
PHYSICAL REVIEW A 68, 033603 ~2003!
Neutron-multiwave-interference experiments with many resonance coils
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Neutron-multiwave-interference phenomena based on Ramsey’s resonance method of ‘‘separated oscillating
fields’’ are studied. A neutron passes throughN successive resonant coils (\v052mnB0), which flip the
neutron spin with a probabilityr smaller than 1. These coils are separated by path lengthsL over which a
homogeneous fieldB1 is present. Because the spin-flip probabilityr is smaller than 1, the number of waves for
a neutron is doubled after each flipper, so as to produce 2N neutron waves at the end of the setup. The phase
difference between any pair of waves is a multiple of a ‘‘phase quantum’’ determined by the line integral of the
field differenceB12B0 over the lengthL. Highly regular patterns of the quantum-mechanical probabilityR in
(B1 ,r) space appear due to pair interference between individual waves. Possible applications of this phenom-
enon, such as a direct measurement ofn-particle correlation function, are pointed out.

DOI: 10.1103/PhysRevA.68.033603 PACS number~s!: 03.75.Dg, 42.87.Bg
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I. INTRODUCTION

Multipath interference in optics and multimode interfe
ence in dynamical systems has recently emerged as an
tremely active field of research. A coherently illuminated d
fraction grating produces remarkably rich series of se
images in a plane beyond the grating. This effect has rece
received much attention as a fundamental optical phen
enon @1,2#. It appears that this phenomenon based on
multipath interference of light has much similarity with mu
timode interference in the evolution of the wave packet i
system described by quantum mechanics@3#. Such a system
with a broad spectrum of excitations, when all the levels
populated, reveals rich interference patterns both in time
in space@4,5#. Particularly, the large scale interference lea
to the well-ordered long-range regularities~such as quantum
revivals @5#! in time-space probability distribution of th
wave function. When a Gaussian wave packet propagate
time and space, a regular structure emerges for the prob
ity density, the so-called quantum carpet, which becomes
object of study.

Therefore it is of great interest to prepare a wave pac
in a controlled way and measure its multimode or multip
interference. In this paper we use Ramsey’s resona
method of the separated oscillating fields@6,7# to study neu-
tron multipath wave interference. In his works Ramsey c
sidered a beam with spin6 1

2 particles~a two level system of
which a neutron is a good example! passing through a coupl
of static combined with oscillating fields in resonance w
the particle’s magnetic moment, separated by homogene
or zero magnetic field. He calculated the transition proba
ity between the levels present in this field configuration. T
calculations demonstrated that neutron wave interference
curs between two possible wave paths through sp
momentum space. It was discussed in Ref.@7# that this
method of producing interference between neutron wa
along the different paths in momentum space has ana
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with the interference produced along different paths in r
space, i.e., with two-slit experiment. Recently, the interf
ence of two neutron waves having different prehistories
spin-momentum space was experimentally observed@8,9#. It
should be noted that this phenomenon has much in com
with the neutron resonant spin echo method recently de
oped @10–12#, which is based on the earlier works on th
resonant interaction of neutrons with time-dependent m
netic fields@13–15#.

In this paper we study the probability density of the ne
tron passed throughN resonant coils flipping the neutro
spin with a probabilityr between 0 and 1 and separated o
from another by a homogeneous fieldB1 of length L. The
same configuration was described in Ref.@6,7# for two coils
only. When the neutron with spin parallel to the quantizati
axis enters the first resonant coil the neutron wave is s
into two, with different spin states. In the subsequent a
with magnetic fieldB1, these two neutron waves experien
the magnetic field differently because of their different sp
states, i.e., each wave collects a different~opposite! phase
shift. The next resonance coil produces a new splitting
each of the two neutron waves, thus making four wav
Hence the full device consisting ofN resonance coils pro
duces 2N neutron waves. These waves interfere and each
of them contributes to a highly regular pattern of quantu
mechanical probability in a two-dimensional space su
tended by the ‘‘axes’’ of spin-flip probabilityr and line in-
tegral (B12B0)L.

