
AnyDTree: An Anytime Solver for Perfect
Decision Trees

Finding progressively smaller trees with 100% training accuracy

Iulia Hosu1

Supervisor(s): Emir Demirović1, Koos van der Linden1, Daniël Vos1
1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 21, 2025

Name of the student: Iulia Hosu
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Koos van der Linden, Daniël Vos, Jasmijn Baaijens

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Finding the smallest decision tree that perfectly fits the training data is NP-complete;
yet, such trees remain attractive due to their interpretability and minimal footprint.
Existing solutions occupy two extremes: heuristics like CART instantly produce trees
but remain far from optimal, whereas exact solvers like Witty give no intermediate
output. We introduce AnyDTree, an anytime algorithm that continuously maintains
a 100% accurate tree and monotonically shrinks its size. It employs an expand-and-
backtrack search that ensures complete solutions at every step, combined with ag-
gressive pruning and caching mechanisms to eliminate redundant exploration. On 70
binary-classification variants of 35 UCI datasets, AnyDTree incurs no statistically sig-
nificant overhead in finding the optimal size compared with Witty (log-rank p > 0.1).
On the 46 datasets with known optima, it demonstrates significantly improved any-
time behaviour – measured by the confined primal integral – with a median score of
0.00034, outperforming both Witty (0.00059) and CART (0.20) (p < 0.001). These
results position AnyDTree as a practical middle ground between heuristic and exact
solutions.

1 Introduction
Decision trees are a class of machine learning models known for their transparency and abil-
ity to capture nonlinear relationships. A perfect decision tree achieves 100% accuracy
on the training data. Such trees are especially valued when kept small: a tree with fewer
nodes is easier to interpret, requires less memory, and yields faster predictions.

In many safety-critical or legally regulated settings, the training table is the specification:
every row encodes a condition that must be honoured without exception. A conveyor-belt
interlock, for instance, must cut power whenever a prescribed pattern of photo-sensors is
tripped, and a bedside monitor must raise its alarm exactly when specific and reviewed
conditions dictate. In such applications, even a single misclassification could cause injuries
or violate regulations, so perfect training accuracy is required. At the same time, the rule
set must remain as small as possible: auditors must be able to review the logic manually,
and resource-constrained controllers must evaluate it within microseconds.

Unfortunately, finding the smallest decision tree given a dataset is a computationally hard
problem – it was proven to be NP-complete by Hyafil and Rivest (1976) [8]. As a result,
standard decision tree induction algorithms (e.g. CART [4], C4.5 [12]) rely on greedy split-
ting heuristics for scalability. These heuristics optimize local criteria (such as information
gain); however, they do not guarantee minimal size and typically produce larger or less ac-
curate trees than an optimal solution [15]. This trade-off has long been accepted in practice,
where heuristics dominate due to their speed, despite the potential benefits of an optimally
small tree.

In recent years, there has been more interest in optimal decision tree algorithms that ex-
plicitly attempt to find the smallest or optimal tree for a dataset. Exact formulations using
generic solvers have been explored: for example, the problem can be encoded as a SAT [10]
or mixed-integer programming [3] model. While these approaches guarantee optimality in
theory, they often fail to scale beyond small datasets [5]. Moreover, generic exact solvers
are typically not anytime algorithms – they may not produce any feasible decision tree until

1

the search concludes with an optimal solution. More specialized methods have been pro-
duced that exploit the structure of decision tree problems. Dynamic programming (DP) and
branch-and-bound techniques can significantly prune the search space [5]. However, even
they struggle as the problem size or depth grows, and they generally focus on finding the
optimal solution outright rather than producing intermediate results.

A key limitation of existing optimal tree methods is the lack of an anytime property combined
with guaranteed perfect accuracy. For instance, the recent Witty solver finds a minimum-size
perfect decision tree (the optimal solution) using a specialized witness tree search strategy.
Still, by design, it does not output any intermediate trees before it finishes the full search [13].
In contrast, Blossom is an anytime algorithm based on dynamic programming that main-
tains and progressively refines the best tree found during search, without significant extra
cost over greedy heuristics [6]. However, Blossom targets a different objective – it maximizes
accuracy under a given depth limit, which means it may sacrifice perfect training accuracy to
reduce depth. Thus, it does not ensure a perfect classifier at all times. Meanwhile, heuristic
methods, such as CART, rapidly produce a perfect decision tree using greedy heuristics [4].
This yields a valid solution very quickly, but with no guarantee of optimality. In summary,
none of the existing approaches simultaneously guarantees 100% training accuracy at all
times, anytime output of progressively smaller trees, and eventual optimality in tree size.
This clear gap in the literature motivates our work.

In this report, we address the above gap by introducing AnyDTree, an anytime algorithm
developed and evaluated for binary classification tasks with binarized features. AnyDTree
always maintains a perfect classifier and monotonically shrinks its size over time. Inspired
by the Blossom algorithm [6], AnyDTree employs an expand-and-backtrack strategy: each
iteration first expands the next unfinished leaf, ensuring the current tree remains complete
and valid, then refines previously explored branches. A caching mechanism prevents re-
dundant exploration of identical subproblems, while pruning based on computed lower and
upper bounds significantly reduces the search space.

On 70 binary-classification variants of 35 UCI datasets, AnyDTree reaches the global opti-
mum without statistically significant overhead in terms of solving time compared to Witty
(log-rank p > 0.1 in every bucket). On the 46 instances whose optimum is known, it at-
tains a median confined-primal-integral of 0.00034, significantly better than Witty’s 0.00059
and CART’s 0.20 (p < 0.001), thus producing near-optimal perfect trees earlier on average.
These results position AnyDTree as a practical middle ground between heuristic methods
and exact solvers: it rapidly delivers a solution comparable to CART, progressively improves
it over time, and ultimately matches Witty’s ability to prove optimality.

