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Simple Summary: Understanding and predicting vector population and related disease dynamics,
is crucial for gaining insight into the abundance and dynamics of arthropod disease vectors, and for
the design of effective vector control strategies. Several mathematical and standard epidemiological
models have been proposed in studying vector transmitted infectious disease dynamics. However,
most models are of deterministic nature and are not able to estimate other relevant metrics such
as the probability of vector population emergence as well as the probability and expected time to
reach certain population and/or infection state. Here we are focusing on stochastic modeling of
mosquito abundance data using weather driven Markov chains (MCs) and are particularly interested
in estimating transition probabilities (TPs) between different population levels. A MC model is based
on the assumption that the future state of the variable is only dependent on the present state and is
suitable in cases of short and noisy data characterized by a complex and random behavior. The aim is
to introduce and generalize a formulation of conditional Markov chain models (CMSs) for predicting
probability transition estimates of arthropod vector populations. In this context, first we present
the basic principles and assumptions behind Markov chain modeling approach, with an intuitive
interpretation of the integration of conditional Markov chains (CMCs) and then demonstrate the
usefulness of the approach in predicting the abundance of Culex sp. We conclude that the conditional
Markov chain technique is recommended as viable for modeling populations that explicit random
dynamics and predict their future evolution. Although, the Markov models generated in this work
provide an accurate abstraction of the vector disease progress observed within the dataset used for
their generation, we envision the current approach as an entry point into the medical entomology
literature and methods for predicting arthropod vector diseases dynamics.

Abstract: Understanding and predicting mosquito population dynamics is crucial for gaining insight
into the abundance of arthropod disease vectors and for the design of effective vector control
strategies. In this work, a climate-conditioned Markov chain (CMC) model was developed and
applied for the first time to predict the dynamics of vectors of important medical diseases. Temporal
changes in mosquito population profiles were generated to simulate the probabilities of a high
population impact. The simulated transition probabilities of the mosquito populations achieved
from the trained model are very near to the observed data transitions that have been used to
parameterize and validate the model. Thus, the CMC model satisfactorily describes the temporal
evolution of the mosquito population process. In general, our numerical results, when temperature
is considered as the driver of change, indicate that it is more likely for the population system to
move into a state of high population level when the former is a state of a lower population level than
the opposite. Field data on frequencies of successive mosquito population levels, which were not
used for the data inferred MC modeling, were assembled to obtain an empirical intensity transition
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matrix and the frequencies observed. Our findings match to a certain degree the empirical results
in which the probabilities follow analogous patterns while no significant differences were observed
between the transition matrices of the CMC model and the validation data (ChiSq = 14.58013, df = 24,
p = 0.9324451). The proposed modeling approach is a valuable eco-epidemiological study. Moreover,
compared to traditional Markov chains, the benefit of the current CMC model is that it takes into
account the stochastic conditional properties of ecological-related climate variables. The current
modeling approach could save costs and time in establishing vector eradication programs and
mosquito surveillance programs.

Keywords: Culex sp.; decision making; mosquitos; public health; stochastic process; West Nile virus

1. Introduction

Europe is confronting a rising threat of outbreaks of arthropod vector borne (AVB)
tropical diseases as rising temperatures linked to climate change create a conducive en-
vironment for arthropod development and dispersion [1]. Mosquitos, among others, are
vectors of many viruses and parasitic pathogens. They can carry diseases such as malaria or
yellow fever and traditionally most of these pathogens are found in Africa, Asia and Latin
America. However, the expansion of arthropods vectors (AVs) in temperate climates is now
a direct consequence of the increased mobility of people in the era of globalization [1,2].
Most importantly, climate change has created conditions conducive to maintaining and de-
veloping vector mosquitoes in new areas. This leads to an increase in mosquito populations
and the potential for virus transmission [3,4].

In addition to endemic mosquito species that are present in Europe and particularly
Greece, such as those belonging to the genera Culex, Anopheles and Aedes, climate change
and particularly the increase in average temperatures is expected to bring about extension
to wider geographical units of Europe of more arthropod vector related diseases [5–7].
Over the last ten years, worldwide climatic conditions, including the Mediterranean and
Greece, have encouraged the development of the mosquito population and particularly
the transmission of West Nile virus (WNV) [8–10]. The primary reservoir of the virus in
nature is mainly wild birds, from which mosquitoes are infected, while humans do not
further transfer the virus to other mosquitoes [11–13]. The majority of people infected with
the virus are asymptomatic, around 20% have mild symptoms of viral syndrome and less
than 1% has more serious central nervous system manifestations, mainly encephalitis and
meningitis. The most severe events usually occur in the elderly, immunocompromised
patients and, in general, individuals with underlying chronic diseases [14].

In fact, vector-borne diseases are becoming a major threat, impacting both human
and animal health with severe consequences in the governance of health risks attributed
to these emerging diseases in European countries. Primary strategies focus on prevent-
ing human exposure by effective insect control. This work considers in mosquito-borne
diseases and mostly those transmitted by Culex sp. and how they are affected by weather
variables. One of the most effective ways to achieve this goal is based on prioritizing efforts
in identifying what considerations should be taken into account to guide decisions such as
variable weather in itself (e.g., drought, extreme temperatures) that could be detrimental to
mosquito survival [15]. Arthropods are very sensitive to weather and therefore ongoing
climatic trends of warming and more variable weather threaten to increase burden of these
diseases [16]. In recent years, progressions in Earth observation satellites together with
geographical information systems have contributed to weather monitoring. Mathemat-
ical models have become a valuable tool for predicting dynamics of populations under
climatic scenarios and different temperature regimes improving our knowledge about con-
tribution of environmental and biodiversity factors in vector-borne diseases and helping
public health decision making for better allocation of resources in the fight against many
pathogens [17].
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Arthropod vector control, which relies on the use of insecticides, is the principal
means of mitigating the spread of related diseases [18,19]. However, for such a strategy
to be effective, it is important to predict the temporal change in mosquito abundance
and how it is affected by weather conditions [20,21]. This is particularly relevant for
epidemiological studies with arthropod vectors since their development and population
dynamic are strongly affected by climatic conditions, changing conditions in a context of
climate change.

For instance, weather conditions have direct and indirect effects on growth and devel-
opment of mosquitoes. Additionally, gonotrophic activity by Culex sp. in early spring and
during the season is affected by water resources and this establishes the subsequent phe-
nology and determines the potential date of the earliest mosquito-borne encephalitis virus
transmission [21]. Traditionally, the effect temperature over insect growth rate is captured
by empirical linear and/or parabolic functions [22]. However, most often temperature-
dependent population growth is determined by temporally fluctuating vital rates for which
classical demographic theory often does not apply [23]. Moreover, actual mosquito flight
patterns might be related to the extent of which blood-feeding behavior are shaped by
available feeding resources [24]. As a result, in field conditions mosquito dynamics may be
complex and characterized by abrupt outbreaks and overlapping generations. From an
applied perspective, understanding adult mosquito flight patterns and how it is affected by
weather is essential for predicting their activity to prevent the risk of transmitting related
vector-borne pathogens in nature [25]. Identification, of periods of high population activity
can guide effective targeting of the species. Consequently, several mathematical models
have been used to connect the biological processes of vector dynamics and climate [26–29].
To date, most epidemiological and insect population models, have a deterministic nature
and rely on some basic assumptions to define the various parameters of vector and disease
dynamics under study [11,30]. Often these parameters are unknown and need first to
be estimated to parameterize the model. Moreover, because of the impacts of various
internal and external factors, the temporal evolution of population processes is non-linear
and characterized by random perturbations making it difficult to analyze and forecast
population dynamics using only empirical-temperature dependent growth and mechanistic
models [31].