We give a theoretical treatment of this problem. The f
mulas describing the appearance of 2N neutron waves in this
many-resonance experiment are derived in Sec. II. The
merical calculations for large numbers of the resonance c
are given in Sec. III. Section IV gives details concerning t
experiment for system of six resonance coils. Section V p
sents both short discussion and final conclusion.

II. NEUTRON WAVE INTERFERENCE IN RAMSEY’S
RESONANCE METHOD

A. Case of two resonant coils

The simplest way to understand interference between n
tron waves in Ramsey’s resonance method of the separ
©2003 The American Physical Society03-1
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oscillating fields is to use a quantum-mechanical approac
the problem@7–12#. Let us consider a plane neutron wa
with initial wave numberk0, energy\v, and one spin state

( 1
0 ). So the wave is represented as exp(ik0x)exp(2ivt). This

wave travels along thex axis through the configuration of th
magnetic fields shown in Fig. 1~a!. As soon as the neutro
enters the fieldB0, the wave numberk0 changes tok1. Due
to the energy conservation law, the total energy\v does not
change and the resulting change in wave number satisfie
equation\2k0

2/(2mn)5\2k1
2/(2mn)2mnB0. Hencek1 and

k0 differ in first approximation as:

k15k01mnB0 /~\v !, ~1!

wheremn ,mn , and v are the mass, the magnetic mome
and the velocity of the neutron, respectively.

Along the path length where the field equalsB0, an oscil-
lating, field with frequencyv0 @radio frequency~RF!#, per-
pendicular toB0, is generated by a ‘‘resonant’’ coil. Its fre
quency is adjusted such that the photon energy exa
equals the Zeeman energy difference between the two
eigenstates of the neutron in the static field:

\v0522mnB0 . ~2!

By means of the strengthBRF of the RF field, the probability
r for the neutron to change its spin eigenstates can
changed between 0 and 1. If spin flipping occurs, the to
energy of the neutrons is not conserved because a photo
energy\v0 is exchanged between the neutron state and
RF field. Then, the neutron spin state with momentumk1
will gain or lose an amount of potential energyDE
52mnB0. When the neutron leaves the fieldB0 and enters
the path length with fieldB1, its potential energy is release
as a kinetic-energy change. Since we consider not comp

FIG. 1. ~a! Sketch of a system of two radio frequency~RF! coils
inside static fieldB0 of length l acting as RF resonant spin flippe
with a field B1 of lengthL between them.~b! (k,x) diagram of the
wave vectors as a function of a position along the beam.
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but a partial spin flip, at this point the neutron wave is sp
into two plane waves with wave numberk1 with the corre-

sponding spin state (0
1 ) ~down! and wave numberk2 with

the spin state (10 ) ~up!. Again, due to the energy conservatio
law, the total energy of each of these two waves does
change at the transition fromB0 to B1, so their wave num-
bersk1 andk2 satisfy

\2k1
2

2mn
5

\2k1
2

2mn
2mn~B02B1!

and

\2k1
2

2mn
5

\2k2
2

2mn
1mn~B02B1!,

from which one findsk1 andk2 in first approximation:

k65k16
mnDB

\v
5k01

mn~B06DB!

\v
, ~3!

whereDB5B02B1.
Thus, after the resonance coil with partial spin flip, t

initial neutron wave is split into a ‘‘nonflipped’’ and a
‘‘flipped’’ part with wave vectorsk2 andk1 and with corre-
sponding energies\v and \(v1v0), respectively. In the
subsequent region with static fieldB1, these waves interfere
and their phase difference f(x,t)5*0

x@k1(x8)
2k2(x8)#dx82v0t implies an effective precession in spac
This spatial precession may take place even in zero field,
when B150 @so-called ‘‘zero-field ~ZF! precession’’#
@11,12#. However, in a static experiment this is unobserva
because the phase difference between the two interfe
waves continues to grow in time at the ratev0. Nevertheless,
such a non-stationary interference pattern exists and was
served for the first time by Badureket al. @15# using strobo-
scopic neutron detection.

