

Delft University of Technology

Distributed memory parallel groundwater modeling for the Netherlands Hydrological
Instrument

Verkaik, J.; Hughes, J.D. ; van Walsum, P.E.V. ; Oude Essink, G. H. P.; Lin, H.X.; Bierkens, M.F.P.

DOI
10.1016/j.envsoft.2021.105092
Publication date
2021
Document Version
Final published version
Published in
Environmental Modelling and Software

Citation (APA)
Verkaik, J., Hughes, J. D., van Walsum, P. E. V., Oude Essink, G. H. P., Lin, H. X., & Bierkens, M. F. P.
(2021). Distributed memory parallel groundwater modeling for the Netherlands Hydrological Instrument.
Environmental Modelling and Software, 143, 1-15. Article 105092.
https://doi.org/10.1016/j.envsoft.2021.105092
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.envsoft.2021.105092
https://doi.org/10.1016/j.envsoft.2021.105092

Environmental Modelling and Software 143 (2021) 105092

Available online 8 June 2021
1364-8152/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Distributed memory parallel groundwater modeling for the Netherlands
Hydrological Instrument

J. Verkaik a,b,*, J.D. Hughes c, P.E.V. van Walsum d, G.H.P. Oude Essink a,b, H.X. Lin e,f, M.F.
P. Bierkens b,a

a Unit Subsurface and Groundwater Systems, Deltares, Utrecht, the Netherlands
b Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
c U.S. Geological Survey Integrated Modeling and Prediction Division, Chicago, United States
d Wageningen Environmental Research, Wageningen, the Netherlands
e Delft Institute of Applied Mathematics, Delft University of Technology, Delft, the Netherlands
f Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands

A R T I C L E I N F O

Keywords:
Parallel computing
Distributed memory
Netherlands Hydrological Instrument
Groundwater
Numerical modeling
Integrated modeling

A B S T R A C T

Worldwide, billions of people rely on fresh groundwater reserves for their domestic, agricultural and industrial
water use. Extreme droughts and excessive groundwater pumping put pressure on water authorities in main-
taining sustainable water usage. High-resolution integrated models are valuable assets in supporting them. The
Netherlands Hydrological Instrument (NHI) provides the Dutch water authorities with open source modeling
software and data. However, NHI integrated groundwater models often require long run times and large memory
usage, therefore strongly limiting their application. As a solution, we present a distributed memory paralleli-
zation, focusing on the National Hydrological Model. Depending on the level of integration, we show that sig-
nificant speedups can be obtained up to two orders of magnitude. As far as we know, this is the first reported
integrated groundwater parallelization of an operational hydrological model used for national-scale integrated
water management and policy making. The parallel model code and data are freely available.

1. Introduction

Worldwide groundwater reserves, being of vital importance for more
than 7 billion of people for drinking water, agriculture and industry
(Wada et al., 2014), are threatened under changing climate conditions
and increasing population. Threats, such as extreme droughts and
excessive groundwater pumping, are putting strains on national and
regional water authorities to come up with adequate long-term plans for
investments and adaptive measures leading to a sustainable and robust
water management for the decennia to come.

The Netherlands, with a long history in water management (Huis-
man, 1998), experienced a severe drought in 1976 which led to the
development of several nationwide model applications, ranging from
nested systems-based models of the complete water system (Pulles and
Sprong, 1985), national-scale finite element groundwater models (Kovar
et al., 1992) and national-scale analytical element models (De Lange,
1996). A number of high-resolution regional groundwater model ap-
plications were developed from 2000-2013 to support groundwater

management by water boards and drinking water companies and
eventually the model applications covered most of The Netherlands.
Under these developments, in 2005, the national and regional water
authorities joined forces in unifying their modeling software and data,
together with several national research institutes (former Alterra, now
Wageningen Environmental Research; former TNO-BGS and WL | Delft
Hydraulics, now Deltares; former MNP, now PBL). This initiative led to
the release of the consensus-based National Hydrological Instrument in
2013 (NHI; De Lange et al., 2014). For more than a decade, the NHI
provides the Dutch water authorities and consultancies with a modeling
environment used for answering actual water related questions, where
the continuity of management and maintenance along with new de-
velopments of the modeling software and data is secured by the NHI
consortium.

Driven by a large amount of available data in the Netherlands, e.g.,
due to the many boreholes (van der Meulen et al., 2013) and the dense
surface-water network covering the Netherlands, these models typically
have a high spatial (≤ 250 m) and temporal (≤ 1 day) resolution and

* Corresponding author. Unit Subsurface and Groundwater Systems, Deltares, Utrecht, the Netherlands.
E-mail address: jarno.verkaik@deltares.nl (J. Verkaik).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2021.105092
Accepted 24 May 2021

mailto:jarno.verkaik@deltares.nl
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2021.105092
https://doi.org/10.1016/j.envsoft.2021.105092
https://doi.org/10.1016/j.envsoft.2021.105092
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2021.105092&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Environmental Modelling and Software 143 (2021) 105092

2

inherently involve many computational cells and timesteps. For the
national model application of the NHI, here briefly referred to as the
Netherlands Hydrological Model (NHM), computational resources
required for running this integrated model as a single thread on a single
core are significant: ignoring surface water flow and transport model
component, one simulation year takes ~9 h computing time, ~45 GB
(gigabyte) of RAM and ~30 GB of disc storage. This severely limits the
practical application of the NHM, e.g. in the Dutch National Water
Model (Prinsen et al., 2015) for evaluating future (climate change)
scenarios with proposed adaptation measures, which could require
simulation time scales up to 100 years. This means that, assuming
constant computing time during simulation, 100 years of simulation
would roughly take 900 computation hours (or 37.5 days) and ~3 TB
(Terabyte) of storage with a single threaded run on a single core. Such
long run times are highly undesirable since typically a large number of
simulations are required for model calibration and scenario analysis.
Furthermore, such long run times require that servers are stable for long
periods of time, which in practice is difficult to accomplish.

Distributed memory parallel computing (see e.g. Eijkhout et al.,
2015; Rünger and Rauber, 2013) is a method to significantly reduce
computational times and memory, typically following a non-uniform
memory access architecture (NUMA). In NUMA, the entire computa-
tional grid (memory) is first partitioned into multiple subdomains and
one (or more) subdomains is assigned (distributed) to a node, each
having local main memory (RAM) and one or more multi-core CPUs
(processors). Then, the processor cores solve the problem simulta-
neously while exchanging necessary data between the nodes through a
fast interconnection network using the Message Passing Interface (MPI;
Forum, 1994). In the remainder we refer to a (MPI) process as the
program that uniquely runs on an associated single processor core.

In this paper we focus on distributed memory parallelization of two
of the five hydrological model codes that have been combined in the
NHI: the model code for saturated groundwater and the model code for
soil-vegetation water transfers in the unsaturated zone (SVAT), see De
Lange et al. (2014). The reason for doing this is that the groundwater
and SVAT model components are most time consuming and memory
intensive. For groundwater, we parallelize the model code MODFLOW
(Harbaugh, 2005), the most widely used groundwater flow modeling
program in the world, developed by the United States Geological Survey
(USGS). MODFLOW has a large open source community of users and
developers from many governments, consultancies and research in-
stitutes. For the SVAT model component, we parallelize the model code
MetaSWAP/TRANSOL (Van Walsum and Veldhuizen, 2011). MetaSWAP
is a fast Richards’ equation emulator that uses a database of steady state
soil moisture profiles for soil physical units, and TRANSOL an emulator
of the advection-dispersion equation. MetaSWAP is implicitly connected
to MODFLOW through memory at the outer (Picard) iteration level.
Since parallelization of MetaSWAP/TRANSOL is done in a relatively
straightforward way without requiring communication between pro-
cessors (hence embarrassingly parallel), the focus in this paper is pri-
marily on parallelizing MODFLOW. Parallelization of the NHI surface
water hydrological model codes is beyond the scope of this research.
Although this paper focusses on parallelization of NHI model codes used
in the national-scale coupled NHM, all the presented methods and
software can be used as standalone applications and used at other spatial
domains.

Our parallel implementation successfully went through the four
phases of DTAP: Development, Testing, Acceptance, and Production
(https://en.wikipedia.org/wiki/Development,_testing,_accept
ance_and_production) and is operational in the National Water Model
(Prinsen et al., 2015) running on eight processor cores. As far as we are
aware, this is the first time that such integrated groundwater paralleli-
zation is applied in such a setting. Furthermore, our open-source soft-
ware is readily available to a wide range of hydrogeological modelers at
regional water authorities and consultancies.

2. Methods

2.1. General NHM parallelization strategy

Here the NHM (De Lange et al., 2014) is defined as five coupled NHI
hydrological model components, see Fig. 1: the groundwater (GW)
model component, consisting of 7 confined model layers, the soil
vegetation atmosphere for the transfer of quantitative water in the un-
saturated zone (SVAT) model component, the unsaturated zone salt
transport (UZST) model component, the surface water for
sub-catchments (SWSC) model component and the surface water for
optimized distributing (SWOD) model component. This definition dif-
fers from De Lange et al. (2014) in a way that in our study we exclude the
surface water flow and transport model component and include the
UZST model component. Model component details are summarized in
Table 1; see De Lange et al. (2014) for a more comprehensive description
and details on the coupling connectors. In this paper, besides the
fully-coupled NHM (or FNHM) including all five models components, we
also consider the reduced NHM (of RNHM) that only includes the
coupled GW and SVAT model components. The reason for doing this, is
that GW-SVAT models are commonly used as regional application of the
NHI by a large number of Dutch consortia of provinces, water boards,
drinking water companies, and municipalities (see e.g. Snepvangers
et al., 2007).