2 Related Work
SAT-based and MILP-based exact methods. The optimal decision tree problem has
been formulated as a satisfiability or integer programming task. Narodytska et al. (2018)
introduced a SAT model for finding the smallest perfect decision tree, encoding the prob-
lem with Boolean variables for node decisions [10]. While their SAT approach can ensure
optimality, it struggles to handle full datasets directly; the authors had to subsample the
training data to make the search feasible.
Similarly, mixed-integer linear programming (MILP) models have been proposed for optimal

2

decision trees, notably the Optimal Classification Tree (OCT) formulation by Bertsimas &
Dunn (2017) [3], and later improvements by Verwer & Zhang (2019) among others [16].
These MILP approaches use integer variables to represent splits and can incorporate reg-
ularization on tree size or depth. In practice, however, MILP solvers rarely scale beyond
datasets with a few dozen instances or a very limited depth.

Dynamic programming solvers. To overcome the limitations of generic solvers, re-
searchers have developed specialized algorithms that leverage the structure of decision trees.
Early work by Nijssen & Fromont (2007) introduced a dynamic programming (DP) ap-
proach, DL8, that systematically explores subsets of the dataset to build optimal subtrees
[11]. This line of work led to more efficient variants such as DL8.5, which combined DP
with branch-and-bound pruning to handle larger search spaces [1]. These methods exploit
properties such as optimal substructure, where the optimal tree can be composed of optimal
subtrees on splits of the data, and utilize caching to avoid re-solving identical subproblems.
Another general framework, STreeD, provides a unifying DP formulation that can optimize
various objective criteria, including minimizing misclassifications or tree size, under certain
separability conditions [14].

These DP-based algorithms have dramatically improved the scalability of finding an exact
decision tree compared to MILP/SAT, and they typically prove optimality by exhaustive
search with effective pruning. However, they were generally designed to run to completion
and are not inherently anytime – they do not prioritize finding a feasible tree quickly,
outputting only the optimal tree at the end of the search.

Witty. Among specialized solvers, Witty is a recent notable contribution designed explic-
itly for the minimum-size perfect decision tree (MSPDT) problem [13]. Witty implements
the witness trees paradigm [9], which efficiently searches the space of decision trees by con-
structing partial solutions and using them to infer bounds on the final tree size. The authors
of Witty report substantial speedups over prior algorithms: on common benchmarks, Witty
is an order of magnitude faster than both the MurTree DP solver [7] and earlier SAT-based
solutions. This makes Witty one of the current state-of-the-art exact solvers for finding the
smallest perfect trees. However, as mentioned, Witty’s search is not anytime. It systemati-
cally explores the search space and outputs the optimal tree at the end, without intermediate
results. If the optimal tree is large or the search space is complex, users must wait until
completion to get any solution at all.

Blossom Algorithm. Blossom [6] is an anytime algorithm that adapts a DP-based opti-
mal tree method into an iterative refinement procedure. Instead of targeting perfect accuracy
from the start, Blossom incrementally increases tree depth and optimizes accuracy within
that depth bound. It can rapidly produce a shallow tree that captures most of the training
data and then improve accuracy over time. In doing so, Blossom can output a sub-optimal
tree at any time, which is continuously refined. However, because it allows misclassifications
when the depth limit is low, Blossom’s intermediate trees are not perfect classifiers, and its
objective differs from MSPDT – it seeks to maximize accuracy for a fixed depth, rather than
minimize size for 100% accuracy.

Heuristic Approaches. Purely heuristic methods remain relevant for quickly obtaining
small decision trees. Classical greedy algorithms such as CART and C4.5 can be run without

3

pruning to yield a perfect-fit tree, then use post-pruning to simplify it at the cost of some
training errors. These methods are fast but often produce suboptimal structures – on aver-
age, they yield trees that are deeper or less accurate than those found by exact methods [15].

In summary, the literature provides various methods for computing or approximating opti-
mal decision trees. Exact approaches (SAT, MILP, CP, and DP-based) can find the smallest
perfect tree but generally suffer from scalability issues and a lack of intermediate results.
Newer exact solvers like Witty significantly push the scalability frontier but still do not
satisfy the anytime criterion. Blossom can provide faster or iterative solutions, but compro-
mises on perfect accuracy, while heuristic approaches do not provably reach optimality. This
research builds on insights from these works to create a new solver that unifies the strengths
of both worlds: it guarantees eventual optimality and maintains a perfect classifier at all
times, while progressively reducing the tree size in an anytime fashion.

3 Preliminaries
Let X ⊆ {0, 1}d be the feature space and y : X → {0, 1} a binary labeling. A dataset D is
a pair (X, y) with X ⊆ X and y(x) ∈ {0, 1} for each x ∈ X. We assume no two examples in
D share identical features with different labels.

A decision tree is a full binary tree T in which each internal node is labeled with a cut
and each leaf is assigned a class in {0, 1}. Every example x ∈ X is routed from the root
to a unique leaf by testing the cuts on each path. Formally, we can view a tree as a tuple
(V,D, F, ℓ) where V is the set of vertices, F (v) is the cut at internal node v, and ℓ(v) ∈ {0, 1}
is the class label at leaf v. We let |T | denote the size of the tree T , defined as the num-
ber of internal (decision) nodes (i.e., cuts) in T . At the root r, we assign all examples
X(r) = X. For an internal node v with cut F (v) = i and left/right children vL, vR we set
X(vL) = {x ∈ X(v) : xi = false}, X(vR) = {x ∈ X(v) : xi = true}, so each example reaches
exactly one leaf.

A decision tree T classifies perfectly (X, y) (i.e. has zero training error) if for every ex-
ample x ∈ X, the class ℓ(x) of the leaf containing x equals y(x). Equivalently, for each leaf
v, the label ℓ(v) matches all examples in X(v). In this case, we call T a perfect decision
tree for (X, y).