This time-dependent behavior may be halted by transm
ting the neutron through the next resonance coil, identica
the first one and placed in a static field equal toB0. Upon
entering the fieldB0 , k1 for the spin-down state andk2 for
the spin-up state both return tok1. In this second resonanc
coil the wave with spin down~i.e., flipped in the first coil!
can only emit a photon, thus loosing the amount of the
ergy \v0. On the other hand, the wave with spin up~i.e.,
nonflipped in the first coil! can only absorb a photon, thu
absorbing a quantum\v0. Since we suppose the spin flip i
the second resonance coil again to be partial, both wa
split again into two new waves. Upon leaving the seco
path length with the static fieldB0 the potential energy of al
waves is released as a kinetic-energy change. The w
with spin state up change their wave numberk1 into k0; the
waves with spin state down fromk1 into k115k0
12mnB0 /(\v). There are two waves at the upper ener
level ~each absorbed a photon in the first or the second c!
and two waves at the lower energy level~one absorbed a
photon in the first coil and emitted it in the second; the oth
neither emitted nor absorbed a photon!. The energies of each
3-2
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pair are finally equal. Thus, the growth of both the spa
and time phase differences for the two pairs of waves~sepa-
rated inv2k space! is halted.

Figure 1~b! is the (k,x) diagram, i.e., diagram of two
different wave-vector paths through the system of the m
netic fields @Fig. 1~a!# as a function of position along th
beam. The phase shift between pairs of neutron waves
leaving the second coil equalsDf5*@k1(x)2k2(x)#dx,
where the integral is taken over the whole length of the t
coil systems and is proportional to the area between twk
levels sketched in Fig. 1~b!. As noted earlier, the interferenc
appears only when 0,r,1, so twok levels in the space
between flippers will be simultaneously occupied by a n
tron.

The splitting of the waves is fully connected to the sp
part of the wave function. One can follow in Fig. 1~b! what
happens to both spin states along the beam path. It is i
cated at different positions in Fig. 1 by the arrows↑ and↓,

which correspond to the spinor components↑5( 1
0 ) and ↓

5( 0
1 ). Eachk level can be identified by one spinor comp

nent only. Coefficients in the spinors accounting for the s
state of the initial wave and depending on the spin-flip pr
ability of the RF coils determine the occupation numbers
the neutron wave on each level, i.e., along each wave-ve
path in the diagram.

B. Case of many resonant coils

Let us assume a plane neutron wave travelling along thx
axis through the configuration of magnetic fieldsB0 andB1,
which isN times repeated, as shown in Fig. 2. RF coils in t
path length with fieldB0 are operated at the resonance f
quency. Let us suppose for simplicity that all resonance c
~the so-called flippers! operate with the flipping probability
r51/2. The case of arbitraryr will be treated in the follow-
ing section.

Therefore, upon leaving the coil and entering the fieldB1,
the neutron wave is split into two with wave numbersk1 and
k2 . Then, after the second coil each of these waves is s
again into two equally populated waves and so on. Th
after N resonance coils the initial wave is split into tw
groups of 2N21 neutron waves with small amplitudes o
(1/2)N of the initial wave. Half of them now have energ
\(v1v0), they were flipped an odd number of times a
therefore they have the spin state down. The other half h
the energy\v, as the initial wave had. They were flipped a
even number of times or one of them was not flipped at
Therefore they have the ‘‘up’’ spin state. The first group
the waves is located at the upperk level of diagram@Fig.
2~b!# with its own energy and spin state; the second grou
at the lowerk level with another energy and opposite sp
state.

In fact, the neutron waves inside each group differ only
phase, since each of them has its own unique path in (k-x)
diagram. It is convenient to follow the relative phase sh
Dw of the individual wave with respect to the phase va
w05k1x @Fig. 2~c!#. The number of waves with an equ
phase shiftDw obeys the simple binomial distribution. In th
space after the system ofN resonance coils many pairs o
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waves interfere and the phase difference for an arbitrary
f5mDf, wherem50,1, . . .N, and

Df5E
0

l

@k1~x8!2k2~x8!#dx8 ~4!

is the integral over one path section with fieldB1. Thus,Df
is a quantum of phase. Each pair of the waves contribute
the interference pattern downstream the system. What is
multiwave interference pattern? What kind of the rules do
it obey? How will this pattern change if the spin-flip prob
ability of the coil will differ from 1/2 and therefore the am
plitudes of the waves will not be as simple as (1/2)N? These
and some more questions will be answered in the follow
sections.