Stochastic models, which recognize that all variables are probabilistic in nature and
are handled as such, could be employed to model non-linear ecological processes and
advance our understanding of vector population dynamics for public health planning [31].
Markov chain (MC) models belong to the class of stochastic models in probability theory
that are based on the Markov property, which assumes that future states of a process that
evolves in time depend only on the current state and not on the events that occurred be-
fore [31]. Such a framework provides a coherent approach to solving and inferring practical
issues of decision-making since it integrates multiple sources of uncertain information in a
probabilistic way, and which often characterizes noisy stochastic processes [31–33].

Markov chain models have proved suitable for describing randomly changing systems
such as queuing [34] and manufacturing systems [35], market trend analysis [36,37] and
insurance methods [38,39]. Recently, MCs were used in modeling biological processes
and health systems, such carcinogenesis [40,41] and medical cost health problems [42].
Applications of MCs in modeling categorical data sequences can also be found [43–46],
including air population modeling [47], and weather forecasting [48,49], although there are
fewer examples analyzing ecological time series and population dynamics [32,50].

To date, in the field of theoretical population biology, the concept of MCs can be
associated to any to the projection of the Leslie matrix that contains information about its
genealogy, and which can be transformed exactly into a Markov chain [51]. Additionally,
developmental stage transition models have been formulated to estimate the transition
from one stage to another and under different environmental conditions [52,53]. Most of
the age-structured matrix projection models have been used in demographic studies as a
central tool to quantify the asymptotic growth rates (i.e., the dominant eigenvalue) and
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the reproductive values (dominant right and left eigenvalues). They have been also used
in the context of MCs to estimate the stable age distribution and how it is affected under
certain environments [53,54].

However, very few studies have emphasized the application of MCs in studying
mosquito dynamics and the effect of detrimental weather variables. Chaves et al. 2014 [24],
for instance, has used a two-stage (larvae and adults) recruiting matrix model to propose a
mechanism for environmental signal canalization into demographic parameters of Aedes
aegypti that could explain delayed high temperature induced mosquito outbreaks. However,
to our best knowledge, Markov chains have not been applied to solve the problem of
predicting and simulating the probability of Culex sp. ecological time series and especially
with respect to exogenous stochastic factors such as weather variables and particularly
temperature. Hence, it is assumed that a temperature-conditioned Markov chain (CMC)
model could be developed and applied for the first time to predict the dynamics of Culex sp.
vectors of important medical diseases. The major advantage of the CMC over traditional
Markov chain models is that via appropriate conditioning their primary Markov chain
properties are mixed with that of relevant climate factors [55]. Additionally, the mosquito
dynamics process is considered as random, in which no prior information of the system
properties is needed, and thus the resultant dynamic stochastic model is purely data driven.
It could be beneficial to develop new stochastic population modeling approaches that take
into account the effect of one exogenous stochastic variable over the other by terms of
conditional probabilities.

In addition, due to their complicated life cycle and overlapping of generations,
mosquito populations are characterized by abrupt dynamics and thus cannot be easily
predicted by traditional insect population models. Moreover, considering that most of their
attributes can change in respect to random climate events, stochastic models become a
suitable alternative candidate for describing and predicting their abundance [3,4,11,17].

In previous works [56] it was shown that the relationship between climate factors and
mosquito abundance is not linear over the full data length, and that mosquito populations
exhibit a high degree of non-linear behavior under field conditions. As a result, periods
of mosquito growth and different population levels are interrupted by the presence of
unfavorable temperature conditions in a random way. To date, despite Markov chain
models being used extensively in turbulence and predictability studies, as well as disease
dynamics, they have not been used to model the abundance of Culex sp.

In this context, the major objective of the current work was the development of
a weather driven Markov chain model for simulating and predicting the population
dynamics of arthropod vector dynamics. Moreover, the model is applied and tested on
Culex sp. Mosquitos, which is the main vector of WNV transmission and thus of high
medical importance. Additionally, the aim is to contribute to a precise prediction of the
adult mosquito dynamics through the application of a conditional Markov chains. This
paper presents a general stochastic modeling approach enabling the multivariate analysis
of Culex sp. population dynamics and related weather variables. Avoiding inherent
relationship assumptions and parameter estimation in deterministic models; stochastic
models provide a realistic data-based alternative to simulation of complex systems and
robust predictions that could make informed and sound decisions.

In the next section, we show the model derivation and final formulation, while in
Section 3 we apply the model for predicting Culex sp. first with real data and numerical
simulations of the population dynamics of mosquitos, then conditioned by the most
detrimental weather variable [56]. Additionally, we made efforts to validate the model
using empirical data and which have not been used to parameterize the models. In the
end, we briefly discuss the modeling, prediction results of the current subject field, as well
as over the pros and cons of the proposed mathematical modeling approach and how it
can lead to our understanding of Culex sp. dynamics and help to reach decisions along the
various interventions that can be made needed for public health.
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2. Materials and Methods

Markov chain model is initially proposed for addressing the problem of predicting
the time evolution of mosquito population dynamics throughout the season in a temperate,
Mediterranean climate. First, the probability of a population at different population levels,
particularly high levels, is predicted; and then the effect of a climate variable, particularly
temperature, is included.

2.1. Stochastic Process of Ecological Time Series

Let X(t) be the ecological variable (e.g., mosquito population, or climatic variable),
which is considered as a stochastic process that evolves in time t and is defined in a
probability space (Ω, F, P). Where Ω is a sample space, F is a set of outcomes in the sample
space and P assigns each event of F a probability. If the number of F is not countable
then the process is denoted by (X (t): t ≥ 0), or (Xt) t ≥ 0. In the first case, the process is
called a chain in discrete time and in the second, in continuous time. Here the first case is
considered, since data have been observed in specific time points and not continuously.

Let S be the space created by all possible process values X(t) in discrete time. If
S = (0, 1,...) the study refers to a stochastic process with integer values or a discrete state
process, e.g., a population threshold or class that corresponds to the number of mosquitos
captured in a day, or a class of mean temperature values for that day, etc. Hence, S is
considered to take real and finite n values and this contemplative process is called an
n-dimensional stochastic process.

2.2. The Markov Chain Model

The above stochastic process consists of a Markov chain which is determined by its
initial state distribution and a transition probability matrix P of size m is [32]:

P(i, j) = Pr[X(t + ∆t) = i|(X(t) = j] 1, 2, ..., n (1)

The simplest kind of discrete variables the transition matrix may have two stages
S = (1, 2), which is defined in their simplest form as a high or low level of the ecological
variable (e.g., mosquito vector population, temperature) or occurrence or not occurrence
(e.g., rain). A sequence of weekly observations constitutes time series of that discrete
variable. For the first order Markov chain, the transition probability to future state depends
only on its current state. Thus, knowing that at week i the variable X is either in state 1
(low population levels X(i) = a), or state 2 (high population levels X(i) = b) the related row
stochastic transition matrix is:

P =
[
pij
]
=

[
p11 p12
p21 p22

]
Where

{
p11+p12 = 1

p21 + p22 = 1
(2)

By considering m states, S = (1, . . . ,m) a higher dimension of the transition matrix is
formulated as follows:

P =
[
pij
]
=


p11

.

.

.
pm1

.
.
.

.
.

