
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Crawling AJAX by Inferring User
Interface State Changes

Ali Mesbah, Engin Bozdag, and Arie van Deursen

Report TUD-SERG-2008-022

SERG

TUD-SERG-2008-022

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: This paper is a pre-print of:

Ali Mesbah, Engin Bozdag, and Arie van Deursen. Crawling Ajax by Inferring User Interface State
Changes. In Proceedings of the 8th International Conference on Web Engineering (ICWE’08), New
York, USA. IEEE Computer Society.

c© copyright 2008, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Crawling AJAX by Inferring User Interface State Changes

Ali Mesbah
Delft University of Technology

The Netherlands
A.Mesbah@tudelft.nl

Engin Bozdag
Delft University of Technology

The Netherlands
V.e.Bozdag@tudelft.nl

Arie van Deursen
Delft Univ. of Technology & CWI

The Netherlands
Arie.vanDeursen@tudelft.nl

Abstract

AJAX is a very promising approach for improving rich
interactivity and responsiveness of web applications. At the
same time, AJAX techniques shatter the metaphor of a web
‘page’ upon which general search crawlers are based. This
paper describes a novel technique for crawling AJAX ap-
plications through dynamic analysis and reconstruction of
user interface state changes. Our method dynamically in-
fers a ‘state-flow graph’ modeling the various navigation
paths and states within an AJAX application. This recon-
structed model can be used to generate linked static pages.
These pages could be used to expose AJAX sites to gen-
eral search engines. Moreover, we believe that the crawling
techniques that are part of our solution have other appli-
cations, such as within general search engines, accessibil-
ity improvements, or in automatically exercising all user
interface elements and conducting state-based testing of
AJAX applications. We present our open source tool called
CRAWLJAX which implements the concepts discussed in
this paper. Additionally, we report a case study in which
we apply our approach to a number of representative AJAX

applications and elaborate on the obtained results.

1 Introduction

The web as we know it is undergoing a significant
change. A technology that has gained a prominent posi-
tion lately, under the umbrella of Web 2.0, is AJAX (Asyn-
chronous JavaScript and XML) [13], in which a clever com-
bination of JavaScript and Document Object Model (DOM)
manipulation, along with asynchronous server communi-
cation is used to achieve a high level of user interactiv-
ity. Highly visible examples include Google Maps, Google
Documents, and the recent version of Yahoo! Mail.

With this new change in developing web applications
comes a whole set of new challenges, mainly due to the
fact that AJAX shatters the metaphor of a web ‘page’ upon
which many web technologies are based. Among these
challenges are the following:

Searchability ensuring that AJAX sites are indexed by the
general search engines, instead of (as is currently often
the case) being ignored by them because of the use of
client-side scripting and dynamic state changes in the
DOM;

Testability systematically exercising dynamic user inter-
face (UI) elements and states of AJAX to find abnor-
malities and errors;

Accessibility examining whether all states of an AJAX site
meet certain accessibility requirements.

One way to address these challenges is through the use
of a crawler that can automatically walk through different
states of a highly dynamic AJAX site, create a model of
the navigational paths and states, and generate a traditional
linked page-based static version. The generated static pages
can be used, for instance, to expose AJAX sites to general
search engines or to examine the accessibility [2] of differ-
ent dynamic states. Such a crawler can also be used for con-
ducting state-based testing of AJAX applications [16] and
automatically exercising all user interface elements of an
AJAX site in order to find e.g., link-coverage, broken-links,
and other errors.

To date, no crawler exists that can handle the complex
client code that is present in AJAX applications. The reason
for this is that crawling AJAX is fundamentally more diffi-
cult than crawling classical multi-page web applications. In
traditional web applications, states are explicit, and corre-
spond to pages that have a unique URL assigned to them.
In AJAX applications, however, the state of the user in-
terface is determined dynamically, through changes in the
DOM that are only visible after executing the correspond-
ing JavaScript code.

In this paper, we propose an approach to analyze and
reconstruct these user interface states automatically. Our
approach is based on a crawler that can exercise client
side code, and can identify clickable elements (which
may change with every click) that change the state within
the browser’s dynamically built DOM. From these state

SERG Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes

TUD-SERG-2008-022 1

changes, we infer a state-flow graph, which captures the
states of the user interface, and the possible transitions be-
tween them. This graph can subsequently be used to gener-
ate a multi-page static version of the original AJAX applica-
tion.

The underlying ideas have been implemented in a tool
called CRAWLJAX.1

We have performed an experiment of running our crawl-
ing framework over a number of representative AJAX sites
to analyze the overall performance of our approach, evalu-
ate the effectiveness in retrieving relevant clickables, assess
the quality and correctness of the detected states and gen-
erated static pages, and examine the capability of our tool
on real sites used in practice and the scalability in crawling
sites with thousands of dynamic states and clickables. The
cases span from internal to academic and external commer-
cial AJAX web sites.

The paper is structured as follows. We start out, in Sec-
tion 2 by exploring the difficulties of crawling and indexing
AJAX. In Sections 3 and 4, we present a detailed discussion
of our new crawling techniques, the generation process, and
the CRAWLJAX tool. In Section 5 the results of applying our
methods to a number of AJAX applications are shown, af-
ter which Section 6 discusses the findings and open issues.
Section 7 presents various applications of our crawling tech-
niques. We conclude with a brief survey of related work, a
summary of our key contributions, and suggestions for fu-
ture work.

2 Challenges of Crawling AJAX

AJAX has a number of properties making it extremely
difficult for, e.g., search engines to crawl such web applica-
tions.

2.1 Client-side Execution

The common ground for all AJAX applications is a
JavaScript engine which operates between the browser and
the web server, and which acts as an extension to the
browser. This engine typically deals with server communi-
cation and user interface rendering. Any search engine will-
ing to approach such an application must have support for
the execution of the scripting language. Equipping a gen-
eral search crawler with the necessary environment com-
plicates its design and implementation considerably. The
major search giants such as Google2 currently have little or
no support for executing JavaScript due to scalability and
security issues.

1The tool is available for download from http://spci.st.ewi.
tudelft.nl/crawljax/.