Blossom Algorithm. Finally, we recall the Blossom algorithm [6] for bounded-depth
optimal decision trees. Blossom performs an anytime search that uses two stacks, B and
S, to manage partial tree expansions. Informally, incomplete branches (those with non-zero
error that have not yet reached the maximum depth k) are called buds, and are stored in
stack B for further expansion. A refinement stack S records the sequence of splits being
explored. At each step, Blossom picks a bud from B, splits it on the next feature, and
pushes the choices onto S. When a branch completes or is pruned, Blossom backtracks
via S, updating best solutions and possibly reinserting buds into B to try other cuts. The
algorithm always grows every unfinished bud before performing refinements; it produces a
full (intermediate) tree early, and then improves it by testing different splits. This gives it
the anytime property, while never re-exploring the same branch and preserving optimality

4

guarantees. We reuse the same search approach, but change the objective from minimum
error at bounded depth to minimum size with zero error and introduce different pruning and
memoization techniques.

4 Methodology
Algorithm 1 outlines the pseudocode of our MSPDT solver, AnyDTree, which employs the
same expand-and-backtrack strategy as Blossom. The solver maintains two stacks to manage
search states: an expansion stack B for nodes awaiting exploration and a backtracking stack
S for their parent nodes. In each iteration of the main loop, the algorithm pops the next
node from B to expand it. If this node already represents a solved leaf or cannot lead to
a better solution (triggering a pruning condition), it is finalized or pruned without further
expansion. Otherwise, AnyDTree selects a feature and splits the node’s data into two child
nodes. The new left and right children are pushed onto B for subsequent exploration, and
the current node is placed onto S so that it can be revisited to try alternative splits later.
When the expansion stack becomes empty, the algorithm pops a node from S, prepares it for
the next untried feature, and pushes it back onto B – effectively backtracking to explore the
next branch. Some details are omitted – such as state caching, dynamic feature ordering,
budget updates, and lower-bound calculations for pruning – which are discussed in later
subsections.

4.1 Memoization
Many different branches in the decision tree search can lead to the same subproblem: clas-
sifying an identical subset of examples. For instance, two distinct partial paths might
coincidentally filter the dataset down to the same subset Sb ⊆ D. In a brute-force search,
the solver would solve this subproblem twice independently. Memoization alleviates this by
caching the results of solved subproblems, allowing them to be reused.

AnyDTree maintains a global cache of states, where each state corresponds to a subset of
points Xb ⊆ X encountered during the search. For each such subset Xb, we store the best-
known subtree (decision tree) that perfectly classifies Xb, including its size and structure.
This cache enables effective reuse of partial solutions and facilitates an "upward" propaga-
tion of improvements. In particular, whenever the algorithm finds a smaller perfect subtree
for some subset Xb, we update the cache record for Xb and then immediately propagate
this improvement to any larger subsets that had Xb as part of their split. Each state record
contains pointers to its parent states (i.e., references to any superset Xa that was previously
split into Xb and its complement Xc = Xa \Xb during search). Using these parent pointers,
the solver updates each affected parent’s best-known solution: if |T (Xb)| + |T (Xc)| + 1 is
smaller than the previously recorded size for Xa, it is replaced with the new improved size
(and corresponding tree). We then recursively propagate this update further up the chain of
parent pointers (so an improvement to Xb can induce an improvement to a parent Xa, then
to a grandparent Xd containing Xa, and so on). Ultimately, the global optimum is found in
the state for the full training set X. This parent-child state update mechanism ensures that
any local discovery of a better subtree immediately benefits all ancestor subsets, avoiding
redundant search in those regions of the state space. Furthermore, if we ever prove that
a subset’s best solution is optimal (for example, when its size equals the calculated lower
bound), we mark that state as optimal. Marking Xb as solved optimally raises its recorded

5

lower bound to the optimal value, which in turn can tighten the budget constraints of its
sibling, enabling more pruning.

Algorithm 1: Anytime Search for a Minimum-Size Perfect Decision Tree
Data: Set D containing all data points
Result: Smallest perfect decision tree

1 root← D
2 B ← { root }
3 S ← ∅
4 while |S|+ |B| > 0 do
5 if |B| > 0 then
6 pick and remove b from B
7 UpdateBest(b)
8 if b is already optimal then
9 continue

10 if b.domain = ∅ and b.budget ≥ best[b]− 1 or b is pure then
11 mark b as optimal ; continue

12 if b.domain = ∅ then
13 continue

14 if b.budget < LB(b) then
15 b.sibling.budget← −1
16 continue

17 pick and remove feature f from b.domain
18 split b on f into vL, vR
19 if (vL, vR) are marked in state as children of b with a higher budget then
20 B ← B ∪ { b };
21 continue

22 mark vL, vR as children of b with budget b.budget in state;
23 if vL.budget ≥ LB(vL) and vR.budget ≥ LB(vR) then
24 B ← B ∪ {vL, vR}
25 else
26 B ← B ∪ { b }

27 else
28 while |S| > 0 do
29 pick and remove b from S
30 UpdateBest(b)
31 if b is pure or optimal and LB(b) = best[b] then
32 mark b as optimal ; continue

33 if b.domain ̸= ∅ then
34 B ← B ∪ { b }
35 break

Although checking the cache and storing entries can take O(n) worst-case time, the overhead
is justified as every subsequent cache hit replaces what would otherwise be an exponential
sub-search. The larger cost comes from memory: in the worst case, the search might en-
counter a distinct memoization key for every subset of points or for every partial feature
assignment. There are at most 2n possible distinct subsets of points and 3m distinct partial
feature assignments, because each of the n examples can be either present or absent in a
subset, while along a root-to-bud path, each feature appears in three possible states: unused,
queried and evaluated to 0, or queried and evaluated to 1. Hence, the total number of unique
states in the cache is bounded by min(2n, 3m). To manage memory, we impose a cache

6

cap: once the number of states stored in the cache exceeds a given threshold (specified as a
parameter), all states are deleted, except those that are part of the current tree. This means
that some states might be explored multiple times, resulting in additional time overhead;
therefore, a larger cache limit is usually preferred, depending on the amount of available
memory.

