gﬁ Delft University of Technology

Vachine Learning
for Predictive
Viaintenance

A Boeing /4/ Bleed Air
Valves case study

E. T lJzermans

N\
=~
4) _

y

LR LR LR EEH EMU R R T)

-

i

T w’f S 3 Tt o
G L 2 z S i e —
gy ANEEEa

B e o e — e

TUDelft .

-~ - — el . A -

{-‘_r/ T,
5 J

PARER B
WCE Xw

Tokyo

:*»)JJJJJ““‘

\\\\\ \»\,ﬁ&; -\-

\

\
\\&

Machine Learning

for Predictive
Maintenance

A Boeing /4/ Bleed Air Valves case study

by

= 1 lJzermans

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on July 16th, 2018.

Student number: 4188799

Thesis committee: Prof. dr. R. Curran TU Delft, committee chair
Dr. ir. W. Verhagen TU Delft, supervisor
Ir. W. Kalfsbeek KLM, supervisor
Ir. J. Jorritsma KLM, supervisor

]
TUDelft

Summary

The newest generation of aircraft has seen an increase in sensor data generated on-board. These data have the
potential to indicate the health state of individual components based on which their maintenance require-
ments can be determined, a strategy called Condition Based Maintenance (CBM). Predictive Maintenance is
aspecific CBM strategy aimed at predicting failures from these sensor data. This process is called prognostics.
Predictive maintenance has the potential to reduce unexpected failures and associated costs for unscheduled
maintenance and operational delay.

One of the main challenges in applying Predictive Maintenance in the aviation industry is translating the large
amounts of sensor data into a reliable failure prediction. Typical difficulties are the high system complexity
of aircraft components, the changing operating and environmental conditions and the existence of multiple,
interrelated, failure modes, which are often not well understood.

In other fields of study, amongst which image recognition and language interpretation, machine learning,
and specifically its subfield of deep learning, has shown to be capable of learning complex relationships from
large amounts on highly intricate data. This makes these techniques potentially interesting for prognostics
in aviation industry.

Based on these trends, a research project has been formulated at KLM Royal Dutch Airlines to investigate the
potential of machine learning and deep learning for prognostics on a complex aircraft system: the Boeing 747
Bleed Air system. The research question has been formulated as follows. Is it possible to predict the occurrence
of Flight Deck Effects (FDEs) for the 747 Bleed Air Valves by using machine learning on the on-board generated
sensor data? An FDE is a warning on the flight deck that the system has lost functionality. It is used as a proxy
of failure.

Two different types of machine learning have been implemented and compared in terms of performance,
robustness and ease of implementation. A Random Forest (RF) model has been selected as a feature based
machine learning approach. A Convolutional Neural Network (CNN) has been selected as a deep learning
approach. The value proposition of deep learning over other forms of machine learning is that it is learns
from raw data, rather than from predefined features.

Both models have been implemented in a time series classification approach. Using the multi-channel sen-
sor time series of a flight, their objective was to classify whether an FDE occurence will occur within the next
ten flights. Next, a prognostic interpretation strategy has converted the prediction scores into an FDE predic-
tion, using a moving average of the positive class probability over time. The hyper-parameters of the models
have been optimised through a grid-search procedure to determine the optimal models.

The grid-search optimised RF model has been shown to be capable of correctly classifying flights with an
Area Under Receiver Operating Characteristic (AUROC) of 0.627(+0.001) and an Average Precision (AP) of
0.182(+0.002). It has been demonstrated that the RF model is robust to overfitting and insensitive to tun-
ing of the hyper-parameters over a large range. The optimal RF hyper-parameters were determined to be as
follows: a minimum leaf size of 20 samples, a minimum split size of 4 samples, a maximum of 30% of the
features considered per split and a number of 300 decision trees.

The grid-search optimised CNN model has been shown to have an AUROC of 0.618(+0.009) and an AP of
0.155(+£0.010). The CNN has been demonstrated to be less robust to overfitting than the RF and more sen-
sitive to hyper-parameter tuning. It was found that increasing the network size either in terms of width or
depth significantly increased the performance until at least 1-10% free model parameters. Good performance
was still found at 1-10° parameters. The optimal model architecture was found to contain 3 convolutional
layers with max pooling layers in between, having respectively 32,64 and 128 filters.

iii

iv

Using the prognostic interpretation strategy, both models have been shown to be capable of predicting FDE
occurrences accurately enough for a positive business case, if the costs incurred by a false positive are less
than a factor 0.8 of the benefits of a true positive. Answering the research question, it can be concluded that
both a feature based machine learning approach, as well as a deep learning approach are capable of success-
fully predicting FDEs for the 747 Bleed Air Valves from the on-board generated sensor data.

When comparing the two models, they have been demonstrated to score equally well in terms of prognostic
performance. It is expected that the CNN has a greater performance potential than the RF if some further im-
provements are implemented, amongst which the addition of a recurrent layer for multi-flight prediction and
residual network connections. The RF has been shown to be more robust to sub-optimal hyper-parameter
tuning. The results further suggest that both models are approximately equally sensitive to decreasing the
number of historical training samples. With respect to ease of implementation, the CNN is better suited as a
universal solution for different aircraft systems. Its ability to learn from raw data make it easily transferable
from system to system. For a single application, the RF has been found to be easier to implement due to
its robustness against suboptimal tuning. Also, the model is well interpretable in contrast to the CNN. This
could facilitate the adoption as a self-learning prognostic tool in existing maintenance practices.

In conclusion, the feature based RF is currently the most accessible self-learning approach for industry adop-
tion. In the long term, deep learning is expected to have much more potential as a universal prognostic solu-
tion for complex aircraft systems.

Preface

Before you lies the Master Thesis titled ‘Machine Learning for Predictive Maintenance’, which is the product
of a nine-month research project on the feasibility of state of the art machine learning techniques for pre-
dictive maintenance in the aviation industry. It has been written to obtain the Master of Science degree in
Aerospace Engineering at the Delft University of Technology. The project has been performed at KLM Royal
Dutch Airlines, one of the leading airlines and aircraft maintenance providers in the world.

I would like to thank my supervisors Wim Verhagen, Wouter Kalfsbeek and Joost Jorritsma, not only for their
guidance and involvement during the project, but also for making possible this unique collaboration be-
tween university and industry. The enthusiasm with which they received my initial research idea is indicative
of their shared efforts to constantly innovate the aircraft maintenance industry. I feel very fortunate that I
have been able to contribute to these efforts, which I believe will shape the future of aircraft maintenance.

Moreover I would like to thank my colleagues at KLM for their continuous support, for the great atmosphere
at our Schiphol workplace and for teaching me so much about the aviation industry, about data science and
about computer science. Special thanks to Laurenz Eveleens, Jan van der Vegt and Alexander Backus for the
great discussions that we have had on advanced machine learning and deep learning topics.

Also, I would like to express my gratitude to my family and friends for their interest and support throughout
the project. Special thanks to my father, Jan IJzermans, who has been a continuous sparring partner on vari-
ous academic and industry-specific topics.

Finally, I want to thank the members of my graduation committee for reviewing my work.

E.T. IJzermans
Delft, June 2018

Contents

List of Figures ix
List of Tables xi
List of Abbreviations xiii
1 Introduction 1
1.1 Academicstateoftheart 1

1.2 ResearchSCOPEe e e e e e e e e e e e e e e e 3

1.3 Contributionofthisstudy. 4

2 Experimental set-up 5
2.1 Casestudymotivation L. L L e 5
2.2 Componentselection. L e e e e e e e e 5
2.2.1 Selectioncriteria. e e e e e e e e e e e 5

2.2.2 Selectionresults e e e e e e e e e 6

2.3 Boeing 747 Bleed Airsysterm Lo Lo e e e e 7
2.3.1 Systemdescription. L L Lo e e e e e e e e e 7

2.3.2 Maintenance policy e 8

2.3.3 Maintenancechallenges. e 8

2.34 Datalandscape e e e e e e e e e e e 9

3 Theoretical context 11
3.1 Machinelearning L L e e 11
3.1.1 Machine learning for failure prediction o Lo Lo 11

3.1.2 RandomForests e e e e e e e e e e 12

3.2 Deeplearning. L e e 13
3.2.1 Deep learning for failure prediction Lo oo 13

3.22 Neuralnetworks L e e e e e e 13

3.2.3 Convolutional Neural Networks, 15

4 Methodology 17
4.1 Machinelearning formulationo Lo Lo 17

4.2 Datapre-proCessing ot h e e e e e e e e e e e e e e e 20

4.3 Machinelearningmodels. Lo L L 21
4.3.1 RandomForest. e e e e e 22

4.3.2 Convolutional Neural Network. 24

4.4 Evaluationprocedure.o e e e e e e e e 27
4.4.1 Estimator performance e e e e e e e 28

4.4.2 Prognosticperformance Lo 30

5 Results 33
5.1 Random Forest e e e e e e e e e e e 33
5.1.1 Modelperformance e e 33

5.1.2 Prognosticperformance Lol e e e e e 34

5.1.3 Validation & Verification. e 36

5.1.4 Sensitivityanalysis. L. e 42

5.2 Convolutional Neural Network 0 o e 44
5.2.1 Modelperformance e e e e e 44

5.2.2 Prognosticperformance L. Lo 44

5.2.3 Validation & verification Lo e e 47

5.2.4 Sensitivityanalysis. L oL o e 48

vii

viii Contents

6 Discussion
6.1 RandomForest e e e e e e e e e e
6.2 Convolutional Neural Network i e
6.3 Prognosticapplication L e e e
6.4 Problemsolvingapproach L L
6.5 Model comparisSon Lo e e e e e e e e e e e e e e

Conclusions

8 Recommendations
8.1 Academicrecommendations e e e e e e e e e
8.2 Industryrecommendations. L. Lol e e e e

Bibliography

Appendices

Schematic drawing of the Bleed Air system
RF: Calculated features

Prognostic value function derivation

RF: Grid search results

RF: Feature importances per FDE

RF single-FDE: Prognostic performance

CNN: Grid search results

O M m g 0N w >

53
53
54
55
56
57

61

63
63
64

65
69
71
73
75
77
79
81
83

List of Figures

1.1 Venn diagram of the positioning of theresearcharea. 3
2.1 Bleed Air system configuration. L e 7
2.2 Bleed Air engine configuration. L L L e 8
3.1 Schematic depiction of the working principle of an artificial neuron. 14
3.2 Schematic depiction of a simple neuralnetwork. 14
3.3 Visualisation of temporal convolution in a convolutional layer. 16
4.1 Highlevel methodology. e 17
4.2 Pipeline of the Random Forest model approach. 22
4.3 Pipeline of the Convolutional Neural Network approach. 25
5.1 RF: Receiver Operating Characteristic curve of the test set performance. 34
5.2 RF: Precision-Recall plot of the test set performance. 34
5.3 RF: Prognostic precision as function of the probability and RUL threshold. 35
5.4 RF: Prognostic recall as function of the probability and RUL threshold. 35

5.5 RF: Prognostic value as function of the probability and RUL threshold for low cost/benefit ratio. 35
5.6 RF: Prognostic value as function of the probability and RUL threshold for high cost/benefit ratio. 35

5.7 RF: Prognostic performance as a function of RUL threshold, accounted for depreciation. 36
5.8 RF: Feature importances of the 25 most important features. 38
5.9 RF:Recalland Precisionper FDE. e 39
5.10 RF: Feature importances of the 25 most important features for the False Positives. 40
5.11 RF single-FDE: Receiver Operating Characteristic curve of the test set performance. 41
5.12 RF single-FDE: Precision-Recall curve of the test set performance. 41
5.13 RF single-FDE: Prognostic performance as a function of the RUL threshold, accounted for de-
PIECIALION. o e e e e e e e e e e e e 41
5.14 RF: Sensitivity to the hyper-parameters. 43
5.15 RF: Prognostic performance as a function of the RUL threshold, accounted for depreciation and
ignoring recurring advisories. L L e 43
5.16 CNN: Receiver Operating Characteristic curve of the test set performance. 45
5.17 CNN: Precision-Recall curve of the test set performance. 45
5.18 CNN: Prognostic precision as function of the probability and RUL threshold. 45
5.19 CNN: Prognostic recall as function of the probability and RUL threshold. 45

5.20 CNN: Prognostic value as function of the probability and RUL threshold for low cost/benefit ratio. 45
5.21 CNN: Prognostic value as function of the probability and RUL threshold for high cost/benefit

TAIO. . . o o e e e e e e e e e e e e 45
5.22 CNN: Prognostic performance as a function of RUL threshold, accounted for depreciation. . . . 46
5.23 CNN: Training PrOCESS. . .« o ¢ v v v i e 47
5.24 CNN: Class Activation Maps projected on the sensor data and flight phase indication for three

testsamples. e e e e 49
5.25 CNN: Sensitivity to the hyper-parameters. 50
5.26 Model performances as a function of the fraction of the trainingsetused. 52
A.1 Technical drawing of the engine bleed configuration. 72
E1 RF single-FDE: Prognostic precision as function of the probability and RUL threshold. 82
E2 RF single-FDE: Prognostic recall as function of the probability and RUL threshold. 82
E3 RFsingle-FDE: Prognostic value as function of the probability and RUL threshold for high cost/benefit

TAIO. . . o o e e e e e e e e e e 82

List of Figures

E4 RFsingle-FDE: Prognostic value as function of the probability and RUL threshold for high cost/benefit
TAtio. . . . L e e e e e e 82

2.1

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

B.1

D.1

E.l

G.1

List of Tables

Condition parameters available for the Bleed Airsystem. 9
RF: Hyper-parameter settings. o i it ittt et e e e e e 23
RF: Grid search options for the hyper-parameters. 23
CNN: Hyper-parameter ranges considered. 27
CNN: Grid search variable hyper-parameters. 27
CNN: Grid search fixed hyper-parameters. 28
RF: Training and test performance metrics. L .. 34
RF single-FDE: Training and test performance metrics. 41
CNN: Training and test performance metrics. 44
RF: List of features extracted from the times seriessignal. 74
RF: Grid search results, sorted by the mean average precisionscore. 78
RF: Most important features per FDEtype. i 80
CNN:Gridsearchresults. 84

List of Abbreviations

AHM Aircraft Health Management.
ANN Artificial Neural Network.

AP Average Precision.

APU Auxiliary Power Unit.

AUROC Area Under Receiver Operating Characteristic.

CAM C(lass Activation Map.

CBM Condition Based Maintenance.
CNN Convolutional Neural Network.
CPL Continuous Parameter Logging.

CWT Continuous Wavelet Transform.
E&M Engineering & Maintenance.

FAMV Fan Air Modulating Valve.

FDE FHlight Deck Effect.

Grad-CAM Gradient based Class Activation Map.
HPSOV High Pressure Shut Off Valve.

LSTM Long Short Term Memory network.

MEL Minimum Equipment List.

MMSG Maintenance Message.

PM Predictive Maintenance.
PRSOV Pressure Regulating and Shut Off Valve.
PRV Pressure Regulating Valve.

PRV CTRL Pressure Regulating Valve controller.

RF Random Forest.
RNN Recurrent Neural Network.
ROC Receiver Operating Characteristic.

RUL Remaining Useful Lifetime.

SGD Stochastic Gradient Descent.

xiii

Introduction

In the modern day aviation industry, aircraft are expected to operate at maximum reliability and safety levels,
but at minimal cost. This poses a challenge to aircraft maintenance. Unexpected failures may result in safety
risks and high costs associated with downtime, consequential damage and irregularity in the maintenance
operations. Performing maintenance preventively based on traditional reliability analyses can mitigate these
unexpected failures for certain components. However, some components show very erratic times between
failures, rendering this strategy either very ineffective or very inefficient [1].

The newest generation of commercial aircraft sees an increase in data generated on-board [2]. The available
data has the potential to indicate the health state of individual components based on which their mainte-
nance requirements can be determined, a strategy called Condition Based Maintenance (CBM). Predictive
Maintenance (PM) is a form of CBM that tries to determine these requirements in advance by predicting
failures upfront.

PM has the potential to reduce costly unanticipated maintenance or unnecessarily conservative mainte-
nance. In the short term it could add significant value for components that are currently subject to a re-
active maintenance policy. In the long term it could potentially disrupt the traditional maintenance practice
of periodic inspection. An ideal implementation of PM would reliably forecast a distribution of the Remain-
ing Useful Lifetime (RUL) for all components and structures in the aircraft. These forecasts could then be
combined into an integral maintenance planning system that optimally schedules maintenance slots in the
maintenance operations and in the flight operations. The forecasts could also be integrated in the inventory
planning in order to keep optimal stock.

One of the main challenges of applying Predictive Maintenance in practice is translating the large amounts
of available (sensor) data into a reliable failure prediction. This process is called prognostics and forms a key
research area within predictive maintenance. Although quite some studies are devoted to this topic, only
very few take into account, let alone study, the effects of industry specific constraints on prognostics. This is
identified as a research gap in literature.

The trend of leveraging big data for business processes is ongoing in many industries [2]. A field of study that
has risen along is the field of machine learning, and specifically the field of deep learning, a machine learning
subclass that is capable of learning data representations as opposed to mere task-specific algorithms [3].
Deep learning has achieved many successes in a wide range of industries where a large amount of business
related data is available [4-7]. This makes the technique potentially interesting for application in the field of
maintenance with the ever increasing generation of on board generated condition data.

In this research modern machine learning techniques, including deep learning, will be studied for prognos-
tics in a real life maintenance use case at one of the major airlines and aircraft maintenance players in the
world: KLM Royal Dutch Airlines.

1.1. Academic state of the art

The body of literature on CBM is quite extensive. Most studies focus on developing more accurate diagnostic
and prognostic techniques: for detecting and identifying faults and for predicting the RUL until failure, re-
spectively [1]. In the current state of the art, generally three types of approaches to this have been proposed
in literature, namely physical model based approaches, data driven approaches and hybrid approaches [8].

2 1. Introduction

The use of physical models could theoretically yield very accurate prognostic models. However, such an ap-
proach is often unusable in practice due to the lack of adequate physical models capable of capturing real
life complexity [9]. Data driven models rely purely on historical data to model system behaviour. This makes
them rather flexible for real life complexity, although they can be very data hungry [10]. Hybrid approaches
use a combination of physical models and historical data. Data driven approaches are the focus of this re-
search, based on the research motivation to leverage the increasing availability of on-board generated sensor
data.

A general finding is that practically all studies consider the diagnostic/prognostic technique isolated from a
real CBM implementation in a complex system. In real life, diagnostics and prognostics are a step in a larger
CBM chain which requires data acquisition and data processing upfront and maintenance decision making
afterwards [8]. These steps put limitations and requirements on real life diagnostics and prognostics [11].
These limitations and requirements are hardly studied in the current state of the art. Generally, three types of
studies can be distinguished based on the source of their data. The first class uses an experimental set-up of
an isolated component, such as gears or bearings, with carefully installed sensors which are known to capture
faulty behaviour for that component [12-14]. This situation is not representative for real life implementation
for multiple reasons. First of all, in aircraft, components do not operate in isolation. They are influenced
by other components in a larger aircraft system and by operational influences [11]. Secondly, in real life,
one has to work with the sensors that are available, which are mostly limited in number and which are not
perfectly one-to-one related to the health state [15]. The second class uses simulated datasets [16, 17]. The
main problem of this type is that failure events can be created freely. This is in great contrast with reality.
Aircraft are inherently designed for maximum safety and reliability and failures are thus naturally scarce in
the industry. The third class uses real life operational equipment [18-20]. This type is scarce and for aircraft
equipment practically non-existent. The few studies using this approach, mostly focus on a very specific
subsystem where it is known in advance what behaviour is expected in healthy and in faulty state. The lack
of studies that use real life multi-sensor data on complex systems without prior knowledge is identified as a
research gap.

The main types of data driven approaches proposed in literature are statistical approaches and machine
learning approaches. Statistical approaches construct models by fitting a probabilistic model to the data.
Machine learning approaches attempt to recognise complex patterns and make intelligent decisions based
on empirical data [16]. In the current state of the art practically no techniques exist that are usable in real life
application where multiple failure modes and operating conditions lead to complex nonlinear, high order,
time-varying dynamics [21]. This is identified as another research gap. Some models, such as most statistical
models, are inherently limited in the complexity that they can model [22]. Others, such as Artificial Neu-
ral Network (ANN) are by design capable of modelling this complexity, but are limited by a manual feature
engineering step. This can be a cumbersome manual process in the data processing step, that prevents a
universal end-to-end solution, but also limits the complexity of the patterns that can be learnt by the diag-
nostic/prognostic model [23]. The lack of techniques that are capable of working on raw data is identified as
a third research gap. The previous two research gaps naturally relate to the first one. For the data sets used in
most studies, the current models suffice.

Machine learning, and especially deep learning is a promising new field that could jump in these research
gaps. Deep learning is capable of learning features from arbitrary raw data and can thereby discover intricate
structures in high-dimensional data. It is therefore applicable to many domains of science, business and gov-
ernment and has dramatically improved the state-of-the-art in speech recognition, visual object recognition,
object detection and many other domains such as drug discovery and genomics [23].

As such, it is potentially capable of leveraging the increasing availability of on-board generated sensor data for
prognostics. Some studies have tested certain deep learning techniques on the experimental and simulation
type, but deep learning is still underrepresented in the body of literature on CBM. Especially Convolutional
Neural Network (CNN) and Long Short Term Memory network (LSTM), a type of Recurrent Neural Network
(RNN), are very promising — they outperform state-of-the-art shallow methods such as neural networks, sup-
port vector regression and relevance vector regression — and motivate further research in a real life use case
[24-27].

Research gap The motivation of this research is to leverage the on-board generated data for maintenance
decision support in real life aircraft maintenance operations by using machine learning and its subfield of
deep learning. Traditionally, most studies in maintenance decision support considered statistical models.
Research has been done on implementing machine learning and deep learning techniques for prognostics

1.2. Research scope 3

........ . Aircraft
. Maintenance
. practice

.
.

/

/

- H

Condition !

Based \
Maintenance
<

Predictive
Maintenance

Machine
Learning

Deep
Learning

Figure 1.1: Venn diagram showing the positioning of the research area.

using test sets from simulation and experimental set-ups. This has shown promising results, but the data
sets are not fully representative for a real life aircraft maintenance situation. To the extent of our knowledge,
no studies, neither in academia or in industry, have been performed on the applicability of deep learning for
maintenance decision support in a real life aircraft maintenance case.

This research aims to fill this research gap. As such the research will involve components from the field of
CBM/PM, the field of machine learning and deep learning and the field of practical aircraft maintenance
operations. The positioning of this study is illustrated in a Venn diagram in Figure 1.1.

1.2. Research scope

The research objective can be defined at two abstraction levels. Firstly, the objective is to develop a prognostic
model for an aircraft component that is capable of translating on-board sensor data into failure predictions
by using machine learning. Secondly, the objective is to investigate the potential of machine learning for
predictive maintenance in the aircraft industry, not only in terms of pure performance, but also in terms of
robustness and ease of implementation. Therefore an important sub objective is to get a better understanding
of various challenges that one runs into when developing an end-to-end prognostic model.

To be applicable in industry, the model should work in a realistic maintenance scenario and thus take into
account the constraints imposed by the available input data and the desired output format for a typical use
case at KLM Engineering & Maintenance (E&M). The model and modelling approach will be designed with
these constraints in mind and the experimental set-up will take the shape of a case study.

Based on this case study the research question is defined as follows:

Is it possible to predict the occurrence of Flight Deck Effects for the 747 Bleed Air Valves by using machine
learning on the on-board generated sensor data?

In addition to the main research question, several sub-questions are formulated to further structure the re-
search process:

1. Can Flight Deck Effect (FDE) occurrences for the 747 Bleed Air Valves be predicted by means of a ma-
chine learning model on predefined time series features?

2. Can FDE occurrences for the 747 Bleed Air Valves be predicted by means of a deep learning model on
raw time series data?

3. How do the two approaches compare in terms of prediction performance, robustness and ease of im-
plementation?

4. How are the results on this case study expected to generalise to other components?

The main question, as well as the first two sub questions will be answered at two different levels. Firstly, from a
data scientific viewpoint, it will be determined if predictions can be made better than at random. The second
level will include the larger context of maintenance practice to answer the question if these predictions can

4 1. Introduction

be made well enough to build a predictive maintenance strategy on it with a positive business case. Both
answers will include a quantification of the extent to which it is possible.

Note that the last two sub-questions are not strictly necessary for answering the main research question.
However, they are paramount for the wider research objective that we have formulated. The difference be-
tween the first two and the last two research questions, is that the first two can be unambiguously answered
and thus the main research question can be unambiguously answered as well. For the last two sub-questions
this is more difficult; the answers will be made plausible as much as possible within the scope of this research.
The prediction performance is defined as the capability of the model to distinguish faulty from healthy sensor
data and the usefulness of these predictions for a prognostic strategy. Robustness in defined as the sensitivity
of this performance to (realistic) changes in model input, hyper-parameter settings and/or modelling as-
sumptions. Ease of implementation is about the effort needed to implement the model. This entails a first
working application as well as transferring the approach to other applications in the industry.

Besides confining the research to the single aforementioned case study;, it is good to specify some further
definitions to the scope. The scope is limited to the predictive maintenance step of prognostics (in this case
for Flight Deck Effect prediction), which excludes converting the predictions into a maintenance planning
and/or flight planning. Moreover, within the area of prognostics, the focus is on developing models for clas-
sifying condition data, more than on translating these classifications into a prognostic strategy.

1.3. Contribution of this study

The main contribution of this study is the development of machine learning models for times series classifi-
cation which can be used for predicting FDE occurrences from real aircraft sensor data. By developing and
studying these models the research aims to bridge the gap between the academic state of the art in prognos-
tics on the one hand, and the every-day difficulties of the maintenance industry on the other. In doing so,
it expands the academic body of knowledge on prognostics and facilitates the adoption of state of that art
academic techniques in the maintenance industry.

The report is structured as follows. Chapter 2 will present the experimental set-up of this research, the case
study approach. It motivates the use of a case study and elaborates on the process through which a rep-
resentative case study has been selected. The reason to put this chapter before Chapter 4 Methodology is
that the methodology takes into account the practical constraints imposed by real life aircraft maintenance;
these constraints are better understood when one is familiar with the case study. Chapter 3 will provide the
reader with the necessary background on the machine learning and deep learning models that have been
used. Chapter 4 will then explain the methodology, which goes into detail on the model implementations as
well as on the steps of pre-processing and after-processing. Chapter 5 presents the main results of the models
and includes some important validation and verification steps. In Chapter 6 it is reflected on the research re-
sults as well as on the research process, also in relation to the research objective(s) and research question(s).
The report will be concluded with Chapters 7 and 8, presenting the most important conclusions and recom-
mendations, both from an academic perspective as well as an industry perspective. For reading this report, a
basic understanding of statistics is required. Prior machine learning experience is recommended, although
not necessary.

Experimental set-up

In this study a case study has been central to the development of the models. In this chapter, it will first be
motivated why a case study approach has been selected. Next, the component selection procedure and its
result are highlighted. The last section will provide the reader with some essential information on the selected
case study: the Boeing 747 Bleed Air system.

2.1. Case study motivation

Machine learning and specifically deep learning have shown great capabilities for failure prediction on sim-
ulated test sets and in highly controlled experimental set-ups. However, many of the conditions assumed in
these settings are not representative for real life aircraft (maintenance) operations. The academic contribu-
tion of this research is to assess the feasibility of these techniques to predict failures under real life operational
circumstances. For that reason a case study centred approach is paramount.