2 http://googlewebmastercentral.blogspot.com/2007/11/
spiders-view-of-web-20.html

1
2
3 <div onClick="OpenNewsPage();">
4
5 <input type="submit" class="news"/>
6 <div class="news">
7 <!-- jQuery function attaching events to elements
8 having attribute class="news" -->
9 $(".news").click(function() {

10 $("#content").load("news.html");
11 });

Figure 1. Different ways of attaching events
to elements.

2.2 State Changes & Navigation

Traditional web applications are based on the multi-page
interface paradigm consisting of multiple (dynamically gen-
erated) unique pages each having a unique URL. In AJAX

applications, not every state change necessarily has an as-
sociated REST-based [11] URI [20]. Ultimately, an AJAX

application could consist of a single-page [19] with a single
URL. This characteristic makes it very difficult for a search
engine to index and point to a specific state on an AJAX

application. For crawlers, navigating through traditional
multi-page web applications has been as easy as extract-
ing and following the hypertext links (or the src attribute)
on each page. In AJAX, hypertext links can be replaced
by events which are handled by the client engine; it is not
possible any longer to navigate the application by simply
extracting and retrieving the internal hypertext links.

2.3 Dynamic Document Object Model (DOM)

Crawling and indexing traditional web applications con-
sists of following links, retrieving and saving the HTML
source code of each page. The state changes in AJAX appli-
cations are dynamically represented through the run-time
changes on the DOM. This means that the source code in
HTML does not represent the state anymore. Any search
engine aimed at crawling and indexing such applications,
will need to have access to this run-time dynamic document
object model of the application.

2.4 Delta-communication

AJAX applications rely on a delta-communication [20]
style of interaction in which merely the state changes are ex-
changed asynchronously between the client and the server,
as opposed to the full-page retrieval approach in traditional
web applications. Retrieving and indexing the delta state
changes, for instance, through a proxy between the client
and the server, could have the side-effect of losing the con-
text and actual meaning of the changes. Most of such delta
updates become meaningful after they have been processed

Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes SERG

2 TUD-SERG-2008-022

by the JavaScript engine on the client and injected into the
DOM.

2.5 Elements Changing the Internal State

To illustrate the difficulties involved in crawling AJAX,
consider Figure 1. It is a highly simplified example, show-
ing different ways in which a news page can be opened.

The example code shows how in AJAX sites, it is not
just the hypertext link element that forms the doorway
to the next state. Note the way events (e.g., onClick,
onMouseOver) can be attached to DOM elements at run-
time. As can be seen, a div element (line 3) can have an
onclick event attached to it so that it becomes a click-
able element capable of changing the internal DOM state
of the application when clicked. The necessary event han-
dlers can also be programmatically registered in AJAX. The
jQuery3 code responsible (lines 9–11) for attaching the re-
quired functionality to the onClick event handlers using the
class attribute of the elements can also be seen.

Finding these clickables at run-time is another non-
trivial task for a crawler. Traditional crawlers as used by
search engines will simply ignore all the elements (not hav-
ing a proper href attribute) except the one in line 4, since
they rely on JavaScript only.

3 A Method for Crawling AJAX

The challenges discussed in the previous section will
make it clear that crawling AJAX based on static analysis
of, e.g., the HTML and JavaScript code is not feasible. In-
stead, we rely on a dynamic approach, in which we actually
exercise clicks on all relevant elements in the DOM. From
these clicks, we reconstruct a state-flow graph, which tells
us in which states the user interface can be. Subsequently,
we use these states to generate static, indexable, pages.

An overview of our approach is visualized in Figure 3.
As can be seen, the architecture can be divided in two parts:
(1) inferring the state machine, and (2) using the state ma-
chine to generate indexable pages.

In this section, we first summarize our state and state-
flow graph definition, followed by a discussion of the most
important steps in our approach.

3.1 User Interface States

In traditional multi-page web applications, each state is
represented by a URL and the corresponding web page. In
AJAX however, it is the internal structure change of the
DOM tree on the (single-page) user interface that repre-
sents a state change. Therefore, to adopt a generic approach

3 http://jquery.com

Index

S_1
<onclick, xpath://DIV[1]/SPAN[4]>

S_2
<onmouseover, id:c_9>

S_3
<onclick, xpath://DIV[3]/IMG[1]>

<onmouseover, xpath://SPAN[2]/A[2]>

S_4
<onclick, id:c_3>

Figure 2. The state-flow graph visualization.

for all AJAX sites, we define a state change as a change
on the DOM tree caused either by server-side state changes
propagated to the client, or client-side events handled by the
AJAX engine.

3.2 The State-flow Graph

The user interface state changes in AJAX can be modeled
by recording the paths (events) to these DOM changes to be
able to navigate the different states. For that purpose we
define a state-flow graph as follows:

Definition 1 A state-flow graph for an AJAX site A is a 3
tuple < r,V ,E > where:

1. r is the root node (called Index) representing the initial
state after A has been fully loaded into the browser.

2. V is a set of vertices representing the states. Each
v ∈ V represents a run-time state in A.

3. E is a set of edges between vertices. Each (v1,v2)∈E
represents a clickable c connecting two states if and
only if state v2 is reached by executing c in state v1.

Our state-flow graph is similar to the event-flow graph
[18], but different in that in the former vertices are states,
where as in the latter vertices are events.

As an example of a state-flow graph, Figure 2 depicts the
visualization of the state-flow graph of a simple AJAX site.
It illustrates how from the start page three different states
can be reached. The edges between states are labeled with
an identification (either via its ID-attribute or via an XPath
expression) of the element to be clicked in order to reach
the given state. Thus, clicking on the //DIV[1]/SPAN[4]
element in the Index state leads to the S 1 state, from which
two states are reachable namely S 3 and S 4.

3.3 Inferring the State Machine

The state-flow graph is created incrementally. Initially,
it only contains the root state and new states are created and
added as the application is crawled and state changes are
analyzed.

The following components, also shown in Figure 3 par-
ticipate in the construction of the state flow graph:

SERG Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes

TUD-SERG-2008-022 3

Robot

Crawljax Controller Ajax
Engineupdate

 DOM

update

UI

event

Browser click

generate click

update

State
Machine

Sitemap
Generator

Mirror site
Generator

generate
sitemap

generate
mirror

event

Linkerlink
up

DOM to HTML
Transformer

transform

Inferring the State Machine

Generating Indexable Pages

Legend

Control flow

Data component

Processing component

Access

Event invocation

Output

Sitemap
XML

 Multi-page
HTML Static file

Figure 3. Processing view of the crawling architecture.