4.2 Lower Bound Estimate
For every search node v, we reuse the Improvement Lower Bound (ImpLB) of the Witty
solver [13]. Write X(v) ⊆ X for the examples reaching v, let maj(v) = maxc∈{0,1} |{x ∈
X(v) | y(x) = c}| be the majority class, and denote the misclassified points by

M(v) =
{
x ∈ X(v) | y(x) ̸= maj(v)

}
Splitting v on feature i ∈ {1, . . . , d} partitions the data into X(vL) and X(vR). When each
child leaf is labeled with its majority, feature i repairs errors:

fix(i, v) =
∣∣{x ∈ M(v) | y(x) = maj(vL) if xi = 0, y(x) = maj(vR) if xi = 1}

∣∣
Define the set-cover instance C(v) = ⟨U,F ⟩ with universe U = M(v) and family F =
{imp(i, v)}di=1, where imp(i, v) is the set counted by fix(i, v). Every perfect decision tree T
for (X, y) selects at most one feature per internal node; the |T | selected improvement sets
cover all mistakes at every node on every root-to-leaf path, hence form a cover of size ≤ |T |
for C(v). Consequently, any lower bound for this set-cover instance is also a lower bound for
the optimal tree size below v.

To calculate the lower bound, we sort the values fix(i, v) in non-increasing order and add
features until their cumulative sum meets |M(S)|:

ImpLB(v) = min
{
t
∣∣∣ t∑

j=1

fix(ij , v) ≥ |M(S)|
}

Computing fix(i, v) scans d · |X(v)| feature bits and the final sort costs O(d · log d), resulting
in O(d · |X(v)| + d · log d) per call. We memoize each value in the hash table LB; an entry
is removed as soon as X(v) is deleted from the main memoization table best, keeping the
cache size bounded by the selected cache cap.

4.3 Branch-and-Bound
To guarantee optimality, our algorithm systematically explores the search space, but we
prune branches that cannot lead to a better (smaller) solution than the best one already
found. We employ a branch-and-bound scheme with a key component: maintaining a budget
of remaining nodes for each branch.

4.3.1 Budget Propagation

The budget of a branch b is the maximum number of splits (internal nodes) its subtree may
use while still having a chance to beat the current best solution. Let U be the size of the best

7

perfect tree found so far. For the root, we therefore start with budget B = U−1 because we
are only interested in trees that are strictly smaller than the incumbent. When we expand a
branch into two children, the branch itself will use one node for the split, leaving a budget of
B − 1 to distribute among the two child subtrees. We propagate the budget to the children
by subtracting the cost of the split and reserving nodes for the other child based on its lower
bound. Concretely, assume a branch with budget B is split on feature f , producing children
bL and bR. The split itself consumes one internal node, so only B − 1 nodes remain for
both sub-trees. Each child must also leave at least LB(sibling) nodes for the other child.
Moreover, if a smaller perfect subtree has already been discovered for a child’s subset, we
can safely tighten its budget to that known value. Hence we set

BL = min
(
bestL, B − 1− LB(bR)

)
,

BR = min
(
bestR, B − 1− LB(bL)

)
,

where LB(·) is the lower bound for a subset and bestL/R is the size of the best perfect
subtree already found for that subset (if any). If either budget becomes infeasible, i.e.

BL < LB(bL) or BR < LB(bR),

then no completion of the split can beat the current best tree, and the split on f is pruned.
These tighter budgets never eliminate an optimal solution; they are derived solely from
proven lower bounds or from already found feasible subtrees.

4.3.2 Additional Pruning Rules

Two further budget-based tests (lines 10 and 19 of Algorithm 1) tighten the search without
compromising optimality. First, when a branch b has no untried features left (domain(b) =
∅), it is declared optimal if b.budget ≥ best[b]− 1. The rationale is that if the budget were
any smaller, a perfect tree of size best[b]−1 might still lie undiscovered, so the branch cannot
be marked as optimal (fully explored).

Second, when the solver proposes to split b into children (vL, vR), the split is skipped if
the same pair has been encountered before with a larger budget (budgetold > budgetnew):
every subtree admissible under the smaller budget was already considered in the earlier,
more permissive search. Conversely, if (vL, vR) was seen only with a smaller budget, the
split must be re-explored, because a solution of size budgetold < |T | ≤ budgetnew could have
been missed. These two tests are inexpensive and yet eliminate a large number of redundant
expansions in practice.

4.4 Heuristic Feature Ordering
We employ a heuristic ordering of features to guide the search at each branch. The idea
is to use a simple impurity measure on the dataset to rank features by their usefulness for
splitting, and then use this fixed order throughout the search. We choose Gini impurity as
our ranking criterion, which is commonly used in decision tree learning. During the search,
whenever a branch needs to choose the next feature to test, it will select features in this
predetermined order. As reordering features for one subset is O(m · |Sb|) per node, doing
this at every branch in an exhaustive search is costly; thus, except for the first full tree
expansion, we use a global order. We reduce the branching factor early on by considering

8

the most promising splits first, leading to a better solution being found in the initial stage,
thereby tightening the upper bound and enabling more pruning in subsequent searches. We
perform this computation once in O(m · n) time for each node in the first expanded tree.
This is a negligible overhead overall, given that the search itself is exponential.

5 Experimental Setup and Results
We evaluate the proposed algorithm from two perspectives. First, we study its anytime
behaviour, that is, how quickly and how far it reduces the size of a perfect tree while the
search is still running. The one-number summary we adopt is the Confined Primal Integral
(CPI) [2]: a lower CPI rewards algorithms that deliver small trees early and continue to
improve them over time. Second, we analyse the AnyDTree’s ability to reach and certify
the global optimum. For this, we consider each dataset as a "time-to-event" observation
(the event being the finding or proving of optimality) and compare the survival curves using
log-rank tests.

Throughout the experiments, we compare AnyDTree with two established baselines: CART [4],
a widely used heuristic algorithm for finding decision trees, and Witty [13], a state-of-the-art
exact solver designed to find minimum-size perfect decision trees. CART is included only in
the anytime analysis, as it finds a tree instantly but never proves optimality, whereas Witty
serves as a reference in both evaluations.