A timing experiment for the fully-coupled NHM on the NHI Windows
server (see Fig. 2) shows that the GW, SVAT, and UZST model compo-
nents are most time consuming and account for 52%, 16%, and 26% of
the total simulation run time, respectively. Hence, this motivates par-
allelizing these model components.

For sake of simplifying coding, our parallelization assumes that each
vertical column of cells is assigned to the same subdomain, including the
coupled GW-SVAT/UZST cells. Hence, our partitioning of the compu-
tational grid is in lateral (horizontal) direction only. This seems a valid
assumption since in groundwater models, the number of lateral cells is
generally much larger than the number of model layers, and therefore,
our approach naturally minimizes the subdomain interface surface area
and MPI communication. Fig. 1 illustrates the partitioning of NHI for the
case of two subdomains, where the left subdomain is assigned to
(parent) process p0 and the right subdomain to (worker) process p1. In
our parallelization, we always assume that each subdomain is uniquely
assigned to a single processor (core), corresponding to a single MPI
process. Furthermore, the parent process is always responsible for
gathering all necessary data from the worker processes and coupling
towards the surface water sub-catchments. Except for the (off-line/file-
based) coupling connectors SWSC ↔ SVAT and SWSC ↔ GW, paralle-
lization of the other NHM connectors is done in a straightforward
manner. For SWSC → SVAT and SWSC → GW, all processes read and clip
the necessary data from the output files of the SWSC model component
in parallel, e.g., sub-catchment river stages for the groundwater model
component and groundwater sprinkling for the SVAT model component.
For SVAT → SWSC and GW → SWSC, each process aggregates all
necessary fluxes in parallel for the surface water sub-catchments, e.g.,
drainage discharge from the groundwater model, and sends them to the
parent process that writes the input file for the SWSC model component.
Since subdomain boundaries may divide surface water sub-catchments,
e.g., see the light blue eastern sub-catchment in Fig. 1, this means that
computing and communicating of partial sums is involved.

Parallelization for the SVAT and UZST model components is
straightforward, since both models apply a one-dimensional discretiza-
tion in model layer (vertical) direction and therefore no lateral MPI
communication is needed.

2.2. Parallel performance evaluation

A commonly used indicator for measuring parallel performance is
speedup, Sp = T1/Tp, where T1 is the serial run time (using a single

J. Verkaik et al.

https://en.wikipedia.org/wiki/Development,_testing,_acceptance_and_production
https://en.wikipedia.org/wiki/Development,_testing,_acceptance_and_production

Environmental Modelling and Software 143 (2021) 105092

3

processor core) and Tp is the parallel run time using p processer cores
(see e.g., Eijkhout et al., 2015; Rünger and Rauber, 2013). In practice,
evaluating strong scaling means that the problem size (e.g., defined by
the number of grid cells) is kept fixed while the number of processor
cores is increased. From a modeling point of view, this matches best how
users evaluate the parallel performance for their existing models when
they have access to multiple processors. In our evaluation, we measure
speedup using actual measured wall-clock time instead of CPU time and
use the same solver and solver settings for all serial and parallel runs. In
our study we have not attempted to determine the optimal performing
serial solver or to determine the optimal solver settings. Although for the
ideal case Sp,ideal = p, in real-world applications this is difficult to obtain.
First, from an algorithmic and programming point of view, this depends
on the portion of work load that could not or has not been parallelized. If
we denote this serial fraction as f , then the well-known Ahmdahl’s law
(Amdahl, 1967) states that Sp = (f + (1 − f)/p)− 1, and therefore the
asymptotic theoretical speedup S∞ = 1/f when assuming unlimited
computer resources. For the fully-coupled NHM model, f is estimated
0.06 which only accounts for the non-parallelized surface water models
(Fig. 2 and 6% SWSC + SWOD), thus the maximum theoretical speedup
is bounded by S∞ = 16.7. Since other models are also likely to contain
serial fractions (e.g., due to solver limitations), we should therefore be

realistic about our expectations. Second, assuming that the processors
used are connected through a fast interconnection network (low latency
and high bandwidth such as a InfiniBand interconnect), achieving par-
allel performance is typically hampered by communication overhead in
the form of wait time (Böhme, 2013). Work load imbalance is defined as
Ip = pmax̃p(L̃p /L), where p is the total number of cores being used, Lp is
the work load for core p, and L the total work load.

2.3. Parallelization for groundwater model component

2.3.1. Relationship to other work
The groundwater model component for the NHM is based on the

model code MODFLOW (Harbaugh, 2005), a numerical groundwater
flow simulation code using control volumes (cells) for solving the dis-
cretized groundwater flow equation. This typically results in (consecu-
tively) solving large and sparse linear systems of equations, accounting
for most of the simulation run time. Therefore, parallelization of the
MODFLOW linear solver has been subject of considerable research, see
Table 2.

Our distributed memory parallelization has similarity with some of
the work from Table 2, especially with Schreuder (2005) and Naff
(2008). Regarding linear solver preconditioning, we also apply the

Fig. 1. The fully-coupled NHM covering the water domains considering two parallel processes (p0: Parent, p1: Worker) as an example.

Table 1
Summarized characterizations of the five hydrological model components as part of the NHM (De Lange et al., 2014).

Model
Component

Scale of process Simulation
Code

Equation
Solved

Spatial dimension Computation
Units

Temporal dimension

GW Regional MODFLOW 3D quasi GW flow equation 250 m × 250 m 6,279,002 grid cells 1 day
SVAT Plot, column MetaSWAP 1D Richards emulator 250 m × 250 m 550,140 grid cells 1 day
UZST Plot, column TRANSOL 1D advection-dispersion equation 250 m × 250 m 550,140 grid cells 10 days
SWSC Nationwide MOZART 0D water balance 0.5–5 km2 8539 polygons 10 days
SWOD Nationwide DM 0D water balance 1–25 km 278 nodes 10 days

J. Verkaik et al.

Environmental Modelling and Software 143 (2021) 105092

4

additive Schwarz preconditioner for solving the linear system in paral-
lel. However, there are notable differences compared to those efforts.
First, our approach is fully distributed memory including input and
output data. Second, for load balancing models with irregular model
boundaries e.g., due to administrative boundaries or geology, we sup-
port a robust orthogonal recursive bisection method (Berger and
Bokhari, 1987; Boman et al., 2012; Fox, 1988) to divide (partition) the
groundwater cells into equally loaded blocks given an arbitrary number
of processors. Schreuder (2005) also addressed this problem and
developed a partitioning method that iteratively merges cell-weighted
blocks while shifting subdomain interfaces. However, this method was
concluded not to be robust enough for general purpose. Third, our
parallel software only depends on the MPI software library and is
therefore relatively easy to compile on multiple platforms. This makes
our software accessible to users on a wide range of operating systems,
contrasting with other parallelization efforts that use parallel solver li-
braries primarily developed for the Linux/Unix operating system and
have low (to no) support for Windows machines, e.g., the PETSc solver
library (Balay et al., 2014). Fourth, our parallel software is open source
and actively maintained as part of iMOD (Vermeulen et al., 2019); iMOD
is an easy-to-use graphical user interface for the Windows operating
system that integrates our accelerated MODFLOW-2005 version with
fast subdomain modeling techniques and is extensively used by the NHM
user community. Fifth, we add a new modular unstructured parallel
solver to MODFLOW-2005, to which we refer to as the Parallel Krylov
Solver (PKS; Verkaik et al., 2016, 2015) that is largely based on the
UPCG linear solvers (Hughes and White, 2013). Besides assuring mini-
mal dependency on third-party software, another reason for developing
the PKS is the ease in reproducing the stopping criteria of the commonly
used PCG solver (Hill, 1990) and the flexibility of adding advanced
parallel (multi-level) preconditioners in the near future.

2.3.2. General description
The main components in our parallelization for groundwater models

are a) partitioning of grid cells into subdomains (blocks), b) setting up
communication between subdomains, c) reading and writing model
input and output files in parallel, and d) parallelization of the linear
solver. In this section we highlight the basic concepts of a)-c), referring
to Appendix A.1 for more details. For the technical details on solver
parallelization d), the reader is referred to Appendix A.2.