The project will be performed at KLM Engineering & Maintenance (E&M), where the case study has been
formulated based on the potential academic value on one hand, and the possible industrial benefit on the
other. A case study will be defined by the system or component where the model will be developed for.

2.2, Component selection

A case study is formulated based on several criteria, which will be elaborated upon in this section. First the
selection criteria will be given, after which the selection conclusions are presented.

2.2.1. Selection criteria

A distinction will be made between hard and soft criteria. Hard criteria must be met (to a minimum extent)
in order for the case study to be eligible. Soft criteria are to met as much as possible. For all criteria it will be
specified whether the score is primarily constrained by circumstances specific for this research at KLM or by
circumstances typical for the whole aircraft maintenance industry.

(Historical) condition data availability The first and foremost hard criterion is condition data availability.
This criterion has two sides to it. Naturally, there must be sensors available which can somehow be related
to the health state of the system, be it directly or indirectly. This is an industry wide consideration that even
can be taken into account when designing future aircraft or retrofitting existing ones. Then there is also the
KLM side to it for this specific project: is this data realistically available for this research project. To cross this
criterion, the data should have been stored in the first place. Next, it should be accessible for this project. The
latter can be a serious consideration due to strict data regulations.

(Historical) failure data availability For training and testing any supervised model, data about the occur-
rence of failures or a proxy of that should be available. The more occurrences available the more likely it is
that a prognostic relation can be learnt. Defining an exact minimum threshold for the number of occurrences
is inherently difficult, since the number required for training depends strongly on the ‘amount of discrimi-
native information’ in each sample. Still, to be capable of meaningfully testing a model, a test set should

6 2. Experimental set-up

preferably be at least several tens of samples (which is already on the small side). For training, in this research
we had better be on the safe side to maximise the chance for success: in the project, the sample set could
always be artificially lowered to investigate the effect, while the other way around is not possible. As such,
an absolute threshold for number of failures is put at hundred failures, but one ideally want many more for
complex discriminative problems. Again, this consideration is both industry wide and KLM specific. Inher-
ent to the industry, there are some systems that fail more often than others, mainly due to different design
requirements.

Added value of predictive maintenance over current policy Although this criterion is no absolute must for
an academic study, it is much more interesting to look at a system where predictive maintenance could sig-
nificantly add value. From an academic viewpoint, this allows taking into account the realistic considerations
that matter for these kind of systems when shaping the prognostic model, such as required prediction hori-
zon or ratio between true positives and false positives. From an industry perspective the value may be clear;
the prognostic model could be implemented. In the short term, added value is expected from complement-
ing a sub-optimal reactive policy. The line of thought is that these cases do not require any further regulation
adaptations before implementation. Also, in this situation, the added value could be quite well quantified. In
the long term the standard of periodic inspections may be changed due to predictive maintenance.

Generalisation potential of the case to other systems of interest In order to maximise the impact of the
findings of this research, it is desirable to choose a case study such, that it is ‘similar’ in certain dimensions to
other systems that are potentially interesting for predictive maintenance. Some of these dimensions include:

* Working principle of the system;
¢ Control mechanism of the system;
e Failure modes of the system;

¢ Quantities of the system that are measured;

An example could be a hydraulic actuator that moves the flaps. It is likely that comparable actuators could
be found in other places in the aircraft. If not only those flap actuators, but also some other actuators are
interesting predictive maintenance candidates, it may be interesting to investigate this flap actuator. Another
interesting generalisation potential is between different aircraft types. It could very well be that a certain
component of interest exists in another aircraft type in a similar form. This consideration is industry wide,
although KLM has a specific fleet, which makes some systems more interesting than others.

2.2.2. Selection results

Although different components could all be exactly mapped in terms of these criteria this is outside of the
scope of this study. For a comparison of different components, one is referred to [20]. For this research it
suffices to get to the most suitable component for this study based on these criteria.

Looking at the data availability, data can easily be accessed for some components belonging to two aircraft
types: the Boeing 747 and 787. Although the 787 is very interesting from a condition data perspective (it has
a huge number of sensors), it really lacks behind the 747 in terms of historical failure cases. At the start of
the study, the number of failures on 787 systems, for which condition data had properly been recorded, was
limited to just several. For that reason the 787 has been excluded for this study. On the 747, the components
standing out in terms of number of failures (and operational problems) are the Integrated Drive Generator
and the Bleed Air system. Those are also the two components for which condition data is readily available.
The choice is between these two.

Considering all criteria, the 747 Bleed Air system has been selected. First of all, the sheer number of failures
is quite a bit larger. Secondly, it is experienced as one of the major operations disruptors of the fleet and cur-
rently maintained reactively. This makes the potential added value very strong. Thirdly, an anomaly detection
tool has been developed for the Integrated Drive Generator, while nothing exists yet for the Bleed Air system.
From that perspective, the Bleed Air system is more interesting for KLM. Last but not least, the Boeing 777
and Airbus A330 also have a Bleed Air system that is causing many operational delays. Findings for the 747
Bleed Air system could potentially be transferred to the other systems as well.

2.3. Boeing 747 Bleed Air system 7

APU MANIFOLD _—~ AUXILIARY

POWER UNIT

CROSSOVER

MANIFOLD

CONTROLS AND
INDICATIONS
_~PNEUMATIC

-~ MANIFOLD

2 2.
/ N &
CONNECTORS N

ENGINE SUPPLY
(8TH AND 14TH
STAGE)

Figure 2.1: Bleed air system configuration. Highlighted are the sources of bleed air [28].

2.3. Boeing 747 Bleed Air system

This section will provide the reader with a basic understanding of the Bleed Air system. Also it will present
some specific maintenance considerations which are relevant for the study.

2.3.1. System description

The Bleed Air system, , consists of all components involved in tapping off bleed air from the engines and
Auxiliary Power Unit (APU), regulating its pressure and temperature and distributing it to other aircraft sys-
tems that use the bleed air. The bleed air is used in a large variety of other aircraft systems for two main
reasons: high temperature (around 180°C) and/or high pressure (around 3.5bar). The system is designated
with number 36 in the ATA 100 numbering system and also called the pneumatic power system.

The bleed air is tapped of from the 8th or 14th stage of the engine, depending on the power settings of the
engine. Low stage air is used during high power setting operation, and high stage air is used during descent
and other low power setting operations. The bleed air system is responsible for making sure that the bleed
air pressure and temperature (next to the flow) stay within a certain acceptable range, despite the changes in
outside conditions and engine settings during the flight.

The bleed system is configured as follows: air from the engines is supplied to the so-called pneumatic mani-
folds in wings, which leads to the crossover manifold in the fuselage. There also the APU manifold connects.
This is shown in Figure 2.1. Around each engine a subsystem configuration is present that delivers bleed air
to the pneumatic manifold. This configuration is identical on each engine and thus composes four identical
systems on the aircraft. In this research, the valves, controllers and sensors in the configuration around the
engine are studied. From here on, for the sake of clarity, the terms Bleed Air system and Bleed Air Valves
will refer to this configuration around the engine (which compromises the majority of the components of the
system). This excludes the configuration of the Bleed Air system in the crossover manifold and APU manifold.

A more detailed schematic of the Bleed Air system is shown in Figure 2.2. In general, there are two regu-
lating systems in this configuration. First there is the pressure regulation. Pressure is regulated by switch-
ing between the high and low pressure compression stage of the engine through the High Pressure Shut Off
Valve (HPSOV) and by using a regulating valve, the Pressure Regulating Valve (PRV). Temperature is regulated
through cooling the bleed air with cold air from the fan stage of the engine. This is regulated through the
Fan Air Modulating Valve (FAMV). Before the air enters the distribution manifold (in the wing), a last valve
regulates the air, the Pressure Regulating and Shut Off Valve (PRSOV) These valves are regulated by pneu-
matic controllers, that use pressure and temperature differences to mechanically control the position of the
valves. A full schematic of the system, including the sub-components of the controllers is shown in Appendix
A. Studying this schematic is recommended if one wants to understand the complexity of the system (for a
predictive maintenance solution).

It is interesting to note, that most other common commercial aircraft use a Bleed Air system as well, including
the Boeing 737 and 777 and Airbus A330 in the Air France — KLM fleet. The 787 is one of the few aircraft types
that does not use Bleed Air.

8 2. Experimental set-up

TO DISTRIBUTION MANIFOLD PRESSURE REGULATOR

AND SHUTOFF VALVE

OVERPRESSURE SWITCH
BLEED PRESSURE SENSOR

TEMPERATURE SENSOR
PRESSURE REGULATOR CONTROLLER

NACELLE
ANTI-ICING
VALVE (REF)

PRESSURE REGULATOR VALVE

HIGH PRESSURE
SHUTOFF VALVE

OVERHEAT
SWITCH

FAN AIR

TEMPERATURE

SENSOR HIGH PRESSURE
8TH STAGE SHUTOFF VALVE
CHECK VALVE CONTROLLER

Figure 2.2: Bleed Air engine configuration. [28].

2.3.2. Maintenance policy

ATA 36 is subject to a reactive maintenance policy, next to the mandatory periodic checks of the whole aircraft.
As such, only when the maintenance computer of the aircraft diagnoses failure of any of the components, a
maintenance action is triggered. Mostly, the component is removed from the aircraft and replaced by another
one from the component pool. The component is send to a dedicated maintenance shop (to the KLM E&M
subsidiary called EPCOR for the Bleed Air components), where it is diagnosed and repaired and/or cleaned if
needed. The motivation for this approach is that it minimizes operational unavailability of the aircraft. It may
be clear from this approach that equipment to replace the component as well as a spare component, must
be available at the place of maintenance. Especially the absence of spares could induce serious down times
when unexpected failures occur at or towards out stations. This is where a predictive maintenance strategy
could add a lot of value. Preventively replacing a component at Schiphol Airport is much easier than reacting
on an unexpected failure at an outstation. Even if replacement at Schiphol would not be possible for some
reason, tails could be swapped, such that the aircraft at risk does not fly to badly-equipped outstations.

ATA 36 is, as any other system, subject to Minimum Equipment List (MEL) constraints, that dictate how many
bleed systems must be fully functioning. Generally speaking, for practically all components (valves, con-
trollers and sensors) of the Engine Bleed configuration, a minimum of three out of four of the parallel com-
ponents should be fully functioning to allow dispatch [29]. However, in most of the cases this is only allowed
when a set of conditions on the component itself, but also on other components is met. An example of such a
condition is that one may dispatch with one inoperative HPSOV, provided that the valve is closed. The same
holds for the PRV with the extra condition that the aircraft is not flying in icy conditions. Even to these con-
ditions exceptions can apply. For the full minimum equipment logic one is referred to the official document
[29]. For this project we can conclude from these requirements that a failing bleed valve compromises a risk
on operational disruption (next to a small safety risk). Note that this operational disruption is caused by the
‘failure’ indication of the central maintenance computer; a component could turn out not to be broken, but
the warning in itself invokes the MEL.

2.3.3. Maintenance challenges

ATA 36 is one of the main contributors of unscheduled ground time worldwide [30]. It is expected that the
Bleed Air system is relatively sensitive to failure since it contains many small, sensitive, mechanically oper-
ating parts (especially in the pneumatic controllers), that are exposed to extreme environmental conditions,
such as high temperature (within the closed system but also just around), high pressure and lots of vibration
from the engines. The large variation in Times Between Removals makes it an interesting component for
Predictive Maintenance (PM).

2.3. Boeing 747 Bleed Air system 9

Table 2.1: Condition parameters available for the Bleed Air system.

Data source No. per sub-system | No. total | Unit

Bleed Air temperature sensor 1 4 degC

Bleed Air pressure sensor 1 4 PSI

Engine inner shaft RPM sensor | 1 4 7 ﬁﬁM -

Engine outer shaft RPM sensor | 1 4 7 5{}53: -

Flight Phase indicator - 1 -
2.3.4. Data landscape

In order to develop a prognostic model for predictive maintenance, several sources of data are available about
different aspects of the problem that could theoretically be used. Here a brief overview is provided, which will
facilitate reading the rest of the report.

CPL data Most aircraft, amongst which the 747, are capable or recording sensor readings at a continuous
basis throughout the flight. This functionality is called Continuous Parameter Logging (CPL). In the 747, these
data are stored on an optical disk which is manually collected from the aircraft, imported, decoded and then
stored within the company. This system only records specific parameters that have been turned on. Also,
only specific data is stored for a longer period than the custom thirty days. The Bleed Air system is one of the
two systems of which the data is accessible for this study. Note that this data is proprietary to the operator
and as such this data is only available for aircraft of the operator KLM, not of other customers of KLM E&M
(also Air France data is not available).

For ATA 36, the data that is available within this study is summarised in Table 2.1. Per engine-specific bleed
subsystem there are four ‘local’ quantities available in addition to one global flight indicator, the Flight Phase
indication, which indicates with a unique number in which of the 15 flight phases the aircraft is operating.
The most important phases to mention are, in chronological flight order: Taxi Out, Take-Off, Initial Climb,
Climb, En-Route (Cruise), Descent, Approach Land, Flare, Roll out and Taxi In.

AHM FDE & MMSG Aircraft Health Management (AHM) is Boeing’s platform to monitor aircraft health. This
platform is accessible through the servers of Boeing. Accessible are historical Flight Deck Effect (FDE) and
(related) Maintenance Message (MMSG). The FDEs are the messages that appear in the cockpit, indicating
loss of functionality somewhere in the aircraft system that it mentions. The related MMSG contains some
more information on what is malfunctioning, but not on what the corresponding root cause is. FDEs trigger
(reactive) maintenance requirements. AHM data is available for many years back.

Removal data KLM E&M All components that are removed from the fleet are logged for maintenance ad-
ministration. The logs contain the part that is removed, from what aircraft it is removed and the date of
removal. In these logs it is also specified whether a removal is scheduled or unscheduled. The removals are
more difficult to use for determining the exact moment that a failure was indicated, since an aircraft could
have made several more flights after failure before the component is removed as long as it stays within MEL
requirements.

Shop reports When components are removed they are sent to a repair shop, where they are diagnosed and,
if needed, maintained. For Bleed Air Valves, this shop is a daughter company of KLM, called EPCOR.

In the repair shop the components are tested in specifically designed test set-ups. In this case these set-
ups enable the mechanic to connect pressurised air to the components and measure pressure drops over
valves and controllers. Together with visual and manual inspection, this approach is used to measure the
functioning of the components and come to a diagnosis. Based on this diagnosis maintenance is performed.
The findings and the maintenance work scope are reported by the mechanic.

Shop reports are the ultimate source for determining the true condition of a component. Unfortunately, they
are not readily available for this study.

Theoretical context

This chapter will provide the reader with a theoretical background on machine learning and its subfield of
deep learning, particularly on the approaches that can be used for failure prediction. The first section will
provide an introduction into the field of machine learning in general. Also, it will present a shallow (not deep)
machine learning approach that is used in the research, the Random Forest (RF) model, in more detail. From
there on, the discussion will focus on deep learning, which is a specific subfield of machine learning. Again,
this section will provide a general introduction, as well as a specific deep learning model, the Convolutional
Neural Network (CNN) model.

3.1. Machine learning

Machine learning is the subfield of Artificial Intelligence that entails all algorithms that enable a computer
to learn from data. Such a machine learning algorithm, when fed data, is capable of inferring information
about the properties of that data that allow it to make predictions on future data it has never seen before [31].
Simply put, machine learning models try to infer a mapping of the input data that allows them to make sense
of the data in relation to the prediction task. When implementing machine learning algorithms one generally
splits historical data into three sets: the training set, the validation set and the test set. The training set is used
to learn the data relations. The validation set is used to find the optimal hyper-parameters of the model. The
test set is not used during either of these steps and can be used to validate (test) how the model performs on
unseen data.

Machine learning can generally be divided into three main approaches, namely supervised, unsupervised
and reinforcement learning. The scope of this research is limited to supervised learning because of the avail-
ability of data labels. In supervised learning each training sample is accompanied by an explicit output label.
It is thus based on labelled data. When training, the model is fed a set of input vector — output vector pairs,
based on which it infers a functional mapping between input and output domain. This function is used to
make predictions on unseen data. Within supervised learning there are generally two approaches, namely
classification and regression. In classification, the labels are (discrete) categories; in regression the labels are
continuous numbers. Some machine learning algorithms can be used for both classification and regression
(with minor modifications), others only for either of the two.

3.1.1. Machine learning for failure prediction

There are several potential advantages of machine learning that motivate its use for failure prediction. First
of all, machine learning models learn data relationships rather than pre-defining them, such as in physical
based failure models. This is beneficial when those relations are simply unknown or not well-understood,
which is often the case for failure processes in complex aircraft components [32]. Secondly, since machine
learning models learn dynamically, they are very flexible for various applications [10]. As a consequence, one
model structure could potentially be used for many different components. It is thus a very universal solution
for prognostics, that requires very little manual effort. Thirdly, machine learning is capable of handling in-
credibly large amounts of data. As a consequence, it can learn very complex relationships; relationships that
can hardly be defined manually [1]. The models can thus take into account all kinds of system interrelation-
ships and operational noise that are practically impossible to include in a physical model. Both these aspects

11

12 3. Theoretical context

are very realistic for complex aircraft components.

That does not mean that implementing a machine learning solution is easy. Casting the business problem
of predictive maintenance into a well-defined machine learning formulation, engineering features to feed
the model, choosing the right machine learning model, tuning the model hyper-parameters and properly
validating its performance are all complex research areas. These steps will be further discussed in Chapter 4.
In section 4.1 in particular, it is discussed how in practice a prognostic problem is formulated as a machine
learning problem, especially since it is not as it straightforward as it may seem in the first place. For now a
small example will be given, such that the reader has some idea how the machine learning problem looks like
when discussing specific machine learning models (algorithms).

The items of interest are flights. Each flight consists of a time series per sensor, for example a temperature
sensor. Based on the combination of time series of all sensors, after each flight, the objective is to predict
whether the components will fail in the next flight (a supervised binary classification approach). To do so,
from the time series data, features can be engineered that could potentially hold predictive capacity. One
could for example calculate the average temperature, the maximum temperature, etc. The machine learning
model itself will then fit a mapping between these features and the target label.

Again, this is just one specific formulation for illustration purposes; it is not necessarily the best suited for-
mulation. The next section will present a state of the art machine learning model, the RF model, that will be
used in this research to solve such a formulation.

3.1.2. Random Forests

A random forest model is an ensemble machine learning model. It works by fitting a multitude of decision
trees on the training set, and bases its prediction on a vote of the predictions of individual trees. By combining
the power of multiple trees it is capable of harvesting some of the strengths of decision trees, while mitigating
the weaknesses [33].

Decision tree

A decision tree builds a classification or a regression model in the form of a tree structure by learning simple
decision rules from the data. By building a decision tree based on simple if-then-else decision rules for the
features, a dataset is segmented into smaller and smaller subsets. One generally speaks about decision nodes
and leaf nodes in the tree. The decision nodes are further divided based on a new decision rule. The leaf
nodes form the end of the tree and form buckets that belong to a class (for classification).

The trick of a decision tree is how it splits the data set. A split is based upon one particular feature in the
dataset. To choose what split is best, different algorithms exist. The most commonly used algorithm is the
CART algorithm [34]. It finds the feature and threshold at each split that produce the largest information
gain. This information gain is based on the decrease in entropy after splitting. It tries to split the samples as
homogeneously over the nodes as possible. This process is repeated until the minimum number of samples
per leaf is reached (which is a hyper-parameter).

Combining decision trees

Decision trees have many advantages. The process of using decision rules with thresholds naturally corre-
sponds with how people would classify data. They can be seen as white box models, which also makes it
possible to see how the model chooses to segment the data. When using features, this makes it possible to
get insights in what features contribute most to the classification. As extra advantages, they can handle thou-
sands of input features without filtering and they are computationally relatively light-weight because of their
simplicity. There are also some weaknesses, of which the major one it that decision trees are very prone to
overfitting. This can happen when trees are grown to deeply. Also they can be very unstable. A small adjust-
ment in the data, may change the complete structure of the tree. These problems can be mitigated by using
decision trees in an ensemble method, such as the RF [33].

A RF trains by growing many trees (the specific number is a hyper-parameter), each on a different boot-
strapped subset of the full training data. The individual trees are grown slightly differently from isolated
decision trees. Rather than considering all features when splitting, it only considers a random subset of the
features (controlled by a hyper parameter). So in total, there are two randomisation processes underlying the
forests. First of all, the sample bootstrapping; secondly the split randomisation. As a result of these random
processes, the bias of the overall prediction usually slightly increases, but at the win of a more than compen-
sating decrease in variance among the trees. The RF makes a prediction by running a new sample trough all
trees and by then averaging the probabilistic predictions of all individual trees.

3.2. Deep learning 13

3.2. Deep learning

Deep learning is a subfield of machine learning that includes feature learning in the learning process rather
than starting from predefined features. It is thus capable of working with raw data. Machine learning al-
gorithms are generally not suited for this because of the selectivity-invariance dilemma, and require feature
engineering to solve this dilemma up front [23]. However, if no knowledge is available to formulate adequate
features — because the dynamics are not fully understood or the relations are simply to intricate — machine
learning approaches can be suboptimal.

A deep learning network is an Artificial Neural Network (ANN) with multiple levels of representation, created
by composing simple, but non-linear modules (artificial neurons) that each transform the representation at
one level, starting from the raw input, into a representation at a higher, more abstract level [23]. By stack-
ing many of these layers, highly complex functions can be learnt. Higher layers of representation amplify
aspects of the input that hold most predictive information. Specific architectures to stack neurons exist that
are capable of leveraging inherent data structure for more effective and efficient training.

In the following subsections, first it will be explained how deep learning can be used for failure prediction.
Then a general introduction into neural networks is presented, since this structure forms the core of all deep
learning models. Next, a specific deep learning model that will be used in this research, is explained in more
detail.

3.2.1. Deep learning for failure prediction

The strength of deep learning to learn data representations make it particularly interesting for failure predic-
tion. One of the main difficulties in using machine learning for prognostics is that it is not well known what
signals to look for in the abundance of sensor data [24]. Even if macro features on individual sensor time
series could be formulated, such as averages, maximum values and even certain transform coefficients (such
as the Fourier transform), then still it is practically impossible to consider all multivariate relations in the
data. The number of sheer options is simply too large. An extra advantage of deep learning networks is that
they are not only flexible in terms of input, but also in terms of output. As a results, deep learning algorithms
theoretically allow outputting survival functions. [35].

However, this does not necessarily mean that deep learning is the holy grail for prognostics. There is one
main difficulty with deep learning. Being capable of finding any of these many possible relationships comes
at a cost. Even small deep learning networks have so many free parameters, that they are very data hungry
to tune these parameters reliably. With small data sets the risk of overfitting is large. This is particularly risky
for very large data sample sizes. A typical flight is easily more than 30.000 seconds long (7500 samples when
sampling with 0.25 Hz), while discriminative behaviour for the Bleed Air system could present itself at second
level.

3.2.2. Neural networks

A neural network, more appropriately called an Artificial Neural Network (ANN), is a machine learning model
inspired by the interaction of neurons in the human brain. A neural network consists of simple computational
units, the neurons, which individually perform simple logic: they apply a non-linear function, the activation
function, to the weighted sum of the inputs to produce an output. The output of the neuron is mathematically
represented as follows in terms of the weight vector w, the input vector x, the neuron bias term b and the
activation function f as follows.

yX) = f(w-x+b) (3.1

This logic is schematically depicted in Figure 3.1. Different activation functions exist; the Logistic Sigmoid
function o(z) and the Rectified Linear Unit function ReLU(z) are two commonly used ones [23]. The mathe-
matical formulations are respectively given by Formulas 3.2 and 3.3.

o(z) = (3.2)

1+e %

ReLU(z) = max(0, z) (3.3)

By stacking these simple elements in layers, neural networks can be formed. Figure 3.2 shows such a neural
network, which also called a feedforward neural network. Neurons in a layer are connected to all other layers
in the layers before by directed edges, which each have a weight associated with it. The very first layer of the

14

3. Theoretical context

2

Inputs

f—

Sum

I
Activation
Function

Output

Figure 3.1: Schematic depiction of the working principle of an artificial neuron. Adapted from [36].

Output Layer

t

Figure 3.2: Schematic depiction of a simple neural network. Adapted from [36].

3.2. Deep learning 15

network receives as input the input sample. All following layers until the last layer, called the hidden layers,
receive the output of the previous layer. The last layer is called the output layer, since its output is the output
of the whole network. During training of the network, the weights and biases are tuned such, that the out-
put of the network, the prediction, matches the true labels of the training samples as closely as possible. A
loss function expresses the difference between predicted output and true output in terms of the weights and
biases of the network layers. The neural network structure actually translates the training/learning problem
into a minimisation problem of the loss function by adjusting the weight and biases of the network. The loss
function is optimised by the gradient descent algorithm, which calculates the gradient of the loss function
with respect to the weights and biases. This calculation is done through a process called back-propagation
[37]. This is actually an implementation of the chain-rule for derivatives, by which the gradients can be itera-
tively calculated layer by layer form output to input. Each network parameters 0 is changed oppositely to the
gradient according to Equation 3.4.

0=0-y—— (3.4)

Here, v is called the learning rate; it determines how quickly the network trains. For large datasets, which are
typically required to train neural networks, the gradient descent algorithm easily becomes computationally
too expensive. Therefor, it is common to use an algorithm called Stochastic Gradient Descent (SGD). In this
approach, the training data is divided into batches. The loss function and gradient are calculated after each
batch and the parameters are adjusted after each batch. Different alternatives to SGD exist, which often entail
some form of learning rate adjustment over time. One of the most widely used optisers using this principle is
called Adam [38].

Creating and tuning a neural network involves many hyper-parameters. First of all there are parameters
defining the layer architecture of the network, including the type of neurons, the number of neurons per layer
and the number of layers. Then there are neuron specific parameters, such as the activation function, the
dropout rate and several regularisation factors. Lastly, there are parameters shaping the training procedure
such as the optimiser, the learning rate, the number of training epochs and, to a lesser extent, the batch size.
For more detailed information about Neural Networks one is referred to [39].

3.2.3. Convolutional Neural Networks

Feed forward neural networks, as basic deep learning networks are generally called, are not particularly ef-
fective, nor efficient for working on large structured data. A large input leads to an explosion of the number
of free parameters in the model, which easily leads to overfitting and takes a long training time. Suppose
we would feed a 10000 steps long time series of five channels to a feedforward layer. This would lead to
10000 -5 = 50000 weights per neuron (!!). Also, the structure would be very badly equipped to handle posi-
tional invariance in the data. Different flights have different lengths and different moments where the aircraft
changes flight phase. As such, a feedforward layer would not only be inefficient, it would also be ineffective.
A solution is offered by the CNN. A CNN is a specific type of deep neural network architecture that is partic-
ularly good at capturing spatial patterns in data. This could be one dimensional, e.g. sequences and time
series, two dimensional, e.g. images and spectograms, three dimensional, e.g. video or in theory even higher
dimensional. The most widely studied application in literature is a two dimensional approach for image
recognition. In this project we are interested in the one dimensional variant to capture temporal structure in
the time series.

