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Abstract

The IMO has set the goal that greenhouse gas emissions from international shipping should peak as soon as
possible and should be reduced by 50% by 2050 compared to 2008, consistent with the Paris Agreement of the
United Nations (2015). Trim optimization is an approach considered by the industry to improve the energy
efficiency of ships, having a potential in both reducing operational costs and to decrease the emissions of
the ship. Potential fuel consumption reduction by trim optimization is 0.5 to 3 % and to up to 7% in extreme
cases.

Stolt Tankers, a shipping company active in the chemical tanker market, wants to increase the energy
efficiency of their ships in operation by trim optimization. For a limited number of ships, trim tables from
model scale towing tests are available, but these are not used and the accuracy of these tables are unknown.
The objective of this research was to develop a method to decrease fuel consumption by trim optimization,
by a dynamic fuel consumption estimation model based on available operational data, that can be integrated
in the voyage management system of Stolt Tankers.

A dynamic fuel consumption estimation model has been developed, using mainly the noon report data
of the C-38 ship class, consisting of six sister vessels of 38 000 DWT chemical tankers. Quality of noon report
data is an issue: human error in observing and recording data causes noise and a mismatch exists between
the snapshot of conditions on one hand, and the 24 hr averaged sailing speed and recorded shaft power or
fuel consumption on the other hand. A data pre-processing framework has been developed and applied to
integrate and transform the data, clean and filter the data and to prepare the data to be used for the neural
network.

A grey-box model (GBM) approach is followed, combining a white-box model (WBM) with a black-box
model (GBM) approach, by using a regression model together with an artificial neural network (ANN). Advan-
tages of using a GBM approach is that less historical data is required than for a BBM, extrapolation qualities
may be improved and unreasonable results can be avoided. The model has been able to extract the effects of
speed through water, mean draft, trim, sea water temperature, wind force, sea state and swell state and their
relative direction to the ship and days since last hull cleaning and propeller polishing.

The model has shown to perform optimal using the regression model of Lutzen and Kristensen (2013),
combined with a multiple layer feed-forward neural network, consisting of 1 hidden layer with 15 neurons.
The model is able to estimate the shaft power with an average accuracy of 6.58 % for a random test set of the
noon report data. It is able to extract the effect of trim on shaft power and to consider the effect of weather
and fouling conditions. Model results show that about 1 to 2% of shaft power per 0.50 m can be saved, with
trim by bow being the optimal trim.

Sea trials have been performed to validate the model performance. Based on these sea trial results, it is
concluded that the model performs most accurate for conditions that are represented by a high quantity of
historical data. The model can be applied for speeds between 12 and 14 knots and for mean draft conditions
of 9.5 m and more. Within this range, the effect of trim and weather conditions are followed with reasonable
accuracy. It is confirmed by the sea trial that trim by bow is the optimal trim, with a much stronger magnitude
of the effect of trim on shaft power. A difference of 6 to 8% in shaft power was found for a change in trim of
0.50 m. This shows that the potential fuel savings indicated by the model can be even more significant in
practice, compared to the model results.

Compared to similar models in available literature, the model presented in this research has a higher ac-
curacy on a random test set of noon report data. However, no indications are observed that would confirm
any of the possible advantages of using a GBM over a BBM approach. Therefore it is more likely that the qual-
ity of the filtered noon reports has contributed to this, as well as the unique feature selection. Further model
modifications may increase the applicability, but the model performance with the goal of trim optimization
remain limited, caused by the drawbacks inherent to using noon report data.
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1
Introduction

Decreasing the operating expenses from fuel consumption reduction is of special interest for shipping com-
panies. Generally, the bunker fuel cost dominates the expenses of a ship with annual fuel costs being in the
order of millions (Du et al., 2019, Leifsson et al., 2008). For a shipping company having multiple ships in the
fleet, this means that a marginal saving of fuel costs can result in a significant saving in annual fuel costs.
Fuel efficient operations help shipping companies to lower their operational cost and thereby to maintain or
increase their competitive position in the market.

Moreover, the IMO (2019a) has set the goal that greenhouse gas (GHG) emissions from international ship-
ping should peak as soon as possible and should be reduced by 50% by 2050 compared to 2008, consistent
with the Paris Agreement of the United Nations (2015). In the third IMO study to GHG emissions (IMO, 2014),
it is estimated that the international shipping industry emitted 796 million tonnes of CO2 in 2012, accounting
for about 2.2% of the total CO2 emissions caused by human for that year, while transporting almost 90% of
the global trade (Islam and Guedes Soares, 2019). Due to the estimated growth of the world maritime trade,
the research of IMO states that the emissions from international shipping could grow between 50% and 250%
by 2050. Coraddu et al. (2017) states that GHG emissions from the combustion of oil-based fuels are directly
proportional to fuel consumption, which makes improving the ship energy efficiency one of the possible so-
lutions to reduce GHG emissions. Similarly, shipping also contributes to air pollution, mainly in the form of
sulphur oxides (SOX), nitrogen oxides (NOX) and particulate matter (PM).

To reduce GHG emissions, the Marine Environment Protection Committee (MEPC) of IMO adopted a
strategy, in which shipping companies are supported to improve the energy efficiency operational index
(EEOI) of their ships in operation. This is done by the Ship Energy Efficiency Management Plan (SEEMP).
The SEEMP establishes a mechanism to improve the energy efficiency of the ship’s operation and to provide
an approach for shipping companies to manage ship and fleet performance over time (Kishev et al., n.d., Lu
et al., 2015, Yuan and Nian, 2018).

Trim optimization is one of the approaches considered by the industry to improve the energy efficiency of
ships, having a potential in both reducing operational costs and to decrease the emissions of the ship. Trim
optimization is the selection of trim with the goal of fuel consumption reduction, by ballast water manage-
ment and load distribution, which can be done without significant changes to the ship structure (Coraddu
et al., 2017, Gao et al., 2019, Islam and Guedes Soares, 2019).

Stolt Tankers, a subsidiary of Stolt-Nielsen Ltd., is a shipping company active in the chemical tanker mar-
ket who wants to increase the energy efficiency of their ships in operation by trim optimization. For a limited
number of ships, the effect of trim on propulsion power is known from model scale towing tests, but for the
majority of ships, the effect is not known. The goal of this research is to develop a method able to determine
the effect of trim on the propulsion power of the ship, to enable trim optimization for all ships in operation
by Stolt Tankers.

3



4 1. Introduction

1.1. Description of the concept trim optimization

Trim is defined as the draft at the stern (or aft of the ship, denoted as Taft), minus the draft at the bow (or
forward, denoted as Tfwd), as shown in formula 1.1, all in metres. Hence, positive trim is defined as trim by
stern, which means that the aft of the ship has a larger draft compared to the rest of the ship. Negative trim is
often called trim by bow. In this research, optimal trim is defined as the trim condition at which the required
propulsion power is minimized.

tr i m = Ta f t −T f wd (1.1)

Typically, the optimal trim can be determined by consulting trim tables. Trim tables are generated from
the results of model scale towing tests, or in some cases from computational fluid dynamics (CFD) simula-
tions. During these tests, the required power is measured for combinations of draft and trim and for a range
of speeds. The results of these tests are the trim tables. In this way, the optimal trim condition for a certain
mean draft for each measured speed can be determined. An illustration is given by figure 1.1. This example
represents a trim table for a speed of 13.0 knots. It can be seen that the values represent the trial condition
specified as 0 Beaufort. The green color represents a reduction in required propulsion power. For this speed,
the observed trend is that negative trim generally increases the required propulsion power, except for partial
load conditions, where a slight trim to the stern seems to have a small favourable effect as well. If a draft
condition of T = 10m is considered, it can be seen that for the specified condition, the propulsion power in
even keel condition is predicted to be 4009 kW. Trimming the vessel by bow with −0.50m will result in a de-
crease in required propulsion power of 97 kW compared to even keel. Trim by stern with 1.50m will result in
an increase of required propulsion power of 185 kW. The extreme values in this example shows that 7 % in
required propulsion power can be saved when taking even keel as a reference, as done in formula 1.2.

∆P [%] = |P f wd −Pevenkeel |− |Pa f t −Pevenkeel |
Pevenkeel

×100 (1.2)

In the past years, alternatives to trim tables in the field of trim optimization have emerged. A number of
commercial trim optimization tools have been developed and entered the market, which vary in price, user
friendliness, fundamental approach and performance (Architect, 2014). A number of these tools is reviewed
in chapter 3.
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Figure 1.1: Trim table for one single speed (V = 13.0 knots) (HSVA, 2014).

1.2. The potential of trim optimization in reducing fuel consumption

The MEPC (n.d.) estimates that optimization of trim and draft can reduce the fuel consumption by 0.5% to
3% on main engine fuel consumption for most vessel types. For ships with partial loads, this can be as high as
5%. In other literature, Coraddu et al. (2017) concludes that improvements exceeding 2% in fuel consumption
for a handymax chemical tanker can be achieved. In a case study from DNV-GL (2013), where the benefits of
a commercial optimization tool (the ECO Assistant of DNV-GL) was tested, savings were recorded between
2% and 14% for different draft and speed combinations of a handymax bulk carrier. Furthermore, Yuan and
Nian (2018) states that trim optimization for a VLCC leads to around 1.8% change in fuel consumption, Du
et al. (2019) states that trim optimization could save 5-6% bunker fuel for a 9000 TEU containership and Gao
et al. (2019) states a save in bunker fuel of 3-7% for a PCTC from on-board measurements. Based on this, it
can be concluded that the effective reduction of fuel consumption by trim optimization can be significant,
but depends on the ship type, operational profile and freedom in trimming.

In addition to the above, the potential of effective trim optimization on fuel savings can be estimated by
analyzing the results of the model scale towing tests of one ship class of Stolt Tankers (the C38 class) of which
trim tables are available. The results are shown in appendix J, with graphs showing the effect of trim for three
mean drafts and trim tables valid for a range of speeds. In these tables, propulsion power is considered, which
is directly related to fuel consumption (as will be shown in chapter 4). It is observed that trim by bow reduces
propulsion power of around 7 % for all tested speeds at a mean draft of 10 m, compared to 1.50 m trim by
stern. In practice, ships sometimes sail with a trim by stern exceeding 1.50 m. When smaller trim values
are considered, the difference in propulsion power is less, which confirms that the effective reduction in fuel
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consumption depends on the operational profile.

The potential of trim optimization can be quantified in terms of savings in operational cost and reduction
in CO2 emissions for Stolt Tankers in particular. This is done by formula 1.3 and 1.4 for one single ship. The
savings in operational cost and CO2 are listed in table 1.1. The following assumptions have been made:

• The fuel consumption (FC) of a chemical tanker is estimated to be 26 MT per day;

• The vessel sails 183 days per year, which is the average days at sea for a chemical tanker of 20.000 DWT
and above (IMO, 2014);

• Approximately 80% of the total fuel consumption is used for propulsion power (based on noon report
data for the C38 class), denoted as πpr op ;

• Potential decrease in power (∆P ) is varied between 2% and 7%;

• CO2 conversion factor C f is 3.2060 t
t for MDO (approximate value for low-sulphur fuel oil) (IMO, 2014);

• The price (P f uel ) of MGO/MDO is around 600 USD/MT, which is the approximate fuel price of MGO in
Singapore, November 2019 (Ship and Bunker, 2019).

∆ f uelcost s = FC ·yearly sailing days ·πpr op ·P f uel ·∆P (1.3)

∆CO2−emi ssi ons = FC ·yearly sailing days ·πpr op ·C f ·∆P (1.4)

Table 1.1: Potential of trim optimization, quantified for a single large chemical tanker.

Potential of trim optimization 2% 7%

Yearly fuel cost savings USD 46.000 USD 160.000
Yearly CO2 reduction 244 tons CO2 854 tons CO2

1.3. Chemical tanker fleet description

Stolt Tankers is a shipping company that operates a fleet of 104 chemical and parcel tankers. The assets are
deployed globally, with over 70 deep-sea ships and regional fleets in Europe, Asia and the Caribbean, coastal
fleets in Asia and with inland barging services in Europe and the US Gulf.

The relative size of the chemical tankers in the world fleet can be defined by deadweight tonnage (DWT),
using the analysis of UNCTAD (2019). In this analysis, a complete division of the world fleet by principal ship
type of seagoing vessels of 100GT and above is presented, including offshore drillships and floating produc-
tion, storage and offloading units, but excluding military vessels, yachts, waterway vessels, fishing vessels
and offshore fixed and mobile platforms and barges. In early 2019, the total number of ships in the world
fleet was 95 402, accounting for 1.92 billion DWT. The division of ships is shown in figure 1.2. Within this
structure, chemical tankers are within the group of other ship types. The same structure is used in an analysis
of the world fleet division by DWT, based on the data of UNCTAD (2019), and is shown in figure 1.3. It can be
concluded that chemical tankers contribute to approximately 2.34 % of the world fleet by DWT, with a total
capacity of 46 297 000 DWT.

Within the group of chemical tankers, the fleet of Stolt Tankers in total had a capacity of 2 687 thousand
DWT (Intelligence, 2019), at approximately the same moment of measurement of UNCTAD (2019), early 2019,
representing approximately 5.80% of the chemical tanker fleet.
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Figure 1.2: World fleet by principal ship type.

Figure 1.3: World fleet division by (DWT).

1.4. Structure of report

This chapter has described the concept of trim optimization, drivers to use this technology to reduce fuel
consumption and a description of the chemical tanker fleet. Chapter 2 and 3 covers the problem analysis and
a literature review to solution approaches.

The remainder of this report is organized as following. Part II of the report consists of a technical back-
ground of the problem and the solution approach. In part III, the method and model is defined. This model
will be tested with a case study on one of the ship classes of Stolt Tankers. Finally, part IV consists of the
discussion and conclusion.





2
Problem analysis

It has been introduced that Stolt Tankers wants to use trim optimization to reduce the fuel consumption of
their ships in service. In this chapter, the problem is analysed in section 2.1 to section 2.4. As a result of
this, the problem is defined in section 2.5. The available data is described in section 2.6. Next, the research
objective is described in section 2.7.

2.1. Availability of trim tables

In paragraph 1.1, it is explained that trim tables can be consulted to determine the optimal trim. However,
one of the problems is the availability of these documents. From contact with staff within Stolt Tankers1 and
research within the database of Stolt Tankers for any trim information, the availability of trim tables for the
ships of Stolt Tankers is determined. As far as known, trim tables are available for two ship classes of the
fleet of Stolt Tankers: the D37 class and the C38 class, with 9 and 6 ships within the class, respectively. This
means that in total 15 ships of the fleet can consult the trim tables. For the remaining ships, it can be that the
required model tests were never performed, or that the ship is acquired second-hand, without acquiring the
trim tables.

It can be concluded that one of the problems of sailing at optimal trim, is the unavailability of trim tables.
Therefore, one of the objectives of the research is to construct a method that can generate trim tables for all
ships commercially operated by Stolt Tankers.

2.2. Uncertainty of accuracy of existing trim tables

Differences are expected in optimal trimming conditions between the conditions suggested by trim tables
and the optimized trim conditions on full scale and realistic conditions, due to scaling effects from model
scale at calm water conditions to ship scale, with possible dynamic effects from weather and sea conditions.
In paragraph 3.1, these effects are explained in more detail.

As a result, the accuracy of the existing trim tables is uncertain. Consequently, it is uncertain if the existing
trim tables provide trim conditions that minimizes fuel consumption on full scale and in realistic conditions.
The influence of dynamic factors on the optimal trim condition supports the need for a dynamic trimming
method.

1Explicitly mentioned in e-mail conversation with L. de Jong from the ’New Building and Technical’ department, on 21-10-2019.

9
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2.3. Integration of trim in voyage management

In paragraph 2.1 it is found that trim tables are available for only a small part of the ships of the fleet. This
raises two questions. The first question is if the information of optimal trim values from the available trim
tables is adopted in the operating process for the relevant ships. The second question is how the ship is
trimmed without considering trim tables and what role trim optimization plays within the current process.
Therefore, an exploratory research is performed to understand the role of trimming from the perspective of
fuel consumption in the current loading and trimming process.

From a conversation with the superintendent of ships including the C38 class2, it is clear that the avail-
able trim tables are not used at all. Instead, the trim of the ship is determined by numerous other reasons,
dominated by the limited freedom in stowage of cargo.

A brief survey3 to ask if the trim tables are available on board and if these are used in ship operation,
was sent to the crew of C38 and D37 ship class (for which trim tables have been developed). All questions
and received answers are shown in appendix F. Generally, these trim tables were not available on board nor
part of daily ship operation. Two ships within the D37 ship class, such trim tables, or an equivalent in the
loading computer, are available on board, but are not actively used. From the answers of the D37 ship class,
it is known from experience that trim by bow generally increases the attained speed for a given engine power
setting. Main reasons mentioned for not taking optimal trim into account are the limitations inherent to the
cargo stowage.

The ship operators are responsible for the initial stowage plan and determine which tank is allocated to
which cargo. If the limited freedom in stowage of cargo is dominating the trim condition, the role of the
operator on the trim condition of the ship is important. A conversation with one of the operators of other
types of ships4 made clear that the integration of trim in the cargo stowage plan is limited to the prevention
of excessive trim, not only during transit, but between (un)loading ports as well.

On-board of the ships, it is the chief officer who is responsible for the stowage of the cargo and the trim
of the ship. From a conversation with the chief officer5 of one of the ships, the concept of trim on-board of
ships is better understood. Firstly, the chief officer explained that the trim of the ship is mostly dominated
by the stowage of the cargo, draft limitations in ports and safety. In addition to this, the chief officer can trim
the ship. The trim situation of the ship is monitored with the loading computer, which provides the current
draft at the bow and stern and the loading condition of the cargo, fuel, fresh water and ballast tanks. It was
stated that it is unclear how the ship is trimmed optimal related to fuel consumption. According to the chief
officer, both trim by stern and trim by bow can be argued to be the preferable trim condition regarding fuel
consumption and that the trim condition depends on the crew’s preference and characteristics of the ship,
such as manoeuvrability, course-keeping and sea-keeping characteristics. He furthermore explained that he
normally trims the ship by stern between 0.5 and 1.0 meter in port (known as static trimming), which will
result in a trim condition that can be described as close to even keel or slightly trim by bow during sailing, as
a result of dynamic trimming effects.

It can be concluded that trim optimization is not integrated in the voyage operations procedures. Neither
the crew or the operators consult trim tables or consult any structured methods to optimize trim with the goal
of fuel consumption reduction. The trim of the ship is done based on experience and preference of the crew.
This practice indicates that the trim of all ships in the fleet is done in a sub-optimal way from the perspective
of fuel consumption.

2.4. Limitations for sailing at optimal trim

Sailing at optimal trim conditions is limited by a number of factors. During the exploration study to the
trimming process on ships and in the operations department, some of these are already mentioned, such as

2Conversation with P. Brant, senior superintendent of the European fleet, which includes ships of the C38 class (one of the two ship
classes with trim tables available), on 30-10-2019.

3Performed by e-mail in January and February 2020.
4Conversation with M. Speksnijder, operator of the Inter-European fleet, on 30-10-2019.
5Conversation on board of the Stolt Osprey with the chief officer of the Stolt Osprey, on 09-10-2019.
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manoeuvrability, course-keeping, sea-keeping characteristics and limited freedom in stowage of the cargo. In
order to decrease fuel consumption by trim optimization, these limitations should be identified as complete
as possible. The impact of trim optimization will furthermore depend on to which extent these limitations
can be overcome.

2.5. Problem definition

Based on the problem analysis, the problem is defined in table 2.1. The problem is that all ships of Stolt
Tankers sail at sub-optimal trim conditions, with the consequence of extra fuel consumption with associated
costs and emissions. The trimming process of ships is dominated by cargo limitations and any information
on optimal trim from the perspective of fuel consumption minimization is not integrated in the voyage man-
agement. The solution can be found in a method that can generate dynamic trim tables, based on a dynamic
fuel consumption prediction model. Limitations should be identified and overcome. The trim optimization
method is to be integrated in the voyage management. Figure 2.1 shows the identified sub-problems, the
requirements for the solution and the ultimate objective. The figure also shows how the sub-problems are
related to each other.

Table 2.1: Summary of problem analysis and problem definition.

Sub-problem Problem specification Solution requirement

1. (see 2.1) Trim tables from model testing are
available for only 15 ships of the 104
ships of the fleet. →

A method is to be constructed that
is able to generate trim tables for the
89 ships of which trim tables are not
available.

2. (see 2.2) Uncertainty exists regarding the per-
formance of the available trim tables.
The uncertainty is caused by scaling
effects between model and full scale,
and because of the neglected influ-
ence of weather and sea conditions on
optimal trim.

→

A method is to be constructed that is
able to verify the performance of ex-
isting trim tables. The trim optimiza-
tion method should also incorporate
the influence of weather and sea con-
ditions.

3. (see 2.3) Trim optimization from the perspec-
tive of reducing fuel consumption is
not integrated in the voyage manage-
ment. Instead, trimming is done by
the crew’s experience.

→

The trim optimization should be inte-
grated in the voyage management sys-
tem in order to actually reduce fuel
consumption.

4. (see 2.4) Freedom in trimming the ship is lim-
ited by (partly) unknown factors.

→

Factors that limit the freedom of the
trim of ships should be identified,
quantified and, if possible, solved.

2.6. Available data to solve the problem

The amount of unique ship parameters and recorded parameters from voyage reports is comprehensive. Ta-
ble 2.2 provides an overview of different types of data sources and aims to provide a indication of available
data.

The voyage reports are part of daily operations and for that reason, the database of Stolt Tankers has an
extensive record of voyage reports and hence a comprehensive database of operational voyage data. All the
data from the voyage reports are collected and integrated in the voyage management system of the company,
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Figure 2.1: Definition of the problem.

Table 2.2: Description of available data.

Type of data Source Description of data or examples

Ship design
specifications

Inhouse ship specifications brochure,
general arrangement, loading man-
ual, hydrostatic tables, loading com-
puter, sea trial results

ship design parameters, hull shape information,
length centre of buoyancy, propulsion system,
engine performance, cargo holds arrangement

Maintenance
data

Inhouse maintenance database Date of last hull cleaning, propeller fouling

Voyage report
data

Noon reports Operational: draft, load, trim, heading, speed,
shaft power
Environmental: temperature, wind, sea and
swell state and directions

Trim tables Model scale test results Trim tables of two ship classes

called Veslink. The data is available for ships in the Stolt Tankers Joint Services (STJS) pool, which is the pool
that arranges the commercial management for the ships that are owned by Stolt Tankers and others. This
pool consists of ±75 ships.

It should be noted that the raw data of the voyage report is generally considered to be noisy. Sources of
error can either be technical failures of the sensors and because of human error, for example in estimating,
recording or calculating values for certain fields in the ship log. Also, the recording of weather and sea condi-
tions is done based on a snapshot once every 24 hours. This observation may differ from the average weather
and sea condition over the past 24 hours, and thus may not provide an accurate value of the past 24 hours.

Another source of error can be the difference in actual draft and the indicated (and recorded) draft. The
draft is indicated by the loading computer on-board the ships, which calculates the forward draft, mean and
aft based on the loading levels of the tanks and the hydrostatics of the vessel. Although the indicated values
are regularly checked by the crew by reading the draft marks while the ship is in port, an error may still be
introduced due to the large sized reading marks and the presence of small waves.

Pressure distribution around a ship hull surface at a constant speed differs from hydrostatic pressure. As
a result, the ship experiences a hydrodynamic lift and pitch moment, known as sinkage and trim (Ma et al.,
2016). This dynamic trim effect is confirmed by crew of two ship classes within Stolt Tankers. However, it is
the static trim condition indicated by the loading computer that is recorded in the noon reports6.

6Mentioned in e-mail contact with the crew of ships of the C-38 and D-37 ship class of Stolt Tankers in February 2020.
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2.7. Research objective

The objective of this master thesis is:

To develop a methodology to decrease fuel consumption by trim optimization, by a dynamic fuel consump-
tion estimation model based on available operational data, that can be integrated in the voyage management
system of Stolt Tankers.

The methodology should fulfill the following requirements. The model should:

• estimate the required power for propulsion, with sufficient accuracy to extract the effect of trim;

• be able to generate trim tables considering he effect of dynamic factors;

• be based on available data within Stolt Tankers;

• deal with errors in voyage report data;

• be able to be used for a range of ship types within the fleet.

The methodology will be tested in a case study. Based on these results, the research questions can be an-
swered. If these are answered and the methodology requirements are met, the research objective is fulfilled.
The coherence of the research objective, methodology requirements and research questions is illustrated by
figure 2.2.

1. What methods exist to generate trim tables?

2. How can the required shaft power of a ship under specified conditions be estimated?

3. At which trim condition is the required shaft power minimized?

4. How accurate are trim tables based on model scale towing tests?

5. What limitations exist to trim a ship?

6. How can the proposed method for trim optimization be integrated in the voyage management system?

Figure 2.2: Coherence of research objective.





3
Solution approaches

This chapter answers research question 1: What methods exists to generate trim tables? by providing an liter-
ature review.

Performing full ship scale sea trials for different speeds, draft and trim conditions to develop trim tables
is one of the possible approaches. However, this would require comprehensive sea trials in uncontrollable
conditions, idling the ship operations and to be repeated for every ship.

A number of alternative approaches exist, either based on model scale test results or full ship scale data
from daily ship operations and focused on a single ship (class) or using a generic approach. These character-
istics are used to organize the different approaches in a matrix, as done in figure 3.1. The different approaches
are discussed in the following sections and tested upon the method requirements of section 2.7.

Figure 3.1: Solution matrix. The numbers refer to the corresponding paragraph.

15
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3.1. Trim tables from model towing tests or CFD simulations

Trim tables can be constructed from model towing tests and CFD calculations. For a range of combinations
of speed and draft, the required propulsive power is determined for a range of trim conditions. The result is a
range of trim tables, of which an example is illustrated in figure 1.1.

3.1.1. Trim tables based on model scale towing tests

To scale the results from model tests to values true for full scale, the model and actual ship should satisfy with
similarity constraints. These constraints, together with the challenge to satisfy these, is explained in Larsson
and Raven (2010). However, within the scope of this section, a brief review is presented here.

The three similarity constraints consists of:

• Geometric similarity: The model and the ship should be geometrically similar, which is a challenge
especially for the full scale ship;

• Kinematic similarity: All velocities in the flow are to be scaled by the same factor. It means that the
streamlines around the hull will be similar at model and full scale;

• Dynamic similarity: All forces of the flow are to be scaled by the same factor. Force vectors thus have
the same direction at both scales.

As a consequence, the Reynolds and the Froude number should be the same for the model and ship,
which can not be fulfilled simultaneously. This results in scaling effects on the hull resistance between model
and ship.

Besides scaling effects on hull resistance, Starke and Bosschers (2012) describes a scaling error due to a
difference in the wakefield of the propeller. Due to a different Reynolds number of the model and ship, the
boundary layer is different as well. The smaller Reynolds number of the model, has the consequence that the
boundary layer is relatively big, hence resulting in a different wake field of the propeller.

