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Abstract

This thesis introduces a model designed to provide port operators with insights into necessary
infrastructure and adequate scheduling approaches when ships use electricity as their main power
source. The operator manages a shipping port equipped with charging stations and provides a
selection of electricity-powered freight cargo ships with container batteries. The model is designed
for an arbitrary single-port waterway system. The focus is directed toward inland waterway sys-
tems, a choice influenced by the limited capacity of container batteries. Optional external revenue
streams in the form of grid balancing and two core uncertainties of the maritime sector are incor-
porated into the model, namely energy consumption and arrival time uncertainty. Optimization
approaches are formulated on the model to find the optimal number of batteries, charging stations,
and grid balancing stints. The following six approaches are employed: approximation algorithm,
MIP formulation, rolling horizon, probabilistic constraint, extreme value analysis, and value at
risk. The strategies all produce a schedule that guides the operator in managing the infrastructure
optimally in a different context. The approaches are tested on a simulated waterway system. The
approximation algorithm is a great first step. The MIP formulation provides a valuable next step
in insight into the complexities of the system. However, it scales too poorly to extend to bigger
data cases or to integrate uncertainties. In scenarios involving uncertainty, the rolling horizon ap-
proach is recommended due to its adaptability and realistic modeling. Valuable insights about the
limits of the system can be obtained by implementing values at risk and extreme value analyses.
The probabilistic constraint approach is a suitable alternative if normally distributed uncertainty
is inherent to the uncertainty data. The model with these optimization methods provides port
operators with essential insights into the system they are managing.
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Notation

Name Indices Descriptions

S s Set of ships
G g Set of grid balancing spots
B b Set of batteries
T t, t1, t2 Set of event time-space
Ta ta Set of time events where a ship arrives
Tg tg Set of the time events where a grid balancing spot starts
tmin A virtual starting point at the very start of the timeline
tmax A virtual ending point at the very end of the timeline
C−
t The minimum charge for a battery allocated at time t

C+
t The maximum charge for a battery allocated at time t

[C−
t , C+

t ] The interval of charge level that a battery must contain
to be allocated at time event t

Tg The timing of time-event tg
Ta The ETA prediction with uncertainty in the arrival a
d The charging speed if a battery is connected to the grid for charging
e The self-discharge rate
Sb The starting position of battery b
c0b The starting charge level of battery b
Rtg The revenue of grid balancing spot tg
Et The energy level difference generated by the event starting on time t
∆t The time difference between event t and event t− 1
At1,t2 The matrix that shows the relation of battery availability and

consecutive time events (See Appendix B.1)
xtb The decision variable that assigns a battery b at time t
ctb The charge level of the battery b at time t
wt
b The decision variable that shows the percentage of time battery b is charging

within time frame [t− 1, t]
yb The variable that indicates whether or not battery b is used

somewhere in the schedule
B The number of battery containers used.
M The number of charging stations used.
(x,w,c) The schedule of the port operator, relays the decisions for allocation and charging
(B,M) The infrastructure, consists of the batteries in use and

the number of charging stations at the charging harbor
U t
b A status variable that denotes if battery b is currently utilized by a vessel

Itb A status variable that denotes if battery b is currently idle
βt
b The critical value for the probability that the schedule fails

using battery b at time event t
β The lower bound for the critical values such that the schedule fails

at any time using any battery

Ât−1 ,t+2
The matrix that shows the relation of battery availability and consecutive time events

in the value at risk of arrival time uncertainty. (See Appendix B.2)
V t
b Violation capacity of a battery

N Arbitrary large number
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Abbreviations

Abbreviation Name Section

AIS Automatic identification system 1
BC Base Case 6.1.1
BC2 Base Case 2 6.2.1
BO Battery optimization 6.1.2
BPO Battery priority optimization 6.1.2
BPP Bin-packing problem A
BPP-Dec Decision version of BBP 3.1.1
CFAS Constant-factor Approximation Scheme 3.2
CSO Charging station optimization 6.1.2
CSPO Charging station priority optimization 6.1.2
FP Feasibility Problem 2.5
FP-Dec Decision version of FP 3.1.1
DMCS Direct Monte Carlo simulation 5.2.1
ETA Estimated time of arrival 1
EVs Electric vehicles 1
MIP Mixed linear integer problem 5.1
MOP Multi-objective optimization problem 4.1
RH Rolling horizon 5.2.2
RP Revenue Problem 2.5
RP-Dec Decision version of RP 3.1.2
RPO Revenue problem optimization 6.1.2
PC Probabilistic Constraint 5.2.3
PF∗ Pareto Front 4.1
VAR Value at Risk 5.3.2
3PP 3-Partition Problem A
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1 Introduction

The transportation industry heavily relies on combustion engines that consume non-renewable fuels.
These engines are one of the main carbon emitters in our ecosystem. CO2 emissions are the most
significant single cause of climate change. In every aspect of transportation, effort should be made
to replace fossil fuels with alternative fuels that are renewable and sustainable. The maritime
industry is one of the largest polluters of all transportation options (IEA [2020]). Typically, marine
vessels run on heavy fuel oil (marine gasoil, MGO), which is the cheapest variety of fossil fuels.
MGO emits greenhouse gases that participate in the increasing severity of climate change, according
to Bengtsson et al. [2011], but also nitrogen oxides (NOx) and fine dust (particulate matter, PM).
Inland shipping has the same issues (Yan et al. [2018]), where these emissions directly affect nature
and cities alongside the inland waterways. Applying alternative fuels for the marine industry proves
to be an even bigger challenge than for the electric automobiles industry (EV-industry), because
of the superior energy density of fossil fuels, the well-established, incumbent engine industry, and
the highly efficient bunkering/loading infrastructure. A system change is required for this industry
to facilitate the transition away from fossil fuels.

A viable alternative energy source for vessels is green electricity. The innovations in battery capacity
make it possible to create container-sized batteries that can facilitate the energy needed for marine
voyages. These container batteries powering the electric motors of cargo vessels already exist and
are used in multiple areas, such as maritime shipping. Worldwide companies1 are established that
provide container batteries specifically for marine use. The market penetration is still extremely
limited, in comparison with the EV industry. The maritime sector, like the aviation sector, was
exempted from the 2015 Paris Treaty. Only recently the European Union has announced measures
to contain the emission of the maritime sector ECS. Electrification can be an important step in
making sure the goals of the European Union Commission are met.

There are two fundamentally different ways to operate within an electrified maritime system. The
vessels could have their own batteries and wait on these to be recharged as they are harbored. On
the other hand, the harbor could facilitate a switch in batteries to reduce the stationary time and
anchor spots occupied by the ships. For the latter, harbors should house a certain amount of extra
batteries. The charging of the batteries while staying harbored increases the waiting time of the
electrified vessels drastically compared to the instant swap of an empty to a fresh battery. This extra
waiting time might result in delays for the vessel operators and eventually for their clients. The
swapping of batteries relieves them of waiting because the swap can be combined with the usual
loading and reloading of the cargo. This operation method creates a lower threshold for vessel
owners to be convinced to transition. The battery container provider companies2 also implement
swapping services. Therefore, the swapping of batteries at the charging harbors is considered to
be the method of choice. This method is also commercially used as can be seen in Figure 41 in
Appendix C.

To charge a battery container, it must be attached to the power grid. Charging container batteries
is done by attaching them to a specifically designed charging station. The charging station can be
used in two distinct ways. Firstly, as a method of charging a battery that is attached. Secondly,
the charging station can use the attached battery to strategically trade electricity with the grid.
The second option is called electricity trading and requires a spare battery that can store energy.
Electricity trading can generate an additional revenue stream for the operators of the docking

1Corvus, Fleetzero, Skoon, Zero Emission Maritime, and Zero Emission Services.
2See footnote 1.
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stations and/or batteries. This value stacking is important to improve the business case and to
reduce the cost gap with traditional fuels. Electricity fluctuates in price throughout the day. When
the sun shines, the wind blows, and everybody is at work, the energy will be relatively cheap.
However, when it gets dark and everybody is home, the price increases. Energy trading is taking
advantage of this price gap, buying in cheap and then selling high (Aaltonen et al. [2022]). Ports
do not participate in energy trading as part of their core business. Therefore, they are likely
to lease the batteries to energy companies for them to use for grid balancing (net stabilization).
Grid balancing is a process where energy providers use electricity storage, such as these battery
containers, to either store or release energy to regulate the supply and demand of energy in the
whole system. Both these secondary occupations of the battery, in the maritime sense, can be
considered as revenue options where a battery and station are occupied for a certain period for a
certain price.

This thesis aims to develop a strategy that creates a benchmark of the necessary battery contain-
ers and charging stations, enabling the transition towards a new, fully electrified, and therefore
zero-emission system. Furthermore, it aims for determining the optimal strategy to schedule the
infrastructure taking into account the core uncertainties of the maritime industry.

For a singular vessel, it is evident to keep track of the battery containers and schedule them
accordingly to be charged before the next arrival. However, if the operations are scaled up to an
entire system of electrified system of cargo vessels, the battery containers may be shared among the
vessels. The charging stations could also be shared among the on-site batteries. As these charging
stations and batteries are costly, the investments and the usage of this infrastructure should be
optimized in the sense that the least number of batteries and charging stations are necessary to
support the maritime system. Also, time gaps that the batteries lay idle, should preferably be filled
by lending the batteries to a revenue option to maximize the profitability of the infrastructure as
described above. This research is limited to a singular docking port that is equipped with charging
stations. The system with multiple docking ports includes an imbalance in the locations of the
batteries. This is outside of the scope of research.

There is a lot of uncertainty related to the maritime industry. Ksciuk et al. [2022] identify six types
of uncertainty that are covered by relevant literature on vessel scheduling problems: sailing time,
port duration, spot rate revenue, supply, demand, and weather. These factors have a major impact
on decisions regarding cargo flows, vessel capacity, sailing speed, and fuel consumption. Three of
these uncertainties will be considered for this research: fuel consumption, sailing time, and port
duration. The fuel consumption uncertainty is greatly influenced by the sailing speed, weather, and
the mass transported. Due to the electrification of the system, the fuel consumption uncertainty is
called energy consumption uncertainty. For simplicity, we combine sailing time and port duration in
a singular arrival time uncertainty that is given by an estimated time of arrival (ETA) accompanied
by an uncertainty distribution. The weather is not directly included in the research, however, it
is implicitly included in the ETA uncertainty and the energy consumption uncertainty. Spot rate
revenue, supply, and demand lay outside of the scope of this research because there is only a single
harbor that is considered.

In this research, we consider a system of maritime vessels, that all connect to a common docking
port, making a transition to fully electric-powered vessels with a list of revenue options (energy
trading). All major maritime ships are obliged to carry an automatic identification system (AIS)
transponder that can be received by radio towers in the neighborhood. The locations of the ports
can be assumed to be fixed since it is very rare that industries make a completely new network
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to facilitate a transition. There are corporations3 that collect historical AIS-data. This data can
be used to extract a system with the arrival times characteristics of the included vessels. These
characteristics can be used to estimate the time uncertainties used in this research.

Battery containers are known to be very heavy. Heavy lifting cranes that satisfy safety protocols
and permits are needed on a site to swap these containers. These types of cranes can usually
already be found at the ports where cargo is transferred. Therefore, existing docking ports should
be viewed as possible candidates to fit with charging stations.

Combining the maritime shipping business with grid trading requires tight planning, due to both
businesses relying heavily on their energy supply. Any delay or cancellation can have great con-
sequences. Both businesses get by on tiny margins of profit. This will result in high penalties
enforced if agreements are missed. To minimize the risk of missing agreed times, an intricate
scheduling problem must be solved and optimized. The schedule has to monitor the batteries very
precisely and allocate them accordingly. Then, as much revenue as possible can be earned, while
the risk of missing agreements is minimized.

The thesis is organized as follows: In chapter 2, the full problem with scope assumptions is described
with a model of the simplified electrified maritime system. In chapter 3, the complexity of the model
is discussed, where the mathematical problem and its features are compared to known problems.
In chapter 4, Pareto optimality is discussed, which is the concept used to describe conflicting
objectives in an optimization problem. In chapter 5, the optimization methods that are used to
solve the problem are discussed. In chapter 6, the experimental results of the different case studies
are shown. The following three case studies are evaluated:

1. A single port deterministic system with simulated arrival times and fixed energy consumption.

2. A single port system with uncertainty in energy consumption by both vessels and grid bal-
ancing stints.

3. A single port system with uncertainty in arrival times of the cargo vessels.

In chapter 7, some inference is made about the case studies, and the benefits and shortcomings of
the model representation are discussed with some recommendations for further research.