On the 46 benchmark instances for which the global optimum is known, AnyDTree achieves
a median CPI of 0.00034, significantly better than Witty’s 0.00059 and CART’s 0.20 (p
< 0.001). In the time-to-optimality study, AnyDTree and Witty solve a similar number
of datasets across all categories; log-rank tests reveal no statistically significant difference
between their survival distributions (p > 0.1 in every subgroup). In short, AnyDTree exhibits
improved anytime behaviour, while showing no statistically significant differences from Witty
in terms of reaching optimality.

5.1 Experimental Setup
All experiments were performed on a desktop system configured with Windows 11 Pro 24H2,
equipped with 32 GB of RAM and powered by an AMD Ryzen 7 8700G CPU with 8 cores,
4.2 GHz. To ensure controlled conditions, each experiment was allocated one logical CPU
core, allowing for up to four experiments to be executed concurrently. A strict one-hour
timeout was enforced for each experiment.
AnyDTree’s experiments were run with a cache limit of 2,000,000 entries. This cache size was
determined empirically to strike a balance between speed and memory efficiency, consistently
maintaining memory usage below 8 GB per run, with typical usage observed at under 4 GB.
Witty experiments were executed without an explicit upper-bound on tree size, with its
limit set arbitrarily high at 9999.

5.2 Datasets
We utilized the dataset collection provided in the Witty archive,1 selecting the 35 UCI
datasets preprocessed for binary classification. The preprocessing involved one-hot encod-

1https://zenodo.org/records/14855274

9

ing of categorical attributes, thresholding of numerical attributes, and merging of minority
classes into a single class, resulting in binary classification tasks. Conflicting duplicate rows
were removed. The Witty archive provides ten random samples of each dataset at both 20%
and 50% sizes [13]. To keep our evaluation concise, we selected the first sample from each
size, resulting in a total of 70 datasets. The selected datasets have a median feature count of
189 and a median instance count of 68. Detailed characteristics of these datasets, including
the number of features and instances, are provided in the paper’s Appendix A.

5.3 Anytime Behaviour
The anytime nature of AnyDTree is evaluated by examining how the relative tree size evolves
over time and by quantifying the overall performance using the Confined Primal Integral
(CPI) metric [2]. The results are normalized by the optimal size for each dataset; thus, these
analyses focus on the 46 out of 70 datasets for which an optimal tree size was established
by either AnyDTree or Witty within the one-hour time limit.

5.3.1 Mean Anytime Performance

Figure 1 depicts, on a logarithmic time axis, the mean size (internal node count) of the
smallest perfect decision tree found so far, expressed as a ratio to the proven optimum (1.0
= optimal). The plot aggregates the 46 datasets on which the optimum is known.
CART produces its tree almost instantaneously and never changes it, so the blue line remains
flat at about 1.31, roughly 30% larger than optimal. AnyDTree returns a first tree roughly
just as quickly, then keeps shrinking it, reaching ≈ 1.18 at ten seconds, and ≈ 1.02 by the
one-hour time limit. Witty publishes no tree before it has completed its proof, so until that
moment, we consider its size equal to CART’s solution. In the mean curve, this behaviour
appears as the orange line, which starts at the CART level and then descends gradually as
different datasets are solved at different times.
Taken together, the curves show that AnyDTree quickly provides trees that are smaller than
CART’s and also smaller than the best mean tree size available from Witty.
Notably, a limitation of these figures is that they average performance over a subset of
datasets where optima were found, potentially not reflecting behaviour on the most compu-
tationally challenging instances.

5.3.2 Confined Primal Integral

The CPI compresses an anytime-performance curve into a single number that rewards both
early progress and eventual solution quality [2]. For a minimisation problem and a time
limit T it is defined as

CPI(T) =
1

T

∫ T

0

p(t) e t/α dt, α =
T

ln ι
,

where ι ∈ (0, 1) is an importance factor that controls the decay of the exponential weight.
The primal-gap function p(t) is

p(t) =

1, if no feasible tree has been found by time t,

sizet − sizeoptimal

sizet
, otherwise,

10

Figure 1: Mean normalised tree size over time (log scale) on the 46 datasets whose optimum
is known. For each dataset, we consider Witty’s solution equal to CART until Witty finishes.
Lower is better.

with sizet the size of the incumbent tree at time t and sizeoptimal the globally optimal tree
size. Because our benchmark contains many instances whose optimum is proven, we restrict
the CPI evaluation to the 46 datasets for which sizeoptimal is known and substitute that
exact value in the equation.
Throughout the experiments, we use ι = 0.10. For normalization, the raw integral is divided
by its worst-case value (gap = 1 for the whole run), resulting in a range of [0, 1]; a CPI of
0 indicates the optimal tree was found instantly, while a CPI of 1 indicates the primal gap
never decreases during the run.
Table 1 lists the median CPI across the 46 fully solved instances and shows Wilcoxon
signed-rank tests against AnyDTree. AnyDTree obtains the lowest median CPI, 0.00034,
and significantly outperforms both baselines (p < 0.001 in each comparison). The full CPI
results for each dataset are presented in Appendix C.

Algorithm Median CPI Wilcoxon W (vs. AnyDTree) p-value

CART 0.20000 0.0 <0.001
Witty 0.00059 194.0 <0.001
AnyDTree 0.00034 — —

Table 1: Median confined primal integral (lower is better) and Wilcoxon signed-rank tests
versus AnyDTree on the 46 datasets with proven optimal tree size (ι = 0.10, normalized).

5.4 Reaching Optimality
Solved Datasets. Figure 2 illustrates the cumulative percentage of all 70 datasets for
which Witty and AnyDTree achieve optimality over time, plotted on a logarithmic scale.