• Embedded Browser: Our approach is based on an em-
bedded browser interface (with different implementa-
tions: IE, Mozilla) capable of executing JavaScript and
the supporting technologies required by AJAX (e.g.,
CSS, DOM, XMLHttpRequest).

• Robot: A robot is used to simulate user input (e.g.,
click, mouseOver, text input) on the embedded
browser.

• Controller: The controller has access to the embed-
ded browser’s DOM and analyzes and detects state
changes. It also controls the Robot’s actions and is
responsible for updating the State Machine when rel-
evant changes occur on the DOM. After the crawling
process is over, the controller also calls the Sitemap
and Mirror site generator processes.

• Finite State Machine: The finite state machine is a data
component maintaining the state-flow graph, as well as
a pointer to the current state.

The algorithm used by these components to actually in-
fer the state machine is shown in Algorithm 1. The start
procedure (lines 1-8) takes care of initializing the various
components and processes involved. The actual, recursive,
crawling procedure starts at line 10: the main steps are ex-
plained below.

3.4 Detecting Clickables

There is no direct way of obtaining all clickable elements
in a DOM-tree, due to the reasons explained in Section 2.
Therefore, our algorithm makes use of a set of candidate
elements, which are all exposed to an event type (e.g., click,
mouseOver). We use the click event type to present our
algorithm, note, however, that other event types can be used
just as well to analyze the effects on the DOM in the same
manner.

We distinguish three ways of obtaining the candidate el-
ements:

• In a Full Auto Scan mode, the candidate clickables
are labeled as such based on their HTML tag element
name. For example, all elements with a tag div, a,
span, input are considered as candidate clickable.
This is the mode that is displayed in Algorithm 1.

• In the annotation mode, we allow the HTML elements
to have an attribute crawljax="true". This gives
users the opportunity to explicitly mark certain ele-
ments as to be crawled, or elements to be excluded
from the process by setting the attribute to false. Note
that this mode requires access to the source code of the
application for applying the annotations.

• In the configured mode, we allow a user to specify by
means of a domain-specific language which elements

Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes SERG

4 TUD-SERG-2008-022

Algorithm 1 Full Auto Scan
1: procedure START (url, Set tags)
2: browser← initEmbeddedBrowser(url)
3: robot← initRobot()
4: sm← initStateMachine()
5: crawl(null)
6: linkupAndSaveAsHTML(sm)
7: generateSitemap(sm)
8: end procedure
9:

10: procedure CRAWL (State ps)
11: cs← sm.getCurrentState()
12: ∆update← diff(ps, cs)
13: Set C← getCandidateClickables(∆update, tags)
14: for c ∈ C do
15: robot.fireEvent(c, ‘click’)
16: dom← browser.getDom()
17: if distance(cs.getDom(), dom) > τ then
18: xe← getXpathExpr(c)
19: ns← State(c, xe, dom)
20: sm.addState(ns)
21: sm.addEdge(cs, ns, c, ‘click’)
22: sm.changeState(ns)
23: crawl(cs)
24: sm.changeState(cs)
25: if browser.history.canBack then
26: browser.history.goBack()
27: else
28: browser.reload()
29: List E← sm.getShortestPathTo(cs)
30: for e ∈ E do
31: robot.fireEvent(e.getXpathExpr(), ‘click’)
32: end for
33: end if
34: end if
35: end for
36: end procedure

should be clicked (explained in more detail in Sec-
tion 3.8). This allows the most precise control over
the actual elements to be clicked.

Note that, if desirable, these modes can be combined. Af-
ter the candidate elements have been found, the algorithm
proceeds to determine whether these elements are indeed
clickable. For each candidate element, the crawler instructs
the robot to execute a click (line 15) on the element (or other
event types, e.g., mouseOver), in the browser.

3.5 Creating States

After firing an event on a candidate clickable, the algo-
rithm compares the resulting DOM tree with the DOM tree

as it was just before the event fired, in order to determine
whether the event results in a state change.

For this purpose the edit distance between two DOM
trees is calculated (line 17) using the Levenshtein [15]
method. A similarity threshold τ is used under which two
DOM trees are considered clones. This threshold (0.0−1.0)
can be defined by the developer. A threshold of 0 means two
DOM states are seen as clones if they are exactly the same
in terms of structure and content. Any change is, therefore,
seen as a state change.

If a change is detected according to our similarity metric,
we create (line 19) a new state and add it to the state-flow
graph of the state machine (line 20). In order to recognize
an already met state, we compute a hashcode for each DOM
state and which we use to compare every new state to the
list of already visited states on the state-flow graph. Thus,
in line 19 if we have a state containing the particular DOM
tree already, that state is returned, otherwise a new state is
created.

Furthermore, a new edge is created on the graph (line 21)
between the state before the event and the current state. The
element on which the event was fired is also added as part
of the new edge. Moreover, the current state pointer of the
state machine is also updated to this newly added state at
that moment (line 22).

3.6 Processing Document Tree Deltas

After a clickable has been identified, and its correspond-
ing state created, the crawl procedure is recursively called
(line 23) to find new possible states in the changes made to
the DOM tree.

Upon every new (recursive) entry into the crawl proce-
dure, the first thing done (line 12) is computing the differ-
ences between the previous document tree and the current
one, by means of an enhanced Diff algorithm [6, 19]. Such
“delta updates” may be due, for example, to a server request
call that injects new elements into the DOM. The resulting
delta updates are used to find new candidate clickables (line
13), which are then further processed in a depth-first man-
ner.

It is worth mentioning that in order to avoid a loop, a
list of visited elements is maintained to exclude already
checked elements in the recursive algorithm. We use the tag
name, the list of attribute names and values, and the XPath
expression of each element to conduct the comparison. Ad-
ditionally, a depth number can be defined to constrain the
depth level of the recursive function (not shown in the algo-
rithm).