3Cofano, Marine Traffic
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2 The Model

An inland waterway system is a network of rivers, lakes, and canals that are used by freight vessels.
These vessels are not only connecting the supply and demand via the inland ports and terminals
within the system but are also transporting cargo from and to the system via the larger deep-sea
ports. In general, vessels will carry cargo more economically than can be done by road. Figure 1
shows an example of a system specifically the system within the Netherlands, possibly the most
advanced and intricate inland waterway system in the world, closely connected with neighboring
countries Belgium and Germany. Rotterdam (NL), Amsterdam (NL), Moerdijk (NL), Gent (B),
and Antwerpen (B) are the main deep and coastal sea ports whereto and from a large part of the
cargo will be shipped for international trade. To grasp the core characteristics and parameters of
such a system, the system will be simplified and a model for the system will be created.

Figure 1: The inland waterway system of the Netherlands with all major harbors and waterways that connect
them. Retrieved from BVB website, accessed on 13-08-2023

This chapter describes the problem, the scope, and the mathematical model built to address the
problem. First, the full problem of electrifying inland waterways is described. Then, the scope of
this research is established. Subsequently, the model is devised to simplify the real-world complex-
ities, with its underlying assumptions are elaborated upon. Then, the model sets, parameters and
decision variables utilized in this research is detailed. Then, the constraints on these characteristics
are derived. Finally, the optimization goals are described as objective functions in terms of the
decision variables of the model.
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2.1 Problem Description

We consider the problem of electrifying an inland waterway system from the perspective of harbor
operators. A waterway system, as illustrated in Figure 1, consists of a number of ports and cargo
vessels. The goal is to achieve total electrification of this system. While growing literature describes
the problem of electrifying vehicles, a substantial amount of this literature focuses on regular modes
of transportation such as cars, buses, and bikes. Limited literature is dedicated to the electrification
of ships, especially within the context of an inland waterway system.

While the goal of electrifying the waterway system is clear, some factors and challenges need to
be examined and addressed. According to Muzir et al. [2022], transitioning to electricity in the
context of electric vehicles (EVs) faces five main challenges. Perčić et al. [2021] state the same
main challenges in the specific context of electric ships. The following challenges are mentioned.

Firstly, the issue of the current high market price for both EVs and batteries. The cost of these
components highly influences the adaptation of EVs. Secondly, the limitation of battery capacity,
leading to restricted travel distances for EVs. Thirdly, the inadequate charging infrastructure,
resulting in the lack of widely available charging stations. Fourthly, the extended charging time,
leading to prolonged waiting times. Lastly, the concerns regarding safety and risk, as the technology
is relatively new, there exists a raised concern of EVs not being maintained properly. The battery
and charging components pose potential electrical, mechanical, and chemical dangers.

Due to the large batteries necessary to propel cargo vessels, some additional challenges emerge
such as electricity network congestion for charging stations, reliance on heavy-lifting cranes, and
the willingness of the industry. These challenges imply that there may be limited locations and
vessels that can be transitioned to electricity.

However, these large batteries also create some opportunities to engage in energy trading. Idle
batteries can be used to temporarily store electricity when the prices are low and sell the electricity
when the prices are high. The utilization of these trading options may help to offset the high
transition costs.

2.1.1 Scope

This research aims to tackle the question of inadequate charging infrastructure for electric freight
vessels. This research also only considers a single port in the waterway system that is equipped
with charging stations. Furthermore, the research focuses on a system with only freight cargo
vessels with predetermined routes that are to be transitioned to using battery containers. Figure 2
shows an example of system scope where five freight vessels sail the system. The battery containers
can be considered distinct entities, separate from the freight vessels, and they can serve purposes
beyond supplying electricity to freight cargo ships.

Moreover, the existence of predetermined grid balancing stints is assumed, which have an assigned
length and revenue. The battery containers can be used on-site to accommodate the grid balancing
tasks and add a revenue stream to the charging port at hand.

5



2.2 Model Description

The problem described in the previous section is modeled to simplify the problem and be able the
effectively answer the thesis question. This section is divided into two pieces. First, the assumptions
that are made upon the system are listed and explained. Second, the mathematical formulation is
derived.

Figure 2: Schematic view of a charging port with connected routes on which the electrified vessels could
move through the inland waterways of the Netherlands

2.2.1 Model Assumptions

To effectively model the introduced waterway system, it is necessary to simplify the reality. In this
regard, a set of assumptions is formulated, which are reasonable within the context of this research.
First, we give a list of the assumptions and thereafter it is explained why these assumptions are
reasonable in the context of this research. The following assumptions are made:

Assumption 2.1 (Single Port). There is only a single port that is equipped with all the charging
stations, which all the ships travel through.

Assumption 2.2 (Set Routes). All vessels travel a predetermined route, with the beginning and
end of the routes at the charging port.

Assumption 2.3 (Reducing to Event Time-Space). The full timeline can be reduced to a discrete
set of event times.
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Assumption 2.4 (Asynchronous Event Times). No two events happen simultaneously, they could
occur arbitrarily close to each other.

Assumption 2.5 (No Harboring Times). The harboring practices occur instantaneously. These
activities include moving cargo and batteries as well as connecting and disconnecting batteries to
charging stations.

Assumption 2.6 (No Waiting Times). The vessels do not wait for the batteries to recharge, a
schedule must have a charged battery at the time of arrival for all ships.

Assumption 2.7 (Docking Space). There is no constraint in harboring space at the harbor for
the vessels.

Assumption 2.8 (Battery Equivalence). All batteries are equal and no battery degradation occurs
in the scheduling period chosen for this research.

Assumption 2.9 (Charging Station Equivalence). Charging stations are equal and perform the
same throughout the day.

Assumption 2.10 (Single Battery). All vessel journeys and grid balancing stints use a singular
battery.

Assumption 2.11 (Fixed Grid Balancing Times). The start and end times of the grid balancing
stints are known.

Assumption 2.12 (Fixed Grid Balancing Revenue). The revenue of taking all the grid balancing
stints is known.

Assumption 2.13 (Capturing the Uncertainty). All system uncertainty can be captured in two
parameters: energy consumption uncertainty and arrival time uncertainty.

Assumption 2.14 (Uncertainty is Estimable). The probability distribution of both uncertainties
is known or can be approximated.

Assumption 2.1 refers to the scope of this research being limited to a system with a singular charging
port. Assumption 2.2 ensures that the vessels are decently predictable and the distribution of
their arrival times can be estimated on historical data. The system this research is interested in
transitioning is defined by these two assumptions. In practice, such a system is retrieved from
the full Dutch waterway system as seen in Figure 1. Extract a number of vessels that sail a
predetermined back-and-forth route with a common loading port as seen in Figure 2. From this
simplified network, we are only interested in the activities at the port where the charging stations
can be placed. Figure 3 shows an example of how the port could be located. The figure also shows
the locations where a battery container can be stationed: on a charging station, in storage, or on
a vessel.

Assumption 2.3 reduces the continuous timeline to a viable event time-space on which the system
can be modeled. Due to the reduction from a continuous timeline to a discrete event time-space,
it is reasonable to assume Assumption 2.4, since the probability that two events occur exactly at
the same time in a continuous timeline equals zero.

Harboring times are included in the voyage time for this research. Therefore, Assumption 2.5 is
introduced to have a single event where batteries are switched. A charged battery schedule that is
produced by operators needs a battery to be ready at the moment that this event occurs otherwise
the schedule is deemed not suitable. This is ensured by Assumption 2.6.
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Figure 3: Schematic view of a fictional charging port where the positional nodes of the batteries are shown.
(Note that this figure is not to scale.)

The spatial limitations of the system are excluded from the scope. Assumption 2.7 guarantees that
these limitations do not impact the scheduling process for the charging port.

Assumption 2.8 is reasonable, because the battery is viewed as an input for this research. Hence,
the batteries are assumed to be fixed and equal for this problem. The same argument holds for the
charging stations in Assumption 2.9.

Assumption 2.10 ensures that the charging levels at returning the battery can be determined. Given
degradation or multiple batteries, the exact electric charge left in the batteries can be very hard to
know.

Grid balancing or trading opportunities are also considered to be an input in this research. As-
sumption 2.11 establishes the specific time frame in which the balancing occurs. These times are
agreed upon far in advance.

As mentioned in the introduction, two uncertainties are considered in this research: energy con-
sumption uncertainty and arrival time uncertainty. A few assumptions about the uncertainties of
the system are made. As mentioned in the introduction, supply and demand, mass transportation,
and the weather are not directly included in the scope of this research. However, these uncertainties
indirectly influence the uncertainties that are included in the scope. Assumption 2.13 assumes that
they are fully captured by the uncertainties included, such that the model is a full representation
of the problem.

To be able to model the uncertainties included in the scope, Assumption 2.14 ensures that their
probability distribution can be determined. Then, a model can be built that includes the uncer-
tainties. Given all these assumptions, a mathematical formulation that serves as a foundation for
the model can be made for an electrified inland waterway system.
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2.2.2 Mathematical Formulation

The waterway system under the previously stated assumptions can be described as a event time-
space graph G = (N , T ,At), where the set of nodes N consists of all the locations a battery can be
stationed. Therefore, N is divided into three subsets: ships, storage, and charging station stations.
The set T is the set of the discrete time-event space indexed by t. There are three types of events
in the model:

1. the moment a ship arrives at the charging port;

2. the moment a grid balancing contract starts;

3. the moment a grid balancing contract ends.

The first two events are seen as the start of a battery task. The tasks end if the same ship returns
or if the same grid balancing contracted is ended, then the battery returns to the charging harbor
system. The choice to include the end of a grid balancing task and not the end of a vessel task is
made due to the optionality of grid balancing. Grid balancing stint can be viewed as an arbitrary
revenue option and does not continuously in need of a battery.

The following decisions are made throughout the system:

1. At the start of a task, ship arrives or grid balancing stint, the decision is taken to allocate a
battery to a vessel or optionally to grid balancing;

2. Between time events, a decision is taken to allocate charging time to batteries. This is
facilitated by the instant swapping of batteries (see Assumption 2.5), which allows multiple
batteries to be attached to the available charging stations within the time delta.

The set of arcs At = (n1, n2)
t represents the options for moving a battery at time t. The possibilities

are limited to moving a battery to the just-arrived ship, to storage, or to a charging station. The
available arcs are highly dependent on the current time. For example, a battery can only be placed
on a ship if that ship is harbored at the current port.

Figure 4 shows the theoretical time-event space of a single harbor system. This timeline represents
the information a harbor planner has in real-time. A certain distribution gives the arrival times of
ships over a time period. This results in a confidence interval for the time in which the ship will
arrive at the port. is often graphically represented as a box as seen in Figure 4.

Figure 5 shows the time-event space in hindsight. In hindsight, a perfect solution can be calculated.
Planning strategies can be compared to this ideal solution for the performance of the decisions.
This timeline is equivalent to the time event space in a deterministic version of the model.
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Figure 4: The theoretical timeline of a port operator that makes the allocation decisions of the batteries.
The arrival times of the ships are known to an extent. The further a vessel is from arriving at the port the
more uncertain the arrival time is for the port operator. The grid balancing times are known beforehand
and are therefore exactly represented. The length of the timeline is called the event horizon, this is the event
time-space that includes all the events for which an operator plans.

Figure 5: A realization of a three-day timeline at the charging harbor. This is a scenario that is only known
in retrospect. It corresponds to the deterministic version of the timeline seen in Figure 4. This is a stylized
case where the arrival times are exactly an hour apart. A timeline can be created by Monte Carlo sampling
from the time uncertainty boxes seen in Figure 4.
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2.3 Sets, Parameters, and Variables

In this section, we present the model and its attributes that form the basis of the mathematical
problem formulation. First, the relevant sets associated with the problem are defined. Next, the
known parameters and uncertain parameters pertaining to these sets are provided. Finally, we
outline the decision variables that can be modified by the port operators.

2.3.1 Sets

The problem’s main objects in the system are described in the following sets:

Table 1: Sets

Sets Indices Descriptions

S s Ships
G g Grid balancing spots
B b Batteries
T t, t1, t2 Event time-space
Ta ta The time events where a ship arrives (ts is the subset of the arrival times of vessel s)
Tg tg The time events where a grid balancing spot starts

Note that Ta and Tg, by Assumption 2.4 are disjoint sets that make up the event space T , i.e.
Ta ∪ Tg = T with Ta ∩ Tg = ∅. Furthermore, the continuous timeline is discretized with a finite
number of events (#T ), then it is reasonable to assume that no two events happen exactly at the
same time because the probability of two simultaneous events at a continuous timeline equals zero.