A convolutional layer extracts features from the input signal through the convolution operation of the signal
with a filter (or multiple filters), also called a kernel. This filter can be seen as a weight map. The activation of
a neuron in a convolutional neural network is the result of the convolution with a specific filter at a specific
location in the signal. By striding this same filter over the image, each time activating a different neuron in
the next layer, patterns can be detected by the filter, irrespective of the exact location of the pattern. The
filter weights are optimised as part of the training process, in such a way as to maximally tell the classes
apart. A so-called feature map is an array of units that share the same filter (weights and biases), each with
a different (ordered) location on the input signal. Each unit produces an output; the whole feature map thus
produces an array of outputs. This array represents the outcome of the convolution of the filter across the
whole input signal. A convolutional layer can have one or multiple filters. In the latter case, the ‘depth’ of the
signal increases, each different filter increasing the depth with one. Note that for multivariate (multi-channel)
input signals, filters are not one dimensional, but two dimensional. Mathematically, extracting a feature map
based on a single channel input using one-dimensional convolution is given by [40]:

16 3. Theoretical context

rl(lhl)(T)

FUD =1 | ~ Layer (I+1)

Ft =2
Layer |
‘ \ -y |
) A
’A
[-(1—1
/\ 1K,
x B ay V(r)
1 |
pe-n 1 | l | i
| W | e/ Layer (I-1)
AV

Figure 3.3: Visualisation of temporal convolution over a single-channel input Layer [— 1 is the input layer. Layer / contains the feature

maps u{ (r) and aé (7) that are extracted by respectively kernel Kll fl and Kll fl. Layer [+ 1 contains the single feature map a{“, which is

the result of convolution over layer with the two dimensional filter K [. Figure adopted from [40].

Fl 1 Pl
at'm =olb! +j;1<]’.f(r) * a}(r)) = a(bj. +J; ,,; K (paj(r- p)]) (3.5)

where aj. (1) denotes the feature map j layer [, o is the non-linear activation function, F’ is the number of
feature maps in layer [, K]l f is the kernel convolved over feature map f in layer ! to create the feature map j

in layer [+ 1, P! is the length of kernels in layer [and b is a bias vector. This process is visualised in Figure
3.3. In this figure both a one dimensional, as well as a two dimensional filter are used.

Note that one could treat a multi-channel input signal as individual single-channel inputs or as one input
with a two dimensional filter right from the input layer. In the latter case, the network would be capable of
extracting multivariate features from the very first layer.

Deep CNNs can be built by stacking multiple convolutional layers on top of each other. These networks are
capable of learning a hierarchical representation of the data, where deeper layers progressively represent the
inputs in a more abstract way. In many applications, so-called pooling layers are put between the convolu-
tional layers, mostly by a process called max pooling (although average pooling is used as well). A max pooling
layer calculates the maximum value of a local patch of units within a feature map, creating invariance to small
shifts and distortions that do not represent distinctive signal. The role of the pooling layer can be seen as to
merge semantically similar features into one [23]. In a typical CNN architecture, after several convolutional
(and often pooling layers), one or more dense layers are connected before outputting the prediction. These
function to create a mapping from the features learnt by the convolutional layers to a prediction.

Methodology

The final objective of any prognostic technique in Predictive Maintenance (PM) is to predict imminent fail-
ures (or Flight Deck Effect (FDE)s) based on condition data. In this research various machine learning tech-
niques will be studied for this purpose. The high level methodology consists of several steps, which are shown
in Figure 4.1. The first step is to cast the prognostic problem into a well-defined machine learning problem
statement. The next main step is to create a data set in accordance with this formulation that can be fed to
a machine learning model. The third step is building the machine learning pipeline and training the model
on the training data. The following step is evaluating the performance of the machine learning model on the
test set. The last step is to translate the machine learning predictions back into prognostic predictions based
on the machine learning formulation originally chosen. This whole methodology is ideally an iterative pro-
cess. Based on the evaluation insights of a first machine learning formulation, the original machine learning
formulation can be adapted to better fit the problem.

4.1. Machine learning formulation

The very first step of employing machine learning for prognostics is to cast the above objective into a more
narrow (mathematical) formulation that machine learning models can work with. In high level, any super-
vised machine learning model tries to learn a relationship that maps an input X to a label y. The model learns
this relation by training on historical X-y samples, and can predict new y-labels from new X-data based on
this learnt relationship. In the case of prognostics, the X-data is some specification of the condition data. The
y-data is some specification of the health state of the system. Still, this leaves many options for formulating
the problem. This process of casting the business objective of prognostics into an adequate machine learn-
ing problem formulation is key to an effective predictive maintenance approach. It is especially important
in real life problems, where some formulations may be more adequate or robust to data imperfections than
others. This section will highlight the most important considerations in this process and it will elaborate on
the choices made in this research project, as well as the abstraction of these choices to a general predictive
maintenance process.

Single-class or multiple-class prediction The first consideration is whether to choose anomaly detection
(single-class prediction) or multiple-class (two-class or multi-class) prediction. In the case of anomaly de-

\ i
Machine Iegrn|ng p»| Data preprocessing > . Model . »| Model evaluation » Prognu_stlc
formulation implementation evaluation

Figure 4.1: High level methodology.

17

18 4. Methodology

tection, a model is only taught a nominal representation of healthy behaviour. It can then predict the extent
of anomaly in a new sample. Note that anomaly detection is fundamentally different from multiple-class
prediction. The advantage of multiple-class prediction is that the model learns a representation of faulty be-
haviour, which in the end is what one is interested in. An anomaly score may indicate a high level of anomaly,
but this does not automatically mean failure. On the other hand, the advantage of anomaly detection is that
it does not require any labels on the faulty class, only on the healthy class. This is beneficial when these labels
are either not available, or so ambiguous that they are a source of noise. In this research, a multiple-class
approach is chosen. The motivation for this choice is that relatively many historical failures are available for
the use case at hand, so it makes sense to use all information available. The scope of this research is limited
to multiple-class prediction.

Supervised or unsupervised learning The second consideration is whether to use a supervised or unsuper-
vised approach. In a supervised approach y-labels (the ground truth) indicating the health state are available
for training. In an unsupervised approach, these labels are not available and the model is only capable of
clustering the X-data. Since in this study y-labels are available, this research focuses only on supervised ap-
proaches.

Selecting the indicator of failure The next consideration is what exactly to predict. In other words, what
data do we base the health state of the samples on? The ideal objective is predicting failures. However, the
definition of failure can be ambiguous, both from a theoretical and a practical view point. Theoretically the
threshold of failure of a complex system could lie anywhere between “a sub-part is functioning outside of the
specifications” and “the integral system has completely lost functionality”. In practice, there are several levels
that could be distinguished in the available data sources.

First of all there are the FDEs, which are triggered when a (sub)system is malfunctioning. Depending on
the nature of the message and the Minimum Equipment List (MEL) requirements these FDE trigger main-
tenance actions immediately or at a later stage. During most of these actions, the components is removed
from the aircraft for further inspection and/or repair. These removals are tracked in the removal data. In the
repair shops, the components are further inspected and a shop report is drawn up which should conclude on
whether a fault is found or not. If so, it should mention the details of the fault found. In this research it has
been chosen to predict FDEs as proxy for failure. This is done for several reasons.

The first reason is that, from an operational perspective, one is interested in knowing about an imminent
FDE, since those require maintenance action, which in itself is enough to disrupt flight operations, even if
no fault is found on later inspection. Knowing about the risk of an FDE occurrence could be used to per-
form preventive maintenance or to take the risk into account when dispatching aircraft to outstations where
maintenance is not readily available.

The second reason is that FDEs compose a highly reliable data source. The FDEs are generated by the board
computer automatically and carry a precise timestamp. Removal logs on the other hand, are created man-
ually, which could introduce human errors in the data. Also, the logs do not contain precise enough times-
tamps that can be traced back unambiguously to a specific flight in which the ‘failure’ happened. As en even
superior strategy, one could choose to use FDEs for ‘failure’ notification while using shop reports to validate
that a fault was really found.

Single-FDE or multi-FDE prediction Complex systems, such as the 747 Bleed Air system, have many com-
ponents, which in their turn can have different failure modes. At the scale of FDEs not all these failure modes
are individually distinguishable, but the FDE messages contain problem descriptions that could naturally be
linked to (one or more) failure modes that are likely to cause them. It is important to stress that this relation
is not one-to-one.

There are multiple ways of dealing with the different FDEs. From an operational perspective one is primarily
interested in whether any FDE will occur. From a maintenance perspective, one would also be interested in
the specificity of the FDE. The first objective naturally gives rise to a multi-FDE prediction model, in which
the model simply indicates whether any FDE will present itself. The second objective asks for a single-FDE
model, in which a model is tailored to predict one specific type of FDE. Multiple models could be made if
more FDEs need to be predicted.

There is more to this difference than simply the final objective. For a system with many different FDE, a multi-
FDE model will have many more trainings examples for the model, than individual FDE models would have.
From a machine learning perspective this is preferable as long as the FDEs present themselves in a similar

4.1. Machine learning formulation 19

way, resulting in more samples for the faulty class to learn from. However, if the difference of FDE indicators
between different FDEs is comparable or larger than the difference between the healthy and faulty class, it
becomes very hard for the model to properly tell the healthy and faulty class apart. The extreme situation of
this is fitting a multi-FDE model in which some of the FDE are fundamentally invisible in the sensor data.
In that case ‘healthy’ sensor signal is trained on as being faulty. This could lead to a large number of false
positive FDE predictions. In the experiments in this research, both multi-FDE as well as single-FDE will be
tested.

Classification or regression Supervised machine learning can be applied in a classification approach or a
regression approach. In the former, the X-data is mapped to a discrete y-label. In the latter approach, it is
mapped to a continuous y-label. Note that a certain problem can often be formulated in both ways, as is the
case in prognostics.

Anatural regression formulation could be to predict a Remaining Useful Lifetime (RUL) until FDE, or another
continuous proxy for the health state of the system. By formulating it as a regression problem, the model
under the hood assumes that there exists a continuous relation between all labels. In the prognostics case
it would naturally fit the assumption that the process resulting in failure is continuous; continuous degra-
dation. A classification approach could predict whether an FDE will occur within a certain horizon yes or
no. This formulation does not assume any relationship between samples within a class. This model most
naturally fits the situation that faults leading to FDEs present themselves quite suddenly. When choosing the
optimal approach, one ideally wants to have insights in the failure process(es). Note that both a classification
approach and a regression approach could lead to good results on the same case. In this research the failure
modes are not very well understood in relation to the available sensors. The current experience of system
experts is that the failures seem to present themselves quite suddenly. For that reason it has been chosen to
start with a classification approach. Another reason supporting this choice is that this approach lies closest
to the current business objective of being capable to predict whether a system will fail soon. This objective is
primarily formulated to prevent sudden unexpected failures, rather than optimising maintenance plannings
and inventory levels far ahead based on RUL estimates.

Flight data filtering or not All considerations so far concerned the y-label of the formulation. Also the
X-data, the flight sensor data, could be used in several ways. These considerations mainly have to do with
filtering the sensor data, such that the problem becomes more manageable. First of all, one could use the
whole flight available or filter some specific part of the flight. The advantage of using the whole flight is that
it is a really raw approach. It does not require any knowledge on the operation of the system. A serious
disadvantage is that the problem becomes really large. Flights of the 747 aircraft can take 40.000 seconds,
while features indicating failure may present themselves very locally, at the level of seconds; a needle in a
haystack. Also, the flight conditions of different phases of the flight are very different. This leads to sensor
readings that can be different in orders of magnitude. Capturing both very large movements in certain phases,
while being sensitive to minimal changes in other phases is difficult. So a very high ‘resolution’ is required
in both the time dimension as well as the sensor quantity dimension, leading to an enormous search space.
The problem of expanding the search space is that more and more samples are needed to reliably fit a model.
The data can also be filtered by only considering a subset of the available sensors. In this study, this is not
particularly relevant since there are only a few sensors available. However, for newer aircraft types the number
of sensors per system can be substantially larger and filtering some of these channels could make the problem
more manageable. This does requires some knowledge about the system. In this research the data has been
filtered as little as possible.

With or without inter-flight memory Another consideration when formulating the input, is whether one
looks at a flight isolated from the flights before, or that one incorporates these previous flights in the model.
The latter could be beneficial for example, if different FDE occurrences have different absolute sensor values
that are indicative of failure (since individual systems might slightly differ), but when the relative change over
flights is quite comparable. There are also some disadvantages. The number of feature combinations that
can be made grows exponentially with the number of flights that are taken into account, rapidly expanding
the search space. Also, with lots of missing or incorrect flights, this strategy is error prone. With isolated
flights one could just omit these flights from the model. With flight sequences, one has to find a work around
such as interpolation, since omitting flights breaks the sequences (and thus the sequential information). In
this research flights have been considered in isolation from other flights. This is primarily done because of

20 4. Methodology

the large share of flights that have missing or corrupted data; an isolated flight approach is considered to be
more robust.

Feature engineering or raw data In general there are two main approaches to using the X-data. One could
just feed the raw data as it is to the model, or one could calculate features from the data and feed those. The
main advantage of the latter over the former is that the problem size becomes more manageable, while it also
the question whether there really is signal in every individual data point. Feature calculation allows to map
the data into a smaller representation by making assumptions on how the discriminative signal looks like.
In the case of time series data, these features could be any time series metric within or between time series.
The process of choosing appropriate features for the problem at hand is often called feature engineering.
This terminology needs some further nuance. Without any knowledge about the underlying problem one
could also calculate all sorts of different problem-unspecific time series features, such as the average, the
maximum, the minimum. This could be an effective approach when one calculates so many features, that
there is a big chance of finding appropriate ones. It is debatable whether this is feature engineering, it is
definitely a feature formulation approach. Feature engineering is generally beneficial when knowledge of
the problem is such that effective, reliable features can be formulated. If that knowledge is missing, or the
problem is too complex to be simplified to a set of features, deep learning can offer a good solution. In this
research both a feature approach (the Random Forest (RF) model) as well as a deep learning approach (the
Convolutional Neural Network (CNN) model) have been tested.

Choosing the machine learning model Using all considerations described so far, the problem can be de-
scribed in a neat machine learning formulation. There is a well defined X-input and y-label for each historical
sample and a machine learning model can be trained to find a mapping between the two. Many different ma-
chine learning models exist. A main distinction is between feature-based models and deep learning models
that work on raw data. From both classes a candidate has been implemented.

As a feature-based model, the RF model is chosen. There are several reasons for choosing this model. First
of all, since it uses bootstrapping it is robust against a large number of features. This is beneficial if we do
not know in advance what features to use. Also, the RF is well interpretable, which is useful for learning more
about the prognostic problem and for verification. Last but not least, the RF is considered one of the best
performing universal machine learning models [41]. As a deep learning approach, the CNN model has been
used. The motivation for this model is that it is well equipped to work on very large inputs due to the weight
sharing between neurons. Also, its architecture takes into account the spatial structure naturally present in
the data.

4.2. Data pre-processing

In order to create proper X and y samples for training the model, several different data sources at KLM need
to be combined in a clever way. This process is briefly discussed in order to inform the reader about the data
challenges that come along with real life predictive maintenance; challenges that may affect methodological
choices.

The objective of the pre-processing step is to have an integral data structure that can be queried to generate
X-y samples to feed the models. There are several design requirements to this structure. First of all, it should
be universal in the sense that it can be used for different models. Secondly, it should be efficient in terms of
storage size and query speed. Thirdly, it should allow manual inspection to verify the correct implementation
of pre-processing and modelling steps.

Based on these requirements it has been chosen to generate a historical flight schedule that treats parallel
bleed systems individually. As such an entry in the schedule represent a flight of a specific bleed system on a
specific tail. The structure can be queried amongst others by tail, bleed system number and actual departure
date and time to reconstruct the history of an individual bleed system. The relational data structure is created
in the software libary Pandas in the Python programming language.

Creating a historical flight schedule The y-labels of individual flights are based on FDEs occurring at a later
point in time. Such a label could for example be whether an FDE will occur within ten flights. Labels thus
need to be assigned recursively based on the historical flight schedule and the occurrence of FDEs therein.
The reason that this is done through the flight schedule, rather than directly through the sensor data labelling,
is that the date-timestamps of the former are more reliable.

4.3. Machine learning models 21

The flight schedule is acquired through the Operations department. This schedule contains most crucial
information for the flight. For our purpose the following data points are relevant. Per flight it contains:

e Aircraft tail
¢ Scheduled arrival and departure date and time

¢ Actual arrival and departure date and time

Linking Continuous Parameter Logging (CPL) data The sensor data, designated as the Continuous Pa-
rameter Logging data, is ideally stored in a separate compressed csv file per flight. Each file is read and the
so-called date-time stamps from the board computer are compared with the flight schedule. Using a ‘closest
neighbour’ matching logic, the files that pass certain data verification (and sometimes repairing) steps are
coupled to the flight schedule by adding their file location to the data structure.

Linking FDE data In order to recursively formulate a y-label the FDEs are needed. These are acquired from
the Aircraft Health Management (AHM) tool of Boeing. They are linked to the flight schedule based on the
tail, bleed number and date-time stamp of the FDE. Practically all FDEs can be coupled unambiguously this
way.

Removing recurrent FDEs Due to MEL margins not all FDEs directly result in maintenance. As a result
an FDE can reoccur in the next flight, when the board computer again notices that a component does not
operate as required. Since the objective is to predict unexpected FDEs these FDEs are removed.

Uncensoring of the data For flights after which no FDE has taken place yet, the y-labels are right censored.
Since the models in this study are not equipped for censored data and censored data forms only a small
fraction of the total data, these censored flights are removed.

Timeline creation Based on the occurrence of FDEs, individual timelines can be created per bleed system.
A timeline is defined as the sequence of flights, ordered based on date and time, between two FDEs (when
recurrent FDEs have been removed).

Defining y-labels Using the individual timelines a RUL label is defined recursively from the last flight in the
timeline. This label can easily be converted to a discrete label for classification if required.

FDE flight removal The objective of our models is to predict imminent FDEs, not to tell that an FDE has
presented itself. For that reason, the flights in which FDEs occur are removed.

X-data generation Using the CPL filenames in the flight schedule, X-data is generated based on the needs
of the model (for the flights for which a good CPL file exists). In general the compressed csv data is read
and some general pre-processing is performed, after which the model specific pre-processing takes place.
For feature calculation approaches, the features are calculated and joined to the data structure. For raw data
approaches, generally a new structure is created (to prevent blowing up of the comprehensive flight schedule)
in which the samples can be linked to the flight schedule based on a unique identifier.

4.3. Machine learning models

In this research several different machine learning models have been tested for their prognostic capacity.
There are two main objectives. First of all, to see if machine learning can be used for prognostics on real life
data. Secondly, to compare a deep learning approach and a feature based machine learning approach. For
that reason, a CNN will be compared with a RF model. A subgoal is to see how different ‘machine learning for-
mulation’ choices affect the performance within one model. This step is important in order to be able to con-
clude to what extent the performance depends on modelling ‘assumptions’ and to what extent on the model
itself. To do so, for both models, sensitivity analyses will be performed, not only to the hyper-parameters, but
also to certain modelling assumptions.

22 4. Methodology

c Cross-validation Training set
Flights dataframe —p» Feature extraction |—p| Train - test splitting [—| Undersampling 8 . splitting > 9
g
! ! E Y v
>
a
Test set Training set > 8 Validation set Model fitting
= * *
S
' :
&
Model performance <«—| Model testing |«— Optimal model <_§ Model validation |<— Model

Figure 4.2: Pipeline of the Random Forest model approach. White boxes correspond with operations, grey boxes with inputs and
outputs.

4.3.1. Random Forest
In this section the RF implementation is presented. The model is built on the following machine learning
formulation:

Predict the occurrence of any FDE in a supervised binary classification approach with a prediction hori-
zon of 10 days, using time series features.

First a brief description of the dataset of this experiment will be presented, including the most important pre-
processing considerations.. Then the machine learning pipeline is described. In machine learning, a pipeline
designates the entire framework from raw data to prediction. This includes model specific pre-processing,
training, model tuning and predicting (whether for validation or for real application).

Data set
The data set used in this study is a two year history of the Boeing 747 fleet. Further details of the data set are
excluded from this version of the report for data confidentiality reasons.

Pipeline
The main steps in the machine learning pipeline are discussed here. The pipeline is visualised in Figure 4.2.
The main steps are discussed in the following paragraphs.

Feature extraction The difficulty of this step is that it is not known what adequate features would be for
the problem. To overcome this problem, the strength of a RF to look at many features is leveraged. Using
an open source library for python, called #sfresh, a huge list of features is calculated that are commonly used
for describing time series [42]. The features are distinguished in three categories, namely features from sum-
mary statistics, features from characteristics of the sample distribution and features derived from observed
dynamics. A list of all features that are used, is included in Appendix B.

These features are calculated for the individual temperature and pressure sensor time series, as well as for the
difference signal between these sensors and the average signal from the other three bleed systems. Next to
this latter cross-reference metrics the cross-correlation is calculated with the other systems, by calculating the
Pearson correlation coefficient with all other three ‘parallel’ signals and then averaging these three coefficients
into one.

For calculating the features, only the flight phases ascend, cruise and descend are used. Different combina-
tions of flights phases have been used and this configuration performed best.

The feature calculation library is designed to be capable of running in parallel. The calculations have been
performed in python using an Intel Core i7-7700HQ processor. With this configuration each flight takes
around three seconds for feature calculation. Note that the tsfresh library has been used in a setting to only
calculate ‘efficient’ features, excluding features that take very long to calculate. Calculating all features is
computationally too expensive for the large number of flights.

Train - test splitting In order to be capable of testing the performance of the model without bias, a test set
is split off from the data set. The way this is done is by using a custom grouped splitting. Rather than splitting
individual flights, the time lines are split. This is done to prevent correlation of neighbouring flights to lead

4.3. Machine learning models 23

Table 4.1: RF: Hyper-parameter settings.

Hyper-parameter Setting

No. of trees variable

Split criterion Gini impurity
Max. share of features considered per split | variable

Min. no. of samples per split variable

Min. no of samples in leaf node variable
Bootstrapping Yes

Class sample weights No

Table 4.2: RF: Grid search options for the hyper-parameters.

Hyper-parameter Grid search options
No. of trees 100, 300

Max. share of features considered per split | 0.1, 0.3

Min. no. of samples per split 4,20, 100

Min. no of samples in leaf node 4,20, 100

to pollution of the test set. A naive splitting approach has been tried as well and has been shown to lead
to overoptimistic test performance due to this effect. Preferably one also wants to perform a stratified split,
meaning that class ratios of both sets are the same. However, combining a stratified split with a grouped split
with random timeline lengths becomes a new optimisation problem in itself, which is outside of the scope of
this research. More importantly, when randomly distributing a sufficiently large number of timelines (in our
case several hundreds), the timeline length distributions over the sets, and thus the class ratios, are expected
to converge to being equal.

Training data under-sampling In our problem, the classes are very imbalanced. Typically, for every sample
marked healthy, there are nine samples marked faulty. Its is questionable how much all these faulty samples
add to the overall performance of the model. It is imaginable that learning the differentiating signal between
the classes is mostly limited by the number of faulty samples. From that reasoning, it has been experimented
whether under-sampling the majority class until a ratio of 3:1 (healthy:faulty) influences the model perfor-
mance. These experiments confirmed that under-sampling until this ratio does not decrease the model per-
formance. Based on this finding, undersampling is used to decrease the training time without loss of signal.
A lower training time is especially beneficial for the grid search.

Model fitting The RF model is fitted on the training samples. It is implemented using the scikit-learn soft-
ware library [43]. The hyper-parameters are set as shown in Table 4.1. Some of the hyper-parameters of the
model are grid searched, which are shown as variable. The split criterion is chosen such as to best match the
classification objective, namely the Gini impurity. Bootstrapping is used to prevent over-fitting of the deci-
sion trees, which are inherently sensitive to that. Class sample weights can be used to prevent the classifier to
be biased too much towards predicting the majority class (‘no FDE’ in our case). These weights are used when
calculating the impurity measure when splitting. On one hand one wants the classes to be purely balanced
for the classifier to allow effective learning for both classes. On the other hand, one wants to take into account
the original class distribution if finally not only recall, but also precision if of interest for our problem. It has
been empirically determined that using class weights that effectively bring the class imbalance back to 3:1
(faulty:healthy), works well. Since this is already the distribution after undersampling, class weights are not
needed. Note that the model is not very sensitive to this parameter since bias towards a certain class can be
corrected for to a large extent by changing the decision threshold of the classifier.

Hyper-parameter grid search A grid search procedure has been performed over a range of hyper-parameters.
The hyper-parameters that are included in the search are the parameters that are typically problem and data
set dependent. The search region has been adjusted to the specifics of the problem (amongst which the num-
ber of samples per class and the variety expected within the classes). The hyper-parameters that have been
used in the grid search are shown in table 4.2.

24 4. Methodology

The grid search is evaluated by means of a tenfold cross-validation procedure. As such, no separate validation
set is required. The benefit of this is that the training data set is kept as large as possible. Another benefit is
that a certain spread around the result is produced, which is indicative for the statistical reliability of the
result. Again, in this case timeline-wise splitting is used. Note that one could have used a cross-validation
procedure for the train - test splitting as well. However, then the grid search cross-validation would have
become a nested cross-validation, which is computationally very expensive.

The best parameters are chosen based on the Average Precision. The main motivation for choosing this pa-
rameter is that its interpretation is independent on the decision threshold and the class imbalance. As a
consequence, cross-validation splits which are not completely stratified can be fairly compared. This eval-
uation metric, along with other metrics that are used, will be explained in more detail in Section 4.4 when
discussing the evaluation procedure.

Model validation The optimal model from the grid search is evaluated according to some predefined crite-
ria. These will be discussed in Section 4.4.

4.3.2. Convolutional Neural Network

In this section the CNN implementation is presented. The main difference with the RF model is the fact that
the CNN will be fed raw sensor data as input rather than features. In short, the following machine learning
formulation will be solved:

Predict the occurrence of any FDE in a supervised binary classification approach with a prediction horizon
of 10 days, using raw time series.

Data set

The data set that is used is the exact same set that is used for the RF in terms of flights. However, in this case
no features are calculated from the time series; the time series are directly fed to the network. The whole
flights are used in this approach.

There is one small exception to the full raw data approach. In theory, CNNs are capable of finding features in
multivariate time series, and they can therefore incorporate correlation and difference features between time
series. However, there is an extra complexity in the data set at hand. Each bleed and temperature signal have
three reference signals, namely the three other signals. The difficulty lies in the fact that the prediction should
be equivariant to these three reference signals, meaning that shuffling the three reference signals in the input
matrix, should not alter the prediction. Equivariance to input signals for neural networks is a highly complex
topic — an active research area in itself — and it is outside of the scope of this work. To still be capable of using
the reference signals, it has been chosen to calculate an average signal of all other three signals and take the
difference between the signal of the bleed system of interest and this average reference signal.

Pipeline

The main challenge in a deep learning pipeline is tuning the hyper-parameters. Deep learning architectures
have a lot of hyper-parameters, many more than other machine learning models such as the RF. Besides that,
the range of some of these parameters that should realistically be explored is quite large. Also, the training
time of a deep neural network is typically quite a bit longer. As a result, finding the optimal combination is
cumbersome, if not practically impossible. Here, the steps of implementing the CNN are discussed. Note that
both manual hyper-parameter search as well as automated grid search have been used. Figure 4.3 shows the
pipeline, including the grid search procedure.

Time series pre-processing The time series of the CPL files are read into memory and zero padded until a
fixed length of 10000 points. Zero padding is required, since CNNs require fixed-size input matrices. Note
that semantically, they can work on different input sizes due to the filter structure. The zero padding, is just
to make sure that the network can be implemented computationally.