SERG Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes

TUD-SERG-2008-022 5

3.7 Navigating the States

Upon completion of the recursive call, the browser
should be put back into the state it was in before the call.
Unfortunately, navigating (back and forth) through an AJAX

site is not as easy as navigating a classical web site. A dy-
namically changed DOM state does not register itself with
the browser history engine automatically, so triggering the
‘Back’ function of the browser does not bring us to the
previous state. This complicates traversing the application
when crawling AJAX. We distinguish two situations:

Browser History Support It is possible to programatically
register each state change with the browser history through
frameworks such as the jQuery history/remote plugin4 or
the Really Simple History library5. If an AJAX application
has support for the browser history (line 25), then for chang-
ing the state in the browser, we can simply use the built-in
history back functionality to move backwards (line 26).

Click Through From Initial State In case the browser his-
tory is not supported, which is the case with many AJAX ap-
plications currently, the only way to get to a previous state
is by saving information about the elements and the order
in which their execution results in reaching to a particular
state. Once we have such information, we can reload the
application (line 28) and follow and execute the elements
from the initial state to the desired state. As an optimization
step, we use Dijkstra’s shortest path algorithm [10] to find
the shortest element execution path on the graph to a certain
state (line 29).

We initially considered using the ID attribute of a click-
able element to find it back after a reload of the page. When
we reload the application in the browser, all the internal
objects are replaced by new ones and the ID attribute would
be a way to follow the path to a certain state by clicking
on those elements whose IDs have been saved in the state
machine. Soon we realized that firstly, not all AJAX sites
assign ID attributes to the elements and, secondly, if IDs
are provided, they are not always persistent, i.e., they are
dynamically set and can change with each reload.

To overcome these challenges, we adopt XPath to pro-
vide a better, more reliable, and persistent element identifi-
cation mechanism. For each state changing element, we re-
verse engineer the XPath expression of that element which
gives us its exact location on the DOM (line 18). We save
this expression in the state machine (line 19) and use it to
find the element after a reload, persistently (line 31).

Note that because of side effects of the element execu-
tion, there is no guarantee that we reach the exact same state
when we traverse a path a second time. It is, however, as
close as we can get.

4 http://stilbuero.de/jquery/history/
5 http://code.google.com/p/reallysimplehistory/

crawl MyAjaxSite {
url: http://spci.st.ewi.tudelft.nl/aowe/;
navigate Nav1 {
event: type=mouseover xpath=/HTML/BODY/SPAN[3];
event: type=click id=headline;
· · ·

}
navigate Nav2 {
event: type=click

xpath="//DIV[contains(.,"Interviews")]";
event: type=input id=article "john doe";
event: type=click id=search;

} · · ·
}

Figure 4. An instance of CASL.

3.8 CASL: Crawling AJAX Specification
Language

To give users control over which candidate clickables
to select, we have developed a Domain Specific Language
(DSL) [9] called Crawling AJAX Specification Language
(CASL). Using CASL, the developer can define the ele-
ments (based on IDs and XPath expressions) to be clicked,
along with the exact order in which the crawler should crawl
the AJAX application. CASL accepts different types of
events. The event types include click, mouseover, and
input currently.

Figure 4 shows an instance of CASL. Nav1 tells our
crawler to crawl by first firing an event of type mouseover
on the element with XPath /HTML/BODY/SPAN[3] and then
clicking on the element with ID headline in that order.
Nav2 commands the crawler to crawl to the Interviews
state, then insert the text ‘john doe’ into the input element
with ID article and afterward click on the search ele-
ment. Using this DSL, the developer can take control of the
way an AJAX site should be crawled.

3.9 Generating Indexable Pages

After the crawling AJAX process is finished, the created
state-flow graph can be passed to the generation process,
corresponding to the bottom part of Figure 3.

The first step is to establish links for the DOM states by
following the outgoing edges of each state in the state-flow
graph. For each clickable, the element type must be exam-
ined. If the element is a hypertext link (an a-element), the
href attribute is updated. In case of other types of click-
ables (e.g., div, span) we replace the element by a hy-
pertext link element. The href attribute in both situations
represents the link to the name and location of the generated
static page.

After the linking process, each DOM object in the state-
flow graph is transformed into the corresponding HTML
string representation and saved on the file system in a dedi-
cated directory (e.g., /generated/). Each generated static

Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes SERG

6 TUD-SERG-2008-022

file represents the style, structure, and content of the AJAX

application as seen in the browser, in exactly its specific
state at the time of crawling.

Here, we can adhere to the Sitemap Protocol6, generat-
ing a valid instance of the protocol automatically after each
crawling session consisting of the URLs of all generated
static pages.

4 Tool Implementation

We have implemented the concepts presented in this pa-
per in a tool called CRAWLJAX. CRAWLJAX is released un-
der the open source BSD license and is available for down-
load. More information about the tool can be found on our
website http://spci.st.ewi.tudelft.nl/crawljax/.

CRAWLJAX is implemented in Java. We have engineered
a variety of software libraries and web tools to build and run
CRAWLJAX. Here we briefly mention the main modules and
libraries.

The embedded browser interface has two implementa-
tions: IE-based on Watij7 and Mozilla-based on XULRun-
ner8. Webclient9 is used to access the run-time DOM and
the browser history mechanism in the Mozilla browser. For
the Mozilla version, the Robot component makes use of
the java.awt.Robot class to generate native system input
events on the embedded browser. The IE version uses an
internal Robot to simulate events.

The generator uses JTidy10 to pretty-print DOM states
and Xerces11 to serialize the objects to HTML. In the
Sitemap Generator, XMLBeans12 generates Java objects
from the Sitemap Schema13 which after being used by
CRAWLJAX to create new URL entries, are serialized to the
corresponding valid XML instance document.

The state-flow graph is based on the JGrapht14 library.
The grammar of CASL is implemented in ANTLR15.
ANTLR is used to generate the necessary parsers for
CASL. In addition, StringTemplate16 is used for generat-
ing the source-code from CASL. Log4j is used to option-
ally log various steps in the crawling process, such as the
identification of DOM changes and clickables. CRAWLJAX

is entirely based on Maven17 to generate, compile, test (JU-
nit), release, and run the application.

6 http://www.sitemaps.org/protocol.php
7 http://watij.com
8 http://developer.mozilla.org/en/docs/XULRunner/
9 http://www.mozilla.org/projects/blackwood/webclient/

10 http://jtidy.sourceforge.net
11 http://xerces.apache.org/xerces-j/
12 http://xmlbeans.apache.org
13 http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd
14 http://jgrapht.sourceforge.net
15 http://www.antlr.org
16 http://www.stringtemplate.org
17 http://maven.apache.org

5 Case Studies

In order to evaluate the effectiveness, correctness, perfor-
mance, and scalability of the proposed crawling method for
AJAX, we have conducted a number of case studies, which
are described in this section, following Yin’s guidelines for
conducting case studies [24].