.
.
.
.
.

p1m
.
.
.

pmm

 ∀i, j = 1, . . . , m. Where

∀i = 1, . . . , m
0 ≤ pij ≤ 1

m
∑

j=1
pij = 1

. (3)

A state Sj is said accessible from state Si (written Si→ Sj) if the defined transition
system starting in state Si has a positive probability to reach the state Sj at a certain point,
i.e., ∃n > 0: pij > 0. Two states are said to communicate if both Si → Sj and Sj → Si.
Moreover, any state Si is considered periodic if any return to state Si occur in multiplies
of ki steps and ki is the period and ki = GCD (n: Pr(Xn = si |X0 = si) > 0), where GCD is
the greatest common divisor. Thus, for ki = 1 the state Si is aperiodic, else if ki > 1 the state
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Si is periodic with period ki. In other words, a state is periodic if after a fixed number of
transitions, ki > 1, the state can only return it itself otherwise it is aperiodic.

2.3. Data Inferred Markov Chain Modeling

Because the knowledge over the time evolution of the current mosquito population
process is based on trap captures and is thus limited to derive laws and construct parameter-
izations from first principles, a data-driven method is used to construct parameterizations
by inferring from data. Moreover, the number of adults is considered captured in the CO2
traps as a proxy of both, the size of the population and the related mosquito activity levels
and despite that different traps vary in their ability to catch certain species.

First, the data are classified into different scale states (e.g., population levels) and a
matrix is estimated for each scale state. In particular, for m states there have to be m2 matrix
entries to be estimated. The transition probability matrix entry P(i,j) is estimated as follows
(32):

p̂(m, n) =
T(i, j)

ΣjT(i, j)
(4)

where T(i, j) counting for the transition from m to n observed states observed in a given
data set and p̂(i, j) is the maximum likelihood estimator of p(i,j).

Thus, the Markov chains are “trained with” data from real observations with the aim
of mimicking the observed behavior of the population process afterwards in which a finite
state MC is inferred from data by estimating its transition probability matrix:

T(i, j) = ∑
t

1[X(t + ∆t) = i]1[X(t) = j] (5)

2.4. The Conditional Markov Chain Model

The conditional Markov chain (CMC) model is formulated for the case analyzing the
occurrence and level of mosquito population depending on the physical state of climate con-
ditions. Particularly, since mosquitos are arthropods and all arthropods are poikilothermic
organisms, their development and occurrence of states are affected by temperatures and
rain (i.e., favorable versus unfavorable climate). This means that if a Markov chain is used
to mimic the process of mosquito population occurrence X(t), it can be improved by taking
into account the condition of a second process Y(t) which is related to a climate variable
(e.g., state transitions of temperature or rain levels). Under this assumption, probabilities
take the following form [31,57]:

Pγ(i, j) = Pr[X(t + ∆t) = i|(X(t) = j, Y(t) = γ], t = 1, 2, . . . , n (6)

2.5. Data Inferred Conditional Markov Chain Modeling

If a finite number of states is considered (say five as presented later), then it is possible
to construct a CMC model by estimating a transition probability matrix, Pγ, for each
possible state. This can be done by knowing the time evolution of the ecological time series
for a finite number of states that is used as basis to train the chain model. The transition
matrix is estimated as follows [32]:

Pγ(i, j) =
Tγ(i, j)

ΣγTγ(i, j)
, (7)

In which
Tγ(i, j) = ∑

t
1[X(t + ∆t) = i]1[X(t) = j]1[X(t) = γ)] (8)

In which 1 is the indicator function: 1(A) = 1 if A is true and 1(A) = 0 if A is false, while
t runs over time instances in the data set used to train the Markov chain model.
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2.6. Data Encoding and Determination of Transition States

In order to work with finite state conditional Markov chains, vector population
dynamics and climatic variables, must be discrete and coded to a finite number of states. If
the data are uniformly distributed, this can be done using tree classification schemes based
on pre-defined thresholds.

However, since ecological data are most often not uniformly distributed, choosing
thresholds is difficult and could result in classes to which no data are assigned and classes
to which almost all data are assigned. Moreover, to overcome the problem of subjective
defining the different mosquito population levels, k-means clustering algorithm has been
used for partitioning the sequence of different population levels in different states based
on their centroids.

In particular, each set of mosquito population observations x1 was considered, x2, . . . ,xn
as a d-dimensional real vector and implemented a standard, k-means clustering algorithm
to partition the n observations into k sets (k ≤ n) that correspond to discrete population
states: S = (S1, S2, . . . , Sk) so as to minimize the within-cluster sum of squares (WCSS):

argS min
k

∑
i=1

∑
xj

‖xj − µi‖2 (9)

where µi is the mean of points in Si.
Let nij denote the number of individuals who were in state i in period t − 1 and are

in state j in period t. The probability of a mosquito population being in state j in period t
given that they were in state i in period t − 1, denoted by pij, can be estimated using the
following formula [58]:

pij =
nij

∑j nij
(10)

The probability of transition from any given state i is equal to the proportion of
mosquitos that started in state i and ended in state j as a proportion of all individuals in
that started in state i.

Thus, using the above scheme, the observed behavioral stream of population dynamics
was first converted into a symbolic sequence of population states to be used later on the
estimation of the transition matrices. It was possible to estimate a transition matrix for each
case using mosquito count data.

2.7. Markov Chain Model Validation and Equilibrium Distribution

Field data on frequencies of successive mosquito population levels, which were not
used for the data inferred MC modeling, were assembled to obtain an empirical intensity
transition matrix. Then the empirical transition matrices were generated, and the observed
frequencies were compared visually, as well as statistically, with those obtained from the
MC models. Two methods were used to evaluate the equidistribution between the observed
sequences and that of the MC models.

First, the homogeneity of the transition matrices was tested using a Chi-square (ChiSq)
minimum discrimination statistic test. The verifyHomogeneity function was applied using
the R package makovchain [59,60]. Considering in 2.1. the time evolution of the mosquito
population as a stochastic process that generates: i = 1, 2, . . . , n discrete time Markov
chain samples and that the cardinality of the state space is S the Homogeneity function
verifies whether l chains belong to the same unknown one. The function shows that its test
statistics follows a chi-square law and is estimated as follows (59):

2 ∗
l

∑
i=1

S

∑
j=1

S

∑
k=1

fijkln
n ∗ fijk

fi... f.jk
∼ x2(r ∗ (r− 1)) (11)

If there are l realizations of a Markov chain of order 1 with S states, the null hypothesis,
H0, is that the transition probability matrix is the same for all i and for every possible
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pairing of j and k and P(X > Chsq), which is less than or equal to the significant level,
α = 0.05

In the current work, the case of l = 2 chains was considered as two realizations of the
S = 5-state Markov chains (theoretical and empirical) that are tested for homogeneity. The
frequency entries, are: fijk and i = 1,2, j = 1,2, . . . and k = 1,2,..,5.

Secondly, the asymptotic distribution properties of the theoretical and the empirical
intensity transition matrices were compared using an entropy-based divergence distance
measure [54]. In this case, the mosquito population stochastic process was considered as
homogenous, and thus starting from an initial distribution of population states a limiting
probability, Πi, exist:

lim
n→∞

(Pi) = Πi , i = 1, 2, . . . ., n (12)

It follows that:
∞

∑
i=0

Πi = 1 (13)

This is called the normalizing condition. Entropy is further associated:

Hi = −
n

∑
j=1

pij log pij (14)

Hi represents the average amount of uncertainty of the population system for moving
one step ahead being initially in state Si. We are now interested in estimating the average
uncertainty of the chain for moving one step ahead of any other initial state, which is [54]:

H(X) = H(P) = −
n

∑
i=1

n

∑
j=1

pi pij log pij (15)

and consider the Markov chain process as ergodic (e.g., MC and CMC models, as well as
the observed mosquito population process used for model validation), so that:

H(X) = lim
n→∞

(
Ht/t

)
(16)

Initially, we define a distance measure by introducing the following norm:

‖Ht −Ht=0‖, t = 1, 2, . . . . (17)

where Ht=0 the entropy associated with the initial probability distribution Πi=1 represent-
ing the different mosquito population levels and Ht,the entropy of each time step ahead
t = 2, 3 . . .