11

Figure 2: Cumulative percentage of the 70 datasets solved to optimality over time (log
scale). ’Witty solved’: Witty proves optimality. ’AnyDTree proved optimal’: AnyDTree
finishes and proves optimality. ’AnyDTree reached optimum (proof pending)’: AnyDTree
finds a tree of a size that is later confirmed to be optimal (either by the AnyDTree’s proof
or by Witty’s proof); if neither algorithm proves optimality for a dataset, that dataset does
not contribute to this curve, as the optimum is unconfirmed. Higher is better.

The orange curve ("Witty solved") shows that Witty proved optimality for approximately
61.4% (43 out of 70) of the datasets within the one-hour timeout. The red curve ("AnyDTree
proved optimal") indicates that the AnyDTree proved the optimality of its found tree for
about 54.3% (38 out of 70) of the datasets. The green curve ("AnyDTree reached optimum
(proof pending)") tracks instances where AnyDTree found a tree of a size that was later
confirmed to be optimal, either by AnyDTree’s own proof or by Witty’s. This curve reaches
approximately 61.4% (43 out of 70 datasets), matching Witty’s final solved count.

Survival analysis. Kaplan-Meier curves were generated for each solver in four buckets
(many instances / few instances and many features / few features) and can be found in
Appendix D. The threshold for splitting is 68 for instances and 189 for features, representing
the medians across all used datasets. Log-rank tests (Table 2) show no significant difference
in time-to-proof between Witty and the AnyDTree in any bucket (all p > 0.1). The high-
feature group exhibits a non-significant trend favouring Witty. In contrast, AnyDTree’s time
to find the optimal solution is marginally faster on low-feature datasets, but neither effect
reaches statistical significance at α = 0.05. We therefore conclude that, once time-outs
are treated as censored observations, the two solvers have comparable overall finish-time
performance across the benchmark.

12

Solved datasets in ≤1 h AnyDTree proved
vs. Witty

AnyDTree found
vs. Witty

Bucket n Witty AnyDTree proved AnyDTree found χ2 p χ2 p

All datasets 70 43 38 43 0.72 0.40 0.08 0.77
|F ∗| ≤ 189 36 29 29 31 0.00 0.96 1.60 0.21
|F ∗| ≥ 189 36 16 10 14 2.72 0.10 0.29 0.59
|D| ≤ 68 36 32 30 32 0.39 0.53 0.45 0.50
|D| ≥ 68 36 11 8 11 0.69 0.41 0.00 0.99

Table 2: Solved instances within 1h for each bucket (Witty, AnyDTree at proof, AnyDTree
at first hit) and the log-rank statistic X 2/p comparing AnyDTree with Witty; no bucket
shows a significant difference at p<0.05.

6 Responsible Research
This section summarizes the steps we took to ensure that the research was conducted in a
manner consistent with current best practices for responsible research. We discuss ethical
considerations surrounding data use and potential bias, the broader societal impact of our
contributions, and the concrete measures we have adopted to maximize transparency and
reproducibility.

Ethical Considerations. All empirical tests in this paper rely solely on publicly available
benchmark data sets. No personal, proprietary, or sensitive data was used, so the experiments
pose minimal privacy risk. Nevertheless, AnyDTree is a model-induction technique: it will
reproduce any statistical bias present in the training data. If the data encodes any bias, the
resulting tree can replicate or even amplify it. We therefore urge users to perform standard
fairness verifications on the model before deployment.

Societal Impact. A solver that constructs the smallest perfect decision tree can advance
interpretability and compression in several high-stakes domains, such as medical diagnosis,
credit scoring, and others. Smaller trees are easier for human experts to validate and can
reduce inference latency on low-resource hardware. Although we evaluated AnyDTree only
on standard public benchmarks, its behaviour on unseen, domain-specific data has not yet
been studied. Practitioners should therefore validate the method using their own data –
and, where relevant, follow any domain-specific regulations – before using it in production.

Transparency and Reproducibility. All artefacts needed to verify our findings are pub-
licly available. The GitLab repository2 contains the complete source code, the benchmark
datasets, and step-by-step instructions for reproducing every experiment. It also documents
the exact software environment and command lines we used to generate the results reported
in this paper.

7 Conclusions and Future Work
This work bridges the gap between fast – but sub-optimal – heuristics and exact solvers that
lack anytime behaviour. The proposed solver outputs a perfect decision tree within millisec-

2https://gitlab.tudelft.nl/brp-25q4/anytime_perfect_trees

13

onds, improves it as time allows, and ultimately reaches the optimum. It finds the optimal
tree on 61.4% of the datasets and proves optimality on 54.3% within the one-hour time
limit. Across 46 cases with known optima, its CPI is significantly lower than CART’s and
Witty’s, confirming superior anytime behaviour (p ≤ 0.001). Survival analysis reveals no
statistically significant difference in time-to-proof between AnyDTree and Witty (p ≥ 0.1),
indicating that AnyDTree’s anytime behaviour does not come with a significant performance
cost. These properties make the proposed solver a practical choice when an interpretable,
compact model is required but the time budget is too tight for conventional exact methods.

Looking ahead, three directions stand out. First, a multi-threaded implementation would
enable the search to explore different branches in parallel, making better use of modern multi-
core and GPU hardware. Second, extending the method to handle multi-class classification
problems and continuous features would broaden its practical scope beyond the current
binary setting. Third, designing tighter theoretical lower bounds on tree size would prune
the search space more aggressively. Pursuing these improvements should further increase the
solver’s speed and versatility while preserving its anytime behaviour and exact guarantees.