2.3.2 Known Parameters

The attributes of the system that are known before a schedule is made and are included in the
research are:

Table 2: Parameters without uncertainty

Parameters Descriptions

tmin A virtual starting point at the very start of the timeline
tmax A virtual ending point at the very end of the timeline
C−
t The minimum charge for a battery allocated at time t, greater than Et (see Table 3)

C+
t The maximum charge for a battery allocated at time t, typically set to one

[C−
t , C+

t ] The interval of charge level that a battery must contain to be allocated at time event t
Tg The timing of time-event tg
d The charging speed if a battery is connected to the grid for charging
e The self-discharge rate
Sb The starting position of battery b
c0b The starting charge level of battery b
Rtg The revenue of grid balancing spot tg

2.3.3 Parameters With Uncertainty

Not all parameters are known at the time of scheduling. Some parameters are uncertain. There
are two types of uncertainties included in this research:

11



• uncertainty in the percentage of energy that is used to complete a voyage,

• uncertainty in the arrival times of the vessels, i.e. the timing of an arrival event in the event
time-space (ta).

The following parameters are dependent on the uncertainties stated above:

Table 3: Parameters with uncertainty

Parameters Descriptions Uncertainties

Et The energy consumption of the event starting on time t Estimated normal distribution
Ta The ETA prediction of arrival a with uncertainty Distribution based

historical data
∆t The time difference between event t and event t− 1 Dependent on Ta

At1,t2 The matrix that shows the relation of Dependent on the ordering
battery availability and time events of time events
(see Appendix B.1 for the full definition)

2.3.4 Variables

The following variables are the attributes of the system that can be changed or chosen by the port
operatives:

Table 4: Variables

Variables Ranges Descriptions

xtb {0, 1} The decision variable that assigns a battery b at time t
ctb [0, 1] The charge level of the battery b at time t
wt
b [0, 1] The decision variable that shows the percentage of time battery b is charging

time frame [t− 1, t]
yb {0, 1} The variable that indicates whether or not battery b is used

somewhere in the schedule
B N The number of batteries used.
M N The number of charging stations used.

The triplet of variables (x,c,w) will be revered to as a schedule. Furthermore, the pair (B,M) will
be called the infrastructure of the schedule.

2.4 Constraints

The sets of constraints are built up systemically. First, we start the set of constraints dependent
on only the primary decision variable xtb that assigns batteries to either vessels or balancing spots.
Then, we move up to the constraints on the charge level variable ctb; the charging wt

b; the starting
conditions; and lastly the infrastructural variables yb and M .

2.4.1 Battery Allocation Constraints

Three constraints relating solely to the primary decision variable are needed. Firstly, we assume
that all ships need a single battery to do their route. Therefore,∑

b

xtab = 1, ∀ta (1)
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ensures that a single battery is used at every ship’s arrival.

Note that this assumes that a single battery is used per ship (Assumption 2.10). This is not
necessarily true in the real world. In that case, this constraint should be set to a parameter that
denotes the batteries necessary for this vessel.

Secondly, we assume that a single battery is necessary for every grid balancing spot. Therefore,∑
b

x
tg
b ≤ 1, ∀tg (2)

ensures that at most a single battery is used for a grid balancing spot.

Note that this assumes that a single battery is used per balancing spot (Assumption 2.10). To
be able to add trading opportunities that require multiple batteries an adjustment in the model is
required because the Rt does not account for multiple batteries.

Lastly, batteries cannot be used if they are still in use somewhere else. Therefore,∑
t

xtbAt1,t ≤ 1, ∀b, t1 (3)

ensures that if a battery b is assigned at time t, it is not available for the following few assignments
until it has returned at the first zero in At1,t2 at row t.

2.4.2 Charge Level Constraints

We introduce two constraints related to the charge level ctb given the xtb. We assume that vessels and
energy companies agree to a contract that includes a minimum charge level required. Therefore,

ctb ≥ C−
t · xtb, ∀b, t. (4)

This constraint ensures a battery chosen at time t has enough charge for the ship or balancing spot.

There also exists a maximum for the charging level of the allocated battery:

ctb ≤ C+
t · xtb + (1− xtb), ∀b, t (5)

the latter part again ensures that this constraint only holds if battery b is assigned at time t.
Normally the C+

t is equal to 1 for a vessel arrival time (t ∈ Ta) because there is no disadvantage to
having a battery with too much charge on a vessel. However, for grid balancing there may be an
upper limit to the charging level of the battery because they might need to store more energy in
the battery that is lent for grid balancing.

Also, batteries are used if they are assigned by xtb, this results in a shift in charge level that takes
effect directly after the battery is assigned. Therefore,

ct+1
b ≤ ctb − Etx

t
b − e∆t+1 + (1− xtb), ∀b,∀t ∈ T /{tmax} (6)

this ensures that the vessel trip or balancing stint consumes the amount that is required from the
allocated battery (Et). The term (1− xtb) of the constraint ensures that the constraint only holds
if the battery is chosen at time t, otherwise the left-hand side of the constraint will be set higher
than the maximum range of ct+1

b , which is equal to one. The term e∆t+1 is the standard discharge
of the battery.

Note that the system can drop energy at will, due to the inequality. However, there is no
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2.4.3 Charging Decision Constraints

We assume that the charging attributes of the pair-wise grouping batteries and charging stations
are the same (2.8, 2.9). The most a battery can be charged at a station is the charging speed d
multiplied by the time the battery is charging. The same statement holds for self-discharging, the
self-discharge speed e multiplied by the time a battery is not charged.

ct+1
b ≤ ctb + d∆t+1wt+1

b − e∆t+1(1− wt+1
b ), ∀b,∀t ∈ T /{tmax}, (7)

this gives batteries the option to be charged. The higher wt
b is set the more time the battery b is

spent charging in the time frame (t, t + 1). Note that a battery on a vessel also discharges at the
rate of e.

Also, a battery cannot be charged if it is used on a ship or if it is reserved for grid balancing.
Therefore,

xt1b

∑
t

(At1,t) ≤
∑
t

((1− wt
b)At1,t), ∀b, t1, (8)

this forces wt
b to be zero if the battery b is away and gives the possibility to charge if the battery

is available.

2.4.4 Starting Conditions

The starting conditions for the batteries are also specified in the model. Two conditions are defined
in the model, a starting position and a starting charge level. Therefore, we have the following
constraints:

xtb = 0 and wt
b = 0, b, t|t ∈ tmin ≤ t < tSb

, (9)

where tSb
is equal to the first arrival time of vessel Sb and equal to tmin if the starting position is

the charging port. This constraint prevents the usage of the batteries where the starting position
is on a vessel.

ctmin
b <= c0b , ∀b, (10)

this ensures that optimization starts with almost the predefined starting charge levels.

2.4.5 Infrastructural Usage Constraints

The infrastructure also set limitations on the system. The system needs to keep track of how many
batteries are in use and the batteries charging may never exceed the number of charging stations
present. Therefore, we have the following constraints:

Nyb ≥
∑
t

xtb, ∀b, t (11)

where B is large enough. This ensures yb is set to one if b is used somewhere in the system.
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∑
b

(wt
b +

∑
tg

x
tg
b Atg ,t) ≤ M, ∀t, (12)

this ensures that the amount of charging stations M is larger than the number of charging stations
used.

2.5 Objective Functions

In this research, we are interested in two questions:

1. How many battery containers and charging stations are needed to fully transform a waterway
system?

2. How do you optimally plan the battery containers and charging stations to make as much
optimal profit from grid balancing?

These two questions lead to two distinct problems with different objective functions. The first
question minimizes the number of batteries and charging stations for which a feasible schedule
exists. This problem is a bi-objective minimization of both the number of batteries and charging
stations. The second question maximizes the revenue gained from accepting the grid balancing
stints.

2.5.1 Feasibility objective functions

The first goal of this research is to determine the infrastructure necessary to realize the transition of
an inland waterway system to make use of only electric-powered vessels. The infrastructure consists
of batteries and charging stations (B,M). Therefore, two objectives determine the minimal value
for respectably both. The first objective function minimizes the number of batteries used in the
schedule.

minimize
∑
b

yb

subject to constraints (1, 3 - 12)

(13)

where B =
∑

b yb. The second objective function minimizes the number of charging stations used
in the schedule.

minimize M

subject to constraints (1, 3 - 12).
(14)

This problem will be referred to as the Feasibility Problem (FP), the full mathematical description
can be found in Appendix B.3. Objectives (13) and (14) are conflicting in the sense that with
more charging stations, there is the possibility that fewer batteries are necessary. There is a
trade-off between these two objectives. Therefore, if the objectives are combined we have a multi-
objective optimization with conflicting objective functions. The bi-objective optimization has a set
of solutions that are Pareto optimal, this is defined and explained in chapter 4. Note that there is
no incentive to do any grid balancing. In the context of FP, it is safe to assume no optional grid
balancing spots will be used in these combined objectives.
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2.5.2 Revenue objective function

In the system, shipping always has priority over grid balancing. However, the decision to lease
the batteries to the network operators should be taken as often as possible for optimal revenue.
The objective of the optimization will be to maximize the sum over all grid spots. Therefore the
optimization problem becomes:

maximize
∑
tg

∑
b

Rtgx
tg
b

subject to constraints (1 - 9, 12) .

(15)

This problem will be referred to as the Revenue Problem (RP), the full mathematical description
can be found in Appendix B.4.
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3 Complexity Analysis

In this chapter, we will discuss the complexity features and approximation methods of the problem
described in Chapter 2. The complexity classes are all defined on the set of decision problems. In the
complexity section, we will prove that the decision version of FP is NP-Hard and that FP without
charging is strongly NP-complete. In the approximation section, we discuss the best bounds and
approximations that exist in the literature on comparable decision problems. The definitions of the
complexity classes and the problems used for the reduction can be found in Appendix A.

3.1 Complexity

This section discusses the complexity classes of the decision versions of both problems. First, the
Feasibility Problem is analyzed by comparing it to the Bin Packing Problem. Then, the Revenue
Problem is compared in complexity to the Feasibility Problem.

3.1.1 Complexity of the Feasibility Problem

To investigate the complexity of our feasibility problem (FP), we rewrite the problem as a decision
problem (FP-dec). Suppose you are given a certain amount of batteries and charging stations, a
yes-instance of FP-dec denotes the existence of a schedule (x,c,w) for the batteries over time such
that all vessels can be facilitated with a battery. A no-instance of FP-dec denotes the impossibility
of such a schedule.

Definition 3.1 (FP-dec). For a given B,M the decision version of the FP problem can be for-
mulated by the question: “ Given B batteries (yb = 1 for a set of b with cardinality B) and M
charging stations, does a schedule exist such that all the ships are provided with a charged battery
at the time of arrival?”

FP-dec(T , Ct, d, e, B,M) =


∃x with corresponding c,w

such that constraints (1, 3 - 12) hold
given that

∑
b yb = B and M fixed

 (16)

This can be written out to be the following system:
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Find a schedule(x,w,c) such that:∑
b

yb = B∑
b

xtb = 1∑
t

xtbAt1,t ≤ 1

ctb ≥ Ct · xtb
ct+1
b ≤ ctb − Etx

t
b + (1− xtb)

ct+1
b ≤ ctb + d∆t+1wt+1

b − e∆t+1(1− wt+1
b )

xt1b

∑
t

(At1,t) ≤
∑
t

((1− wt
b)At1,t)

Nyb ≥
∑
t

xtb

M ≥
∑
b

wt
b

xtb ∈ {0, 1}
ctb, w

t
b ∈ [0, 1]

(17)

Firstly, we show that FP-dec is in NP, by showing it is verifiable in polynomial time. Secondly, we
prove that FP-dec is strongly NP-Hard. We use a polynomial time reduction to the Bin Packing
Problem (BBP) and its polynomial time reduction to the 3-partition problem.

Theorem 3.2. FP-dec is in NP

Proof. Suppose we have a yes-instance of FP-dec. Then, a schedule (x,c,w) with B batteries and
M charging stations exists. Since all constraints in FP-Dec are linear and the number of constraints
is linear to the input size. The schedule (x,c,w) extracted from the yes-instance can be filled in the
constraints and objective function in polynomial time, to verify the objective. Therefore, FP-dec
is in NP.

Before delving into proving that FP-dec is strongly NP-Hard, two preliminary lemmas are defined
and proven. These lemmas form the foundation of the proof that FP-dec is NP-Hard.

Given an instance of the BPP as defined in A.6. We are given a set of items S = 1, · · · , n indexed
by i that has size si ∈ (0, 1] and a set K = 1, · · · , n of knapsacks (bins) indexed by k with capacity
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one. Then a possible mathematical formulation of BBP formulated by Martello and Toth [1990] is:

minimize
n∑

k=1

yk

subject to
n∑

i=1

sixki ≤ yk, ∀k.

n∑
k=1

xki = 1, ∀i.

yk ∈ {0, 1}, ∀k.
xki ∈ {0, 1}, ∀k, i.

Definition 3.3 (BBP-Dec). The decision version of BBP can be formulated by the following
question. “Does a packing exist such that all items i ∈ I with sizes s(i) are contained in the K
bins?”. A yes-instance denotes the existence of such a packing, and a no-instance the reverse.