5.1 Subject Systems

We have selected 6 AJAX sites for our experiment as
shown in Table 1. The case ID, the actual site, and a number
of real clickables to illustrate the type of the elements can
be seen for each case object.

Our selection criteria include the following: sites that
use AJAX to change the state of the application by us-
ing JavaScript, assigning events to HTML elements, asyn-
chronously retrieving delta updates from the server and per-
forming partial updates on the DOM.

The first site C1 in our case study is an AJAX test site de-
veloped internally by our group using the jQuery AJAX li-
brary. Although the site is small, it is representative by hav-
ing different types of dynamically set clickables as shown
in Figure 1 and Table 1.

Our second case object, C2, is Sun’s Ajaxified PET-
STORE 2.018 which is built on the Java ServerFaces, and
the Dojo AJAX toolkit. This open-source web application
is designed to illustrate how the Java EE Platform can be
used to develop an AJAX-enabled Web 2.0 application and
adopts many advanced rich AJAX components.

The other four cases are all external AJAX sites and we
have no access to their source-code. C4 is an AJAX site that
can function as a tool for comparing the visual impression
of different typefaces. C3 (online shop), C5 (sport center),
and C6 (Gucci) are all single-page commercial sites with
many clickables and states.

5.2 Experimental Design

Our goals in conducting the experiment include:

G1 Effectiveness: evaluating the effectiveness of obtaining
high-quality results in retrieving relevant clickables in-
cluding the ones dynamically injected into the DOM,

G2 Correctness: assessing the quality and correctness of
the states and static pages automatically generated,

G3 Performance: analyzing the overall performance of our
approach in terms of input size versus time,

18 http://java.sun.com/developer/releases/petstore/

SERG Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes

TUD-SERG-2008-022 7

Table 1. Case objects and examples of their clickable elements.
Case AJAX site Clickable Elements

C1 spci.st.ewi.tudelft.nl/demo/aowe/ testing span 2
Second link
Topics of Interest

C2 PETSTORE <a class="accordionLink" href="#" id="feline01" onmouseout="this.className=
’accordionLink’;" onmouseover="this.className=’accordionLinkHover’;">Hairy Cat

C3 www.4launch.nl <div onclick="setPrefCookies(’Gaming’, ’DESTROY’, ’DESTROY’);
loadHoofdCatsTree(’Gaming’, 1, ’’)"><a id="uberCatLink1"
class="ubercat" href="javascript:void(0)">Gaming</div>
<td onclick="open url(’..producteninfo.php?productid=037631’,..)">Harddisk Skin</td>

C4 www.blindtextgenerator.com <input type="radio" value="7" name="radioTextname" class="js-textname iradio"
id="idRadioTextname-EN-li-europan"/>

C5 site.snc.tudelft.nl <div class="itemtitlelevel1 itemtitle" id="menuitem 189 e">organisatie</div>
...

C6 www.gucci.coma booties
<div id="thumbnail 7" class="thumbnail highlight"><div
class="darkening"/></div>

a http://www.gucci.com/nl/uk-english/nl/spring-summer-08/womens-shoes/

G4 Scalability: examining the capability of CRAWLJAX on
real sites used in practice and the scalability in crawl-
ing sites with thousands of dynamic states and click-
ables.

Environment & Tool Configuration
We use a laptop with Intel Pentium M 765 proces-
sor 1.73GHz, with 1GB RAM and Windows XP to run
CRAWLJAX.

Configuring CRAWLJAX itself is done through a simple
crawljax.properties file, which can be used to set the
URL of the site to be analyzed, the tag elements CRAWLJAX

should look for, the depth level, and the similarity threshold.
There are also a number of other configuration parameters
that can be set, such as the directory in which the generated
pages should be saved in.

Output
We determine the average DOM string size, number of can-
didate elements, number of detected clickables, number of
detected states, number of generated static pages, and per-
formance measurements for crawling and generating pages
separately for each experiment object. The actual generated
linked static pages also form part of the output.

Method of Evaluation
Since other comparable tools and methods are currently not
available to conduct similar experiments as with CRAWL-
JAX, it is difficult to define a baseline against which we
can compare the results. Hence, we manually inspect the
systems under examination and determine which expected
behavior should form our reference baseline.

G1: For the experiment we have manually added extra
clickables in different states of C1, especially in the delta
updates, to explore whether clickables dynamically injected
into the DOM can be found by CRAWLJAX. A reference

model was created manually by clicking through the differ-
ent states in a browser. In total 16 clickables were noted of
which 10 were on the top level, i.e., index state. To con-
strain the reference model for C2, we chose two product
categories, namely CATS and DOGS, from the five avail-
able categories. We annotated 36 elements (product items)
by modifying a JavaScript method which turns the items re-
trieved from the server into clickables on the interface. For
the four external sites (C3–C6) which have many states, it
is very difficult to manually inspect and determine, for in-
stance, the number of expected clickables and states. There-
for, for each site, we randomly selected 10 clickables in
advance by noting their tag name, attributes, and XPath ex-
pression. After each crawling process, we checked the pres-
ence of the 10 elements among the list of detected click-
ables.

G2: After the generation process the generated HTML files
and their content are manually examined to see whether
the pages are the same as the corresponding DOM states
in AJAX in terms of structure, style, and content. Also the
internal linking of the static pages is manually checked. To
test the clone detection ability we have intentionally intro-
duced a clone state into C1.

G3: We measure the time in milliseconds taken to crawl
each site. We expect the crawling performance to be di-
rectly proportional to the input size which is comprised
of the average DOM string size, number of candidate ele-
ments, and number of detected clickables and states.

We also measure the generation performance which is
the period taken to generate the static HTML pages from
the inferred state-flow graph.

G4: To test the capability of our method in crawling
real sites and coping with unknown environments, we
run CRAWLJAX on four external cases C3–C6. We run
CRAWLJAX with depth level 2 on C3 and C5 each having a

Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes SERG

8 TUD-SERG-2008-022

huge state space to examine the scalability of our approach
in analyzing tens of thousands of candidate clickables and
finding clickables.