Train - validation - test splitting The exact same train - test split is used as in the RF model for fair com-
parison. Then, from the training set a separate validation set is split off. This validation split will be used for
monitoring the training procedure of the model. This will be explained further in the coming paragraph on
model fitting.

4.3. Machine learning models

25

Flights dataframe —p»|

Time series
preprocessing

Train - validation -
test splitting

—

!

Test set

1

—— Validation set (1) —p|

Training set

{

Standardscaler fit &
transform

!

Standardscaler

transform >

A

Validation set (1)

Standardscaler .
transform < Undersampling
Test set Training set —»{ £ > Cross-validation > Training set
9 2 splitting 9
[
2
Y < ' v
>
a
Model performance «e— Model testing l«— Optimal model - ° Validation set (2) Model fitting -
o
g Y !
e
©
3
k=] Model validation |«¢— Model
[©]

Figure 4.3: Pipeline of the Convolutional Neural Network approach. White boxes correspond with steps, grey boxes with input and
outputs.

Training data undersampling For the same reasons as explained for the RF, the training data is undersam-
pled. What is noteworthy, is that this step is even more important for the CNN for two reasons. First of all,
the stochastic gradient descent procedure used to train the model, uses batches of training samples to cal-
culate a gradient which should be representative for the whole training data. In case of small batches (which
are required for large, computationally heavy models), the risk of creating very unbalanced batches becomes
substantial. As such undersampling is expected to increase the performance of the CNN. This has been con-
firmed in various experiments. The second reason is training time. Deep CNN are very computationally
intensive to train, so every efficiency gain without compromising performance should be embraced.

Model building In contrast to the RF, which generates its structure during training, the CNN structure
needs to be built before training. Building means designing an architecture of layers and units in those layers,
which define the optimisation function that is going to be solved by the training process. Endless different
architectures are possible, having different numbers of layers, different numbers of units per layer and dif-
ferent types of units. These degrees of freedom when designing a deep learning architecture are some of the
most important hyper-parameters. For that reason they will be grid searched, as will be explained later on.
The neural network architectures are implemented using the Keras API with a Tensorflow back end, written
in Python 3 [44, 45].

Model fitting The CNN is fitted on the training samples. The fitting procedure of a neural network deserves
some more attention. Where a RF has some strict endpoints that determine that training has ended, this is
more complicated for a neural network. A neural network could keep training indefinitely if no thresholds
are built in. The challenge is to determine this threshold. In general, when training for a too short time, the
network is underfitted. Training for too long easily results in overfitting. The balance between these two can
be very delicate for complex architectures and finding the optimal point is one of the main challenges of deep
neural networks.

The most basic way to address this challenge is to just define a fixed number of training epochs. The train-
ing process works by feeding the training samples in batches to the network. Per batch the loss function is
determined and the (stochastic) gradient is calculated which is back propagated trough the network. One
epoch constitutes of feeding each training sample once. However, this approach is not very adequate, for
two reasons. First of all, the setting of (other) hyper-parameters strongly determines the optimal number of
epochs. Secondly, the training process is highly stochastic in nature, so even the same combination of hyper-

26 4. Methodology

parameters has a different optimal number of epochs per experiment. To solve this, the training process is
constantly monitored.

Several custom monitoring classes have been developed that calculate certain metrics at the end of each
epoch and plot these live during training. They are implemented in Keras through custom callbacks. The
metrics are the loss, Area Under Receiver Operating Characteristic (AUROC) and the Average Precision (AP),
both calculated over the training set and the separate validation set mentioned before. The main reason for
choosing these metrics is that they are not decision threshold dependent. Using these metrics it is analysed
whether the network is under- or overfitting the data and the optimal moment to stop training is determined.
In general the following logic is followed. As long as both training and validation AP are decreasing the net-
work is learning effectively. Once, the validation AP stops increasing, the training should be stopped to pre-
vent overfitting, a process called ‘Early Stopping’. The difficulty with small data sets is that there is quite some
stochastics in the validation metrics. To deal with that, a minimum number of epochs of non-increasing AP
is set. This number has been set to three, which turned out to be a good balance between adequate stopping
and taking into account the stochastics. This procedure is implemented through a callback in Keras.
Another hyper parameters which is strongly related to the aforementioned training procedure, is the learning
rate, which was discussed in Subsection 3.2.2. After all, the learning rate determines how much the network
could maximally learn per batch. As such, it is also related to the batch size. Again, these parameters depend
on the other hyper parameters and on the stochastics of individual runs. As a solution, a process called
‘Learning rate reduction on plateau’, is used. In this process, the learning rate starts relatively high and is
reduced when the validation loss is not decreasing for a minimum number of epochs. This number is set
to two, slightly lower than the early stopping metric. This procedure is implemented through a callback in
Keras.

It is important to realise that the validation set mentioned here is actually an extra validation set in compari-
son with most other machine learning models, such as the RF. It is not the same validation set (or split in the
case of cross-validation) that is used for tuning the architecture hyper parameters. As all other splits, this split
is a grouped split per timeline for proper validation.

Hyper-parameter grid search There are generally two ways of approaching the hyper-parameters tuning,
either manually or automatically. In a manual approach, different parameter combinations are tried, during
which the training process is closely monitored to find indicators how the parameters could better be ad-
justed. This process is sometimes defined as an art more than a science, since this process can be different in
every situation and the exact relation between all possible hyper-parameters is not exactly understood. The
number of different parameter settings that can be tried in this approach is typically much smaller, since one
needs to keep monitoring the training almost continuously.

The main alternative is some form of automated search. This could be a exhaustive grid search or a random
search. The advantage of this approach is that it can be executed without manual oversight, allowing to in-
crease the sheer number of combinations that is tried. However, it does not allow monitoring subtle training
signs indicating a direction of search and thus can be seen as a brute force method. A randomised search can
decrease the load, but can easily miss an optimum, since hyper parameter dependence can be very erratic
for complex architectures [46].

In practice it is attractive to use a combination of both. With some manual tuning one can get a feeling for
the influence of different parameters and can make an estimate of the range which is most interesting. A
grid search can then be used to investigate parameters for which no obvious trend exists and/or to fine tune
combinations of parameters. By using automated training callbacks as introduced below, ‘human oversight’
could be automatically implemented to a certain extent. This combined approach has been taken in this
research.

First manual experiments in a wide range of hyper parameter options are performed to define a smaller
search space where a grid search will structurally compare the combinations in a statistically pure way. The
grid search not only serves to find the very best hyper-parameter set, but also to make plausible that the per-
formance found is representative for the potential of a CNN in this situation and not just the result of some
random try. The hyper-parameters of a CNN that have been considered are shown in Table 4.3.

In the manual experiments, many combinations of these hyper parameters have been investigated by mon-
itoring the training process. Based on these findings a grid search grid has been defined. Due to the com-
putational intensity of training, it is just not possible to search all hyper parameters. Therefore, a selection
has been made. Some parameters can be quite well chosen based on theoretical reasoning in the context of
this specific problem, such as the filter width, batch size and class weights, while others can be dynamically

4.4. Evaluation procedure 27

Table 4.3: CNN: Hyper-parameter ranges considered.

Hyper-parameter Setting

No. layers variable: 2-6

No. filters variable: 2-20

Filter width variable: 3-6

Filter no. increase factor | variable: 1-2
Pooling type variable: Max, Avg
Pooling size variable: 2,3
Dropout rate variable: 0-0.6

L2 Regularisation variable: 0-1
Learning rate variable: 0.0001-0.01
Batch size variable: 16-512

No. training epochs variable: 1-200
Optimizer Adam

Loss function Binary cross entropy
Class weights Balanced

Activation functions Convolutional: ReLu, Dense: Sigmoid

Table 4.4: CNN: Grid search variable hyper-parameters.

Hyper parameter Grid options
No. of blocks 2,3

No. of layers per block | 1,2

No. of filters 16, 32

Filter increase True, False
Pooling True, False

controlled during training, such as the learning rate and the number of training epochs. Then there are also
parameters which are universally accepted to have an optimal choice in the vast majority of CNN classifiers,
such as the activation function, loss function and optimiser. The hyper parameters which are fixed in the grid
search are shown in Table 4.5.

The hyper-parameters which are grid searched are mostly the architecture hyper-parameters, since they can
hardly be optimised by theoretical argumentation. To allow investigating complex architectures the following
logic is used for creating networks, based on the hyper parameters showed in Table 4.4. The network is built
by addinglayers in blocks. A block is defined as a certain number of consecutive layers. The ‘number of filters’
is defined as the number of filters in the first block from the input. It can then be set whether the number
of filters increases or not per consecutive block. Per block the number of filters is then doubled. Pooling
determines whether max. pooling is used in between blocks. Using this block structure allows creating a wide
variety of architectures. By setting the number of layers per block to one, the network can be built layer by
layer, while with a larger block size pooling and filter increase can be added only every few layers.

The grid search is optimised in terms of AUROC, for it is a proper metric to evaluate the classifier performance
independent of the decision threshold. The grid search is implemented using a five fold cross-validation
based on a grouped split over the timelines. Note that the validation set used for early stopping and dynamic
learning rate adjustment is a separate one, as shown in the pipeline in Figure 4.3.

Model validation An optimal model will be chosen based on the grid search results. It will then be evaluated
on the test set according to some predefined criteria, many the same as for the RF. These will be discussed in
Section 4.4.

4.4. Evaluation procedure

Evaluating the performance of the models is an essential step in developing a prognostic solution, not only to
see what model performs best, but also to see if the performance is sufficient to be used in a real life scenario.
The performance of the models is tested recursively, in the sense that a part of the historical data is used for
testing as if it where new samples in the future. This testing procedure is a form of validation that the model

28 4. Methodology

Table 4.5: CNN: Grid search fixed hyper-parameters.

Hyper parameter Grid options

Filter width 3

Pooling type Maximum pooling

Pooling size 3

Dropout rate 0.4

Optimiser Adam

Learning rate Max. 0.01, with dynamic reducing
Batch size 64

No. of training epochs | Max. 20, with early stopping

Loss function Binary cross entropy

Class weights Balanced

Activation functions Convolutional: ReLu, Dense: Sigmoid

that has been built is adequate for the real problem. This can be done as long as this test data has in no way
influenced the training procedure.

In general, two different levels of evaluation are distinguished. First of all there is the estimator performance.
How often does the classifier make a correct classification? Secondly, there is the implication of this perfor-
mance on the higher level prognostic performance. The latter depends on the machine learning formulation
that we have used. Suppose that we predict whether an FDE will occur within ten flights. Then the classifier
performance is simply how well it is capable of making this prediction. For the prognostic performance we
need to take into account how we interpret the classifier labels for prognostics. This depends on the interpre-
tation strategy that one chooses. Both levels of evaluation will be discussed here, although the focus lies on
predictor validation, since developing the predictors is the main contribution of the study.

4.4.1. Estimator performance

Testing the prediction performance is about how well the model is capable of predicting the y-label for unseen
samples. We are interested in metrics for classification. Measuring performances on highly imbalanced data
sets can be tricky. The accuracy of a classifier can be very high by just predicting the majority class, but the
model will be useless in practice, since we are interested in the minority class. Choosing the right metrics
is thus an important step in model validation; are we answering the right questions to solve the problem.
Some metrics will be discussed, in order of increasing complexity. Although primarily some of the more
advanced metrics will be used in this study, the simpler ones are discussed to demonstrate the need for the
more advanced measures.

Confusion matrix The confusion matrix is a matrix showing the True Positives (TP), the False Positives (FP),
the True Negatives (TN) and the True Negatives (TN). The ‘positive’ and ‘negative’ refer to the true class of the
sample. In our situation, the positive class is defined as the faulty class, the negative class as the healthy class,
since our label of interest is faulty. The ‘true’ or ‘false’ refers to whether the classifier has predicted correctly
or incorrectly. What is most important to realise it that the confusion matrix is based on a certain decision
threshold on the probability score outputted by the model. This threshold is 0.50 by default, and most studies
reporting a single confusion matrix adopted this threshold. However, this threshold is not necessarily optimal
for the problem at hand. For now the take away message is that a confusion matrix can be calculated for every
possible threshold between zero and one.

Precision and Recall The precision and recall are defined as follows:

.. TP
Precision= ——— 4.1)
TP+ FP
TP
Recall = ——— 4.2)
TP+FN

The recall says how many of the true faulty flights were captured, while the precision says how many of all
faulty labels were really correct. A good classifier in our situation needs both a good precision and recall. A

4.4. Evaluation procedure 29

good recall is required to capture as many of the upcoming FDEs. A good precision is required to have a cer-
tain level of certainty that a FDE will really occur when one is predicted. If the precision is too low, one cannot
act upon predicted occurrences, because that will lead to many unnecessary maintenance actions. Note that
the business case in our situation will very strongly depend on the precision. In the current situation, the re-
call is zero (no predictive maintenance). Any true positive is a nice addition, but primarily the number of false
positives per true positive should be kept under a certain threshold. This threshold can be determined as a
break-even point when the cost of false positives and the benefit of a true positive are known. Note that this
sum should be made based on the prognostic performance rather than the estimator performance. However,
naturally the prognostic precision strongly depends on the estimator precision.

Fg-score For applications where both recall and precision matter, Fg scores offer a solution. They are a
class of scorers that are a weighted combination of precision and recall, depending on the value of . The
scorer is defined as follows:

precision-recall

Fg=(1+p%-
p=0+F) (B%- precision) +recall

4.3)

The most commonly used metric is the F} -score, which can be seen as the harmonic mean between precision
and recall. Although beta scores will be replaced by even more insightful metrics in this research, it is a
conceptually strong metric to keep in mind.

Matthews Correlation Coefficient Although the F;-score takes into account both precision and recall, the
interpretation of the number (anywhere between zero and one), depends on the prior class distribution. As
such, this metric can be difficult for comparing results with different class balances. In that case the Matthews
Correlation Coefficient (MCC) is more useful:

_ TP-TN-FP-FN
V(TP+FP)(TP+FN)(TN+FP)(TN+FN)

McCC (4.4)

The strength of this metric is that it can be interpreted as any other correlation coefficient, in this case it is
the correlation between the predicted and actual labels.

Precision-Recall curves All metrics so far assume one fixed confusion matrix as outcome from a classifier.
However, most classifier are capable of outputting class probabilities. The final class labels are based on a
threshold of 0.5 between the zero and one class. This threshold could be shifted to increase precision at the
expense of recall or the other way around. To visualise the performance of all possible thresholds, Precision-
Recall curves can be used. These plots are created by assessing a range of thresholds and plotting the preci-
sion and recall that can be achieved with that threshold. The attractive side of Precision-Recall curves is, that
they allow choosing any point on this curve that suits the business problem best. In this study a prognostic
after-processing step will be used which is capable of assessing different points on this curve with business
considerations in mind. Therefore, in general we want the estimator to have a Precision-Recall curve which
maximises the area under the curve.

Average Precision To express the goodness of a Precision-Recall curve, it is best to use the so-called score.
This score is the weighted mean of precisions achieved at each classifier threshold, with the increase in recall
from the previous threshold as the weight:

Average Precision (AP) summarises a Precision-Recall curve as the weighted mean of precisions achieved at
each threshold, with the increase in recall from the previous threshold used as the weight:

AP=Y (Ry—Ry-1)Py 4.5)
n

where P, and R,, are the precision and recall at the nth threshold [47]. Note that this is slightly different from
calculation the area under the Precision-Recall curve, which has been shown to be at risk of over estimating
the true performance [48].

30 4. Methodology

ROC curves The curve is comparable with the Precision-Recall curve in the sense that it evaluates multiple
thresholds. The difference is that is plots the True Positive Rate (TPR) as function of the False Positive Rate
(FPR), respectively defined as:

TP
TPR= ——— (4.6)
TP+FN
FpP
FPR= ——— 4.7)
FP+TN

Note that the TPR is by definition the same as the Precision, while the FPR is something different than the
Recall. Where FPR is a inter-class metric, in the sense that it is insensitive to the class distribution, preci-
sion is an intra-class metric. This difference has important consequences for model evaluation. The Receiver
Operating Characteristic (ROC) curve is particularly interesting for seeing how well the model is capable of
distinguishing classes. It is insensitive to changing the class distribution. The Precision-Recall curve is. This
difference is important when sampling techniques are used. If a sampled subset has a different class distri-
bution, this can strongly influence the Precision-Recall curve, while the ROC curve is in theory unaffected.
In contrast to the Precision-Recall curve, the ROC curve is best summarised using the .

4.4.2. Prognostic performance

The main contribution of this research is the development of machine learning models capable of translating
the condition data into a condition label. Therefore, validating the machine learning model performance
is the focus of the evaluation procedure. Still, to be capable of saying something about the potential of the
models for prognostics, some form of validation with respect to the original objective is important. However,
validation of the prognostic performance is not as straightforward as it may seem, as will be illustrated in this
section.

In order to determine the prognostic performance, one needs to translate the predictor performance back to
the prognostic problem. The link in between is the machine learning formulation that has been chosen. This
is best explained through an example.

Suppose a model predicts whether an FDE will occur within ten flights. Then one ideally wants all ten flights
before an FDE to be true positives, but this is not necessarily true. Therefore, one needs to have an interpreta-
tion strategy that is used to base maintenance actions on. Such a strategy should be capable of translating the
predictor label of each flight to an action label. A progressive strategy is to interpret every predicted positive
as a prognostic positive. Then, as soon as a positive is predicted, action is taken. As a more conservative al-
ternative, one could wait for at least three predicted positives in the last five flights, before taking action. This
latter strategy could, depending on the consistency of the classifier, increase the precision at the expense of
recall. Two things are important here. First, one should be aware that the scores could be translated into
maintenance actions in different ways. Secondly, translating the model predictions back to the prognostic
problem has a consequence for the performance metrics. In the machine learning formulation, the number
of positives is not representative for the number of FDEs. There are ten positives per FDE as a result of our
modelling formulation. As an approximation, one could transfer the recall rate for the labels, to the recall rate
for the FDEs. But still, the prior distribution of labels changes, thereby influencing inter-class metrics such
as the (average) precision. If one wants to be really precise, one should translate each prediction label to a
prognostic label based on the interpretation strategy and then calculate the desired metrics.

This creates a new optimisation challenge: what is the optimal interpretation strategy. If one wants to be
hundred percent academically pure, than this last step requires splitting off another test set, which will be
used to validate different interpretation strategies. Within this research this is outside of the scope. Note that
this does not mean that the classifier performances are any less valid, it just means that one needs to be a bit
careful when formulating conclusions towards the prognostic performance.

Prognostic validation is fundamentally difficult. In theory, the ideal form of validation would confirm whether
the model predictions correspond with real imminent failure. Several difficulties arise in practice. Suppose
our prognostic solution outputs a positive prediction. How do we determine whether this is a true or a false
positive? In real life application, one would ideally remove the component and inspect whether some (im-
minent) fault is confirmed in the repair shop. After all, only if some fault shows up in the repair shop testing
procedure, maintenance can be performed. This form could be seen as validation by real-life inspection. It is
not difficult to imagine that this strategy is very impractical and cannot be implemented in retrospect. This
form of validation stays closest to the actual objective that we want to achieve, predict failures.

4.4. Evaluation procedure 31

On the other hand, this form of validation can be argued to be too strict in the light of the assumptions that
we have made in the modelling approach. Strictly speaking, when using FDE as labels, the model does what
it should do when it correctly predicts FDEs. But in that case, how do we validate this? The best approach
possible with this assumption is to use a simulated validation strategy. In that case we simulate that a positive
prediction is a true positive if, in retrospect, it would have led to a FDE within a specified number of flights.
It is a false positive if not. Note that simulated validation is a bit contradictory, but it is the best form possible
in the scope of this research. One should realise the limitations of the validation procedure.

The prognostic (simulation) strategy that is used in this research is as follows. The raw probability score of
the faulty class is monitored over time through a moving average. A certain threshold is put on this moving
average. Passing of this threshold triggers a prognostic positive prediction. Depending on when this positive
happens (within the RUL threshold or before), it is either counted as (respectively) a true positive or a false
positive. If an FDE occurs without any true positive in advance, a false negative is counted. Note that in
this way it becomes possible to count true positives, false positives and false negatives. A timeline can have
maximally one true positives, since it is assumed that the repair following this event, resets the timeline.

The number of false positives possible per timeline depends on the operational choice of how to respond to
a new positive advise after an earlier false positive. Two sub-strategies are possible. First of all, one could
ignore every advise after the first false positive, which limits the number of false positives per timeline to one,
but excludes the possibility of any true positives. As a result the recall can be lower for a lower probability
threshold, which can be a bit counter intuitive at first.

The alternative is to keep responding to positive advisories, at the risk of multiple false positives, but at the
potential win of capturing a true positive (and preventing a false negative). All sorts of strategies are possible
in between these two extremes. One could for example define an increase to the threshold after a false positive
or use derived metrics such as the derivative of the moving average or the standard deviation of the original
signal from the moving average. This is outside of the scope of the research, but is an interesting direction for
further research.

There is one more situation which requires further explanation. It is possible that the first moving average
reading after installation is already above the threshold. In this case it is assumed that this triggers action,
because the components may already be faulty on installation.

For different score thresholds and RUL horizons the precision and recall can be determined as well as the
‘business value’. The latter can then be optimised. The business value V can be given in terms of the Precision
and Recall of the prognostic model (which are different from the estimator metrics):

v

_— :(—c~(f—1))-Recall (4.8)
Removal Precision

In this formula, b are the benefits associated with a True Positive and c are the costs associated with a False
Positive. For a certain ratio between b and c this function this function can be evaluated for the different
Recall and Precision possible at varying Probability threshold and RUL threshold. As such the value can be
optimised in terms of the probability threshold and the RUL threshold. To keep the results of this study as
universal as possible, for several ratios between b and ¢, the optimum value will be calculated as a function
of the RUL threshold. The value will be expressed as an index number, which should be multiplied with the
benefit per true positive, to get the value per removal. To calculate the value for the total fleet per year, this
number should then be multiplied with the number of removals of the Bleed Air Valves per year.

As an extra analysis, the aspect of the maintenance policy is taken into consideration a bit further. From the
perspective of preventing unscheduled removals, assuming a larger RUL threshold is beneficial. However,
from a depreciation perspective, assuming a larger RUL threshold is costly, since the removal and repair costs
need to be depreciated over a shorter time between removals. A rough optimisation of this aspect could be
included in the analysis. By taking into consideration the mean time between removals, it can be calculated
for different RUL thresholds, what the relative increase in depreciation is. This is done by summing over all
timelines and taking into account the average decrease in RUL. The extra depreciation cost c; is calculated
as follows:

. MTBR

e l——— _ql.¢ 4.9
d =\ MTBR - MTBR™ d 49

Here, MTBR is the mean time between removals, MTBR™ is the decrease in the MTBR as a result of the pre-
dictive policy and ¢y is the current depreciation cost on removal and repair per timeline. For the sake of

32 4. Methodology

simplicity the latter is assumed to be equal to the typical cost of a removal/repair, which is assumed for the
costs of a false positive as well, so c; = c. Note that these assumptions are quite rough. The analysis is not so
much about the outcome in this study; it is about developing a structural methodology for determining the
value of a predictive maintenance strategy. The MTBR™ is determined by determining the decrease in TBR on
individual timeline basis and averaging this out over all timelines.

When applying the simulated validation as introduced above, one should be aware of the limitations of the
simulation approach. Knowing the limitations of the approach allows drawing the proper conclusions from
the results. In the aforementioned analysis, the probability threshold is a model coefficient which can be
optimised. The RUL threshold is more difficult to grasp. It is not a model parameter, it is a parameter of
the simulated validation strategy. As such, changing it does not change the model and as such not the (purely
theoretical) ‘real life performance’. The number can be interpreted as the RUL under which we assume that an
FDE canindeed be predicted. Not only do we not know this number, it is also an oversimplified representation
of how faults develop into an FDE occurrence.

Still, the analysis is very valuable. When validating purely within the scope of the modelling assumptions
made in the research, we could validate at a RUL threshold of 10 flights. After all, the whole model has been
trained on this assumption. One should just realise when drawing conclusions, that the validation outcome
is valid in the light of these assumptions. In addition, the relation between the RUL threshold and the per-
formance metrics, could provide valuable information on what threshold fits natural to the data. This insight
could then be used for iterating on the whole methodology presented in Figure 4.1. A new model could be
trained with the new threshold, and the validation strategy could be repeated. It would be interesting to see if
this approach would converge to the optimal threshold which could be achieved in real life. Further research
should confirm this.

To keep the results of this study as universal as possible it is assumed that there is a certain ratio between the
benefits of a true positive and the costs of a false positive. These benefits and costs could be purely financial
or they could be an artificial metric taking into account a broader range of value drivers.

For all other experiments, the predictor performance is used as a proxy for the prognostic approaches, since
they are clearly very strongly correlated.

Results

In this chapter the results of the experiments presented in chapter 4, will be discussed. Fist the results of the
Random Forest (RF) model are presented, followed by the results of the Convolutional Neural Network (CNN)
model.

5.1. Random Forest

The RF model hyper-parameters are first optimised using a grid search. Next, the final performance, both
the estimator performance and the prognostic performance, is measured on a separate test set. The next
two section will present these results, followed by some important validation and verification steps. The
last section will present a sensitivity analysis with respect to the hyper-parameters and several modelling
assumptions.

5.1.1. Model performance

The performance of the model can be expressed in two ways. First of all, it can be evaluated how well the RF
has been capable of fitting the training data. However, that does not guarantee any performance in real life.
The model may have overfitted (or in rare cases underfitted) the data. Therefore the model is validated on
the test set. The test set has been split off in such a way that the performance of the model on the test set is
representative for its performance when it would be used in the future on newly generated data.

The test results are generated using the RF model with the best hyper-parameters from the grid search pro-
cedure in terms of average precision score. The results of all model hyper-parameter combinations that have
been investigated, is included in Appendix D.

The key performance metrics are shown in Table 5.1. The training metrics are based on the Out-Of-Bag score
of the RF model. The Receiver Operating Characteristic (ROC) curve and Precision-Recall plot are shown in
Figure 5.1 and 5.2 respectively.

The Area Under Receiver Operating Characteristic (AUROC) scores of well above 0.50 indicate that the clas-
sifier successfully learnt a signal from the data that correlates with imminent Flight Deck Effect (FDE) occur-
rence. The training scores are quite a bit higher than the test scores, which are an indication of overfitting,
which is important to look into a bit more. By nature, RF models are relatively robust to overfitting due to
their bootstrapping principle. Still, they are not immune to overfitting and the huge number of features that
our model has been presented with is challenging. What is more surprising, is that this very model came out
best from the grid search procedure. After all, theoretically, this model is one of the models most prone to
overfitting of all models evaluated. It has a relatively small leaf size and splitting minimum, and it consid-
ers quite a large share of the features at each split. Still, it did perform best in the five fold cross-validation,
although what mainly stood out, is that the cross-validation scores are really close together. A possible ex-
planation is that the model learnt a reliable signal to some extent, after which is started overfitting on noise.
This overfitting does increase the score, but does not really compromise the a certain ‘base score’. This could
be possible in a decision tree structure. The highest splits are capable of capturing signal, while splits further
down in the tree have overfitted.

33

34 5. Results

Table 5.1: RF: Performance metrics on the training set and test set. The number between brackets is the standard deviation based on
five independent fits on the training data.