C. Quantitative approach

In order to describe quantitatively what happens with
initial plane neutron wave, we have to treat its behavior a
solution of the Schro¨dinger equation. We do so in the way a
was already done for one resonance coil@6–8#. Thus we
consider the wave of a neutron with velocityv passing
through the first resonance coil of lengthl producing a trans-

FIG. 2. ~a! Sketch of the system with many resonant coils
field B0 separated by segments with fieldB1. ~b! (k,x) diagram of
the wave vectors as a function of a position along the beam.~c!
Diagram of the phaseDw of the wave produced in successive res
nance coils along the beam relative to a wave which would go
undisturbed levelk5k1 through the system.
3-3
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verse rotating magnetic field with frequencyv0 and ampli-
tudeBRF and inside a static fieldB0. Its spin state is written

asa(t)( 1
0 )1b(t)( 0

1 ), where the coefficientsa andb satisfy
a21b251 at any time. The Schro¨dinger equation of the
system can be written as

i\
dC

dt
5S 2mnB0 mnBRFexp~ iv0t !

mnBRFexp~2 iv0t ! mnB0
DC~ t !.

~5!
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Whenv0 satisfies the resonance condition Eq.~2!, the solu-
tion of the Schro¨dinger equation for a neutron leaving th
coil at time t11t ~wheret5 l /v and t1 is the time at which
the neutron enters the coil! can be written@6# as

C~ t11t!5Ĉ~ t1 ,t!C~ t1!, ~6!

whereĈ(t1 ,t) is a 232 matrix of the form
C~ t1 ,t!5S cos~j!exp~ iv0t/2! 2 i sin~j!exp~ iv0~ t11t/2!!

2 i sin~j!exp@2 iv0~ t11t/2!# cos~j!exp~2 iv0t/2!
D . ~7!
he
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Here we introducedj5(2mn /\)BRFt/2.
The spin-flip probabilityr of the RF flipper plays an im-

portant role in the distribution of the neutron wave dens
over 2N different waves in this many-resonance experime
One can derive the expression forr of the single coil from
Eq. ~7!. We assume the initial occupation numbersa(t1)
51 andb(t1)50; then the spin-flip probability is given b
the occupation number of the spinor component↓ after the
coil:

r5b* ~ t11t!b~ t11t!5sin2~j!. ~8!

So a distribution of the neutron wave density over the t
states is described as square of sin and cos functions with
argumentj. Hencer depends on the value of the amplitud
BRF and timet, which is proportional to the neutron wave
lengthl.

Next the neutrons fly through a homogeneous magn
field B1 of lengthL. The effect of the magnetic field on th
neutron can be expressed in a matrix language through
operatorĤ, given by

H5S exp~ if! 0

0 exp~2 if!
D , ~9!

where f52(mn /\)B1T and T5L/v is the time of flight
between flippers.

Then, afterN resonance coils separated byN21 areas
with a field of strengthB1 and of lengthL the neutron wave
function has the following form:
t.

o
he

ic

he

C„t11Nt1~N21!T…5C~ tN ,t!HC~ tN21 ,t!H•••C~ t2 ,t!

3HC~ t1 ,t!C~ t1!, ~10!

where tn5t11(n21)(T1t) (n51,2, . . . ,N) and H is
given by Eq.~9!. The polarization componentPi is found by
calculating ^s i&5^C* „t11Nt1(N21)T…us i uC„t11Nt
1(N21)T…&, where i 5x,y,z, and s i are corresponding
Pauli matrices. We derive now analytical expressions forPi .
The main difficulty here is that the operator transferring t
initial wave function to the final one@Eq. ~10!# is a product
containingN11 different matrices. We show now that th
wave function Eq.~10! can be represented in a more unive
sal form allowing one to obtain analytical expressions for
polarization components.