14

A Dataset Shapes

Dataset |F | 20% sample 50% sample

|D| |F ∗| |D| |F ∗|

appendicitis 523 21 89 53 264
australian 1155 138 429 345 788
auto 961 40 357 101 629
backache 469 36 176 90 320
biomed 735 41 211 104 450
breast-cancer 40 53 34 133 40
bupa 307 68 168 170 238
cars 704 78 250 196 447
cleve 390 60 189 151 301
cleveland 391 60 182 151 291
cleveland-nominal 17 26 15 65 17
cloud 585 21 106 54 290
colic 408 71 234 178 327
contraceptive 66 271 62 679 64
dermatology 188 73 161 183 180
diabetes 1246 153 509 384 875
ecoli 351 65 189 163 297
glass 894 40 248 102 539
glass2 709 32 190 81 422
haberman 89 56 56 141 79
hayes-roth 15 16 15 42 15
heart-c 390 60 196 151 308
heart-h 325 58 140 146 234
heart-statlog 376 54 179 135 292
hepatitis 355 31 135 77 245
hungarian 325 58 140 146 241
lupus 126 17 23 43 55
lymphography 50 29 46 74 50
molecular_biology_promoters 228 21 226 53 228
new-thyroid 329 43 130 107 234
postoperative-patient-data 22 14 19 36 21
schizo 2218 68 599 170 1340
soybean 133 124 104 311 106
spect 22 43 22 109 22
tae 96 21 44 53 71

Table 3: Size statistics for the Witty benchmark: number of binary features |F |, number
of non-redundant binary features |F ∗|, and number of examples |D| for the 20 % and 50%
subsamples of each base dataset.

15

B Results

Dataset Witty
Size

Witty
Time

AnyDTree
Size

AnyDTree
Time

AnyDTree
Optimality Time

CART
Size

appendicitis 3 <1s 3 <1s <1s 3
australian -1 timeout 16 137s timeout 20
auto 4 <1s 4 45s 72s 7
backache 3 <1s 3 <1s <1s 3
biomed 5 <1s 5 <1s 76s 7
breast-cancer 10 20s 10 3s 5s 12
bupa -1 timeout 16 1475s timeout 20
cars 6 11s 6 33s timeout 8
cleve 8 490s 8 6s timeout 11
cleveland 7 138s 7 183s 1790s 12
cleveland-nominal 7 <1s 7 <1s <1s 7
cloud 5 <1s 5 <1s 2s 5
colic -1 timeout 9 25s timeout 12
contraceptive -1 timeout 61 959s timeout 79
dermatology 1 <1s 1 <1s <1s 1
diabetes -1 timeout 23 4s timeout 26
ecoli 4 <1s 4 <1s 14s 6
glass 5 1s 5 18s 88s 8
glass2 5 <1s 5 14s 40s 7
haberman 13 553s 13 11s 13s 19
hayes-roth 2 <1s 2 <1s <1s 2
heart-c 7 59s 7 18s timeout 9
heart-h -1 timeout 10 30s timeout 13
heart-statlog 7 94s 7 69s 912s 9
hepatitis 4 <1s 4 <1s <1s 5
hungarian 8 2522s 8 370s 2354s 14
lupus 7 <1s 7 <1s <1s 7
lymphography 5 <1s 5 <1s <1s 7
molecular_biology_promoters 2 <1s 2 <1s <1s 2
new-thyroid 2 <1s 2 <1s <1s 2
postoperative-patient-data 4 <1s 4 <1s <1s 4
schizo -1 timeout 11 2009s timeout 12
soybean 6 1s 6 <1s 60s 7
spect 7 <1s 7 <1s <1s 8
tae 5 <1s 5 <1s <1s 6

Table 4: Raw results for the 20 % sampled Witty benchmark. "AnyDTree Optimality Time"
refers to the additional time required for our solver to verify optimality after determining
the best size so far ("AnyDTree Size"). "timeout" indicates that the method reached the 1h
cap without completing or proving optimality. "-1" means no feasible tree was found within
the time limit.

16

Dataset Witty
Size

Witty
Time

AnyDTree
Size

AnyDTree
Time

AnyDTree
Optimality Time

CART
Size

appendicitis 4 <1s 4 30s 40s 5
australian -1 timeout 43 23s timeout 47
auto -1 timeout 12 984s timeout 16
backache -1 timeout 10 5s 54s 13
biomed 6 21s 6 1960s timeout 16
breast-cancer -1 timeout 29 372s timeout 42
bupa -1 timeout 42 3333s timeout 46
cars -1 timeout 14 76s timeout 16
cleve -1 timeout 20 115s timeout 24
cleveland -1 timeout 22 105s timeout 24
cleveland-nominal 15 1307s 15 <1s <1s 18
cloud 8 2326s 9 <1s timeout 9
colic -1 timeout 22 <1s timeout 23
contraceptive -1 timeout 198 1687s timeout 231
dermatology 3 <1s 3 <1s 1s 3
diabetes -1 timeout 62 3121s timeout 69
ecoli 6 9s 7 2s timeout 10
glass -1 timeout 18 4s timeout 23
glass2 -1 timeout 14 225s timeout 19
haberman -1 timeout 28 928s 1488s 40
hayes-roth 9 <1s 9 <1s <1s 12
heart-c -1 timeout 21 <1s timeout 24
heart-h -1 timeout 24 127s timeout 25
heart-statlog -1 timeout 19 2104s timeout 23
hepatitis 7 868s 8 53s timeout 12
hungarian -1 timeout 19 2s timeout 21
lupus 12 <1s 12 <1s 2s 15
lymphography 10 296s 10 10s 68s 13
molecular_biology_promoters 4 7s 4 16s 22s 5
new-thyroid 5 <1s 5 25s 51s 6
postoperative-patient-data 9 <1s 9 <1s <1s 14
schizo -1 timeout 33 854s timeout 38
soybean 9 198s 9 42s timeout 10
spect 14 904s 14 7s 16s 17
tae -1 timeout 15 31s 237s 23

Table 5: Raw results for the 50 % sampled Witty benchmark. "AnyDTree Optimality Time"
refers to the additional time required for our solver to verify optimality after determining
the best size so far ("AnyDTree Size"). "timeout" indicates that the method reached the 1h
cap without completing or proving optimality. "-1" means no feasible tree was found within
the time limit.