2.3.2.1. Subdomain partitioning. In general, parallelization aims to

minimize processor idle times, in which a processor does nothing but
wait for other processors to finish (see e.g. Rünger and Rauber, 2013).
Reduced idle times can be obtained by load balancing and minimizing
communication overhead between the processors. Load balancing
means that work is equally assigned to the processor cores and in our
application directly relates to distributing (partitioning) cells of the
computational grid. To minimize communication overhead, we parti-
tion the horizontal plane as there is only a few vertical model layers that
gives the smallest interface surface area between subdomains (and
hence the amount of data communicated). Two (non-overlapping) par-
titioning methods for partitioning the grid in the horizontal plane are
considered: a straightforward method for obtaining equally sized rect-
angles, here referred to as uniform partitioning, and orthogonal recur-
sive bisection (ORB; Berger and Bokhari, 1987). Fig. 3 illustrates these
methods for an example grid, having an irregularly shaped model
boundary, considering four partitions (p1 – p4). See Appendix A.1 for
details. The red boxes in Fig. 3a show the partitions obtained by
straightforward uniform partitioning, clearly showing that the number
of active cells vary strongly for each partition. The red boxes in Fig. 3b
show the partitions obtained by the ORB partitioning, here using cell
weights of value one as illustration. These (user-defined) cells are used
within the ORB partitioning to balance the partitions, targeting equal
sum of cell weights for each partition. Typically, these cell weights could
be chosen to be equal to the number of model layers. It should be noted
that our ORB partitioning also includes the Dirichlet boundary condi-
tions (or constant-value active cells; as in example Fig. 3 denoted by
index − 1). Since these cells are eliminated in the linear solver, this
means that a load imbalance may occur in the solving process. Although
the ORB partitioning might be optimized for these boundary conditions,
this was not a subject for this research. In our approach, the grid is
partitioned only once prior to simulation, hence corresponding to static
load balancing. Therefore, we neglect the spatio-temporal variation in
computing time that might occur during simulation due to changing
boundary conditions causing load imbalance. For the NHM this is a
reasonable assumption since the number of active cells does not vary in
time and the input/output data size and frequency remains constant.

2.3.2.2. Overlap and communication. Discretization of the groundwater
flow equation typically results in evaluating a 7-point computation
stencil (5-point in the horizontal plane, 3-point in the vertical plane),
meaning that the unknown head in a cell implicitly depends on the
heads of (at most) six neighboring cells. In a parallel setting, this means
that evaluating the discretization of a cell near the subdomain boundary,
for instance which is necessary for computing a matrix-vector product
within a linear iteration, data from the adjacent subdomain is required
and therefore needs to be communicated. To support such local (point-
to-point) communication the non-overlapping partitions are expanded
to overlapping partitions (see pink boxes for p1 for the example in Fig. 3)
by adding one row of cells, so-called halo (or ghost) cells (see the dark
greens cells for p1 in Fig. 3). For example, in Fig. 3a with the uniform
partitioning processor p1 needs to communicate with p2 and p3, and
each processor has exactly two neighbors. However, as can be seen in
Fig. 3b, for the ORB partitioning p2 has three neighbors: p1, p3 and p4,
and hence there is an additional interface between p2 and p3. This
additional communication for ORB is the trade-off for obtaining optimal
load balance. For our application this does not seem to be an issue since
the amount of data communicated remains low, and local communica-
tion overhead is secondary compared to global communication over-
head (i.e. communication involving all processors requiring
synchronization) and load imbalance. The large benefit of using over-
lapping partitions is that no additional data (e.g., inter-cell trans-
missivity) need to be explicitly specified by the user or communicated
for evaluating the discretization scheme at the subdomain interfaces.
Moreover, this (physical) overlap facilitates the usage of advanced
computational schemes with relative ease, such as for applying full-

Fig. 2. Fractions of total computing time for the fully-coupled NHM, simulating
the year 2006. The total computation took 9 h 17 min on the NHI server.
Computing time for the groundwater model component are split into linear
solver time (“GW linear solver”) and time spent on other routines such as input/
output (“GW other”).

J. Verkaik et al.

EnvironmentalModellingandSoftware143(2021)105092

5

Table 2
Summary of research done on parallelizing MODFLOW (Cheng et al., 2014; Dong and Li, 2009; Huang et al., 2008; Hughes and White, 2013; Ji et al., 2014; Schreuder, 2005). A distinguish is made between parallelization
techniques, software used, linear solver, and measured speedups on specific hardware.

Reference Shared
Memory
(OpenMP)

Distributed
Memory
(MPI)

Graphics
processing
units
(CUDA)

MODFLOW
2000

MODFLOW
2005

Linear Solver Additional
library

Test case Steady-
state (SS)
or
transient
(TR)

Number
of Cells (x
million)

Hardware Speedup
(threads
used)

Remarks

Dong and
Li (2009)

✓ – – ✓ ✓ PCG-MIC (Hill,
1990)

– 1: TWRI (Harbaugh
et al., 2000);
2: Beishan area
refined, north-west
China

SS 1: 1
2: 100

Workstation with
two 4-core Intel
Xeon 2.66 GHz
CPUs, 16 GB RAM

1: 1.4 (8)
2:1.3 (8)

Speedup
obtained with
the slowest
gfortran
compiled
executable

Hughes
and
White
(2013)

✓ – ✓ – ✓ Native
UPCG-MILU(0)

– Hypothetical, 10
layers,
heterogeneous,
unconfined

SS 10 NVIDIA Tesla
C2050

1.6
1.7 (4)

Ji et al.
(2014)

– – ✓ ✓ – Native
PCG-POL

– Hypothetical,12
layers,
homogeneous,
confined aquifers

SS
TR

33 NVIDIA Tesla
C1060

2.5–4 Reorganized the
PCG equations

Schreuder
(2005)

– ✓a,c – ✓ – PETSc PCG &
additive
Schwarz
preconditioner

PETSc (
Balay et al.,
2014)

Rio Grande Decisions
Support System
model, 5 layers,
unconfined, San Luis
Valley, Colorado,
USA

0.8 64-node/128
processor Intel
Xeon 2.4 GHz
cluster

26 (48)

Naff (2008) – ✓a,b,c – ✓ – Native PCG &
additive/
multiplicative
Schwarz
preconditioner

– TWRI (Harbaugh
et al., 2000)

SS 1 Heterogeneous
cluster 800–3400
MHz

7 (32)

Huang
et al.
(2008)

– ✓ – ✓ – Additive
Schwarz
coupled at outer
iteration level

– Hypothetical, 2
layers,
homogeneous,
confined aquifers

SS 0.08 SGI Altix 3700 0.02 (16) In combination
with solute
transport
simulation
using RT3D

Cheng et al.
(2014)

– ✓ – ✓ – Algebraic
Multigrid (AMG)

JASMIN 1: Field flow problem
at Yanming Lake,
China; 2:
hypothetical

TR 2: 16 Workstation with
four
12-core AMD 2.2
GHz CPUs, 64 GB
RAM

1: 6 (40)
2: 22 (32)

AMG gives
factor two
overhead
compared to
fastest PCG

a Serial input.
b Serial matrix assembly.
c Serial output.

J. Verkaik et al.

Environmental Modelling and Software 143 (2021) 105092

6

tensor anisotropy that requires the evaluation of cross-terms. In our
approach, halo cells are treated in a similar way as computational cells
regarding input/output and matrix assembly but are different during
computation. Each processor is responsible for updating (computing)
groundwater heads for its non-overlapping subdomain and halo cells are
used to store data received (copies) from adjacent processors. Due to the
symmetry of the subdomain overlap, local communication is two-sided,
meaning that in addition to receiving data each processor sends data to
the neighbor processor (see for the example in Fig. 3 the light green
cells).

2.3.2.3. Input and output. Our parallelization supports independent
parallel input/output, where each process reads its subdomain data from
files that are defined for the entire computational domain and writes its
subdomain results to separate files. Parallel input is done from files
supporting raster data, point data and line data. For reading raster data,
we use the binary geo-referenced iMOD data format (IDF; IMOD-Python
Development Team, 2017; Vermeulen et al., 2019) since this file format
supports fast unformatted (binary) direct-access read and can be easily
visualized with the iMOD graphical user interface. IDF files allow us to
efficiently read subdomain data in parallel while keeping memory usage
locally. Besides pumping well- and geological fault data, that are read as
point and line data respectively, all (static) module and (dynamic)
package data (e.g., for rivers and drains) are read from IDF raster files.
This means that a significant amount of redundant (no-value) data might
be read for sparse raster files e.g., for modeling drainage systems in
(semi-)arid areas. Since in the Netherlands the surface water network is
dense, the NHM raster data is also dense and therefore the expected
redundancy of using IDFs is low. Parallel output is straightforward,
where each process writes its separate IDF files or standard MODFLOW
ASCII/binary files for its non-overlapping partition. Post-processing
these subdomain results might require additional tools, such as iMOD,
for merging these data into a single dataset for the total computational
grid.

3. Test cases

To evaluate the parallel performance, we consider three test cases
with increasing complexity: a hypothetical steady-state regional scale
groundwater model; the reduced NHM excluding modeling of salt
transport in the unsaturated zone and (dynamic) surface water, simu-
lation for 2006; the fully-coupled NHM with the same initial set-up as
the reduced NHM.