Metric Training Score | Test Score
Average precision | 0.288(+0.002) 0.182(+0.002)
ROCAUC 0.751(£0.002) 0.627(£0.001)
ROC curve Precision-Recall plot
1.0 1 1.0 1
0.8 1 0.8 A
[
[
v 0.6 1 _S 0.6
= @
3
< 0.4 & 0.4
2
=
0.2 0.2 A
0.0 A 0.0 A
ofo ofz of4 0t6 0t8 1?0 ofo 0t2 0t4 0?6 0?8 1?0
False Positive rate Recall
Figure 5.1: RF: Receiver Operating Characteristic Figure 5.2: RF: Precision-Recall plot of the test set
curve of the test set performance. performance.

One of the theoretically more robust RF models has been tested on the test set (Max. features per split =0.1,
Min. samples per leaf = 100, Min. samples per split = 100, No. of trees = 300). This model showed a slightly
higher test set performance (Average Precision = 0.195 and AUROC = 0.628), but quite a bit lower training
set performance (Average Precision = 0.252 and AUROC = 0.729). The fact that the grid search procedure is
not capable of selecting this model over the ‘optimal model’ can be explained from the fact that the data
sets are simply too small for optimal validation. Although the sheer number of samples may sound quite
large, the number of timelines is much smaller and the number of timelines per FDE type is even smaller
still. If, by pure randomness, some timelines of difficult to predict FDEs end up in the test set, this could
strongly influence the behaviour. There is one alternative possible to this randomness. One could use a
cross-validation procedure for testing. The big drawback is that this leads to a nested cross-validation for
the grid search validation, which is computationally very heavy. Using a five fold cross-validation for testing
would increase the time needed for the grid search with a factor of five.

The Precision-Recall curve deserves some further attention. As one can see, the recall is quite good, while the
precision lacks behind. This means that the classifier is quite well capable of pointing out faulty samples, but
in doing so, it creates many false positives. It seems not very well possible to exchange recall for precision.

5.1.2. Prognostic performance

Using the prognostic model described in Subsection 4.4.2, the estimator output is translated into a prognos-
tic performance. The results shown here, are for the strategy in which a timeline can have more than one
predicted positive, which corresponds with the situation that one would respond to every positive advisory.
Using the prognostic model described in Subsection 4.4.2, data is translated into a prognostic performance.
To show the influence of the RUL threshold and the class probability threshold, heat maps for the precision
and recall are shown in Figures 5.3 and 5.4 respectively.

In general, we see for the precision, that increasing the probability threshold and RUL threshold both leads
to an increasing precision, which is expected. For the recall, we see that it tends to decrease with increasing
probability thresholds. Increasing the Remaining Useful Lifetime (RUL) threshold does also increase the re-
call. Both are in line of expectation. Also, two heat maps of the business value index are shown in 5.5 and 5.6
for a certain assumed ratio between costs of a False Positive and benefits of a True Positive. The figures are
for ratios 0.2 and 1.0 respectively. For both settings we see that a positive business case is possible, which gets
more and more positive for an increasing RUL threshold. Note that the probability threshold can be chosen

5.1. Random Forest 35

Prognostic precision as function of RUL and probability thres1hé)ld Prognostic recall as function of RUL and probability threshﬁl(;:l

0.73
0.8 o 0.8
- 5 061
3 [=}
< ? 06
3 0.6 ¢ 055 !
£ £
2 2 0.49
3 3
S 0.4
§ 04 8 043
o o
0.37
0.2 0.2
0.31
0.0 0.25 0.0
50 200 350 500 650 80.0 950 50 200 350 500 650 80.0 95.0
RUL threshold RUL threshold
Figure 5.3: RF: Heat map of the prognostic precision as Figure 5.4: RF: heat map of the prognostic recall as function
function of the probability and RUL threshold. of the probability and RUL threshold.
Prognostic value as function of RUL and probability threshold Prognostic value as function of RUL and probability threshold
0.73 0.60 0.73 0.3
0.67 0.67
0.45 0.0
5 061 5 061
o o
@ @
§ 0.55 $ 055 [
= 0.30 £ -0.3
2049 2049
3 3
8 8
S 043 015 S 043 -0.6
o o
0.37 0.37
0.31 0.00 0.31 -0.9
0.25 0.25
50 200 350 50.0 650 80.0 95.0 50 200 350 500 650 80.0 95.0
RUL threshold RUL threshold
Figure 5.5: RF: Heat map of the added value index as Figure 5.6: RF: Heat map of the added value index as
function of the probability and RUL threshold, with function of the probability and RUL threshold, with
valuepp =—-0.2-valuerp valuepp =—1-valuerp.

optimally per RUL threshold.

What these figures no not yet take into account is the fact that a higher RUL threshold means a shorter mean
time between removals, which increases the ‘depreciation’ of the removal/repair costs. For the sake of com-
pleteness, this aspect has been added to the analyses as is explained in Subsection 4.4.2. For the depreciation
cost increase, it is assumed that the cost of the removals/repairs and false positives is equal. Note that in real
life, it is more probable that false positives are somewhat less expensive, since they do not require repair, only
removal and diagnosis. Still, for the sake of this analysis, it is a good starting point.

Figure 5.7 shows on the left the maximum prognostic value as a function of the RUL (as a result of preventing
unscheduled removals). The middle plot shows the increase in depreciation cost on the same y-axis scale
due to decreasing time between removals (as a result of preventively removing components). The right figure
shows the net result when the increasing depreciation cost is discounted from the predictive maintenance
benefits. This exercise is shown for various cost/benefit ratios. The index value on the y-axis should be mul-
tiplied with the benefits per True Positive and the total number of removals per year to get the total added
value per year.

The main strength of these plots is that they allow evaluating multiple business situations and (simulated)
validation assumptions in one overview. The figure can also be used to say something about the expected per-
formance in real life. One should be aware that this performance cannot be seen separate from the assump-
tions made in the modelling and validation approach. At a RUL threshold of 10, which is consistent with the

36 5. Results

Maximum prognostic value per RUL threshold Extra depreciation per RUL threshold Max. progn. value with depn. per RUL threshold

0.6
C/B ratio C/B ratio C/B ratio
— 0.2

0.4
044 — 06
— 0.8
— 1.0

0.2 1

0.0 1

Maximum prognostic value index

-0.24

T T T T T T y T T T T T T T T T T T
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
RUL threshold RUL threshold RUL threshold

Figure 5.7: RF: From left to right, the added value of preventing unscheduled removals, the extra depreciation costs due to preventive
removals and the net sum of these two, which represents the total added value of the predictive maintenance strategy.

y-labelling, we see that a positive business case is possible, for which the value depends on the cost/benefit
ratio. The figure shows something else that is very interesting: the prognostic value increases strongly until
a RUL threshold of around 35 flights. This may say something about the approximate detectability horizon
of FDEs (averaged over all different FDEs. It is likely that retraining a model with a y-label based on a higher
threshold than 10 will thus increase the performance of both estimator and prognostic model. This would be
an interesting direction for further research.

5.1.3. Validation & Verification

Validation is the process of determining whether the model is adequate for the actual objective it aims to
achieve. Verification is the process of assessing whether the model is achieving its objective in a correct man-
ner (in the way that is conceptually expected) [49]. The difference between verification and validation in
machine learning is not so clear as for some other engineering fields. One might argue that measuring the
performance on the test set is a form of verification. Still, this is generally considered a form of validation,
since the test set is taken as a representation of the real world. Verification in machine learning should in-
vestigate if a model gets to its predictions in the right manner. Still, this is not as straightforward for machine
learning models. After all, the value proposition of self-learning algorithms is that they determine statisti-
cally what manner best fits the problem. Still, for well interpretable models, such as the RF, it can be verified
whether the learnt relationship is plausible from an engineering perspective. Several validation and verifica-
tion experiments are presented here.

Validation

Validation in the scope of this research has two levels. First of all, the machine learning model (the estimator)
in itself should be validated. Does it produce the labels that it should produce? Secondly, the whole prob-
lem solving approach should be validated. Are the model predictions adequate for the prognostic problem
there are supposed to solve? The difference between the two lies in the prognostic interpretation strategy of
the estimator predictions. First the estimator validation is presented, after which the prognostic approach
validation is discussed.

The validation procedure used in this research is to keep a separate test set isolated from the full methodology
and to test the final model on this test set. This is the final model performance which has been presented in
Subsection 5.1.1. Note that this procedure is actually performed twice. First, for ‘validating’ the grid search
results to determine the best hyper-parameters. Secondly, for validating the performance of the whole model,
which should be a reliable estimation of how the model would perform on implementation. What could be
confusing, is that mostly in the machine learning community, the first set is called the validation set and the
second set the test set, although they both serve the purpose of validation. This analogy has been followed in
this research. The first validation split has been implemented through means of a five fold cross-validation .
Ideally, the test set (and validation set) is split off such, that any performance on the test set can only be
attributed to the model. From that standpoint, the split has been made on a timeline basis rather than on
individual flight; in the latter case, performance found on the test set could be the result of some correlation

5.1. Random Forest 37

between neighboring flights which has nothing to do with imminent FDE occurrence. At the start of the
research it was assumed that any correlation between neighboring flights is broken on an FDE occurrence,
which in its turn was based on the assumption that some repair is performed that returns the component to
a ‘as good as new’ status.

However, based on follow-up interviews with the repair shop, it was concluded that there are quite some ‘No
Fault Found’ situations. Besides the problem that this poses for defining the training labels (which will be
discussed in Chapter 5) this demands a critical attitude towards the original test set splitting. Think about a
relatively short timeline, let us say eight flights. Suppose now that right before installation, it was removed
based on an FDE which was actually a ‘No Fault Found’ situation. In that case it may be unrealistic to assume
that the component is ‘memory-less’ when it is installed back. Now suppose that the oldest timeline ends up
in the training set, and the youngest one in the test set. On validation, when the test flights of this timeline
are correctly labelled as positives, this could theoretically be leakage from the training set.

For this reason, the validation procedure has been repeated, but now in a time-wise fashion. This means that
all flights in the test set have taken place after the last flight in the training set, to minimise the contact points
between training and test set. With these sets, the best RF model has been refitted. This gave an ROC AUC of
0.624 and an Average Precision of 0.185. These results are equally good as the old validation procedure (within
th uncertainty margin), indicating that the leakage effect is minimal, if not non-existing. Note that another
validation approach would be to split the data set based on components rather than timelines. There are two
reasons not to do so. First of all, from an implementation perspective it is just not feasible within the scope
of this research since all data is generated per aircraft bleed position, rather than per component. Making
the translation between the two requires reliable component tracking, which is not available in this study.
The second reason is performance motivated. The goal of validation is to provide a reliable estimation on
how well the model would perform in real life implementation. A real life implementation allows training on
the historical data of all components, and as such the model learns to generalise over all these components.
Excluding some components from the training procedure, may lead to poorer performance on those very
components when the model is in production.

Besides this estimator validation, there is also a larger problem solving approach validation. Is the prognos-
tic performance that we presented representative for the performance expected in real life? As mentioned
before, the prognostic model is not the main focus of the research and has been presented more as a means
of showing what is possible with the estimator results. Therefor formal validation of this step is outside of
the scope of this research. Still, the results are quite plausible since the risk of overfitting in this step is lim-
ited. The only parameter that has been chosen to create the value plots is the moving average period. The
interpretation strategy is way too simple for that single parameter, which has not even been grid searched, to
completely change the results. One should be careful with selecting one single ‘best’ RUL threshold, because
this selection step is much more prone to overfitting. If in follow-up research more complex interpretation
strategies will be developed to boost the performance further, it is recommended to formally validate this
step. This could be achieved by splitting off a part of the timelines before designing the interpretation strat-
egy and testing on that split in the end.

Verification

The concept of verification is particularly interesting for machine learning (and especially deep learning).
Machine learning practitioners have traditionally relied primarily on validation. A classifier is typically eval-
uated by applying the classifier to samples drawn from a test set and measuring certain performance metrics
on these samples. However, by definition, such a validation procedure cannot find all possible — previously
unseen — samples that may be wrongly classified [50]. Verification is about producing a compelling argument
that the system will not misbehave under a very broad range of circumstances that we could expect in real
life. [50]. What makes this concept rather challenging in machine learning, is that the we have actually on
purpose designed a model that teaches itself how to perform the task at hand. Fortunately, for a RF that uses
well interpretable features, we could investigate what features the model has used mostly for doing its job.
The we could, from an engineering perspective, verify whether these features are in line of expectation.

Feature importances A RF allows calculating feature importances, to show which features are most dis-
criminative. The 25 most important features are shown in Figure 5.8. This feature importance is the ‘gini
importance’ and is calculated as the total decrease in node impurity (weighted by the probability of reach-
ing that node) averaged over all trees of the ensemble. Note that no features really stand out, which shows

38 5. Results

Feature importances

0.012 4
I Importance
0.010 4
[V
2
< 0.008 -
£
o
Q
£ 0.006 A
e
2
@ 0.004 -
w
0.002 4
0.000 -
PR LR L IRV PSP LEINLEFTPTRELSHN
TSI & 7 (FE P e o &
$\6 & ’b+\ @6 {\\b é\b \/@ {«\\b & $© ‘)e(\ ’b+\) $\6 ‘e\ ‘o\ o RS oé & e:s(- ‘_®$ s\b
ot AN NG YO o e SO S
N QMO QN ST SR @K T @ P P & QN
LR L LTSS S EE TS ETS FESE
PP SN \.0 ‘co » (E &L S 5 & < \x\"b b\e & S @ AP
IO I I i e N R ¢ > & .0 TR v
¢ & e & H ¢ & . & S &
5" o o o L & L @ o N o N @& & 3 <@ o
& & & & & @ & KR & < NN &8 <) &
& & &SRS N of O D & &
O O O XT . OF & ®F © > KL > o &
B SR S P S o L 9 & N
& @ & & N
N N <& <
< \bb
A

Feature

Figure 5.8: RF: Feature importances of the 25 most important features.

the complexity of the signal. It would be much easier if there would be one feature standing out, such as for
example the maximum pressure, the variance of the temperature, or the correlation between different bleed
signals. Apparently there are no easy wins for this signal. The distinctive capacity of the estimator is based on
the combination of many complex time signal features.

Several features are worth mentioning, either by their occurrence in the top 25, or by their absence. Strongly
present are several Continuous Wavelet Transform (CWT), which are characterised by the width of the Rick-
ler wavelet used for the transformation, and the time coefficient [42]. These wavelet transforms are typically
good at capturing very local, sudden dynamics in the signal at the expense of a very large feature space (in
comparison with a Fourier transform for example). What is interesting, is that only several coefficients are
calculated in the standard tsfresh library settings, corresponding with only the very beginning of the time
domain. As such, these features are local features in the very beginning of the time series, at the start of the
ascent flight phase. It would be an interesting follow-up experiment to test how a full CWT domain would per-
form. However, this leads to many more features, and actually makes the sheer size of the model input larger
than the original multivariate input series, since for each wavelet width a full time domain representation
is created. As an alternative, one could calculate simple statistical features from each wavelet-specific time
representation and feed those as features. However, this would be an advanced form of feature engineering
that is outside of the scope of this work.

Another feature which is worth mentioning, is the correlation of the pressure signal with the other bleed sys-
tems. Although it ranks quite high, it is remarkable that this feature does not hold more information. The
same is true for the features that are calculated based on the difference with the other bleed systems. [20]
showed that a correlation feature for the Integrated Drive Generator (IDG) system did hold quite some infor-
mation. The difference could be explained by the dynamics of the bleed system, compared with the dynamics
of the IDG. The bleed system responds relatively delayed and unpredictable to changes, since components
are in connection with each other through pressurised air. This air is compressible and can thus have a very
indirect reaction. The counterpart for the IDG was electrical current, which has a much more direct reaction
to change. Due to this indirectness, the correlation between different bleed systems (responding to the same
environmental change) could very well be lower than for the IDG.

For the big picture of the study, the most important conclusion of the feature importances is that it is very
difficult to formulate appropriate features that distinguish faulty from healthy behaviour and that no easy
wins are possible.

5.1. Random Forest 39

Precision & Recall per FDE

PRESSURE REGULATING VALVE/ CONTROLLER FAIL OPEN B Precision
Recall
PRSOV TEMPERATURE TOPPING FAIL
HIGH PRESSURE SHUTOFF VALVE FAIL
FAN AIR MODULATING VALVE/FATS FAIL OPEN
PRV/CONTROLLER SOLENOID FAIL OPEN
é PRESSURE REGULATING VALVE/ CONTROLLER FAIL CLOSED
TEMPERATURE CONTROL SYSTEM FAIL OPEN
FAN AIR MODULATING VALVE/FATS FAIL CLOSED
HIGH PRESSURE SHUTOFF VALVE FAIL CLOSED

HIGH PRESSURE CONTROLLER/HPSOV FAIL CLOSED

HIGH PRESSURE CONTROLLER LOW PRESS SWITCH FAIL

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Precision | Recall

Figure 5.9: RF: Recall and Precision per FDE; the FDEs are sorted based on occurrence frequency in descending order (most frequent
one on top).

True positives For the classification approach taken here, all FDEs have been merged into one class. How-
ever, by keeping track of the original FDE labels, it is possible to investigate in retrospect how the recall is for
different FDEs.

Figure 5.9 shows the (estimator) recall per FDE (more on the precision in the next paragraph). This figure
shows an important finding. Apparently, the recall, or the true positive rate, for certain FDEs is really much
higher than for others. It differs between 0.88 for the highest scoring FDE and 0.0 for the lowest scoring FDE.
Some of the high and low recalls make sense when considering the nature of the underlying ‘failure mode’.
The Fan Air Modulating Valve (FAMV) regulates the temperature, which is a quantity directly at our disposal
in this study. The finding that FDEs on the FAMV could well be recalled was suspected by the Engineering
department at KLM, so it is interesting to confirm that it is indeed possible.

On the other hand, the High Pressure Controller Low Pressure Switch is a component for which we have no
measurements at all. Two components that are particularly interesting are the Pressure Regulating Valve
(PRV) and Pressure Regulating Valve controller (PRV CTRL). The FDE corresponding to these components
occurs in two variants, depending on whether is occurs in the open or closed position of the valve. Apparently,
the FDE in the open position is much more often recalled than the one in the closed position.

In Appendix E the feature importances are shown for the true positives, split out per FDE type. This informa-
tion shows some very interesting things. First of all, we see that the FAMV, which controls the temperature,
is best described using features from the temperature signal, as expected. However, it does also use pres-
sure and pressure difference features. The other valves mainly use the pressure signal, although sporadically
temperature features. Also interesting is that the absolute value of the highest importances is not one-to-one
related to the recall for that FDE. The ‘FAMV FAIL CLOSED’ FDE has lower importances than the ‘FAMV FAIL
OPEN’ FDE, although the recall is higher.

False positives As we have seen, the overall performance of the estimator is, at this point, largely limited for
practical implementation by the low precision. As such, it is interesting to study the false positives in some
more detail. The difficulty of the false positives is that it does not make sense to split them out per FDE, since
their true label is precisely the absence of any FDE. We could split them out by upcoming FDE, but still, that
is not expected to be very informative. We could analyse what features contribute most to these predictions
and compare them with the features for the true positives. Figure 5.10 shows the feature importances that
contributed to the False Positive Labels.

A more advanced alternative would be to investigate to what FDE a false positives could most likely be at-
tributed. Although the classifier does not work like this, using individual FDEs, we could assess per false posi-

40 5. Results

Feature importances False Positives

0.0200
0.0175 -
8 0.0150 A
C
©
5 0.0125
Q
E
90.0100-
2
© 0.0075 4
()]
w
0.0050
0.0025
0.0000 -
&\,é‘ ‘(19 \;@ $’19 @”Q Q’Q \‘\"9 \g@ N \@q"” & @«9 S \,bq“f QQ.” \,bg"’ QP & & N \g@ {\«9 @5'00& &
B I R N R P P NI S N AR A SN NP SRS
& & KK S Y & LKL o T
TR L LLL T T @ o o & EFFEFELCR S
K S S Q@ & Q&Qo Q& & \bQQ LS e@»\,\'
CEE ISR TR GRS TS S &
X o s s s 5 & & & & <& & N N S
R N NN > Z o @ R &L &
TR FTR & TG g
AN S R RN N & Q 3 S & K
S S & Q & &
* 1N & & &
S Q N & g
\d & N
O > ©
>

Feature

Figure 5.10: RF: Feature importances of the 25 most important features for the False Positives.

tive, the features that led to the false positive classification. Then we could naturally ask the question why the
estimator learnt using those features for classification. Roughly speaking, this is due to samples which could
have been classified correctly based on these features (amongst which the True Positives). As such, we could
determine a feature importance vector in N-dimensional space, where N is the number of features, for each
FDE. This vector is the average of all feature importance vectors of the true positive samples for that FDE.
For each individual false positive sample the feature importance vector can be compared with all FDE-specific
feature importance vectors. By searching the nearest neighbour, it can be determined what typical FDE true
positive it mostly resembles. In this way it could be assigned, very roughly, as a false positive to one of the
FDEs. Note that there are many assumptions and simplifications in this analysis. It is fundamentally different
than a multi-class approach, since the gini criterion of the splits is based on binary class purity, not multi-
class purity. A practical consequence is that the number of false positives could have been higher for an FDE
in single-FDE prediction; some samples which are now attributed to another FDE, might have ended up as
false positive in the single-FDE prediction. Therefor, one should realise the limitations of these findings.

Still the results are interesting to guide follow-up research. One could for example, see how the overall perfor-
mance changes, when certain very badly performing FDEs (according to this analysis) are excluded. Or one
could try a single-FDE model and start with the most promising one.

Within the limitations of this analysis it does jump out, that there are significant differences in performance
between the FDEs. Some FDEs have zero recall and precision, whilst others score quite a bit better than the
overall performance.

Single FDE prediction Based on the findings from the individual FDE analysis, it would be interesting to
see, how a single-FDE model performs and if the analysis makes sense. For that reason the RF has been re-
trained with only the FDE PRESSURE REGULATING VALVE/ CONTROLLER FAIL OPEN, again using the same
grid-search procedure to find the optimal parameter settings. The optimal settings were found to be the same
as for the all-FDE model. The test set performance metrics are shown in Table 5.2. Opposite to what we found
for the all-FDE scenario, the test set performance is higher than the training set performance. This situation
is rare and can be explained from the very, very small number of timelines in the test set (much smaller than
in the all FDE situation). The difference between the numbers could be explained by a few timelines of easy
to predict FDEs in the test set.

The ROC curve and Precision-Recall curve are shown in Figure 5.11 and 5.12 respectively. The model performs
quite a lot better than the all-FDE configuration. Note that even when the classifier is very good in terms of

5.1. Random Forest 41

Table 5.2: RF single-FDE: Performance metrics on the training set and test set. The number between brackets is the standard deviation
based on five independent fits on the training data.

Metric Training Score | Test Score
ROCAUC 0.791(£0.003) | 0.843(+0.002)
Average Precision | 0.202(£0.004) | 0.296(+0.005)

ROC curve Precision-Recall plot

1.0 A 1.0 A

0.8 1 0.8 A
g
e
¢ 0.6 1 _S 0.6 -
= 0
w o
g o
L:; 0.4 1 a 0.4
2
= °

0.2 1 0.2 A

0.0 1 0.0 A

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate Recall
Figure 5.11: RF single-FDE: Receiver Operating Figure 5.12: RF single-FDE: Precision-Recall curve of

Characteristic curve of the test set performance. the test set performance.

AUROG, still the precision is relatively lower than the all-FDE situation since the class imbalance has become
even larger. Therefore one has to be careful what metric to look at for what conclusion. For the recall and
precision we could best look to Figure 5.12. The precision-recall point (Precision: 0.31, Recall: 0.57) that
followed from the previous FDE analysis is shown in the figure as a dot; it is actually quite close to the curve.
It is slightly over optimistic as was already introduced as a risk of the analysis. Looking at the curve itself,
we mainly see that for this FDE it is possible to trade-off recall for precision quite well. This is optimistic for
determining a prognostic performance.

In Appendix F in Figures E1, E2, E3 and E4 the Precision, Recall and Value for two cost/benefit ratios as
function of the RUL threshold and prediction score threshold are shown.

The prognostic value plot is included here in Figure 5.13. It shows from left to right, the added value of
preventing unscheduled removals, the extra depreciation costs due to preventive removals and the net sum
of these two, which represents the total added value of the predictive maintenance strategy.

Maximum prognostic value per RUL threshold Extra depreciation per RUL threshold Max. progn. value with depn. per RUL threshold
C/B ratio C/B ratio C/B ratio

0.5 1 11— 0.2 1
H — 0.4
2 oul | — o6 |
g — 038
= — 1.0
g
£ 0.3 4 4
@
o
c
o
2
S0.2 4 4
€
3
£
3 0.1 1 1
=

0.0 1 1

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
RUL threshold RUL threshold RUL threshold

Figure 5.13: RF single-FDE: From left to right, the added value of preventing unscheduled removals, the extra depreciation costs due to
preventive removals and the net sum of these two, which represents the total added value of the predictive maintenance strategy.

42 5. Results

As expected based on the pure estimator performance, for this single FDE it is possible to get a higher prog-
nostic performance. Its noteworthy that the optimal RUL threshold is much higher than for the all FDE case.
This can be explained from the fact that many timelines show gradual ascending behaviour already quite
early, while on the contrast, the extra depreciation is limited since the average timeline length is much higher
than the all FDE situation. What these findings support is that it may be suboptimal to use one machine
learning model and one prognostic interpretation model for different FDEs combined.

5.1.4. Sensitivity analysis

Our final model contains a certain set of hyper-parameters. Our problem solving approach contains a certain
set of assumptions. A question that remains is how sensitive to these hyper-parameters and assumptions the
model is.

Hyper-parameters

The sensitivity to the hyper-parameters can be deduced from the grid search results, which have been used
to find the optimal model. These results are included in Appendix D.

The top ten results are all quite close together in terms of Average Precision and AUROC scoring, and taking
into account the standard deviation on the score, could be considered practically equal. Also, the standard
deviations of the experiments are comparable, showing that all combinations are approximately equally con-
sistent over the cross-validation splits. The standard deviation can be explained from the fact that the vali-
dation splits are made randomly. Since some FDEs can be predicted and others not, this leads to a certain
amount of stochastics in the results. Before going into details on the individual parameters, the most impor-
tant finding is that it is unlikely that another combination of hyper-parameters is going to produce signifi-
cantly better results. Also, the model performance is very robust to tuning its hyper-parameters in the range
considered, which is an attractive characteristic for industrial implementation. Out of academic interest, the
hyper-parameters will still be discussed.

Figure 5.14 shows the sensitivity of the mean test performance on the hyper-parameters. Each point in the
plot corresponds with a certain hyper-parameter setting. The hyper-parameter of interest is plotted on the
x-axis. As such, the plots show the distribution of test scores (due to changing the other hyper-parameters),
for different settings of the hyper-parameters of interest.

It can be seen that the minimum number of samples shows an interesting relation. For the values considered,
the value of 20 seems to be optimal. As expected, the variance amongst the scores decreases slightly for
a large number of samples per leaf. This is because a smaller leaf size increases the risk of over-fitting to
the data. The minimum number of samples per split shows a slightly similar behaviour in terms of within-
group variance for the same reason. The performance seems quite insensitive to this parameter, which can
be explained from the fact that its influence is overshadowed by the minimum number of samples per leaf
parameter. For the maximum number of features per split, the results also seem to be practically insensitive
for the range considered. The number of decision trees does seem to have some influence, which is expected.
The performance increases with the number of trees, which is exactly the value proposition of the ensemble
strategy. Still, the slight increase does not suggest completely different performances when the number of
estimators is further increased.