5.3 Results and Evaluation

Table 2 presents the results obtained by running CRAWL-
JAX on the subject systems. The measurements were all
read from the log file produced by CRAWLJAX at the end of
each process.

G1 As can be seen in Table 2, for C1 CRAWLJAX finds all
the 16 expected clickables and states with a precision and
recall of 100%.

For C2, 33 elements were detected from the annotated
36. One explanation behind this difference could be the way
some items are shown to the user in PETSTORE. PETSTORE

uses a Catalog Browser to show a set of the total number
of the product items. The 3 missing product items could be
the ones that were never shown on the interface because of
the navigational flow e.i., the order of clickables.

CRAWLJAX was able to find 95% of the expected 10
clickables (noted initially) for each of the four external sites
C3–C6.

G2 The clone state introduced in C1 is correctly detected
and that is why we see 16 states being reported instead of
17. Inspection of the static pages in all cases shows that the
generated pages correspond correctly to the DOM state.

G3 When comparing the results for the two internal sites,
we see that it takes CRAWLJAX 14 and 26 seconds to crawl
C1 and C2 respectively. As can be seen, the DOM in C2
is 5 times and the number of candidate elements 3 times
higher. In addition to the increase in DOM size and the
number of candidate elements, CRAWLJAX cannot rely on
the browser Back method when crawling C2. This means
for every state change on the browser CRAWLJAX has to
reload the application and click through to the previous state
to go further. This reloading and clicking through has a
negative effect on the performance. The generation time
also doubles for C2 due to the increase in the input size. It is
clear that the running time of CRAWLJAX increases linearly
with the size of the input. We believe that the execution
time of a few minutes to crawl and generate a mirror multi-
page instance of an AJAX application automatically without
any human intervention is very promising. Note that the
performance is also dependent on the CPU and memory of
the machine CRAWLJAX is running on, as well as the speed
of the server and network properties of the case site. C6, for
instance, is slow in reloading and retrieving updates from
its server and that increases the performance measurement
numbers in our experiment.

G4 CRAWLJAX was able to run smoothly on the external
sites. Except a few minor adjustments (see Section 6) we

did not witness any difficulties. C3 with depth level 2 was
crawled successfully in 83 minutes resulting in 19247 ex-
amined candidate elements, 1101 detected clickables, and
1071 detected states. The generation process for the 1071
states took 13 minutes. For C5, CRAWLJAX was able to
finish the crawl process in 107 minutes on 32365 candidate
elements, resulting in 1554 detected clickables and 1234
states. The generation process took 13 minutes. As ex-
pected, in both cases, increasing the depth level from 1 to 2
expands the state space greatly.

6 Discussion

6.1 Back Implementation

CRAWLJAX assumes that if the Browser Back function-
ality is implemented, then it is implemented correctly. An
interesting observation was the fact that even though Back
is implemented for some states, it is not correctly imple-
mented i.e., calling the Back method brings the browser
in a different state than expected which naturally confuses
CRAWLJAX. This implies that the Back method to go to a
previous state is not reliable and using the reload and click-
through method is much more safe.

6.2 Constantly Changing DOM

Another interesting observation in C2 in the beginning
of the experiment was that every element was seen as a
clickable. This phenomenon was caused by the banner.js
which constantly changed the DOM with textual notifica-
tions. Hence, we had to either disable this banner to conduct
our experiment or use a higher similarity threshold so that
the textual changes were not seen as a relevant state change
for detecting clickables.

6.3 Cookies

Cookies can also cause some problems in crawling AJAX

applications. C3 uses Cookies to store the state of the appli-
cation on the client. With Cookies enabled, when CRAWL-
JAX reloads the application to navigate to a previous state,
the application does not start in the expected initial state. In
this case, we had to disable Cookies to perform a correct
crawling process.

6.4 State Space

The set of found states and generated HTML pages is
by no means complete, i.e., CRAWLJAX generates a static
instance of the AJAX application but not necessarily the in-
stance. This is partly inherent in dynamic web applications.

SERG Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes

TUD-SERG-2008-022 9

Table 2. Results of running CRAWLJAX on 6 AJAX applications.

C
as

e

D
O

M
st

ri
ng

si
ze

(b
yt

e)

C
an

di
da

te
E

le
m

en
ts

D
et

ec
te

d
C

li
ck

ab
le

s

D
et

ec
te

d
S

ta
te

s

G
en

er
at

ed
S

ta
ti

c
Pa

ge
s

C
ra

w
lP

er
fo

rm
an

ce
(m

s)

G
en

er
at

io
n

P
er

fo
rm

an
ce

(m
s)

D
ep

th

Ta
gs

C1 4590 540 16 16 16 14129 845 3 A, DIV, SPAN, IMG
C2 24636 1813 33 34 34 26379 1643 2 A, IMG
C3 262505 150 148 148 148 498867 17723 1 A

19247 1101 1071 1071 5012726 784295 2 A, TD
C4 40282 3808 55 56 56 77083 2161 2 A, DIV, INPUT, IMG
C5 165411 267 267 145 145 806334 14395 1 A

32365 1554 1234 1234 6436186 804139 2 A, DIV
C6 134404 6972 83 79 79 701416 28798 1 A, DIV

Any crawler can only crawl and index a snapshot instance
of a dynamic web application in a point of time. The or-
der in which clickables are chosen could generate different
states. Even executing the same clickable twice from an
state could theoretically produce two different DOM states
depending on, for instance, server-side factors.

The number of possible states in the state space of al-
most any realistic web application is huge and can cause
the well-know state explosion problem [23]. Just as a tradi-
tional web crawler, CRAWLJAX provides the user with a set
of configurable options to constrain the state space such as
the maximum search depth level, the similarity threshold,
maximum number of states per domain, maximum crawl-
ing time, and the option of ignoring external links and links
that match some pre-defined set of regular expressions, e.g.,
mail:*, *.ps, *.pdf.

The current implementation of CRAWLJAX keeps the
DOM states in the memory which can lead to an state ex-
plosion and out of memory exceptions with approximately
3000 states on a machine with a 1GB RAM. As an optimiza-
tion step we intend to abstract and serialize the DOM state
into a database and only keep a reference in the memory.
This saves much space in the memory and enables us to han-
dle much more states. With a cache mechanism, the essen-
tial states for analysis can be kept in the memory while the
other ones can be retrieved from the database when needed
in a later stage.

