (72). These expressions show that
measured voltage noise spectra can provide the stationary
photon occupancy of the rf resonant circuit provided that the

spectra are properly calibrated and, above all, that the impre-
cision noise is small enough so as not to alter the evaluation of
the area below the measured spectrum [see Eqs. (64)–(66)].

We can express this condition on the imprecision noise
SC,L

imp in more quantitative terms by exploiting the fact that
the shape of the charge spectrum Sδq(ω) is determined by the
effective LC susceptibility of Eq. (63). The parameter regime
which is optimal for cooling the LC resonator is distinct from
the strong electromechanical regime where the electrical and
mechanical modes hybridize yielding two spectrally resolved
peaks. On the contrary, in the cooling regime of interest here,
the effective LC susceptibility χ eff

LC is characterized by a single
peak, significantly broadened by the interaction with the op-
tomechanical system, and therefore one can approximate χ eff

LC
as a standard susceptibility with modified effective frequency
ωeff

LC and damping γ eff
LC [53,54],

∣∣χ eff
LC (ω)

∣∣2 �
[
ω

(0)
LC

]2

[(
ωeff

LC

)2 − ω2
]2 + (

ω γ eff
LC

)2 , (73)

where

ωeff
LC �

√
ω2

LC + g2κ2

G2
� ωLC, (74)

under typical experimental conditions, and

γ eff
LC � γLC + �LC, (75)

in agreement with the analysis of Sec. V. Therefore the charge
noise spectrum Sδq(ω) is peaked at ω � ωeff

LC � ωLC , and, us-
ing Eqs. (67)–(70), one can write its maximum value with very
good approximation as

Speak
δq � Sδq(ωLC )

= 1(
γ eff

LC

)2

{
γLC (2n̄LC + 1)+ g2ω2

0(
ω2

m − ω2
LC

)2+ (
ωLC γ eff

m

)2

×
[
γm(2n̄m + 1) + G2

(
2ω2

LC + κ2
)

κ
(
4ω2

LC + κ2
) ]}

, (76)

where we have approximated also the effective optomechani-
cal susceptibility in the Lorentzian-like form [53,54]

|χmc(ω)|2 � ω2
0(

ω2
m − ω2

)2 + (
ω γ eff

m

)2 . (77)

Due to the peaked structure of Sδq(ω), one has ω4 � ω4
LC

in Eq. (72), and therefore the calibration factor for the two
voltage noise measurements is practically the same, implying
that the condition for a faithful, direct, spectral measurement
of the LC resonator photon occupancy reads

SC,L
imp 
 q2

zpf

C(xs)2
Speak

δq . (78)

We also notice that, again due to the peaked form of Sδq(ω),
one has 〈δφ2〉 � 〈δq2〉 [see Eqs. (65) and (66)] and therefore

n̄eff
LC � 〈δq2〉 − 1

2 . (79)

If we consider experimentally achievable parameters, en-
abling one to approach the quantum regime for the rf circuit,
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n̄eff
LC � 1, one sees that the condition of Eq. (78) is nontriv-

ial to satisfy, because its right-hand side is of the order of
10−20 V2/Hz. In fact, in this regime the charge noise spec-
trum peak is flattened and broadened because γ eff

LC becomes
larger and larger. Under these conditions the resonance peak
height becomes comparable to the background noise level and
a direct measurement of the rf photon occupancy becomes
hard. Nonetheless, this charge spectrum detection method is
certainly able to detect a significant laser cooling of the circuit.

One can alternatively use the spectral analysis of the sys-
tem stationary state to get an indirect experimental detection
of the rf circuit cooling process. In fact, one can always probe
the linear response of the system by driving the rf circuit with
a tunable AC voltage VAC (ω), small enough in order not to
modify its working point, but at the same time larger than
Brownian, Johnson-Nyquist, and radiation pressure noises.
From Eq. (62) one has

δq(ω) � χ eff
LC (ω)VAC(ω), (80)

that is, one directly measures the effective susceptibility of
the LC circuit, and in particular its FWHM γ eff

LC = γLC + �LC

[see Eq. (73)]. However, such a measurement provides also
an indirect measurement of the rf photon occupancy in a
large parameter regime, i.e., when the Johnson-Nyquist spec-
tral contribution dominates over the mechanical and radiation
pressure ones in the charge noise spectrum of Eq. (67). In fact,
in this regime, one has simply [see also Eq. (53)]

n̄eff
LC � γLC

γ eff
LC

n̄LC, (81)

that is, the temperature of the rf circuit is scaled down by the
ratio γLC/γ eff

LC .
An alternative way to probe the system properties is to

detect the output of the optical cavity. However, any optical
cavity mode interacts directly only with the mechanical res-
onator, and therefore it detects the dynamics of the rf circuit
only indirectly, via its effects on the mechanical motion. As is
customary in cavity optomechanics [40], the resulting optical
output spectra allows a good measurement of the effective me-
chanical occupancy, from which, however, it is hard to extract
direct information about the steady state of the rf circuit.