The above scheme quantifies the rate of convergence from a starting non-equilibrium
probability distribution towards equilibrium.

2.8. Data

We applied the conditional Markov chain model using free mosquito trap data avail-
able from the open European Union Data Portal (EU ODP) (http://data.europa.eu, accessed
on 3 May 2019), which provides access to data from the European Union (EU) institutions
and other EU bodies, which can be reused for commercial or non-commercial purposes
(European Commission Decision 2011/833/EU). In particular, we used adult mosquito
trap data of Culex sp. sampled from 11 locations in central Macedonia–Greece. Data were
handled as vectors which consisted of close to weekly time intervals of the number of adult
mosquitos captured in CO2 traps from mid-May to September. We used data during two
successive observation years (2011 and 2012) for training the Markov chain models, whilst
data of one additional year, 2013, were used for validating the model performance.

Because of slight differences between the time intervals of some of the trap counts,
data were transformed to mosquito per trap per day (MTD) and thereby averaged over

http://data.europa.eu
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the 11 nearby sampling locations [56]. The MTD thus estimates the average number of
mosquitos captured on a day that the trap is exposed in the field.

Weather data and particularly mean air temperatures in Celsius and rain events in
mm, were obtained by the national observatory of Athens through a meteorological station,
which is located in Makrohori town, which in the same location and latitude and near
to the mosquito observation area (http://stratus.meteo.noa.gr/front, accessed on 2 April
2020).

3. Results
3.1. Mosquito Population Dynamics and the Cross-Correlation with Weather Variables

Successive mosquito catches through the observation period and meteorological data
are presented in Figure 1. These data correspond to the standardized weekly counts of
Culex mosquito species (MTD), as well as the mean temperatures (◦C) and rainfall incidence
(mm) recorded in two successive seasons (2011 and 2012) of typical mosquito activity (May
through September) under a typical temperate climate in Northern Greece. As presented in
Figure 1a there are similarities in the time evolution of the three variables, but it is not easy
to evaluate the degree to which this occurs. Nevertheless, based on the cross-correlation
analysis, we determine that it is preferable to use temperature to condition the abundance of
arthropod vectors, as it has a much stronger correlation than the impact of rain (Figure 1b).
For the cross-correlation analysis all the available data were used in a combined way to
detect inherent correlations and increase the validity of the results.
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Figure 1. (a) Observed time series of mosquito abundance-natural logarithm (Y: log MTD), rain levels (Z: Rain) and mean
temperature (X: Temperature (◦C)). The data correspond to two consecutive periods of mosquito activity (combined periods
of 2011 and 2012). If there are multiple panels, they should be listed as: (b) cross-correlation between mosquito abundance
and temperature (red line) and between mosquito abundance and rain (green line) as function of time lag (weeks). Note
that there is a positive correlation for temperature and that the cross-correlation at time lag zero is highest for temperature.
Hence, it is best to condition the temperature at the moment itself and not a week earlier or a week later.

The cross-correlation at time lag zero is highest for temperature (i.e., mosquitos are
not lagging temperature), and there is a positive correlation for temperature and a negative
relationship for rain. This is in consistent with previous studies [56], suggesting that higher
temperatures result in more adult mosquito populations, while the opposite occurs for rain
which probably affects flight activity. Based on the time lagged correlation analysis, we
derive that it is best to condition on temperature at the moment itself and not temperature
a week earlier or a week later. However, we cannot exclude the possibility that in reality
mosquitoes could lag the temperature for shorter time intervals (i.e., by maybe one single
day), but this cannot be detected since the data consist of averages over a week.

http://stratus.meteo.noa.gr/front
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3.2. Data Partitioning, Population Transition Networks, and Model Training

After using k-means clustering algorithm, the k cluster centers have been used for
positioning the data and considering first a case of two states (high and low levels of
population) and then five states (very low, low, intermediate, high and very high popu-
lation level). The same process may be applied to temperature data. First, we consider a
case of two states (high and low temperature levels) and then five states (very low, low,
intermediate, high and very high temperature level).

Moreover, because we expected transition probabilities to have been affected by the
length of the input data, we performed a preliminary analysis using input variables of
different lengths to find the point from which sequence size does not differentiate transition
probabilities of the mosquito population. To date, for a sequence length of >35 weeks,
the model parameters do not differ considerably according to their informational entropy
content and the system explicit a random behavior rather than deterministic suggesting
that to a high degree an exact underlying transition matrix exists.

Figure 2 depicts a directed graph (or trained network), which represents the actual
transition matrix of the mosquito abundance systems. The criterion of determining how
many states to use in the Markov chain depends on both the characteristics of the time
series data (range) and the criterion used to limit the classes (e.g., k-means) as previously
described. In this work, we decided to use the simplest case, having two clusters as well
as the example of having five states based on the data range distribution and k-means
clustering statistics. Thus, the transition matrix and the relative graph shown were built
for a vector population system with two states (high and low) and five stages (very low,
low, intermediate, high and very high) (Figure 2a,b, respectively).
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Figure 2. Transition matrix of the mosquito abundance system illustrated in terms of a directed graph (or network). (a) The
transition matrix has been constructed for two states (high and low) and (b) for five stages (very low, low, intermediate,
high and very high). Values indicate the probabilities of transitions.

The values that are shown represent the probability of transition from one state to
another in the form of an arrow. States are represented as vertices (or nodes), whereas
transitions are represented as directed edges (or links). This representation scheme allows
the population system of mosquitoes to change from state 1 (e.g., node i—low population)
to state 2 (e.g., node j high population) along the k edges of the graph through a path of
length k from i to j. For the five states system, for instance, the transition probabilities show
that if for a week the mosquito abundance is high (state 4), there is a 10% chance that it will
remain at the same level the next week (state 4), 30% chance that it will be at a very high
level (state 5), a 30% chance that it will be move to a very low level (state 1) and no chance
to move to any of the other population levels (state 2 and 3) (Figure 2b). Yet, it should be
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noted that the zero probabilities to move to state 2 or state 3 could be an indication that
there is some uncertainty of the estimation process related to the particular data set used,
since if more data were available, these transition probabilities would be observed with a
low probability instead of zero.