Problem solving assumptions

Before the machine learning model is applied, the prognostic problem is translated into a machine learning
formulation. It would be interesting to know to what extent the choices made in this step, which are pre-
sented in 4.1, influence the potential of the machine learning model. Testing this, is generally much more
complex, since it requires new pre-processing, redoing the grid search and new after-processing to make the
results of different models comparable. Therefore, alternations to this approach are recommended for fur-
ther research. One assumption was tested to some extent by comparing the single-FDE model performance
with the isolated FDE performance from the all-FDE model. These results were presented in Subsection 5.1.3.
With respect to the prognostic model, it has been demonstrated how the results shown are quite sensitive
to the ratio between the costs of false positives and the benefits of true positives by plotting the results for
various ratios. There is also a high sensitivity to the RUL threshold used for the simulated validation. Another
aspect of the prognostic model that has been investigated is the false positive strategy. In Subsection 4.4.2
it has been set out how one could ignore positive advisories after a false positive, rather than keep acting
on positive advisories. This approach is shown in Figure 5.15. The results are practically equal to the other
strategy and definitely no structural difference is visible. This suggests that the results are very robust to the
false positive follow-up strategy under the assumptions made in this study.

5.1. Random Forest 43

Influence of min. no. samples per leaf Influence of min. no. samples per split
0.215 A 0.215 A
§0.2101 ° §02104°
@ @
3 (] o} s 8 o
a] s s °
;020518 ' . > 0.205]
o o Y []
> o L] > '
© ©
 0.200 1 . l & 0.2004° i ¢
() (7]
s ! | s s s
0.195 A 0.195 A
OVIQO L T T T T T 0'190) T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Min. no. samples per leaf Min. no. samples per split
(a) Influence of the minimum number of (b) Influence on the minimum number of
samples per leaf. samples per split.
Influence of max. no. features per split Influence of no. decision trees
0.215 A 0.215 A
§ 0.2101 ° 5 0.2101 ¢
o X
8 . i 8 o §
2 0.205 i 2 0.205 1 °
o (]) 4 ’
3 H o S] o
© i ® © : .
[C
S 0.200 A ' s c 0.200 A i
= = °
0.195 A 0.195 A
0.190 A 0.190 A . . .
0.0 0.1 0.2 0.3 0.4 0.5 0 100 200 300 400
Max. no. features per split No. decision trees
(c) Influence of the maximum number of (d) Influence on the number of decision trees
features per split. that is grown.
Figure 5.14: RF: Sensitivity to the hyper-parameters.
Maximum prognostic value per RUL threshold Extra depreciation per RUL threshold Max. progn. value with depn. per RUL threshold
C/B ratio C/B ratio C/B ratio
— 02 — 02 — 02
5 04 — 0.4 — 0.4 — 0.4
£ oay 17— 1— o6
° —_— —_— — 0.8
% JR— E— — 1.0
>
,5 0.2 A 1 1
g
g
o
£ 0.0 1 1
=]
E
3
=
-0.2 g g
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
RUL threshold RUL threshold RUL threshold

Figure 5.15: RF: From left to right, the added value of preventing unscheduled removals (with ignoring of recurring FDEs), the extra
depreciation costs due to preventive removals and the net sum of these two, which represents the total added value of the predictive
maintenance strategy.

44 5. Results

Table 5.3: CNN: Performance metrics on the training set and test set. The number between brackets is the standard deviation based on
five independent fits on the training data.

Metric Training Score | Test Score
Average precision | 0.235(+0.010 0.155(+0.010)
ROCAUC 0.722(£0.012 0.618(+0.009)

5.2. Convolutional Neural Network

Just as for the RF, the model hyper-parameters have been optimised by means of a grid search procedure. The
performance on the test set will be determined using the best found set of hyper-parameters. The following
sections will present these results both in terms of estimator performance and prognostic performance. Then
a section is included on some important validation and verification steps. Lastly, a sensitivity analysis is
presented with respect to the hyper-parameters.

5.2.1. Model performance

The model is evaluated in terms of its performance on the training set and test set. The results are generated
using the best combination of hyper-parameters found in the grid search procedure. A table with the results
from all grid search combinations is included in Table G.1 in Appendix G.

The key performance metrics are shown in Table 5.3. The ROC curve and Precision-Recall curve for the test
set are shown in Figure 5.16 and 5.17 respectively. The results show that the training score, both in terms of
AUROC and Average Precision (AP) is higher on the training set. This shows that the neural network is slightly
overfitting to the data. Overfitting is an inherent risk of deep neural networks with relatively few training
examples, as is our case. Still, the model outperformed shallower, smaller models in the grid search. Here we
encounter the same difficulty as for the RF. Due to the small number of timelines, different splits of our data
may end up being quite different. For training deep learning networks this is more problematic even. Not
only do we require (cross-) validation splits for grid searching; we also need another split for early stopping.
The randomness in these splits, in combination with a certain level of randomness in the training procedure,
may result in an overly optimistic estimation of the performance of a certain training run. This is a serious
drawback of deep learning with limited data availability. Comparing the CNN with the RF, we see that both
the AUROC and AP are somewhat lower. It seems that the AP lags behind more than the AUROC. Since the
performance metrics are generated on exactly the same test set, with the same class distribution, this must
be the consequence of different shapes of the ROC curve. This can be seen when comparing the ROC curve
with the one of the RF in Figure 5.1. The shape of the ROC curves can differ due to the different inherent
working principle of the models, of which the loss function to be minimised is one of the main factors. The
CNN uses the the Binary Cross Entropy function as cost function, the RF the Gini impurity function. In the
case of our unbalanced data set the AP is the adequate metric to compare the models [51]. Thus, the CNN
performs slightly worse than the RF. Still it is very remarkable that the deep learning approach is capable of
capturing so much signal without any help in the form of feature engineering.

5.2.2. Prognostic performance

In the same way as has been done for the RF model, the estimator performance has been converted into a
prognostic performance using the strategy described in Subsection 4.4.2.

The precision and recall as functions of the RUL threshold and probability thresholds are shown in Figures
5.18 and 5.19 respectively. Figures 5.20 and 5.21 show the value plots for a cost/benefit ratio of respectively
0.2 and 0.5.

Figure 5.22 shows the maximum prognostic value plots. Again, on the left is the maximum prognostic value
as function of the RUL threshold, as a result of preventing unscheduled removals. The middle plot shows the
increase in depreciation cost on the same y-axis scale due to decreasing time between removals, as a result of
preventively removing components. The right figure shows the net result when the increasing depreciation
cost is discounted from the preventive maintenance benefits.

What is particularly remarkable in these plots, especially in the total effect plot, that it looks very similar to
the Random Forest result. In terms of prognostic value the CNN and RF perform as good as equal. For some
cost/benefit ratios the CNN even outperforms the RF (although within the uncertainty margin). The CNN
did have a slightly lower average precision, but as it turns out, when using the moving average this difference
disappears. A possible explanation could be that the the CNN predictions are more stable over time, which

5.2. Convolutional Neural Network

45

ROC curve

True Positive rate

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

Figure 5.16: CNN: Receiver Operating Characteristic

curve of the test set performance.

Prognostic precision as function of RUL and probability thre?hé)ld

08
kel
o
kA
g 06
£
2z
3
8 0.4
[
o
02
0.0

50 20.0 350 500 650 800 950
RUL threshold

Figure 5.18: CNN: Heat map of the prognostic precision as
function of the probability and RUL threshold for all FDEs

combined.

Prognostic value as function of RUL and probability threshold

0.73 0.60

0.67
0.45

o 061

°

? 055

2 0.

£ 0.30

2 049

=

8

S 0.43

e 0.15
0.37
0.31 0.00
0.25

50 200 350 500 650 800 950
RUL threshold

Figure 5.20: Heat map of the added value index as function
of the probability and RUL threshold for all FDEs combined,

with valuerp = -0.2-valuerp

Precision-Recall plot

1.0 A

0.8 1

0.6

Precision

0.4 1

0.0 A

Recall

Figure 5.17: CNN: Precision-Recall curve of the test

set performance.

00 02 04 06 08 10

Prognostic recall as function of RUL and probability thresh1oléj

0.73

0.67

0.61

0.55

0.49

0.43

Probability threshold

0.37

0.31

0.25
5.0 200 350 50.0 650 800 950
RUL threshold

0.4

0.2

0.0

Figure 5.19: CNN: Heat map of the prognostic recall as
function of the probability and RUL threshold for all FDEs

combined.

Prognostic value as function of RUL and probability threshold

0.73

0.67

0.61

0.55

0.49

0.43

Probability threshold

0.37

0.31

0.25
50 200 350 50.0 650 800 950
RUL threshold

0.3

0.0

Figure 5.21: Heat map of the added value index as function
of the probability and RUL threshold for all FDEs combined,

with valuerp =1-valuerp.

46

5. Results

Maximum prognostic value index

—0.2 1

Maximum prognostic value per RUL threshold

Extra depreciation per RUL threshold

Max. progn. value with depn. per RUL threshold

C/B ratio

C/B ratio

T T T T
10 20 30 40 50 60
RUL threshold

T T T T
10 20 30 40 50 60
RUL threshold

10

T
20

T T
30 40
RUL threshold

T
50 60

Figure 5.22: CNN: From left to right, the added value of preventing unscheduled removals, the extra depreciation costs due to

preventive removals and the net sum of these two, which represents the total added value of the predictive maintenance strategy.

results in a better moving average.

5.2. Convolutional Neural Network 47

Loss during training AUROC during training Avg. precision during training
081 —— Loss 0.76 1 — AuROC 0.28 1 — Avg. Prc.
Val. Loss 0.74 4 Val. AUROC Val. Avg. Prc.
. 0.26
0.7 4 0.72
0.24
o
0.701 i
06 8 o 0.224
2 2 0.68 2
= 2 ~ 0.201
<
0.66 4 9
0.5 1 %
0.18 4
0.64
0.16 4
0.4 1 0.62
0.60 0.14
5 10 15 20 5 10 15 20 5 10 15 20
Epochs Epochs Epochs

Figure 5.23: CNN training monitoring. The plot shows, from left to right, the Loss, AUROC and AP on both the training set and
validation set.

5.2.3. Validation & verification

Validation

The validation procedure of the CNN is the same as for the RF. It deserves explicit mentioning that the test
set used here is the exact same data set as for the RF. This is important to prevent random differences be-
tween test sets to influence the model performance comparison. A difference between the RF methodol-
ogy and CNN methodology is that the latter requires an extra validation split to determine early stopping.
It has been found that the relatively small size of the data sets used for both early stopping validation and
hyper-parameter optimisation leads to a noisy training procedure. This is one of the reasons why the CNN is
expected to benefit from a larger data set.

Verification

Verification of deep learning models is inherently difficult. The models are generally considered black boxes.
Still, it is essential to verify for a given problem, that the performance measured is the result of the use of a
proper problem representation, and not from the exploitation of artefacts in the data [52]. Interpreting and
understanding what the model has learnt are an important part of verification, especially for (deep) neural
networks [53]. Interpretation of deep learning is a very active research area [54-56].

A first step in verification is seeing how the training procedure goes for a typical run of our model. Figure 5.23
shows the loss on the training data and the AUROC and AP for both the training and validation data. Note that
the training data is calculated on the undersampled training data. For that reason the AP has been corrected
for the original class distribution. The training procedure has been run for 20 epochs, without early stopping
to show what happens in different phases of training. In the first two epochs the training and validation loss
increase sharply. Note that only after the first epoch, the first metrics are calculated. During these first epochs
we see a strong increase in AUROC and AP, both for the training and validation data. What we see here if very
effective training at work. From epoch three until seven, the decrease in training loss starts flattening out, as
well as the validation loss. Overall the validation loss is still in a downward trend, but random fluctuations
pollute the trend. During this period we see that both the training and validation AUROC and AP are further
increasing, although in a noisy way. After approximately epoch seven the validation loss stops decreasing
and seems to start rising slightly. The training loss is still decreasing. In this period we also see that for
both the AUROC and AP, the scores of the training and validation set start diverging. The validation metrics
stagnate, if not decrease, while the training metrics keep rising. These are all signals that the the network
starts overfitting. Training should be stopped ideally right before this moment, but in practice it is stopped
typically when the first signs of overfitting start appearing.

The AP does show a higher score at epoch 20 though. This is typically the effect of a small validation set, in
which it can happen that some noise that was overfitted on in the training data happens to exist to some ex-
tent in validation samples as well. The plots show how tricky it can be to optimally determine early stopping.
If in this case an early stopping monitor was put on the AP with a patience of two, it would have ended the
training after epoch five; the optimum would have been missed. Although in theory optimal approaches exist
for optimal early stopping, they hardly hold in practice [57].

48 5. Results

Class activation mapping Another form of verification that we could perform is visualising a so-called Class
Activation Map (CAM). A CAM is a map indicating the discriminative regions used by the network to iden-
tify a particular class. In this study, the Gradient based Class Activation Map (Grad-CAM) technique is used,
which is a generalisation of the CAM technique [56, 58]. Note that this spatial localisation is possible due to
the convolutional layers, which maintain spatial information throughout the network. In our binary classifi-
cation formulation, we actually predict a probability score of the positive class.. Figure 5.24 shows the class
activation maps for a True Positive, a True Negative and for a False Positive.

Verifying the figures is not particularly easy. The main reason is that it is not well known what behaviour in the
sensor data the model should have captured. This reflects back to the aforementioned argument that deep
learning is inherently difficult to verify, especially if the very reason for applying it is the limited knowledge
about the underlying system. CAMs have made their first appearance in image classification tasks, where it
is much easier to manually verify the regions of interest [56, 58]. Still, we could examine the figures and see if
no strange behaviour shows up.

Looking at the True Positive, it can be seen that it has a quite well defined region that contributes most to the
decision of faulty. What we could say about the sensor data is that the absolute temperature of more than
240°C is quite a bit too high according to the normal operating range. Also, we see that this temperature
deviates significantly from the parallel bleed systems. When comparing this with the True Negative, we see
that nowhere in the signal a high activation occurs, which is in line with the expectations. Still, at some
points it activates slightly, especially in the beginning and at the end. This could indicate how difficult it is to
distinguish the environmental changes — that are most extreme at the beginning and at the end of the flight
— from signals indicative of imminent FDEs.

The False Positive shows quite comparable activation regions as the True Positive. When examining the sen-
sor data, this is very understandable. The beginning of the flight looks much more like the True Positive than
the True Negative. This shows how difficult this prediction task is. It also raises the question whether the label
of either of the two samples may have been inadequate. This will be discussed in more detail in Chapter 6.
A difference that could be spotted manually is that the temperature exceedance is smaller than in the True
Positive case. CNN filters are designed primarily for capturing spatial structure in data, rather than absolute
quantities. It may therefore be a good idea to combine this ability of a CNN with some global features from
the feature approach. These could be added to the dense layer of the network.

5.2.4. Sensitivity analysis
In this subsection the sensitivity to the hyper-parameters is presented. In addition, it is discussed how the
performance of the model depends on the number of training samples.

Hyper-parameters

The sensitivity to the hyper-parameters can be deduced from the grid search results. These results are in-
cluded in Appendix G in table G.1. Note that some individual combinations with a large number of free pa-
rameters and without pooling, have been excluded from the grid since they were too computationally heavy
for the hardware available in this project.

What jumps out is that the performance is quite sensitive to the hyper-parameters, especially in comparison
with the RF model. This is likely the consequence of the fact that the CNN includes feature learning while
the RF starts from predefined features. The first conclusion from this observation is that the CNN is not
particularly robust to tuning the hyper-parameters.

Secondly, based on these findings it is not unlikely that there could be a particular hyper-parameter setting
which performs better. However, finding it is cumbersome, since searching a larger grid is computationally
costly. For larger grids performing a Bayesian optimisation could offer a solution [59], though brute force
optimising a deep neural network will always be costly compared to shallow machine learning models. Next,
the hyper-parameters will be discussed in more detail. This exercise it a bit more tedious for deep learning
than for the Random Forest, since the dependency between hyper-parameters is much larger.

Figure 5.25 visualises some important hyper-parameters. Figure 5.25a shows the effect of the number of
layers as well as the effect of pooling between those layers. A trend can be seen: the deeper the network the
better the performance in the range considered. Especially going deeper than two layers seems to have a
relatively large effect. Deeper than that the effect seems to hold on average, but the top performers are more
or less equal. Pooling does not seem to have a clear decisive influence.

Figure 5.25b shows the dependence on the number of filters, both with and without increasing the number
of filters throughout the network. On average the performance increase quite a bit with increasing number

5.2. Convolutional Neural Network 49

Class activation map

250
— P
200 ~ — T
v W — Ap A
150 — AT

|

Pressure (psi) |
Temperature (C)
-

o
o

r r r r r r
0 500 1000 1500 2000 2500 3000 3500
Time

(a) True Positive.

Class activation map

200 1 J

—p
rvw x a
=2 1504 — b
Eg — AT
g £ 1001
28 o
g e) I
gg 50 h —
ae
0 N——r o
~50
%$ 10 A ~
22 u U T U
Lo 5 ~l‘
0 1000 2000 3000 4000 5000 6000
Time

(b) True Negative.

Class activation map

] |
N ; —
™

-
1%
o

— AT

=
o
S

v
o

Pressure (psi) |
Temperature (C)

o

P oy

—50 1
£ '
U
=c
x5
T T y T y T
0 500 1000 1500 2000 2500 3000

Time
(c) False Positive.

Figure 5.24: CNN: Class Activation Maps projected on the sensor data and flight phase indication for three test samples. The activation
map is shown as a one-dimensional heat map, where a darker colour means a higher activation score.

50 5. Results

Influence of no. of layers Influence of no. of filters
0.17 A 0.18 1
[) Y °
i ° 0.17 4
5 0.16 R o <
o [] @ ° °
@ 0.15 - o o N g 0.16 :
: : -
(=2} 4
© 0.14 5015 ©
c o c
g S 0.14 -
= 0.13 ¢ = ¢
e Pooling L) Filter increase
0.13
0.12 A e True e True
False False
T T T 012 T T T T
0 2 4 6 8 0 10 20 30 40
No. of layers No. of filters
(a) Influence of the number of layers, with and (b) Influence of the number of filters per layer,
without max pooling. with and without filter increase.

Influence of no. of parameters

0.17 ° .
L]
.S 0.16 1 o °
@
o
[
5 0157gn e
o
>
©
S 0.14 1
o No. layers
= 2
0.131 3
4
e 6
0.121

0 20 40 60 80 100 120
No. of parameters

(c) Influence of the number of network
parameters, for various network depths.

Figure 5.25: CNN: Sensitivity to the hyper-parameters.

of filters, but again, high performers do exist for the low number of filters. Increasing the number of filters is
favourable as well.

Figure 5.25c is particularly interesting. It shows the combined effect of the number of layers and number of
filters, by visualising the influence of the number of network parameters. The hue represents the number
of layers, which gives an indication to what extent the network size stems from depth or from width. This
figure shows the clearest trend of all, as expected: the larger the number of network parameters (weights and
biases), the larger the distinctive capacity (in the range considered). The trend shows a decreasing increase
of the performance as a function of the number of parameters, at least for the the first several tens of thou-
sands. After that it becomes difficult to tell due to the limited number of samples, but it will likely decrease
due to over-fitting. It should be remarked that the training procedure included Early Stopping to prevent
serious overfitting. There does not seem to be a significant winner amongst the number of layers and the
number of filters, at least not from these samples. This figure, as well as the other two, shows the complexity
of the interrelationships between the different architecture hyper-parameters of a CNN. Imagine including
all other hyper-parameters as well and it becomes clear that finding the optimal setting is very difficult, if not
impossible.

Training data quantity
As mentioned before, deep learning models are generally considered to be more data hungry than shallower
machine learning models. In data-driven prognostics, the amount of training data is generally limited by the

5.2. Convolutional Neural Network 51

number of historical failure cases available. Complex aircraft components are designed to minimise failure.
As a result the number of training samples is small compared to other typical applications of deep learning
[4, 60]. This is even more so for newer aircraft, which are typically the most attractive predictive maintenance
candidates due to their large number of sensors.

In this study, a data set has been used which is relatively large. To investigate the effect of a smaller number of
training samples, the training data set has been artificially shrunk. This experiment has been performed for
two specific deep learning models, the optimal one and a ‘smaller’ one, as well as for the optimal RF model.
The smaller deep learning network is number three from the grid search results in Appendix G, containing a
total of around 10.000 free parameters compared to the 40.000 of the optimal model. The reason to include a
smaller deep learning model is to investigate the effect of the number of free parameters on the sensitivity to
the training data quantity. Note that for the deep learning models, the ratio between training and validation
split has been kept constant. As a result, both the training and validation set are shrunk proportionally. The
data shrinking has been performed on timeline basis. The results are shown in Figure 5.26.

The figures show some interesting results. First of all, we see that, in general, for a decreasing fraction, the
standard deviation increases quite strongly. This could be explained from the sampling of timelines. As has
been mentioned earlier, strong differences between timelines exist in their ability to be classified. It has been
shown in Subsection 5.1.3 that this is at least partly the result of different FDEs. In addition, it is expected
that FDE occurrences exist that are not realistically detectable (due to a discrepancy between the sensors that
trigger FDEs and those available in this study). When random sampling a fraction of the timelines, a certain
experiment may end up having ‘better detectable’ timelines than another. This effect seems to vanish when
the distinctive capacity becomes very low. Moreover, it appears that somehow, the deep learning models are
more sensitive to this phenomenon.

The large variation in the results makes it difficult to be conclusive on the trends within a model and amongst
models. Still, the figures make some things plausible. First of all, it appears that for all models, a decrease
in training data leads to a deterioration of the performance, which is expected. Secondly, very generally
speaking, the figures make plausible that the deep learning models are not significantly more sensitive to
the amount of training data until a very low fraction of 0.125. Again, the variations within the experiments
are too large to be conclusive; it would be interesting to study this relationship further. For these follow-up
experiments it is recommended to use data for which the data is carefully labelled by hand. With such data
one could structurally investigate the effect of both the data quantity as well as the data quality. The former
could be done in the same way as in this experiment, but than with only validated labels. The latter could be
performed by artificially inserting erroneous labels.

52 5. Results

o Performance as function of data qty. 0.20 Performance as function of data qty.
0.18 4 0.18 1
= =4
° o
é 0.16 * * g 0.16 +
v] v +
()] o
© 0.14 1 © 0.14 A L
g g +
< <
0.12 4 + 0.12 4
0.10 T T T T T 0.10 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fraction of original data quantity Fraction of original data quantity
(a) CNN (3 layers, [32, 64, 128] filters per layer, (b) CNN (4 layers, [32, 32, 32, 32] filters per layer,
no pooling). no pooling).

o Performance as function of data qty.

0.16

0.14

Average Precision

0.12

0.10

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of original data quantity

(c) RF (20 samples per leaf, 4 samples per split,
30% of features per split, 300 trees).

Figure 5.26: Model performances as a function of the fraction of the training set used. The orange data point corresponds with random
classification. The error bars are based on the standard deviation of ten experiments.

Discussion

Chapter 5 has presented the main results of this study and included further explanations for these findings.
This chapter will discuss the results and therein focus on their implications for the research questions and
research objectives formulated at the beginning of the study. First the Random Forest (RF) and Convolu-
tional Neural Network (CNN) model will be discussed individually. Next, the prognostic application and the
problem solving approach are reflected upon. The chapter finishes with a comparison between the models.

6.1. Random Forest

It has been shown that the RF model is capable of extracting signal from the data that corresponds with
imminent failure. An Area Under Receiver Operating Characteristic (AUROC) score of 0.63 shows that it
performs significantly better than random. The fact that the grid search results for quite a wide range of
hyper-parameters are very close together, indicates that the RF is a robust classifier in terms of tuning. It was
observed that the RF did tend to overfit slightly on the training data, which can be explained from the large
number of features in relation to the number of training examples. However, the overfitting did hardly deteri-
orate the validation performance, which shows the robustness of the RF against the downsides of overfitting.
The features deserve some further attention. Altogether, the RF was the representative of a feature based ap-
proach. The difficulty in the feature approach was that it was unknown what to look for in the signal. With a
multivariate time series of length 10000, the possibilities in terms of features are endless. As a compromise a
large set of features had been calculated, primarily on the individual univariate time series, including global
summary statistics, characteristics of the sample distribution and features derived from observed dynamics.
This study has shown that it is possible, with brute force automatic feature calculation, to create a model that
does barely require any knowledge about the underlying system.

The advantage of this ‘brute force’ approach is that it is effectively also a universal solution which barely re-
quires feature engineering. From the perspective of ease of implementation is scores quite well, due to the
availability of libraries to extract these features. The main disadvantage of the brute force feature extraction
approach is that it increase the risk of overfitting compared to a manual feature engineering approach. In
addition, it is a very inefficient, computationally costly procedure. The risk of overfitting has been minimised
by the the use of bootstrap aggregation natural to the RF.

A big advantage of the feature based RF approach is that the model is well interpretable. By assessing the im-
portances of features, the user can verify that the model output makes sense from an engineering perspective.
Also, the features can be used to develop further knowledge on the system and its failure modes, on which can
be further built by combining it with engineering knowledge. This could iteratively lead to specifying more
appropriate custom features, unique to the system. Although this approach requires much more engineering
efforts, it could lead to a superior, well interpretable, tailored prognostic solution per component.

In the case study considered, several observations can be made from the feature importances. It appears
that especially some Continuous Wavelet Transform (CWT) coefficients perform quite well. This can be ex-

plained from the fact that this transformation is capable of capturing the frequency dynamics of the system

53

54 6. Discussion

with localisation in time, which enables capturing non-stationary components of the signal. Environmen-
tal changes and component faults are expected to be responsible for these non-stationary components. The
non-stationary components can thus hold valuable information on the presence of faults [61]. This finding in
our study is in agreement with other studies on machinery diagnostics and prognostics that have successfully
used the CWT [62-65]. Especially interesting are the findings of Li and Wen [65], which successfully applied
a wavelet transform for diagnosing valve faults on an Air Handling Unit. This system has many resemblances
with our system. It controls the flow and temperature of air by actuating several valves, which are controlled
based on temperature sensors throughout the system. Also the system is operated under varying operating
and environmental conditions, making it difficult to distinguish a fault from a change in those conditions.
Further research into using a CWT for the Bleed Air Valves is recommended, since further improvements in
this areas can be expected. In this study only several CWT coefficients are used and only in the very first part
of the times series (corresponding with transitioning from the ascend to cruise flight phase). It would be in-
teresting to see how calculating more coefficients (for other wavelet shapes) and looking at other parts of the
flight would perform. A difficulty expected here is that the CWT can blow up the number of features. Since it
exists in the time-frequency domain, calculating the transform for the whole time series, would make the in-
put shape larger than it already is in raw format. At this point, CNNs may prove very valuable for interpreting
the two dimensional time-frequency input.

6.2. Convolutional Neural Network

As opposed to the feature approach, the CNN represents a deep learning approach on raw data, which in-
cludes feature learning in the training procedure. It has been shown that the CNN is capable of extracting
approximately the same amount of signal from theRF model. This is remarkable if one realises that the model
works on raw multivariate data, which entails a very large search space to find features in. It did turn out that
the Average Precision (AP) was slightly lower than for the RF. This could be explained from the fact that the
RF achieves lower False Positive Rates in the low True Positive Rate range, which is compensated for by the
CNN in the high True Positive range. However, this difference could be adjusted for in the prognostic solution.