7 Applications

As mentioned in the introduction, we believe that the
crawling and generating capabilities of our approach have
many applications for AJAX sites.

We believe that the crawling techniques that are part of
our solution can serve as a starting point and be adopted
by general search engines to be able to crawl AJAX sites.
General web search engines, such as Google and Yahoo!,
cover only a portion of the web called the publicly index-
able web which consists of the set of web pages reachable
purely by following hypertext links, ignoring forms [4] and
client-side scripting. The pages not reached this way are
referred to as the hidden-web, which is estimated to com-
prise several millions of pages [4]. With the wide adoption
of AJAX techniques that we are witnessing today this fig-
ure will only increase. Although there has been extensive
research on crawling and exposing the data behind forms
[4, 8, 14, 21, 22], crawling the hidden-web induced as a
result of client-side scripting in general and AJAX in par-
ticular has gained very little attention so far. Consequently,
while AJAX techniques are very promising in terms of im-
proving rich interactivity and responsiveness [20, 5], AJAX

sites themselves may very well be ignored by the search en-
gines.

There are some industrial proposed techniques that as-
sist in making a modern AJAX website more accessible and
discoverable by general search engines. In web engineer-
ing terms, the concept behind Graceful Degradation [12]
is to design and build for the latest and greatest user-agent
and then add support for less capable devices, i.e., focus
on the majority on the mainstream and add some support
for outsiders. Graceful Degradation allows a web site to
‘step down’ in such a way as to provide a reduced level of
service rather than failing completely. A well-known exam-
ple is the menu bar generated by JavaScript which would
normally be totally ignored by search engines. By using
HTML list items with hypertext links inside a noscript

Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes SERG

10 TUD-SERG-2008-022

tag, the site can degrade gracefully. The term Progressive
Enhancement19 has been used as the opposite side to Grace-
ful Degradation. This technique aims for the lowest com-
mon denominator, i.e., a basic markup HTML document,
and begins with a simple version of the web site, then adds
enhancements and extra rich functionality for the more ad-
vanced user-agents using CSS and JavaScript.

Another way to expose the hidden-web content behind
AJAX applications is by making the content available to
search engines at the server-side by providing it in an ac-
cessible style. The content could, for instance, be exposed
through RSS feeds. In the spirit of Progressive Enhance-
ment, an approach called Hijax20 involves building a tra-
ditional multi-page website first. Then, using unobtrusive
event handlers, links and form submissions are intercepted
and routed through the XMLHttpRequest object. Gener-
ating and serving both the AJAX and the multi-page ver-
sion depending on the visiting user-agent is yet another ap-
proach. Another option is the use of XML/XSLT to gen-
erate indexable pages for search crawlers [3]. In these ap-
proaches, however, the server-side architecture will need to
be quite modular, capable of returning delta changes as re-
quired by AJAX, as well as entire pages.

The Graceful Degradation and Progressive Enhancement
approaches mentioned constrain the use of AJAX and have
limitations in the content exposing degree. It is very hard
to imagine a single-page desktop-style AJAX application
that degrades into a plain HTML website using the same
markup and client-side code. The more complex the AJAX

functionality, the higher the cost of weaving advanced and
accessible functionality into the components21. The server-
side generation approaches increase the complexity, devel-
opment costs, and maintainability effort as well. We believe
our proposed solution can assist the web developer in the
automatic generation of the indexable version of their AJAX

application, thus significantly reducing the cost and effort of
making AJAX sites more accessible to search engines. Such
an automatically built mirror site can also improve the ac-
cessibility22 of the application towards user-agents that do
not support JavaScript.

When it comes to states that need textual input from the
user (e.g., input forms) CASL can be very helpful to crawl
and generate the corresponding state. The Full Auto Scan,
however, does not have the knowledge to provide such input
automatically. Therefore, we believe a combination of the
three modes to take the best of each could provide us with a
tool not only for crawling but also for automatic testing of
AJAX applications.

The ability to automatically exercise all the executable

19 http://hesketh.com/publications/progressive enhancement
paving way for future.html

20 http://www.domscripting.com/blog/display/41
21 http://blogs.pathf.com/agileajax/2007/10/accessibility-a.html
22 http://bexhuff.com/node/165

elements of an AJAX site gives us a powerful test mech-
anism. The crawler can be utilized to find abnormalities
is AJAX sites. As an example, while conducting the case
study, we noticed a number of 404 Errors and exceptions
on C3 and C4 sites. Such errors can easily be detected
and traced back to the elements and states causing the error
state in the inferred state-flow graph. The asynchronous in-
teraction in AJAX can cause race conditions [20] between
requests and responses, and the dynamic DOM updates
can also introduce new elements which can be sources of
faults. Detection of such conditions by analyzing the gen-
erated state machine and static pages can be assisted as
well. In addition, testing AJAX sites for compatibility on
different browsers (e.g., IE, Mozilla) can be automated us-
ing CRAWLJAX.

The crawling methods and the produced state machine
can be applied in conducting state machine testing [1] for
automatic test case derivation, verification, and validation
based on pre-defined conditions for AJAX applications.

8 Related Work

The concept behind CRAWLJAX, is the opposite direc-
tion of our earlier work RETJAX [19], in which we try to
reverse-engineer a traditional multi-page website to AJAX.

The work of Memon et al. [17, 18] on GUI Ripping
for testing purposes is related to our work in terms of how
they reverse engineer an event-flow graph of desktop GUI
applications by applying dynamic analysis techniques.

There are some industrial proposed approaches for im-
proving the accessibility and discoverability of AJAX as dis-
cussed in Section 7.

There has been extensive research on crawling the
hidden-web behind forms [4, 7, 8, 14, 21, 22]. This is
sharp contrast with the the hidden-web induced as a result
of client-side scripting in general and AJAX in particular,
which has gained very little attention so far. As far as we
know, there are no academic research papers on crawling
AJAX at the moment.