3.3. Markov Chain Model Realizations of Mosquito Population Levels

Utilizing the data from the transition matrices, Matlab simulations were executed
based on the two and five states Markov chain models, respectively (Figures 3 and 4). The
charts show the weekly sequence of the mosquito population levels with two and five
states where the stochastic process X(t) remains in the same state or moves from one state to
another, depending on the probabilities of the transition matrix. At each discrete moment of
the Markov process or using ecological terms—after each week of observation, a mosquito
control decision will be made depending on the predicted population levels. The basis of
decision will be the prediction based on how the Markov chain evolves based on the values
in the transition matrix P. The division into five population states, compared with only two,
results in sections of the series where the X(t) process presents large deviations from the
probability range of values as it evolves over time. By making predictions over time, in
order to make decision-making actions, it is our intention to capture the time point where
the probability of a high population increases and to avoid any action if the prediction
shows that the probability value of the observed variable will decrease. Otherwise, if the
forecast indicates that the observed arthropod vector population variable will remain in
its present state over a longer period (i.e., low or moderate population level), it is of little
practical interest as it is difficult in that situation to decide to undertake control action.
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finite number of successive seasons. The initial state at time 0 corresponds to the first observation
made.
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Figure 4. (a): Long term sequence of observation of the mosquito population process having five
states, (b): realization of a Markov chain trained model on these observations, (state 1: very low
mosquito population, state 2: low mosquito population, state 3: moderate mosquito population, state
4: high mosquito population, state 5: very high mosquito population). Each time period corresponds
to an observation for a finite number of successive seasons. The initial state at time 0 corresponds to
the first observation made.

3.4. Conditional Markov Chain Model Realizations of Mosquito Population Levels

Taking into account the temperature-dependent Markov chain, the situation is differ-
ent from the previous example because an additional variable is known from the model
which can improve simulation performance and population prediction efficiency (Figure 5).
Due to the relatively limited data set and to avoid less accurate transition probabilities
the CMC model in this study was trained and tested on the same two season’s data. The
actual observations that have been used to run the model (Figure 5a) are very close to the
realizations generated by the conditional Markov chain model which was trained on these
observations (Figure 5c) in contrast to the realization of the non-conditioned of the Markov
chain model (Figure 5b). Again, the prediction is built solely on empirical data from the
past and never from the future, which is very important to decision-making. Say, for exam-
ple, that at a given time point, but before making any control action decision, we know the
states of the process in the two preceding moments, then we can judge to implement an
action against the vector if the population level prediction is high. The simulation results
with the conditional Markov chain model we came up with more promising results than
those with the simple Markov chain.
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Figure 5. (a) Long term sequence of observation of the mosquito population process having five states
(straight black line) and the process of a large scale temperature having five states (red dash—dotted
line), respectively, and acting as background variable (b): realization of a Markov chain trained model
on these observations and (c) realization of a conditional Markov chain trained on these observations
(State 1: very low mosquito population or temperature levels, state 2: low mosquito population
or temperature levels, state 3: moderate mosquito population or temperature levels, state 4: high
mosquito population or temperature levels, state 5: very high mosquito population or temperature
levels). Each time period corresponds to an observation for a finite number of successive seasons.
The initial state at time 0 corresponds to the first observation made.

3.5. Validation of Markov Chain Models and Homogeneity

Figure 6a,b depicts the sequence of realizations generated from the trained MC and
MCM models and that of the empirical intensity transition matrix, respectively, and which
were created using data that were not used for MC model training. The MC model and the
empirical realization follow a similar pattern although there are also slight deviations in
some time points. These deviances could be justified by the fact that the amount of data
available for model evaluation was relatively small. Nevertheless, over all the general
model patterns fit well to that of the observed probabilities and this is in accordance with
the results of the Chi-square test which test the null hypothesis that both realizations are
homogenous, that is, they come from the same matrix of transition probabilities. Particu-
larly, there were no significant differences between the transition matrix of the MC model
and the transition matrix used for validation (ChiSq = 18.73683, df = 24, p = 0.7658748).
Additionally, no significant differences were observed between the CMC model and the
validation matrix (ChiSq = 14.58013, df = 24, p = 0.9324451).
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training.

3.6. Limiting Probabilities of Markov Chain Models and Stationary Distribution

The convergence of the three Markov chain (MC, CMC models and observed tran-
sitions) are illustrated in Figure 7a–c, respectively. Our findings match to certain degree
the empirical results in which the probabilities follow analogous patterns. For instance, by
looking at the plot we observe that all probabilities convergence fast and the final proba-
bilities are analogous to the stationary distribution. Yet, the chain which was developed
using the empirical data shows slight deviations and especially for low population levels,
although they finally converge with a consistent rate.

Figure 8 illustrates the similarities of the time evolution of the entropy, which is
related to the average probability of the MC, CMC and the validation data, starting from
the initial probabilities of mosquito population levels towards equilibrium (e.g., stationary
distribution for each case). The Markov chain models have shown very similar convergence
patterns towards equilibrium.
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Figure 7. Limiting probabilities of a 5-state Markov chain according to the MC model (a), the CMC model (b) and the
empirical MC of the observed validation data (c), as well as the mixing times towards the steady-state probability (d). The
steady state represents the equilibrium distribution when the mosquito population dynamics is considered as ergodic
process.
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A different representation of the conditional data driven Markov chain transition
matrix (e.g., direct graph) is shown in Figure 8 and illustrates of how and to what extent the
system evolves after many steps (probabilities are not indicated). Based on this representa-
tion, we conclude that it is more likely for the system to go into a state of high population
level, when the former is a state of a low population level. On the other hand, there is
a lower probability to remain in the same state of low or even high population pressure,
especially in the case of the five-state transition matrix. So, the transition matrix can be
the foundation for the decision on a control method in a given moment – either a high or
moderate arthropod vector population level, depending on the probability of occurrence of
a state lying below or above the current level.

4. Discussion

Existing and emerging vector-borne diseases are representing one of the most impor-
tant challenges to public health policy. The novelty of the work consists of the current
methodology to simulate, predict the population dynamics of medically important vectors,
and the determination for the first time of transition matrices from mosquito field data. This
work is first of its kind which apply conditional Markov chains to predict Culex sp. adults’
dynamics and considering that most models are of deterministic nature. This approach
could be helpful to develop control programs for vector-borne arthropods.

Compared to other models the MCs are simple and thus preferred in modeling
complex systems and without detailed knowledge on their function, in order to study
their performance and dependability to exogenous factors. However, although the current
models have high prediction accuracy, they face the limitation of not providing a strict
phenomenological explanation of the system. As a result, a direct biological interpretation
of the current model parameters (transitions), as in the case of the Leslie model, cannot be
made.

Moreover, the transition values estimated here might be the final result of the environ-
mental conditions that are affecting vital life events of the Culex sp. natural populations. In
other words, probabilistic models generated are an accurate abstraction of the particular
species population process observed in this study and characteristic of the dataset used
for their generation. From an entomological standpoint, in order to predict the population
patterns of other insect species, the current models should be retrained with population
and weather data of the new species and location of interest.

Moreover, it important to clarify that we have used empirical data of Culex sp. adults
captured in CO2 traps which are further considered as a proxy for both, the size of the pop-
ulation, as well as the inherent mosquito activity of the particular study region. However,
it is known in entomological studies that due to different modes of actions different traps
may vary in their ability to catch certain species [61–64], while sampling condition such as
the location of the trap [65], or the number of nights over which sampling occur [66], as
well as weather conditions may also influence trapping results. Nevertheless, despite these
limitations, the empirical data used provide means to interpret Culex sp. activity that is
highly likely to transmit the virus. Actually, variations in trapping outcomes of different
data sets may not limit the application and inference of the current models since they deal
with probabilities of population level successions rather than forecasting abundances of
mosquito individuals per se.