Trim tables from model scale towing tests are performed for calm water conditions. However, the influ-
ence of trim on the fuel consumption depends on weather and sea conditions (Abouelfadl and Abdelraouf,
2016, Coraddu et al., 2017, Du et al., 2019, Islam and Guedes Soares, 2019). Consequently, it can be the case
that the trim tables provide inaccurate, non-optimal trim conditions when the ship is sailing in other condi-
tions than calm water.

3.1.2. Trim tables based on CFD calculations

An alternative to model testing in a towing tank, is to simulate the flow around the ship using computational
fluid dynamics (CFD). Trim tables can hence also be generated by performing CFD simulations. By using this
approach, the resistance of the ship is calculated for different trim angles and speeds as well.

These CFD simulations can be done on model scale and, with recent developments in computational
power, on full scale. CFD simulations on model scale are well validated by experimental measured data (Jasak
et al., 2019), but suffer from scale effects as well and simplifications, such as to use an actuator disk instead
of the actual propeller, disregarding the free surface or not to calculate the dynamic sinkage and trim of the
vessel (Ponkratov and Zegos, 2015). The accuracy of CFD simulations on model scale have been 0.50-5.8%
Gao et al. (2019) and 0.10-8.9% Islam and Guedes Soares (2019) compared to results from experimental data.
The feasibility of trim suggestions using CFD simulation on model scale have been shown by Labanti et al.
(2016) and Sherbaz and Duan (2014).

State of the art CFD simulations perform ship scale simulations and avoid simplifications by using more
computational power. This is done by Castro et al. (2011) for a KRISO containership, but the results were not
validated due to a lack of data from sea trials. In the work of Ponkratov and Zegos (2015), the CFD simulation
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was validated with data from sea trials, but here the results were calculated for a fixed sinkage and trim. Still,
the method showed sufficient agreement for the power prediction (a difference of approximately 2.8%), which
was better than the estimation from model tests. Mikkelsen et al. (2019) have compared the results of ship
scale CFD simulation with model scale towing tests and sea trial data for one single ship. It was found that
the extrapolated towing tank results are overestimating the power by approximately 3-9%, while the ship scale
CFD simulations overestimates the delivered power by 0-5%. It was noted that sea trial results always depend
on factors such as wind and waves, which are uncontrollable and not modelled in the CFD simulation. This
study shows that ship scale CFD simulations are capable in estimating the calm water power requirement in
a more accurate way compared to the method of model towing tank tests.

It can be concluded that generating trim tables based on model scale towing tests and CFD simulations
is feasible. It provides sufficient accuracy, although scaling results will always results in an error of a few
percents. Full ship scale CFD simulations potentially increase the accuracy, but more validation is needed. In
all cases, dynamic effects are hard to model and the tests or simulations are to be done for every ship design.

3.2. Regression analysis

Another approach to determine the effect of trim on fuel consumption found in literature is to perform a
regression analysis on the available data. This can be based on continuous on-board measurements, or on
data from noon reports.

A regression analysis on continuous on-board measurements is performed by Perera et al. (2015a,b). The
ship was equipped with sensors that could measure the propeller shaft power and torque, the fuel consump-
tion and instruments of the navigational parameters of the ship. The scatter plot of this research is shown in
figure 3.2. Based on this, the authors state that for an approximate draft of 11-12 m, a considerable increase
in fuel consumption can be observed at a trim around 2 m.

Figure 3.2: Example of a scatter plot of fuel consumption against trim and draft condition, from the work of Perera et al. (2015b).

Some significant disadvantages for using this approach can be identified. Firstly, it is noticed that the
approaches are only capable in identifying a range in operational settings that would relate to a difference in
fuel consumption in an ambiguous way. These approaches would not be able to generate trim tables, since
no relation between fuel consumption (or power requirement) and trim can be identified. Moreover, the
effect of multiple other parameters that influence the fuel consumption, such as the influence of weather, sea
and fouling, are not considered simultaneously. The work of Coraddu et al. (2017), Safaei et al. (2019), Soner
et al. (2019), Yuan and Nian (2018) and Du et al. (2019) emphasize the influence of wind and waves on the
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fuel consumption of the ship. As a consequence, the same trim and draft condition can result in a significant
different fuel consumption than expected, due to different weather conditions. So, this approach lacks in the
ability to generate trim tables as a function of speed, draft and weather conditions.

Bialystocki and Konovessis (2016) performed a statistical approach based on continuous data from on-
board measurements is applied as well. Although the effect of trim is not part of interest in this paper, this is
technically possible and the paper shows the characteristics of such a solution approach. A trend analysis is
performed to estimate the fuel consumption of a ship by means of a second-order polynomial as a function
of speed, see figure 3.3. Also, the effect of weather was considered separately, which would result in a similar
polynomial for different wind forces. Instead of the effect of weather, the effect of trim could be considered.
For example, the fuel consumption as a function of speed could be measured for one single mean draft con-
dition, for various trim settings. Although this would result in a direct relation between fuel consumption and
trim condition, this approach is unable to adopt other effects simultaneously, therefor fails to isolate the ef-
fect of trim. This straightforward approach is therefore not suitable to use generate trim tables in an accurate
way.

Figure 3.3: Example of a trend analysis of ship speed and fuel consumption, from the work of Bialystocki and Konovessis (2016).

Additionally, a similar linear regression approach can be done based on noon report data. This is done, for
example, by Safaei et al. (2019). However, in this research the effect of trim is neglected as well. Instead, a lin-
ear relation between fuel consumption and ship speed, displacement and weather state, has been found for
a VLCC. The presented relation shows insufficient accuracy due to the linear method, against the nonlinear
physical relation of the ship speed and the fuel consumption.

It can be concluded that regression analyses are not able to generate accurate dynamic trim tables, since
no relation between trim and fuel consumption can be established, while simultaneously taking into account
other effects.

3.3. Commercial trim optimization tools

Another group of solution approaches are commercial trim optimization tools. It is this type of solutions that
is of increasing interest by ship owners and suggested by the IMO to support the implementation of energy
efficiency technologies to enhance the EEOI. A number of solutions is available these days. Besides costs and
interface, these commercial trim optimization tools differ in the fundamental working principle and source
of information, which make it possible to categorize these tools in the solution matrix of figure 3.1. The
evaluation is this paragraph is structured by data source of the tool, starting with model scale towing tests. It
must be noted that descriptions of the working principle behind the software is often limited and supplied by
commercial parties. As a consequence, it is difficult to analyze the exact working principle or source of data
of the tool and special care should be taken considering the validity of the information. In paragraph 3.3.1 to
3.3.3, a number of such commercial trim optimization tools are evaluated.
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3.3.1. Commercial trim tools based on model tests

Within the box of model scale towing tests as the source of data for the trim optimization tool, two suppliers
are considered.

CruiseMax is a trim optimization tool developed by Herbert-ABS Software Solutions. The applied method
for this tool is to conduct model tests in calm water, in which relevant speeds and drafts for the operational
profile of each vessel class are covered. This tool combines the optimized trim condition with the specific
loading and regulatory requirements of the vessel, by connecting the tool with the loading software CargoMax
which is developed by Herbert-ABS as well, hence suggesting operational attainable trim settings (Herbert-
ABS, n.d.).

Sea Trim, developed by FORCE Technology is a trim optimization tool that makes use of a series of model
tests as well. Trim tests have been performed for almost 300 vessels of various ship types, including tankers,
container vessels (the majority of the tested models), LNG carriers, RoRo vessels and ferries. In the program,
advice is given regarding optimal trim based on the initial entered forward and aft draft, typically taken from
the ship loading computer, and the planned vessel speed. If the trim condition is not optimal, the tool gives
a guidance where the optimal trim can be found. This tool does not consider operational constraints which
have to be considered during shipping. However, the Sea Trim software is able to be connected to a loading
software, if supported by the manufacturer. Additionally, the trim optimization tool can also be delivered with
a loading software developed by FORCE Technology as well (FORCE-Techology, n.d., Reichel et al., 2014).

Trim optimization tools based on a series of model scale towing tests, like Sea Trim, will have scaling
effects as described in paragraph 2.2. Furthermore, this approach is not ship specific and does not consider
weather and sea conditions.

3.3.2. Commercial trim tool based on CFD simulations

DNV-GL has developed ECO Assistant, which is trim optimization tool that uses data from CFD simulations
as input for the optimal trim condition. The approach of this tool requires a geometry model of the ship,
which has to be created ship-specific, if not already available, from available cross-sections and main dimen-
sions or from 3D scanning. The ECO Assistant software makes use of the state-of-the-art CFD approach of
performing numerical sea trials on ship scale. DNV-GL states it has confirmed the results from the CFD simu-
lations in multiple sea trials and by in-service measurements, thereby increasing the validity of this approach,
which is one of the drawbacks of this kind of CFD simulations as is described in paragraph 3.1. By the CFD
simulations, a matrix is constructed of speed, draft and trim values. The discrete data sets are connected by
smooth interpolation, called multi-dimensional response surface. According to DNV-GL, the ECO Assistant
can be interfaced with any loading computer and cargo planning system. Furthermore, the trim performance
of vessels equipped with ECO Assistant can be monitored in performance management system of DNV-GL,
ECO Insight (DNV-GL, 2013, n.d.). An important advance of this approach is that it does not require interfac-
ing with on-board systems or sensors, which makes the installations more cost effective, especially for sister
ships or fleets (Architect, 2014).

Another, though only briefly documented tool, is the trim curve generation tool developed by GreenSHIP.
This tool makes use of CFD simulations as the datasource as well (GreenFramework, n.d.), yet insufficient
information is available to evaluate this commercial tool.

Tools that optimizes trim based on ship specific ship scale CFD simulations, such as ECO Assistant, cover
most of the drawbacks described in paragraph 3.1. On the other hand, it requires more than the available
data and does not consider weather and sea conditions.

3.3.3. Commercial trim tools based on continuous on-board measurements

Instead of using tank testing or CFD simulations, the trim optimization tool Eniram Trim uses actual data
from vessel operations. The tool requires highly accurate sensors (usually not readily available on-board
of ships) that measures the actual trim during sailing and compares this to the optimal trim condition. It
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collects data on vessel performance from multiple, different on-board systems and combines that with the
trim information by using advanced modelling techniques (Govindan, 2019). It is not explicitly mentioned
how the optimal trim condition is determined for this tool.

A similar approach is adopted in the trim optimization tool of Marorka (n.d.). By collecting data in a
continuous way, the effect of operational parameters, such as trim, on the ship performance is presented.
Also for this tool, it is not explicitly mentioned how the optimal trim is determined.

The approach of Eniram Trim and Marorka is able to consider the effect of weather and sea conditions,
it requires high-frequency data sampling from specific on-board sensors, which have to be installed addi-
tionally on each ship to optimize trim. This approach is capable to consider the effect of weather and sea
conditions.

3.4. Dynamic fuel consumption estimation models

A dynamic fuel consumption prediction model, in short the fuel model, can be used to estimate the fuel
consumption for a range of trim conditions, with dynamic trim tables as result. The method of using the fuel
model is illustrated in figure 3.4. Within the field of fuel consumption models, three types of models can be
distinguished: white-box models (WBMs), black-box models (BBMs) and grey-box models (GBMs). A review
of these models according to the structure of figure 3.5 is given in this section.

Figure 3.4: Working principle of a dynamic fuel consumption estimation model. By changing trim conditions, the effect of trim on
required power and fuel consumption can be researched.

Figure 3.5: Overview of models to estimate the power or fuel consumption.
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3.4.1. White box model (WBM)

Fuel consumption can be modelled by applying physics-based relations and relations found by regression
analysis from model and full-scale experiments. This approach is known as white-box modelling. These
models are most often used in the design phase to estimate the power requirements. WBMs are generally
rather tolerant to extrapolation, but the margin of error to estimate the fuel consumption for a specific ship
in realistic sailing conditions, especially considering wind and waves, may be large (Coraddu et al., 2017,
Leifsson et al., 2008). Models exist to estimate both the calm water resistance and the added resistance due
to waves and wind.

Calm water resistance

In recommended procedures for resistance tests from the International Towing Test Conference (ITTC) of
Resistance Committee of the 27th ITTC (2014), the total resistance of a ship can be modelled with a non-
dimensional total resistance coefficient. The drawback of this coefficient and is that the wetted surface has
to be known, which is typically not readily available (Klein Woud and Stapersma, 2012).

Simple alternatives are the Admiralty coefficient of formula 3.1 (MAN Diesel and Turbo, 2011) or the
method of Klein Woud and Stapersma (2012), shown by formula 3.2. Sea trial results can be used for the
reference power and speed. Here, A is the Admiralty coefficient and ∇ is the displacement in m3 and ∆ is the
displacement in t.
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More comprehensive regression models to estimate the required propulsion power have been developed
as well. A well-known regression model is the Holtrop and Mennen (1982) method. Here, a regression analy-
sis is performed based on model scale towing tests. In the method, the resistance is subdivided in a frictional
resistance (RF ) with form factor k for the hull, the resistance of appendages RAPP , a wave making and wave
breaking resistance RW , an additional pressure resistance for ships with a bulbous bow RB , an additional
pressure resistance of the immersed transom RT R and a model-ship correlation resistance RA , but all appli-
cable for calm water in ideal trial conditions. The method is furthermore able to consider the effect of trim,
by considering the draft forward and aft and by the shift in the length centre of buoyancy. Regarding the es-
timations for the propeller efficiency, the effective blade area ratio and propeller-pitch ratio are to be known,
which causes problems when this information is unknown and when a controllable pitch propeller is used.

Lutzen and Kristensen (2013, 2012) have developed a regression model to estimate the required propul-
sion power, based on the work of Harvald (1983) but modified for tankers and bulk carriers. This method
subdivides the resistance into a frictional resistance, an incremental resistance C A (to include the effect of
roughness of the surface of the ship, which is not present at the ship model), an air resistance coefficient
C A A and a residual resistance CR . This method requires less input parameters compared to the Holtrop and
Mennen (1982) method, but does not account for trim.

All these methods however, exclude the effect of the increase of frictional resistance due to fouling over
time, although the effect can be significant. The fuel consumption increases at least 10% on average when the
ship’s hull is lightly fouled, and up to 35% under heavily fouled conditions. The rate of biofouling complex as it
is affected by many environmental factors, including pH-value and nutrient abundance physical factors, such
as the micro texture. An advanced model is presented by Uzun et al. (2019). This model can be approximated
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in a linear way by an increase in power demand of 8-9% per year. An increase of frictional resistance over
time can be included in this way. This is also done by Aldous et al. (2015), in which an incremental resistance
increase of 5% per year is assumed.

Added resistance

Prediction of the added resistance of a ship due to wind and waves is complex and depends on many param-
eters. However, empirical formulas to consider the effect on propulsive power are available. The influence of
the added resistance can be quantified in either an increment of resistance and hence the required power or
as a loss of speed.

Townsin et al. (1993) have developed approximate values to quantify the effect of wind and waves on the
ship speed. The speed loss is a function of the ship displacement, the wind force and the wind direction
in respect to the ship. Lu et al. (2015) have improved the accuracy of this model by including ship specific
characteristics. Meng et al. (2016) have modified the model of Townsin et al. (1993) as well, by taking the
wind force and wave height in meters as input. The coefficients within this model are based on container
ships, which makes the model less useful for chemical tankers.

Another considered method are the new guidelines for speed and power trials. With the goal to standard-
ize the sea trial procedures and correction for the weather conditions, guidelines are established with the as-
sistance of the Sea Trial Analysis-Joint Industry Project (STA-JIP), the ITTC, IMO and leading shipowners. The
results are the guidelines of "ITTC - Recommended Procedures and Guidelines, Analysis of speed/power trial
data" of the Specialist Committee on Performance of Ships in Service 27th ITTC (2014). The guidelines are
subdivided in short waves, where reflection is considered and long waves, where ship motions due to waves
are considered (van den Boom et al., 2013). The approximation of the added resistance of long waves are
complex and require specific information of the hull and waves, including inertia moments and wave length
and is only relevant for head waves with an angle between 0◦ and 45 ◦ with respect to the bow direction.

It can be concluded that the WBMs can be used to make an initial approximation of the power require-
ment in calm water. The models differ in complexity and required input. Most models to estimate the added
resistance due to wind and waves are unpractical to use for this research. The model of Townsin et al. (1993),
or variants on that model of Lu et al. (2015) or Meng et al. (2016) could be used to estimate the speed loss
caused by wind and waves, but would require an additional method to translate this in an increase in re-
quired power.

3.4.2. Black box model (BBM)

Another approach is to observe data to predict the output of a system given some input data, without the
requirement of knowledge of the system. This approach is described as black-box modelling. A BBM gives a
functional relationship between system input and output, which does not represent any physical significance,
and can be more effective to model trends in process behavior (Zhang, 2010). Moreover, a BBM can be more
accurate than a WBM, but requires large amounts of data for training and often suffer from poor extrapolation
qualities (Leifsson et al., 2008, Parkes et al., 2018, van Ballegooijen et al., 2018, Yang et al., 2019).

In recent literature, BBMs are used to estimate the fuel consumption based on either noon reports or on
high frequency sampling of operational data. This have been done with artificial neural networks (ANNs)
and Gaussian processes (GPs), which are considered as machine learning approaches. Machine learning ap-
proaches play a central role in extracting information from raw data collected from ship data logging systems
(Coraddu et al., 2017). The capabilities of an ANN to model the fuel consumption based on noon report
data using multiple parameters including trim and weather conditions, have been shown by Bal Besikci et al.
(2016), Du et al. (2019), Parkes et al. (2018), Pedersen and Larsen (2009a,b), Petersen et al. (2012). In these
cases, it is found that the use of an ANN performed better in comparison to pure WBMs. Bal Besikci et al.
(2016) has shown good estimation qualities based on 233 noon reports, using 8 input parameters including
trim and weather conditions. However, the number of observations has a significant effect on the uncertainty
of the prediction, with more data reducing the uncertainty (Parkes et al., 2018).

Petersen et al. (2012) investigate and compare the use of an ANN and GP, by using an operational high-
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frequency dataset of a ferry over a period of two months. In all tests performed in the paper, the performance
of the ANN is a little better than the GP. Additionally, Pedersen and Larsen (2013) and Yuan and Nian (2018)
used a GP as a BBM for estimating the fuel consumption of a ship based on noon report data. It was found
that similar accuracy can be obtained, although a GP is not appropriate for the analysis of large datasets,
because the complexity increases with the amount of input parameters to the third power (Pedersen and
Larsen, 2013). Moreover, in the case of an ANN, it is suggested that larger networks will improve the ability to
extrapolate beyond the available input data Parkes et al. (2018). This makes the use of a ANN more effective
than a GP for modeling fuel consumption based on noon report data.

However, extrapolation remains an important weakness of a pure BBM. This weakness is caused by data
scarcity. In the case of conducting experiments or calculations, a predetermined matrix of required data
points can be chosen in such a way that there is a knowledge base covering all operational conditions of a
ship, even those that are rarely encountered. In the case of a data-driven approach, which is true for a pure
BBM based on noon report data, the model will learn from data obtained in the past operation which may
be limited in variation. Hence, the BBM may not accurately predict the fuel consumption in new conditions
because it does not have the data to do so. Ideally, the model learns realistic relationships between the input
variables and power or fuel consumption, while taking into account the external conditions. If this is done
successfully, the model can predict the optimal trim even when the ship sails in new, unseen conditions for
which no data is available yet (van Ballegooijen et al., 2018). Therefore, the abilities of a WBM and a BBM
should be combined.

3.4.3. Grey box model (GBM)

Grey-box models (GBM) aim to combine the advantages of both a WBM and a BBM. The goal is to retain
knowledge from the WBM about the physical behaviour of the ship regarding the propulsion power and re-
sistance, while the BBM integrates what is known from the specific operational data of the ship (Leifsson
et al., 2008, Yang et al., 2019).

A comparison between WBMs, BBMs and GBMs for predicting ship fuel consumption is made by Yang
et al. (2019), presented by table 3.1. Based on this comparison and the review of WBMs and BBMs (in para-
graph 3.4.1 and 3.4.2), the following reasons for using a GBM for this research are identified:

• More accurate than a WBM by considering ship specific, real operational conditions;

• Less historical data required than a BBM;

• A certain degree of extrapolation capacity;

• Can avoid unreasonable results because of over- or underfitting on available data.

The performance of a GBM in predicting fuel consumption of a ship, and the improved extrapolation
capacity of a GBM over a BBM especially, can be illustrated by the work of Leifsson et al. (2008). In this
research, a GBM was constructed to model the fuel flow rate (samples every 15 seconds) of a cargo ship that
operates between Iceland and Northern Europe. The ship typically operates with speeds between 18 and 20
knots. Figure 3.6 shows the fuel consumption for two types of voyages. It is seen that when the vessel operates
at different sailing speed than normal operations, the GBM predicts the fuel consumption closer to the actual
data than the BBM, indicating better extrapolation results. It is also noticed that for this voyage, the WBM
outperforms the GBM. However, Leifsson et al. (2008) states that overall, the root mean squared error (RMSE)
of the WBM is more than three times as big as the GBM. In another voyage, the ship encountered unusual
environmental conditions. Leifsson et al. (2008) state that the WBM failed to follow the operational data well,
because the effect of environmental components, such as ocean waves, are not modeled by the WBM.

A WBM and a BMM can be combined in two ways, serial-modeling and parallel modeling, as can be seen
in figure 3.7 based on Leifsson et al. (2008). In serial grey-box modelling, the BBM is provided with an initial
estimation of the fuel consumption, which can be seen as an additional parameter for the BBM. In parallel
grey-box modelling, the BBM models the residual of the measured and calculated fuel consumption. The
authors evaluated both ways, and found marginal difference in outcome between the two.
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Table 3.1: Comparison between WBM, BBM and GBM used for prediction of ship fuel consumption.

Approach Advantage Disadvantage

WBM Can interpret prediction results and system
behavior

Accuracy of predictions depends on as-
sumptions and uncertainties implicit in the
models

Can extrapolate beyond the given data
range

Requires complete beforehand system un-
derstanding

Does not require historical data

BBM Does not require beforehand system under-
standing

Require large amount of historical data

More accurate compared to WBMs Poor model interpretability
Poor extrapolation capacity
May result in unreasonable results (overfit-
ting and under-fitting)

GBM Higher accuracy than WBMs Limited model interpretability
Less historical data required than BBMs Requires beforehand system understand-

ing
A certain degree of extrapolation capacity
Can avoid unreasonable results

Figure 3.6: Comparison of the performance of a WBM, BBM and GBM in modeling fuel consumption, (figures from Leifsson et al.
(2008))

3.4.4. Conclusion regarding dynamic fuel consumption model

A dynamic fuel consumption prediction model based on operational data from noon reports overcomes the
drawbacks of trim tables based on model scale towing tests or CFD simulations. It is able to provide dynamic
trim optimization, by taking into account dynamic factors such as the effect of weather and sea conditions
and fouling. Taking noon reports as source of data overcomes the need for the installation of additional



3.5. Ideally and actually available data 25

Figure 3.7: Serial grey-box modelling (above) and parallel grey-box modelling (below), based on Leifsson et al. (2008).

sensors. Moreover, no scaling effects occur when ship scale operational data is used.

A GBM shows superior ability to comply with the above stated requirements in comparison to a pure
WBM or pure BBM, mainly due to the fact that the effects are determined ship specific and can handle the
complexity of the effect of weather, while having the ability to extrapolate as well. Based on the literature
review on existing approaches, the GBM will consist of a regression model (WBM) and a neural network
(BBM) in series (top scheme in figure 3.7), thus feeding the neural network with an initial estimate based on
a physics-based model.

The WBM will be based on Lutzen and Kristensen (2013) and Holtrop and Mennen (1982). A comparison
between the two methods to use as a WBM is shown in table 3.2. Based on this, it cannot be concluded yet
which one will perform better. Both methods will be used and will be compared in their ability in the GBM
in estimating required shaft power and generate accurate trim tables. A WBM to model the effect of weather
on fuel consumption, is not needed since this part is captured by the neural network. The capability in doing
has been shown in relevant literature (Bal Besikci et al., 2016, Du et al., 2019, Parkes et al., 2018, Pedersen and
Larsen, 2009a,b).

Table 3.2: Comparison to use the method of Lutzen and Kristensen (2013) and Holtrop and Mennen (1982) as a WBM to estimate the
required shaft power.

Method Advantage Disadvantage

Lutzen and Kristensen (2013) Less input parameters Excludes the effect of trim
Modified for tankers and bulkers

Holtrop and Mennen (1982) Includes the effect of trim More input parameters
Accounts for hull shape with parameters

3.5. Ideally and actually available data

The data ideally available for the fuel model consists of the data requirements for both parts of the model; the
WBM and the BBM. The power prediction method of Holtrop and Mennen (1982) and Lutzen and Kristensen
(2013) requires ship design parameters and propulsive parameters. The propulsive parameters are usually
not known, but Lutzen and Kristensen (2013) provide approximation formulas, as well as Carlton (2018) and
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Molland et al. (2011). The ideally available data for the fuel model is listed in table 2.2. The ANN model
considers the dynamic effects as well and mainly requires the environmental parameters and the operational
parameters. The environmental and operational parameters are known from the noon reports.

Noise in data from the noon reports may be present as a consequence of human error. This can be missing
data or flat lines in the data, suggesting unrealistic data recordings. An illustration of this is given in figure 3.8.
The draft condition may differ from day to day, for example as a result of fuel and fresh water consumption.
The flat line in draft during the first voyage compared to the changing draft and trim in the second voyage,
indicate that the consistency of draft recording may differ. Results from a survey to the ships (see appendix F)
made clear that for some voyages only the draft condition at departure and arrival is determined, since that is
required to be known regarding draft limitations in ports. It can be concluded that the frequency of updating
draft conditions differ from ship to ship.

Figure 3.8: Recordings of draft fore and aft of two consecutive voyages.

Pedersen and Larsen (2013) describes that the use of hind-cast weather data in addition to the noon report
data has a significant impact on the estimation accuracy, since it overcomes the human error in observing
the environmental conditions. Pedersen and Larsen (2013) states that for the data from noon reports without
hind-cast weather data, there seems to be a significant benefit using more data, since the prediction errors
decrease with time for most of the data set. Hind-cast weather data is not available during this research.

Based on the available data as described in section 2.6, it can be concluded that all ideally available data
is present. In special cases where data is missing, practical and appropriate approximations formulas are
available. Hind-cast weather data would improve the data quality if available, but data from noon reports
may be sufficiently accurate.

3.6. Gap to literature

Considering the available relevant literature on fuel estimation models, a literature gap is recognised which
explains the contribution of this work. Despite the growing attention on using machine learning tools in
extracting knowledge from noon report data, the proven ability of ANN in estimating fuel consumption based
on this data and the demonstrated additional competence of grey-box modelling, no research is available yet
on this subject. This gap in literature is shown in figure 3.9. The method proposed in this work aims to
contribute by showing the ability of a grey box model using ANN with the objective of trim optimization for
ships in service.
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Figure 3.9: Relevant literature on fuel consumption models, showing the literature gap.