3.1. Hypothetical steady-state groundwater model

This hypothetical test case simulates steady-state, regional-scale,
groundwater flow in a heterogeneous aquifer for a square computational
domain applying uniform partitioning (see Fig. 4, for 12 × 12 = 144
subdomains). The model area is 1000 m × 1000 m and two model layers
are used (from +10 m to − 15 m and − 15 m to − 30 m, respectively),
each having 8000 cells in both x- and y-direction. Hence, the model has
128 million active cells, each having a resolution of 0.125 m × 0.125 m.
A hydraulic gradient of 0.01 m/m is specified in the West to East di-
rection, no-flow boundary conditions are specified along the North and
South edges of the model, and four equal pumping wells are located in
the center of the domain withdrawing a total of 1000 m3/d from the
lowest model layer.

This test case has great similarity with the problem considered by
Hughes and White (2013). Our model uses the same simulated multi-
variate Gaussian 10log(hydraulic conductivity) field for both model
layers with an average of 4.81 m/d, a 10log variance of 1.23 and an
effective range of 750 m and with the same top and bottom of the aquifer
and boundary conditions. Since we have more cells in the x- and y-di-
rection, the hydraulic conductivity of Hughes and White (2013) is
downscaled using nearest neighbor interpolation. Our model only con-
siders a single discretization and we assume that the transmissivity of
the aquifer is constant (confined option), which makes the problem
linear. A linear model gives better insight into the parallel solver per-
formance and is consistent with the assumptions applied in the NHM

Fig. 3. Example with four processors for uniform partitioning (a) and orthogonal recursive bisection (ORB) partitioning (b), assuming equally weighted cells (both
variable-as constant-value/Dirichlet cells) showing two cuts (first: dash black line; second: dotted black line), see Appendix A.1. The red boxes denote the non-
overlapping partitions; the pink boxes denote the overlapping partition for processor p1. Green cells denote the communication interface between processors p1
and p2.

J. Verkaik et al.

Environmental Modelling and Software 143 (2021) 105092

7

model.
Convergence with the PKS is obtained for the test case where the

stopping criteria are: εhclose = 0.001 m (maximum absolute ground-

water head difference) and εrclose = 1.5625 × 10− 5 m3/d (~cell size
squared times εhclose). The simulation starts with initial heads of 0.0 m
across the entire domain, see Appendix A.2 for more details. Since the

Fig. 4. Hypothetical model domain for an example uniform partitioning of 144 subdomains. Groundwater flow is driven by a head difference of 10 m from East to
West, a heterogeneous conductivity, and 4 pumping wells withdrawing a total of 1000 m3/d. BC: boundary condition.

Fig. 5. (A) Orthogonal recursive bisection partitioning cell weights for the NHM and (b) computed groundwater table at 31/12/2006.

J. Verkaik et al.

Environmental Modelling and Software 143 (2021) 105092

8

domain is square and all cells are active, the uniform partitioning is used
and results in optimal load balance, where the number blocks of in x-
direction (column direction) is always equal to the number of blocks in
y-direction (row direction).

3.2. Reduced and fully-coupled NHM simulating 2006

For both test cases NHM v3.1 is taken (Hoogewoud et al., 2015; see
www.nhi.nu). The default groundwater solver settings are used, corre-
sponding to εhclose = 0.001 m, εrclose = 100 m3/d, and a maximum of 30
inner iterations for the PKS (see “maxinner” in Fig. 12 of Appendix A.2).
The simulation period is 2006. For both the NHM test cases, we apply
ORB partitioning since the model boundary is irregular, see Fig. 5 for the
example of 24 subdomains. For obtaining a reasonably well load balance
for the combined groundwater and SVAT cells, a trial-and-error method
is used to obtain the ORB cell weights (see Section 2.3.2). Starting from a
uniform cell weight of one for both the groundwater and SVAT cells, the
cell weights are obtained by simply increasing the weights for the SVATs
cells from 1 to 10. Timing results show that the value of 5 seems to give
the overall lowest computing times.

3.3. Hardware and compiler

The parallel performance is evaluated on the Dutch national super-
computer Cartesius (SURFsara, 2014) for the hypothetical test case and
the reduced NHM test case, and on the NHI server for the fully-coupled
NHM. Cartesius consists of ~1900 computing nodes, running on Linux,
that are tightly connected using a fast interconnection network, for a
total of ~48 thousand Intel Xeon cores and 128 terabytes of memory. All
scaling experiments on the Cartesius are carried out on so-called thin
nodes, where each node consists of two Haswell 12-core CPUs (E5-2690
v3) with a total of 64 GB memory. The (single node) NHI server runs on
Microsoft Windows and consists of two Intel Haswell 16-core CPUs
(E5-2698 v3) with a total of 128 GB memory at the time of evaluating
the test cases; the NHI server is a dedicated resource for running NHM
simulations that are used for national-scale long term planning. The
reason for not evaluating the fully-coupled NHM test case on Cartesius is
that the surface water for sub-catchments model code (MOZART) and
surface water for the surface water for optimized distributing model
code (DM) are not supported to run on Linux. We compiled the coupled
MODFLOW-MetaSWAP/TRANSOL model code as part of iMOD v4.0,
using the Intel Fortran compiler v15.0 with high level O3-optimization.

On Cartesius, the compiled code was linked with the Intel MPI library
v5.0 update 3, and for running on the NHI server the code was linked
with the MPICH library v1.4.1.

On Cartesius, we use a maximum of four cores per node (hence two
cores per CPU) based on trial-and-error testing that has indicated that
run-times are shortest using this number of cores. Using a maximum of
four cores per node results in 20 idle cores during computation and a
relatively low core utilization of 17%. The reason why using more cores
in our trial-and-error analyis results in higher run times can likely be
explained by large memory requirements for our model applications and
the competition of processor cores within a multi-core CPU for the main
memory (Tudor et al., 2011). Since we expect this is a hardware related
issue inherent to multi-core architectures, this issue is recommended for
future research and left outside the scope of this study.

4. Results

4.1. Hypothetical steady-state groundwater model

Fig. 6 shows the measured speedups (a) and total memory usage (b)
for the hypothetical test case (see Section 3.1) for our strong scaling
experiments on Cartesius up to 144 processor cores. The serial run re-
quires 4 h and 48 min computing time to converge and ~45 GB main
memory. The computing time is reduced to 2 min and 40 s using 144
cores (36 nodes), resulting in a speed-up of 108. The absolute ground-
water head difference is less than the specified εhclose = 0.001 m in each
cell in the serial and parallel simulations.

4.2. Reduced and fully-coupled NHM simulating 2006

Fig. 7 shows the measured speedups (a) and total memory usage (b)
for the reduced NHM test case on Cartesius and the fully-coupled NHM
test case on the NHI server, up to a maximum of 64 and 24 cores,
respectively. Maximum speedups of 21.6 and 4.6 are obtained for the
NHM test cases, respectively. Besides the ideal (linear) speedup, Fig. 7a
also shows the maximum speedup for the fully-coupled NHM according
to Amdahl’s law when accounting for 6% serial surface water compu-
tation (~10 for 24 cores; see Section 2.2).

Regarding accuracy, transient results for the serial and 24-core
parallel simulations are evaluated. The root mean squared error values
for the entire period of 2006 and considering all model layers are 3.0 ×

10− 4 m and 1.1 × 10− 3 m for the reduced NHM test case and the fully-

Fig. 6. Measured speedups and total estimated memory usage over all nodes for the hypothetical test case on Cartesius.

J. Verkaik et al.

http://www.nhi.nu

Environmental Modelling and Software 143 (2021) 105092

9

coupled NHM test case, respectively. For the reduced NHM, the
maximum absolute head difference greater than 0.001 m and 0.01 m is
exceeded for 3% and 0.1% of the total number of cells during simulation,
respectively. For the fully-coupled NHM these values are 7% and 0.4%,
respectively.

5. Discussion

Figs. 6a and 7a show that significant speedups are obtained, ranging
from two orders of magnitude for groundwater only (MODFLOW; hy-
pothetical test case), one order of magnitude for the reduced NHM
excluding dynamic surface water and unsaturated zone transport and
less than one order of magnitude for the fully-coupled NHM. However,
the speedup curves flatten as the number of cores increases. This can be
explained by hardware related issues, non-scalable algorithms/methods,
and non-scalable components in implementation.

Regarding hardware, the memory competition issue (see Section 3.3)
is likely to contribute to the flattening of the fully-coupled NHM
speedups, since a maximum of 12 out of 16 cores per CPU is used
compared to 4 out of 12 cores per CPU for the reduced NHM. However,
due to the lack of scheduling control options on the NHI Windows server
we are not able to quantify this effect.

Concerning non-scalable algorithms, a more important explanation
for the flattening of the fully-coupled NHM speedups can be found in the
non-parallelized surface water model components which account for
~6% of the total run time. Using Amdahl’s law (see section 2.2) and a
serial fraction of 6%, a significant flattening of the NHM speedup is
expected (see Fig. 7a), where the maximum theoretical speedup using 24
cores is 10 and the measured speedup is 4.6. Furthermore, parallel linear
solver iterations might increase with the number of subdomains as a
result of low frequency eigen modes that can hamper the linear solver
convergence (Dolean et al., 2015; Smith et al., 1996), which can require
an additional multi-level preconditioner to improve convergence. For
our test cases, however, the maximum observed linear iteration increase
is ~15% (see Fig. 8) and suggests that low frequency eigen modes have a
relatively limited effect. For that reason, we did not find any need to
apply such preconditioner.