A mathematical formulation for BBP-Dec can be constructed from the Martello and Toth [1990]
formulation. This results in the following linear system for BBP-Dec:

Find (y,x) such that:∑
k

yk = K

n∑
i=1

sixki ≤ yk, ∀k.

n∑
k=1

xki = 1,∀i.

yk ∈ {0, 1},∀k.
xki ∈ {0, 1},∀k, i.

(18)

Lemma 3.4. FP-Dec is polynomial-time reducible to BPP-Dec

Proof. The following proof shows that BBP-Dec is a special case of the FP-Dec, with no charging
or discharging (d, e = 0, wt

b = 0) and a singular ship (matrix A is the identity matrix). Also, the
feasible charge range to allocate a battery at time t, [C−

t , C+
t ], will be set to Et.

Consider the system given in equation 17. Now we will set all the charge and discharge parameters
to 0. This leaves the following system of equations:
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∑
b

yb = B∑
b

xtb = 1∑
t

xtbAt1,t ≤ 1

ctb ≥ Ct · xtb
ct+1
b ≤ ctb − Etx

t
b + (1− xtb)

ct+1
b ≤ ctb

yb, x
t
b ∈ {0, 1}
ctb ∈ [0, 1]

Now, we assume that all batteries start with a full charge. This problem above states that at
every time step a certain amount of power should be taken from a battery to facilitate the ship’s
next voyage. This can be reformulated by stating that the Et is the power of the task t and that
this power should be removed from a battery b using a decision variable xtb. The formulation is
equivalent to the following representation with the bookkeeping variable ctb eliminated. This results
in the following system of equations:

∑
b

yb = B

n∑
t=1

Etxbt ≤ yb

n∑
b=1

xbt = 1

yb, x
t
b ∈ {0, 1}

The formulation is the same as the BPP-dec stated in Equation (18), where the set of tasks T
is equivalent to the set of items S with their respectable sizes Et equivalent to si. Also the set
of batteries B is equivalent to the set of bins K. Thus, if we find a yes-instance of the FP-Dec
problem we also find a yes-instance for the arbitrary BPP-Dec problem. All the reductions are
made in polynomial time. Therefore, every instance of FP-Dec is reducible to an arbitrary instance
of BPP-Dec in polynomial time. If there exists a polynomial-time algorithm that solves FP-Dec,
the algorithm would also solve BBP-Dec.

Lemma 3.5. The BBP-Dec is strongly NP-Hard

Proof. This is proven by the reduction of BBP-Dec to the 3-Partition Problem (3PP). Given an
instance Î of the 3PP as defined in A.5. Garey and Johnson [1979] define the instance of can be
written as follows: Given a sets of items I with 3K elements and a β ∈ N and a mapping w : I → N
such that β/4 < w(i) < β/2 and

∑
i∈I w(i) = kβ. The decision question of the 3PP : “Does a

partition exist of tuples of size three such that all sums of the sets equal β?”.
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Define s(i) = w(i)
β . Note that 1/4 < s(i) < 1/2, by the bounds defined on w(i). Consider the

BBP-Dec instance that consists of K bins and items i with their respective sizes set to s(i), with
the decision question: “Does there exist a packing such that all items are packed within K Bins?”.
This instance of BBP-Dec is equivalent to the Î instance of 3PP, because exactly 3 items must
be packed without any room left in all K bins to get a yes-instance. Thus, if a solution for this
instance of BBP-Dec is found, there follows a solution for Î instantly, i.e. within polynomial-time.
Therefore, BBP-Dec is reducible to 3PP in polynomial time.

Now, it is sufficient to prove that 3PP is strongly NP-Hard. That proof can be found in Garey and
Johnson [1979]. 3PP is described to be the ’basic’ NP-complete problem in the strong sense.

Using Theorem 3.2 and Lemmas 3.4 and 3.5, we can prove the following theorem:

Theorem 3.6. FP-Dec is strongly NP-complete

Proof. By Definition A.11, a decision problem is said to be strongly NP-complete if it is contained
in NP and is strongly NP-Hard. The first part of the definition is established by Theorem 3.2.
Using Lemma 3.4, we can conclude that FP is polynomial-time reducible to BPP-dec. Because of
the transitive property of polynomial-time reducibility and Lemma 3.5, we know that FP-Dec is
polynomial-time reducible to 3PP and therefore strongly NP-Hard.

3.1.2 Complexity of the Revenue Problem

Similar to the previous section, we can prove that the decision version of RP is also strongly
NP−Complete.

The decision version of the RP includes an extra parameter R that represents the minimum revenue
to make the problem a ’yes’-instance. Therefore, the question of the RP-dec becomes: “Does a
schedule exist such that the revenue is greater than R?”.

Definition 3.7 (RP-Dec).

RP-Dec(T , Ct, d, e, B,M,R) =


∃x with corresponding c,w

such that constraints (1 - 12) hold given that∑
b yb = B, M fixed and

∑
tg

∑
bRtgx

tg
b ≥ R

 (19)

The procedure to prove the complexity is identical as done for FP-Dec. Firstly, we show that
RP-dec is in NP, by showing a yes-instance is verifiable in polynomial time. Secondly, we prove
that RP-dec is strongly NP-Complete. We use a polynomial time reduction to FP-dec.

Theorem 3.8. RP-dec is in NP

Proof. Suppose we have a yes-instance of RP-dec. Then, there exists a schedule (x,c,w) with B
batteries and M charging stations with a revenue greater than R. Since all constraints in RP-Dec
are linear, we can fill the schedule (x,c,w) in the provided by the yes-instance into the system
above in polynomial time. Therefore, RP-dec is in NP.

RP-Dec is a direct extension of FP-Dec. The extended part consists of the fact that the schedule
does not only need feasible with K batteries and M charging stations but also has to generate a
certain amount of revenue R. Therefore, a direct reduction to FP-Dec exists and we can prove that
RP-Dec is also strongly NP-Complete.
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Theorem 3.9. RP-Dec is strongly NP-complete.

Proof. By Definition A.11, a decision problem is said to be strongly NP-complete if it is contained
in NP and is strongly NP-Hard. The first condition is satisfied by Theorem 3.8.

Given an instance Î of FP-Dec as stated in Definition 3.1. Consider the instance I of RP-Dec where
everything is the same as in Î with additionally Rtg = 0 for all tg and R = 0. Then, the constraint∑

tg

∑
bRtgx

tg
b ≥ R always holds and the remainder of instant I equals Î. If there would exist a

polynomial-time algorithm that solves RP-Dec it would also solve FP-Dec.

Since FP-Dec is strongly NP-Hard by 3.6, RP-Dec is also strongly NP-Hard.

3.2 Approximation

After establishing that both problems are NP-Complete, it can be concluded that no polynomial
time algorithms exist to find an optimal solution for all instances. However, a follow-up ques-
tion remains: what polynomial algorithms do exist that find nearly optimal solutions to the two
optimization problems? Near-optimal problems are called approximation algorithms. The approx-
imation algorithms for our problem are in the form of a constant-factor approximation scheme.

Definition 3.10 (Constant-factor Approximation Scheme (CFAS)). CFAS is a polynomial-time
algorithm with a factor γ > 0 that solves a problem within a factor of γ ≥ 1 from its optimal for
all instances of the problem. If for a problem P there exists a polynomial time algorithm within
γ ·OPT (I) for all instances I, we say that P has CFAS of γ.

This section provides lower bounds and an approximation method for the FP that serve as upper
bounds to the performance of approximation algorithms for this problem.

3.2.1 Lower bound of approximation algorithms of the Feasibility Problem

The Feasibility Problem as seen in the previous has a close relation to bin backing. Therefore, we
look at approximation algorithms for BBP. Firstly we look at the lower bounds found for BBP,
then an algorithm is given that serves as an upper bound for the best CFAS.

Theorem 3.11. BBP has no CFAS smaller than 3/2 For any ϵ > 0, there is no approximation
algorithm having a guarantee of (3/2− ϵ) ·OPT (I) for all instances I of the bin packing problem,
assuming P ̸= NP.

Proof. This proof is inspired by Vazirani [2003]. Consider an instance I0 of the Partition problem
A.4, with S = s1, · · · , sn. Assume that there exists a polynomial-time approximation algorithm A
for BBP such that A(I) < 3/2OPT (I) for all instances I of bin packing. Without loss of generality,
we can assume that A(I), OPT (I) > 1 for all I otherwise there is nothing to optimize. It holds for
all I, thus it holds for Î defined by the capacity of the bins (c) is equal to

∑
i si/2. Now consider two

types of answers the algorithm can produce. First A(Î) = 2, then the I0 is a yes-instance because
a partition over two sets (bin 1 and bin 2) can be made. On the other hand if A(Î) ≥ 3, then
we know that 3 < 3/2 · OPT (Î), i.e., OPT (Î) > 2, then the I0 is a no-instance because the set S
cannot be partitioned. It follows that we can solve the Partition problem in polynomial-time with
algorithm A. This is a contradiction if P ̸= NP because the Partition problem is a NP problem,
proven by Garey and Johnson [1979].
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Theorem 3.12. FP has no CFAS lower than 3/2 for the number of batteries objective For any
ϵ > 0, there is no approximation algorithm having a guarantee of (3/2 − ϵ) · OPTB(I) for all
instances I of the FP, assuming P ̸= NP. Here OPTB(I) is the optimal number of batteries given
a number of charging stations for instance I.

Proof. Assume that there exists a polynomial-time approximation algorithm A for FP such that
A(I) < 3/2 · OPTB(I) for all instances I of FP. The same reduction steps can be done as in
the proof of Lemma 3.4 to show that algorithm A would also solve all instances J of BBP with
A(J) < 3/2 ·OPT (J). Theorem 3.11 states that this is not possible if P ≠ NP.

3.2.2 First Fit Approximation algorithm for the Feasibility Problem

We construct a first-fit algorithm for FP. This algorithm always chooses the first in line to allocate
and charge. The new batteries are stored at the end of the line. This is an extension of the first-fit
algorithm used for BBP that can be found in Appendix A.14.

Algorithm 3.13 (First-fit Approximation algorithm FP). Given a system described in Section 2.

1. Start with a singular battery b on shore with a return time (Timeb) set to T0, and chargingtimeb
set to 0. The number of charging stations M = 0.

2. For all t in T do:

(a) If the charging level ctb1 of the first battery b1 is lower than C−
t :

i. If (Tt − Timeb1 − chargingtimeb1) ∗ d > C−
t − ctb1, add an extra charging station to

the system and increase ctb with (Tt − Timeb − chargingtimeb1) ∗ d

ii. Else, add an extra battery to the system with a full charge and set the battery to the
first battery.

(b) Allocate the first battery b1 with ct+1
b1

= ctb1 −Et to the arrived vessel and set the battery
b that comes in to be the last battery and set Timeb to be the current time and the
chargingtimeb set to 0.

(c) Charge batteries from front to back ct+1
bi

= d · ∆t + ctbi for all i ≤ M . Also, add the
charging time to the first i batteries until full then swap to the next battery left in the
row. The charging time is trickled down to the following batteries.

3. Return B to be the number of batteries and M the number of charging stations.

The strategy of this approximation battery is ordering the batteries by charge level and matching
them to their respective arrival times, the first battery is matched with the first arrival. In the event
of a failure, i.e. no battery present with enough charge to facilitate the swap, a rapid troubleshooting
calculation is performed to determine whether a new battery or a new charging station is added to
the system.
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4 Pareto Optimality

The Feasibility Problem described in Chapter 2 takes two objectives into account that have con-
flicting features. This conflict stems from the realization that adding more batteries to the system
may result in using fewer charging stations. If the feasibility objectives (13, 14) are combined
in a bi-objective optimization, the conflict likely results in that no global optimal exists for the
problem. There is a trade-off in optimality within the two objectives. Therefore, we construct a
set of solutions which are Pareto optimal. This set consists of locally optimal solutions of the FP.
This chapter consists of two sections. The first section formally defines Pareto optimality for a
multi-objective optimization problem. The second section describes two methods that construct
the Pareto optimal set, the so-called Pareto front, namely the one-by-one optimization method and
the weighted sum method.

4.1 Definitions

Pareto optimality only occurs when there are conflicting objective functions that should be si-
multaneously optimized. Therefore, this optimality only exists in a multi-objective optimization
problem. This section is based on Coello et al. [2007].

Definition 4.1 (Multi-objective optimization problem (MOP)). The multi-objective problem of
dimension d in the general form can be written as:

minimize:

F (x) = [f1(x), f2(x), · · · fd(x)]
subject to:

gj(x) = 0, j ∈ {1, · · · , n1}
hl(x) ≤ 0, l ∈ {1, · · · , n2}
xi ∈ [li(x), ui(x)], i ∈ {1, · · · ,m}

(20)

where xi set of variables with lower limit li and upper limit ui and where the functions fk, gj , hl :
Rm → R,∀k, j, l. The general multi-objective problem exerts a feasibility space with criterion space.