3.7. Conclusion of solution approaches

The different solution approaches to generate trim tables are shown in figure 3.1. These are evaluated in table
3.3 with the methods requirements, which have been determined in section 2.7.

Based on this, it is concluded that static trim tables, regression analyses and commercial trim optimiza-
tion tools do not comply with the method requirements. A dynamic fuel consumption prediction model (or
the fuel model), as described in 3.4.4 and with the working principle as illustrated in figure 3.4, is likely able
to comply with all the requirements.

Table 3.3: Evaluation of solution approaches based on method requirements.

Method requirement Dynamic fuel
consumption

model

Static trim
tables

Regression
analyses

Commercial
trim

optimization
tools

Sufficiently accurate Likely Uncertain No Unknown
Dynamic fuel consumption
modelling

Yes No No No

Dynamic trim optimization Yes No No No
Use available data Yes No Yes No
Solution effective for multiple
ships

Yes No No Yes

Deal with error in available data Requires data
pre-processing

Unknown Requires data
pre-processing

Not applicable

3.8. The gain for Stolt Tankers

The gain for Stolt Tankers, by providing the proposed method successfully, is threefold. First of all, the method
can potentially generate trim tables for any ship class within the fleet of the company, and provide a solution
to incorporate these results in the voyage management procedures. Moreover, the proposed method can
overcome the drawbacks from existing trim tables, since the generated trim tables can cope with weather and
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sea conditions, whereas the existing trim tables are based on model towing tests in calm water condition. All
together, this can result in a significant saving in fuel costs, providing the company a opportunity to improve
the competitiveness of the company and reduce the emissions of shipping.

Secondly, part of the method will consist of a multi-variable dynamic fuel consumption prediction model.
The model will be able to quantify the relationship between fuel consumption and its determinants, including
speed, trim and weather conditions. This model can be used to accurately predict the fuel consumption of a
voyage. It can also be used as an accurate model to internally compare the energy efficiency of the ships in
the fleet to find abnormalities in fuel consumption.

Finally, the dynamic fuel consumption prediction model can be the basis for weather-routing, speed op-
timization and scheduling of hull and propeller cleaning.
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4
Effect of trim on fuel consumption

The subject of trim optimization requires the understanding of how trim influences the power demand and
consequently the fuel consumption of a ship. Change of trim has an effect on both the ship’s resistance and
the propulsive efficiencies. These effects are considered in paragraph 4.2 and 4.3 respectively. Paragraph 4.1
starts with an introduction to ship’s resistance and propulsion.

4.1. Basic formulas on ship’s resistance and propulsion

The power required to drive the ship at a certain speed without any propulsive losses, is the effective power
in calm water (PE) of the ship, which is the total resistance times the speed (see formula 4.1) (Larsson and
Raven, 2010). The total resistance of a ship can be divided into multiple resistance components.

Knowledge about resistance of ships originates from model towing tests, since the resistance of individual
resistance components cannot be measured directly on full scale. Different approaches to describe the total
resistance exists, which is extensively described in the work of Bertram (2000) and Larsson and Raven (2010).
A comprehensive overview of resistance decomposition is provided in figure 4.1. Decomposition into a wave
resistance (RW , dependent on the Froude number) and a viscous resistance (RV , dependent on the Reynolds
number) is the description most directly related to physical phenomena (Larsson and Raven, 2010), shown
by formula 4.2.

Neither with of ship scale tests, nor with model towing tests, the individual contribution of the wave re-
sistance can be determined directly (Bertram, 2000). However, the viscous resistance and the total resistance,
can be determined from model towing tests. This can be done using formula 4.3 to 4.6, in which resistance
coefficients are defined (Bertram, 2000, Larsson and Raven, 2010, Reichel et al., 2014).

PE = RT ·VS (4.1)

RT (F n,Rn) = RW (F n)+RV (Rn) (4.2)

CT =CR + (1+k)CF0 (4.3)

CT = RT
1
2 ·ρ ·V 2

S ·SW
(4.4)
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Figure 4.1: Overview of resistance decomposition (Bertram, 2000).

CF0 =
0.075(

log (Rn)−2
)2 (4.5)

Rn = VS ·LW L

ν
(4.6)

Here, PE is the effective towing power in kW , RT is the total resistance in N , VS is the ship speed in m
s , RW

is the wave-making resistance in N , RV is the viscous resistance in N , CT is the total resistance coefficient,
CF0 is the flat plate equivalent frictional resistance, k is the form factor, SW is the wetted surface of the hull in
m2, Rn is the Reynolds number, F n is the Froude number and LW L is the waterline length in m and ν is the

kinematic viscosity in m2

s .

Consequently, shaft power and brake horse power of the engine can be calculated using the relevant ef-
ficiencies of the propulsion chain as described by Klein Woud and Stapersma (2012), shown by formula 4.7
and 4.8

PS = PE

kp ·ηO ·ηR ·ηH ·ηS
(4.7)

PB = PS

ke ·ηGB
(4.8)

Here, ηO is the open water propeller efficiency, ηR is the relative rotative efficiency, ηH is the hull efficiency,
ηS is the shaft efficiency, ηGB is the gearbox efficiency, kp is the number of propellers and ke is the number of
engines per propeller.

4.2. Change in ship resistance

According to Reichel et al. (2014), the residual resistance is most affected by change in trim, where frictional
resistance is less influenced by trim. A significant part of the residual resistance is the wave making resistance.
Górski et al. (2013) describes the influence of immersion of the bulbous bow and transom, based on model
tests and CFD simulation.
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Immersion of the bulbous bow has a strong influence on the resistance of a ship. The function of the
bulbous bow is to generate a wave system that favourably interferes with the wave system generated by the
bow of the ship. The interference with the wave pattern is dependent on the draft and speed of the ship. A
bulb located too close to the free surface generally creates a strong, unfavourable wave system. On the other
hand, increased bulb immersion would result in a less developed wave system. Consequently, changing the
trim enables to adapt the bulb immersion to the actual draft and speed (Górski et al., 2013).

Resistance of the flow around the stern part depends on the speed and the immersion of the transom,
similar to the situation of the bow of the ship. From the work of Górski et al. (2013), it is clear that a turbulent
flow, combined with a significant drop in pressure, can be observed when the velocity of the flow around
the transom is below a certain (unspecified) threshold. This pressure drop results in a significant increase
in resistance. Emergence of the transom, by trimming by bow, may prevent this situation by preventing the
occurrence of flow separation (Iakovatos et al., 2014).

The frictional resistance plays a role as well. Trim by bow results in a reduction in wetted surface, hence
a decrease in the frictional resistance, as can be explained by formula 4.5 (Górski et al., 2013, Iakovatos et al.,
2014). Also, the frictional resistance coefficient CF is dependent on LW L , as can be seen in formula 4.6. Re-
ichel et al. (2014) states that for most cases, LW L will vary up to ± 5 %, which can result in ± 0.5 % change
in required power. In addition to the hull friction, the change of resistance of appendages at trim conditions
should be considered, such as bilge keels, the rudder construction and shaft brackets. These elements are ori-
entated in such a way that the flow is in line with the orientation of the appendage. This way, the appendage
resistance is limited to additional frictional resistance. At trimmed conditions however, a form factor should
be considered. The appendage resistance at trimmed conditions will therefore be expected to be higher com-
pared to even keel condition (Górski et al., 2013).

4.3. Change in propulsive characteristics

Klein Woud and Stapersma (2012) describes a number of propulsive efficiencies (see formula 4.7 and 4.8),
which are affected by a change in trim.

The hull efficiency (ηH ) (see formula 4.9) is a function of the thrust deduction factor (t) and the wake
fraction (w). The trust deduction represents the difference in total produced thrust by the propeller(s) and the
pure towing resistance of the hull. The remaining part has to overcome the added resistance of the propeller.
Hence, a deduction(factor) is needed to go from thrust (T ) to resistance (RT ), both in N (Klein Woud and
Stapersma, 2012). The trust deduction is calculated with formula 4.10. If RT changes due to trim and if the
speed is kept constant, T will change as well. However, t will not remain constant. According to Reichel et al.
(2014), t changes with trim up to ± 15% and peaks when the propeller submergence decreases to a critical
level. However, the effect of change in thrust deduction is relative to the change in the wake fraction.

The wake fraction represents the difference between the ship’s speed and the velocity of the water at the
propeller location (both in m

s ). The latter is called the advance velocity (VA) and is usually lower than the
ship’s speed. The reason for this is that the entrained water in the boundary layer of the ship has a certain
speed. The boundary layer at the ship’s stern has a considerable thickness, in which the propeller is normally
located. The difference in these two speeds, as a ratio of ship’s speed is called the wake fraction and can
be calculated with formula 4.11 (Klein Woud and Stapersma, 2012). If the ship’s speed remains constant,
the wake fraction only changes if the speed of water at the propeller inflow changes. In the tests of Reichel
et al. (2014), the wake fraction increases for bow trim conditions up to 20% (which would increase ηH , hence
favourable) and decreases for stern trim conditions with up to 10%. Considering the possible change in w
and t, ηH can change ± 2%.

ηH = 1− t

1−w
(4.9)

t = kp ·T −RT

kp ·T
(4.10)
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w = VS −VA

VS
(4.11)

The open water (ηO) efficiency of the propeller depends on the curvature in the open water diagram and
the advance ratio ’J’ (see formula 4.12). Here, n is the engine speed in r ps and D is the propeller diameter in
m. Change in trim will change VA. Since the curve of ηO is inclined, ηO will vary depending on J. Change in
ηO can be ± 2% (Reichel et al., 2014).

J = VA

n ·D
(4.12)

The relative rotative efficiency (ηR ) covers the difference between the actual situation of the propeller in a
non-uniform velocity field and the open water situation, see formula 4.13 (Klein Woud and Stapersma, 2012,
Reichel et al., 2014). Here, PO is the propulsive power in open water (with uniform flow), PP the actually deliv-
ered power by the propeller. KQopenwater is the torque coefficient in open water and KQship the torque coefficient
for the situation that the propeller is behind the ship. Since the flow at the propeller will be slightly different
due to trim, ηR can vary up to 2% from even keel condition (Reichel et al., 2014).

ηR = PO

PP
=

KQopenw ater

KQshi p

(4.13)

Finally, as can be seen in formula 4.8, the difference between PB and PE is caused by ηS and ηGB , together
known as the transmission energy. These efficiencies are not considered to be effected by change in trim.
Klein Woud and Stapersma (2012) considers these efficiencies to be rather constant and in the case of ηGB ,
the value is dominated by the type of gearbox.

In addition to the above and to formula 4.8, Górski et al. (2013) argues that under trimmed conditions, the
direction of the force generated by the propeller is not parallel to the direction of the ship motion and hence,
the effective thrust is deduced.

4.4. Engine fuel consumption

The required power directly relates to the fuel consumption, which is of particular interest within the field of

trim optimization. Fuel consumption (ṁf in kg
s ) is a function of the required brake power, the performance

of the engine and the lower heating value of the fuel (LHV in M J
kg ). The performance of the engine can be

quantified in terms of specific fuel consumption (sfc in kg /s
kW ) or in the engine efficiency (ηE ). The engine

performance is dependent on the engine speed and engine load and is specified by the engine manufacturer.
Eventually, the fuel consumption can be calculated with formula 4.14 (Stapersma, 2002).

ṁ f =
PB

ηE ·LHV
= PB · s f c (4.14)

4.5. Conclusion of the effect of trim on required power

A summary of the effect of trim on the required power and eventually the fuel consumption, as described in
paragraph 4.1 to 4.4, is summarized in table 4.1. Here, the items of the ship resistance and the propulsive
characteristics that are influenced by a change in trim, are listed accordingly with the favourable trim to
decrease the power demand. Also, the potential effect on the required power is given, if known.

Based on this, it is expected that generally, trim by bow will decrease the required power and thus has a
favourable effect on fuel consumption. However, for many influenced items it is hard to determine the effect
on the required power.
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Table 4.1: Effect of trim on required power.

Ship resistance item Physical effect Favourable trim Potential difference

Immersion of bul-
bous bow

Change in wave pattern Depends on design,
speed and draft

Unknown

Immersion of tran-
som

Prevention of pressure drop at transom due
to turbulent flow

Trim by bow Unknown

Change in frictional
resistance

Change in wetted surface Trim by bow ± 0.5 %

Change in waterline length Trim by bow ± 0.5 %

Introduction of form
factor for appendages

Change in orientation of appendages Even keel Unknown

Propulsive charac-
teristics

Physical effect Favourable trim
to decrease fuel
consumption

Potential difference
in required power

Hull efficiency Change of thrust deduction by 15% Unknown Together ± 2%
Change of wake fraction by up to 20% Trim by bow

Open water efficiency Change in advance ratio due to change in
advance velocity

Unknown ± 2%

Relative rotative effi-
ciency

Change in actual delivered thrust by pro-
peller

Unknown ±2 %

Thrust direction Change shaft orientation Even keel or trim by
stern

Unknown





5
Freedom and limitations in ship trim

Limitations to trim a ship have been identified. Research question 5 (What limitations exist to trim a ship?)
can be answered with figure 5.1, in which an overview of limitations is given. The groups of limitations are
covered one by one in the remainder of this chapter.

Figure 5.1: Breakdown of limitations to sail at optimal trim. These limitations are considered in the remainder of this chapter.

5.1. Limitations in load allocation

Figure 5.2 shows a simplified illustration of the C38 class chemical tanker and a breakdown of all tanks on
board. The types of tanks are grouped by cargo, fuel and oil, water, ballast and miscellaneous tanks. Based on
the loading computer of the ship, the maximum load and the number of tanks are shown in the figure. The
length-location of the tanks and its capacity in tons are shown as well. In most load conditions, the challenge
is to trim the ship forward, since the ship tends to trim to stern automatically, mainly due to the weight of the
hull and machinery located on the aft of the ship.

The figure provides an overview of which tanks play a role in changing the trim forward from the per-
spective of trim optimization. Naturally, the trim changes with every change in load of each tank, but not all
of these tanks can or will be used for trim optimization. Tanks that contain loads which are (up to a certain
degree) controllable, are marked yellow in figure 5.2, which are the following:

• Cargo: cargo load is the most significant in terms of total weight and dominates the trim condition.

37
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Cargo allocation can be used as a tool for trim optimization, especially in part load conditions.

• HFO: HFO storage tanks are mainly located in the aft and has two storage tanks in the fore peak, with a
capacity of 266 tons when loaded 98%.

• Technical fresh water: Tanks with ±450 tons capacity is placed in the aft and tanks with more than
double the capacity is located in the fore peak.

• Ballast water: 22 tanks for ballast water are divided over the midship, and one tank placed in the fore-
peak. Adding ballast water to trim the ship to the bow is only feasible in part load conditions: in full
load condition the additional deadweight can not be carried and in ballast condition, the ballast tanks
are filled already. However, adding ballast water also increases the mean draft and displacement, which
negatively affects the fuel consumption.

Figure 5.2: Simplified illustration of the C38 class chemical tanker and its maximum load and approximated length location of all tanks
at 100% load.

Four scenarios within the identified options are investigated on its effect on trim for three loading condi-
tions - full, partial and ballast:

1. Cargo re-allocation: feasible in partial load condition. The load of one normal-sized tank of 1113 ton is
re-allocated to a tank which is ±0.5 LPP forward.

2. HFO storage to fore tanks: 266 tons is re-allocated from aft tanks to fore tanks, which is the maximum
capacity of the forward tanks.

3. Technical fresh water: 458 tons of technical freshwater (FW) from aft to forward tanks. This is the full
capacity of the aft-located tank.
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4. Ballast water (re-)allocation: 900 tons of ballast water is allocated to the ballast tank in the fore-peak.

The results of these four trim scenarios for different loading conditions are shown in table 5.1. It is con-
cluded that trim is significantly changed by cargo re-allocation, but is only possible in part-load conditions.
However, freedom in allocation of cargo is limited by multiple factors which will be covered in the next sec-
tion. Changing the location of fuel and technical fresh water can be the most feasible way to change the trim,
yet this method is subject to re-allocation of fuel from aft to fore tanks. Fuel re-allocation trims the ship ±0.50
m forward, and technical fresh water ±1.00 m forward. Adding ballast water can only be used in part load
conditions. This method can trim the ship more than a meter forward, but will result in additional displace-
ment as well. In normal ballast conditions, forward located ballast tanks will already be in use to comply with
other limitations.

Table 5.1: Options to change trim in three load conditions. Change in trim has been determined using the loading computer of the
Stolt Pride and considers static trim.

Load condition Tmean [m] trim [m]

Full (∼98% of DWT) 10.14 1.07

Trim scenario ∆Weight [t] ∆ Tmean [m] ∆ trim [m]

1. Cargo (re-)allocation Not feasible -
2. HFO to fore tanks 266 t -0.47
3. Technical fresh water to fore tanks 458 t -0.96
4. Ballast water Not feasible -

Load condition Tmean [m] trim [m]

Partial (∼70% of DWT) 10.14 1.07

Trim scenario ∆Weight [t] ∆ Tmean [m] ∆ trim [m]

1. Cargo (re-)allocation 1113 t -0.83
2. HFO to fore tanks 266 t -0.50
3. Technical fresh water to fore tanks 458 t -1.04
4. Ballast water 900 t +0.14 -1.01

Load condition Tmean [m] trim [m]

Ballast (∼55% of DWT) 10.14 1.07

Trim scenario ∆Weight [t] ∆ Tmean [m] ∆ trim [m]

1. Cargo (re-)allocation Not feasible -
2. HFO to fore tanks 266 t -0.54
3. Technical fresh water to fore tanks 458 t -1.11
4. Ballast water Not feasible -

5.2. Voyage planning

The stowage plan has a significant effect on the trim condition of the ship. Limitations in allocating cargoes
to tanks therefore limits the freedom in trimming the ship as well.

The general stowage process within Stolt Tankers and the role of trim in this process is explained by one
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of the operators1. By allocating cargoes to tanks, compliance with safety regulations is the first driver in this
process. As a consequence, tank allocation is limited by cargo tank compatibility, which are specified as:

• Tank material or coating: a cargo tank surface is either stainless steel or a tank with zinc coating or
epoxy coating. Chemical properties of the cargo determines which type of tank can be assigned.

• Tank heating method: a cargo tank is either heated with water or oil. To prevent reaction with the
cargo in case of any leakage, the chemical properties of the cargo determines which type of tank can be
assigned.

• Chemical adjacency: to prevent dangerous reaction between chemicals in case of any leakage, the cargo
should be compatible with the cargo in adjacent tanks.

• Previous cargoes: The previous cargoes in the cargo tank are considered and should be compatible with
the cargo to be loaded.

• Heat adjacency: The temperature of adjacent tanks are limited.

Hereafter, voyage planning, port unloading sequence and operational requirements are considered:

• Tank cleaning: After the delivery of a cargo, tanks are to be cleaned. For some cargoes, it is allowed
to wash at sea and dispose the remainders in the seawater under MARPOL Annex II regulation. (IMO,
2019b). If possible, the cargo is stowed in such a way that the washing can be done during transit to the
next port. This is done to prevent the need to leave port, wash tanks at sea, enter the port again to load
cargo and leave the port again, which would result in additional time and costs. However, washing is
done with water, which means that adjacent tanks of the tank undergoes cleaning, may not be used for
cargoes that restrict the presence of water in the adjacent tanks.

• Draft restrictions at ports: sequence of unloading ports and berths. Excessive trim (and hence max
draft) and extreme loading conditions are prevented when the ship is partly unloaded.

The ship’s crew also checks if the loading manifold is able to load and disperse the cargo to the tanks as
planned, known as rigging.

The above described considerations in the process of cargo tank allocation indicates limitations in the
stowage plan, and therefore also limits the freedom in trimming. A similar description of limitations to the
cargo stowage of a chemical tanker is given by Stadtler (1983).

5.3. Hull strength and stability

The loading condition directly affects the structural integrity of the hull. The structural integrity is ensured
by examining the static and dynamic stresses on the hull, including shear, torsion, bending moments and
slamming. According to Kishev et al. (n.d.), slamming can be avoided by trimming the ship by bow. Moreover,
the loading condition has an effect on the heeling angle and stability (David and Gollasch, 2015). To avoid
excessive heeling, to ensure sufficient stability and satisfy requirements for structural integrity, the stowage
and ballast plan has to consider these factors. As a consequence, the freedom in trimming is limited. The
on-board loading computer considers these limitations for each loading configuration.

5.4. Operational safety

If the propeller operates too close to the water surface, ventilation of the propeller may occur. If this is the
case, the local low pressure created by the propeller blades can draw air beneath the water surface. Ventila-
tion is likely to happen in a condition with large negative trim, or in combination with a very light displace-
ment condition. Especially when the ship operates in high waves with severe ship motions, ventilation of the

1Conversation with M. Speksnijder, operator of the Inter-European fleet, on 30-10-2019.
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propeller may occur (Prpic-Orsic and Faltinsen, 2012). As a result, thrust is decreased, severe noise may be
experienced by the crew and the engine is experiencing dynamic loads. Kishev et al. (n.d.) describes that
regulation exist for a minimal draft at the aft perpendicular (TAP ) to avoid propeller emergence and refers to
the IMO (2008) Stability Information Manual, the manual for ship’s stability which is part of the MEPC (2008)
regulation. Propeller immersion (PI) is defined by formula 5.1. When PI is more than 100%, the propeller is
completely immersed. TAP which satisfies this requirement can be calculated with this formula.

PI (%) = I ·100

D
= (TAP −a) ·100

D
(5.1)

Here,

• I is the vertical distance from the bottom of the propeller to the waterline in m;

• D is the propeller diameter in m;

• a is the vertical distance from the bottom of keel to the lowest point of the tip of the propeller in m;

• TAP is the draft at aft perpendicular in m.

Trim has an effect on the visibility as well. Kishev et al. (n.d.) refers to the IMO (2008) Stability Information
Manual, in which visibility requirements are determined according to the SOLAS 1974, Chapter V, Safety of
Navigation, Regulation 22, Navigation Bridge Visibility, as well as the Panama Canal restrictions. In general,
the IMO requirement is that the blind spot before the ship is less than two times the ship length. For the
Panama Canal, this has be less than 1.5 times the ship’s length for ballast condition and less than one ship’s
length for full load condition. The visibility is determined with formula 5.2.

Visibility = si n(90−φ−θ)

si n(φ)

(
hS −TF +dF S · TAP −TF P

LPP

)
(5.2)

Where

θ = ar ct an

(
TAP −TF P

LPP

)
(5.3)

φ= ar ct an

(
hC −hS

dC S

)
(5.4)

Here,

• TF P is the draft at forward perpendicular in m;

• TAP is the draft at the aft perpendicular in m;

• hS is the height of the forward end of the bow from the keel of the ship in m;

• hC is the height of the steering position of the helmsman from the keel of the ship in m;

• dF S is the horizontal distance between the forward perpendicular and the forward end of the stern in
m;

• dC S is the horizontal distance between the steering position of the helmsman and the forward end of
the stern in m;

• LPP is the length between perpendiculars in m.
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Górski et al. (2013) mentions that significant trim by bow is not used in practice, because of the reduction
of freeboard and increase in foredeck flooding, which will be especially the case in bad weather conditions.
The minimum local freeboard at the forward perpendicular is specified in the regulations of the International
Convention on Load Lines by IMO (1966). However, here the design trim condition is assumed, thus no trim
limit can be quantified.

Molland (2008) divides the manoeuvrability of a ship into the directional stability, response of the ship
to the movement of control surfaces (i.e. rudders), response to other control devices such as bow thrusters
and the turning ability. According to Molland (2008), trim by stern increases the directional stability. It is
furthermore stated that good directional stability and good manoeuvrability typically are conflicting items,
meaning that a trim by stern would decrease the turning ability. This can be confirmed by Kijima et al. (1990),
who investigated the turning ability for multiple loading conditions including a trim by stern condition. They
found that trim by stern will have a larger turning circle than at even keel conditions.

Except for the effect of trim on manoeuvrability, the on-board loading computer considers these limita-
tions for each loading configuration.

5.5. Conclusion on limitations in ship trim

The C-38 ship class has four ways to significantly change the ship trim, which include cargo allocation, fuel
and freshwater re-allocation and the use of ballast water. Limitations to trim a chemical tanker are given by
figure 5.1.



6
Artificial neural networks

In chapter 3, it has been concluded that the concept of artificial neural networks, or ANNs, will be used in
modelling the fuel consumption based on noon report data. This chapter provides an introduction to artifi-
cial neural networks (section 6.1 and 6.2), a review of existing literature of using ANNs for fuel consumption
modeling (6.3) and a proof of concept on a simplified problem (6.4).

6.1. Basic principles of ANNs

da Silva et al. (2017) describes ANNs as computational models that have the ability to acquire and maintain
knowledge and can be defined as a set of processing units, represented by artificial neurons, linked by a lot of
interconnections (artificial synapses) by means of vectors and matrices of synaptic weights.

6.1.1. One single neuron

Figure 6.1 illustrates one single artificial neuron. An artificial neural network consists of a multiple of these
neurons, which are connected with each other. The operation within a single neuron can be divided into the
following steps:

1. Input variables (xn) are fed to the neuron;

2. Each input is multiplied by a corresponding weight (wn);

3. The aggregate is determined of all weighted input minus the threshold value (θ);

4. A proper activation function is applied to limit the neuron output;

5. The output of the neuron is determined.

6.1.2. The neural network

In a neural network, multiple neurons as described in paragraph 6.1.1, are connected with each other. Dif-
ferent standard forms exist and, depending on the purpose, one of the standard forms is most appropriate.
Khare and Shiva Nagendra (2007) structures the different neural networks into two groups: feedforward neu-
ral networks and recurrent networks. Within these groups, different standard forms can be distinguished.
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Figure 6.1: Model of single neuron (based on da Silva et al. (2017) and Khare and Shiva Nagendra (2007)).

Feedforward networks

A single layer feedforward network consists of only one neural layer, which is also the output layer. The
network is defined by n input variables and m output values. Applications are pattern classification and
filtering problems (da Silva et al., 2017). The network has the shape of the multiple-layer feedforward network
as shown in figure 6.2, but without the hidden layers.

A multiple-layer feedforward (MLF) network consists of an input layer, one or more hidden layers and an
output layer, as shown in figure 6.2. The input layer receives the input data. The hidden layer(s) perform the
internal processing and are responsible for extracting patterns, which is done by the working principle of the
neurons as explained in paragraph 6.1.1. The output layer is responsible for producing and presenting the
final output required from the model.