With respect to the non-scalable components, the run time behavior
is analyzed by cost analysis for the hypothetical test case and the

reduced NHM test case on Cartesius using the Scalasca profiling and
tracing tool (Geimer et al., 2010). Fig. 9 shows the most significant cost
components, where Cc

p denotes the cost of component c for using p cores,
defined as the cumulative sum of time spent on c accounting for all
processor cores. The total cost Cp of a parallel program is defined as Cp =

pTp and perfect scalability (or cost optimality) is obtained when this cost
remains constant for increasing number of cores. Hence, in the ideal
case, for each component the relative value Cc

p/C1 = Cc
p/T1 as shown in

Figs. 9a and c should remain constant. The ratio Cc
p/Cp, as shown in

Fig. 7. Measured speedups (a) and total estimated memory usage over all nodes (b) for the reduced NHM (RNHM) test case on Cartesius and the fully-coupled NHM
(FNHM) test case on the NHI server. For the fully-coupled NHM, speedups according to Amdahl’s law are plotted assuming 6% serial surface water computation. The
serial reduced NHM run takes 2 h 23 min 13 s to finish, the serial fully-coupled NHM run 9 h 17 min 16 s.

Fig. 8. Linear solver iteration increase for the hypothetical test case (3269
serial iterations), the reduced NHM (RNHM; 18,738 serial iterations) test case,
and the fully-coupled NHM (FNHM; 30,390 iterations) test case.

J. Verkaik et al.

Environmental Modelling and Software 143 (2021) 105092

10

Figs. 9b and d, expresses the contribution of a component to the total
parallel run time.

For the hypothetical test case, Fig. 9a (“GWS PKS”) shows that ma-
jority of the run time is spent in the linear solver and this component has
near perfect scalability. However, load imbalance is manifested in global
MPI communication wait times (“MPI global” in Fig. 9a). Since the
subdomain partitioning is uniform, we suspect that this imbalance is
caused by the physical overlap of one row whereas we do not account for
this overlap in the load balancing (see Section 2.3.2).

For the reduced NHM test case, scalability of the PKS for the
groundwater model component and computations for the SVAT model
component are also nearly perfect (see Fig. 9c, “GW PKS” and “SVAT”
respectively). However, a strong load imbalance is observed, where
~45% of the run time is spent on waiting when using 64 cores (“MPI
global” in Fig. 9d). This load imbalance is very likely related to the

groundwater model component and SVAT model components sharing
the same partition. For groundwater, active cells exist across the Dutch
land-border in model layers 2 to 7, whereas SVAT cells exist only within
the Dutch land-border. Using more subdomains enhances this discrep-
ancy near the border and the ORB partitioning becomes less effective.
This is illustrated in Fig. 10 for the example with 48 subdomains
considering different ORB cell weights. In Fig. 10a, the same cell weights
are used as for our NHM test cases (see Fig. 5), where in Fig. 10b cell
weights are used that are equal to the number of active groundwater
model layers. Tracing analysis shows that subdomains p36 and p42 are
responsible for most of the delay, which is mainly caused by global MPI
communication. Groundwater cells for subdomains p36 and p42 are not
connected to any SVAT cells (Fig. 10b). This results in a significant load
imbalance for the SVAT model component, although for groundwater
load is well balanced, and a total delay time of ~75% relative to the total

Fig. 9. Scalasca profiling timing results on Cartesius showing parallel component cost Cc
p/T1 (a: hypothetical test case; c: reduced NHM test case) and relative to

parallel cost Cc
p/Cp (b: hypothetical test case; d: reduced NHM test case). In this figure the component “GW PKS” refers to the PKS linear solver computation time;

“SVAT” to the computation time; “GW init read” to (redundant) initialization time for reading GW input; “SVAT read database” time for reading the database with
soil moisture profiles, “SVAT read meteo” time for reading precipitation and evapotranspiration ASCII grids; and “MPI global” global communication time
(load imbalance).

J. Verkaik et al.

Environmental Modelling and Software 143 (2021) 105092

11

parallel cost. However, as can be seen in Fig. 10a, by using different cell
weights subdomains p36 and p42 now have connections to SVATs, and
by this we improve the SVAT model component load. On the other hand,
we introduce a load imbalance for the groundwater model component.
However, this has an overall positive effect on the total delay time that is
reduced to ~36% relative to the total parallel cost. This illustrates that
ORB partitioning for the NHM is complicated by the coupled SVAT-GW
models. A better approach for load balancing might be to decouple the
groundwater and SVAT partitions. However, this would require a sig-
nificant programming effort and is therefore beyond the scope of this
current research. Other components that contribute to the flattening of
the speedup curved for the reduced NHM (Fig. 7a) are related to input
data reading (see Fig. 9c). The component “GW init read” is related to
redundant file information required by the operating system. The
component “SVAT read meteo” is related to the non-scalable ASCII
reading of 1 km precipitation and evaporation input grids, and the
component “SVAT read database” related to reading the database with
steady states of soil moisture profiles for the (72) soil physical units.
Since the SVAT model component is a metamodel that strongly relies on
this pre-compiled database (see Van Walsum and Veldhuizen, 2011), in
a worst case scenario when all soil physical units are entirely hetero-
geneous, this means that each processor needs to read the entire data-
base and keep all data in memory.

Regarding RAM memory usage, the SVAT database significantly in-
creases memory usage by ~2.5 GB for the NHM test cases (Fig. 7b) for
each processor core added. In practice this means that sufficient memory
should be available. However, for the reduced NHM test case on Car-
tesius the 64 GB RAM per node does not put any constraint on the
processor core usage. On the other hand, for the fully-coupled NHM test
case on the NHI server (Fig. 7b), the memory increase, together with the
large memory usage of ~40 GB for the unsaturated zone salt transport
model component, limits the core usage to not exceed the maximum of
128 GB RAM. Together with the increase of read time, this would
advocate minimizing the number of soil physical units per subdomain as
part of future research. On the other hand, the groundwater model
seems to satisfy the distributed memory approach as illustrated in the
hypothetical test case (Fig. 6b), although a slight memory increase is
observed. One reason for this increase is the inaccurate memory mea-
surement on Cartesius, where we might overestimate the total memory
usage by simply multiplying the measured peak amount of memory

during simulation (MaxRSS; maximum resident set size) with the num-
ber of processes. Another reason might be that the physical overlap of
partitions introduces a slight memory increase for increasing number of
processes.

Regarding accuracy, small absolute groundwater head differences
between the serial and 24-core parallel NHM simulations (see Fig. 11 red
lines) were observed that are larger than the linear solver head change
stopping criterion of εhclose = 0.001 m. The largest difference occurred in
a small number of cells, with 99.9% and 99.6% of the cells having mean
absolute differences between 0.001 m – 0.01 m in the reduced NHM and
fully-coupled NHM, respectively. Errors greater than 1 m were observed
during summer 2006 are occur in only 5 cells (0.08‰) and 10 cells
(0.16‰) in the reduced NHM and fully-coupled NHM, respectively, and
might be related to local convergence issues for the GW-SVAT coupling
scheme. The root mean squared error (Fig. 11 blue lines) and the mean
absolute root error (Fig. 11 green lines) are lower than or equal to 0.001
m, indicating a good match. Errors greater than εhclose might be caused
by the parallel preconditioner for the groundwater model component
that differs for each core configuration, resulting in different conver-
gence behavior including the couplings. Furthermore, errors greater
then εhclose might be the result of rounding errors caused by single-
precision accuracy of the model component connectors, explaining
why the fully-coupled NHM seems generally slightly less accurate than
the reduced NHM model, or by the parallel aggregation of budgets for
the surface water sub-catchments that is non-associative regarding
floating point arithmetic in the Parent-Worker mechanism (see Section
2.1). Although small differences may occur, they are found to be
acceptable regarding the DTAP software development and therefore we
do not find the need to do a more extensive accuracy analysis.

6. Conclusions

We have presented the results of an integrated groundwater paral-
lelization as part of the NHI, focusing on the NHM application. Signifi-
cant speedups were obtained, ranging from two orders of magnitude for
the (non-integrated) groundwater model considering a hypothetical test
case (speedup: ~108 using 144 processor cores), to one order of
magnitude for the reduced NHM test case excluding the surface water
model components and the unsaturated zone transport model compo-
nent (speedup: ~22 using 64 processor cores), to less than one order of

Fig. 10. Delay times for the reduced NHM test case using 48 cores relative to the parallel cost Cp considering (a) the reference ORB cell weights used for our test cases
as in Fig. 5 versus (b) ORB cell weights defined as the sum of active groundwater model layers in depth. Process p36 and p42 are most dominant in the delay.