Definition 4.2 (Feasibility space). The feasibility space is the set of feasible inputs of an optimiza-
tion problem. Let the feasibility space of the multi-objective problem be X, i.e.

X = {x|gj(x) = 0 and hl ≤ 0 and xi ∈ [li(x), ui(x)]}

Definition 4.3 (Feasibility criterion space). The range of the feasible space in the objective func-
tion is called the feasibility criterion space. Let the feasible criterion space of the multi-objective
problem be Z, i.e.

Z = {F (x)|x ∈ X}

On these feasibility spaces, the formal definition of Pareto optimality Pareto [1906] can be defined
for the generalized MOP problem 4.1.

Definition 4.4 (Pareto optimal). A point x∗ is called Pareto optimal in the MOP problem 4.1 if
and only if there does not exist another x ∈ X such that fk(x) ≤ fk(x

∗
k), for all k = 1, 2, · · · , d and

there is at least one k such that fk(x) < fk(x
∗
k).
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Definition 4.5 (Pareto Optimal Set). The Pareto Optimal Set P∗ of the MOP problem 4.1 is the
set of all Pareto optimal solutions.

Definition 4.6 (Pareto front). The Pareto front PF∗ of the MOP problem 4.1 is the set of objective
vectors of the Pareto Optimal Set, i.e.

PF∗ = {u = F (x)|x ∈ P∗}. (21)

4.2 Methods To Find Pareto Front

Coello et al. [2007] describe an extensive overview of various methods that are used to approximate
the Pareto front. Two of these methods are considered in this thesis to find the Pareto front of the
FP, namely one-by-one optimization and weighted sum. These methods are selected because they
are easy to implement and suffice for our two-dimensional multi-objective optimization problem
FP. Both their advantages and disadvantages and limitations are discussed, together with their
application in the context of FP. As a result, the one-by-one method is identified as the preferred
approach for the remainder of this research.

4.2.1 One-by-one Optimization Method

The one-by-one optimization is an iterative method that involves marginal optimization of all
objectives. The main idea of this method is to optimize a single objective while keeping the other
objectives fixed.

Firstly, the objectives are ordered in a sequence. Then, one by one, according to the sequence,
all objectives are optimized fixing the previously optimized objectives to their optimal value. This
method will always end in a Pareto optimal point because no objective function can be improved
upon without worsening another. The resulting solution obtained from the method is highly de-
pendent on the order of the sequence of objectives, a different order might end up in a different
Pareto optimal solution. To construct a Pareto front, all the solutions of all the orderings of the
objectives are combined.

The method finds all of the individually optimal solutions for all functions. A flaw of this method
is that it misses trade-off solutions, for example, the solutions where no objective reaches their
individual optimal value.

To incorporate trade-off solutions into the iterative method, an extension can be introduced. This
extension relaxes the previous optimization criteria to explicitly examine if other optimizations can
be improved without necessarily reaching their marginal optimal or previously discovered optimal
solutions. This extension is particularly suitable for problems with a discrete solution space Z,
as there is a finite set of options available to achieve a trade-off solution. By exploring all these
optimization possibilities, we ensure the discovery of the complete Pareto front.

The implementation of the method for FP is apparent. There are only two objectives thus only
two sequences of the function, first the battery optimization and the charging optimization second
and vice versa. Then, one of the optimal values of an objective can be relaxed, i.e. by adding an
extra charging station. The other objective is optimized once more to potentially uncover trade-off
solutions. The charging stations are in a lower volume than the number of batteries, therefore
this objective can be relaxed from its marginal optimal to the optimal reached by the optimization
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where the batteries are prioritized. Algorithm 4.7 shows the full method as applied to FP. This
tactic uncovers the full PF∗ in a few FP optimization runs.

Algorithm 4.7 (One-by-One optimization method for FP to construct the Pareto front). First,
we start with battery priority, then charging station priority. Then, all the intermediate options
are checked.

1. Battery priority optimization (BPO):

(a) Optimize f1(x) =
∑

b yb given infinite charging stations, giving an optimal solution x∗,
and set B1 = f1(x

∗).

(b) Set yb = 1 for b ∈ {1, · · · , B1} and yb = 0 for b > B1. Optimize f2(x) = M , giving an
optimal solution x∗, and set M1 = f2(x

∗).

2. Charging station priority optimization (CSPO):

(a) Optimize f1(x) = M given a large enough number of batteries, giving an optimal solution
x∗, and set M2 = f1(x

∗).

(b) Set M = M2. Optimize f2(x) =
∑

b yb, and set B2 = f2(x
∗).

3. Intermediate solutions, for M1 < M < M2 (counted by j) do:

(a) Set Mj+2 = M .

(b) Optimize fj+2(x) =
∑

b yb, giving an optimal solution x∗, and set Bj+2 = fj+2(x
∗).

4. Set PF∗ = {(Ml, Bl)|l ∈ {1, · · · , j + 2}}

4.2.2 Weighted Sum Method

Another often-used method to find Pareto optimal solution is the weighted sum method. It involves
assigning weights to the different objective functions and combining them into a single objective
function that the optimization can solve. The assignment of the weights is done on the preference
of the decision maker, often the prices or penalties of certain objectives. We introduce weights
wi ∈ [0.1] for all objective functions fi in problem 4.1 and transform the objective function minF (x)
into min F̂ (x) =

∑d
i=0wifi.

In the context of FP, its objective function transform to be:

minw0M + w1

∑
b

·yb. (22)

The solution of this optimization gives the Pareto optimal point according to the decision maker’s
preference. The Pareto front can be generated by systematically varying the weights. However,
Marler and Arora [2004] state that if the feasibility criterion space Z is non-convex, there may be
Pareto optimal solutions that the method cannot find. FP is a scheduling problem and therefore
contains integer decision variables. This implies that the Z of FP is non-convex and therefore some
Pareto optima might not be found.

Preferably, the weights should be set to their respectable investment costs. The costs would most
likely fully influence the preference of the decision-maker. However, these costs are unknown
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and estimation is out of scope for this research. It is hard to estimate which weights push the
optimization to what solution. The one-by-one solution is a method to estimate the effect of the
weights on the system and is therefore more suitable for this problem. For this reason, we select the
one-by-one method as our method of choice. The following chapters will only use the one-by-one
optimization method to deal with the bi-objective optimization problem FP.
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5 Methodology

The two optimization problems described in Chapter 2 can be represented as stated in Appendix
B.3 and B.4. These representations are specifically made to describe a mixed integer linear problem
(MIP). Given a timeline and all the parameters (without any uncertainty), a solver can directly
solve the instance of both problems and provide an optimal answer with a schedule that satisfies
the constraints of the problems.

The schedule found when solving the problem without uncertainties can be seen in a probabilistic
sense as a schedule that reaches the objective in the most likely scenario. All the vessels have to
use exactly the expected percentage of battery power and arrive precisely at the expected time.
However, this is rarely the case in real life. The energy consumption is largely correlated with
the mass of the cargo that is transported by the vessels, which may not be known at the time of
scheduling. The expected arrival times of the ships are heavily dependent on vessel delays, such as
closed bridges or traffic. Also, both the energy consumption and the arrival times are dependent
on the speed the vessel is sailing, which is not influenced by the party that schedules the batteries.

Therefore, the question arises: which of the schedules that have the potential to reach the optimal
objective is most optimal in a probabilistic sense? Optimal can be viewed in two ways:

1. What schedule produces the most expected profits? (Profitability)

2. What schedule is the most likely to succeed? (Robustness)

Gorissen et al. [2015] states that there are two main approaches to dealing with data uncertainty
in optimization, these are stochastic and robust optimization. The key difference between the two
approaches is that stochastic optimization assumes that the underlying distribution is known or can
be estimated whereas robust optimization assumes solely that the uncertain data resides inside of
a so-called uncertainty set. Stochastic programming is the subset of stochastic optimization where
the problems can be modeled as a linear or a nonlinear program as is the case for our problem.
Furthermore, integer programming often fails to converge for large instances of the problem. In
literature, heuristics are often used to solve a problem or enhance a viable solution, these will be
left out of this research.

This chapter is divided into three sections. There are six optimization methods proposed, which
all try to find the optimal number of batteries, charging stations, and grid balancing stints in
different contexts. The first section describes the general MIP formulation that is used to find
the optimal of all objectives in a deterministic case. The second section explains three stochastic
programming methods which are extensions to the MIP formulation. These methods are used for
scheduling problems that deal with known uncertainties. Direct Monte Carlo simulation optimizes
the problems of testing a high volume, rolling horizon optimizes the problems in a realistic time-
shifting scenario, while the probabilistic constraint method assumes the problem solutions and finds
the most robust schedule. In the third section, two robust techniques are described, both of which
consider the most unfavorable values of uncertainty characteristics before optimizing the problems.
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5.1 Mixed integer linear programming

An integer linear program (ILP) is an extended linear program where a decision variable vector x
consists solely of integers. A method to solve an ILP is called ’branch and bound’. This method is
based on a solving algorithm used for linear programming that was proposed by Dantzig in 1947,
called the simplex method (Dantzig and Thapa [1997]). This algorithm makes a descent along the
outside edges of the polyhedral set of a linear problem to reach the optimal solution. The decision
variables represented by an integer range are handled using a technique known as branching. In this
approach, the decision variables are structured in a decision tree, where each branch corresponds
to a possible value the variable can take. By traversing the branches, the objective function for all
the possibilities for the decision variables can be explored.

As the input size increases, the computational cost of visiting all the branches increases. Therefore,
branch and bound uses LP relaxations, the continuous variant that can be solved by the simplex
method, to generate an optimal bound for all unvisited branches. This represents the bound
component of the branch and bound. All the unvisited branches are stored in a list ordered by the
LP relaxation bound and are explored by visiting the branch with the highest potential. When
a solution is found with an objective value that is better than the optional bound for a specific
branch, the solutions in that branch will always be worse than the found solution. Thus, the branch
is cut from our list and no longer explored. Given enough time all the potential branches will be cut
and the optimal solution will be found. This is a direct algorithm to solve the problem, therefore
by the complexity of the problem, it cannot converge in polynomial time over the input size. The
decision tree grows exponentially with the input size x in branch and bound.

A mixed integer linear program (MIP) allows a combination of inputs that are integers and con-
tinuous. The branch and bound algorithm still suffices to solve a MIP, the continuous inputs do
not show up in the decision tree and they do not have to be LP relaxed, and are optimized by the
simplex method used in branch and bound.

Another popular method for solving ILPs and MIPs is the cutting-plane algorithm. The basic
idea of cutting planes as described by Pióro and Medhi [2004] is to iteratively build upon the LP
relaxation by adding additional constraints to eliminate the fractional solutions. These additional
constraints are called ’Parameter Cuts’. The cuts are often derived from a theoretical analysis of
the problem. In each iteration, the LP relaxation is solved and the violated cutting planes are
identified and added to the formulation. This ensures that the fractional solutions that the simplex
method finds are cut off until eventually an integer solution is found.

Branch and cut is a framework where branch and bound and cutting planes are combined. This
framework iteratively uses both a branch and bound and a cutting planes step. The initial problem
is branched into a selected decision variable and both branches are bounded by their LP relaxation
and added to the list to be further explored. Then, a cutting plane is added to the system to cut
off fractional solutions. As in branch and bound, if an intermediate solution is found better than
the upper bound the respective branches are cut from the list. These steps are repeated until an
optimal integer solution is found or the problem is proven to be infeasible.

The MIP solving method used in this research starts with a plane cut initialization and then solves
the resulting MIP with branch and bound.
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5.1.1 Parameter Cuts

The model described in Chapter 2 tends to have a large difference in the LP bounds and the in-
termediate/optimal solutions. This difference often leads to slow convergence using a branch and
bound method. The speed of the method can be increased by implementing parameter cuts that
make the LP relaxation bound of a branch tighter to its potential optimal solution objective as
done in the cutting planes framework. The cuts consist of extra variables and/or constraints that
increase the cut ratio of the branches. The following parameter cuts strengthen the LP bounds for
this specific problem. There is a large deficit between the FP objectives functions 13, 14 and their
LP counterparts. The following continuous variables and constraints push the LP relaxations of B
and M closer to their integer solutions:

Extra Variables Ranges Descriptions

U t
b [0, 1] A status variable that denotes if battery b is currently utilized by a vessel

Itb [0, 1] A status variable that denotes if battery b is currently idle

Table 5: Parameter Cut Variables

The following constraints are formulated with these variables:

U t
b =

∑
t̂

xt̂b ·A(t̂, t), ∀b, t (23)

U t
b + Itb ≤ yb, ∀b, t (24)

wt
b ≤ Itb, ∀b, t (25)

The first constraint (Equation 23) sets the value of the sailing status of battery b at time t. The
second constraint (Equation 24) pushes the LP relaxation of y to be higher and closer to its optimal
solution. The last constraint (Equation 25) pushes the LP relaxation of M closer to its optimal
solution. The full MIP formulations of both problems are found in Appendix B.5 and B.6.