Recurrent neural networks

In a recurrent network, the output of some neurons is used as an input for other neurons by means of a
feedback loop, thus a previous output affects the process for the next output. Recurrent neural networks
are therefore suited for problems that have a sequential nature or are time-dependent (da Silva et al., 2017).
For example, recurrent neural networks are used in text sequence generation, speech recognition and text
analysis (Grachev et al., 2019) or in stock price modelling (Rather et al., 2015). The networks have in common
that they typically use unsupervised learning strategies. Within the group of recurrent neural networks, the
following types of networks exists:

• Hopfield recurrent networks;

• Long-short term memory;

• Gated recurrent units;

• Kohonen network;

• Learning vector quantification;

• Adaptive resonance theory network

6.1.3. Training strategies

The training process consists of changing the weights and threshold of each neuron by a step by step training
process. This step-wise learning process is called the training algorithm. Depending on the type of network,
available data and required output, the training strategy can be chosen. Two considerations can be made:

• Supervised or unsupervised - In the case of supervised learning, each data sample includes the corre-
sponding output value. The difference between the produced output and the expected output (hence
the error) is calculated and used to train the network. The supervised learning strategy works well with
feedforward neural networks. The unsupervised learning strategy is used when the correct output is
not known and when the network is used to find any existing relations in the data (da Silva et al., 2017,
Khare and Shiva Nagendra, 2007).

• Incremental or batch training - In the incremental training approach, the weights are updated after
each unique data sample. This approach may be considered when the data is expected to change over
time, for example in for the case of stock prices. In the batch training approach, all data samples are
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presented in one batch (called an epoch) and weights are updated based on the summed error (da Silva
et al., 2017, Khare and Shiva Nagendra, 2007).

6.2. Multi-layer feedforward neural networks

A MLF type of neural network is chosen with a supervised learning strategy, since this type is suited to ap-
proximate functions and the corresponding output value is known.

6.2.1. Network topology

No straight rules exist to determine the optimal topology of a MLF. The design of the network can be done
in an empirical way, by investigating the performance of different network designs. Since the data is split
into a training part a validation part and a test part, the performance of the trained network depends on
this division. Therefore this division should be done a few times, after which a global average is taken. This
process is called cross-validation (da Silva et al., 2017).

Parkes et al. (2018) states that the accuracy of the network is mainly determined by the number of hidden
layers and neurons. As the number of units increases, more complex relations can be modelled by the net-
work. On the other hand, a network with too few layers and neurons, can be unable to model all the (complex)
relationships.

Large networks with many hidden layers and neurons can become over fitted by becoming too sensitive
to certain datapoints. In this case, the model can have a low error during the training phase, but can reach a
high error during testing (Parkes et al., 2018, Wilamowski, 2009).

The Fletcher-Gloss method can be used as a guideline to for the initial network topology for a MLF net-
work with 1 hidden layer (da Silva et al., 2017), which is shown in formula 6.1). Here, n is the number of
inputs, n1 is the number of neurons in the hidden layer and n2 is the number of neurons in the output layer.

2 ·pn +n2 ≤ n1 ≤ 2 ·n +1 (Fletcher-Gloss method) (6.1)

6.2.2. The training process

The training process of a MLF network is done with the back propagation algorithm. The algorithm fits within
the group of supervised, offline learning. The back propagation algorithm for a MLF is well documented in
da Silva et al. (2017) and Svozil et al. (1997). This paragraph provides a brief description of this back propaga-
tion algorithm.

The back propagation algorithm consists of two stages, the forward and the backward stage. The termi-
nology of the MLF is depicted in figure 6.2 with three neuron layers. Here:

• xn are the input variables;

• W L
j i is the weight matrix of the hidden layer L of the connection between neuron j in layer L and neuron

i of layer (L−1);

• I L
j is the input vector of node j of layer L;

• Y L
j is the output vector of node j of layer L;

• The bias of each neuron in layer L is implemented as x0L;

• yn3 are the output values.
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Figure 6.2: Topology of the MLF neural network (based on da Silva et al. (2017)).

Forward propagation

In the forward propagation stage, the input variables from the data samples are propagated forward through
the network, where each input value is multiplied with the weight matrix W L

j i . In this stage, only the output

values yn3 are calculated, without changing the weight matrices. Formula 6.2 and 6.3 describe this stage in
the most compact way.

I (L)
j =

n(L)∑
i=0

W (L)
j i · x(L)

i (6.2)

Y (L)
j = g

(
I (L)

j

)
(6.3)

Error calculation

Next, the calculated output is compared to the known desired output. This is done by calculating the error
for each output variable. This error is used in the back propagation process of changing the weight matrices
in each iteration. The error is calculated using formula 6.4. The global mean error of the network can be
calculated with formula 6.5. Here, Y (3)

j (k) is the value produced by the j th output neuron of the network for

the k th training sample, with d j (k) the corresponding desired value, p is the total number of training samples.

E(k) = 1

2

n3∑
j=1

(
d j (k)−Y (3)

j (k)
)2

(6.4)

EM = 1

p

p∑
k=1

E(k) (6.5)

Back propagation stage

At this point, the back propagation stage can be started. This stage can be divided into two parts. In the
first part, the weight matrix of the output layer is changed, which can directly use the error as calculated
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by formula 6.4. The other weight matrices are adjusted based on the change in the adjacent weight matrix.
The goal of the first part of the back propagation stage is to adjust the weight matrix of the output layer to
minimize the error between the produced output and the desired output. In order to adjust the matrix in the
right direction, the gradient of the error with respect to the weight matrix is determined by formula 6.6. Using
formula 6.2, 6.3 and 6.4, this can be rewritten into formula 6.7.

∇E (3) = ∂E

∂W (3)
j i

= ∂E

∂Y (3)
j

·
∂Y (3)

j

∂I (3)
j

·
∂I (3)

j

∂W (3)
j i

(6.6)

∂E

∂W (3)
j i

=−
(
d j −Y (3)

j

)
· g ′

(
I (3)

j

)
·Y (2)

i (6.7)

In formula 6.7, the first two terms can be grouped and renamed to δ(3)
j , the local gradient at neuron j , as

shown in formula 6.8.

The change of the weight matrix is shown by formula 6.9. In addition to δ(3)
j and Y (2)

i , a minus sign is

introduced since the adjustment of the weight matrix is to be done in opposite direction to the gradient.
Furthermore, the learning rate parameter η can be introduced. The result is the final formula for adjusting
the weight matrix of the output layer, formula 6.9. In the notation of an iterative procedure, the adjustment of
the weight matrix of output layer can be written as formula 6.10. At this point, the weight matrix of the output
layer is adjusted based on the error of the training sample k.

δ(3)
j =

(
d j −Y (3)

j

)
· g ′

(
I (3)

j

)
(6.8)

∆W (3)
j i = η ·δ(3)

j ·Y (2)
i (6.9)

W (3)
j i (t +1) =W (3)

j i (t )+η ·δ(3)
j ·Y (2)

i (6.10)

In the second part of the back propagation stage, the weight matrices of the hidden layers are adjusted.
As described, the computed error with the desired output can not directly be used. Instead, the adjustment
of the weights is performed based on estimations of the output errors of the already adjusted neuron layer.
This estimation can be done by back propagating the error, taking into account the previous adjusted weight
matrix. So, the desired outcome of a neuron in the hidden layer must be calculated, using the already adjusted
weights that are connected to that neuron. Similar to the first part, the goal is to adjust the weight matrix of
this hidden layer in such a way that the error between the desired output (calculated by the back propagated
error) and the calculated error is minimized. The derivation of the adjustment of the weight matrices of the
hidden layers is more complex, but is well documented by da Silva et al. (2017). The results are given by
formula 6.11 and 6.12, for the second and first hidden layer, respectively.

W (2)
j i (t +1) =W (2)

j i (t )+η ·δ(2)
j ·Y (1)

i (6.11)

W (1)
j i (t +1) =W (1)

j i (t )+η ·δ(1)
j · xi (6.12)

Alternative learning algorithms

Although the back propagation algorithm will eventually converge to a minimal squared error value, the al-
gorithm converges slowly. A range of techniques exist that reduces the convergence time, including the intro-
duction of a momentum parameter, the conjugate gradient algorithm, the resilient-propagation method, the
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Levenberg-Marquardt (LM) method, Bayesian regularization, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
optimization algorithm, constrained version of quasi-Newton method, the constrained truncated Newton al-
gorithm and hybrid models using, for example, particle swarm types of optimization techniques or genetic
algorithms (da Silva et al., 2017, Ozturk and Karaboga, 2011, Pedersen and Larsen, 2009a,b, Radonjic and
Vukadinovic, 2015, Svozil et al., 1997).

Stopping criteria

The goal of training the network is to find a network that minimizes the error between the predicted and the
actual output value of the test data. A performance goal can be set in terms of a mean squared error (MSE)
(Bal Besikci et al., 2016, Parkes et al., 2018). The MSE target may not be reached, because of noise in the data
and since the test data will be different than the training data. Other stopping criteria can be used to ensure
satisfactory results while limiting the calculation cost.

An increase in the error of successive epochs is a sign that a minimum is reached on the validation data
and that the algorithm starts to become overfitted on the training data (da Silva et al., 2017). Overfitting will
decrease the error on the training data, but this will have the consequence that the error will increase on new
data. To prevent this, the number of successive increases of the error (validation failures) can be specified
(da Silva et al., 2017, Parkes et al., 2018). A small number of validation failures may cause the algorithm to
stop at a local minimum while the global minimum could have been reached (da Silva et al., 2017). Other
ways to stop the training can be to specify the maximum number of epochs or by specifying a training time
limit.

6.2.3. Training process initialising

Three sets of data will be composed from the available data points. A training set will be used to train the
network. The validation set is used to perform validation, by evaluating if the performance of the trained
network has reached a stopping criterion. Finally, the test set is used to evaluate the performance with new
data. During data sub-sampling, it is necessary to ensure that the data points that represent the maximum
and minimum values, are allocated to the training subset. Otherwise, if these extreme values are allocated
to the test subset, the network tries to generalize values that are outside the domain of the input variables,
causing significant errors (da Silva et al., 2017).

Depending on the learning algorithm used in the learning process, the chance exists that the error func-
tion converges to a local minimum, instead of the global minimum. To avoid that the network converges to
a local minimum of the error function, the learning process can be repeated more than once with different
initial weight matrices (da Silva et al., 2017).

It is recommended to scale the in- and output variables, in order to avoid saturation of the neurons. Ac-
cording to da Silva et al. (2017), the proportional segment principle (the Thales’ theorem) is the most used. In
this method, the set of values initially within a range of minimum and maximum values, i.e. χ ∈ [χmi n ,χmax ],
will be converted to a proportional range between -1 and 1. Input value x is normalized with formula 6.13 to
the normalized input value z.

z = 2 ·
(

x −xmi n

xmax −xmi n

)
−1 (6.13)

6.3. Lessons learned from relevant applications

The considerations regarding the network architecture demonstrate the importance of a balanced number
of layers and neurons and the need for an empirical approach to quantify the specific complexity. Reference
values can be found in studies that applied ANN in modeling ship fuel consumption based on noon report
(NR) data. The results of this study are shown in table 6.1. From the results of the references in this table, the
following can be concluded:
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• Number of input variables: The number of input variables is less than 10. Table 6.2 specifies the vari-
ables chosen in these references.

• Number of noon reports: The number of noon reports (after filtering) varies between 181 and 323 for
a single ship. This number can be used as a reference to the amount of input data used in the model
in this research. CM means that the input data consists of continuous measurements from on-board
data. Furthermore, the data of Radonjic and Vukadinovic (2015) consists of sea trial data.

• Percentage of data used for training: Is either 70% or 80%, which is within the range suggested by
da Silva et al. (2017).

• Number of hidden layers: Most references stick to one hidden layer, thereby limiting the complexity of
the neural network. The way of quantifying the accuracy of the models is different for each reference,
which makes comparing of results difficult. The work of Radonjic and Vukadinovic (2015) shows that
a network with 2 hidden layers outperformed the network with one hidden layer. Parkes et al. (2018)
compared the accuracy of the model with multiple hidden layers (each with 1, 50 or 100 neurons in it)
and concluded that a 3 hidden layers provided a network with the highest accuracy.

• Number of neurons: In Du et al. (2019), the number of neurons in the hidden layer was equal to the
number of input variables. Pedersen and Larsen (2009a) investigated the accuracy of the model for
either 5, 10, 15 or 20 neurons in the hidden layer. This research found that the number of neurons was
not critical, although 5 neurons was too few. This was verified by Pedersen and Larsen (2009b), where
only 5 and 20 neurons were applied. Here, 20 neurons showed better results than 5 neurons. A more
extensive study was performed by Parkes et al. (2018), where both the effect of the number of layers and
neurons was investigated. The number of neurons was either 1, 50 or 100 for each layer. It was found
that a higher number of neurons decreased the error, but both 50 and 100 neurons provided similar
results. The network can get over fitted with a high number of neurons and the computational time
increases with the number of neurons as well, suggesting that 50 neurons is preferred over 1 and 100
neurons.

• Training algorithm: No clear arguments to use one over the other are found. However, Radonjic and
Vukadinovic (2015) used various training algorithms and found that the constrained truncated Newton
(TNC) method found better results in the same amount of time.

Table 6.1: Evaluation of network design in similar studies.

ANN feature (Du et al.,
2019)

(Bal Be-
sikci et al.,
2016)

(Pedersen
and
Larsen,
2009a)

(Pedersen
and
Larsen,
2009b)

(Parkes
et al.,
2018)

(Radonjic and
Vukadinovic,
2015)

Input variables 10 9 8 9 6 4
Data entries 242+181 223 CM 323 CM 193 sea trials
% For training 80% 70% 80% 80% 70% 80%
Hidden layers 1 1 1 1 1 to 5 1 and 2
Neurons 10 12 5 to 20 5 to 20 1 to 100 3 to 15
Training algorithm Unspecified LM Bayesian BFGS Scaled

conjugate
Various

Table 6.2 shows which parameters are selected in similar studies. The work of Radonjic and Vukadinovic
(2015) is excluded from this table, since the content of this paper differs from the scope of this research. The
used parameters are displayed by the unity used in the research.

6.4. Proof of concept

To show the ability of a MLF, a proof of concept is given. In this proof, the fuel consumption is modelled as
a function of displacement and speed. The network is a 2-3-1 MLF neural network, so 2 input variables, 3
neurons in the hidden layer and 1 neuron in the output layer. The network topology is shown in figure 6.3.
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Table 6.2: Input parameters of fuel (or power) consumption estimation models of existing literature and the corresponding units.
Empty cells represent that the variable is not selected in the corresponding model.

Input variable (Du et al.,
2019)

(Bal Besikci
et al., 2016)

(Pedersen
and Larsen,
2009a)

(Pedersen
and Larsen,
2009b)

Parkes et al.
(2018)

Ship speed knots knots knots knots knots
Displacement ton
Wave height m m m m
Wave direction A-H with/against deg
Wind speed Bf knots knots m/s m/s

Wind direction A-H with/against A-H degrees degrees
Current speed knots
Current direction A-H
Sea water temp. ◦C ◦C ◦C
Air temp. ◦C ◦C

Trim m m m m
Engine speed rpm
Mean draft m m m
Cargo quantity ton

Output variable FC [MT/day] FC [MT/h] PS [kW] FC [MT/h] PS [kW]

Figure 6.3: Topology of the MLF neural network used for the proof of concept.

The training data exists of 40 data samples, with random values of displacement (∆) and ship speed (VS ),
with 20 000 ≤ ∆[t ] < 30 000, and 6 ≤ VS [kn] < 15. The "actual" fuel consumption is modelled as a function
of the displacement and speed. Noise is introduced by a random value dependent on the displacement. The
final formula is shown by formula 6.14. The described data can be found in table A.1 in the appendix.

FC = 0.5 · ∆

∆max
·V 2.5

S + r andom(0...1) · ∆max

∆
(6.14)

The network is trained in Matlab (version 2017b), with default settings:

• Training algorithm: Levenberg-Marquardt;

• Maximum number of epochs: 1000;

• MSE goal: 0;

• Maximum training time: infinite;

• Maximum number of validation fails (number of consecutive increases in MSE): 6;
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• 80% of the data is used as training data, the remaining 20% for validation.

The network repeatedly converges to similar results. After 50 epochs, the MSE started to increase for 6
times in a row, which caused the training algorithm to stop. The final MSE of the training data was 0.19905.
Additionally, the performance of the network was tested on new data, which the network had not seen before.
Therefore, 10 new data samples were simulated in the same way as the training data. The trained network
was used to predict the fuel consumption. The results are shown in table 6.3 and in figure 6.4. The MSE on
the test data is 0.2334.

The working principle of both training an MLF and consequently use it to predict the outcome has been
illustrated by applying an MLF to a simplified problem. It has been shown that a trained MLF is able to
estimate the fuel consumption.

Table 6.3: Output of trained MLF for test data, compared with the simulated actual fuel consumption.

∆ [t] VS [kn] Actual (simulated) FC [MT/day] Estimated FC [MT/day] Error [MT/day]

28000 10 15.80 15.26 -0.55
20000 10.5 12.17 12.09 -0.08
22000 13.5 25.28 25.49 0.21
30000 7.0 6.71 7.23 0.51
25000 8.5 9.18 8.49 -0.68
21500 9.5 10.01 9.84 -0.17
25000 14.0 31.63 31.16 -0.46
23500 9.5 11.96 10.96 -1.00
29000 12.5 27.10 27.12 0.02
23000 11.5 17.48 17.57 0.10

Figure 6.4: Performance of the trained neural network for the proof of concept.





III
Part III: Method and case study

53





7
Fuel model methodology

In this chapter, the method to fulfill the research objective and answer the research questions (as described in
section 2.7) will be described. It has been explained in chapter 3 that a dynamic fuel consumption prediction
model (shortly fuel model) based on noon report data is the solution approach that could fulfill the method
requirements of section 2.7, and overcomes the drawbacks of other reviewed solution approaches.

7.1. General model description

The main solution method to fulfill the research objective and research questions of section 2.7, is to construct
and use a fuel consumption estimation model. The model is made in Matlab version R2017b. The model
consists of a WBM and BBM in series, using ship design parameters and voyage report data.

Two WBMs are developed. In short, the model PLK is based on the regression model of Lutzen and Kris-
tensen (2013). The model PHM is based on the regression model of Holtrop and Mennen (1982) as far as
possible. Section 7.4 describes both WBMs in more detail.

The neural network is a multi-layer feedforward neural network (MLF), which considers the result of one
of the regression models as input, as well as a number of variables from the noon reports. This feature selec-
tion is part of the data pre-processing step.

The output of the GBM is the required shaft power. The predicted fuel consumption is calculated sepa-
rately. This is done for two reasons. Firstly, a big difference exists in the data quality of daily fuel consumption
on the one hand, and shaft power on the other. Shaft power is more reliable to use, since most ships have
shaft torque meters. Together with the angular velocity of the shaft, the shaft power is calculated by using
formula 7.1. Measurements on fuel consumption are less accurate. Only a few ships have fuel flow meters
installed, and often the fuel consumption is calculated by measuring the fuel stock on a daily basis. Because
of the size and shape of the fuel tanks, a reading error of a few cm in height can correspond to significant
differences in fuel consumption. Therefore the shaft power is considered to be more reliable than the daily
fuel consumption.

PS = T ·ω= 2π ·ne ·T

60
(7.1)

With torque (T) in [kNm], the angular velocity (ω) in [ r ad
s ] and the engine speed (ne ) in [rpm].

Secondly, the trim tables from model scale towing tests consider the required power as well. However,
instead of shaft power PS , the delivered propulsion power PD is used, which includes the shaft efficiency. Fuel
consumption is proportional to shaft power and is calculated separately in the post-processing, assuming a
fixed specific fuel consumption. Figure 7.3 shows the relations between PD , PS and fuel consumption.
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The fuel model can be illustrated as shown in figure 7.1. The model distinguishes a training stage and an
exploiting stage.

7.1.1. Training stage

In the training stage, the MLF network is trained. The input consists of a number of variables of the noon re-
port data and the approximated shaft power by one of the WBMs, which in turn requires noon report data and
ship design parameters (as listed in table 7.1 and 7.2). Independent of the feature selection, recorded shaft
power from the noon reports is one of the features to be selected from the noon reports, since this is required
to perform the supervised learning strategy. If the network is trained, i.e. it has learned the relationship with
the input variables and the shaft power, a function is created. This function requires the same input variables
as the network, with the approximated shaft power as output. Since the performance is slightly different ev-
ery time the network is trained (because of the data set sub-sampling, see 6.2.1), this process is done k times,
of which the average is taken. Section 7.7 describes this process in more detail.

Figure 7.1: Overview of the dynamic fuel consumption prediction model.

7.1.2. Exploiting stage

The function of the trained network can be used to evaluate the effect of all input variables on the required
shaft power. Therefore, one of the possibilities is to generate similar trim tables as the ones made from model
scale towing tests. For a certain speed and environmental conditions, the required power can be calculated
for each combination of draft and trim. This process is done k times as well and averaged, since the function
will be slightly different every time the network is trained. If calm water conditions are selected, a static trim
table is created. However, any sea condition can be selected, thereby generating trim tables in a dynamic way.

Other ways of exploiting the fuel model includes the evaluation of hull and propeller fouling, the effect of
sea conditions and speed on required power. Therefore, this can be used as a supporting tool to investigate
deviations in ship performance as well. Also, the fuel model can be used to estimate the fuel consumption for
a certain voyage, taking the loading conditions and weather forecast as input.

7.2. Fuel model input

The required input data for both WBMs are listed in table 7.1 and 7.2. The input for the BBM is limited to the
operational data and weather recordings. The WBMs require this data, but also additional ship parameters.
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Table 7.1: Required input data for BBM and WBMs.

Voyage report and maintenance data unit

Load DWT t
Lightweight LW t
Speed V kn
Heading heading ◦
Draft aft Ta f t m
Draft forward T f wd m
Sea temperature - ◦C
Wind force - Beaufort
Wind compass direction - N-NNE-NE...
Sea state - Douglas
Sea compass direction - N-NNE-NE...
Swell state - Douglas
Swell compass direction - N-NNE-NE...
Days since hull cleaning - days
Days since propeller cleaning - days

7.3. Data pre-processing framework

A data pre-processing framework is established to increase the quality of the data. Garcia et al. (2016) de-
fines six steps of data pre-processing, which are data cleaning, transformation, integration, normalization,
missing values imputation and noise identification. In this research, a sequential order is introduced to this
framework, as well as the steps of feature selection and data selection.

Figure 7.2 shows the sequential order and the output of different steps. Based on the output of steps in
group A, the quality of the recorded data in the noon reports will be assessed. A description of the frequency
of the encountered weather and the operational profile can be given based on the output of steps in group B.
The final output (group C) is used as input for the model.

Figure 7.2: Data pre-processing framework, based on Garcia et al. (2016).

7.3.1. Data integration

The available data is composed of different data sources. Firstly, the ship parameters for the WBMs are ac-
quired from the ship brochure, loading manual, hydrostatic tables and sea trial results. The recorded opera-
tional and environmental variables from the noon reports are acquired by downloading the noon report data
from voyage management system. A dataset is constructed using Microsoft Excel.
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Table 7.2: Additional required input data for both WBMs.

PHM PLK

Ship parameters unit unit

Waterline length LW L m Waterline length LW L m
Length perpendiculars LPP m Length perpendiculars LPP m
Breadth B m Breadth B m
Wetted surface of hull SW m2 Design draft Tdes m
Wetted surface of appendages S APP m2 Wetted surface @ design draft S1 m2

Propeller diameter D m Propeller diameter D m
Submerged transom area AT R m2 Afterbody form factor Fa -
Afterbody form coefficient Cster n - Hull form coefficient Chull f or m -
Bulb frontal area ABT m2 Waterplance coefficient CW P -
Bulb height hB m

Lightweight ship LW t Lightweight ship LW t
Midship area coefficient CM - Midship area coefficient CM -
Waterplane coefficient CW P - Relative rotative efficiency ηR -
Form factor of appendages k2 - Shaft efficiency ηS -
Length centre of buoyancy lcb %
Relative rotative efficiency ηR -
Shaft efficiency ηS -

7.3.2. Data transformation

Data transformation is required to transform the input data to the required input variables of the fuel model.
For example, the direction of wind, sea and swell, which are recorded in points of compass (N-NNE-NE, etc)
and has to be transformed into numerical values, relative to the ship’s heading.

7.3.3. Description of integrated and transformed dataset

The quality of the data in the noon reports is described by the number of empty field and unrealistic data
entries. This provides insight in how many noon reports have to be deleted and for which reason.

7.3.4. Noise identification

Noise identification is done in four ways:

• Empty datafields and unrealistic values, which is different for each variable. These rules are listed in
table 8.2;

• Scatter plots and boxplots are used to find outliers, which indicate noise and abnormal input values;

• Shaft power is compared with a quick estimation. The quick estimation is done by the Admiralty coef-
ficient (see formula 3.1). If the difference is relatively big, the data entry is inspected for abnormalities
as well.

7.3.5. Missing values imputation

If a missing or clearly wrong value can be logically changed to the supposed value, the value is changed
manually rather than deleting the complete data sample.
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7.3.6. Data cleaning

In order to limit the effect from noise on the accuracy of the fuel model, the remainder of the data entries that
contain noise, is deleted from the dataset. Since the MLF requires complete data entries, the complete data
entry has to be deleted when a single input value of that data entry is missing or abnormal.

7.3.7. Description of cleaned data

The cleaned data is described by means of frequency histograms, which is required to define the boundaries
of the fuel model. Although a GBM has better extrapolation qualities compared to a pure BBM, the range of
input data still determines the range in which the model can be applied.

7.3.8. Data selection

A trade-off exists for the dataset to be used in the fuel model. On the one hand the complete cleaned dataset
can be used to train the neural network, which contains all encountered operational, weather and fouling
conditions. On the other hand, the available data can be filtered for calm water conditions.

The rationale to use the complete dataset is that the effects of all input variables on shaft power can be
extracted as complete as possible. This is a requirement to estimate the shaft power and fuel consumption
for a wide range of sailing conditions. In addition, more data is used, therefore covering a wider range of data
(including encountered trim conditions). A smaller dataset with less datapoints, will result in a model that
has to extrapolate more often. Moreover, using more data seems to have a significant benefit when using
noon report data without hind-cast weather data, since the prediction errors decrease with time (Pedersen
and Larsen, 2013).

However, in rougher conditions, it will be the weather conditions that will dominate the shaft power and
speed, of which the precise effect will be more difficult to predict with increasing sea- and swell states. Using
a data set that contains calm water conditions excludes this source of error, which improves the accuracy of
the fuel model. The data set representing calm water conditions fulfills the following two conditions:

• A sea state of 3 on the scale of Douglas is taken as upper bound, which relates to slight waves, with a
wave height up to 1.25 m;

• A swell state of 2 on the scale of Douglas is taken as upper bound, which relates to low waves, defined
as a swell height up to 2 m (lowest swell height on the scale of Douglas).

To discover the effect of this data selection, both datasets are defined and considered in the analyses. The
all weather dataset is used as the reference, the small data set is considered as comparison material.