J. Verkaik et al.

Environmental Modelling and Software 143 (2021) 105092

12

magnitude for the fully-coupled NHM (speedup: ~5 using 24 processor
cores). This clearly shows that coupling more models results in a
decrease in speedup, a result that is mostly related to our chosen par-
allelization strategy. First, we focused on parallelizing the groundwater
and SVAT/UZST model components exclusively that are most dominant
in computing time and memory usage, therefore ignoring run time due
to surface water computations. Second, to parallelize the GW-SVAT/
UZST connector in the current model codes with relative ease, we
assumed that the groundwater and SVAT/UZST model components
share the same partitions resulting in insoluble load imbalance when
using many processor cores. Possible improvements of the current par-
allelization approach would be to parallelize the surface water compo-
nents and decouple the groundwater and SVAT/UZST partitions to
improve load balancing. Furthermore, our analysis showed that parallel
data input can be further fine-tuned.

Regarding memory usage, we conclude that our parallelization dis-
tributes memory sufficiently for the groundwater model component
exclusively but not for the NHM, where the memory might exceed the
total available memory. Approximately 2.5 GB RAM per additional
processor core is needed for the NHM since the SVAT model component
requires that a same large database with soil moisture profiles for
spatially varying soil physical units is being read into memory by each
process. This suggests the parallelization could be further refined to
account partitioning heterogeneity and reduce overall memory usage.
Another possibility for reducing memory could be the usage of a RAM
disk, where, instead of reading the database in memory at initialization,
all processes read the necessary data dynamically from a virtual storage
created by local memory.

We conclude that for the NHM, parallel model results are sufficiently
accurate, supported by the measured root mean squared errors for a
parallel run comparing to the maximum absolute groundwater head
change stopping criterion. Differences greater than the stopping crite-
rion were observed, that are likely caused by differences in parallel
convergence behavior and rounding errors in the serial and parallel
model connectors. However, for most cells these differences are too
small to prohibit use of the parallel model application. As a result, we
believe our parallelization is suitable for national policy analyses and
operational management. As far as we know, this is the first

accomplished parallelization and speedup of a large-scale integrated
hydrological model using MODFLOW. Our parallelization is open source
as part of iMOD and NHI and ready to use for applications that would
benefit from reduced computing time and memory usage.

We have shown that parallelizing integrated hydrological model
codes is more challenging as the number of model codes increase, each
having their own characteristics and model application. As integrated
models improve and evolve in time by adding new model components or
replacing model components with more sophisticated ones, a redesign of
the parallelization approach may be needed. In worst case scenario, this
means that many model components proportionally contribute to the
run time, inevitably requiring huge parallelization efforts to obtain
speedup (Zhang et al., 2020). For the fully-coupled NHM, there are plans
to revise the surface water components and to increase the spatial res-
olution for groundwater. Since run times for the current surface water
model components are relatively small, we expect that revising these
components will quickly result in surface water run times that are
dominant and therefore require parallelization. With the current par-
allelization strategy, we expect that increasing the groundwater spatial
resolution will result in improved speedup when using more cores since
the serial fraction of 6% for the surface water model components will
then likely be smaller. We also expect that in the future multi-core CPUs,
having more and more cores, will become more efficient for
memory-bound problems (such as the latest generation AMD EPYC Zen
CPUs) and result in improved speedup and better core utilization for the
fully-coupled NHM. However, using more cores efficiently means more
memory usage for the SVAT model component and therefore more ur-
gency to reduce memory usage and to equip newest servers with suffi-
cient memory.

Authorship contribution

JV performed the conceptualization, methodology, parallelization of
MODFLOW and MetaSWAP/TRANSOL as integral part of NHI and
iMOD, pre- and postprocessing of the test cases, simulations, and anal-
ysis of the results. JDH wrote the serial code for PKS and assisted on
setting up the hypothetical test case. PvW assisted on parallelization of
the MetaSWAP/TRANSOL. MFPB, HXL and GHPOE supervised this

Fig. 11. Absolute groundwater head differences in meters for the reduced NHM test case (a) and the fully-coupled NHM test case (b), where for each test case a
parallel run using 24 cores is compared to the reference serial run. Values are plotted for the top model layer and for all seven model layers. Max. AE: maximum
absolute error; MAE: mean absolute error; RMSE: root mean squared error.

J. Verkaik et al.

Environmental Modelling and Software 143 (2021) 105092

13

research and helped with its conceptualization. JV prepared the
manuscript with contributions from all authors.

Software availability

The model codes that are used in this paper are mostly open-
source and partly in transition to the open domain as part of iMOD
(https://oss.deltares.nl/web/imod/home). The NHI model data are
freely available at http://www.nhi.nu.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence

the work reported in this paper.

Acknowledgements

We thank Deltares, in special Timo Kroon as project leader of NHI,
for making this research possible. We also thank Peter Vermeulen, the
iMOD code architect, for his help on incorporating PKS in iMOD.
Moreover, we thank Joachim Hunink, Liduin Burgering and Janneke
Pouwels for their support in running testing the NHM in parallel on the
NHI server. Furthermore, we thank John Donners, Edwin Sutanudjaja,
and Martijn Russcher for their support on running jobs on Cartesius. This
work was carried out on the Dutch national e-infrastructure with the
support of the SURF Cooperative.

APPENDICES.

A Parallelization details

A.1. Subdomain partitioning
To illustrate the grid partitioning, consider the example of Fig. 3 showing an irregular domain consisting of nc = 16 columns and nr = 14 rows, that

is partitioned into four partitions (P = 4).

Uniform partitioning. Fig. 3a shows an example of a uniform partitioning. The blocks are evenly distributed in the row and column direction, targeting
equally shaped rectangles, without accounting for the irregular domain. This method aims at minimizing the edge cuts, hence the number of con-
nections at the interface between the partitions, ignoring the work load that is typically defined by the active cells. Let n be the minimum of nc and nr.
From all possible combinations P = PcPr, where Pc and Pr are the number of blocks in column and row-direction, respectively, that combination is

selected such that Pi equals Pi = max{1,
⌊
n /

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ncnrP− 1

√ ⌋
}, where i = c when n = nc or i = r otherwise. Assuming equal weight of each cell, the load

imbalance can be defined as I = max{Lp /N}, where Lp is the sum of load for the (non-overlapping) partition p. For this example, processor 1 clearly has
the largest number of cells (42), resulting in a load imbalance of I = 1.68.

Orthogonal recursive bisection partitioning. The orthogonal recursive bisection recursively bisects intermediate partitions perpendicular to their longest
dimension k ≥ 0 times until P = 2k partitions each of approximately the same load are obtained. Fig. 3b shows an example of four partitions (k = 2),
where each active cell (both variable-as constant-value/Dirichlet cells) is assumed to have equal weight. The first intermediate partition is determined
by applying a minimum bounding box, enclosing cells A and B. Since the longest dimension (15) is along the columns, a vertical cut (black dashed line)
is being made by bisecting the column sum of weights (4, 6, 10, 12, 10, 12, 8, 11, 9, 6, 5, 5, 6, 5, 2, 1), with a total sum of 100, resulting in vertical line
between column 6 and 7, such that each new intermediate partition has exactly load 50. Then, two new intermediate partitions are determined:
enclosing A and C and enclosing D and E, both having the row direction as the longest dimension, hence rows sum of weights are used to determine the
horizontal cuts (dotted black lines). Since in this example all the partitions have the same load (25), the load imbalance is I = 1, which is optimal.

A.2. Parallelization of linear solver

Finite volume discretization of the flow equation results in, after (Picard) linearization and eliminating the Dirichlet boundary (constant-value)
conditions, in solving the linear system of equations:

Ah=b, (1)

where h[L] is the vector of unknown heads, A[L2T− 1] a square, symmetric positive-definite, coefficient matrix with the hydraulic cell-by-cell con-
ductivity, and b[L3T− 1] the vector with groundwater sink/source and storage terms. The corresponding computational stencil is 7-point, hence A has 7
bands. For solving the linear systems (1) in MODFLOW, we use Krylov subspace acceleration and apply this preconditioner in the preconditioned
conjugate gradient (PCG) method (Barrett et al., 1995). Instead of solving (1) directly, the symmetrized preconditioned system
(
M− 1/2AM− 1/2)M1/2h = M− 1/2b, M− 1/2M− 1/2 = M− 1 (2)

is solved where the matrix M is called the preconditioner (Barrett et al., 1995; Golub and Van Loan, 1996).
Using block-wise natural node ordering, as illustrated by the positive numbering in Fig. 3, the matrix A can be written as a block matrix of the form:

⎡

⎢
⎢
⎣

A1,1 A1,2 ⋯ A1,P
A2,1 A2,2 ⋮

⋮ ⋱ ⋮
AP,1 ⋯ ⋯ AP,P

⎤

⎥
⎥
⎦, (3)

where Aii correspond to the interior node coefficients and Ai,j, i ∕= j to the coupling coefficients between the subdomains. Considering a 7-point

J. Verkaik et al.

https://oss.deltares.nl/web/imod/home
http://www.nhi.nu

Environmental Modelling and Software 143 (2021) 105092

14

computational stencil and a single band for the uniform partitioning example in Fig. 3a, the block matrix (3) has 4 × 4 blocks (P = 4), and for the first
subdomain p1 the interior coefficient sub-matrix A1,1 has dimension 37× 37, local coupling sub-matrix A1,2 contains two non-zero entries (33→ 38,
37→39) and A1,3 four non-zero entries (34→44, 35→45, 36→46, 37→47), and A1,4 = ∅. Note that in a distributed memory parallel setting the global
matrix (3) is never formed explicitly since each processor only has local coefficients corresponding to a block row.