It can be seen from the definition ofC(tn ,t) @Eq. ~7!# that
its eigenvalues do not depend ontn . Simple calculations
give that they can be represented as exp(iu) and exp(2iu),
whereu is defined as

cosu5A12r cos~v0t/2! ~11!

and sinu5A12cos2u with plus before the square root. S
the operator C(tn ,t) can be represented in the form
C(tn ,t)5U(tn)DU21(tn), whereD is the diagonal matrix
with the eigenvalues ofC(tn ,t) on the diagonal andU(tn) is
the corresponding unitary matrix which is dependent ontn .
In these terms the wave function Eq.~10! can be rewritten in
the following form:
~12!
which is a product ofN21 matrices’ combinations of the
form U21(tn)HU(tn21)D (n52,3, . . . ,N) embraced by
curly brackets. Calculations show that such matrix combi
 -

tions depend ontn and tn21 through the differencetn

2tn215T1t only, which is the same for alln and does not
contain the initial momentt1. So if we introduce a matrix
3-4
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F5U21~ tn!HU~ tn21!D, ~13!

the neutron wave function Eq.~12! can be represented as

C„t11Nt1~N21!T…5U~ tN!DFN21U21~ t1!C~ t1!.
~14!

Simple but tedious calculations give thatF, as introduced in
Eq. ~13!, which is composed of unitary matrices, can be re
resented as a matrix describing a rotation in space ove
angle g around an axis defined by a unit vectorn in the
following form @16#:

F5exp@ i ~ns!g/2#5cos~g/2!1 i ~ns!sin~g/2!, ~15!
ct
p-
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wheres is the Pauli vector whose components are the c
responding Pauli matrices. The angleg in Eq. ~15! appears
to be given by

cos~g/2!5A12r cos~f2v0T/2!5A12r cos~Df/2!,
~16!

whereDf5(mn/2\)(B12B0)L/v, which is identical to the
phase quantum@Eq. ~4!#, and sin(g/2)5A12cos2(g/2) with
plus before the square root. The components of the unit v
tor n are given by
nx52Ar
sin„f2v0~T1t!/2…

tanu sin~g/2!
, ~17!

ny52Ar
sin„f2v0~T1t!/2…

sin~g/2!
, ~18!

nz5
r cos~f2v0T/2!cos~v0t/2!1sin~f2v0T/2!sin~v0t/2!

sinu sin~g/2!
, ~19!
-
rob-
o

o-

nt
er-

d by
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wheref andu are introduced in Eqs.~9! and ~11!, respec-
tively. Using the definitions ofu @Eq. ~11!# andg @Eq. ~16!#,
it is easily verified from Eqs.~17!–~19! that nx

21ny
21nz

2

51, as it should be. Strictly speaking there is a phase fa
exp@2iv0(T1t)/2# before the operator exponent in the re
resentation ofF @Eq. ~15!# defined by Eq.~13! but it does not
affect the observables and can be omitted. Thus the ope
FN21, which appears in the wave-function representat
Eq. ~14!, denotes a rotation of the neutron spin around
axis defined by the unit vectorn with components given by
Eqs.~17!–~19! over the angle (N21)g, whereg is defined
in Eq. ~16!.

We turn now to the neutron polarization component c
culations using the wave-function representation Eq.~14!.
Let us assume first that the initial polarization of the neut
beam is along thez direction and hence the initial occupatio
numbers area(t1)51 andb(t1)50. The final polarization
components alongx, y, andz are denoted asPzx , Pzy , and
Pzz, respectively, where the first index refers to the init
polarization component. Calculations give thatPzy and Pzx
contain only terms which are oscillating functions of timet1
and hence do not contribute to the time-averaged polar
tion as is measured in the experiment. In contrast, in
expression forPzz, there are no terms depending ont1. As a
result we have for polarization components in this case,

Pzx5Pzy50, ~20!

Pzz5122r
sin2~Ng/2!

sin2~g/2!
. ~21!
or

tor
n
n

-

n

l

a-
e

It is easy to show using the definition ofg @Eq. ~16!# that
r<sin2(g/2)<1. So the value ofPzz given by Eq.~21! lies
in the range@21,1#, as it should be. For the quantum
mechanical representation it is convenient to use the p
ability for the neutron spin to collapse into one of the tw
energy levels. The probabilityR is related with the polariza-
tion Pzz by

R5
12Pzz

2
5r

sin2~Ng/2!

sin2~g/2!
. ~22!

It is clear that for the case of only one flipper (N51) we
haveR5r.