5.1.2 MIP Pareto Optimization

As seen in Chapter 4, the Pareto front is constructed using the one-by-one optimization method.
The exact strategy is described in Algorithm 4.7. The battery and charging station optimizations
are respectively solved by the MIPs B.6 By applying this algorithm, a set PF∗ of solutions (M,B)∗

is found. One of the solutions in the PF∗ is used as input for the optimization of RP.
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5.2 Stochastic Programming

Stochastic programming is an extension of the mathematical programming framework that ad-
dresses uncertainty. The goal of stochastic programming is to find the optimal solution to the
problem considering the randomness of certain parameters. Stochastic optimization offers the ad-
vantage of finding solutions that are more flexible and robust, enabling better decision-making in
realistic and uncertain situations for operators.

There are typically two primary sources of uncertainty that are considered throughout the opti-
mization: discrete scenarios and continuous random variables. Direct Monte Carlo simulations and
Rolling Horizon use Monte Carlo sampling, which creates deterministic scenarios generated under
the uncertainties included in the scope. These scenarios can be solved by the MIPs discussed in
the previous section. The probabilistic constraint approach takes the full uncertainty of a ran-
dom variable into account throughout the optimization. This leads to an extension of the MIP,
where an additional constraint is introduced to limit the probability of failure within the specified
uncertainty.

5.2.1 Direct Monte Carlo Simulation

Direct Monte Carlo Simulation (DMCS ) makes use of the law of large numbers formally stated
in Appendix A in Theorem A.17. By random sampling from the uncertainty distribution (Monte
Carlo simulating) a sampling size N of scenarios is generated. These scenarios are deterministic
and can be solved by the methods discussed in the previous section. By evaluating a large scale of
scenarios, inference can be drawn on the expected results and the robustness of the decisions made
by the model.

The sampling size N is very crucial to be able to verify the results. If the N is too small, this may
lead to unreliable results since a large part of the input space may be underrepresented. However,
if the value of N is too large, it can significantly increase the computational costs of the method.
Therefore, multiple sample sizes are tested, N = 10, 100, 1000.

The size of the event time-space is adjusted throughout the different sample sizes to keep the
optimization method within a reasonable time span. Also, if the number of uncertain parameters is
increased, the sampling region grows exponentially. Then, the sample size needs to be exponentially
higher to stay appropriate.

A drawback from direct DMCS is the substantial computational costs involved. The approach
requires solving the deterministic case multiple times, which, in our scenario, involves solving a
MIP problem N times. Furthermore, as the input size increases, the solving time of the MIPs
increases exponentially. Consequently, DMCS solving times grow even faster if the input size is
increased. For these reasons, the scalability of DMCS is very limited.

5.2.2 Rolling Horizon

The Rolling Horizon (RH ) method is also based on Monte Carlo Sampling. However, it addresses
one of the main limitations of Direct Monte Carlo simulations, which is the scalability of the
problem. This limitation is due to the need to perform a substantial number of simulations to
obtain reliable results. This can be computationally intensive and limits the scale of the problem
due to time constraints.

In contrast, the RH method offers an extension that has the potential to provide insights over
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Figure 6: Schematic diagram of rolling horizon (Erichsen et al. [2019])

longer periods. Instead of conducting a massive number of simulations upfront, the RH approach
involves dividing the problem into shorter time horizons. Each horizon is optimized independently,
taking into account the current state of the system and available information. As time progresses,
the horizon is rolled forward, incorporating new data and fixing the decisions made that do not
transfer to the next scenario. Figure 6 depicts a diagram of the creation methods of the different
horizons. By iteratively optimizing over shorter horizons and updating the solution over time, the
RH method allows for a more scalable approach for handling complex problems.

Furthermore, the rolling horizon method closely mirrors the decision-making process in real-world
scenarios. Operators have to make contractual decisions in a timely fashion and not all at the start
of the week. Fixing decisions in different horizons simulates this process. Moreover, as the timing
of an event gets closer, the uncertainties associated with this event become more predictable. This
can also be incorporated in RH by adjusting the probability distributions of the uncertainties when
the associate event draws closer.

The horizons are all optimized separately and combined to form a single solution for the full timeline.
By stinging multiple stand-alone optimizations together, the guarantee of an optimal outcome for
the whole time-space is lost. The system loses oversight of system-wide problems or opportunities.
Furthermore, due to a large number of optimizations conducted, the method is prone to increasing
convergence times. Moreover, infeasabilies may occur due to non-optimal intermediate solutions,
which create a different starting situation for the following horizon, which may become infeasible.

All in all, RH enables decision-makers to make adaptable and dynamic choices while still considering
the uncertain and evolving nature of the problem. However, it’s important to note that certain
cases might require extended computational time and could result in suboptimal or potentially
infeasible outcomes.

5.2.3 Probabilistic Constraint

Probabilistic Constraints (PC ) extend the MIP formulation to only allow solutions with a degree of
robustness. The feasibility space of the problem is cut short by not allowing non-robust solutions.

The main advantage is that the solution found by PC guarantees a solution that is robust up to
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the defined limit and optimal in the smaller feasibility space.

However, similar to the previous two methods, PC contributes to additional computational costs in
the MIP optimization. Another disadvantage of using PC is that the probabilities that are needed
to constrain the robustness of an optimization are usually hard to compute. This method is only
used on for the uncertainty in energy consumption Et, because the probabilities of bounding the
robustness are relatively easy to calculate. The counterpart for applying this method to the arrival
time uncertainty is considered outside of the scope of this research.

In the implementation of our problem, we assume that the number of container batteries B, charging
stations M and revenue R are found by the deterministic MIP formulation. Then, the goal of
probabilistic constraint optimization is to find the optimal schedule in the sense of robustness.

Assume that Et ∼ N(µt, σt) distributed. The probabilistic constraint used is limiting the chance
of failure at any time t by a factor α. The new objective is minimizing this factor α, to minimize
the probability of failure at any time. The results in the following minimization problem:

min
α

P(Failure at time t) < α, ∀t. (26)

Failure occurs if there is no battery with enough charge to facilitate the vessel with energy, i.e.

min
α

P(ctb < Et) < α, ∀b, t. (27)

α must be greater then all b, t and is therefore equivalent to being greater than the largest, i.e.

min
α

max
t,b

P(ctb < Et) < α. (28)

Assume that route of battery b1 incorporates the task that starts on time t. Define the route of b1
to be Rb1 = {t1, ·, tj , t, · · · , tm}. Define OPLr

b1
to be the charge added to battery b1 in-between the

tasks of route Rb1 . Assume that the starting charging level equals 1. Then, ctb1 can be calculated
to be:

ctb1 = c0b1 − Et1 +OPL1
b1 − Et2 +OPL2

b1 − · · · − Etj +OPLj
b1

= 1− Et1 +
∑

t1<ta<t2

d ·∆ta · wa
b1 − Et2 +

∑
t2<ta<t3

d ·∆ta · wta
b1
− · · · − Etj +

∑
tj<ta<t

d ·∆ta · wta
b1

= 1 +
∑

r∈Rb1
|r<t

(−Er +
∑

r<ta<r+1

d ·∆ta · wta
b1
).

(29)

The failure occurs when Et > ctb at time event t, therefore

Et > 1 +
∑

r∈Rb1
|r<t

(−Er +
∑

r<ta<r+1

d ·∆ta · wta
b1
)

∑
r∈Rb1

|r≤t

Er > 1 +
∑

r∈Rb1
|r<t

∑
r<ta<r+1

d ·∆ta · wta
b1
.

(30)
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Now using that Et ∼ N(µt, σt), we know that the sum of a normal distributed function is also
normally distributed. Therefore,∑

r∈Rb1
|r≤t

Er ∼ N(
∑

r∈Rb1
|r≤t

µr,
∑

r∈Rb1
|r≤t

σr).

This distribution can be scaled and shifted to a parameter z that is standard normally distributed:

z =

∑
r∈Rb1

|r≤tEr −
∑

r∈Rb1
|r≤t µr∑

r∈Rb1
|r≤t σr

∼ N(0, 1). (31)

We scale the right part of Equation 30 with the same values to create a critical value βt
b1

where
failure occurs if z > βt

b1
. This gives the following critical value for battery b1 at time-event t:

βt
b1 =

1 +
∑

r∈R|r<t

∑
r<ta<r+1 d ·∆ta · wta

b1
−
∑

r∈Rb1
|r≤t µr∑

r∈Rb1
|r≤t σr

. (32)

This can be generalized to all batteries b, where βt
b = 0 if battery b is not allocated at time-event t

and equal to Equation 32 if the battery is allocated. Also, we use the allocation xrb = 1 if and only
if r ∈ Rb. This gives the following formulation:

βt
b =

1 +
∑

t1<t d∆
t1+1wt1+1

b −
∑

ta|ta<t µax
ta
b −

∑
tg |tg<t µgx

tg
b∑

ta|ta<t σax
ta
b +

∑
tg |tg<t σgx

tg
b

. (33)

This formulation is nonlinear. To linearize this formulation, the average number vessel (X̄t
a) and

grid balancing allocations (X̄t
g) before time event t are substituted in the denominator. These

averages can be estimated by dividing the sum of all tasks done before time t over all the batteries
in the system equally. This averaging does affect the outcome slightly but gives a valid linearization.

βt
b =

1 +
∑

t1<t d∆
t1+1wt1+1

b −
∑

ta|ta<t µax
ta
b −

∑
tg |tg<t µgx

tg
b

X̄t
a

∑
ta|ta<t σa + X̄t

g

∑
tg |tg<t σg

. (34)

Now we can limit all the βt
b by introducing a lower bound β:

β ≤ βt
b, ∀b, t. (35)

Then, Equation 28 can be rewritten as the following:

min
α

P(z > β) < α. (36)

This minimization is equivalent to maximizing β. This gives the following objective

maxβ. (37)

This objective can be incorporated into the MIP formulation of the RP problem. The new MIP
formulation for RP can be found in Appendix B.8.
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5.3 Robust techniques in stochastic programming

Formally robust optimization is set up using the following definitions of the uncertainty set and a
general robust optimization (RO) problem.

Definition 5.1 (Uncertainty set). The uncertainty set is the set of possible values of the uncertain
parameters that are considered in the robust optimization problem. This set will be called U ,
which could be split into the single dimension spaces Ui for each uncertainty parameter ui for
i ∈ {1, · · · ,m}.

Bertsimas et al. [2010] give the following formulation for the generalized robust optimization prob-
lem.

Definition 5.2 (General formulation of Robust optimizations problems). Given an objective func-
tion f0(x) to optimize, subject to constraints fi(x,ui) ≤ 0 with uncertain parameters, {ui}, the
general Robust Optimization formulation is

minimize:

f0(x)

subject to:

fi(x,ui) ≤ 0, ∀ui ∈ Ui, i = 1, · · · ,m

(38)

Here x ∈ Rn is a vector of decisions variables, fi : Rn → R∀I = 0, · · · ,m are functions, and the
uncertainty parameters ui take arbitrary values in the set Ui.

The uncertainty sets of the energy consumption uncertainty and time arrival uncertainty are un-
known. In this research, we formulate the uncertainty sets with assumptions. In reality, the
uncertainty sets can be estimated by using confidence bounds on the empirical distribution that
can be created from historical data. Two robust optimization-based approaches are formulated
for the energy consumption- and time uncertainties, deliberately choosing the conditions that are
unfavorably compared to most scenarios. The solutions of the methods described in this section
are conservative and serve as a strict lower bound for the solutions that result from the stochastic
programming methods.

5.3.1 Extreme Value Analysis Energy Consumption Uncertainty

Two dominating cases regarding energy consumption can be formulated by choosing the upper limit
and the lower limit of the uncertainty sets. The upper limit of the uncertainty set of the energy
consumption serves as a worst case. This is due to that the battery could always dump electricity
within two-time events, therefore having too much energy in the batteries can never be a restriction
on the objective values obtained from the optimization. However, when there is less charge in the
batteries, they need time and a charging station docking to be recharged before being redeployed.
In the context of the problem, it is beneficial for the batteries to contain as much charge as possible.
Therefore, the lower limit serves as a best case scenario.

5.3.2 Value At Risk Analysis Arrival Time Uncertainty

The value at risk analysis for arrival time uncertainty considers that the extreme situations of
the time arrivals occur simultaneously. We define a level of significance α, which can be used to
construct a 100 · (1− α)% confidence interval with a lower and upper bound.

35



Figure 7: The arrival times are split according to the 100·(1−α)%-confidence interval (CI) of the distribution
of the arrival time. This is showcased in the normal distribution, but it can be applied to all distributions
that the arrival time may have, including an empirical distribution.