17

C Confined Primal Integral

Dataset Witty AnyDTree CART

appendicitis 20% 0.0 0.0 0.0
appendicitis 50% 0.0003 0.0042 0.2
auto 20% 0.0001 0.0089 0.4286
backache 20% 0.0 0.0 0.0
backache 50% 1.0 0.0004 0.2308
biomed 20% 0.0004 0.0 0.2857
biomed 50% 0.0148 0.2777 0.625
breast-cancer 20% 0.0138 0.0003 0.1667
cars 20% 0.0079 0.0033 0.25
cleveland-nominal 20% 0.0001 0.0 0.0
cleveland-nominal 50% 0.6296 0.0 0.1667
cleveland 20% 0.094 0.0252 0.4167
cleve 20% 0.299 0.0005 0.2727
cloud 20% 0.0001 0.0 0.0
cloud 50% 0.8602 0.1111 0.1111
dermatology 20% 0.0001 0.0 0.0
dermatology 50% 0.0002 0.0 0.0
ecoli 20% 0.0001 0.0 0.3333
ecoli 50% 0.0062 0.143 0.4
glass2 20% 0.0005 0.0016 0.2857
glass 20% 0.001 0.0032 0.375
haberman 20% 0.3309 0.0013 0.3158
haberman 50% 1.0 0.0382 0.3
hayes-roth 20% 0.0 0.0 0.0
hayes-roth 50% 0.0006 0.0 0.25
heart-c 20% 0.0412 0.0016 0.2222
heart-statlog 20% 0.0646 0.0063 0.2222
hepatitis 20% 0.0001 0.0 0.2
hepatitis 50% 0.4735 0.1289 0.4167
hungarian 20% 0.8897 0.0361 0.4286
lupus 20% 0.0 0.0 0.0
lupus 50% 0.0002 0.0001 0.2
lymphography 20% 0.0001 0.0 0.2857
lymphography 50% 0.1919 0.0011 0.2308
molecular_biology_promoters 20% 0.0 0.0 0.0
molecular_biology_promoters 50% 0.0046 0.0022 0.2
new-thyroid 20% 0.0 0.0 0.0
new-thyroid 50% 0.0005 0.0029 0.1667
postoperative-patient-data 20% 0.0 0.0 0.0
postoperative-patient-data 50% 0.0004 0.0 0.3571
soybean 20% 0.0008 0.0 0.1429
soybean 50% 0.1325 0.0029 0.1
spect 20% 0.0001 0.0 0.125
spect 50% 0.488 0.0005 0.1765
tae 20% 0.0 0.0 0.1667
tae 50% 1.0 0.0016 0.3478

Table 6: Confined Primal Integral (CPI) values for all 46 benchmark instances whose optimal
tree size is known. Values are normalized to a [0, 1] range (lower is better): A value of 0
indicates the method produced the optimal tree immediately. Values are rounded to 4
decimals. (ι = 0.10)

18

D Survival Analysis

Figure 3: Kaplan-Meier curve for datasets with |F ∗| ≤ 189. Lower is better.

19

Figure 4: Kaplan-Meier curve for datasets with |F ∗| ≥ 189. Lower is better.

Figure 5: Kaplan-Meier curve for datasets with |D| ≤ 68. Lower is better.

20

Figure 6: Kaplan-Meier curve for datasets with |D| ≥ 68. Lower is better.

Figure 7: Kaplan-Meier curve for the full benchmark (all 70 datasets). Lower is better.

21

References
[1] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Learning optimal decision trees using

caching branch-and-bound search. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 3146–3153, 2020.

[2] Tobias Berthold and Zsolt Csizmadia. The confined primal integral: A measure to
benchmark heuristic MINLP solvers against global MINLP solvers. Mathematical Pro-
gramming, 188:523–537, 2021.

[3] Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning,
106(7):1039–1082, 2017.

[4] L. Breiman, Jerome H. Friedman, Richard A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth & Brooks, Monterey, CA, 1984.

[5] Catalin E. Brita, Jacobus G. M. van der Linden, and Emir Demirović. Optimal classifi-
cation trees for continuous feature data using dynamic programming with branch-and-
bound. In Proceedings of the Thirty-Ninth AAAI Conference on Artificial Intelligence,
2025.

[6] Emir Demirović, Emmanuel Hebrard, and Louis Jean. Blossom: An anytime algo-
rithm for computing optimal decision trees. In Proceedings of the 40th International
Conference on Machine Learning, pages 7533–7562, 2023.

[7] Emir Demirović, Anna Lukina, Emmanuel Hebrard, Jeffrey Chan, James Bailey,
Christopher Leckie, Kotagiri Ramamohanarao, and Peter J. Stuckey. MurTree: Opti-
mal decision trees via dynamic programming and search. Journal of Machine Learning
Research, 23(26):1–47, 2022.

[8] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is
NP-complete. Information Processing Letters, 5(1):15–17, 1976.

[9] Christian Komusiewicz, Pascal Kunz, Frank Sommer, and Manuel Sorge. On computing
optimal tree ensembles. In Proceedings of the 40th International Conference on Machine
Learning, pages 17364–17374, 2023.

[10] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and João Marques-Silva. Learning
optimal decision trees with SAT. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, pages 1362–1368, 2018.

[11] Siegfried Nijssen and Elisa Fromont. Mining optimal decision trees from itemset lat-
tices. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 530–539, 2007.

[12] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

[13] Luca Pascal Staus, Christian Komusiewicz, Frank Sommer, and Manuel Sorge. Witty:
An efficient solver for computing minimum-size decision trees. In Proceedings of the
Thirty-Ninth AAAI Conference on Artificial Intelligence, 2025.

22

[14] Jacobus G. M. van der Linden, Mathijs M. de Weerdt, and Emir Demirović. Necessary
and sufficient conditions for optimal decision trees using dynamic programming. In
Proceedings of the 37th International Conference on Neural Information Processing
Systems, 2023.

[15] Jacobus G. M. van der Linden, Daniël Vos, Mathijs M. de Weerdt, Sicco Verwer, and
Emir Demirović. Optimal or greedy decision trees? Revisiting their objectives, tuning,
and performance, 2025.

[16] Sicco Verwer and Yingqian Zhang. Learning optimal classification trees using a binary
linear program formulation. In Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence, pages 1625–1632, 2019.

23