7.3.9. Feature selection

Feature selection is required for training the MLF. Introducing variables that are poorly correlated to the out-
put variable can have the consequence that the MLF suffers from overfitting. Moreover, using input variables
which are strongly correlated to each other, may result in overfitting on these variables as well. An example
for this is the displacement and draught.

The feature selection is performed based on the Spearmans Rank correlation method. This method has
proven effective for feature selection for a MLF in modeling ship fuel consumption by Parkes et al. (2018).

7.3.10. Data normalization

The WBMs require no additional data normalization. The neural network does require data normalization of
the in- and output variables. This is done in Matlab by the ’mapminmax’ function for both the input variables
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and the target variable. This function normalizes the values according to the proportional segment principle,
as shown by formula 6.13.

7.4. White box models in fuel model

Two WBMs are constructed, which are described in more detail in this section. A comparison between both
models and the noon report data is performed in the case study.

7.4.1. WBM 1 - PLK

The WBM with the name PLK uses the regression model as documented in the work of Lutzen and Kristensen
(2013). To use this model as a WBM in the fuel model, a number of modifications are made.

One of the steps in this model is to determine a residual resistance coefficient, CR,di ag r am , from the graphs
in the work of Lutzen and Kristensen (2013). Different graphs exist for a number of slenderness ratios and
prismatic coefficients, showing the residual resistance coefficient as a function of the speed in Froude num-
ber. The slenderness ratio (M) and the prismatic coefficient (CP ) are dependent on the mean draft, therefore
each noon report is considered individually, as well as the scenario of interest when the fuel model is used.
The graphs are approximated by formulas, of which the result is shown in appendix C. The nearest valid ap-
proximation is taken. For example, for a slenderness ratio of M = 5.1 and a prismatic coefficient of CP = 0.78,
the graph of M = 5.0 and CP = 0.80 is used to approximate the residual resistance coefficient.

The model of Lutzen and Kristensen (2013) provides approximations for wake fraction, thrust deduction
and open water propeller efficiency as well, based on the work of Harvald (1983). Here, part of the approxi-
mation of the thrust deduction (t1) is done with a graph, which is a function of B

L and the block coefficient. A
function is approximated, as shown in figure C.8 in appendix C. A maximum of t1 = 0.31 is set, according to
the boundaries of the graph of Harvald (1983).

The model of Lutzen and Kristensen (2013) provides an approximation of kinematic viscosity based on sea
water density and sea water temperature. Sea water temperature has an effect on sea water density. Based on
reference values of 26th ITTC Specialist Committee on Uncertainty Analysis (2011), a function is established
to account for the different recorded sea water temperatures and the effect on sea water density, assuming a
fixed salinity. The results are shown in table C.1 and figure C.1 in appendix C.

To account for the hull fouling in the WBM, an annual increase of 8% in required shaft power is added,
based on the description given in paragraph 3.4.4. The effect of propeller fouling on required power is not
approximated in the WBM, since no approximation of a relation between days since last propeller cleaning
and required shaft power is found in existing literature. This effect is only accounted for in the BBM. In the
case study, the accuracy of both WBMs are compared.

To generate the trim table, the required shaft power is calculated for arange of mean drafts and trim. The
model of Lutzen and Kristensen (2013) requires a displacement as input. Therefore the displacement is to be
estimated as a function of the draft condition. A linear relationship can be found with mean draft in the noon
report data. The resulting relationship based on the noon report data of the case study vessel can be found in
figure C.9 in appendix C.

7.4.2. WBM 2 - PHM

The WBM with the name PHM uses the regression model as documented in the work of Holtrop and Mennen
(1982) as far as possible. This includes the resistance approximation and the effect of trim, by means of vary-
ing forward and aft draft and a shift in the length centre of buoyancy (lcb). To approximate the propulsion
efficiency, the authors refer to the work of Oosterveld and Van Oossanen (1975), for which the propeller di-
ameter, the number of blades, the effective blade area ratio and the propeller-pitch ratio is required. During
the design stage, these parameters can be varied to find a suitable initial propeller design, but when apply-
ing this approach in the fuel model, problems arise. The propeller design in fixed, the effective blade area
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ratio is not commonly known for every ship in operation and the propeller-pitch ratio varies in case of a con-
trollable pitch propeller (CPP), which is not recorded in the noon reports. Moreover, approximations for the
wake fraction and thrust deduction factor of the Holtrop and Mennen (1982) method have shown significant
differences from values measured on model scale (which are available for the case study ship, but in gen-
eral this information is considered not to be available for all ships in operation). Therefore, the propulsion
characteristics, including the wake fraction, thrust deduction factor and open water propeller efficiency are
approximated by the model of Lutzen and Kristensen (2013).

The model of Holtrop and Mennen (1982) requires the length center of buoyancy in respect to 1
2 LW L , as

a percentage of the waterline length. The length centre of buoyancy varies for different draft and trim condi-
tions. Approximations can be made based on the hydrostatic tables of the ship, of which a graph is presented
in figure C.7 in the appendix. Here, the length centre of buoyancy can be approximated as function of draft for
different trim conditions. Linear interpolation is used to approximate the length centre of buoyancy in case
the trim is not an integer value. However, in the hydrostatic tables the length centre of buoyancy is measured
in metres in respect to the aft perpendicular. Formula 7.2 is used to transform the lcb to the definition of
Holtrop and Mennen (1982). Here, lcb is the length center of buoyancy according to the definition of Holtrop
and Mennen (1982) and LCB according to the definition in the hydrostatic tables.

l cb[%] = LC B + lster n − LW L
2

LW L
×100

with lster n = waterline length behind aft perpendicular

(7.2)

To account for the hull fouling, an annual increase of 8% in required shaft power is added here as well, as
described in paragraph 3.4.4. This model requires an estimation of the displacement as well.

7.4.3. Selection of WBM

By comparing the results for the case study of both WBMs, a decision can be made of which WBM performs
best. The WBMs are compared by:

• Speed-power curve, showing the data from the noon reports, the estimations using PHM and using
PLK;

• Compare the relative error of the estimations of the fuel model with the noon report data, using the
optimal topology of both models;

• Compare the performance of both types of generated trim tables.

7.5. ANN decisions

It has been found in chapter 6 that a MLF neural network is the most suitable type of network for modeling
the fuel consumption. Furthermore, multiple aspects in designing the neural network have been covered.
The following choices have been regarding the design of the neural network:

• The data will be divided into a training set, a validation set and a test set, with a ratio of 70%, 15% and
15%, respectively. Because the performance will depend on this division (as explained in 6.2.1), the
network is trained k times with as many divisions. To ensure an averaged expectation value, k is chosen
to be 100. If training time increases, this number may be chosen smaller to decrease training time.

• For each data subdivision, it is ensured that the minimum and maximum input and target data (i.e.
shaft power) is placed in the training data set, in accordance to the network initialising guidelines as
explained in 6.2.3. First, the data is divided randomly. If the minimum and/or maximum target value is
not within the training set, these values are added to the initial training set and are removed from the
validation or test set.
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• Final network topology will be determined in an empirical way, varying from one to four hidden lay-
ers with multiple options of nodes in each layer, cross validated by repeating the training algorithm
k times. The Fletcher-Gloss method (formula 6.1) will be used as a guideline for the number of neu-
rons. Since the number of neurons in the hidden layer depends on the number of neurons in the input
layer, which in turn is determined by the feature selection, this number can be specified after the data
pre-processing. In order to compare the accuracy of the single hidden layer network with the multi-
ple hidden layers network, the same number of neurons will be used for the multiple hidden layers
network.

• The hyperbolic sigmoid function will be used as the activation function for the MLP network.

• Different learning algorithms are tested for accuracy, speed and consistency. The Bayesian Regulariza-
tion training algorithm has shown the most accurate and consistent results and relatively fast. For most
network topologies, the training time was less than a second.

• Four stopping criteria will be applied for training the network:

– A target MSE of ≤ 0.1;

– A maximum of six consecutive increases of the error (validation failures);

– Maximum number of epochs is 200;

– A time constraint of 20 minutes.

• Network initializing is done in Matlab automatically when creating the network.

• Normalization of in- and output is done by the ’mapminmax’ function according to the Thales theorem
(formula 6.13).

7.6. Post-processing

The accuracy of the model will be evaluated by calculating the mean relative error (REK ) of all K relative
errors of each k th training subset, with all N noon reports in the test sub set (see formula 7.3). Here, Ŷ is the
estimated output value and Y is the actual output value known from the nth noon report.

RE = 1

K

1

N

K∑
k=1

N∑
n=1

Ŷn −Yn

Yn
(7.3)

The output variable of the fuel model is the shaft power PS . The average value of all k estimation of the
model is taken as the final reference value.

Formula 4.14 is used to determine the fuel consumption. The gearbox efficiency (ηGB ) has to be esti-
mated, while the specific fuel consumption (s f c) is known from the engine manufacturer, sea trial results or
from (inhouse available) engine performance audits. The result is formula 7.4, which is shown in figure 7.3 as
well.

FC = PS

ke ·ηGB
· s f c (7.4)

7.7. Validation

Both the fuel model and the generated trim tables are validated. Validation of the fuel model is done by
comparing the estimated power of the fuel model with the actual shaft power requirement from a test subset
of the noon report data. Also, the effects of other input variables on shaft power are considered in a qualitative
way, by fixing all input variables except the one of interest.
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Figure 7.3: Overview of transforming shaft power PS to delivered power PD and fuel consumption.

Validation of the generated trim tables is done with additional sea trial data. These sea trials are performed
for vessels of the C38 ship class in calm water conditions, as defined in paragraph 7.3.8 for trim conditions be-
tween -0.5 to +2.0 meter and for speeds through water of 11, 12, 13 and 14 knots. Depending on the available
time for the ships to perform the sea trials and the local weather conditions, multiple sea trials are conducted
for a range of mean drafts and trim conditions. Instructions to the ship’s crew for conducting sea trials are
included in appendix G.

During the sea trials, more parameters than trim will change. For example, the ship’s heading, the dis-
placement due to additional ballast water or a change in wind and sea conditions. The generated trim tables
however, are valid for only one specific condition at a time. To cope with the change in operational and
weather conditions during the sea trials, the model is evaluated in two ways.

The first way is to mimic each sea trial condition one by one, as close as possible. The main advantage of
this approach is that it validates all effects of the model, including the effect of (change in) weather conditions
on the required shaft power. A peak in shaft power because of an increase in sea state, will be made visible.
However, the shaft powers are a result of more than trim only.

The second approach is to take the average sea trial conditions, and generate the complete trim table for
a certain speed at once. The advantage of this approach is that the isolated effect on trim on shaft power is
extracted in a clear way, but effects of changes in weather conditions are not accounted for.

Figure 7.4: Different steps of validation of the generated trim tables.

7.8. Evaluation of trim tables based on model scale towing tests

The accuracy of the trim tables based on model scale towing tests are evaluated in a similar way of the gener-
ated trim tables. The shaft power for the given mean draft, trim and ship speed is compared to the matching
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averaged sailing condition of the sea trial. This evaluation will answer research question 4 (How accurate are
trim tables based on model scale towing tests?).

7.9. Integration of trim model in voyage management system

The voyage management will consist of a sequence of tasks, to be performed by a number of actors. This
process will be modelled for both the current process of voyage management, as well as the potential process
in which trim optimization is integrated. This acts as a tool to decide when, how and by whom trim optimiza-
tion should be used in this process. The result will be a process description in which trim optimization is part
of the voyage management process.

The process modelling is based on observations and validated with interviews within Stolt Tankers1.

Business process modelling is done according to the instructions of business modelling of Bridgeland and
Zahavi (2009), using the structure as summarized in figure 7.5.

Figure 7.5: Rules of business process modeling.

1Meeting with W. de Vries, operations manager within Stolt Tankers, on 04-05-2020. and with J. Bogaard, project manager within Stolt
Tankers, on 12-05-2020.
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Case study model

In this chapter, a case study will be performed. The purpose of this chapter is to show the ability of the method
(described in chapter 7) to generate trim tables in a dynamic way.

8.1. Case study description

The C-38 Pride ship class, shortly the C-38, is used for the case study. The C-38 is a 38 000 + DWT single screw
ocean going parcel tanker for transporting chemicals, oil products and vegetable oils. Figure 8.1 shows the
M/T Stolt Pride, which is one of the ships of the C-38 ship class. Paragraph 8.1.1 briefly explains why the C-38
is chosen for the case study. Next, relevant ship specifications considering the design, engine, propulsion and
cargo holds are described in paragraph 8.1.2.

Figure 8.1: Stolt Pride, one of the ships used in the case study (picture from offshore-energy.biz).

65
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8.1.1. Choice of ship class

From the range of ship classes within Stolt Tankers, this ship class is the most suitable for two reasons. First of
all, trim tables have been developed for this ship class, so these can be compared with the actual performance
known from noon report data and with the trim tables constructed from the fuel model. This means that
research question about the accuracy of the available trim tables can be answered.

The second reason is that both the data quality and quantity is expected to be sufficient. The C-38 has
shaft power meters which can be used to document the shaft power in the noon reports in an accurate way.
Furthermore, 6 sister vessels exist in this ship class. The available data from these 6 ships can be accumulated.
The age of the ships vary between 1.5 and 3.5 years, counted from January 2020.

8.1.2. Ship design and propulsive specifications

Table 8.1 presents the ship design parameters. The ship has a U-shaped stern section. No bulb is attached to
the bow section. The displacement is an average over the actual displacements of all 6 ships.

Table 8.1: Ship design parameters of C-38 ship class.

Ship design parameter Value Unit

Length overall LO A 185.04 m
Length between perpendiculars LPP 181.8 m
Breadth moulded Bm 32.25 m
Draft moulded Dm 14.96 m
Draft at summer loadline Ts 10.35 m
Service speed Vdes 14.0 knots
Displacement ∆des 38873 t
Tonnes per centimeter TPC 57.2 t

cm

The C-38 ship class has one single engine for propulsion, and is coupled with a shaft generator. The engine
is a slow-speed 6 cylinder 2-stroke Wärtsilä engine. The engine delivers a brake power PB of 7 900 kW at an
engine speed of ne of 100 rpm.

The engine is directly coupled to a 4-bladed controllable pitch propeller with a diameter (D) of 6.30 m.

The cargo section is divided into 39 cargo tanks, with a port, center and starboard section. In addition, 4
deck tanks are available on deck. All cargo tanks made from duplex stainless steel.

8.2. Data pre-processing and description

The steps as described by figure 7.2 are performed in the next paragraphs.

8.2.1. Data integration, transformation and raw data description

Voyage data from the C38 has been downloaded of the period between 01-06-2016 and 01-02-2020, providing
noon reports with record periods between 1 and 3.5 years, depending on the age of the ship. Information
of the lightweight of the ship, the admiralty coefficient from sea trial results and the history record of hull
cleaning and propeller polishing has been integrated with the noon report data. In total, 2923 raw noon
reports have been collected from 6 ships.

Data transformation is performed to obtain the required parameters. This includes the steps and formulas
8.1 to 8.10.
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∇[t ] = DWT+ lightweight

ρ×1000
(8.1)

VS = log distance

sailing period
(8.2)

Tmean = Ta f t +T f wd

2
(8.3)

Formulas 8.4 to 8.6 show the transformation from absolute wind, sea and swell direction in compass
directions (N-NNE-NE etc.) to the direction relative to the ship in degrees, with a range of 0.1 to 360. It is
assumed that the effect of wind, sea and swell from portside is equal to that of starboard side. Therefore, the
directions with an angle greater than 180 degrees, are mirrored to an equivalent direction.

Wind, sea or swell direction [deg] =


0, if direction = N

22.5, if direction = NNE

(...)

337.5, if direction = NNW

(8.4)

α360[deg ] = Wind direction−Heading (8.5)

α,µ,β[deg ] =χ[deg ] =


χ360 +360, if -360 ≤ χ360 < -180

χ360 −2×χ360, if -180 ≤ χ360 < 0

χ360, if 0 ≤ χ360 < 180

χ360 −2× (χ360 −180), if 180 ≤ χ360 < 360

(8.6)

Days from propeller polishing N = Current date−Date propeller polishing (8.7)

Days from last propeller polishing =
{
∞, if days from propeller polishing < 0 (penalty function)

MIN(Days from propeller polishing N), if days from propeller polishing ≥ 0
(8.8)

A similar procedure can be followed to determine the days since last hull cleaning. However, for all C-
38 vessels no hull cleaning has been performed yet. Therefore the date of last hull cleaning is equal to the
delivery date from the yard. Then formula 8.9 is used.

Days from last hull cleaning = Current date−Date last hull cleaning (8.9)

Furthermore, trim is calculated using formula 1.1, the propulsive power according to the Admiralty (Padm)
coefficient using formula 3.1.

To calculate the displacement, the water density is required as well, which is not recorded in the noon
report data. The sea water density is approximated by a regression formula as a function of sea temperature,
based on data from 26th ITTC Specialist Committee on Uncertainty Analysis (2011) (see figure C.1 in the
appendix) as shown in formula 8.10.

ρ =−0.0047×Temp2
sea −0.0752×Tempsea +1028.2 (8.10)
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The quality of the raw data can be described with table 8.2, which shows the number of zeros and blank
fields, and the number of unrealistic values. The following remarks can be made:

• The reported speed over ground is not recorded in 66% of the noon reports. However, this should be
the same as the speed over ground calculated with the observed distance and the sailing period. Both
parameters are considered accurate: the observed distance is determined by GPS and the sailing period
is 23, 24 or 25 hours in most of the times (23 or 25 when the ship crosses a longitudinal). Sailing hours
exceeding 25 hours or less than 23 hours correspond to noon reports which include a few hours of port
departure or arrival, or activities such as maintenance, where the sailing period are rounded to 0.5 or 1
hours. Since these reports correspond to unusual operations and may introduce noise due to rounding,
these reports are not included. This approach is preferred since it represents an average speed over
ground, while the reported speed over ground can be perceived by the crew as the on-the-spot speed
over ground.

• The current velocity is recorded as "0" for roughly half of the noon reports. It is difficult to evaluate in
which case there was no current present and in which case the current is not recorded. An alternative
is to use the logged distance through the water and the reporting period, to calculate the ship speed
through the water. The log instrument provides the distance and speed through the water based on the
Doppler effect, with an accuracy of 0.01 m

s (Furuno, 2010).

• The sea temperature is not recorded in 385 cases, corresponding to 13% of the noon reports. Sea tem-
perature is required in both WBMs, to approximate the water density and kinematic viscosity.

• The sea condition is recorded in two ways: sea state and sea height. It is found that sea state is recorded
in most cases, while sea height is often left blank or zero. Therefore, it is chosen to use the sea state as
the parameter to describe the sea condition.

• Similar to the sea condition, the swell condition is usually recorded by swell state, rather than swell
height. It is chosen to use sea swell as the parameter to describe the swell condition.

• Taking into account the above mentioned approaches, 414 noon reports contain unreported data en-
tries, of which in 385 cases the water temperature is missing.

• Taking into account the above mentioned approaches, 658 noon reports contain unrealistic data en-
tries, of which in 376 cases the reporting period is less than 23 hours.

8.2.2. Noise identification, data imputation and data cleaning

Noise identification is performed by using table 8.2, considering the remarks in the noon reports and by
comparing the power with the estimated power according to the Admiralty coefficient.

When possible, empty data fields in the noon reports are imputed. Data imputation is performed for:

• Sea temperature: Missing temperatures have been interpolated for 116 noon reports;

• Air temperature: For 1 noon report, air temperature was missing, but could be imputed by interpolating
the air temperatures of the day before and after;

• If the entry of wind, sea or swell direction is empty or "NA", while the wind force, sea state or swell state
is zero as well, respectively, north direction "N" is assigned. This is done for 5 noon reports.

Remaining data is cleaned by deleting complete noon report entries with empty fields or unrealistic data,
as defined by table 8.2. In this step, 913 noon reports are deleted. Additionally, remarks of the noon reports
are considered. When a cause for noise in the report is observed, for example a man overboard drills, test-
ing, main engine maintenance or a mismatch in described sea conditions and reported sea conditions. This
resulted in deleting 8 more noon reports.
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Table 8.2: Quality of raw noon report data.

Noon report entry Zero/blank Unrealistic
value

Specification

Actual DWT 56 150 97% of actual DWT should be less than max DWT
Ordered speed 0 0 More than 16 kn
Reported speed 1929 0 More than 16 kn
Observed distance 0 0 More than 384 nm (more than 16 kn on average for 24 h)
Log distance 1 0 More than 384 nm (more than 16 kn on average for 24 h)

Sailing period 0 376 Less than 23 h or more than 31 h (noon report boundaries)
Forward draft 0 0 More than 12 m
Aft draft 3 0 Less than 6.5 m (propeller immergence)
Engine speed 0 2 More than 100 rpm (max engine speed)
Shaft power 0 8 Engine power for propulsion and shaft generator power

more than 7900 kW (total installed engine power)

Heading 0 0 More than 360 degrees
Current velocity 1423 2 More than 4 kn
Current direction - 7 Zero while current speed is not zero
Air temperature 1 1 More than 45 degrees Celsius
Sea temperature 385 2 More than 35 degrees Celsius

Wind force 5 0 More than 12 Bf
Wind direction - 19 Blank or "NA" while wind force is not zero
Sea state 0 1 Sea state zero while sea height is not zero
Sea height - 1286 Sea height zero while sea state is not zero
Sea direction - 55 Blank or "NA" while sea state is not zero

Swell state 0 12 Sea swell state zero while swell height is not zero
Swell height 0 952 Swell height zero while sea swell state is not zero
Swell direction - 23 Zero while sea swell is not zero

Furthermore, outliers are identified by comparing the actual (recorded) shaft power with the estimated
shaft power using the Admiralty coefficient, as can be seen in figure D.1 for all weather conditions and in
figure D.2 for calm water conditions. The outliers indicate impossible data entries, possibly by entering wrong
shaft power recordings or wrong weather conditions. Twelve noon reports are deleted in total in this step.

Also, a scatter plot is made, showing the displacement for each mean draft. These two variables are closely
related, and will only vary a little as an effect of trim and water density. Therefore outliers indicate that either
the draft of the load (and hence displacement) is wrongly entered. Inspection of the individual noon reports
showed that a missing final number could be a reason. As can be seen in figure D.3, five noon reports are
deleted.

The result is a cleaned dataset, consisting of 1988 noon reports. In total, 935 noon reports have been
deleted. Based on this cleaned data, histograms and boxplots are made, which show the operational profile
of the ship class as a whole, which is used to determine the boundaries of the fuel model. The frequency
histogram of the trim conditions is shown in figure 8.2. This figure shows that in most cases (58%) the ship
sails at a (near) fully loaded condition, while other load conditions are sailed less frequently. At this condi-
tion, most trim conditions have been sailed, but noon reports with trim by bow are scarce. At other draft
conditions, the ship is trimmed to the stern more often, which can be explained by the weight distribution of
the ship. The remaining variables in appendix B. Outside these boundaries, the results are based on a small
number of data points and extracted using extrapolation. The combination of the WBM with the neural net-
work improves the extrapolation qualities, but should be considered carefully. The boundaries of the GBM
are defined as following:
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• 11.5 ≤VS ≤ 14.5;

• 1 ≤ wind force ≤ 7;

• 1 ≤ sea state ≤ 6;

• swell state ≤ 6;

• -0.375 < trim ≤ 2.0, for Tmean > 9.5;

• 0.375 < trim ≤ 1.875, for 8.5 < Tmean ≤ 9.5;

• trim > 0.625, for 7.5 < Tmean ≤ 8.5;

• trim > 0.375, for 6.5 < Tmean ≤ 7.5;

• for Tmean > 9.5 represents 58% of the noon re-
ports, while other mean draft conditions are
less represented.

Figure 8.2: Frequency histogram of trim in metres for relevant draft conditions.

8.2.3. Data selection, feature selection and data normalization

Two datasets have been made, as defined in paragraph 7.3.8. For the all weather dataset, the boundaries as
defined in paragraph 8.2.2 are valid without further limitations. The boundaries of the calm water dateset is
smaller, as can be seen with figure 8.3 and 8.4.

Figure 8.5 illustrates how many noon reports are within a combination of sea- and swell states. Noon
reports that comply with the calm water conditions, are shown in the upper-left box.

Figure 8.3: Surface plot of trim occurrences per mean draft of the dataset for all weather conditions.

Besides filtering on sea- and swell state for the calm water dataset, both datasets are filtered on reporting
time. The sailing time should not be more than 25 hours (Tsai l ≥ 25). This way, all noon reports that reflect
a beginning of a voyage are filtered out, since it is likely that a number of reported parameters have been
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Figure 8.4: Surface plot of trim occurrences per mean draft of the dataset for the calm water conditions.

varying more than usual. Together with the sailing time constraint, the calm water dataset contains 674 noon
reports, while the dataset representing all weather- and sea conditions contains 1954 noon reports.

Figure 8.5: Cleaned dataset divided into groups of sea- and swell states. The upper-left box highlights the selected group of noon reports,
which corresponds to a sea state up to and including 3 and a swell state up to and including 2 on the scale of Douglass.

The results of the Spearman rank correlation can be found for both data sets in figure 8.6 and 8.7. Be-
sides for the feature selection, the correlation matrix can be used to investigate data quality and provide an
indication of the effect of the variables on shaft power. The correlation matrix is analysed for expected and
unexpected correlations. However, as described in paragraph 3.2, this method is not sufficient to make con-
clusions regarding the effect of the variables on required shaft power, since the effect of the variables can
not be isolated from each other. A number of correlations and both expected and unexpected results are
considered.

• A third order relation between ship speed and required power may be expected, and therefore also
a correlation between these factors. For calm water conditions, such a correlation is actually found
between ship speed and shaft power. For the all weather data set however, this relation is not found.
The ship is operated using an engine power that does not significantly vary within a small range. The
speed that is reached, is not only a result of this engine setting, but of weather and sea conditions
as well. In rough conditions, speed will vary more than in calm water conditions, which explains the
difference between the correlation found in both data sets.

• The correlation between trim and shaft power in calm water conditions is -0.020, indicating that no real
correlation exists. It is known that the effect on trim on shaft power will be in the order of a few percents,
as described in paragraph 1.2, therefore this small number is in line with the expectation. Moreover, it
illustrates why it is hard to quantify the effect of trim on required power by simple regression methods,
as was investigated in paragraph 3.2.

• Days from last hull cleaning and propeller polishing has a positive correlation with shaft power, as
expected.
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Figure 8.6: Spearman rank correlation for all weather conditions.

Figure 8.7: Spearman rank correlation for calm water conditions.

• Wind force, sea- and swell state have a negative correlation on speed.

Regarding feature selection, the following is observed:

• Displacement and (mean) draft are strongly correlated to each other (+0.958), as may be expected. Draft
is what is directly reported, whereas displacement is based on an estimation using the load, lightweight
of the ship and water density (approximated using sea water temperature). Draft is therefore preferred
as input for the neural network. The (estimation of) displacement will be used as well, since this is a
required variable for the WBMs.