The results of the sensitivity analysis show that the performance of the deep learning network is quite sensi-
tive to the architecture hyper-parameters. The model is not very robust to suboptimal hyper-parameters. One
could simply miss the optimal performance of the model due to inadequate tuning. Also the process of grid
searching for the optimal architecture is rather complex. First of all, the sheer number of hyper-parameters is
so large and the training procedure takes so long, that one can only grid search a small subspace. Determin-
ing this subspace requires a thorough understanding of deep learning and careful interpretation of cleverly
selected experiments. Experimenting with Bayesian optimisation for the the grid search is recommended for
follow-up research to be capable of searching a larger grid [59].

Secondly, the need for a separate validation set for determining the best moment to stop training, can be
seen as a disadvantage. In general, the amount of data available is limited. Not only does splitting off an
extra validation set limit our training set size further, determining the optimal stopping moment with a small
validation set has been shown to be difficult and induces an extra risk of over-fitting. An idea that could be
tried in follow-up work it to split off both the grid search validation set and the early stopping validation set
through cross-validation. The fact that theoretically determining the optimal architecture is only possible to
some extent, in combination with the difficulty of grid searching, make it more difficult to get a first working
CNN working. On the other hand, it is expected that the insights created in this study greatly facilitate the
implementation in a new case.

With respect to the network architecture there seems to be an optimum between small and large networks,
following the sensitivity analysis. The main decisive factor seems to be the number of free parameters (weights
and biases) in the model, which could be achieved by either increasing the number of filters per layer, or the
depth of the network. This observation is in line with theoretical expectations [39]. One of the most important
findings for follow-up research is that a global max pooling layer after all convolutional layers significantly
improves the performance. The global max pooling layer is a way of cleverly dealing with the huge input
size. Our input consists of time series of length 10.000. The convolutional layers do not seriously decrease
the input size in this dimension, even for deep architectures. This becomes problematic in the (first) fully
connected layer. In typical image classification approaches, the size of the problem is gradually decreased

6.3. Prognostic application 55

between the convolutions layers by the max pooling operation [4, 66]. The rationale is that the convolutional
layer detects local conjunctions of features from the previous layer and that pooling layers merge semanti-
cally similar features into one [23]. For images this idea is followed all the way from the pixel level to the
image level, finally being capable or recognising objects at the scale of almost the image size. Although this
fundamental structure is valuable for our problem, the largest scale at which features are expected is much
smaller. It is not expected for our system, of which the dynamics take place at second scale, have meaningful
features at hour level. The global pooling layer works just as a local pooling layers, except that it does notlook
at a local patch, but at whole lenght of the signal, once per feature map. The rationale of this architecture
for our problem is that we learn many local features, and just check if these features occur somewhere in the
flight. By exploiting this strategy, we limit the number of free parameters in the model. Another aspect that
worked well for training the network was the application of batch normalisation in between layers. It did
not so much improve the performance, but it made the performance more robust to setting certain hyper-
parameters. Also, training was quicker. These are advantages theoretically expected from the technique as
described in literature [67].

6.3. Prognostic application

Having discussed the model performances, it is worth reflecting on the prognostic performance. After all, we
want to be capable of answering the research question also in this regard. Are the model performances good
enough to build a predictive maintenance strategy on? It has been shown that such a strategy is possible and
that the final value of the strategy depends mainly on the ratio between benefits of a True Positive and the
costs of a False Positive. An important contribution of this study is that it shows a universal method for trans-
lating a prognostic problem into a machine learning formulation and translating the solution back again.
The prognostic evaluation outputs the net value of the predictive maintenance strategy with respect to the
current reactive maintenance strategy. This value can be purely financial or it can be express in any arbitrary
unit, to take into account the effects of true positives and false positives. One could for example express the
added value in terms of passenger satisfaction when delay could have been prevented. Or one could express
the decrease in work load for pilots when Flight Deck Effect (FDE)s occur less often. If one wants to com-
bine different types of effects one could design a custom value unit, in which different aspects have different
weights. It is good to mention that it is probably easier to quantify the costs of false positives than the benefits
of true positives. While the former are simply the extra costs induced by inspecting an aircraft at a convenient
moment, the latter is largely the result of not having unscheduled removals. As such, the benefits are actually
the decrease of costs of unscheduled removals as they are right now. This is also the way that they could be
quantified; by splitting the total unscheduled removal costs by the number of removals.

The prognostic model itself is simple but powerful. A simple tool as the moving average seems to be very
effective at this level. It filters out a lot of noise in the predictions by assuming that the probability scores of
neighboring flights should be more or less equal. As such, it is possible of preventing false positives. The fact
that this works well motivates looking further into approaches that leverage the relation between neighbor-
ing flights already in the machine learning model. Particularly deep learning is very promising in this regard.
Several of the CNNs used in this study could be placed next to each other, looking at subsequent flights. The
trick then is to remove the dense layers and connect the outputs of the global pooling layers of the subsequent
flight to a shared Recurrent layer (for example a Long Short Term Memory Network layer [68]). The network
only slightly increases in size, since convolutional layers will share weights over flights. This approach shows
the immense power of deep learning networks; they are highly flexible with respect to their inputs and can
leverage all kinds of inherent structures in the data. The strength of this approach is that the noise suppress-
ing ability of using subsequent flight can be used already when learning features.

Within the scope of this study the prognostic strategy is not further optimised, nor formally validated. It is
very well possible that another time span for the moving average performs better. Also more advanced in-
terpretation strategies could be used. When one inspects the timelines manually further wins seem to be
possible. Ideas for further research are trying to incorporate thresholds on the derivative of the moving av-
erage, use different thresholds for right after installation and use the standard deviation with respect to the
moving average as a measure of certainty. When one wants to further optimise the prognostic strategy, it is
important to keep some of the timelines separate for validation.

56 6. Discussion

When looking at individual timelines, it can be seen that quite some of the true positives are generated by
timelines that already start out high right after installation. It would be interesting to be investigate if that
could be because there is something wrong at the location of installation at the aircraft, or that maybe the
components is not (well enough) repaired. Also, it may be possible that individual components do have some
memory property. These aspects are very interesting to investigate in follow-up research and could improve
the model, but they require the possibility to track individual components.

A limitation of the study is that validation of the prognostic performance has been done my means of simu-
lation. Within the scope of this study it is simply not possible to perform real life validation since no case-by-
case validation data is available. This data should be used to judge whether a component was really showing
indications of imminent failure that could be acted upon in the repair shops. In the simulation approach,
instead, the definition of a true positive and false positive is based upon the Remaining Useful Lifetime (RUL)
threshold. Naturally, this is a strong simplification of reality. Still, the simulation approach is capable of indi-
cating a range of expected prognostic value. Also, it creates insights than can be used to iterate on the mod-
elling approach to further improve the performance. Note that the assumptions in the validation approach
cannot be seen separate from the assumption that an FDE is representative for failure. However difficult for
evaluating studies like these, in the end only real life testing will tell the real life performance of a prognostic
strategy. This does not make the results presented in this work any less valid, it just means that one has to be
careful when drawing conclusions from the results.

6.4. Problem solving approach

Having reflected on the individual models and the prognostic interpretation strategy, it is a gopod moment to
reflect on the problem solving strategy. After all, the results that have been generated in this research can-
not be seen separate from the assumptions made in that stage of the research project. The problem that the
machine learning models have solved was formulated based on this strategy. To verify the final outcome, we
should reflect on the original problem formulation. Let us firstlook at the consideration whether to formulate
a classification or regression approach and in the former case, what horizon to use. The prognostic analysis
has taught us some things about this prediction horizon. Originally, the y-labels were defined based on any
FDE occurrence within 10 flights. This number was chosen primarily from an operational perspective, not
from a failure process perspective. As such, this horizon may be a sub-optimal formulation and as a conse-
quence, the predicted labels may be sub-optimal for the prognostic objective. An important strength of the
prognostic strategy allows correcting for this preliminary assumption, and on doing so, learns us more about
future implementations. The prognostic value (without depreciation) increases significantly until around 35
flights, and especially between a RUL of 20 and 35, quite a bit higher than 10. Apparently, even when the
y-label was not chosen optimally, working with the prediction probabilities and using an adequate prognos-
tic strategy, decent predictions can be made. This suggest that the approach is to some extent robust to the
preliminary assumption on the y-label. It would be an interesting experiment to see if the prognostic perfor-
mance would further increase if the machine learning model already uses a RUL threshold of 35 to define the
y-labels. Also it would be interesting to test a regression approach since some timelines do show a gradually
increasing prediction score.

Another consideration raised at the start was whether the problem could best be solved per FDE type of that
all FDEs could be combined. In experiments with the RF, it was analysed that the model was capable of defin-
ing FDE-specific feature patterns, that make sense from an engineering perspective. This can theoretically
be explained from how decision trees work. Different FDEs with different features could end up in different
leaves; both leaves will simply receive the one label. In that regard, it is not very different from the multi-class
implementation of theRF, except that the impurity measure is also based on multiple classes. It is thus plau-
sible that for a RF, the multi-class formulation will not make a serious difference. Another aspect is expected
to make a difference: In the true positive and false positives analyses it was found that some FDEs score much
worse than others. Some even have a recall of zero. If these FDEs are fundamentally non-detectable in the
sensor data, they lead to labels in the data that pollute the training and testing. These expectations should be
validated in follow-up research.

This last aspect brings us to one of the most important assumptions underlying the methodology. The whole

6.5. Model comparison 57

research focuses on predicting FDEs, because of the motivations set out in Section 4.1. The question is
whether this is optimal. Theoretically, two interpretations are possible. On one hand, one could argue that
predictive maintenance is about predicting failures such that one can anticipate them. On the other hand,
one could argue that it is the trigger for maintenance that one wants to predict, which are FDEs. Both answers
are valid to some extent. Ideally, one wants to predict failures, since those are the events that unambiguously
require some form of maintenance. However, in the current maintenance practice, constrained by historical
best practices and safety regulations, FDEs require some follow-up. Now suppose we have a prognostic tool
that does not predict any failure, but an FDE does show up. Would that allow ignoring the FDE as if nothing
happened? In the current aircraft maintenance landscape, that is no option due to safety regulations.

Nonetheless, there is a big advantage of predicting failures rather than FDEs which has nothing to do with the
operational preference, but rather with the model training. What our models try to do is capture behaviour
in the sensor data which is indicative for either a failure or an FDE. Inherent to our methodology to train
on historical data, the model will learn all it knows from these data. Suppose now that an FDE occurs, a
component is removed, it is sent to the repair shop and after thorough inspection it is diagnosed that no
fault is found. But if no fault is found, it can not realistically be expected that a fault is visible in the sensor
data. As an effect, when training on these ‘nuisance’ FDEs, the classifier learns to classify completely healthy
sensor data as faulty. This is absolutely the worst thing that is possible for a classifier: in effect, it is actively
taught to classify incorrectly. After visiting the repair shop (EPCOR) and interviewing several engineers that
are performing and overseeing these testing procedures, it was found that there are indeed situations where
components are brought in because of an FDE indication, where no valve or controller is malfunctioning.
The reason that the FDEs are triggered, is that FDEs are triggered using more than just the sensors available
in this research. The bleed air valves have small mechanical switches around them which are pressed if the
valve is in a certain position. It turns out that these switches can get stuck because of dirt in the system (after
all it ingests outside air through the engines), in which the maintenance computer sends an FDE as if the
valve if malfunctioning. In this research it was hypothesised that malfunctioning valves and controllers can
be detected in the time series of these quantities. When the valve is not malfunctioning, but only a switch is
stuck, the pressure and temperature signal look perfectly healthy and are incorrectly classified in our model.
In this case the FDE is not wrong; after all the components does need to be cleaned to operate reliably. It
should just not be used in training a model that assumes fault visibility in the pressure and temperature
sensor.

It should be investigated in follow-up research how large this effect is, by manually validating individual FDE
occurrences with the shop visit reports.

The very first choice that we made in the machine learning formulation cannot go unmentioned: the choice
to use a supervised two class problem formulation. As we have seen in the study, the information in our
current formulation is limited by the number of faulty samples. From the theory that deep learning benefits
from large amounts of data, it would be interesting to investigate an anomaly detection approach which is
only trained on healthy data. After, all we have plenty of healthy data and the approach would be much
less sensitive to the definition of failure if implemented cleverly. For anomaly detection, Long Short Term
Memory network (LSTM)s would be particularly interesting. They have been successfully implemented for
anomaly detection as time series forecasters [69, 70] and as auto-encoders [71, 72]. Still, these approaches
are mostly second choice, only used when no labels are available. In theory, it would be most powerful to
leverage the sheer size of our healthy data while using the highly informative information in the (validated)
faulty data. Particularly interesting is the field of semi-supervised learning. One approach particularly worth
mentioning is the recent work of Yoon et al. [21], who implemented a deep generative model that was capable
of significantly boosting the performance of supervised methods on sparse data sets where only 1% of the
data was labelled. A disclaimer is that the authors used a simulated data set, rather than real life data.

6.5. Model comparison

Having disucssed both the RF model and CNN model individually, naturally the question arises which of the
two models is best applicable for prognostics. The comparison here will, as much as possible, consider the
strengths and weaknesses of the models beyond our case study. The models will be assessed on the criteria
of performance, robustness and easy of implementation.

From a performance perspective, the models perform equally well in terms of prognostic performance, which

58 6. Discussion

altogether is the performance indicator we are most interested in. The fact that deep learning has been shown
to be competitive with a feature based approach on real life data is remarkable and very promising. The more
so if you realise that the feature based approach used a stunning 3000 features, containing amongst others
complex transforms. The deep learning model used nothing but the raw time series. It is expected that deep
learning has quite some potential for improvement. First of all, removing ‘No Fault Found’ FDEs from the
data is expected to benefit the CNN more than the RF. The fact that the the former includes feature learning
in the model is expected to make it more vulnerable to erroneous labels. Follow-up research should validate
this hypothesis. Secondly, the CNN model design holds more potential for further improvement than the RF
model design. A larger grid search (with a Bayesian optimization [59]) for both models is expected to improve
the performance of the CNN more. The theoretical chance of a better optimum existing in the CNN grid
space is much more likely than for the RF grid based on the sensitivity results. In addition, there are some
promising CNN modifications and additions that could be tried, such as creating a so-called residual network,
which has been shown to be easier to optimise and has achieved superior performance on image recognition
benchmarks [60]. Another possible direction of improvement could be to add transformed representations of
the data to the input of the CNN, such as a two dimensional CWT spectrum. Such a full spectrum is simply to
big for a RF. Lastly, CNNs are attractive in the light of the increasing number of sensors in newer aircraft types
such as the Boeing 787. Our feature based approach scales quite unfavourably with respect to the number
of signals. If we double the number of signals and want to include cross reference metrics, the number of
features would increase exponentially with the number of signals. For deep learning, however, the number of
model parameters increases linearly. In other words, deep learning becomes more attractive when the signal
dimensionality increases.

The strong performance upside of deep learning comes at a cost in terms of robustness. The results of the
sensitivity analysis show that the performance of the CNN is quite sensitive to the architecture, although
that does not mean only one good architecture exists. This is mainly because the network needs to strike
a fine balance between underfitting and overfitting. The RF on the other hand is very robust to overfitting
and to setting its hyper-parameters. The extent to which this difference matters, depends on the experience
of the developer with deep learning. Then there is robustness to the data input, both to its quantity and
its quality. Deep learning is generally said to require more data for training, but practically no studies exist
that structurally compare models at different data set sizes. And even then, the number of training samples
is completely dependent on the information per data sample, which depends on the problem. Results of
artificially shrinking the data set in this study has been shown to impact the performance of the deep learn-
ing model only slightly more than that of the RF. The difference was much smaller than expected. This is
particularly promising for the technique for industry adoption in the light of failure case scarcity. Aircraft
components that are attractive for predictive maintenance from a business perspective are very often com-
ponents which are inherently designed to be very reliable. Many components for which prognostics would
be interesting have fewer historical failures than the Bleed Air system. This deserves some nuance. Although
the sheer number of failures on the Bleed Air system is indeed very large, they are distributed over many dif-
ferent failure modes that are not necessarily alike. The number of training examples in the data set per FDE
type differed between several to a little over a hundred samples. In addition to the data shrinking experiment
in this study;, it is recommended to investigate in more detail how the performances of the models depend
on the data quality and quantity. From a quality perspective, it is suspected that the data quality in this re-
search is quite low due to the suspected faulty labels as the consequence of using unvalidated FDEs. It is
worth mentioning that newer aircraft, although having fewer historical failures, probably score much better
on this point. They contain better, but also more sensors. This could potentially prevent the situation of fun-
damentally undetectable FDEs. It remains to be investigated on a more modern generation aircraft type to
what extent the increase in data quality for newer aircraft could make up for the smaller number of failures.
Nonetheless, it can be quite safely stated that both approaches tested in this research will not work well with
only a hand full of failures, if were it only because proper validation would be impossible.

What remains to be compared is the ease of implementation. This criterion is about the ease of implemen-
tation of a first application, but even more about the ease of transferring the solution to a new use case. In
other words, to what extent is the solution universal. In this dimension, the CNN naturally scores very high.
The fact that it works on raw multivariate sensor information is very powerful. Using the findings from this
study it is expected that implementation in a new case study should be facilitated. A beautiful aspect of deep
learning models which has gone unmentioned so far is that they enable so called transfer learning. In trans-

6.5. Model comparison 59

fer learning one uses a model or just a few layers of a model that has been trained in another (to some extent
related) application. It can be understood as if knowledge of a certain application is used to improve the per-
formance and to train quicker in a new application [39]. Transfer learning has shown great results and has
become quite common for CNNs in the field of image recognition [73]. Transfer learning is particularly inter-
esting with different aircraft types having very comparable systems. Besides the Boeing 747, also the Airbus
A330 and Boeing 777 have a Bleed Air system for which a predictive solution is attractive. The use of transfer
learning enables using much more training data.

On the other side, there is the RF approach. Although feature engineering can be a complex procedure for in-
tricate dynamical systems, in this study this was solved by using a brute force feature calculation method. The
disadvantage of this approach is that the features are probably not (all) optimal. It does make the approach
quite easily implementable though. For both models considered, if engineering knowledge is available, it is
always recommended to hand craft features as far as possible. The power of good feature engineering is that
it makes the problem much smaller. As a consequence, fewer training samples are required to reliably fit a
model. Note that these features could also be added to the CNN in addition to the raw input to combine the
best of both approaches.

Conclusions

In order to investigate the feasibility of machine learning for Predictive Maintenance using realistic data, two
models have been developed for predicting Flight Deck Effect (FDE) occurrences on the Boeing 747 Bleed
Air system. A Random Forest (RF) model with a set of features extracted from the sensor data represents a
shallow feature based approach. A Convolutional Neural Network (CNN) on the raw sensor data represents a
deep learning approach.

The RF model has been shown to be capable of correctly classifying flights with and without imminent FDE
occurrence with an Area Under Receiver Operating Characteristic (AUROC) of 0.627(+0.001) and an Average
Precision (AP) of 0.182(+0.002). With this classifier and a simple prognostic model it is possible to predict
FDE occurrences well enough for a positive business case, if the costs incurred by a false positive are less than
a factor 0.8 of the benefits of a true positive. In this analysis it is assumed that the costs of a false positive
are comparable to the current (scheduled) maintenance costs per removal. Note that this last assumption
is very strict; false positives are likely to be cheaper than than real failures. As a result, this is a conservative
estimation of the business case.

It has been demonstrated that the RF model is robust to overfitting and insensitive to tuning of the hyper-
parameters over a large range. The optimal model hyper-parameters were determined to be as follows: a
minimum leaf size of 20 samples, a minimum split size of 4 samples, a maximum of 30% of the features con-
sidered per split and a number of 300 decision trees.

The CNN model has been capable of doing this very same classification with an AUROC of 0.618(+0.009) and
an AP of 0.155(+£0.010). Using this classifier and the aforementioned prognostic model, FDE occurrences can
be predicted equally well as for the RF. For high cost/benefit ratios, it even slightly outperforms the RF model.
The CNN has been shown to be less robust to overfitting than the RF and more sensitive to hyper-parameter
tuning. It was found that increasing the network size either in terms of width or depth significantly increases
the performance until at least 10k free model parameters. Good performance was still found at 100k param-
eters. The optimal model architecture was found to contain 3 convolutional layers with max pooling layers in
between, having respectively 32,64 and 128 filters.

Based on these results we can answer the first two research sub-questions and thus the main research ques-
tion. First of all, the RF model has shown that a feature based machine learning model is capable of predict-
ing FDE occurrences on the 747 Bleed Air System. These predictions can be converted into a viable predictive
maintenance strategy. Interestingly, the CNN has shown that deep learning is capable of matching this per-
formance by pure self learning from the raw sensor data. This research has proven that it is possible to use
deep learning for FDE prediction in a real aircraft maintenance scenario.

Both models have been compared in terms of performance, robustness and ease of implementation. In terms
of performance, both models perform approximately on par. However, it is expected that further improve-
ments to the CNN are possible, to a larger extent than to the RF. Also, it is expected to be better equipped for
working on larger number of sensors typical for newer aircraft. As such the CNN is expected to have a greater

61

62 7. Conclusions

performance potential than the RF.

The RF is in its turn less sensitive to hyper-parameter tuning; it is more robust against overfitting. In terms
of sensitivity to the amount of training data, it has been made plausible that the CNN performance it not
more impacted than the RF performance if the data set is reduced with as much as a factor of four. Further
investigating the sensitivity to the number of training samples for both models is an important follow-up re-
search direction to further assess the suitability of deep learning for widespread use as prognostic tool in the
industry.

With respect to ease of implementation, the ability of the CNN to learn features for whatever problem it is
presented with, makes it the most universal solution. The first implementation of a CNN (this study) is more
tedious than for a RF, but after that, it can be copied from application to application with minimal effort. It
can even transfer knowledge from one component to another by a process called transfer learning. On the
other hand, for a single application, the RF is easier to implement due to its robustness to suboptimal tuning.
Also, the fact that the model is well interpretable may facilitate its adoption in the current maintenance prac-
tice.

Based on these considerations, the following is concluded with respect to the model comparison: In the short
term, a feature based approach is most accessible for industry adoption. In the long term, deep learning is
expected to hold much more potential as a universal self-learning prognostic technique for complex compo-
nents for which custom features are difficult to engineer.

Recommendations

Based on the results and discussion some recommendations are formulated in this chapter. The recommen-
dations are divided into academic recommendations and industry recommendations.

8.1. Academic recommendations

The main academic recommendation is to further investigate the potential of deep learning. This study has
bridged the gap between the academic state of the art in machine learning and deep learning for prognostics
and the challenges presented by the reality of the maintenance industry. In doing so, areas for improvement
have been suggested. Some of the most profound ones are presented here.

Building further on the model developed in this project, it is recommended to investigate the potential of a
CNN-LSTM structure. This model leverages the strengths of a Convolutional Neural Network (CNN) as a po-
sition invariant feature extractor, while incorporating the natural correlation between subsequent flights to
filter out noise and learn differential features through the Long Short Term Memory network (LSTM). When
implementing this structure, it is recommended to try the effect of residual connections in the network to fa-
cilitate deeper architectures. Also, it would be interesting to further investigate options for supporting equiv-
ariance with respect to the parallel components in the aircraft.

Another interesting aspect to investigate further, is whether the current model could be improved by adding
some of the high ranking features of the Random Forest (RF) model to the input. Especially interesting is a
Continuous Wavelet Transform (CWT) spectrum, which can be naturally interpreted by 2D convolution.

To investigate the potential of deep learning on even larger data sets, an anomaly detection approach is rec-
ommended to be investigated. In order not to throw away the available label information, it is advised to look
specifically into semi-supervised deep learning approaches.

In a later stage, when deep learning in its current form has been better established by follow-up research, it
would be very interesting to further experiment with the flexibility of deep learning networks. This flexibil-
ity allows mapping practically from any input to any output. A possibility would be to cast a deep learning
structure into a survival model. Comparable efforts in other areas look promising [74]. Such an output would
be ideal for the maintenance planning step that naturally follows a prognostic model in an integral predictive
maintenance chain.

To further investigate the sensitivity of deep learning to the number of historical failure cases, it is recom-
mended to perform more data shrinking experiments, this time with manually validated Flight Deck Effect
(FDE)s. Results of these experiments would be very valuable for determining how universally applicable
deep learning is to other components that have fewer failures. In addition, it would be very interesting to
structurally assess how sensitive the model is to the reliability of the failure labels by artificially introducing
erroneous labels. This could reveal the importance of working with clean data. Together these experiments
should indicate to what extent the performance depends on the data quantity and to what extent on the

63

64 8. Recommendations

data quality. This recommendation is identified as the prime one to further investigate the potential of deep
learning for predictive maintenance in the industry.

8.2. Industry recommendations

With respect to the Bleed Air system it is recommended to further improve the developed model by manually
validating the FDEs. It could then be retrained only on the FDEs which were realistically detectable by the
temperature and pressure sensors. Also, it is advised to retrain the model with a larger prediction horizon
for determining the y-labels (up to 35 flights). Based on the results in this study, it is expected that these ad-
justments will seriously boost the performance. It is recommended to implement this model and validate its
performance by real life inspection for a certain test period. It would be interesting to see if this testing could
be performed in a minimally invasive way by combining it with other maintenance jobs.

More in general, it is recommended to develop an integral predictive maintenance process which involves all
component repair shops. For making any kind of prognostic model it is paramount that reliable information
is available to conclude on failure and failure mode, not only for training but also for proper validation. In-
coming components should be assigned to one of several predefined classes of failure modes when diagnos-
ing the component. By combining this information with the original FDE, reliable labels could be generated
for model development and continuous online improvement.

Another general recommendation for future prognostic efforts, is to experiment on some simpler systems if
possible. The Bleed Air system is considered one of the most difficult systems for prognostics. This makes
the case particularly interesting for deep learning, but also very challenging as one of the very first prognostic
applications. This research has shown that there are many steps in developing a prognostic solution, besides
the machine learning model itself, that demand careful research, like choosing the modelling approach, con-
necting various data sources, pre-preocessing the data and validating the prognostic performance. Gaining
experience in these areas is more accessible for simpler systems.

Finally, from a business perspective it is recommended to build a pool of customers (other airlines), that
agree on sharing anonymous sensor data that is used for automated learning in return for a failure prediction
service. Based on trends ongoing in other industries it is expected that, with the change from traditional busi-
ness models to highly data-driven business models, consolidation will take place in the aircraft maintenance
industry around the stakeholders that are capable of collecting most of the data. A large data pool allows
creating superior deep learning tools that could give KLM Engineering & Maintenance (E&M) a leading role
in the predictive maintenance industry.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9

(10]

(11]

(12]

(13]

(14]

(15]

[16]

Bibliography

Peng, Y., Dong, M., and Zuo, M. Current status of machine prognostics in condition-based maintenance:
areview. The International Journal of Advanced Manufacturing Technology, 50(1):297-313, 2010.

Chandramohan, A., Mylaraswamy, D., Xu, B., and Dietrich, P. Big data infrastructure for aviation data
analytics. In Cloud Computing in Emerging Markets (CCEM), 2014 IEEE International Conference on,
pages 1-6. IEEE, 2014.

Bengio, Y., Courville, A., and Vincent, P. Representation learning: A review and new perspectives. [EEE
transactions on pattern analysis and machine intelligence, 35(8):1798-1828, 2013.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097-1105, 2012.

Sainath, T. N., Mohamed, A.-r., Kingsbury, B., and Ramabhadran, B. Deep convolutional neural networks
for lvesr. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on,
pages 8614-8618. IEEE, 2013.