Based on the results of this study we conclude that model performance can be im-
proved when temperature is taken into account and this is because environmental fluctua-
tions are translated into population fluctuations through temperature-dependent difference
in intrinsic demographic parameters (i.e., survivorship, fecundity, feeding behavior, etc).
However, it is important to clarify that in this article we are mainly interested with predic-
tions rather than forecasts despite that we consider the temporal dimension (i.e., weeks).
Forecasting, sensu stricto, may be considered as a subfield of prediction which is used on the
basis of future time series data generation. This is justified by the fact that we fit the model
to a training data set, which results in a model that estimates the outcomes for unseen state
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transitions in terms of probabilities, rather than estimates of the actual mosquito abundance
values (i.e., time series). Moreover, a similar approach has been applied on the validation
data set to generate a future sequence of mosquito population states to be compared with
the model predictions. This was also the main reason why we have used the Square-test
to compare transition matrices, as well as related information measures, such as Shannon
entropy, to compare the time evolution of the models towards equilibrium, rather than a
correlation analysis.

Summarizing the modeling approach and related simulations, we consider here to
look at some of the features of the conditional Markov chain modelling method under
consideration. Classical conditional Markov chain models (also known as linear-chain
conditional random fields in the literature e.g., Lafferty et al. 1999 [57]), were defined by
Bielecki and Rutkowski in 2004 [55], for applications in finance and insurance. Conditional
Markov chains, as proposed in the current work, have been also used in atmospheric
science [32]. This is done in response to the need for modeling dependence between
dynamic systems in cases when some conditional properties of a system are important
and should be accounted for. Hence, conditional Markov chains are defined as a versatile
class of discriminative models for the distribution of a sequence of hidden or latent states
conditional on a sequence of observable variables.

However, it should be noted that although the concept of Markov chains has been
used already in pioneering works of theoretical biology [51–53], in this work it is applied
under a different context. For example, classical works in the field of transition models deal
with age-structured cohorts, where survivorship and net maternity is known and extend
the already know Leslie model to describe the limiting behavior of population growth
and its sensitivity to environmental perturbations. Here, the use of Markov chains differs
conceptually compared to classical theoretical Leslie projection schemes, since we have
no prior information of the initial stage specific population structure and its demographic
characteristics, and the only available information is the adult abundances which were
estimated by traps. Contrarily, this work aims first on the partition of data, using a classical
clustering algorithm, and later predicting the transitions of different mosquito population
levels forced by temperature. Thus, this empirical work emphasizes applied modeling of a
populations data sequence, which is most often available in entomological surveys, rather
than a theoretical study which focus on a complete characterization of the species life-cycle
transitions as a result of births and deaths.

Based on the simulation results it is apparent the model performs better when it
is conditioned on temperature. In accordance with other studies, this work shows that
environmental changes have impacts on demographic parameters and are reflected in the
species population. In the case of the observed and predicted Culex sp. dynamics, it can be
argued that temperature alteration during the season induce changes in developmental
rates, survivorship and net maternity could underlie the transitions between the different
population states.

In that sense our model simulations might suggest that a persistence of increased
temperature levels for longer periods could be linked with an increase in fecundity and
survival of immature stages, suggesting an increased fitness which is reflected to a sequence
of high Culex sp. population levels. In the same sense, one cannot exclude the opposite
function when temperature levels are lower. Moreover, other factors, which have not
considered here, such as wind, relative humidity, could also affect Culex sp. feeding
behavior and related dynamics. All these factors may be essential for the eco-biology of
the species and affect its observed dynamics.

Given the importance of climate conditions for mosquito development, especially
temperature and rain, it is necessary to take into account these variables in predicting
mosquito populations. Furthermore, the estimation of the transition matrix through the use
of empirical data first to define the system states and later on for training and validating
the Markov chain model is a principal step for the simulation of realistic vector population
projections and without the need for defining differential equations and related state
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variables. The CMC model that is proposed in this study might prove very suitable in
public health decision making and especially for predicting arthropod vector population
dynamic and vector controls. Several mathematical models have been developed to
clarify and predict the dynamics of mosquito populations and to understand the role of
environmental factors [67–70]. In most studies mosquito population dynamics are treated
as deterministic processes (among others [71,72]) despite populations being driven by
climate factors which are considered to be probabilistic [73–77]. Therefore, it is difficult to
perform a direct comparison of our modeling approach and results, to other related studies,
since most of them are based on deterministic-dynamic population models. However,
multivariate ecological and epidemiological time series are characterized by complex
non-linear relationships and most often explicit a random behavior [78].

Hence, the proposed MC stochastic model provides a robust alternative to traditional
models. For instance, deterministic models cannot capture population fluctuations which
are dominated by environmental conditions, variability in the controlling parameters
as well as the random nature of population events, which occur in a real system [33].
Moreover, the fact that the projection of mosquito population dynamics is improved by
incorporation of information on temperature levels in terms of conditional probabilities is
in accordance with most studies that acknowledge the significance of climate factors and
temperatures particularly in arthropod vector population dynamics and related disease
epidemics [78–80].

Based on the current cross correlation results, we conclude that temperature exert a
higher impact on the Culex sp. adult phenology compared to rain events, despite mosquitos
thriving in wet conditions as rain indirectly affects the mosquito population by increasing
breeding grounds. Therefore, it was judged as necessary to include the most influential
meteorological variables (e.g., only temperature) to improve the performance of a simple
MC model through the use of a CMC model instead. Actually, it was found that Markov
chain model of arthropod vector population dynamics, conditioned over temperatures,
performed better than single MC stochastic modeling of vector population dynamics.

After the importance of the meteorological conditions was found, it became apparent
that once the population reaches a high state during a week, there is a very high probability
that it will remain in this state the following week and so on. Moreover, considering that
time evolution of temperature states is quite analogous of that of the arthropod vector
states, we can conclude that if there is a high probability of increased temperatures, we
expect an increased probability to observe very high mosquito levels. Thus, a part of
the CMC mode results, modeling only temperatures through MC model may be proved
very useful in judging whether during the same period the mosquito population is also
high. This is of major importance for public health management and vector eradication
programs considering saving costs and time for the establishment of mosquito surveillance
programs over different areas. Thus, this information becomes crucial for preventing the
transmission of mosquito disease prioritizing resources for optimal responses in vector
eradication programs and mosquito surveillance programs.

Considering model validation, the transition probabilities of both Markov chain
models (e.g., the simple, as well as the conditional one) do not differ significantly to the
empirical data. However, there should also be some wariness as the data set used for model
validation, despite being representative for a mosquito activity season, was only from a
year of observations. Nevertheless, overall, the MC model and the empirical realization
follow a similar pattern although despite some expected deviations.

The presented results are promising, although we stress that they were obtained
under certain assumptions, such as the stability of the particular study environment
and the conditioning over only one climate variable. For instance, Markov models are
generally inappropriate over sufficiently short sequence lengths and time intervals yielding
in a process which is deterministically related to time rather than random to resolve this
problem we decided to evaluate the effect of different sequence lengths on the informational
content of different MC sample trajectories. Additionally, considering the data sampling
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intervals of mosquito abundances, we have decided to use normalized weekly counts,
for both, model training as well as for the predictions, since these are most often used in
entomological studies to capture the dynamics of ecological processes.

In reality, additional ecological factors which have not been taken into account in this
study may affect mosquito population dynamics in a more complex manner. Among such
factors is the possibility of a parallel influence of two or more climate variables on the
mosquito population dynamics or even a more substantial influence of lagged values that
suggested also testing the model performance of a higher order Markov chain model.

Moreover, to reach more realistic Markov chain projection schemes, they should
probably be compared and trained with additional observational data. Nevertheless, the
current work outlines how the Markov chain models can be applied in ecological time
series and particularly in modeling arthropod vector dynamics. Furthermore, the current
work contributes to recent tendencies in ecological modeling which focus on the integration
of climate factors and related weather variables in functioning of population processes.
Another future direction which may be worth verifying would be the calculation of a
multivariate semi-Markov conditional model with different orders.