• Air temperature and sea water temperature are strongly correlated as well (+0.903). Moreover, a neg-
ative correlation is found between air and sea water temperature and wind force, sea- and swell state,
being a bit stronger for the air temperature. This indicates that an increase in (air or sea) temperature
is correlated to a decrease in wind force and sea- and swell state. Air temperature is considered as the
most redundant variable between the two and not used in training the ANN. Although sea temperature
is a redundant variable as well, this variable was selected initially. A trained fuel model was used to
evaluate the effect of sea water temperature on shaft power. The effect of sea water temperature was
extracted by keeping all variables constant, except for the sea water temperature. The result is shown in
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figure 8.8. It is found that the effect of sea water temperature on shaft power is much bigger than may be
expected. The exaggerated effect can be explained by the found correlation between colder sea water
temperatures with more severe weather conditions. This verifies that sea water temperature is a redun-
dant variable. However, a trained network without sea water temperature as input, is at least 0.19 % less
accurate, consistently for multiple network topologies, as can be seen in table 8.3, in which the network
performance of a number of network topologies is shown, with and without sea water temperature as
input variable. It is concluded that sea water temperature is a redundant variable with wind force, sea-
and swell state, but does provide the network additional information that improves the accuracy. Sea
water temperature is therefore included in the input variables.

• Wind force and sea state are strongly positively correlated as well (+0.811). However, looking to the
correlation between the direction of wind and sea, the correlation is less strong (+0.674). Moreover, the
effect of direction will be different as well. Following wind will be favourable, while this may not be
necessarily true for waves. Since the combined effect of magnitude and direction will be different, both
wind and waves are considered in training the ANN.

Based on the data quality and Spearman rank analysis, the following features are selected: mean draft,
ship speed (through water), trim, wind force, sea state, swell state, wind direction, sea direction, swell direc-
tion, days since last hull cleaning and days since last propeller cleaning.

Data normalization is performed by Matlab with the ’mapminmax’ function similar to the Thales theorem
of 6.13.

Figure 8.8: Effect of sea water temperature in shaft power.

Table 8.3: network performance of a number of network topologies, with and without sea water temperature as input variable.

With sea water temperature Without sea water temperature

nr. of neurons Relative error
[%]

Standard devi-
ation

Relative error
[%]

Standard devi-
ation

9 6.65 0.462 6.84 0.413
12 6.60 0.444 6.84 0.516
15 6.66 0.425 6.86 0.486

8.3. Speed-power curves of WBMs

Speed-power plots of the noon report data of the final two data sets and the estimations using both PLK and
PHM as WBM, are shown in figure 8.9 and figure 8.10. It is clear that both WBMs assume an exponential
relationship between speed and power, while the actual noon report data show that the speed is more a result
of engine setting and weather conditions, as was concluded from the results of the correlation between speed
and shaft power in the Spearman Rank analysis as well.
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The goal of the WBM is to estimate the calm water power requirement; the increase in required shaft
power due to added resistance is considered by the BBM. It is observed that the PHM model over-estimates
the required power for calm water conditions significantly, and to a lesser extent the PLK model as well, es-
pecially for the higher speed region above 13 knots. A correction factor to tune the power estimation of the
PLK model can provide more realistic results. The effect of such a factor on the accuracy of the GBM will be
investigated. However, first the optimal network topology using the initial estimation of the PHM model is
found in section 8.4.

Figure 8.9: Speed-power curves using the all weather data set, showing the actual shaft power from the noon reports and the estimated
shaft power using the both WBMs.

Figure 8.10: Speed-power curves using the calm water data set, showing the actual shaft power from the noon reports and the estimated
shaft power using the both WBMs.
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8.4. Network topology

The total number of input parameters of the neural network is 13, with one output. The Fletcher-Gloss
method of formula 6.1 is used as a guideline, which results in a range of number of neurons n1 of 9 ≤ n1 ≤ 27.
For the pure BBM, where the result of the WBM is excluded, the range is 8 ≤ n1 ≤ 25. The performance of the
three variants of fuel models are investigated for a range of number of hidden layers and a range of neurons
on each layer, both within and outside the range of the Fletcher-Gloss method. The performance of these
different topologies are tested on:

• Accuracy, by means of the relative error between the estimated and actual shaft power (formula 7.3);

• Stability, by means of the standard deviation between the relative errors of all k trained neural networks.

The results are shown in figure 8.11a, 8.11b and 8.11c. Full tables of the model performance is presented
in appendix E. The best performing topology considering both the accuracy and the stability, is shown in
table 8.4. The performance is also determined when using the calm water data set. Speed-power plots on a
fixed test set is shown in figure 8.12 for the all weather and calm water data set for the three variants of the
fuel model.

Table 8.4: Performance of fuel model, for the calm water and all weather conditions dataset, using the optimal network topology.

All weather data set Calm water data set
Model variant Best topology RE % STD RE % STD

GBM - PHM 1 x 18 6.62 0.431 5.74 0.486
GBM - PLK 1 x 15 6.58 0.452 5.86 0.581
BBM 1 x 27 6.63 0.417 5.83 0.507

Based on the results of the topologies for the different models, the following is concluded:

• In most cases, the use of one hidden layer provides a more accurate and more stable networks than
a network with two hidden layers. Both the average relative error and the standard deviation of the
relative errors of each training iteration is generally smaller.

• Considering the speed-power curves, multiple hidden layers tend to limit the variability in estimated
shaft power. Network topologies with three of four hidden layers tend to saturate and cluster estima-
tions to an average value and sometimes even provides one single value.

• For GBM - PHM, the network topology with one hidden layer with 18 neurons, performs best when con-
sidering both the average relative error and the standard deviation. For GBM - PLK, a network topology
of one hidden layer with 15 neurons in it performs the most accurate. The pure BBM performs best
with a network topology of one hidden layer with 27 neurons. However, the exact number of neurons
is not critical for performance.

• The differences in performance between the three models are very small. A significant difference is
only observed for the calm water dataset, where the GBM - PHM model performs slightly more accurate
compared to the GBM - PLK and the pure BBM.

• All three graphs in figure 8.11 have the same trend in average relative performance. The range of the
Fletcher-Gloss method generally includes or the best performing topologies. The optimal number of
neurons for the topology of the pure BBM is an exception, which should have a few more nuerons than
approximated.
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(a) Topology performance of GBM - PHM.

(b) Topology performance of GBM - PLK.

(c) Topology performance of BBM.

Figure 8.11: Performance of different network topologies of the (a) GBM using PHM as WBM, (b) GBM using PLK as WBM and (c) a pure
BBM. The x-axis shows the number of neurons in the hidden layer(s). The left y-axis shows the relative error (RE) between the estimated
and actual required shaft power in %, the right axis shows the standard deviation of the relative error over all k training repetitions.
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8.5. Effect of tuning PHM

The power estimation using the PHM model is tuned with static and speed-dependant factors (speed through
water, measured in knots). The result is shown in table 8.5. It is found that tuning the model has a negligible
to no effect, even when the correction factor is exaggerated. This can be explained with the working principle
of the neural network. During the training of the neural network, a weight factor is attributed to the input, as
well as the (complex) relationship with other nodes in the neural network.

Table 8.5: Effect of tuning PHM on the accuracy of GBM - PHM on estimating shaft power.

PHM · factor RE of GBM - PHM [%] Standard deviation

PHM · 1.0 (benchmark) 6.62 0.431

PHM · 0.4 6.69 0.465
PHM · 0.5 6.69 0.452
PHM · 0.6 6.60 0.452
PHM · 0.7 6.65 0.465
PHM ·speed 1/4 6.65 0.459
PHM · 0.01 6.68 0.460
PHM · 100 6.65 0.483
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(a) All weather conditions, GBM-PHM. (b) Calm water conditions, GBM-PHM.

(c) All weather conditions, GBM-PLK. (d) Calm water conditions, GBM-PLK.

(e) All weather conditions, pure BBM. (f) Calm water conditions, pure BBM.

Figure 8.12: Speed power curves of three variants of the fuel model (GBM-PHM, GBM-PLK and the pure BBM), using a fixed test set of both the all weather
dataset (left) and calm water dataset (right). The x-axis shows the speed in knots, the y-axis shows the shaft power in kW.
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Case study results

Results of the fuel model for the C38 ship class are analyzed and validated in this chapter.

9.1. Effect of trim on required shaft power

Three variants of the fuel model (GBM - PHM, GBM - PLK and a pure BBM) have been constructed and can
estimate the required shaft power for a given set of operational parameters and weather conditions. Trim
tables can be generated by varying trim and keeping other parameters constant. An example trim table is
generated in figure 9.1, for a voyage condition with the input parameters of table 9.1.

Table 9.1: Input parameters for generated trim table.

Stolt Loyalty

Speed 13 knots Sea condition 3 Douglas - head direction
Load (DWT) 35000 t Swell condition 2 Douglas - beam direction
Water temperature 25 ◦C Last hull cleaning 892 days (3.3 years)
Wind condition 4 Bf - head direction Last propeller cleaning 54 days

Considering the boundaries of the model based on the operational profile of the ship class (see paragraph
8.2.2, the lower part of the trim table of figure 9.1 (mean draft of 9.5 m and more) is represented by the most
significant part of the historical noon report data. The results for these mean draft conditions are therefore
considered to be the most reliable. Trim conditions on the upper right part of the table (boundary is marked
with dotted line) are never recorded in the noon report data, causing the model to extrapolate. In the grey area
100% propeller immersion cannot be ensured in calm water. To avoid severe impact loads on the propeller
blades due to propeller emmergence, these conditions should be avoided. Due to ship motion and waves,
draft conditions around this region is and should be avoided as well.

The optimal trim condition for a range of load conditions and speeds is found by figure 9.2. In this figure,
trim from -0.5 m to +2.0 m, draft from 6.50 m to 10.60 m and speed from 11 knots (bottom) to 14 knots (top)
are considered. The moderate weather conditions are represented by wind force 4 Beaufort and sea- and swell
state 4 on the scale of Douglas, in this case all in opposite direction of the ship’s heading. In general, trim by
bow decreases the required shaft power for all conditions. Increase in weather conditions has no effect on the
location of the optimal trim.

79
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Figure 9.1: Example of a generated trim table for a speed of 13 knots, considering dynamic factors as weather and fouling of hull and
propeller. The marked region in the upper left of the table, indicates that the results are extrapolated. In the grey area 100% propeller
immersion cannot be ensured in calm water.

The effect of trim on shaft power, the optimum trim value and the potential on shaft power reduction
by trim for calm water conditions, as indicated by the fuel model, is shown in figure 9.3 for two mean draft
conditions and speeds of 12, 13 and 14 knots. These model results show that the required shaft power is
minimized by bow trim, with a linear effect between trim and shaft power. Depending on the speed and load
condition, between 1% and 2% in shaft power can be saved with a change in trim of 0.50 m.
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(a) Surface plot of trim tables for calm water. (b) Surface plot of trim tables for moderate weather conditions.

Figure 9.2: Surface plot of trim tables for two different weather conditions, for a speed of 11 knots (bottom) to 14 knots (top), showing the location of
optimal trim for draft conditions between 6.50 m and 10.60 m.

(a) Effect of trim on shaft power for a mean draft of 7.0 m. (b) Effect of trim on shaft power for a mean draft of 10.0 m.

Figure 9.3: Effect of trim on shaft power for two mean draft conditions. A linear effect between trim and shaft power is found. Trim by bow reduces the
required shaft power.

9.2. Effect of other variables on shaft power

One of the drawbacks of using a black- or grey box modelling approach, is the limited model interpretabil-
ity. This can be improved by considering the effect of other input parameters one-by-one and remain other
parameters fixed.

The effects of other input parameters than trim on shaft power as extracted by the fuel model, are shown
in figure 9.4, 9.5 and 9.6. The extracted effects are valid for a speed of 13 knots, a mean draft of 10.0 m, a
seawater temperature of 25 ◦C and no effects of weather and fouling.

For calm water conditions, an exponential function between speed and power exists, as may be expected.
An increase in weather conditions has a significant effect on the power demand for all speeds, consistent with
the correlation as found in the Spearman rank analysis. However, the trend of the effect of speed in moder-
ate weather conditions causes problems. The higher speed region (of ca. 8 knots and more) in moderate
weather conditions, deviates from what would be expected. In off-design conditions, the slope of the speed-
power curve would increase for all speeds. The fuel model results show differently: increasing the speed with
one knot, would require only a little bit more power. It is concluded that the power and fuel consumption
estimations in non-calm water conditions provide wrong results.

The effect of draft on required shaft power shows a realistic effect. For drafts more than 6.5 m and for a
fixed speed, an increase in draft will result in a near linear increase in wetted surface and displaced volume.

The effect of days since last hull cleaning is smaller than expected, when compared to described effect
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(a) Effect of speed on shaft power. The dotted line represent results based
on model extrapolation.

(b) Effect of mean draft on shaft power.

Figure 9.4: Effect of speed and draft on shaft power.

(a) Effect of days since last hull cleaning on shaft power. The dotted line
represent results based on model extrapolation, since noon report data is
collected up to 3.5 years from last hull cleaning.

(b) Effect of days since last propeller polishing on shaft power.

Figure 9.5: Effect of fouling factors on shaft power.

of Uzun et al. (2019). A possible reason can be that hull fouling can not be modelled by days since last hull
cleaning only, meaning that this parameter only contributes partly to hull fouling. According to Uzun et al.
(2019), the rate of different types of hull fouling is depending on the geographical location as well. That would
mean that the fouling degree of particular ships in the fleet deviates from the curve of figure 9.5a, while the
curve shows the average effect among all six ships. Also, it could be that the anti-fouling on the ship’s hull is
more effective than average.

The effect of days since last propeller cleaning on required power is significant. Due to the high tangential
speeds of the propeller blades, a small degree of propeller fouling may already cause undesired cavitation
and a significant loss in propulsion efficiency.

The effects of weather conditions are counter-intuitive in some aspects. Generally, an increase in wind
force or sea- or swell state increases the required shaft power. However, a following strong wind is expected
to be more beneficial than a weaker wind. An explanation can be found in the Spearman rank correlation
analysis of figure 8.6. Wind force is correlated to sea- and swell state, meaning that a stronger wind will come
together, to a limited degree, with higher sea and swell conditions. The results therefore show that the model
attributes no increase in power due to the combined effects represented by a following wind with wind force
6 Bf.

The effect of sea- and swell conditions from different relative directions are counter-intuitive as well. Ev-
ery time a wave is encountered, the ship’s speed will drop, causing an additional power demand to maintain
a certain speed. In following waves, the wave encounter frequency is likely to drop, therefore the additional
power demand is expected to be less than in head seas. A potential reason could be that the steering pilot
has difficulties keeping a steady course in following sea conditions, causing an increase in rudder actions and
rudder angle. Following waves are defined as waves with an angle within 22.5 degrees relative to the ship’s
heading, so a lateral component exists as well. This potential reason can be validated in further research by
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(a) Effect of wind force and direction on shaft power.

(b) Effect of sea state and direction on shaft power.

(c) Effect of swell state and direction on shaft power.

Figure 9.6: Effect of weather factors on shaft power.

crew experience or by measuring the rudder actions in various sea conditions.

Besides the effect of trim, these other effects can be validated by sea trials.

9.3. Model validation

9.3.1. Description of performed sea trials for validation

Three sea trials are performed by three different ships. The sea trial results are included in appendix H.

The first sea trial is performed at a (near) full load condition, with a mean draft of about 10.45 m and with
trim conditions in the range of -0.50 m to +0.50 m, with steps of 0.25 m. Trimming is done by adding ballast
water, therefore each mean draft condition and displacement is different for each tested trim condition. Next
to that, trim conditions of +0.25 m and +0.50 are done in slightly stronger winds and slightly higher sea state.
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The second sea trial is performed in part load condition, with a mean draft of 7.0 m. Measured trim
conditions vary from -0.50 m to +2.0 m, in steps of 0.50 m. The ship is trimmed by shifting ballast water,
therefore keeping the displacement similar. Overall weather conditions are on the limit of preset boundaries
in which the experiment should be performed.

Another sea trial is performed at full load condition, with a mean draft of 10.55 m, but for a stern trim
of +0.50 m only. Therefore the effect of trim can not be extracted, but the results show a similar relationship
between speed and power compared to the other sea trials for a trim condition of +0.50 m.

9.3.2. Initial results of the fuel model for sea trial conditions

The fuel model is used to estimate the required shaft power for each test condition in the sea trials in which
multiple trim conditions are tested. The results are shown in figure 9.7 for the first sea trial and in figure 9.8 for
the second sea trial. Model results are shown in two ways as defined in section 7.7. The averaged conditions
used as input for the fuel model is shown in table 9.2.

Table 9.2: Averaged fixed parameters of both sea trials, used for model input to generate trim tables.

Stolt Loyalty Stolt Integrity

Local date 19/04/2020 01/05/2020
Heading [deg] 300 58
Sea temperature [deg Celsius] 30 22
Wind force [Beaufort] 2 4
Wind direction NW SE
Sea state [Douglas] 2 3
Sea direction NW SE
Swell state [Douglas] 2 2
Swell direction SW E

9.3.3. Observations of sea trial results

Performance of model variants

The results of the model variant GBM-PLK and the pure BBM perform very similar in both sea trial conditions.
On a marginal level, the GBM-PLK shows a trend with a steeper slope for the first sea trial conditions, which is
closer to the sea trial results than the trend of the BBM. Results of the GBM-PHM for the first sea trial, shows
a weaker relationship between trim and power and for speeds of 11, 12 and 14 knots, an opposite trend is
observed for the first sea trial.

Trend in trim on power

A clear trend is found in the results of the first sea trial, showing that an increase in trim cause an increase in
required shaft power, despite the additional ballast water to achieve forward trim. Fuel model results show
as well that the effect of trim is bigger than the effect of the small increase of mean draft due to additional
ballast water (see figure 9.7b). A similar trend with smaller magnitude is found between trim and power by
the fuel model. Regarding the first sea trial, on average a decrease in power of 64 kW is found when the
ship is trimmed from even keel to 0.5 m bow trim, which corresponds to 1.3 %. Sea trial results confirm
that bow trim is optimal, with a similar trend, but with a much bigger magnitude. Depending on speed,
between approximately 6% and 8% in required shaft power can be saved with a change in trim of 0.50 m.
More specifically, the sea trial results for a speed of 13 knots, show that trimming from even keel to 0.5 m
forward trim results in a decrease of 423 kW, which corresponds to a decrease of 8.2 %. The difference in
power for stern trim conditions (stern trim of 0.25 m and 0.50 m) may be exaggerated, due to an increase in
weather parameters. This increase is visible in the model output as well.

A much smaller effect of trim in power is found in the second sea trial for a mean draft of 7.0 m. In zero
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(a) First sea trial. Results of the fuel model with estimations of shaft power for every trial condition, compared with sea trial results.

(b) First sea trial. Results of generated trim tables for averaged conditions, compared with sea trial results and the results known from model
scale towing tests.

Figure 9.7: Initial results for the first sea trial with a mean draft of about 10.45 m (varies per trim condition).

noon reports, a stern trim of 0.25 m, even keel or bow trim for a mean draft of 7.0 m is recorded, meaning
that the model is extrapolating for the data points of even keel and 0.5 m bow trim for this sea trial. As
can be seen in figure 9.1, propeller immergence cannot be ensured for these trim conditions. The model
nevertheless performs consistent with the sea trial results. Although less historical noon reports are available
for this draft condition, it should be sufficient to represent the effect of trim on power for the stern trim
conditions. However, the model performs worse compared to the first sea trial. A maximum is found for 1.0
m stern trim for speeds of 11, 12 and 13 knots and for 1.0 m and 1.5 m stern trim for a speed of 11 knots. In the
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(a) Second sea trial. Results of the fuel model with estimations of shaft power for every trial condition, compared with sea trial results.

(b) Second sea trial. Results of generated trim tables for averaged conditions, compared with sea trial results and the results known from
model scale towing tests.

Figure 9.8: Initial results for the second sea trial with a mean draft of 7.0 m.

sea trial conditions, it is seen that the wind force was 5 Beaufort for this condition, instead of 3 or 4 Beaufort
for other trim conditions. This peak in power is not as clearly visible in the model results. Also, the decrease
in power visible in the sea trial results for a trim of 2.0 m, is not seen in the model output. This local minimum
is not visible in the trim tables based on model scale towing tests. A second sea trial can confirm if this local
minimum is due to trim effects or other effects.
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Structural deviations between fuel model and sea trial results

In the first sea trial, a local minimum in power is clearly observed at even keel for speeds of 11 and 12 knots,
which is not present in the sea trial results. This condition is specified with very calm water conditions with
less displacement compared to the bow trim conditions, which could be a reason for this local minimum.
Also, the clear drop of the power observed in the sea trial results for a speed of 13 knots and for a trim of -0.5
m in respect to -0.25 m, is not visible in the model results.

The trend between trim and power from the fuel model is similar for all mean drafts, whereas sea trial
results and model scale towing tests show different magnitudes of the trend and a possible different trend for
a mean draft of around 8.50 m. This indicates that the fuel model trend is averaged for all draft conditions,
instead of a unique trend per draft condition. Since the majority of recorded draft conditions are for 9.5 m
and more, it could be that the trend for this draft condition is (partly) extrapolated to other draft conditions.
A solution could be to perform a model experiment, by training the neural network with noon reports for a
limited range of draft conditions, for example ballast load, part load and full load. Additionally, sea trials at a
mean draft condition of 8.50 m help to understand the effect of trim on power for this draft region.

Only a small difference in shaft power is seen between the trendlines for different speeds. As was expected
based on figure 9.4a, weather factors dominate the power estimation, causing that the effect of speed on shaft
power is unrealistically embedded by the model. For a full load condition, the model estimates the power
correctly for a speed of 13 knots. For the part load condition in the second sea trial, the model estimates the
power correctly for a speed of 14 knots.

In the noon report data, a significant part of the lower speed recordings still have a high shaft power, as can
be seen in figure 8.9. Moreover, a weak correlation between speed and power was found in the Spearman rank
correlation analysis (see figure 8.6). The speed that is reached, is a result of the engine speed and propeller
pitch ratio and of the weather and sea conditions, causing some relatively high power recordings in the noon
reports at lower speeds.

The effect of the engine and propeller settings on shaft power and speed is specified as follows. The C38
ship class has a CPP and a shaft generator. A prerequisite for the shaft generator to provide power for aux-
iliary systems, is a fixed shaft frequency (fixed RPM). As a consequence, when the ship is to sail at a lower
speed while using the shaft generator, the P/D ratio of the CPP is decreased to decrease the delivered thrust,
while remaining the same sailing speed. This may have an effect on the propeller efficiency, causing a lower
speed for equal required shaft power. This effect can be approximated by considering a typical open water
diagram, as shown in figure 9.9a. From this figure, it can be observed that when the P/D ratio decreased,
the KT curve shift vertically downwards and the curve of the open water propeller efficiency significantly
changes. Additionally, the propeller curve is plotted as well, following formula 9.1 of Kuiper and Bernaert
(2002). Considering that the ship sailing speed will decrease, the delivered thrust T and the advance velocity
VA will decrease, causing the advance ratio J (see formula 4.12) to decrease, since the propeller speed n and
diameter will remain fixed. The slope of the propeller curve will change, as both T and V will decrease. Con-
sidering that T ∼ R and R ∼ V 2, while ρ and the n remain fixed, it is likely that the slope of the propeller curve
will increase. Two different scenarios are considered in figure 9.9b. The curves in red represent the reference
curves for an example speed of 13 knots. The blue curves represent a sailing condition with a reduced P/D ra-
tio, decreased sailing speed but with the fixed propeller speed. As described, the KT curve shifts downwards,
the curve of the open water efficiency changes, the slope of the propeller curve increases and J decreases. The
results show that the hypothetical open water propeller efficiency can drop from 65% to 55%. This illustration
explains that the decrease in propeller efficiency can be significant when the ship is sailing at reduced speed
by reducing the P/D ratio and remain a fixed shaft speed in order to use the shaft generator. This explains
that in some cases, the recorded shaft power at lower speeds are still higher than may be expected by just the
propeller law. It furthermore shows that recording the P/D setting of the CPP, and using it as an input variable
of the fuel model, may increase the accuracy.

Although this report focuses on shaft power estimation and assumes a fixed specific fuel consumption of
the engine to approximate the fuel consumption, decreasing sailing speed by decreases the P/D ratio only,
cause to increase the specific fuel consumption. This effect is illustrated in figure 9.10. Assuming point 1 as
reference point, the operating point will shift to point 2 when using the combinator mode, meaning that both
the shaft speed and the P/D ratio is changed. When the same speed is to be obtained with fixed shaft speed as
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required to run the shaft generator, the operating point will shift to point 3. The specific fuel consumption in
point 3 is higher than in point 2, illustrating the additional adverse affect on fuel consumption when reducing
speed with fixed shaft speed.

KT

J 4 = T n2

ρV 4 (9.1)

(a) Typical open water propeller diagram, showing the open water propeller
efficiency for two different P/D ratios (Kuiper and Bernaert, 2002). The x-axis
represents the advance velocity J and the y-axis represents the values of KT ,
10KQ and ηO .

(b) Actual open water propeller diagram of the C-38 ship class. The
reference condition is shown in red, the sailing condition at reduced
sailing speed at fixed propeller speed and lower P/D ratio is shown in
blue. Coloured lines represent examples only.

Figure 9.9: Possible effect of decreasing the sailing speed by decreasing the P/D ratio on the propulsion efficiency.

Figure 9.10: Typical controllable pitch propeller characteristic curve. Based on Carlton (2018).

Additionally, draft and trim conditions are not always updated daily in the noon reports. This is illustrated
in figure 3.8 for two consecutive voyages and concluded from contact with ship’s crew in the survey (see ap-
pendix F). This causes multiple (different) power recordings for the same draft and trim condition. Therefore,
the effect of trim on power as extracted by the fuel model, may show an averaged trend between trim and
power.
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Other errors in the noon report or sea trial data may cause errors in the model performance. These errors
include: (i) the mismatch between average shaft power and snapshot of weather conditions, heading; and (ii)
the human error in estimating and recording weather conditions and operational parameters (for example
actual shaft power instead of day-average shaft power).

Another reason for differences between model and sea trial results can be that the model does not include
a parameter, which has a significant effect on shaft power or other input parameters.

9.3.4. Suggested calibration of model

It is observed that the model systematically underestimates the effect of speed on power for 11 to 14 knots,
especially in non-calm water conditions. Model calibration can be done by translating the power estimations
vertically, without changing the shape of the trends between trim and power. The result of this calibration
will be a more realistic model output, which improves the ability to compare model and sea trial results.

A requirement to calibrate the model results to more realistic results, will be sea trials. These sea trials
should conduct power measurements for a range of speeds, without the need of varying trim conditions.