Graves, A., Mohamed, A.-1., and Hinton, G. Speech recognition with deep recurrent neural networks. In
Acoustics, speech and signal processing (icassp), 2013 ieee international conference on, pages 6645-6649.
IEEE, 2013.

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, E, Schwenk, H., and Bengio, Y.
Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

Jardine, A., Lin, D., and Banjevic, D. A review on machinery diagnostics and prognostics implementing
condition-based maintenance. Mechanical Systems and Signal Processing, 20:1483-1510, 2006.

An, D, Kim, N. H., and Choi, J. Practical options for selecting data-driven or physics-based prognostics
algorithms with reviews. Reliability Engineering & System Safety, 133:223-236, 2015.

Zhang, H., Kang, R., and Pecht, M. A hybrid prognostics and health management approach for
condition-based maintenance. In Industrial Engineering and Engineering Management. IEEM 2009.
IEEE International Conference on, pages 1165-1169. IEEE, 2009.

Heng, A., Zhang, S., Tan, A., and Mathew, J. Rotating machinery prognostics: State of the art, challenges
and opportunities. Mechanical systems and signal processing, 23(3):724-739, 2009.

Li, Y, Billington, S., Zhang, C., Kurfess, T., Danyluk, S., and Liang, S. Adaptive prognostics for rolling
element bearing condition. Mechanical systems and signal processing, 13(1):103-113, 1999.

Tan, C. K, Irving, P, and Mba, D. A comparative experimental study on the diagnostic and prognostic
capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears. Mechanical
Systems and Signal Processing, 21(1):208-233, 2007.

Dragomir, O., Gouriveau, R., Dragomir, R., Minca, E., and Zerhouni, N. Review of prognostic problem
in condition-based maintenance. In Control Conference (ECC), 2009 European, pages 1587-1592. 1IEEE,
2009.

Tinga, T. Principles of Loads and Failure Mechanisms. Springer, 2013.

Eker, O., Camci, E, and Jennions, I. Major challenges in prognostics: study on benchmarking prognostic
datasets. In First European Conference of the Prognostics and Health Management Society 2012, pages
148-155. PHM Society, 2012.

65

66

Bibliography

(17]

(18]

[19]

(20]

(21]

(22]

[23]

(24]

(25]

(26]

(27]

(28]

(29]

[30]

(31]

(32]

[33]

(34]

(35]

(36]

[37]

Ramasso, E. and Saxena, A. Performance benchmarking and analysis of prognostic methods for cmapss
datasets. International Journal of Prognostics and Health Management, 5(2):1-15, 2014.

Smith, A., Coit, D., and Liang, Y. A neural network approach to condition based maintenance: case study
of airport ground transportation vehicles. IMA Journal of Management Mathematics on Maintenance,
Replacement and Reliability, 2003.

Tian, Z. and Liao, H. Condition based maintenance optimization for multi-component systems using
proportional hazards model. Reliability Engineering & System Safety, 96(5):581-589, 2011.

Lion, W. Anomaly Detection in ACMS Data for Predictive Maintenance at KLM Engineering & Mainte-
nance. Master thesis Delft University of Technology, 2016.

Yoon, A, Lee, T., Lim, Y., Jung, D., Kang, P, Kim, D., Park, K., and Choi, Y. Semi-supervised learning with
deep generative models for asset failure prediction. arXiv preprint arXiv:1709.00845, 2017.

Si, X., Wang, W, Hu, C,, and Zhou, D. Remaining useful life estimation — a review on the statistical data
driven approaches. European journal of operational research, 213(1):1-14, 2011.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Nature, 521(7553):436-444, 2015.

Babu, G., Zhao, P, and Li, X. Deep convolutional neural network based regression approach for estima-
tion of remaining useful life. In International conference on database systems for advanced applications,
pages 214-228. Springer, 2016.

Ince, T, Kiranyaz, S., Eren, L., Askar, M., and Gabbouj, M. Real-time motor fault detection by 1-D con-
volutional neural networks. IEEE Transactions on Industrial Electronics, 63(11):7067-7075, 2016.

Wu, Y., Yuan, M., Dong, S., Lin, L., and Liu, Y. Remaining Useful Life Estimation of Engineered Systems
using vanilla LSTM Neural Networks. Neurocomputing, 2017.

Zheng, S., Ristovski, K., Farahat, A., and Gupta, C. Long Short-Term Memory Network for Remaining
Useful Life estimation. In Prognostics and Health Management (ICPHM), 2017 IEEE International Con-
ference on, pages 88-95. IEEE, 2017.

KLM Engineering & Maintenance. Training manual B747-400 ATA 36 — Pneumatic Power. 2010.

Federal Aviation Administration. Minimum Equipment List Boeing B-747-400, B-747-400D, B-747-400F.
2012.

Hunt. B, L.-D. G. and Upchurch, J. Maintenance of 747 and 767: Pneumatic bleed systemst. Aero maga-
zine, April 2002.

Segaran, T. Programming collective intelligence: building smart web 2.0 applications. " O’Reilly Media,
Inc.", 2007.

Schwabacher, M. and Goebel, K. A survey of artificial intelligence for prognostics. In Aaai fall sympo-
sium, pages 107-114, 2007.

Liaw, A., Wiener, M., et al. Classification and regression by Random Forest. The R Journal, 2(3):18-22,
2002.

Breiman, L. Classification and regression trees. Routledge, 2017.

Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., and Kluger, Y. Deepsurv: Personalized
treatment recommender system using a cox proportional hazards deep neural network. BMC medical
research methodology, 18(1):24, 2018.

Jacobson, L. Introduction to artificial neural networks. http://www.theprojectspot.com/tutorial-
post/introduction-to-artificial-neural-networks-part-1/7, 2013. Accessed: 2018-05-29.

Rumelhart, D. E., Hinton, G. E., and Williams, R.]J. Learning representations by back-propagating errors.
nature, 323(6088):533, 1986.

Bibliography 67

(38]

(39]

(40]

[41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

[49]

(50]

(51]

[52]

(53]

[54]

[55]

(56]

[57]

Ruder, S. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,
2016.

Goodfellow, 1., Bengio, Y., Courville, A., and Bengio, Y. Deep learning, volume 1. MIT press Cambridge,
2016.

Ordéfiez, E J. and Roggen, D. Deep convolutional and LSTM Recurrent Neural Networks for multimodal
wearable activity recognition. Sensors, 16(1):115, 2016.

Caruana, R. and Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. In
Proceedings of the 23rd international conference on Machine learning, pages 161-168. ACM, 2006.

Christ, M., Kempa-Liehr, A. W,, and Feindt, M. Distributed and parallel time series feature extraction for
industrial big data applications. arXiv preprint arXiv:1610.07717, 2016.

Pedregosa, E, Varoquaux, G., Gramfort, A., Michel, V,, Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P,
Weiss, R., Dubourg, V,, Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duches-
nay, E. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830,
2011.

Chollet, E et al. Keras. https://keras.io, 2015.

Abadi, M., Agarwal, A., Barham, P, et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URLhttps://www.tensorflow.org/.

Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. Return of the devil in the details: Delving
deep into convolutional nets. arXiv preprint arXiv:1405.3531, 2014.

Zhu, M. Recall, precision and average precision. Department of Statistics and Actuarial Science, Univer-
sity of Waterloo, Waterloo, 2:30, 2004.

Davis, J. and Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of
the 23rd international conference on Machine learning, pages 233-240. ACM, 2006.

Oberkampf, W. L. and Roy, C.]J. Verification and validation in scientific computing. Cambridge University
Press, 2010.

Goodfellow, 1. and Papernot, N. The challenge of verification and testing of machine learning.
http://www.cleverhans.io/security/privacy/ml/2017/06/14/verification.html, 2017. Accesed on 2018-
06-5.

Saito, T. and Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when
evaluating binary classifiers on imbalanced datasets. PloS one, 10(3):e0118432, 2015.

Sturm, I., Lapuschkin, S., Samek, W., and Miiller, K.-R. Interpretable deep neural networks for single-trial
eeg classification. Journal of neuroscience methods, 274:141-145, 2016.

Taylor, B. J. Methods and procedures for the verification and validation of artificial neural networks.
Springer Science & Business Media, 2006.

Bach, S., Binder, A., Montavon, G., Klauschen, E, Miiller, K.-R., and Samek, W. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140,
2015.

Samek, W,, Binder, A., Montavon, G., Lapuschkin, S., and Miiller, K.-R. Evaluating the visualization of
what a deep neural network has learned. IEEE transactions on neural networks and learning systems, 28
(11):2660-2673, 2017.

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., and Batra, D. Grad-cam: Why did you
say that? arXiv preprint arXiv:1611.07450, 2016.

Prechelt, L. Early stopping-but when? In Neural Networks: Tricks of the trade, pages 55-69. Springer,
1998.

https://keras.io
https://www.tensorflow.org/

68

Bibliography

(58]

(59]

(60]

(61]

[62]

[63]

(64]

(65]

(66]

[67]

(68]

[69]

[70]

[71]

[72]

[73]

(74]

[75]

Zhou, B., Khosla, A., A,, L., Oliva, A., and Torralba, A. Learning Deep Features for Discriminative Local-
ization. CVPR, 2016.

Snoek, J., Larochelle, H., and Adams, R. P. Practical bayesian optimization of machine learning algo-
rithms. In Advances in neural information processing systems, pages 2951-2959, 2012.

He, K., Zhang, X,, Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.

Pan, M.-C. and Sas, P. Transient analysis on machinery condition monitoring. In Signal Processing, 1996.,
3rd International Conference on, volume 2, pages 1723-1726. IEEE, 1996.

Dalpiaz, G., Rivola, A., and Rubini, R. Effectiveness and sensitivity of vibration processing techniques
for local fault detection in gears. Mechanical systems and signal processing, 14(3):387-412, 2000.

Sung, C., Tai, H., and Chen, C. Locating defects of a gear system by the technique of wavelet transform.
Mechanism and machine theory, 35(8):1169-1182, 2000.

Qiu, H., Lee, J., Lin, J., and Yu, G. Wavelet filter-based weak signature detection method and its ap-
plication on rolling element bearing prognostics. Journal of sound and vibration, 289(4-5):1066-1090,
2006.

Li, S. and Wen, J. A model-based fault detection and diagnostic methodology based on pca method and
wavelet transform. Energy and Buildings, 68:63-71, 2014.

Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation, 9(8):1735-1780,
1997.

Malhotra, P, Vig, L., Shroff, G., and Agarwal, P. Long short term memory networks for anomaly detection
in time series. In Proceedings of ESANN 2015, page 89. Presses universitaires de Louvain, 2015.

Chauhan, S. and Vig, L. Anomaly detection in ECG time signals via deep long short-term memory net-
works. In Data Science and Advanced Analytics (DSAA), 2015. 36678 2015. IEEE International Conference
on, pages 1-7. IEEE, 2015.

Nanduri, A. and Sherry, L. Anomaly detection in aircraft data using Recurrent Neural Networks. In
Integrated Communications Navigation and Surveillance (ICNS), 2016, pages 5C2-1. IEEE, 2016.

Malhotra, P, Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P, and Shroff, G. Lstm-based encoder-
decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148, 2016.

Oquab, M., Bottou, L., Laptev, L., and Sivic, J. Learning and transferring mid-level image representations
using convolutional neural networks. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 1717-1724. IEEE, 2014.

Katzman, J., Shaham, U., Bates, J., Cloninger, A., Jiang, T., and Kluger, Y. Deep survival: A deep cox
proportional hazards network. arXiv preprint arXiv:1606.00931, 2016.

Bolkenbaas, A. Behind the scenes, KLM blog, 2015. URL https://blog.klm.com/
my-best-shots-of-the-new-747-1livery/.

Cover image adopted from [75].

https://blog.klm.com/my-best-shots-of-the-new-747-livery/
https://blog.klm.com/my-best-shots-of-the-new-747-livery/

Appendices

69

A

Schematic drawing of the Bleed Air system

71

A. Schematic drawing of the Bleed Air system

72

FAN AIR

LP

——f-—a= PL 20
«
I

HIGH PRESSURE CONTROLLER
PNEUMATIC SYSTEM SCHEMATIC

PRESSURE REGULATING VALVE CONTROLLER

PHL - HIGH PRESSURE - LOW (PSI)

Figure A.1: Technical drawing of the engine bleed configuration.

PRESSURE OVERPRESSURE
PRESSURE SENSOR SWITCH -~f--m PH 5T
REGULATOR hi I
CONTROL [
NWMMMM AND —| I TemPERATURE PRESSURE
OPEN — CONTROL REGULATION [
T{ L% _J
FAN AIR POPPET REV FLOW
MODULATING To/,ol MMQM”S LIMITER
VALVE — | .
CLOSE B STARTER 1 [3
VALVE
\j FROM PRV
CONTROLLER
\L/
H WTAL
Iﬂ FAN AIR
TEMPERATURE SENSOR Ll
HPSOV AN
0000 v}
j R (W PRESSURE REGULATING L
i looool BLEED AIR AND SHUTOFF VALVE
po— OVERTEMPERATURE
9 SWITCH
I PRECOOLER BLEED AIR
TEMPERATURE
SENSOR THRUST REVERSER PRESSURE —>T0
CLOSED REGULATING AND SHUTOFF VALVE AsC
— PRESSURE REGULATING @ PACK
VALVE GROUND
il CONNECTION
HIGH PRESSURE APU B’
SHUTOFF VALVE ISOLATION
| VALVE
NACELLE
[S, TO PRSOV ANTI-ICING —>T0
« VALVE Asc
PC I PACK
PD ”
\\\\\\\\\ -
@ T2 B2 Hmo_;:oz\\
PRESSURE VALVE (2) —>T0
PHL REGULATOR A/C
PACK
o
< 62
I
PHH
--f=— 127 NOTE:
« PC - CONTROL PRESSURE (PSI) PRESSURE
I PD - DIFFERENTIAL PRESSURE (PSI) TRANSHITTER
1l PH - HIGH PRESSURE (PSI)
Q PL - LOW PRESSURE (PSI) @
PHH - HIGH PRESSURE - HIGH (PSI)

3

RF: Calculated features

73

74

B. RF: Calculated features

Table B.1: RF: List of features extracted from the time series signal. For the mathematical definitions of the features one is referred to

[42].

Feature

maximum

minimum

mean

variance

standard deviation

skewness

kurtosis

length

median

quantiles of empiric distribution function
absolute energy

augmented dickey fuller test statistic
has large standard deviation

has variance larger than std

is symmetric looking

mass quantiles

number data points above median
number data points below mean
number data points below median
arima model coefficients
continuous wavelet transformation
coefficients

fast fourier transformation coefficient
first index max

first index min

lagged autocorrelation

large number of peaks

last index max

last index min

longest strike above mean

longest strike above median
longest strike below mean

longest strike negative

longest strike positive

longest strike zero

mean absolute change

mean absolute change quantiles
mean autocorrelation

mean second derivate central
number of continous wavelet transformation peaks
of size

number peaks of size

spektral welch density

time reversal asymmetry statistic

Prognostic value function derivation

The total value (profit) V can be expressed in terms of the benefits b of a True Positive TP and the cost c of a
False Positive FP.

V=b-TP-c-FP (C.1)

Within the scope of this study it is assumed that each timeline ends with a removal (after the FDE occurence).
As such the value per removal can be determined by dividing the value by the number of timelines, which is
equivalent to the number of positives is the sum of True Positives TP and False Negatives FN.

%4 \%4
— - (C.2)
Removal TP +FN
Combining the two equations above leads to the following equation:
\%4 TP FP
=b- -c- (C.3)
Removal TP+FN TP+FN
This function can be rewritten in terms of the Precision and Recall metrics.
.. TP
Precision = (C.4)
TP+FP
TP
Recall = (C.5)
TP+FN

Which leads to the following formula for the value per FDE occurrence, which is supposed to be equivalent
to a removal within the scope of this study:

v
—:(—c-(f—l))-Recaﬂ (C.6)
Removal Precision

This function shows, that if the Precision goes to one, the formula simply is the Recall times the Benefits per
TP. On the other hand, if the Precision becomes very small, the cost should be very small compared to the
benefits to keep the outcome positive.

75

D

RF: Grid search results

77

78

D. RF: Grid search results

Table D.1: RF: Grid search results, sorted by the mean average precision score.

Validation score

Hyper-parameters

Mean Std. Max. Min. Min.
Avg. Avg. Mean Std. features | samples | samples No.of | Mean
e e AUROC | AUROC . . trees | fittime
Precision | Precision per split | perleaf | per split

0.211 0.031 0.670 0.036 0.3 20 4 300 354.2
0.208 0.027 0.670 0.038 0.1 20 4 300 122.6
0.207 0.026 0.669 0.035 0.1 20 20 300 123.7
0.207 0.025 0.663 0.034 0.1 20 4 100 42.7
0.207 0.027 0.668 0.036 0.3 20 20 300 358.3
0.206 0.031 0.664 0.039 0.3 4 100 300 428.8
0.206 0.030 0.660 0.035 0.1 4 20 100 52.1
0.206 0.031 0.665 0.038 0.3 20 4 100 121.9
0.205 0.028 0.666 0.036 0.3 20 100 300 337.9
0.205 0.034 0.664 0.042 0.3 100 4 300 244.9
0.205 0.025 0.667 0.032 0.1 4 4 300 154.6
0.205 0.027 0.668 0.037 0.1 20 100 300 116.7
0.204 0.027 0.667 0.039 0.1 4 100 300 140.6
0.204 0.030 0.661 0.037 0.3 20 100 100 113.3
0.204 0.031 0.664 0.039 0.3 20 20 100 121.4
0.204 0.027 0.666 0.036 0.1 4 20 300 152.8
0.204 0.030 0.665 0.041 0.3 4 20 300 466.7
0.204 0.030 0.667 0.038 0.3 4 4 300 459.7
0.203 0.025 0.664 0.036 0.1 20 100 100 39.9
0.203 0.028 0.658 0.038 0.3 4 100 100 151.2
0.202 0.027 0.662 0.040 0.3 100 100 300 240.6
0.202 0.026 0.664 0.040 0.1 100 100 100 31.3
0.201 0.030 0.661 0.043 0.3 100 20 300 2429
0.201 0.026 0.661 0.041 0.1 100 20 300 86.7
0.201 0.027 0.662 0.039 0.3 100 4 100 83.8
0.201 0.027 0.662 0.039 0.3 100 100 100 82.3
0.201 0.027 0.662 0.039 0.1 100 4 300 86.4
0.200 0.026 0.665 0.034 0.1 20 20 100 42.7
0.200 0.027 0.660 0.040 0.1 100 20 100 30.5
0.200 0.029 0.658 0.038 0.3 4 20 100 154.5
0.199 0.027 0.660 0.041 0.3 100 20 100 82.8
0.199 0.025 0.656 0.035 0.1 4 4 100 53.0
0.199 0.030 0.653 0.035 0.3 4 4 100 156.3
0.198 0.025 0.661 0.040 0.1 100 4 100 299
0.198 0.021 0.663 0.036 0.1 4 100 100 46.7
0.198 0.025 0.661 0.039 0.1 100 100 300 90.1

RF: Feature importances per FDE

FAN AIR MODULATING VALVE/FATS FAIL CLOSED Importance
bld_temp__agg linear_trend_ f agg "var"_ chunk len 5 attr "intercept" 0.006064
bld_temp__agg linear_trend_ f agg "var"__chunk _len_10__attr_"intercept" 0.005200
press_diff number_crossing m__ m_-1 0.004849
temp_diff _fft coefficient__coeff_11__attr_"imag" 0.004347
COrITr_press 0.003760
FAN AIR MODULATING VALVE/FATS FAIL OPEN Importance
bld_temp__maximum 0.057804
bld_temp__agg linear_trend_ f agg "var"_ chunk len 5__attr "intercept" 0.014740
bld_temp__agg linear_trend_ f agg "var"_ chunk len 10__ attr_"intercept" 0.013011
bld_temp__agg linear_trend_ f agg "var"__ chunk_len_10__attr_"slope" 0.007165
temp_diff __abs_energy 0.004373

HIGH PRESSURE CONTROLLER/HPSOV FAIL CLOSED Importance

press_diff _maximum 0.049185
press_diff _range_count__max_1__min_-1 0.045505
press_diff__quantile__q_0.8 0.018827
press_diff number_crossing m__m_-1 0.015951
press_diff quantile__q_0.9 0.011029
HIGH PRESSURE SHUTOFF VALVE FAIL Importance
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff 2_ w_2 0.024534

bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_20 0.023909
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14_ w_10 0.020968
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff _13__ w_10 0.019111
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_10 0.018568

79

80

E. RF: Feature importances per FDE

HIGH PRESSURE SHUTOFF VALVE FAIL CLOSED Importance
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_20 0.023909
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff 2_ w_2 0.020916
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff 14_ w_10 0.020300
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12_ w_20 0.017083
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_10 0.017074
PRESSURE REGULATING VALVE/ CONTROLLER FAIL CLOSED Importance
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__ w_20 0.025417
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14_ w_10 0.020547
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff 2_ w_2 0.018760
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_10 0.018438
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff 12_ w_10 0.017732
PRESSURE REGULATING VALVE/ CONTROLLER FAIL OPEN Importance
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_20 0.017076
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14_ w_10 0.015659
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__ w_10 0.012364
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12__w_20 0.012308
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12_ w_10 0.012095
PRSOV TEMPERATURE TOPPING FAIL Importance
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_20 0.007595
bld_temp__maximum 0.007588
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff 14_ w_10 0.007306
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_12_ w_10 0.005801
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_10 0.005191
PRV/CONTROLLER SOLENOID FAIL OPEN Importance
bld_temp__maximum 0.023844
bld_temp__agg linear_trend_ f agg "var"_ chunk len 5__attr "intercept" 0.011569
bld_temp__agg linear_trend__f agg "var"_ chunk len_10__attr_"intercept" 0.008638
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14_ w_10 0.004535
bld_press__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_13__w_10 0.003882
TEMPERATURE CONTROL SYSTEM FAIL OPEN Importance
bld_temp__agg linear_trend_ f agg "var"_ chunk len_10__attr_"intercept" 0.025267
bld_temp__agg linear_trend__f agg "var"_ chunk_ len_5__attr_"intercept" 0.024308
bld_temp__agg linear_trend__f agg "var"_ chunk len_10__attr_"slope" 0.010552
temp_diff _fft coefficient_ coeff 11__attr "imag" 0.006277
temp_diff__cwt_coefficients__widths_(2, 5, 10, 20)__coeff 3__w_2 0.005793

Table E.1: RF: Most important features per FDE type.

RF single-FDE: Prognostic performance

81

82

E RF single-FDE: Prognostic performance

Prognostic precision as function of RUL and probability thres1hoold

0.8
0.6

0.4

Probability threshold

0.2

0.0

50 20.0 350 500 650 800 950
RUL threshold

Figure E1: RF single-FDE: Heat map of the prognostic
precision as function of the probability and RUL threshold.

Prognostic value as function of RUL and probability threshold

0.73

0.45
0.67

o
o

0.30

o
o
a

0.15

Probability threshold
=] o
B S
w ©

o
w
S

0.00

o
w

o
N
a

50 20.0 350 500 650 800 950
RUL threshold

Figure E3: RF single-FDE: Heat map of the added value
index as function of the probability and RUL threshold,
with valuerp = -0.2-valuerp.

Prognostic recall as function of RUL and probability thresh?léj

0.73
0.67 08
5 061
°
a
g 055 0.6
£
2049
8 0.4
8 043 ’
8
0.37
0.2
0.31
0.25 00

50 200 350 50.0 650 80.0 950
RUL threshold

Figure E2: RF single-FDE: Heat map of the prognostic recall
as function of the probability and RUL threshold.

Prognostic value as function of RUL and probability threshold

0.73 .

0.25
0.67

5 061 --I

] 0.00

@

8 055

£

2049

= -0.25

©

8 043

o
0.37 -0.50
0.31

-0.75

0.25

50 20.0 350 500 650 80.0 950
RUL threshold

Figure E4: RF single-FDE: Heat map of the added value
index as function of the probability and RUL threshold,
with valuerp = -1-valuerp.

(5

CNN: Grid search results

83

84 G. CNN: Grid search results

Table G.1: CNN: Grid search results, sorted by the mean average precision score. The number between brackets in the Filter increase
and the Pooling column indicates every how many convolutional layers the operation is applied.

Validation score Hyper-parameters
Mean Std. Mean Std. No. of No. of | Filter Max. Mean
Avg. Avg. conv. . . .
e . AUROC | AUROC filters | increase | pooling | fit time
Precision | Precision layers

0.173 0.029 0.639 0.015 3 32 True (1) False 680
0.171 0.026 0.642 0.039 6 16 True (2) False 563
0.169 0.020 0.632 0.030 4 32 False False 302
0.169 0.019 0.614 0.019 6 32 True (2) False 1235
0.164 0.016 0.632 0.043 4 32 False True (2) 263
0.163 0.021 0.610 0.057 6 16 True (2) True (2) 291
0.161 0.026 0.628 0.053 4 32 True (2) True (2) 248
0.161 0.019 0.621 0.021 4 32 True (2) False 556
0.158 0.025 0.611 0.050 6 32 True (2) True (2) 326
0.158 0.011 0.628 0.033 6 32 False True (2) 294
0.157 0.016 0.622 0.034 3 32 True (1) True (1) 228
0.156 0.031 0.606 0.044 3 16 False False 171
0.154 0.013 0.630 0.029 3 32 False False 278
0.154 0.016 0.608 0.041 3 16 True (1) False 296
0.153 0.026 0.619 0.049 3 16 True (1) True (1) 140
0.150 0.012 0.607 0.034 2 32 False True (1) 196
0.150 0.007 0.609 0.020 3 32 False True (1) 190
0.150 0.013 0.621 0.028 6 32 False False 521
0.149 0.016 0.610 0.026 2 32 True (1) False 215
0.149 0.025 0.611 0.050 6 16 False False 299
0.149 0.015 0.594 0.016 4 16 True (1) False 227
0.148 0.011 0.608 0.013 6 16 False True (1) 184
0.148 0.028 0.593 0.045 4 16 True (2) True (2) 212
0.145 0.018 0.603 0.048 2 32 True (1) True (1) 143
0.145 0.010 0.604 0.026 2 32 False False 213
0.142 0.006 0.587 0.027 2 16 False False 117
0.140 0.015 0.586 0.056 4 16 False False 176
0.138 0.015 0.585 0.046 2 16 True (1) False 131
0.137 0.027 0.579 0.061 4 16 False True (2) 170
0.132 0.012 0.568 0.030 2 16 True (1) True (1) 76
0.131 0.018 0.569 0.048 2 16 False True (1) 101
0.125 0.012 0.541 0.047 3 16 False True (1) 94

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Academic state of the art
	Research scope
	Contribution of this study

	Experimental set-up
	Case study motivation
	Component selection
	Boeing 747 Bleed Air system

	Theoretical context
	Machine learning
	Deep learning

	Methodology
	Machine learning formulation
	Data pre-processing
	Machine learning models
	Evaluation procedure

	Results
	Random Forest
	Convolutional Neural Network

	Discussion
	Random Forest
	Convolutional Neural Network
	Prognostic application
	Problem solving approach
	Model comparison

	Conclusions
	Recommendations
	Academic recommendations
	Industry recommendations

	Bibliography
	Appendices
	Schematic drawing of the Bleed Air system
	RF: Calculated features
	Prognostic value function derivation
	RF: Grid search results
	RF: Feature importances per FDE
	RF single-FDE: Prognostic performance
	CNN: Grid search results