In this approach, the event space is divided into two sets, one consisting of all the lower bounds
and the other of all the upper bounds. It assumes that, for all arrival times, a battery is needed at
the earliest possible moment of arrival, which corresponds to events in the first set t−. Conversely,
the battery is returned at the last possible moment that the ship can arrive, which corresponds to
events in the second set t+. The interval between t−a and t+a is revered to as the critical interval
of arrival a. Figure 7 shows how the two new events are created for every arrival time. Note that
the starting times of the grid balancing stints are known and therefore are not split and remain a
single-time event.

Battery allocation decisions are only made on events that are part of the first set. All parameters
related to the allocation of the batteries of the time events are only defined on the first set (t−).
This results in the following changes to their counterpart in Section 2.3:

Parameters Descriptions

Ât−1 ,t+2
The matrix that shows the relation of battery availability and

time events in the value at risk scenario of the arrival time uncertainty.

Table 6: Changed parameters in value at risk formulation

Also, Constraint 1 is only defined for the time events of the form t−:∑
b

xt
−
a
b = 1, ∀t−a (39)

This method gives a very conservative solution to both FP and RP. The smaller the chosen α the
more conservative the solution becomes.
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6 Experimental results

In this section, three case studies of the model will be evaluated4. The cases are optimized using
the suitable methods described in Chapter 5 as well as the approximation algorithm described in
Section 3.2.

1. Deterministic Case: A single port deterministic system with simulated arrival times.

2. Energy Uncertain Case: A single port system with uncertainty in energy consumption by
both vessels and grid balancing stints.

3. Time Uncertain Case: A single port system with uncertainty in arrival times of the cargo
vessels.

The complexity of the model is increased in the case studies by adding a layer of uncertainty. The
first case includes a sensitivity analysis on a base case to explore the implications for the objectives
and the computational time of the deterministic model. The first case forms the baseline for the
following cases where the Base Case defined also serves as the starting point for the following cases.

Every case has the same basic structure:

• Time horizon of a single week,

• Five electrified vessels that visit the port to swap their batteries with a return time of ap-
proximately six hours,

• Forty-one grid balancing stints that last four hours each and are non-overlapping.

4The processor used to run all experiments is 11th Gen Intel(R) Core(TM) i7-1185G7 with 16,0 GB RAM
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6.1 Case 1: Deterministic Case

For the first case, we consider a fully deterministic system. The case consists of a single charging
port system with simulated arrival times and fixed energy consumption. The system contains 5
ships that all have an estimated voyage duration of 6 hours. Firstly, a base case is formulated.
Secondly, the optimization strategies used in this case are listed. Thirdly, the results of the base
case are shown. Fourthly, for all input parameters, a sensitivity analysis is performed. Then, the
consequences of multiple and overlapping trade opportunities are discussed. Finally, computational
analysis is done on the performance of the optimizations when the time horizon or the fleet size is
increased.

6.1.1 Base Case

A use-case scenario needs values for all the parameters described in Section 2.3. The following
base-case scenario is defined.

Definition 6.1 (Base Case (BC )). In this scenario, the arrival times of the five vessels operating in
the system are simulated individually. The timeline chosen for this scenario spans from 1 January
2019, 00:00, to 8 January 2019, 23:59. The following parameter choices are made:

Parameters Value Base Case

tmin 1 January 2019, 00:00
tmax 8 January 2019, 23:59
C−
t 0.8 for ta, 0.3 for tg

C+
t 1.0 for ta, 0.7 for tg

[C−
t , C+

t ] [0.8,1.0] for ta, [0.3,0.7] for tg
Tg Every 4 hours
d 0.0001 (battery is charged in around 2 hours and 47 min)
e 10−6 (battery is self-discharged in around 116 days)
Sb The first 5 batteries start respectably on the vessels
c0b 1 for all battery b
Rtg 1 for all tg
Et 0.7 for all ta, 0.1 for tg

Table 7: Parameters Base Case.

The return time of each vessel follows a normal distribution in this scenario with an expectation
of 6 hours and a variance of 1 hour, the simulations that end up outside of the one-week horizon
are omitted from the case. The simulated arrival times can be seen in Table 26 in Appendix D and
are plotted in Figure 8. Figure 9 shows the same timeline with the grid balancing events added.
The parameters ∆t and At1,t2 can be derived from the timeline, for the extracted ∆t see Table 28
in Appendix D.

38



Figure 8: The simulated event time-space for the deterministic Base Case without grid balancing with only
the arrival times of the vessels. The timeline is created by individually simulating the return times of all
vessels. The return times are all distributed normally with an expectation of 6 hours and a variance of an
hour. The full timetable can be found in Appendix D in Table 26.

Figure 9: The full simulated event time-space for the deterministic Base Case with grid balancing. This
figure combines Figure 8 with non-overlapping grid balancing stints, every 4 hours. Note that the timeline
consists of 137 ship arrivals and 41 grid balancing stints. The timing of the grid balancing stints can be
found in Appendix D in Table 27.
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6.1.2 Optimization Strategies

As described in Chapter 2, multiple objectives are taken into consideration. All the optimizations
except for the approximation5 are solved with mixed-integer linear programming6 (MIPs). The
following methods are used for the optimization of the first case:

1. Approximation Algorithm (AA): Polynomial-time algorithm based on the first-fit algorithm
(Algorithm 3.13). This algorithm estimates the number of batteries and charging stations.
All tasks, arrival times and grid balancing stints, that are included in the input are treated
as compulsory. By fixing the charging stations the method can also be used to estimate the
Pareto Front.

2. Battery Optimization (BO) : Objective function (13) subject to constraints (1 - 12) where
the variable M is set as a parameter (B.5 with first objective).

3. Charging Station Optimization (CSO): Objective function (14) subject to constraints (1 - 12)
where the variables yb is set as a parameter (B.5 with second objective).

4. Revenue Problem Optimization (RPO): Objective function (15) subject to constraints (1 -
12) where both the M and yb are set as parameters (B.6).

The first optimization method is a polynomial-time approximation method, based on the first-fit
algorithm for bin packing. The second and third optimizations are solved using the timeline without
grid balancing because there is no benefit in using any grid balancing. These two objectives together
are combined in the one-by-one method to create the Pareto front, as explained in Chapter 4. The
extremities of the one-by-one method are Battery Priority Optimization (BPO), first BO and then
CSO, and Charging Station Priority Optimization, first CSO and then BO.

The last objective considers the optima of the first optimization objectives and optimizes for the
most revenue.

6.1.3 Results Base Case

This section shows the results of the Base Case described in Section 6.1.1 using the methods listed
in the previous section, and is divided into three parts. First, the results of the Approximation
Algorithm are shown, this includes the number of expected batteries and charging stations and
an estimation of the Pareto Front. Second, the Pareto front (PF∗) of the one-by-one method is
presented. Finally, the results of the Revenue problem are discussed for a Pareto optimal point
used for the batteries and charging stations, while also considering an extra unit for one or both of
these infrastructures.

The approximation algorithm approximates the number of batteries and charging stations necessary
to be used in the Base Case. The approximation algorithm finds that the number of batteries B is
equal to 9 and the number of charging stations M is equal to 3.

The schedule in Figure 10 validates the feasibility of a solution with this specific number of batteries
and charging stations. Additionally, Figure 11 displays the usage of the charging station within the
schedule, while Figure 12 illustrates the appropriate charge levels of the 9 batteries throughout the
timeline in this schedule. This schedule appears to be an excellent fit for the Base Case without
grid balancing.

5The approximation algorithm is run in Python 3.9.
6The optimizations are done in AIMMS software using the CPLEX 20.1 solver.
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Figure 10: Gantt charts of the solution of the Base Case using the Approximation Algorithm 3.13. Note
that the time axis is event-based rather than time-based. The timeline in Figure 9 presents the event time
relation.
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Figure 11: The utilization of charging stations between the time events for the Base Case are computed
using the approximation algorithm.

Figure 12: The charging levels of all the batteries for the Base Case are determined using the approximation
algorithm.
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Table 8 shows the estimation of the Pareto front using an approximation algorithm with a fixed
number of charging stations. The one-by-one approach for the Feasibility Problem (FP) finds the
values shown in Table 7 as the optimal values for FP. Figure 13 shows an example schedule found
by BPO where the optimal values for FP are 9 batteries and 2 charging stations with Figure 14 and
15 the matching charging station usage and charging levels. The following Pareto front is found
for FP. The Pareto front of the problem is likely to be:

PF∗ = {(137,0), (44,1), (9,2)}. (40)

The values accommodating this result are found in Table 9, the entry with 137 batteries can be
logically deduced, there are no batteries that can be shared throughout the tasks, therefor a battery
is needed for all the 137 arrival times in the system.

Notice the solution of the BPO depicted in Figure 13 and the AA solution shown in Figure 10
differ in the spaces that open up throughout the schedule. These spaces might be exploited by the
operators to be used for grid balancing.

Table 8: Estimate P̂F of Pareto front (PF∗) calculated by the Approximation Algorithm 3.13 with a fixed
number of charging stations.

P̂F Computation
B M Time (s)

9 3 1.371
14 2 2.023
81 1 12.400
137 0 22.865

Table 9: The Pareto front (PF∗) by the one-by-one method 4.7 for FP MIPs.

PF∗ Computation Gap Note
B M Time (s)

9 2 644.313 0 % Optimal
44 1* 3600.00 4.5% Best solution
137 0 - - Too large
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Figure 13: Gantt Charts Depicting outcomes for the Base Case using Battery Priority Optimization for
the Feasibility Problem (FP) with parameter cuts (B.5). Note that this figure is event-based rather than
time-based. The event time relation is depicted in the timeline shown in Figure 9.
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Figure 14: The charging levels of all the batteries for the Base Case are determined using the Battery Priority
Optimization.

Figure 15: The utilization of charging stations between the time events for the Base Case are computed
using the Battery Priority Optimization.
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The approximation algorithm can also be used with grid balancing stint included in the input.
Then, the grid balancing stints are treated as compulsory and the algorithm estimates 10 batteries
and 4 charging stations. Figure 16 shows the results. This figure highlights the vulnerabilities in
this approach, evidenced by the presence of seemingly redundant batteries and charging stations
and extended periods of battery inactivity. This shows the necessity of a more complex method for
choosing grid balancing stints.

To analyze RP we first assume that (B,M) = (9, 2), then RPO finds the solution where a maximum
of 20 grid balancing stints are used. Figures 17-20 show all facets of an example schedule where 20
grid balancing stints are carried out.

Given some degree of freedom in the batteries or charging stations, the optimization selects more
grid balancing stints. Table 10 shows the results for a single degree of freedom for both the number
of batteries and the number of charging stations. The scenario with an extra battery and an extra
charging station can accept all balancing stints. The schedule that resulted from FP, depicted in
Figure 13, can be implemented. Then, the additional battery and charging station remain idle and
can be solely committed to grid balancing. This result is captured in Table 10 where the (B+1,M+1)
accepts all grid balancing stints. The table also shows that the constraining infrastructure to accept
more grid balancing stints is the number of charging stations. This indicates to the port operator
that adding an extra charging station in some scenarios is economically viable.

Figures 17 and 18 show that there are still some open spaces in the battery schedules. This gives the
impression that even more grid balancing might be possible. These white spaces occur while there is
already a battery committed to balancing. Therefore, we are likely to see even more grid balancing
if two batteries may be committed to grid balancing simultaneously. Section 6.1.5 explores these
options.

Table 10: Results RP of the Base Case with different number of batteries (B) and charging stations (M).
The starting values of the B and M are based on the The +1 denotes an extra battery or charging station
on top of the previously listed optima.

Infrastructure Amount Revenue tRPO (s)

(B,M) (9,2) 20 2357.047
(B+1,M) (10, 2) 21 2068.75
(B,M+1) (9, 3) 38 248.797
(B+1,M+1) (10, 3) 41 14.594
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Figure 16: Gantt charts of the solution of the Base Case with all grid balancing stints included using the
Approximation Algorithm 3.13. Note that the time axis is event-based rather than time-based. The timeline
in Figure 9 presents the event time relation.
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Figure 17: Gantt Charts depicting the results of the Base Case using Revenue Problem Optimization (RPO)
(B.6) for the Revenue Problem RP. The number of batteries and charging stations is an input found by
Battery Priority Optimization (BPO) as shown in Figure 13 and equals (B,M) = (9, 2). Note that the time
axis is event-based rather than time-based. The timeline in Figure 9 shows the event time relation.
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Figure 18: Gantt Charts depicting the results of the Base Case using Revenue Problem Optimization (RPO)
(B.6) for the Revenue Problem RP. This Gantt chart depicts the same data as Figure 17. However, its x-axis
shows the timeline instead of the time events event.

