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Summary

This thesis presents the conceptual development of an innovative parallel manipulator that leverages
the beneficial attributes of parallel kinematic structures. These attributes include increased stiffness,
uniform load distribution, and reduced moving mass, which are strategically incorporated into the design
to enhance resource efficiency. This approach aims to yield more robust, cost-effective, and reliable
alternatives to conventional serial manipulators. The concept is synthesized from various literature
sources, leading to a detailed kinematic analysis through inverse kinematics. This analysis provides
valuable insights into the mechanism’s functionality and facilitates iterative design improvements. Ad-
ditionally, a dynamic behavior simulation of the mechanism is conducted using Simulink’s Simscape.
Based on these insights, a prototype is constructed to empirically validate the design concept. The
final design demonstrates a compact, fully accessible workspace with a kinematic structure conducive
to robust manipulation. The load distribution is optimized across all motors, maximizing motor capacity
utilization and enabling efficient handling of peak loads.






Introduction

2.1. Automation is a must

Automation in horticulture has gained momentum in the challenge of providing citizens of the world
with nutritious, healthy, and enough food. With the introduction of loT, computer vision, robotics, and
advanced control algorithms, this sector has been able to innovate rapidly, leading to innovations in
automation, collaboration, sensing, control, and world perception.

Two main reasons the focus has shifted toward automation are the intensification of these agricultural
fields [28] and the shrinking labor force available to process them [16]. This results in crop loss and
increasing costs and this trend is predicted to continue [18]. Predictions are that the total labor gap will
be around 50 percent in 2029 [3]. To ensure the future of these industries, there is a need for a reliable
workforce.

2.2. Current situation

Currently, commercial crop-picking solutions have already entered the market. Like, Grow, Appharvest,
and Dogtooth [27]. However, the adoption of this technology is still challenging. Vazconez et al. [40]
show that specialty crops, like tomatoes and strawberries, are far behind on automation, compared
to for example field crops. Factors that are responsible are in the field of limited accuracy, flexibility,
and harvesting speed [30]. Humans excel in managing dynamic environments due to their remarkable
ability to adapt quickly to sudden changes [19]. Lastly, the initial investment costs per picked unit of
such a robot will leave many growers doubting, as this decides whether it will be commercially attractive

[1].

2.3. Problem

Advancements in the design of manipulation methods have exploded, as the applications needed in
these dynamic environments are rather endless. Think of grippers that can grasp different size crops,
leaf cutters, and scissors for peduncles. However, the design of the robot arm itself is rather subordi-
nate. Limited literature is found for the specific design of this part, and application designs tend to pick
the ready-to-use options. The need for robotic manipulators with less than 6 DOFs can be questioned,
as the ones with equal or more than 6 DOFs can be used for multiple applications. Kong et al. [22] cite
a main reason to argue this statement. Cost reduction plays a huge part for potential customers of this
technology. What would be the use of an over-engineered robot arm, if only half of its capacity can be
used in practice? Would it be necessary to use a robot n-times the weight of the crop in order to handle
it properly? For sure, designing a new robotic manipulator is a risky and valuable process. Therefore,
the question becomes more important as these robot arms can be considered over-designed for the
task at hand and therefore are too costly for the market of horticulture and perhaps other fields. Can
the burden of costly robot arms be partially relieved by an applied robot arm design, taking into account
the critical workspace, used materials, and required motor capacity?

3
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