9 Concluding Remarks

Crawling AJAX is the process of turning a highly dy-
namic, interactive web-based system into a static mirror
site, a process that is important to improve searchability,
testability, and accessibility of AJAX applications. This pa-
per proposes a crawling method for AJAX. The main con-
tributions of the paper are:

• An analysis of the key problems involved in crawling
AJAX applications;

• A systematic process and algorithm to infer a state ma-
chine from an AJAX application, which can be used to

SERG Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes

TUD-SERG-2008-022 11

generate a static mirror site. Challenges addressed in-
clude the identification of clickable elements, the de-
tection of DOM changes, and the construction of the
state machine;

• The open source tool CRAWLJAX, which implements
this process;

• Six case studies used to evaluate the effectiveness, cor-
rectness, performance, and scalability of the proposed
approach.

Although we have been focusing on AJAX in this paper,
we believe that the approach could be applied to any DOM-
based web application.

Future work consists of conducting more case studies to
improve the ability of finding clickables in different AJAX

settings. The fact that the tool is available for download for
everyone, will help to identify exciting case studies. Fur-
thermore, strengthening the tool by extending its function-
ality, improving the performance, and the state explosion
optimization are other directions we foresee. Exposing the
hidden-web induced by AJAX using CRAWLJAX and con-
ducting automatic state-based testing of AJAX application
based on the reverse engineering techniques are other appli-
cations we will be working on.

References

[1] A. Andrews, J. Offutt, and R. Alexander. Testing web ap-
plications by modeling with FSMs. Software and Systems
Modeling, 4(3):326–345, July 2005.

[2] R. Atterer and A. Schmidt. Adding usability to web engi-
neering models and tools. In Proceedings of the 5th Interna-
tional Conferencee on Web Engineering (ICWE’05), pages
36–41. Springer, 2005.

[3] Backbase. Designing rich internet applications for search
engine accessibility, 2005. backbase.com Whitepaper.

[4] L. Barbosa and J. Freire. An adaptive crawler for locat-
ing hidden-web entry points. In WWW ’07: Proceedings of
the 16th international conference on World Wide Web, pages
441–450. ACM Press, 2007.

[5] E. Bozdag, A. Mesbah, and A. van Deursen. A comparison
of push and pull techniques for Ajax. In Proceedings of the
9th IEEE International Symposium on Web Site Evolution
(WSE’07), pages 15–22. IEEE Computer Society, 2007.

[6] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured in-
formation. In SIGMOD ’96: Proceedings of the 1996 ACM
SIGMOD international conference on Management of data,
pages 493–504. ACM Press, 1996.

[7] A. Dasgupta, A. Ghosh, R. Kumar, C. Olston, S. Pandey, and
A. Tomkins. The discoverability of the web. In WWW ’07:
Proceedings of the 16th international conference on World
Wide Web, pages 421–430. ACM Press, 2007.

[8] A. F. de Carvalho and F. S. Silva. Smartcrawl: a new strategy
for the exploration of the hidden web. In WIDM ’04: Pro-
ceedings of the 6th annual ACM international workshop on
Web information and data management, pages 9–15. ACM
Press, 2004.

[9] A. van Deursen, P. Klint, and J. Visser. Domain-specific
languages: an annotated bibliography. SIGPLAN Not.,
35(6):26–36, 2000.

[10] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, 1959.

[11] R. Fielding and R. N. Taylor. Principled design of the
modern Web architecture. ACM Trans. Inter. Tech. (TOIT),
2(2):115–150, 2002.

[12] M. Florins and J. Vanderdonckt. Graceful degradation of
user interfaces as a design method for multiplatform sys-
tems. In IUI ’04: Proceedings of the 9th international con-
ference on Intelligent user interfaces, pages 140–147. ACM
Press, 2004.

[13] J. Garrett. Ajax: A new approach to web applications.
Adaptive path, 2005. http://www.adaptivepath.com/
publications/essays/archives/000385.php.

[14] J. P. Lage, A. S. da Silva, P. B. Golgher, and A. H. F.
Laender. Automatic generation of agents for collecting
hidden web pages for data extraction. Data Knowl. Eng.,
49(2):177–196, 2004.

[15] V. L. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals. Cybernetics and Control
Theory, 10:707–710, 1996.

[16] A. Marchetto, P. Tonella, and F. Ricca. State-based testing
of Ajax web applications. In Proceedings of the 1st IEEE In-
ternational Conference on Software Testing Verification and
Validation (ICST’08). IEEE Computer Society, 2008.

[17] A. Memon, I. Banerjee, and A. Nagarajan. GUI ripping: Re-
verse engineering of graphical user interfaces for testing. In
WCRE ’03: 10th Working Conference on Reverse Engineer-
ing, pages 260–269. IEEE Computer Society, 2003.

[18] A. Memon, M. L. Soffa, and M. E. Pollack. Coverage
criteria for GUI testing. In ESEC/FSE ’01: Proceedings
of the 8th European software engineering conference held
jointly with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 256–267. ACM
Press, 2001.

[19] A. Mesbah and A. van Deursen. Migrating multi-page web
applications to single-page Ajax interfaces. In Proceedings
of the 11th European Conference on Software Maintenance
and Reengineering (CSMR’07), pages 181–190. IEEE Com-
puter Society, 2007.

[20] A. Mesbah and A. van Deursen. A component- and push-
based architectural style for Ajax applications. Journal of
Systems and Software (JSS), 2008. To appear.

[21] A. Ntoulas, P. Zerfos, and J. Cho. Downloading textual hid-
den web content through keyword queries. In JCDL ’05:
Proceedings of the 5th ACM/IEEE-CS joint conference on
Digital libraries, pages 100–109. ACM Press, 2005.

[22] S. Raghavan and H. Garcia-Molina. Crawling the hidden
web. In VLDB ’01: Proceedings of the 27th International
Conference on Very Large Data Bases, pages 129–138. Mor-
gan Kaufmann Publishers Inc., 2001.

Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes SERG

12 TUD-SERG-2008-022

[23] A. Valmari. The state explosion problem. In LNCS: Lectures
on Petri Nets I, Basic Models, Advances in Petri Nets, pages
429–528. Springer-Verlag, 1998.

[24] R. K. Yin. Case Study Research: Design and Methods.
SAGE Publications Inc, 3d edition, 2003.

SERG Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes

TUD-SERG-2008-022 13

Mesbah et. al. – Crawling AJAX by Inferring User Interface State Changes SERG

14 TUD-SERG-2008-022

TUD-SERG-2008-022
ISSN 1872-5392 SERG