Taking M as the block diagonal matrix of A results in the (non-overlapping) additive Schwarz preconditioner (Dolean et al., 2015; Smith et al.,
1996), denoted by MAS:

MAS ≡

⎡

⎢
⎢
⎣

A1,1
A2,2

⋱
AP,P

⎤

⎥
⎥
⎦, (4)

In each PCG iteration, called inner iteration, the preconditioner is being applied once and the system of the form МASy = z has to be solved, where y
and z are denoted as typical search directions. This can be done entirely in parallel: each processor solves the local subdomain problem Ai,iyi = zi (local
solve) in parallel and inaccurately (Brakkee et al., 1998). In our parallelization the local solve is done using an incomplete LU factorization with zero
fill in (ILU(0)), similar to PETSc (Balay et al., 2014). Convergence at the i − th inner iteration is reached for PCG when the stopping criteria
‖x(i) − x(i− 1)‖∞ ≤ εhclose and ‖b − Ax(i)‖∞ ≤ εrclose are satisfied, where the infinity norm is defined as ‖y‖∞ ≡ max

i
|yi| .

The additive Schwarz preconditioned PCG algorithm in pseudo-code is given by Fig. 12. Parallelization of this method involves a) local MPI point-
to-point communication of vectors between subdomains prior to sparse matrix vector multiplication, b) global collective MPI communication to
determine global sums for inner products and global maxima for stopping criteria.

Fig. 12. Additive Schwarz Preconditioned Conjugate Gradient linear solver algorithm for the Parallel Krylov Solver. The symbol ←denotes that the left-hand side is
assigned to the value of the right-hand side, according to Smith et al. (1996). “Maxinner” is the maximum of inner iterations; for further notation see Fig. 2.5 of
Barrett et al. (1995). The numbers (.) denote the MPI communication points.

References

Amdahl, G.M., 1967. Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, AFIPS ’67. Spring, ACM, New York, NY, USA, pp. 483–485.
https://doi.org/10.1145/1465482.1465560.

Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M.,
McInnes, L.C., Smith, B., Zhang, H., 2014. PETSc Users Manual Revision 3.4. https://
doi.org/10.2172/1178104. Work.

Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Eijkhout, V.,
Pozo, R., Romine, C., van der Vorst, H., 1995. Templates for the solution of linear
systems: building blocks for iterative methods. S., G.W Math. Comput. 64, 1349.
https://doi.org/10.2307/2153507.

Berger, M., Bokhari, S.H., 1987. A partitioning strategy for nonuniform problems on
multiprocessors. IEEE Trans. Comput. https://doi.org/10.1109/TC.1987.1676942.

Böhme, D., 2013. Characterizing Load and Communication Imbalance in Parallel
Applications, Ph.D. dissertation. RWTH Aachen University.

Boman, E.G., Catalyurek, U.V., Chevalier, C., Devine, K.D., 2012. The zoltan and
isorropia parallel toolkits for combinatorial scientific computing: partitioning,
ordering, and coloring. Sci. Program. 20, 129–150.

Brakkee, E., Vuik, C., Wesseling, P., 1998. Domain decomposition for the incompressible
Navier–Stokes equations: solving subdomain problems accurately and inaccurately.
Int. J. Numer. Methods Fluid. 26, 1217–1237. https://doi.org/10.1002/(SICI)1097-
0363(19980615)26:10<1217::AID-FLD693>3.0.CO;2-M.

Cheng, T., Mo, Z., Shao, J., 2014. Accelerating groundwater flow simulation in
MODFLOW using JASMIN-based parallel computing. Ground Water 52, 194–205.
https://doi.org/10.1111/gwat.12047.

De Lange, W.J., 1996. Groundwater modeling of large domains using analytic elements,
Ph.D. dissertation. Delft University of Technology.

De Lange, W.J., Prinsen, G.F., Hoogewoud, J.C., Veldhuizen, A.A., Verkaik, J., Oude
Essink, G.H.P., Van Walsum, P.E.V., Delsman, J.R., Hunink, J.C., Massop, H.T.L.,
Kroon, T., 2014. An operational, multi-scale, multi-model system for consensus-
based, integrated water management and policy analysis: The Netherlands
Hydrological Instrument. Environ. Model. Software 59, 98–108. https://doi.org/
10.1016/j.envsoft.2014.05.009.

Dolean, V., Jolivet, P., Nataf, F., 2015. An introduction to domain decomposition
methods: algorithms, theory, and parallel implementation. Society for Industrial and
Applied Mathematics. https://doi.org/10.1137/1.9781611974065.

Dong, Y., Li, G., 2009. A parallel pcg solver for MODFLOW. Ground Water 47, 845–850.
https://doi.org/10.1111/j.1745-6584.2009.00598.x.

J. Verkaik et al.

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.2172/1178104
https://doi.org/10.2172/1178104
https://doi.org/10.2307/2153507
https://doi.org/10.1109/TC.1987.1676942
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref5
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref5
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref6
https://doi.org/10.1002/(SICI)1097-0363(19980615)26:10<1217::AID-FLD693>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1097-0363(19980615)26:10<1217::AID-FLD693>3.0.CO;2-M
https://doi.org/10.1111/gwat.12047
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref9
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref9
https://doi.org/10.1016/j.envsoft.2014.05.009
https://doi.org/10.1016/j.envsoft.2014.05.009
https://doi.org/10.1137/1.9781611974065
https://doi.org/10.1111/j.1745-6584.2009.00598.x

Environmental Modelling and Software 143 (2021) 105092

15

Eijkhout, V., Chow, E., van de Geijn, R., 2015. Introduction to High Performance
Scientific Computing, 2nd. lulu.com.

Forum, M.P., 1994. MPI: A Message-Passing Interface Standard. University of Tennessee,
Knoxville, TN, USA.

Fox, G.C., 1988. In: Schultz, M. (Ed.), A Graphical Approach to Load Balancing and
Sparse Matrix Vector Multiplication on the Hypercube BT - Numerical Algorithms for
Modern Parallel Computer Architectures. Springer US, New York, NY, pp. 37–61.

Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B., 2010. The scalasca
performance toolset architecture. Concurrency Comput. Pract. Ex. 22, 702–719.
https://doi.org/10.1002/cpe.1556.

Golub, G.H., Van Loan, C.F., 1996. Matrix Computations, Third. ed. The Johns Hopkins
University Press.

Harbaugh, A.W., 2005. MODFLOW-2005 , the U.S. Geological Survey modular ground-
water model — the ground-water flow process. U.S. Geol. Surv. Tech. Methods 253.
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%
2F10.3133%2Ftm6A16&data=04%7C01%7Cn.deep%40elsevier.com%7Ced32d
5fbd3884f28957008d93611c144%7C9274ee3f94254109a27f9fb15c10675d%7C0%
7C0%7C637600272603421733%7CUnknown%7CTWFpbGZsb3d8eyJWIjo
iMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%
7C2000&sdata=Z1ZIvXRLkJ%2BYzT6B40YqZ9FNaCGPVV5CMLCe%2FyJeok8%
3D&reserved=0. Geological Survey Techniques and Methods 6-A16.

Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G., 2000. User guide to
modularization concepts and the Ground-Water Flow Process, MODFLOW-2000 the
U.S. Geological Survey modular ground-water model. U.S. Geological Survey Open-
File Report 00–92, 121 p. https://pubs.er.usgs.gov/publication/ofr200092.

Hill, M.C., 1990. Preconditioned Conjugate-Gradient 2 (PCG2), a Computer Program for
Solving Ground-Water Flow Equations, Water-Resources Investigations Report.
Department of the Interior, U.S. Geological Survey.

Hoogewoud, J.C., Van Walsum, P.E.V., de Louw, P.G.B., Hunink, J.C., Prinsen, G.F.,
Verkaik, J., Veldhuizen, A.A., Kroon, T., van der Bolt, F.J.E., Burgering, L.,
Groenendijk, P., van der Wal, B., 2015. Veranderingsrapportage LHM 3.1.0:
Ontwikkeling, beheer en onderhoud van de landelijke toepassing van het NHI (in
Dutch). Utrecht, The Netherlands.

Huang, J., Christ, J.A., Goltz, M.N., 2008. An assembly model for simulation of large-
scale ground water flow and transport. Ground Water 46, 882–892. https://doi.org/
10.1111/j.1745-6584.2008.00484.x.

Hughes, J.D., White, J.T., 2013. Use of general purpose graphics processing units with
MODFLOW. Ground Water 51, 833–846. https://doi.org/10.1111/gwat.12004.

Huisman, P., 1998. Water in the Netherlands, Verslagen en mededelingen - Commissie
voor Hydrologisch Onderzoek TNO, vol. 37. https://doi.org/10.1007/978-1-4020-
8213-9.

Imod-Python Development Team, 2017. iMOD-Python: make massive MODFLOW
models. https://gitlab.com/deltares/imod/imod-python.

Ji, X., Li, D., Cheng, T., Wang, X.S., Wang, Q., 2014. Parallelization of MODFLOW using a
GPU library. Ground Water 52, 618–623. https://doi.org/10.1111/gwat.12104.