5. Conclusions

This work introduces a new stochastic mathematical model for modeling the pop-
ulation of arthropod vectors (the world’s deadliest animal, which accounts for 80% of
human vector-borne diseases) applied in predicting Culex sp. abundances. Conceptually,
the insect captures are treated as a random sequence of different population levels that
evolve in time and are characterized by the Markov property. Compared to traditional
modeling approaches in entomology the current approach is desirable because it may
allow reasoning and resolution of problems and complex population systems with little
knowledge of its internal workings. The most important asset of the current research is
the evolution of a model which potentially can be applied as a method for detecting and
forecasting the periods in which there is a high probability of vector population persistence.
The results show that conditional modeling of the Markov chain is useful for simulating
future population dynamics of arthropod vectors. In the context of prevention methods
to mitigate the effects of arthropod vector dynamics on public health there is an urgent
demand for warning systems to aid decision making. The current model results could form
the basis to forecast the probability of “high” and “very high” arthropod vector population
levels to alert people belonging to vulnerable groups and to implement effective vector
control measures to protect public health during periods of high vector population. Finally,
the current subject field can be seen as valuable since it is not just the first of its sort in
modeling Culex sp., but proposes novel methods that encourage further modeling and
exploration of the behavior of more complex vector population systems.

Author Contributions: Conceptualization, data curation and software, P.T.D.; methodology and
Matlab-code script J.D. and P.T.D.; validation R-script and formal analysis, P.T.D. and T.T.; writing—
original draft preparation, P.T.D.; review J.D., J.T. and P.C.; supervision and final writing—editing,
P.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Publically available datasets were analyzed in this study. This data
can be found here: [http://data.europa.eu (accessed on 3 May 2019)] and here: [http://stratus.meteo.
noa.gr/front (accessed on 2 April 2020)].

Acknowledgments: The authors would like to convey their thanks to four anonymous reviewers as
well as the academic editor for their valuable suggestions and commentaries, which have improved
the work, to Neil Pavaley (Crop Protection, ADAS, UK) for his comments and linguistic revision of
the manuscript and to University of Alicante, Spain, for providing part of the grands of publishing
the current research with an open access option.

http://data.europa.eu
http://stratus.meteo.noa.gr/front
http://stratus.meteo.noa.gr/front


Insects 2021, 12, 725 20 of 22

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Saker, L.; Lee, K.; Cannito, B.; Gilmore, A.; Campell-Lendrum, D. Globalization and Infectious Diseases: A Review of the Linkages;

World Health Organization: Geneva, Switzerland, 2004; Volume 3, pp. 123–137.
2. Ogden, N.H. Climate change and vector-borne diseases of public health significance. FEMS Microbiol. Lett. 2017, 364, 1–8.

[CrossRef]
3. Tabachnick, W.J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing

world. J. Exp. Biol. 2010, 213, 946–954. [CrossRef]
4. Semenza, J.C.; Suk, J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2018, 365, 1–9.

[CrossRef] [PubMed]
5. Scholte, E.J.; Schaffner, F. Waiting for the tiger: Establishment and spread of the Asian tiger mosquito in Europe. In Emerging Pests

and Vector-Borne Diseases in Europe; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; pp. 241–261.
6. Van Gompel, A.; Van Bortel, W. Emerging Pests and Vector-borne Diseases in Europe. In Emerging Infectious Diseases; Wageningen

Academic Publishers: Wageningen, The Netherlands, 2007; pp. 1827–1829.
7. Lonc, E.; Kiewra, D.; Rydzanicz, K.; Krol, N. The risk of arthropod vector configuration in Europe. Wiadomości Parazytol. 2011, 57,

223–232.
8. Ludwig, A.; Bicout, D.; Chalvet-Monfray, K.; Sabatier, P. Modelling the aggressiveness of the Culex modestus, possible vector of

West Nile fever in Camargue, as a function of meteorological data. Environ. Risques St. 2005, 4, 108–113.
9. Rogers, D.J.; Randolph, S.E. Climate Change and Vector-Borne Diseases. Adv. Parasitol. 2006, 62, 345–381.
10. Portillo, A.; Ruiz-Arrondo, I.; Oteo, J.A. Arthropods as vectors of transmissible diseases in Spain. Med. Clínica Engl. Ed. 2018, 151,

450–459. [CrossRef]
11. Wonham, M.J.; De-Camino-Beck, T.; Lewis, M.A. An epidemiological model for West Nile virus: Invasion analysis and control

applications. Proc. R. Soc. Proc. R. Soc. B Biol. Sci. 2004, 271, 501–507. [CrossRef]
12. Kenkre, M.; Parmenter, R.; Peixoto, D.; Sadasiv, L. A theoretical framework for the analysis of the West Nile virus epidemic. Math.

Comput. Model. 2005, 42, 313–324. [CrossRef]
13. Vogels, C.B.F.; Hartemink, N.; Koenraadt, C.J.M. Modelling West Nile virus transmission risk in Europe: Effect of temperature

and mosquito biotypes on the basic reproduction number. Sci. Rep. 2017, 7, 1–11. [CrossRef]
14. European Centre for Disease Prevention and Control. Surveillance and Disease Data for West Nile Fever [Internet]. European

Centre for Disease Prevention and Control. 2018. Available online: https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-
and-disease-data (accessed on 1 August 2018).

15. Hongoh, V.; Gosselin, P.; Michel, P.; Ravel, A.; Waaub, J.P.; Campagna, C.; Samoura, K. Criteria for the prioritization of public
health interventions for climate-sensitive vector-borne diseases in Quebec. PLoS ONE 2017, 12, 1–23. [CrossRef]

16. Campbell-Lendrum, D.; Manga, L.; Bagayoko, M.; Sommerfeld, J. Climate change and vector-borne diseases: What are the
implications for public health research and policy? Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 1–8. [CrossRef]

17. Ceccato, P.; Ramirez, B.; Manyangadze, T.; Gwakisa, P.; Thomson, M.C. Data and tools to integrate climate and environmental
information into public health. Infect. Dis. Poverty 2018, 7, 1–11. [CrossRef] [PubMed]

18. Weidhaas, D.E.; Focks, D.A. Management of Arthropod borne Diseases by Vector Control. In Medical Entomology [Internet];
Springer: Dordrecht, The Netherlands, 2000; pp. 539–563. Available online: https://link.springer.com/chapter/10.1007/978-94-0
11-6472-6_14 (accessed on 28 February 2021).

19. WHO. WHO|Methods of Vector Control [Internet]. WHO. World Health Organization. 2011. Available online: https://www.
who.int/denguecontrol/control_strategies/vector_control_methods/en/ (accessed on 28 February 2021).