Starting with the initial polarization alongx andy direc-
tions one can find the remaining six polarization comp
nents. As a result of the calculations we have found thatPxz
and Pyz contain only terms dependent ont1 and are conse-
quently equal to zero in the static experiment.Pxx , Pyy ,
Pxy , and Pyx contains botht1 dependent and independe
terms. Meanwhile their final expressions are too cumb
some and we do not adduce them here.

The neutron beam in the above discussion is describe
the plane wave exp(ik0x)exp(2ivt). Meanwhile the uncer-
tainty in wave vector in present-day experiments is norma
Dk/k0;0.01. So in practice one has to deal with a wa
packet located ink space atk0 with a width of the order of
Dk. This imposes a certain restriction on our considerati
As shown above the plane wave after passing throughN
flippers is split into 2N waves which differ from each other in
phase. Similarly, if there is initially one wave packet it wou
3-5
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be split finally into 2N packets. Because waves with differe
spin projections on the field direction propagate with diffe
ent velocities, these 2N packets would be distributed alon
the x direction and come to the detector at different tim
The maximum distance between the packets can be rou
estimated using Eq.~3! as mnmnB/(\2k0

2)N(L1 l ), where
B;max$uB0u,uB12B0u%, L is the distance between two neig
boring flippers andl is flipper length. In order for the packe
splitting to be negligible this maximum distance should
much smaller than the packet length which is of the orde
1/Dk. This leads to the following condition:

Dk

k0

mnmnB

\2k0

N~L1 l !!1. ~23!

If the inequality Eq.~23! is satisfied, the results obtaine
above for the plane-wave concept may be applied to
wave-packet concept too.

III. NUMERICAL EXPERIMENT

In order to verify the theoretical consideration previous
done, a computer simulation was performed. The comp
tion technique is based on successive multiplication of
matricesĈ @Eq. ~7!# describing the action of the resonant co
and matrixH @Eq. ~9!# describing the action of the magnet
field B1 in the space between the coils. The resultant neu
wave function after the passage throughN resonant coils was
calculated using Eq.~10!. Then we obtained the distributio
of the quantum-mechanical~QM! probability R5(1
2Pzz)/2. As is seen from Eqs.~22! and ~16!, R depends on
two parameters of the system that one can vary. The first
is j, which determines the spin-flip probability of the res
nant coil r5sin2j @Eq. ~8!#. Here j5(2mn /\)BRFl /2v
whereBRF is the amplitude of the RF field,l is the length of
the RF coil, andv is the neutron velocity. We vary it from 0
to 2p. The other parameter is the quantum of phaseDf
5(2mn /\)(B12B0)L/v @Eq. ~4!# determined by the field
B1. Obviously, the picture of QM probability is ruled by th
number of resonant coilsN involved in the process. This ca
be considered as the third parameter. It should be pointed
that the resultant curves forR obtained by computationa
technique coincide completely with those plotted on the
sis of the expression Eq.~22! which will be used in further
analysis ofR.

Figure 3 presents a two-dimensional picture of the dis
bution of the QM probabilityR when the numberN of the
resonant coils is 100. The horizontal axis is the phaseDf
varied from 0 to 2p. The vertical axis is the phasej ~varied
from 0 to 2p) of the flipping efficiency of one flipperr. We
denote the picture as a ‘‘quantum carpet’’ in analogy w
space-time pictures obtained in Ref.@6#. The dark areas cor
respond to a low QM probability. The lines forming the ca
pet are contours corresponding to the QM probabilityR
50.2,0.4,0.6,0.8, respectively. As well seen from the pictu
the multiwave interference creates a periodical structure w
sharp and high regularity inside the period ofj andDf. It
should be noticed that for allN the period of the functionR
03360
-

.
ly

f

e

a-
e

n

ne

ut

-

i-

,
th

in Df and inj is p rather than 2p. This can also be realized
from Eqs. ~22! and ~16! and from the fact that cos(g/2)
changes fromA12r to 2A12r asDf goes from 0 to 2p.