To illustrate the effect of model calibration, the sea trial results of all three sea trials are used. All three sea
trials have conducted power measurements at a trim condition of 0.5 m stern trim. The difference between
the effect between speed and power of the sea trials and of the model is determined in figure 9.11. The speed
calibration is done for both draft conditions, as it was observed in full load condition the model results were
realistic for a speed of 13 knots, whereas for small mean draft conditions the model results were realistic for
14 knots. The resulting trend lines are the basis for the calibration table (see table I.1) which can be used to
translate the model results for a range of speed and mean draft conditions. Mean draft conditions of 7.0 and
10.5 m has been used as references, linear interpolation is used to generate the table values for other mean
draft conditions.

Figure 9.11: Speed-power curves of both the model and sea trial results. The difference is used to calibrate the model results to more
realistic values, without changing the shape of the trend.
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9.3.5. Final results (to be validated)

Results of the fuel model and generated trim tables compared to the sea trial results are shown in figure
9.12. Model output now shows more realistic values, however the trend as found in the initial results remain
unchanged.

The calibration from initial model results to realistic values is to be validated with more sea trials. How-
ever, the goal of this calibration is to improve the practical use of the model output by calibrating the model
output to more realistic values.

(a) Results for the first sea trial.

(b) Results for the second sea trial.

Figure 9.12: Calibrated model results and sea trial results for both sea trials.
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9.4. Performance of trim tables based on model scale towing tests

Research question 4 (How accurate are trim tables based on model scale towing tests?) is answered in this
section.

Model scale tests results are available for a mean draft between 6.50 m and 10.0 m. The test results of a
mean draft of 10.0 m are compared with the sea trial results and fuel model results for a mean draft condition
of around 10.5 m are presented in figure 9.7. Figure 9.8 includes the results for a mean draft of 7.0 m. For this
mean draft condition, the range of trim in the model scale test results in limited from 1.5 m stern trim to even
keel.

Model scale towing test results show a linear trend between trim and shaft power for the measured draft
conditions, indicating that trim by stern increases the required shaft power. The trend is similar for speeds
between 11 and 14 knots. These results comply with the results of the first sea trial and are very similar to
the fuel model results. For the second sea trial, the trend show no indication of a decrease in required shaft
power from 1.0 m to 2.0 m stern trim, which is observed in the sea trial results.

The model scale results deviate in terms of the magnitude of the effect of trim for the first sea trial and
the absolute power predictions for different speeds for both sea trials. The trend of the model scale results is
an estimated factor of 2 smaller than the sea trial results, and the required shaft power is underestimated by
more than 20% for speeds between 12 and 14 knots.

In addition, it should be noted that the results of the model scale towing test for other drafts (see appendix
J) show that for a mean draft condition between approximately 8.0 m to 9.0 m, the effect of trim in shaft power
is different than the fuel model results. For this draft condition, the required shaft power decreases for both
bow trim and, to a smaller extent, for stern trim as well. Sea trials should be performed at a mean draft at
around 8.50 m to validate this trend.

9.5. Overall model performance

The GBM-PHM variant has shown to result in opposite relations between trim and power compared to the
results of the sea trials in multiple cases. Because of the (marginal) steeper slope in the resulting trend of the
GBM-PLK compared to the results of the BBM, the GBM-PLK variant is considered to perform superior to the
other model variants. Moreover, it was found in table 8.4 that the GBM-PLK variant has a marginal advantage
of accuracy over the other variants. Further analysis are performed using the GBM-PLK model. The accuracy
of the GBM-PLK fuel model is 6.6% for a random test subset from the noon report data. Due to the cluster
of recordings around a speed of 13 knots, the accuracy will be optimal at around this speed, and gets worse
for speeds below 12 knots. A linear trend is found between trim and power for all mean drafts, showing a
potential in fuel savings between 1 and 2 % for a change in trim of 0.5 m. Validation with sea trials show that
the trend is fairly accurate for a mean draft of 10.5 m. However, the magnitude of the trend is too small and
the effect of speed on power is unrealistically embedded. Sea trials at 7.0 m mean draft deviate for 1.0 m and
more stern trim conditions with fuel model results.

The model applicability is limited for draft conditions of 9.5 m and more, meaning that only part of the
generated trim table should be used for trim optimization for the current state of model performance and
validation. Despite the partially good performance of the fuel model for the mean draft condition of 7.0 m,
no sufficient evidence is provided yet that the fuel model should be used in practice for drafts below 9.5 m.
This limited applicability is based on a few indications of the model performance. Firstly, the significant part
of the noon report data represents draft conditions of 9.5 m or more, while other draft conditions are less
frequently met. The model might be overtrained for draft conditions most frequently recorded, which affects
the accuracy for other draft conditions. Secondly, a very similar trend in the effect of trim on shaft power is
extracted by the model for all drafts, while sea trial results show a different magnitude of the effect for different
draft conditions. Lastly, results from the model scale towing tests show that the effect of trim on shaft power
is very different for drafts between 8 and 9 m, which is not seen in the fuel model results.

Figure 9.13 shows an overview of the performance of the fuel model compared to the sea trial results, only
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considering the trend of trim on shaft power as presented in figure 9.12. Speeds around 13 knots (± 1 knot)
represent a large part of the operational profile of the ship class of the case study.

No indication is observed showing that the GBM approach increases the extrapolation qualities of the
BBM, nor decreases it. The most significant limitation in input data are the relatively small forward draft con-
ditions (small mean draft with forward or even keel trim condition) and low speed (up to 10 knots) recordings.
The effect of speed on power is not realistic for both types of variants and no difference is observed between
the model variants in low forward draft conditions. Other advantages of a GBM over a pure BBM may still
hold, which has not been proven in this analysis. These advantages include the prevention of unreasonable
results, and the possibility to use less historical data than a pure BBM.

Figure 9.13: Model performance for different speeds and mean drafts, relative to the operational profile of the ship class of the case
study.

9.6. Model performance compared to similar fuel models

The fuel model performance is compared to three similar models that all use a pure BBM approach and noon
report data, as shown in the lower-left corner of 3.1. Details of the model have been covered in table 6.2. All
three models refer to a different way of expressing model performance. To compare the models in a relative
way, additional calculations and approximations have to be made.

The model of Du et al. (2019) uses 10 input variables to estimate the fuel consumption in tonnes per
day for two 9000 TEU containerships. Model performance is expressed in RMSE using the first variant of
formula 9.2. In order to compare this performance indicator, the normalized RMSE (nRMSE) is calculated,
by dividing the RMSE with an estimation of the daily average fuel consumption. The distribution of noon
report data entries is given for one of the ships (ship S2). Based on this, the average daily fuel consumption is
determined to be 74 MT/day. Given an RMSE of 9.34 MT/day for this ship, the nRMSE will be 0.126.

Bal Besikci et al. (2016) describe a model to estimate the fuel consumption on MT/hr for a 266 m in length
oil tanker using 7 input variables. A RMSE is found of using the second variant of formula 9.2. This formula
variant reduces the RMSE with a factor of 1p

2
compared to formula 9.2. Therefore the RMSE of this model is

determined to be 0.192 MT/hr. The mean fuel consumption is given to be 1.89 MT/hr, resulting in a nRMSE
of 0.102.

The model of Pedersen and Larsen (2009b) consider the fuel consumption and 9 input variables of a 110
000 DWT oil tanker and expresses the model performance in terms of relative errors. The model using noon
report only, had an accuracy of 7.02 %. In the research, it was found that combining noon report data with
hind cast weather data, would increase the accuracy to about 2%. However, available data set is split into 4
data sets with a limited time range, therefore the model is tested within a limited range of conditions. The
accuracy is likely to decrease when new conditions are met.
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Table 9.3 shows all known performance indicators of the three discusses models and the fuel model pre-
sented in this report. It is found that the fuel model presented in this report, performs more accurate than
all three similar models. Most likely, the better model performance is due to the higher number of input
variables and the quality of the used noon reports for training.

Table 9.3: Model performance comparison.

RMSE Mean of target value nRMSE RE

Fuel model 467 kW 5546 kW 0.0842 6.58%

(Pedersen and Larsen, 2009b) - - - 7.02%
(Bal Besikci et al., 2016) 0.192 MT/hr 1.89 MT/hr 0.102
(Du et al., 2019) 9.34 MT/day 74 MT/day 0.126

RMSE =


√
1
N

∑N
i (ŷn − yn)2 used by Du et al. (2019)√

1
2N

∑N
n (ŷn − yn)2 used by Bal Besikci et al. (2016)

(9.2)

The work of Parkes et al. (2018) shows the potential of using CM data and ANNs in estimating the shaft
power. Data of three sister vessels over a period of approximately 2 years are combined. The presented model
was able to estimate the shaft power with a relative error of 7.8%. According to the authors, the accuracy
will likely be better within the region of sufficient data points and less accurate at the ’extreme’ conditions.
Similar behaviour has been observed in the effect of speed on power: the slope of the curve flattens at the
highest possible speed.

9.7. Voyage fuel consumption estimation

Voyage fuel consumption can be estimated per defined time (or instance one day), by setting all conditions
according to the actual load condition and weather conditions/forecast.

A demonstration of possible daily savings is given in table 9.5 for one day, assuming the conditions of
table 9.4. It is assumed that the ship heading and load condition (either by mean draft or DWT) is known, as
well as the weather and sea condition by forecast.

Table 9.4: Input parameters for voyage fuel consumption estimation.

Operational & Fouling Conditions

Mean draft 10.5 m Sea water temperature 25 ◦C
Speed 13 knots Wind condition 4 Bf - SE direction
Heading 270 ◦ Sea condition 3 Douglas - SE direction
Last hull cleaning 2 years Swell condition 3 Douglas - S direction
Last propeller cleaning 180 days

Furthermore, the specific fuel consumption (sfc) of the C-38 is assumed to be 179.2 g
kW h , which measured

in a engine performance audit at 6240 kW or 79% MCR. The CO2 conversion factor C f is 3.2060 t
t for MDO

(approximate value for low-sulphur fuel oil) (IMO, 2014). The price (P f uel ) of MGO/MDO is around 600
USD/MT, which is the approximate fuel price of MGO in Singapore, November 2019 (Ship and Bunker, 2019).

9.8. Integration in voyage management

The voyage management of a ship can be split into two stages: The first stage starts when a voyage is sched-
uled and ends when the voyage commences, defined as voyage preparation. This stage is characterized by
activities that prepares the voyage, including the development of the voyage scheduling and stowage plan.
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Table 9.5: Demonstrations of fuel, CO2 and costs saving potential for an average single sailing day for three trim conditions.

trim = 1.5 m (reference) trim = 0.5 m trim = -0.5 m

Fuel consumption [t] 24.81 - 0.50 - 0.89
CO2 [t] 79.53 - 1.59 - 2.85
Costs [USD] 14 884 - 298 - 553

The second stage is the actual voyage. Besides the transit at sea, this includes the loading and discharging in
possibly multiple ports.

Because cargo allocation has a significant effect on the trim of the ship, trim optimization should be con-
sidered while making the stowage plan. It is the operator that proposes the initial stowage plan, therefore the
process of trim optimization should start at the point where cargo is allocated, putting a responsibility at the
operator.

It is the ship’s crew that is responsible for the final loading condition of the ship and to consider the limi-
tations to trim as defined in figure 5.1. Limitations regarding hull strength and stability, as well as operational
safety (excluding course keeping and steering capacity) is embedded in the on-board loading computer. Be-
sides that, the ship’s crew has the possibility to (re-)allocate auxiliary loads such as fresh water, fuel or ballast
water, to change the trim before and during the voyage.

The impact of trim optimization on the process of voyage management is illustrated by the business pro-
cesses of both stages, with and without trim optimization. Figure 9.14a illustrates the first stage of voyage
management (voyage preparation) excluding trim optimization and figure 9.14b illustrates the voyage prepa-
ration including trim optimization.

Trim optimization during the voyage will be one of the operational performances considered by the op-
erators continuously during active voyage management. Figure 9.15a illustrates the process of (in-active)
voyage management excluding trim optimization and figure 9.15b illustrates the process of active voyage
management including trim optimization.
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(a) Process of voyage preparation excluding trim optimization.

(b) Process of voyage preparation including trim optimization.

Figure 9.14: Process of voyage preparation.
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(a) Process of voyage management excluding trim optimization.

(b) Process of active voyage management including trim optimization.

Figure 9.15: Process of voyage management.
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10
Conclusion

A model has been presented in this report to extract the effect of trim on required shaft power and fuel con-
sumption, based on noon report data. Model requirements have been set to answer six research questions.
The conclusions have been split into two parts, as defined in the research objective of section 2.7. First, the
model requirements are evaluated and the research questions are answered. Based on this, the final conclu-
sion on the research objective is drawn.

10.1. Conclusion on model requirements

10.1.1. Estimate the required power for propulsion, with sufficient accuracy to extract
the effect of trim

The GBM-PLK model variant can estimate the required power with an accuracy of 6.58% for a random test
set from the available noon report data. A linear trend is found between trim and power for all mean drafts,
showing a potential reducing the required shaft power with 1 to 2 % for a change in trim of 0.5 m.

The most significant part of the noon report data (58%) represents draft conditions of 9.5 m and more,
whereas other draft conditions are less frequently recorded. Similarly, speeds between 12 and 14 knots are
most frequently sailed. Sea trial results show that the model performs more accurate for these conditions
than for conditions represented by less noon reports. The effect of trim on shaft power is correctly extracted
for these conditions, although the magnitude of the effect was found to be higher in the sea trial results for
full load conditions.

For other speeds, the accuracy significantly drops, since the effect of speed on power is unrealistically
embedded in the model, especially in non-calm water conditions. Model calibration based on sea trial results
is required for accurate estimations of required shaft power for all speeds.

10.1.2. Able to generate trim tables considering the effect of dynamic factors

Trim tables can be generated considering specific conditions, including dynamic factors such as weather and
fouling. The fuel model correctly extracts the effect of weather factors on required power for most cases.
Distinction is made between the effect of wind, sea and swell from multiple directions. Hull- and propeller
fouling is considered by the effect of days since last hull cleaning and days since last propeller polishing.

Validation by sea trials for two mean draft conditions, has shown that the trend is fairly accurate for a
mean draft of 10.5 m, and would have advised the correct optimal trim, but the magnitude of the trend is
smaller compared to the trend in the power recording of the sea trials. Sea trials at 7.0 m mean draft deviate
from 1.0 m stern trim conditions with fuel model results, indicating that the model cannot provide accurate
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results for this draft condition.

The model applicability is limited for draft conditions of 9.5 m and more, meaning that only part of the
generated trim table should be used for trim optimization for the current state of model performance and
validation. A few indications are observed that the model performs not accurate enough for lower draft con-
ditions than 9.5 m:

• The model might be overtrained for draft conditions that are most frequently recorded, which affects
the accuracy for other draft conditions;

• A very similar trend in the effect of trim on shaft power is extracted by the model for all draft conditions,
while sea trial results show a different magnitude of the effect for different draft conditions;

• Results from the model scale towing tests show that the effect of trim on shaft power is very different
for drafts between 8 and 9 m, which is not seen in the fuel model results.

10.1.3. Model should be based on available data within Stolt Tankers

The model estimated the required power based on available data within Stolt Tankers, of which noon report
data represent to most significant part.

10.1.4. Model should deal with errors in voyage report data

The data pre-processing framework has been constructed and used effectively for a case study. However, due
to the nature of noon reports, the quality of the noon report data remains a source of noise. As a consequence,
noon report data performs well for finding trends, but the magnitude is likely to differ from actual effects. The
main problems with using noon report data are:

• the discrepancy between the averaged recordings of shaft power and speed through water over a 24
hour period on one hand, and the snapshot of weather and sea conditions and the relative direction on
the other;

• Human error in observing and recording required data fields of the noon reports. To find realistic trends
between trim and required shaft power, accurate and daily updated static forward and aft drafts are a
prerequisite, but are not always visible in the noon report data.

• Reliability on the range of recorded conditions. The small range of power recordings partly causes the
weakly defined relations between speed and power;

10.1.5. Model should be able to be used for a range of ship types within the fleet

The fuel model and data pre-processing framework is constructed to be easily scalable to other ships of Stolt
Tankers. A prerequisite is a similar or better quality of the noon report as used in the case study for results
than can be used in practice. The additional parameters required for the power estimation of the WBM based
on Lutzen and Kristensen (2013), is limited and can be easily acquired. Validation for other ship classes within
the fleet is recommended.

10.2. Conclusion on research questions

10.2.1. What methods exist to generate trim tables?

Approaches to generate trim tables are either based on model results (model scale towing tests or CFD-
simulations) or ship scale data (continuous data monitoring or noon report data). A model that estimates
the shaft power for a given set of conditions based on noon report data has shown multiple advantages over
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other approaches. It makes use of already available data on ship scale, is easily scalable to other ships and is
able to consider weather and fouling effects on shaft power. The main disadvantage is that noon report data
is generally considered to be noisy, caused by human error in observing and recording, the snapshot nature
of recording and the limited variance in recorded conditions.

10.2.2. How can the required shaft power of a ship under specified conditions be esti-
mated?

A gap in existing literature has been defined and answered, by combining a grey-box modelling approach
with using noon report data to model the required shaft power under specified conditions.

For the black-box part, the data pre-processing framework has identified the most relevant parameters
affecting required shaft power that are recorded within the noon reports and maintenance data, which are
mean draft, ship speed (through water), trim, wind force, sea state, swell state, wind direction, sea direction,
swell direction, days since last hull cleaning and days since last propeller cleaning. For the white box part,
both the regression model of Holtrop and Mennen (1982) and Lutzen and Kristensen (2013) has been used. A
multi-layer feed forward neural network is made to learn the relationships between these input variables and
shaft power, by following a supervised learning method.

The model variant GBM-PHM, which uses the model of Holtrop and Mennen (1982) for resistance esti-
mation and the model of Lutzen and Kristensen (2013) for estimations of propulsion characteristics, makes
the model behaviour worse. This model has the risk to result in wrong conclusions regarding trim optimiza-
tion. The model variant GBM-PLK improves the model accuracy compared to the BBM approach marginally
(0.05%), but no clear indications have been observed that the GBM approach improves extrapolation quali-
ties. However, it is believed that a GBM still may have advantages over a pure BBM, which include the pre-
vention of unreasonable results, and the possibility to use less historical data than a pure BBM.

10.2.3. At which trim condition is the required shaft power minimized?

Model results show that the required shaft power is minimized by 0.5 m bow trim, with a linear effect between
trim and shaft power. Depending on the speed and load condition, between 1% and 2% can be saved with a
change in trim of 0.50 m.

Sea trial results indicate a similar trend for a full load condition between -0.50 m and +0.50 m trim. Bow
trim is the optimal trim, with a surprisingly significant effect of up to approximately 6% to 8% in required
shaft power can be saved with a change in trim of 0.50 m, even with additional ballast water.

For part load conditions, the fuel model behaves similar as in the full load condition. Sea trial results
show a much smaller potential for power savings and a possible optimal trim at -0.5 m and 2.0 m stern trim,
whereas the model results indicate that bow trim is optimal.

10.2.4. How accurate are trim tables from model scale test results?

The trend in effect of trim on required shaft power based on model scale towing tests results is consistent
with sea trial results. However, the trend is an estimated factor of 2 smaller than the sea trial results, and
the required shaft power is underestimated by more than 20% for speeds between 12 and 14 knots for the
conditions validated by sea trials. Sea trials at around 8.5 m is to be performed to completely answer this
question.

Shortcomings of the existing trim tables are the limited range of trim (up to 1.5 m stern trim) and draft
(up to 10.0 m).
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10.2.5. What limitations exist to trim a ship

Limitation in trim can be divided in limitations to load allocation, voyage-related limitations, hull strength
and stability and operational safety (see figure 5.1).

10.2.6. How can the proposed method for trim optimization be integrated in the voyage
management system?

Figure 9.14b and 9.15b show how trim optimization can be integrated in the voyage management system.

10.3. Conclusion on research objective

The objective of this research was:

To develop a method to decrease fuel consumption by trim optimization, by a dynamic fuel consumption es-
timation model based on available operational data, that can be integrated in the voyage management system
of Stolt Tankers.

Based on the model requirements and the answers on the research questions, it is concluded that an
important step is made in extracting useful knowledge from noon report data and to use this to decrease fuel
consumption by trim optimization. The model is able estimate the required power with an average accuracy
of 6.58% for a random subset of the noon report data. Moreover, the fuel model is able to extract the trend
of trim on required shaft power while considering dynamic effects, but the applicability is limited to draft
conditions of 9.5 m and more and a speed range of 12 to 14 knots. Due to problems inherent to noon reports
as data source, actual effect of trim and speed have a bigger magnitude than the extracted trend.
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Discussion and research recommendations

11.1. Input data

Noon reports with bow trim are limited, not only for the case study ship, but this may be true for other ships
within the fleet of Stolt Tankers as well. In order to generate trim tables that includes bow trim as well, noon
reports with bow trim conditions are a prerequisite.

The recorded forward and aft draft conditions should represent actual draft conditions and therefore be
updated daily. It has been found that this requirement is not always met. The draft condition at departure
and arrival is generally determined for every voyage, since that is required to know regarding draft restrictions
in port. A solution to flat lines may therefore be to take these draft conditions as a reference, and interpolate
linearly to determine the draft conditions during the voyage. This approach can be validated with voyages for
which the draft conditions are regularly updated.

To solve the mismatch in the noon reports between the snapshot of conditions and the average value of
speed and shaft power, more frequent recordings would decrease the noise caused by this mismatch. More-
over, hindcast weather data excludes the source of human error in observing and recording weather and
sea conditions, while automated recordings of shaft power would enable to match the shaft power with the
weather data. However, this would not be noon report data anymore.

11.2. Model considerations

The extracted trends between trim and required shaft power are almost equal for all draft conditions. Con-
sidering the robust design of the ship in the case study, this might be true. However, sea trial results indicate a
different magnitude of the effect of trim for different draft conditions. Moreover, the results from model scale
towing tests indicate a different trend for a mean draft of 7.0 m, which is not yet validated by sea trials. It can
not be concluded with confidence that the extracted trends by the fuel model is true for all mean drafts. A
possible solution would be to group the noon reports for different draft conditions, and perform the analysis
presented in the report for each group of mean drafts. The result would be a trend between trim and power
for each group of mean draft, which would increase the interpretability of the GBM and enable to conclude
if different trends exists for different groups of mean drafts. Since the number of noon reports will be less for
each group of mean drafts, the number of groups of drafts should be limited.

Regarding the number of noon reports required to perform analyses, further research is required to under-
stand the limit of noon reports required for the model to learn all relationships between the input variables
and shaft power. Relevant literature (see section 6.3) have made conclusions regarding the effect of trim based
on approximately 300 noon reports.
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Power estimations of the WBM deviate significantly from the power recordings in the noon report data
for speed below 12 knots and above 14 knots. A research opportunity is identified, to research the effect
of a modified WBM on the performance of the GBM. The WBM modification can be done by including an
estimation of the effect of weather conditions on the required shaft power in the WBM, which could improve
the extrapolation qualities of the GBM. The model accuracy would then improve for speeds outside the region
of 12 to 14 knots.

The specific fuel consumption (sfc) is assumed to be constant. However, this will be a function of en-
gine speed, pitch setting of the CPP, maintenance level and will differ between ships. To estimate the fuel
consumption more accurate, this assumption should be dropped and be determined as a function of the
mentioned factors. The effect of hull and propeller fouling is considered by considering only the days since
last hull cleaning and last propeller polishing. However, the actual degree of fouling is much more complex.
Further model improvements may consider the geographical locations, consecutive days in warm water, con-
secutive non-sailing days, etc.

11.3. Model validation

The proposed speed calibration of the model is to be validated with more sea trial results. These sea trial
results are not required to perform measurements at different trim conditions, but for fixed conditions and
for a range of speeds.

Model results regarding the trend between trim and power are now validated by two sea trials, each on a
different mean draft condition. Some changes in shaft power in the performed sea trials are now attributed
to external effects such as an increase in weather parameters. More sea trial results would enforce these
statements. Sea trials are especially required to validate the model behaviour within the region of 8 to 9 m
mean draft. Results from model scale towing tests indicate that for this draft region, another trend between
trim and shaft power exists than extracted by the fuel model. Sea trial(s) at this draft condition contribute to
conclude which approach show the correct trend for this region of mean draft.

The model should be validated with noon report data and sea trial results conducted by a chemical tanker
with a bulbous bow. The effect of the bulbous bow on the wave resistance depends on the mean draft and
trim condition of the ship. Therefore, a non-linear but significant effect between trim and power may be
expected. Further research has to be done to investigate if the model can extract a non-linear trend between
trim and power with local minima, based on noon report data.
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112 A. Data proof of concept

Table A.1: Training data used for the proof of concept.

Sample nr. ∆ [t] VS [kn] FC [MT/day]

1 22000 8.0 6.8284
2 25000 9.0 10.2812
3 20000 12.0 17.6496
4 28000 13.0 29.4305
5 25000 12.0 21.0530
6 20000 10.0 11.2559
7 30000 8.0 9.2016
8 26000 14.0 32.0282
9 30000 11.0 20.9359
10 27000 9.0 11.8344

11 23000 6.0 3.7569
12 23000 10.0 12.2323
13 26000 12.0 22.5856
14 29000 14.0 36.2794
15 28000 12.0 24.1556
16 21000 10.0 11.2829
17 28000 9.0 12.0539
18 25000 11.0 17.5084
19 22000 15.0 32.2578
20 27000 8.0 8.2755

21 21000 9.0 9.3284
22 25000 10.5 15.1440
23 23500 11.5 17.5913
24 24500 13.5 27.6531
25 26500 14.5 35.7349
26 27000 10.0 14.8967
27 29000 9.5 14.0997
28 30000 11.5 22.6449
29 20000 12.5 19.4850
30 22500 7.0 5.0935

31 21500 14.5 29.6900
32 20500 8.5 8.6465
33 28500 9.5 14.0330
34 29000 10.5 17.3597
35 26500 11.0 18.2367
36 25000 9.0 10.3542
37 24500 14.0 30.5903
38 25500 13.0 27.0289
39 27500 12.0 22.8966
40 28000 12.5 26.1311



B
Description of cleaned data

Figure B.1: Frequency histogram of loading condition in DWT.

Figure B.2: Frequency histogram of draft in metres.
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114 B. Description of cleaned data

Figure B.3: Frequency histogram of ship speed through water in knots.

Figure B.4: Frequency histogram of shaft power in kW.

Figure B.5: Frequency histogram of windforce on the scale of Beaufort and sea- and swell state on the scale of Douglas.
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Figure B.6: Frequency histogram of wind, sea and swell directions.

Figure B.7: Boxplot of windforce and sea- and swell state.





C
Approximations in white box models

Table C.1: Sea water density and kinematic viscosity at standard salinity, together with approximated values for the kinematic vis-
cosity by Lutzen and Kristensen (2013). This function approximates the kinematic viscosity as a function of sea water temperature
and density. It can be observed that similar values are approximated as the reference values from 26th ITTC Specialist Committee on
Uncertainty Analysis (2011).