20. Hodgson, J.A.; Thomas, C.D.; Oliver, T.H.; Anderson, B.J.; Brereton, T.M.; Crone, E.E. Predicting insect phenology across space
and time. Glob. Chang. Biol. 2011, 17, 1289–1300. [CrossRef]

21. Reisen, W.K.; Fang, Y.; Martinez, V.M. Effects of Temperature on the Transmission of West Nile Virus by Culex tarsalis (Diptera:
Culicidae). J. Med. Entomol. 2014, 43, 309–317. [CrossRef]

22. Rueda, L.M.; Patel, K.J.; Axtell, R.C.; Stinner, R.E. Temperature-dependent development and survival rates of Culex quinquefasciatus
and Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 1990, 27, 892–898. [CrossRef] [PubMed]

23. Ehrlén, J.; Morris, W.F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett.
2015, 18, 303–314. [CrossRef] [PubMed]

24. Chaves, L.F.; Harrington, L.C.; Keogh, C.L.; Nguyen, A.M.; Kitron, U.D. Blood feeding patterns of mosquitoes: Random or
structured? Front. Zool. 2010, 7, 3. [CrossRef]

25. Reinhold, J.M.; Lazzari, C.R.; Lahondère, C. Effects of the Environmental Temperature on Aedes aegypti. and Aedes albopictus
Mosquitoes: A Review. Insects 2018, 9, 158. [CrossRef]

26. Haile, D.G.; Mount, G.A. Computer simulation of area-wide management strategies for the lone star tick, Amblyomma americanum
(Acari: Ixodidae). J. Med. Entomol. 1987, 24, 523–531. [CrossRef] [PubMed]

27. Ewing, D.A.; Cobbold, C.A.; Purse, B.V.; Nunn, M.A.; White, S.M. Modelling the effect of temperature on the seasonal population
dynamics of temperate mosquitoes. J. Theor. Biol. 2016, 400, 65–79. [CrossRef] [PubMed]

http://doi.org/10.1093/femsle/fnx186
http://doi.org/10.1242/jeb.037564
http://doi.org/10.1093/femsle/fnx244
http://www.ncbi.nlm.nih.gov/pubmed/29149298
http://doi.org/10.1016/j.medcle.2018.10.008
http://doi.org/10.1098/rspb.2003.2608
http://doi.org/10.1016/j.mcm.2004.08.012
http://doi.org/10.1038/s41598-017-05185-4
https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data
https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data
http://doi.org/10.1371/journal.pone.0190049
http://doi.org/10.1098/rstb.2013.0552
http://doi.org/10.1186/s40249-018-0501-9
http://www.ncbi.nlm.nih.gov/pubmed/30541601
https://link.springer.com/chapter/10.1007/978-94-011-6472-6_14
https://link.springer.com/chapter/10.1007/978-94-011-6472-6_14
https://www.who.int/denguecontrol/control_strategies/vector_control_methods/en/
https://www.who.int/denguecontrol/control_strategies/vector_control_methods/en/
http://doi.org/10.1111/j.1365-2486.2010.02308.x
http://doi.org/10.1093/jmedent/43.2.309
http://doi.org/10.1093/jmedent/27.5.892
http://www.ncbi.nlm.nih.gov/pubmed/2231624
http://doi.org/10.1111/ele.12410
http://www.ncbi.nlm.nih.gov/pubmed/25611188
http://doi.org/10.1186/1742-9994-7-3
http://doi.org/10.3390/insects9040158
http://doi.org/10.1093/jmedent/24.3.356
http://www.ncbi.nlm.nih.gov/pubmed/3585931
http://doi.org/10.1016/j.jtbi.2016.04.008
http://www.ncbi.nlm.nih.gov/pubmed/27084359


Insects 2021, 12, 725 21 of 22

28. Tjaden, N.B.; Caminade, C.; Beierkuhnlein, C.; Thomas, S.M. Mosquito-Borne Diseases: Advances in Modelling Climate-Change
Impacts. Trends Parasitol. 2018, 34, 227–245. [CrossRef]

29. Wei, H.M.; Li, X.Z.; Martcheva, M. An epidemic model of a vector-borne disease with direct transmission and time delay. J. Math.
Anal. Appl. 2008, 342, 895–908. [CrossRef]

30. Damos, P. A stepwise algorithm to detect significant time lags in ecological time series in terms of autocorrelation functions and
ARMA model optimisation of pest population seasonal outbreaks. Stoch. Environ. Res. Risk Assess. 2016, 30, 1961–1980. [CrossRef]

31. Damos, P.T.; Rigas, A.; Savopoulou-Soultani, M. Applications of markov chains and brownian motion models in insect ecology.
In Brownian Motion: Theory Modeling and Applications; Nova Science Pub Inc.: New York, NY, USA, 2011; pp. 71–104.

32. Dorrestijn, J.; Crommelin, D.T.; Siebesma, A.P.; Jonker, H.J.J.; Selten, F. Stochastic convection parameterization with Markov
chains in an intermediate-complexity GCM. J. Atmos Sci. 2016, 73, 1367–1382. [CrossRef]

33. Gómez-Corral, A.; Insua, D.R.; Ruggeri, F.; Wiper, M. Bayesian Inference of Markov Processes.; Wiley StatsRef Stat Ref Online:
Hoboken, NJ, USA, 2015; pp. 1–15.

34. Ching, W.K. Iterative Methods for Queuing and Manufacturing Systems [Internet]; Springer: London, UK, 2001; (Springer Monographs
in Mathematics); Available online: https://link.springer.com/10.1007/978-1-4471-3905-8 (accessed on 28 February 2021).

35. Buzacott, J.A.; Shanthikumar, J.G. Design of manufacturing systems using queueing models. Queueing Syst. 1992, 12, 135–213.
[CrossRef]

36. Alizadeh, A.; Nomikos, N. A markov regime switching approach for hedging stock indices. J. Futur. Mark. 2004, 24, 649–674.
[CrossRef]

37. Wilinski, A. Time series modeling and forecasting based on a Markov chain with changing transition matrices. Expert Syst. Appl.
2019, 133, 163–172. [CrossRef]

38. Hoem, J.M. Markov Chain Models in Life Insurance. Blätter DGFVM 1969, 9, 91–107. Available online: https://link.springer.
com/article/10.1007/BF02810082 (accessed on 1 March 2021). [CrossRef]

39. Lu, Y.; Zhang, M.; Yu, T.; Qu, M. Application of Markov prediction method in the decision of insurance company. In Proceedings
of the International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014), Shenyang, China,
29–31 June 2015; pp. 294–297.

40. Newton, P.K.; Mason, J.; Hurt, B.; Bethel, K.; Bazhenova, L.; Nieva, J.; Kuhn, P. Entropy, complexity, and Markov diagrams for
random walk cancer models. Sci. Rep. 2014, 4, 1–11. [CrossRef]

41. Mason, J.; Newton, P.K. Markov chain models of cancer metastasis. bioRxiv 2018, 90089, 13–15.
42. Diz, E.; Query, J.T. Applying a Markov model to a plan of social health provisions. Insur. Mark. Co. Anal. Actuar. Comput. 2012, 3,

27–34.
43. Mac Donald, I.L.; Zucchini, W. Hidden Markov and Other Models for Discrete valued Time Series. Monogr. Stat. Appl Probab.

1997, 16, 587–588.
44. Ching, W.K.; Fung, E.S.; Ng, M.K. Higher-order Markov chain models for categorical data sequences. Nav. Res. Logist. 2004, 51,

557–574. [CrossRef]
45. Ching, W.K.; Ng, M.K.; Fung, E.S. Higher-order multivariate Markov chains and their applications. Linear Algebra Appl. 2008, 428,

492–507. [CrossRef]
46. Liu, T. Application of Markov Chains to Analyze and Predict the Time Series. Mod. Appl. Sci. 2010, 4, 508–511. [CrossRef]
47. Zakaria, N.N.; Othman, M.; Sokkalingam, R.; Daud, H.; Abdullah, L.; Kadir, E.A. Markov chain model development for

forecasting air pollution index of miri, Sarawak. Sustainability 2019, 11, 5190. [CrossRef]
48. Gneiting, T.; Raftery, A.E. Weather forecasting with ensemble methods. Science 2005, 310, 248–249. [CrossRef]
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