The increase of the number of the resonant coils lead
the appearance of sophisticated patterns withp periodicity
along theDf axis. We plotR as a function of the phaseDf
~Fig. 4! for systems with different numbers of coils and f
j5p/4, i.e., spin-flip probabilityr equal to 1/2. According
to Eqs.~22! and ~16! we getR5cos2(Df/2) for N52, i.e.,

FIG. 3. ‘‘Quantum carpet,’’ i.e., the two-dimensional picture
the distribution of the quantum-mechanical probabilityR5(1
2Pzz)/2 as obtained by a computer calculation based on Eq.~10!
for 100 resonant coils (N5100). The horizontal axis denotes th
phase quantumDw @Eq. ~4!# collected in each segment with fiel
B1. The vertical axis denotes the phasej ~between 0 and 2p) of the
spin-flip probabilityr in every resonant coil.

FIG. 4. Dependence of the quantum-mechanical probabilityR
on the phase quantumDf for systems of resonance coils with num
ber of coilsN52,6,10,14 and for spin-flip probabilityr in the reso-
nance coils equal to 1/2.
3-6
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the QM probability has the cos dependence in agreem
with Ramsey’s calculations@6,7#. Secondary peaks appear
the pattern in the space between two main maxima. T
numbernsec depends on the number of resonant coilsN and
r. The number of secondary peaks is given by the sim
relation nsec5(N22)/2 ~see Fig. 4!. It can be understood
bearing in mind thatg/2 changes fromp/4 to p/2 asDf
goes from 0 top. Hence the number of zeros ofR Eq. ~22!
on the interval@0,p# is N/2. As seen from Fig. 4, the mai
maxima become narrower as the number of the coils in
system increases.

It is interesting to consider the cases when the amplitu
of the different interfering waves differ from each other. Th
will happen ifrÞ1/2. Figure 5 shows the dependence of t
QM probabilityR on the phaseDf for N510; the argument
j in the spin-flip probabilityr5sin2j was taken equal to
mp/(2N) with m51,3,5,7,9. For these values ofj the QM
probability has maxima atDf5np, i.e., it is periodically
self-reconstructing. The number of secondary maxima
tween the main ones decreases but their height increasesj
grows by increasingm.

It is also of interest how the QM probability behaves
constantDf. Figure 6 shows the QM probabilityR as a
function of the phasej for N510 and for the value of the
phase quantumDf5kp/N with k50,1,2,3,4. As is clear
from Eq.~16!, in the case ofDf50 ~top picture! g/25j and
R5sin2(Nj). So ten maxima appear, in accordance with
number N of resonant coils. The number of maxima d
creases asDf increases from 0 top/2. Two peaks per step
Df5p/N vanish. ForDf5p/2 the QM probabilityR be-
comes equal to 0. A further increase of the phase quan
Df results in a full reconstruction of the pattern atDf
5p.

FIG. 5. Dependence of the quantum-mechanical probabilitR
for a system of ten coils (N510) on the phase quantumDf @Eq.
~4!# for spin-flip probability r written as sin2j where j
5mp/(2N) with m51,3,5,7,9.
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IV. ACTUAL EXPERIMENT

The measurements described in this paper were car
out at the reactor WWR-M in St. Petersburg Nuclear Phys
Institute. The outline of the experiment is shown in Fig. 7.
system consisting of six RF coils and five small dc coils
set in the space between two large dc coils producing
static fieldB0. We setB0 equal to 30 G and the frequencyv0
of the oscillating field equal to 89 kHz to fulfill the resonan
condition Eq.~2!. The lengthl of the RF coils is 0.04 m and
they are placed at a distanceL of 0.02 m from each other
The small dc coils with thickness of 0.02 m produce a sta

FIG. 6. Dependence of the quantum-mechanical probabilityR
for a system of ten coils (N510) on the argumentj in the spin-flip
probability r written as sin2j when the phase quantumDf
5kp/N with k50,1,2,3,4.