Sea water tem-
perature [◦C ]

Kinematic viscosity [ m2

s ] Kinematic viscosity [ m2

s ] Density [ kg
m3 ]

Lutzen and Kristensen
(2013)

26th ITTC Specialist Com-
mittee on Uncertainty
Analysis (2011)

26th ITTC Specialist Com-
mittee on Uncertainty
Analysis (2011)

1 1.782E-06 1.793E-06 1028.09
5 1.564E-06 1.576E-06 1027.72
10 1.354E-06 1.360E-06 1027.00
15 1.188E-06 1.189E-06 1026.02
20 1.053E-06 1.051E-06 1024.81
25 9.410E-07 9.371E-07 1023.39
30 8.454E-07 8.425E-07 1021.77

Figure C.1: Sea water density as a function of sea water temperature for standard salinity, based on reference values of 26th ITTC Spe-
cialist Committee on Uncertainty Analysis (2011).
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118 C. Approximations in white box models

Figure C.2: Residual resistance coefficient for M = 4.5.

Figure C.3: Residual resistance coefficient for M = 5.0.
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Figure C.4: Residual resistance coefficient for M = 5.5.

Figure C.5: Residual resistance coefficient for M = 6.0.



120 C. Approximations in white box models

Figure C.6: Residual resistance coefficient for M = 6.5.

Figure C.7: Length centre of buoyancy (LCB) of the C38 ship class in metres, measured from the aft perpendicular (as defined in the
hydrostatic tables of the ship).
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Figure C.8: Approximation of first part of thrust deduction factor of the method of Lutzen and Kristensen (2013).

Figure C.9: Function to estimate displacement as a function of mean draft.





D
Data pre-processing

Figure D.1: Speed-power curve, showing the shaft power and speed as recorded in the noon reports in blue, and the estimated shaft
power according to the Admiralty coefficient in orange. Outliers are marked in the red ovals.
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124 D. Data pre-processing

Figure D.2: Speed-power curve, showing the shaft power and speed as recorded in the noon reports in blue, and the estimated shaft
power according to the Admiralty coefficient in orange. Outliers are marked in the red ovals.

Figure D.3: Displacement as a function of mean draft. Deleted datapoints are indicated in red ovals.



E
Performance of network topologies
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126 E. Performance of network topologies

Table E.1: Performance of different network topologies of the GBM-PHM model variant.

1 hidden layer

Number of neurons RE [%] STD Speed per training Remark

3 6.8033 0.40262 <1 sec Clustered results
6 6.7628 0.46252 <1 sec Clustered results
9 6.6523 0.46216 <1 sec
12 6.5989 0.44434 <1 sec
15 6.6634 0.4251 <1 sec
18 6.6178 0.43056 <1 sec
21 6.7173 0.46407 <1 sec
24 6.7799 0.40569 <1 sec
27 6.7043 0.42611 <1 sec
30 6.7222 0.46045 <1 sec
50 6.7623 0.44513 <5 sec
75 6.9112 0.45686 <10 sec

2 hidden layers

Number of neurons RE [%] STD Speed per training Remark

3 6.8844 0.45409 <1 sec Clustered results
6 6.708 0.45252 <1 sec
9 6.7349 0.42587 <1 sec
12 6.6877 0.45559 <1 sec
15 6.7487 0.41993 <1 sec
18 6.7698 0.45428 <1 sec
21 6.6751 0.38031 <2 sec
24 6.7529 0.38571 <3 sec
30 6.8917 0.43597 <5 sec
50 6.8163 0.42322 <1 min K = 25

3 hidden layers

Number of neurons RE [%] STD Speed per training Remark

3 6.8697 0.58365 <1 sec Flat line observed
6 6.8136 0.54921 <1 sec
9 6.5964 0.5344 <1 sec
12 6.7173 0.46672 <3 sec
15 6.6504 0.46626 <3 sec

4 hidden layers

Number of neurons RE [%] STD Speed per training Remark

3 6.9705 0.61627 <1 sec Clustered results
6 6.6611 0.48725 <1 sec Clustered results
9 6.7683 0.55963 <2 sec
12 6.8036 0.52996 <5 sec
15 6.851 0.58832 <5 sec
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Table E.2: Performance of different network topologies of the GBM-PLK model variant.

1 hidden layer

Number of neurons RE [%] STD Speed per training k Remark

3 6.9326 0.44669 <1 sec Clustered results
6 6.672 0.39466 <1 sec
9 6.6221 0.44762 <1 sec
12 6.6454 0.3882 <1 sec
15 6.5768 0.45184 <1 sec
18 6.6393 0.41847 <1 sec
21 6.6735 0.45523 <1 sec
24 6.6624 0.43528 <1 sec
27 6.6227 0.42849 <1 sec
30 6.6532 0.46439 <1 sec
50 6.7076 0.47716 <2 sec
75 6.7889 0.52781 <3 sec

2 hidden layers

Number of neurons RE [%] STD Speed per training Remark

3 6.857 0.46406 <1 sec Clustered results
6 6.638 0.45059 <1 sec Clustered results
9 6.6795 0.46823 <1 sec
12 6.6824 0.47008 <1 sec
15 6.7395 0.48276 <1 sec
18 6.8197 0.46978 <1 sec
21 6.6499 0.40354 <1 sec
24 6.7489 0.44692 <2 sec
30 6.9949 0.49822 <3 sec
50 6.9137 0.53388 <1 min K = 25

3 hidden layers

Number of neurons RE [%] STD Speed per training Remark

3 6.9735 0.48842 <1 sec Clustered results
6 6.7588 0.43283 <1 sec
9 6.6794 0.42128 <2 sec
12 6.6867 0.52534 <3 sec
15 6.8043 0.44942 <3 sec

4 hidden layers

Number of neurons RE [%] STD Speed per training Remark

3 7.0585 0.79021 <1 sec Clustered results
6 6.8835 0.59803 <1 sec Clustered results
9 6.7889 0.48383 <2 sec
12 6.7841 0.61062 <5 sec
15 7.0065 0.83978 <5 sec
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Table E.3: Performance of different network topologies of the BBM model variant.

1 hidden layer

Number of neurons RE [%] STD Speed per training k Remark

3 6.8705 0.38525 <1 sec
6 6.7438 0.42813 <1 sec
9 6.6679 0.45716 <1 sec
12 6.6404 0.47535 <1 sec
15 6.6868 0.50566 <1 sec
18 6.6737 0.41893 <1 sec
21 6.6726 0.51184 <1 sec
24 6.7152 0.43576 <1 sec
27 6.6316 0.41727 <1 sec
30 6.6768 0.48192 <1 sec
50 6.8105 0.46171 <2 sec
75 6.9562 0.5359 <3 sec

2 hidden layers

Number of neurons RE [%] STD Speed per training Remark

3 6.8132 0.43951 <1 sec
6 6.7492 0.45239 <1 sec
9 6.7126 0.51982 <1 sec
12 6.6498 0.40532 <1 sec
15 6.7173 0.51255 <1 sec
18 6.7364 0.40972 <1 sec
21 6.7542 0.45709 <1 sec
24 6.8176 0.51279 <2 sec
30 6.9535 0.50868 <3 sec
50 6.91 0.49474 <1 min K = 25

3 hidden layers

Number of neurons RE [%] STD Speed per training Remark

3 6.9428 0.51851 <1 sec
6 6.7983 0.56357 <1 sec
9 6.6607 0.47356 <2 sec
12 6.6982 0.6432 <3 sec
15 6.7344 0.45044 <3 sec

4 hidden layers

Number of neurons RE [%] STD Speed per training Remark

3 7.1548 0.74004 <1 sec Clustered results
6 6.804 0.60284 <1 sec Clustered results
9 6.7405 0.55927 <2 sec
12 6.8616 0.56508 <5 sec
15 6.9081 0.86442 <5 sec Flat line observed



F
Brief survey to ship crew

A small survey was sent to the crew of the C38 and D37 ship class in January and February 2020, to find out if
the already existing trim tables are available on board of the ships. This initial survey covers question 1, 2 and
3.

Additionally, question 4 and 5 was sent to the crew of the C38 ship class, and one of the ships within the
D37 ship class as well.

From most ships, a reply has been received. When no reply was received, the vessel name is left out in the
list of answers.

Overview of questions:

1. Are these trim tables available on board of your ship?

2. Are you using these trim tables?

(a) If yes, could you explain how you use these trim tables?

(b) If no, what limits you in using trim tables?

3. Do you have any additional comments regarding trim optimization?

4. In the noon reports, the forward and aft draft is recorded. How do you determine this forward and aft
draft while sailing at sea?

5. It is known that the ship will trim forward when sailing compared to the static trim in port. How much
does the ship trim forward while sailing 10-11-12-13-14-15 knots, compared to static trim?

F.1. Are these trim tables available on board of your ship?

F.1.1. C38 ship class

• Pride: No such table onboard. I always sail with at least 0.5m trim when fully loaded as it is optimum
for best steering.

• Integrity: The trim table you attached I did not find here on board – but being only a short term reliever
I might have missed to find it. However found a similar table in C

• Tenacity: Not sure what to reply to this as we have to many unknown during loading as they change qty
and stowage several times during preparation for the full load and at the end we are just what we are
and that is at best full cgo even keel and no ballast and no list.
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• Loyalty: We(Choff, Cheng & I), have never seen the attached table, where can we find it?

• Excellence: Never seen this trim table. Where can I find it?

F.1.2. D37 ship class

• Innovation: Would presume so, but can’t find them at this time.

• Confidence: Having not personally been aware of this issue I have done some digging. The normal SMT
apparently always use this practice when fully loaded. However this only counts for half of the voyage. I
could not find any information is the Stability booklets but the Chief Eng pointed me in the direction of
a Performance Memo from 2004. It goes into great depth about the saving to be made using optimum
trim.

• Invention: We have trim tables included in the maneuvering manual received from the Danyard.

• Efficiency: Yes, these trim tables available on board of my ship and I have been using it on this Class.

• Capability: Has not received this question.

• Concept: Unfortunately cannot help you with jour project. New to this ship, did some research with no
results. No.

• Effort: No response received.

F.2. Are you using these trim tables?

F.2.1. C38 ship class

• Pride: No.

• Integrity: so far I did not, but actually it is well known that trim by the head increases speed or reduces
engine load. I have not much experience on C38 class but e.g. D37’s trim about 1 – 1.5 m by the head
when running full sea speed when static trim is zero (even keel). C38 might be similar, I will check once
underway with our good ship and revert if needed. how to use tables – as per above, tables show at
10m draft, 13 kn speed and 0.5 m fwd trim engine load reduces approx. 100kw, resulting in either less
consumption or higher speed. what limits us – as per above

• Tenacity: Panama has a issue also if the ship is by head so has the Houston pilots as they have declared
C38’s has to be minimum 0.5 mtr by stern trim. From way back we have always said we are doing best
speed etc if we are by head so that would be the best but how feasible it is to make this a trend is not for
me to predict. As we discharge we sometimes can add ballast to be by the head but not sure if carrying
ballast around justify the savings of fuel. As now we have loaded in 4 ports but only aft and fwd so not
able to make any change to that. This is again due to nature of cgo we carry, fwd section low flash and
no heat required and aft part heated cgo (low and high heat) and reason for this is that cgo is noit ready
in some of the ports or they have specific requirements in reg to last 3 cgo’s in the tank , heat adjacent
etc etc.

• Loyalty: In the CargoMax software there is a feature for this, with choices of speed at constant draft.
(see below). Normally, it is not of much use, as we first and foremost struggle to get as much cargo we
can onboard minding the draft restrictions. This means loading as close to even keel as possible, with
minimum ballast.

• Excellence: Usually we need to minimize trim to minimize draft especially with our UKC policy.
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F.2.2. D37 ship class

• Innovation: Once a decade.Looked up what optimal trim is: as your screenshot already indicated it’s
best to be around 0.5m by the head for pretty much any draft. Question: is this table for dynamic or
static trim? (when even keel statically, the ship runs by the head when moving...)

• Confidence: The major factor in not planning for this is cargo distribution.

• Creativity: Not sure what to reply to this as we have to many unknown during loading as they change
qty and stowage several times during preparation for the full load and at the end we are just what we
are and that is at best full cgo even keel and no ballast and no list.

• Invention: I have not been looking too much these tables but it is well known fact that D37 class ships
in loaded condition go faster in condition of half meter forward trim to even keel. We have been trying
to keep trim close to even keel in loaded conditions during ocean crossings. Also in lighter conditions
on any longer voyages we are trying to keep trim minimized trying to find best balance between the
amount ballast water onboard, stresses on the hull and gain achieved in speed or fuel saving.

• Efficiency: Yes, I understand and could explain how to use them.

• Concept: N/A

F.3. Do you have any additional comments regarding trim optimization?

F.3.1. C38 ship class

• Pride: Also, forget 14 and 15 knots as it’s not often we get that speed unless it’s flat calm or there’s a
heavy current since we have so little power the slightest current or wind from ahead slows us down
significantly. I was here for sea trials and having seen how they were run and having now been here for
4 years I have no confidence whatsoever in sea trial figures.

• Tenacity: Saving fuel would be best if we did not squeeze the last knot out of the hull as the fuel use is
dropping drastically as we drop speed 1-2 knots.

F.3.2. D37 ship class

• Innovation: Trim is not all we look at. It’s a dynamic mix of sea conditions, bending and shear force
conditions, tank cleaning ops, cargo adjacent to ballast tanks, planned work in ballast tanks, ballast
exchange, etc. Often we choose to optimize prior factors before looking at optimum trim for energy
consumption. We trim her optimally when we can. . .

• Invention: Stresses on the hull are becoming an issue if trying to reduce trim too much on lighter con-
ditions. Best of coarse is when you manage to optimize trim with cargo instead of taking additional
ballast where you loose always some of the gain for the extra weight taken.

• Efficiency: Not much to comment, Robert. It’s a cut clear case that it saves money. In the past I’ve been
playing with the trim and put a tracker on the RPM’s , Prop power and Prop torque. It’s more fun when
it’s visible. If we could add a tracker for USD then it would be even greater. . . J We are alongside at the
moment, but this is what it would look like. . .

F.4. In the noon reports, the forward and aft draft is recorded. How do you
determine this forward and aft draft while sailing at sea?

F.4.1. C38 ship class

• Pride: We update drafts based on weights in Cargomax and bunkers burned, water made every few
days. No other method is accurate as the ship will be rolling and pitching in the seaway.
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• Integrity: Drafts at sea while underway are taken from c/max calculations. As far I know there are no
tables, calculations available for fwd trim changes at various speed. I have not sufficient experience on
C-38 class vessels.

• Tenacity: As you say we are recording the drafts in the noon reports and sure we do but after leaving
Panama for crossing Pacific we have full cgo and enough fuel to reach the other side so adding ballast
to be by head is not a option as normaly at the max mark.

• Loyalty: We are recording actual static drafts from the CargoMax.

F.4.2. D37 ship class

• Innovation: Choff via cargomax. Noon reports on sea passages are not updated regularly with changing
drafts due to ballasting, water and fuel consumption and do not reflect actual conditions during sea
passage at this time.

F.5. It is known that the ship will trim forward when sailing compared to
the static trim in port. How much does the ship trim forward while
sailing 10-11-12-13-14-15 knots, compared to static trim?

F.5.1. C38 ship class

• Pride: Have no exact idea how much the ship will trim and it depends on our loaded condition. I
have seen about half a meter when loaded on pilotage but on ocean passages I can’t say. My primary
concern with the C38 class is steering and as long as I have at least 0.5m stern trim for optimum steering
on pilotage I’m happy. This class of ship should NEVER be trimmed by the head when underway.

• Integrity: To determine fwd trim changes also draft/displacement must be considered as well as sea
conditions. Actually it is not possible, at least for me, to answer this question. I do not have sufficient
experience on C-38 class vessels and it would be guessing only.

• Tenacity: Trimming fwd when at sea we can only go 14 knots and that is only on a good day. I would say
anything from 0.5 mtr to 1 mtr at full speed.

• Loyalty: Have looked for the information in the Sea Trials and didn’t find such information, therefor I
have the same question where to find the information.

F.5.2. D37 ship class

• Innovation: Around full speed (14-16 kn) in open sea and fully loaded these ships trim 0.6 to 0.8m by
the head (based on experience). At lesser speed I presume it’s a square root function of the speed less,
but don’t have actual figs for you.



G
Sea trial instructions

G.1. Introduction

Trim optimization is one of the incentives being researched within Fleet Support to improve the fuel efficiency
of all ships in the fleet. In the past months, a model has been established to generate trim tables based on
noon report data. The research is reaching its validation phase on the first ship class. Data from the C38 ship
class is used as a case study. Before this new model to generate trim tables can be used with confidence in
trim optimization, the generated trim tables have to be validated with operational data, measured in equal
weather conditions. The only way to do this, is to conduct a number of tests while the ship is at sea during a
voyage.

The effect of trim should be validated for multiple draft conditions and for different speeds. To be able to
test at different draft conditions in a limited amount of time and to obtain a sufficient number of validation
points, all 6 ships of the C38 class should be involved in this validation phase.

This document consists of two parts. The first part gives an explanation on how the trim tables are gener-
ated. The second part is a proposal to perform a number of tests, used to validate the generated trim tables.

G.2. Part I: Explanation of generated trim tables

The established model uses machine learning on a number of variables that are available from noon reports,
of which it is known that it affects the required shaft power or the resulting speed through water. A correlation
analysis has been done to confirm these expected relationships.

The model acts as a black box, that learns the relationships between the input data (listed below) and the
output data (required shaft power), by providing the model with historical noon report data. After a number
of learning iterations, the model has learned these relationships and can be used to estimate the shaft power
for any input condition. See figure G.1 for an overview of the model.

• Draft forward and aft (and trim)

• Displacement

• Speed through water

• Wind force + direction (ship relative)

• Sea state + direction (ship relative)

• Swell state + direction (ship relative)
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• Days since last hull cleaning

• Days since last propeller polishing

Figure G.1: Model overview to estimate shaft power. When all conditions are fixed, while draft and trim is varied, trim tables can be
generated. The benefit of this model is that it can include the effect of weather and sea conditions on the ship performance, meaning
that the generated trim table is adapted to that specific condition. Based on these conditions, an estimate of the fuel consumption for

propulsion can be made as well. .

Limitations in trim and how trim optimization can be integrated in the (active) voyage management sys-
tem is part of the research as well, but will not be covered in this validation.

G.3. Part II: Validation

G.3.1. Safety first

Safety remains the first priority during these tests. It should be to the ship crew’s decision if the proposed
combination of draft and resulting sailing condition are safe to operate. This includes to maintain sufficient
hull strength, stability, propeller immergence, freeboard, visibility and maneuverability. If for any reason it is
not safe to conduct a certain test, it should not be done.

G.3.2. Timeframe

Tests should be conducted as soon as reasonably possible. The goal is to collect the sea trial results before the
first of May 2020. If the sea trials could not have been performed for any reason before this date, these should
still be performed and will be considered separately.

G.3.3. Conditions

To prevent noise in measurements and because trim optimization will only be effective in relatively calm
water conditions, the condition for measurements should comply with the following:

• Sea state must be less or equal to 3

• Swell state must be less or equal to 2

• Velocity of the current should be less or equal to 1.5 knots

• Shaft generator should be turned OFF

• Maintain a steady course with autopilot on fixed heading

• The counter rudder angle to maintain the steady course, shall not exceed 5 degrees. If this occurs during
the sea trial, please abort or postpone the sea trial

• Ship speed through water should increase, starting with 11 knots, finishing with 14 knots
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G.3.4. How to trim

Trim is defined as the static trim condition as indicated by the loading computer. The trim condition may be
changed by re-allocating tank loads that can be pumped to different tanks, or by adding or discharging ballast
water. Other solutions may exist as well, but will all be subject to the loading situation.

G.3.5. Sea trials to be performed

Separate to this instruction, an Excel file is sent. This file provides the table to log the measurements for all
relevant combinations of trim and speed. It will not be possible to perform sea trials for each condition of the
table, since the freedom in trimming the ship will be limited, as well as the time to perform the tests.

The most effective way to perform the tests, is to test at the most possible forward trim condition, and the
most possible aft trim condition, with steps of 0.25 or 0.50 meters in between. The more conditions tested,
the better the generated trim tables can be validated.

Sea trials are usually repeated in opposite direction, to average the effect of current and weather. The
developed model will be able to account for these effects, therefore one test run for each combination of trim
and speed is sufficient.

G.3.6. How to perform the tests

The grey part of the table indicates the possible test conditions. Each test condition should be performed as
follows:

1. Adjust the trim condition as close as possible to the indicated trim condition.

2. Adjust the ship speed through water as close as possible to the target speed.

3. Measurements should only be started after a constant ship speed and a fairly constant shaft power is
reached.

4. Fill in the VESSEL (blue) and WEATHER (green) section.

5. Measurement of the average required shaft power should be performed over a period of at least 15
minutes.

6. Fill in the average shaft power and engine speed in the POWER (orange) section.

7. Fill in the maximum observed counter rudder angle in the RUDDER (blue) section.

8. Remarks can be added on the right yellow part of the table.

9. Repeat for other speeds.

G.3.7. Remarks

We would also welcome additional feedback from visual observations made during the tests. Where there any
noticeable differences observed during the test runs, compared with previous tests runs? Observations could
be seen for instance in rudder orders (magnitude and quantity) by the auto pilot, large fluctuations/variations
noted or observed in % pitch or kW measured on the shaft.

We would like to understand and hear your feedback if all conditions have shown similar behaviours for
the machineries, or if there are differences observed in the trim conditions that may also impact items such
as course keeping, maintenance (wear and tear), etc.
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G.3.8. Final note

Please send the results, or any questions regarding this manual or the Excel file, to Robert Zwart (RZW@stolt.com)
with your operator and superintendent in CC.

Thank you for performing the required sea trials. After all information is processed, we will send an e-mail
with the results of the validation.
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Figure H.1: Sea trial results as received from Stolt Loyalty.
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Figure H.2: Sea trial results as received from Stolt Integrity.
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Figure H.3: Sea trial results as received from Stolt Excellence.
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Table I.1: Table showing calibration values for various speeds and drafts. Values are based on sea trial results for mean draft condi-
tions of 7.0 m and 10.5 m (marked with "*") and for speeds of (close to) 11, 12, 13 and 14 knots.

Mean draft [m]
Speed [kn] 6.5 7.0* 7.5 8.0 8.5 9.0 9.5 10.0 10.5*

10.00 -1926 -1898 -1870 -1842 -1815 -1787 -1759 -1731 -1704
10.10 -1978 -1938 -1898 -1857 -1817 -1777 -1737 -1696 -1656
10.20 -2026 -1973 -1921 -1869 -1817 -1765 -1712 -1660 -1608
10.30 -2068 -2004 -1941 -1877 -1814 -1750 -1686 -1623 -1559
10.40 -2105 -2031 -1956 -1882 -1807 -1733 -1659 -1584 -1510
10.50 -2137 -2053 -1968 -1883 -1799 -1714 -1629 -1544 -1460
10.60 -2164 -2070 -1976 -1881 -1787 -1692 -1598 -1503 -1409
10.70 -2187 -2083 -1979 -1876 -1772 -1668 -1565 -1461 -1357
10.80 -2204 -2091 -1979 -1867 -1754 -1642 -1530 -1417 -1305
10.90 -2216 -2095 -1975 -1854 -1734 -1613 -1493 -1373 -1252
11.00 -2222 -2094 -1966 -1838 -1711 -1583 -1455 -1327 -1199
11.10 -2224 -2089 -1954 -1819 -1684 -1549 -1414 -1279 -1144
11.20 -2221 -2080 -1938 -1797 -1655 -1514 -1372 -1231 -1089
11.30 -2213 -2065 -1918 -1771 -1623 -1476 -1328 -1181 -1034
11.40 -2199 -2047 -1894 -1741 -1588 -1436 -1283 -1130 -977
11.50 -2181 -2023 -1866 -1708 -1551 -1393 -1236 -1078 -920
11.60 -2158 -1996 -1834 -1672 -1510 -1348 -1186 -1025 -863
11.70 -2129 -1963 -1798 -1632 -1467 -1301 -1135 -970 -804
11.80 -2095 -1927 -1758 -1589 -1420 -1252 -1083 -914 -745
11.90 -2057 -1885 -1714 -1542 -1371 -1200 -1028 -857 -685
12.00 -2013 -1840 -1666 -1493 -1319 -1145 -972 -798 -625
12.10 -1964 -1789 -1614 -1439 -1264 -1089 -914 -739 -564
12.20 -1910 -1734 -1558 -1382 -1206 -1030 -854 -678 -502
12.30 -1852 -1675 -1499 -1322 -1146 -969 -792 -616 -439
12.40 -1788 -1611 -1435 -1258 -1082 -906 -729 -553 -376
12.50 -1719 -1543 -1367 -1191 -1015 -840 -664 -488 -312
12.60 -1645 -1470 -1295 -1121 -946 -772 -597 -422 -248
12.70 -1565 -1393 -1220 -1047 -874 -701 -528 -355 -183
12.80 -1481 -1311 -1140 -969 -799 -628 -458 -287 -117
12.90 -1392 -1224 -1056 -889 -721 -553 -385 -218 -50
13.00 -1298 -1133 -969 -805 -640 -476 -311 -147 17
13.10 -1198 -1038 -877 -717 -556 -396 -236 -75 85
13.20 -1094 -938 -782 -626 -470 -314 -158 -2 154
13.30 -984 -833 -682 -531 -380 -230 -79 72 223
13.40 -870 -724 -579 -434 -288 -143 3 148 293
13.50 -750 -611 -472 -332 -193 -54 86 225 364
13.60 -626 -493 -360 -228 -95 38 170 303 436
13.70 -496 -370 -245 -119 6 131 257 382 508
13.80 -361 -243 -126 -8 110 227 345 463 581
13.90 -221 -112 -2 107 216 326 435 545 654
14.00 -76 24 125 225 326 427 527 628 728
14.10 74 165 256 347 438 530 621 712 803
14.20 229 310 391 472 554 635 716 797 879
14.30 389 460 530 601 672 743 813 884 955
14.40 554 614 673 733 793 853 912 972 1032
14.50 724 772 821 869 917 965 1013 1061 1109
14.60 899 936 972 1008 1044 1080 1116 1152 1188
14.70 1080 1103 1127 1150 1173 1197 1220 1243 1267
14.80 1265 1275 1286 1296 1306 1316 1326 1336 1346
14.90 1456 1452 1448 1445 1441 1438 1434 1430 1427
15.00 1651 1633 1615 1597 1580 1562 1544 1526 1508
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Trim results from model tests

Figure J.1: Graph of model scale towing test results for T = 10.0 m.
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Figure J.2: Graph of model scale towing test results for T = 8.50 m.

Figure J.3: Graph of model scale towing test results for T = 6.0 m.
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