Kovar, K., Leijense, A., Gan, J.B.S., 1992. Groundwater Model for the Netherlands.
Mathematical Model Development and User’s Guide. Bilthoven. Report no.
714305002.

Naff, R.L., 2008. Technique and application of a parallel solver to MODFLOW. In:
Proceedings of MODFLOW and More, pp. 19–21.

Prinsen, G., Sperna Weiland, F., Ruijgh, E., 2015. The delta model for fresh water policy
analysis in The Netherlands. Water resour. OR Manag. 29, 645–661. https://doi.org/
10.1007/s11269-014-0880-z.

Pulles, J.W., Sprong, T.A., 1985. Policy Analysis for the Water Management in the
Netherlands (PAWN). Rijkswaterstaat Hoofddir. van Waterstaat, Den Haag,
Netherlands.

Rünger, G., Rauber, T., 2013. Parallel Programming - for Multicore and Cluster Systems,
second ed. Springer.

Schreuder, W.A., 2005. Parallel Numerical Solution of Groundwater Flow Problems, Ph.
D. dissertation. University of Colorado.

Smith, B.F., Bjørstad, P.E., Gropp, W.D., 1996. Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University
Press, New York, NY, USA.

Snepvangers, J., Minnema, B., Berendrecht, W., Vermeulen, P., Lourens, A., Linden, W.,
Duijn, M., Bakel, J., Zaadnoordijk, W., Boerefijn, M., Meeuwissen, M., Lagendijk, V.,
2007. MIPWA: Water Managers Develop Their Own High-Resolution Groundwater
Model Tools.

SURFsara, 2014. Description of the Cartesius System [WWW Document]. URL. https://u
serinfo.surfsara.nl/systems/cartesius/description.

Tudor, B.M., Teo, Y.M., See, S., 2011. Understanding off-chip memory contention of
parallel programs in multicore systems. Proc. Int. Conf. Parallel Process. 602–611.
https://doi.org/10.1109/ICPP.2011.59.

van der Meulen, M.J., Doornenbal, J.C., Gunnink, J.L., Stafleu, J., Schokker, J.,
Vernes, R.W., van Geer, F.C., van Gessel, S.F., van Heteren, S., van Leeuwen, R.J.W.,
Bakker, M.A.J., Bogaard, P.J.F., Busschers, F.S., Griffioen, J., Gruijters, S.H.L.L.,
Kiden, P., Schroot, B.M., Simmelink, H.J., van Berkel, W.O., van der Krogt, R.A.A.,
Westerhoff, W.E., van Daalen, T.M., 2013. 3D geology in a 2D country: perspectives
for geological surveying in The Netherlands. Netherlands J. Geosci. - Geol. en Mijnb.
92, 217–241. https://doi.org/10.1017/S0016774600000184.

Van Walsum, P.E.V., Veldhuizen, A.A., 2011. Integration of models using shared state
variables: implementation in the regional hydrologic modelling system SIMGRO.
J. Hydrol 409, 363–370. https://doi.org/10.1016/j.jhydrol.2011.08.036.

Verkaik, J., Hughes, J.D., Sutanudjaja, E., van Walsum, P., 2016. First applications of the
new parallel Krylov solver for MODFLOW on a national and global scale. In: AGU
Fall Meeting Abstracts.

Verkaik, J., Hughes, J.D., Sutanudjaja, E.H., 2015. A hybrid, parallel Krylov solver for
MODFLOW using Schwarz domain decomposition. In: AGU Fall Meeting Abstracts.

Vermeulen, P.T.M., Roelofsen, F.J., Minnema, B., Burgering, L.M.T., Verkaik, J.,
Rakotonirina, A.D., 2019. iMOD User Manual.

Wada, Y., Wisser, D., Bierkens, M.F.P., 2014. Global modeling of withdrawal, allocation
and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5,
15–40. https://doi.org/10.5194/esd-5-15-2014.

Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L.,
Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Cheng, Y., Yu, H., Shi, S.,
Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J.,
Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G.,
Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., Guo, Y.,
2020. Optimizing high-resolution community earth system model on a
heterogeneous many-core supercomputing platform (CESM-HR_sw1.0). Geosci.
Model Dev. Discuss. (GMDD) 2020, 1–38. https://doi.org/10.5194/gmd-2020-18.

J. Verkaik et al.

http://refhub.elsevier.com/S1364-8152(21)00135-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref14
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref14
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref15
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref15
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref15
https://doi.org/10.1002/cpe.1556
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref17
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref17
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.3133%2Ftm6A16&data=04%7C01%7Cn.deep%40elsevier.com%7Ced32d5fbd3884f28957008d93611c144%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637600272603421733%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&sdata=Z1ZIvXRLkJ%2BYzT6B40YqZ9FNaCGPVV5CMLCe%2FyJeok8%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.3133%2Ftm6A16&data=04%7C01%7Cn.deep%40elsevier.com%7Ced32d5fbd3884f28957008d93611c144%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637600272603421733%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&sdata=Z1ZIvXRLkJ%2BYzT6B40YqZ9FNaCGPVV5CMLCe%2FyJeok8%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.3133%2Ftm6A16&data=04%7C01%7Cn.deep%40elsevier.com%7Ced32d5fbd3884f28957008d93611c144%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637600272603421733%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&sdata=Z1ZIvXRLkJ%2BYzT6B40YqZ9FNaCGPVV5CMLCe%2FyJeok8%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.3133%2Ftm6A16&data=04%7C01%7Cn.deep%40elsevier.com%7Ced32d5fbd3884f28957008d93611c144%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637600272603421733%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&sdata=Z1ZIvXRLkJ%2BYzT6B40YqZ9FNaCGPVV5CMLCe%2FyJeok8%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.3133%2Ftm6A16&data=04%7C01%7Cn.deep%40elsevier.com%7Ced32d5fbd3884f28957008d93611c144%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637600272603421733%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&sdata=Z1ZIvXRLkJ%2BYzT6B40YqZ9FNaCGPVV5CMLCe%2FyJeok8%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.3133%2Ftm6A16&data=04%7C01%7Cn.deep%40elsevier.com%7Ced32d5fbd3884f28957008d93611c144%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637600272603421733%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&sdata=Z1ZIvXRLkJ%2BYzT6B40YqZ9FNaCGPVV5CMLCe%2FyJeok8%3D&reserved=0
https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.3133%2Ftm6A16&data=04%7C01%7Cn.deep%40elsevier.com%7Ced32d5fbd3884f28957008d93611c144%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637600272603421733%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C2000&sdata=Z1ZIvXRLkJ%2BYzT6B40YqZ9FNaCGPVV5CMLCe%2FyJeok8%3D&reserved=0
https://pubs.er.usgs.gov/publication/ofr200092
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref19
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref19
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref19
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref20
https://doi.org/10.1111/j.1745-6584.2008.00484.x
https://doi.org/10.1111/j.1745-6584.2008.00484.x
https://doi.org/10.1111/gwat.12004
https://doi.org/10.1007/978-1-4020-8213-9
https://doi.org/10.1007/978-1-4020-8213-9
https://gitlab.com/deltares/imod/imod-python
https://doi.org/10.1111/gwat.12104
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref26
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref26
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref26
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref27
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref27
https://doi.org/10.1007/s11269-014-0880-z
https://doi.org/10.1007/s11269-014-0880-z
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref29
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref29
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref29
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref30
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref30
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref31
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref31
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref32
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref32
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref32
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref33
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref33
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref33
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref33
https://userinfo.surfsara.nl/systems/cartesius/description
https://userinfo.surfsara.nl/systems/cartesius/description
https://doi.org/10.1109/ICPP.2011.59
https://doi.org/10.1017/S0016774600000184
https://doi.org/10.1016/j.jhydrol.2011.08.036
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref39
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref39
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref40
http://refhub.elsevier.com/S1364-8152(21)00135-3/sref40
https://doi.org/10.5194/esd-5-15-2014
https://doi.org/10.5194/gmd-2020-18

	Distributed memory parallel groundwater modeling for the Netherlands Hydrological Instrument
	1 Introduction
	2 Methods
	2.1 General NHM parallelization strategy
	2.2 Parallel performance evaluation
	2.3 Parallelization for groundwater model component
	2.3.1 Relationship to other work
	2.3.2 General description
	2.3.2.1 Subdomain partitioning
	2.3.2.2 Overlap and communication
	2.3.2.3 Input and output

	3 Test cases
	3.1 Hypothetical steady-state groundwater model
	3.2 Reduced and fully-coupled NHM simulating 2006
	3.3 Hardware and compiler

	4 Results
	4.1 Hypothetical steady-state groundwater model
	4.2 Reduced and fully-coupled NHM simulating 2006

	5 Discussion
	6 Conclusions
	Authorship contribution
	Software availability
	Declaration of competing interest
	Acknowledgements
	APPENDICES Acknowledgements
	A Parallelization details
	A.1 Subdomain partitioning
	Uniform partitioning
	Orthogonal recursive bisection partitioning

	A.2 Parallelization of linear solver

	References