FIG. 7. Schematic drawing of the experiment: MC, monoch
mator crystal;P, polarizer; SF, spin flipper;A analyzer; andD,
detector. The system consisting of six resonance coils@radio fre-
quency ~RF! spin flippers# and five small dc coils SC is locate
between the polarizerP and the analyzerA in the magnetic fieldB0

produced by a pair of large dc coils. The quantum-mechanical p
ability R was measured as a function of the fieldDB simultaneously
generated in the five small dc coils~which determine the phas
quantumDf) and as a function ofBRF simultaneously generated i
the six RF coils~which determine the argumentj of the spin-flip
probability r5sin2j).
3-7
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GRIGORIEV et al. PHYSICAL REVIEW A 68, 033603 ~2003!
magnetic fieldDB parallel to the main static magnetic fie
B0. Thus the superposition of the fields of the large dc co
and the small dc coils make the resultant dc field between
coils equal toB15B01DB. A neutron beam polarized alon
the magnetic fieldB0 (P050.95) and monochromatized a
l50.23 nm (Dl/l50.02) enters the system of coils. Th
polarization component along the field is analyzed by
spin flipper~SF! and the analyzer (A).

The spin-flip probabilityr was set by adjusting the am
plitude of BRF in all six RF coils simultaneously such tha
the phasej5(2mn /\)BRFl /2v5mp/2N, where the number
of the resonance coilsN56. The polarization was measure
as a function of the magnetic fieldDB produced by all small
dc coils simultaneously. In fact the phase quantumDf
5(2mn /\)DBL/v was varied in this way. The QM probabi
ity R was calculated from the polarizationPzz using Eq.~22!.

Figure 8 shows the measured value of the probabilityR as
a function of the phase quantumDf for r51/16 ~a! and 1/2
~b!, set as sin2j where j5p/12 andj5p/4, respectively.
The symbols represent the experimental data and the
correspond to the theoretical predictions according to E
~16! and ~22!. In spite of some imperfection of the exper
mental picture, the theoretical curves match well the exp

FIG. 8. Dependence of the quantum-mechanical probabilitR
for a system ofN56 coils on the phase quantumDf;DB and at
the spin-flip probabilityr51/16 ~a! and 1/2~b!.
03360
s
F

e

es
s.

i-

mental points. Thus, the situation of the multiple splitting
a neutron wave is experimentally realized using the neut
resonance technique.

V. CONCLUDING REMARKS

In this paper we give a theoretical description of polariz
neutron multiresonance experiments. The description sh
that the system ofN resonant coils produces a large numb
of neutron waves. These waves interfere and each pai
them contributes to highly regular patterns in quantu
mechanical probability. We have introduced the spin-fl
probability r and the fieldB1 between coils as key param
eters of this system. The analytical expression for QM pr
ability was obtained for arbitrary values ofr and B1. This
expression was testified by the computer calculations and
the experiment. The experimental data are well described
the proposed theoretical picture.

This experiment has an analogy with an experiment
optics: light diffraction in a grating@1,2#. Our experiment as
well as those made in Refs.@8–15# may be referred to as th
field of neutron resonance interferometry~NRI!. A certain
difference between NRI and optics is discussed in Refs.@10–
12#. Thus, the interference pattern in NRI appears in ph
space while the analogous pattern in optical devices app
in real space. In spite of the difference, the obtained ana
cal expression@Eq. ~22!: R;sin2(Ng/2)/sin2,(g/2)] shows
the analogy with optics in a most obvious way. The interf
ence pattern in the NRI experiment is the resultant of ma
waves with different phases but with the same energy a
may be observed in a plane behind a diffraction grating oN
slits. To see better the similarity and the difference betwe
N-resonance andN-slit experiments, we may refer to the pa
per by Ramsey@7#, where he discussed the problem of t
complementarity in neutron two-path interference and tw
resonance-field interference.

The discussed experiment is also obviously linked w
nuclear magnetic resonance studies, which nowadays
tinely involve sequences of RF pulses to manipulate nuc
spins. In turn, nuclear-magnetic-resonance~NMR! spectros-
copy is proposed as a basis for quantum computation@17#.
Without going deep into the problem we emphasize only t
the experiment discussed in the present paper allows on
manipulate the quantum state of a neutron in full analo
with the NMR technique.

It is also peculiar in this experiment that the neutron a
Gaussian wave packet propagates through the systemN
.2 resonant coils and therefore splits intoN.2 wave pack-
ets. When one uses this system for a scattering experime
a way similar to the neutron spin echo, then the correlat
function obtained consists of many-point contributions and
different from the pair-correlation function, which is a sta
dard object for the study.

Therefore we conclude that the problem of multiwave
terference may be of interest both from theoretical and
perimental point of view.
3-8
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