VIII. CONCLUSIONS

We have investigated a tripartite optoelectromechanical
system formed by an optical cavity, a mechanical oscillator,
and a megahertz rf resonator which, due to its low resonance
frequency, is normally in a thermally excited state even at
ultracryogenic temperatures. We have derived the optimal
conditions for achieving ground state, sympathetic, cooling
of the rf resonator, modeled as an LC circuit, by means
of its interaction with the mechanical resonator cooled by
the laser-driven optical cavity. This requires a large optome-
chanical cooperativity, and an even larger electromechanical
cooperativity. Under these conditions, the LC resonator can
be cooled close to its quantum ground state, as confirmed by
the exact numerical results in the linearized regime around the
optimal working point of the circuit. Manipulating rf resonant
circuits at the quantum level would be extremely useful for
the quantum-limited detection of weak rf signals, such as

those employed for positioning, timing, and for the sensitive
detection of rf signals of astrophysical nature.
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APPENDIX A: PULL-IN VOLTAGE

As discussed in the main text in Sec. III, soon after
Eq. (33), we cannot apply a too large value of the DC voltage
bias VDC due to the pull-in effect of the electrode in front
of the metallized membrane, softening the intrinsic spring
constant of the membrane mechanical mode. The quantity ω2

m
of Eq. (33) must be always positive, and using Eq. (17), one
can rewrite the stability condition of Eq. (33) as

mω2
0(h0+3xs)+ h̄ncav[2ω′(xs)+ω′′(xs)(h0+ xs)]

h0+xs
> 0, (A1)

where ω′(xs) and ω′′(xs) denote, respectively, the first- and
second-order derivatives of the cavity frequencies with respect
to x. The denominator h0 + xs is always positive because it is
just the distance between the two electrodes of the effective
plane-parallel capacitor modeling the membrane capacitor, so
that the stability condition is equivalent to impose the positiv-
ity of the above numerator. However, it is possible to verify
that the static radiation pressure frequency shift proportional
to ncav is always negligible with respect to that of electrostatic
origin under typical experimental values, and therefore one
gets the very simple stability condition

xs > −h0

3
. (A2)

Using Eq. (17) without the negligible radiation pressure term,
the critical point xs = −h0/3 can be reexpressed as a con-
dition for the maximum applicable voltage, which is given
by

Vpull =
√

8mω2
0h3

0

27ε0Aeff
, (A3)

which can be rewritten as a condition on the maximum elec-
trical field within the membrane capacitor

(
VDC

h0

)
max

=
√

8mω2
m

27Cm(0)
. (A4)

033516-10



SYMPATHETIC COOLING OF A RADIO-FREQUENCY … PHYSICAL REVIEW A 103, 033516 (2021)

APPENDIX B: EXPLICIT EXPRESSIONS IN THE CASE
OF A MEMBRANE-IN-THE-MIDDLE SETUP

We have not specified in the text the explicit form of
the function ω(x), which is responsible for the radiation
pressure coupling between the optical mode and the mechan-
ical resonator. In fact, the results shown in the main text
can be applied to a generic geometry of the optoelectrome-
chanical setup. However, here we provide more details for
the membrane-in-the-middle case, based on the treatment of
Ref. [44]. One can always express the frequency of a chosen
cavity mode in the presence of a semitransparent membrane
with intensity reflectivity R, placed at the static position z0

along the cavity axis, as

ω(x) = ωc + �
c

Lc
arcsin{

√
R cos [2k(z0 + x)]}, (B1)

where Lc is the cavity length, k = ωc/c is the wave vector
associated with the chosen cavity mode, and � is the over-
lap parameter, 0 � � � 1, quantifying the transverse overlap
between the chosen optical and membrane vibrational modes.

The first-order derivative determines the optomechanical
coupling according to Eq. (30), and it is given by

∂ω

∂x
(x) = −�

2ωc

Lc
sin[2k(z0 + x)]

√
R

1−R cos2[2k(z0 + x)]
.

(B2)
The second-order derivative instead enters into the expression
for the renormalized mechanical frequency of Eq. (33) and it
is given by

∂2ω

∂x2
(x) = −�

4ω2
c

cLc

√
R cos [2k(z0 + x)]

× 1 − 2R + R cos2 [2k(z0 + x)]

{1 − R cos2 [2k(z0 + x)]}3/2 .

(B3)
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