Figure 19: The utilization of charging stations between the time events for the Base Case are computed
using the Revenue Problem Optimization. Note that using charging stations for balancing is not included
in this figure.
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Figure 20: The charging levels of all the batteries for the Base Case are determined using the Revenue
Problem Optimization.
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6.1.4 Sensitivity Analysis

In Chapter 2, we have defined various input parameters that significantly impact the outcomes of
the different approaches described in Section 5.1. Due to time constraints, the runs are limited to
a run-time of one hour. All the results that reached the time cutoff are annotated with an asterisk
(*) and their optimality gap is stated. Also, to reduce the computational time only the BPO is
considered for FP, the CSPO takes more batteries into consideration which increases the dimension
of the model significantly, as can be seen in Table 7. The input parameters are all analyzed in a
similar style. Three types of scenarios are compared: a randomized option, a stylized option, and
extreme value cases. The base case scenario is denoted with (BC). To analyze the sensitivity of
these inputs, the following factors and scenarios are considered:

1. The effects of different types of arrival times (Ta) are analyzed for the following scenarios.
The results of FP for the following cases can be found in Table 11. The results of RP of
the same cases are found in Table 12, where different degrees of freedom are explored in the
number of batteries used in the system.

• Random (BC ): All vessels are simulated independently with a return time normally
distributed.

• Cyclic: All vessels arrive perfectly divided over 6 hours and exactly return 6 hours later.

• Tight: All vessels arrive 15 minutes apart and return exactly 6 hours later.

2. The effects of different types of energy consumption (Et) for the different routes in the system.
Table 30 in Appendix D shows the inputs of the cases. The results of the following cases can
be found in Table 13.

• Equivalent (BC ): All routes have the same average energy requirement (see Table 31).

• Worst case: All routes and balancing stints have the worst energy requirement (see Table
32).

• Best case: All routes and balancing stints have the best energy requirements (see Table
34).

• Random: All routes have the randomized energy requirement (see Table 33).

3. The effects of changing the charging speed (d) are analyzed. The results of the following cases
can be found in Table 14.

• Very short: d = 0.000278 (charging time equals 1 hour).

• Short: d = 0.000139 (charging time equals 2 hours).

• Average (BC ): d = 0.000100 (charging time equals 2 hours and 47 min).

• Long: d = 0.000069 (charging time equals 4 hours).

• Very Long: d = 0.000046 (charging time equals 6 hours).

• Extreme: d = 0.000035 (charging time equals 8 hours).

• No charge: d = 0 (infinite charging time), follows from logic as seen in results of the
Pareto Front (Equation 40).
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4. The effects of the different types of grid balancing length (Tg) and Revenues (Rt) are analyzed.
The results for RP of the following cases can be found in Table 15.

• Equivalent (BC ): 4 hours stints and with Rtg = 1.

• Random lengths: simulated similar to the return time of a vessel with an expectation of
4 hours and variance of one hour and with Rtg = 1 (see the timing of Table 29).

• Random Lengths with Scaled Revenue, the revenue of the balancing stints is scaled to
their respective lengths (see Table 29 in Appendix D).

The FP results of the different time scenarios, as presented in Table 11, show the impact of the
event time-space on the objective functions within a five-vessel single charging port system. The
number of batteries required by the system is very dependent on the specific time scenario. The
Cyclic case (schedule shown in Figure 43 in Appendix C), where all the vessels arrive perfectly
divided throughout the day, shows that the system can be sustained with 8 batteries. However,
the Tight scenario (schedule shown in Figure 45 in Appendix C), where not a single battery can
be shared amongst the vessels, shows that in some cases 10 batteries are necessary to be able to
provide all vessels with sufficiently charged container batteries. On the other hand, the number of
charging stations is not very dependent on the time instance of the system. The 2 charging stations
produce 2 · d · ∆day = 16.52 batteries worth of charge a day, which is more than enough energy
to fully charge all the batteries. All vessels return on average 4 times a day. Therefore, the whole
system most likely only needs 5 · 4 ·Et = 14.00 batteries worth of charge a day. Due to the instant
interchanging of the charging batteries, the two stations combined produce enough in all the time
instances.

Table 11: Results of Feasibility Problem (FP) for the Deterministic Case of different time scenarios (Point 1
of Section 6.1.4). The results are given in the following format, the methods AA and BPO give the number
of battery and charging stations (B,M), where the one generated by BPO is optimal. The optimization
methods are listed in Section 6.1.2 with t their respective computational time.

Cases\Methods AA tAA (s) BPO tBO (s) tCSO (s)

Random (BC ) (9, 3) 1.371 (9, 2) 576.516 67.797
Cyclic (8, 2) 1.295 (8, 2) 3055.719 676.922
Tight (10, 3) 1.367 (10, 2) 74.984 170.734

The RP results of the different time scenarios, as presented in Table 12, show how many grid
balancing spots can be chosen if the optimal number of batteries of FP have been set. Even though
the Cyclic case seems to be ideal for the sharing of batteries among the ships, the number of grid
balancing slots secured in the case is worse than in the Random case.

The Random case (in column (B,M) of Table 12)) outperforms the Cyclic case (in column (B +
1,M) of Table 12) in revenue with 5 additional grid balancing spots. This is surprising because the
Cyclic case has an idle battery in this scenario. As indicated by the RP results of the Base Case,
see Table 15, the bottleneck for implementing additional balancing stints lies with the number of
charging stations. In the Cyclic case, the constraints imposed by the number of charging stations
have a more pronounced impact. This is due to the reduced flexibility in determining the optimal
charging times for each battery, leading to a greater revenue increase in the Random Case, despite
sharing the same infrastructure. Notably, the Tight case benefits even more flexibility in charging.
This allows the Tight case to outperform the Base Case with equivalent infrastructure, see the
difference in revenue of (B,M) of Tight and (B + 1,M) of Random in Table 12).
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The difference in the balancing stints chosen results from the availability of the charging stations.
The Random case has more room to effectively choose what battery to charge to keep a battery
aside for balancing, while the Cyclic case is stuck in a fixed cycle of charging that prohibits a
charging station to be available for the entire balancing stint.

Table 12: Results of Revenue Problem (RP) for the Deterministic case of different Time cases (Point 1 of
Section 6.1.4). (B,M) is the optimum retrieved from Table 11: (9, 2) for Random, (8, 2) for Cyclic, and (10,
2) for Tight. The +1 denotes an extra battery or charging station on top of the previously listed optima.

Cases\Methods (B,M) tRPO (s) Gap % (B+1,M) tRPO (s) (B,M+1) tRPO (s) Gap % (B+1,M+1) tRPO (s)

Random (BC ) 20 2357.047 0% 21 2068.75 38 248.797 0% 41 14.594
Cyclic 15 859.828 0% 15 277.922 19* 3600.482 5.3% 41 89.719
Tight 27* 3601.953 3.7% 28 54.157 33* 3600.328 3.0% 41 82.319

The energy consumption scenarios show about the same effects on the objective values of FP as
depicted in Table 13. A limited effect is expected due to the free nature of the charging choices.
There is enough energy added to the system by the charging stations and this charge accommodates
all the power needs of the different energy consumption cases. However, energy consumption
does have a significant effect on the number of balancing stints chosen. The greater the energy
consumption, the fewer balancing stints are employed, as more charging is required primarily to
address the departing ships. This leaves insufficient time to accommodate battery recharging in
the face of heightened energy consumption associated with a grid balancing stint.

Table 13: Results (FP) Deterministic Case of different energy consumption scenarios (Point 2 of Section
6.1.4). The cases can be seen in Table 30. The results are given in the following format, the methods
AA and BPO give the number of battery and charging stations (B,M), where the one generated by BPO
is optimal, the RPO method gives the number of additional revenue R that can be generated when using
(B,M) generated by BPO. The optimization methods are listed in Section 6.1.2 with t their respective
computational time. Note that the RPO of worst case uses an extra battery and charging station compared
to the other cases.

Cases\Methods AA tAA (s) BPO tBO (s) tCSO (s) RPO tRPO (s) Gap (%)

Equivalent (BC ) (9, 3) 1.505 (9, 2) 586.578 16.391 20 2357.047 0%
Worst case (10, 3) 1.545 (10, 3) 1193.609 2556.109 14* 3600.235* 14.3 %
Best case (9, 3) 1.745 (9, 2) 627.671 3581.343 39 937.672 0%
Random (10, 3) 1.826 (9, 2) 558.125 52.107 8* 3600.203* 5.9 %
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The effect of the charging rate on the infrastructure and the computational time is shown in Table
14. The longer the charging time the more batteries and charging stations are needed. With more
batteries to schedule the computational time of the whole system increases. It can be seen that the
approximation model (AA) is a good baseline for the number of batteries necessary and can be used
to limit the dimension of batteries explored in the specific optimization to reduce the computational
time.

Table 14: Results (FP) Deterministic Case of charging speeds (Point 3 of Section 6.1.4). The optimization
methods are listed in Section 6.1.2 with t their respective computational time.

Cases\Methods AA tAA (s) BPO tBO (s) Gap tCSO (s) Gap RPO tRPO (s) Gap (%)

Very short (1 hour) (8, 2) 1.253 (9, 1) 611.469 0% 14.031 0% 40 69.782 0%
Short (2 hours) (9, 3) 1.525 (9, 2) 611.515 0% 16.391 0% 38 574.296 0%
Average (\textit{BC}) (9, 3) 1.505 (9, 2) 586.578 0% 574.391 0% 20 2357.047 0%
Long (4 hours) (10, 3) 1.829 (10, 3) 920.063 0% 113.281 0% 31* 3600.719* 4.8%
Very Long (6 hours) (13, 5) 1.505 (10, 4) 1963.641 0% 947.797 0% 23* 3600.875* 11%
Extreme (8 hours) (15, 6) 3.155 (12*, 5) 3600.250* 16.7% 3060.546 0% 19* 3600.328* 115.8%
No-Charge (137, ∞) 22.865 - - - - - - - -

In reality, the grid balancing stints might not be a fixed length. Therefore, the Base Case is also
compared to a case with random lengths of stints. Additionally, to not cherry-pick all the short
balancing stints another case is added in the comparison that scales the revenue per stint based
on its length. Table 15 shows the results of this comparison. As expected, the random lengths
grid balancing case outperforms the Base Case in revenue. However, it does choose the shorter
balancing spots. This can be seen by the fact that the total duration of all stints decreases while
the revenue increases. For the scaled revenue case can be seen that the total grid balancing length is
larger than the Base Case. Different options of lengths are likely beneficial for generating revenue.

Table 15: Results (FP) Deterministic Case of different lengths of grid balancing stints (Point 4 of Section
6.1.4). RPO is the Revenue problem optimization, where the number of batteries and charging stations is
equal to the (9, 2) that are found for the Base Case. The length is the tally of the balancing stints chosen
by the optimization.

Cases\Methods RPO tRPO (s) Gap total length

Equivalent (BC ) 20 2357.047 0% 3 days, 8:00:00
Random Lengths 22* 3600.341* 6.2% 3 days, 7:49:56
Random Lengths with Scaled Revenue 20.733* 3600.284* 5.2% 3 days, 10:56:08
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6.1.5 Overlapping Grid Balancing Analysis

The optimizations have been conducted under the assumption that a single grid balancing spot is
available at all times. However, some additional space is observed in the optimal RP schedule found
for the Base Case. In reality, multiple revenue options may occur simultaneously, for example, if
multiple energy companies have different slots for grid balancing available. Therefore, scenarios are
explored with two grid balancing stints that are active simultaneously. The following two scenarios
are explored.

1. Overlapping: grid balancing stints start every two hours and have a 4-hour duration.

2. Two Random: two grid balancing contracts are randomly simulated as done for vessel arrival
time with the duration of the stints expected to be four hours with a variance of an hour.
The revenue is adjusted to the respective duration.

The results shown in Table 16 show that more grid balancing stints can be chosen. The ability
for the system to cherry-pick the grid balancing stints enables more revenue to be gained. The
results outperform the results of adding additional batteries or a charging station to the system.
This result is significant because it shows that to increase the revenue it can be more profitable to
increase the revenue options than to add an extra battery or charging station to the system.

Figure 21 and Figure 22 show example schedules for both cases that accomplish the revenues
denoted in Table 16. The idle spaces in the Gantt chart are filled in more and overall the batteries
are used more optimally. There even seems to be more white space that could be filled with
balancing stints tailored to the case at hand.

Table 16: Results (RP) Deterministic Case of the overlapping grid balancing scenarios. RPO is the Revenue
problem optimization, where the number of batteries and charging stations found for the Base Case (9, 2) is
used as the input and the number of accepted grid balancing stints is optimized.

Cases\Methods RPO tRPO (s) Gap length

Base Case 20 2357.047 0% 3 days, 8:00:00
Overlapping 24* 3600.688 4.5% 4 days
Two Random 26.350* 3600.390 8.0% 4 days, 9:23:54
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Figure 21: Gantt Charts depicting RPO outcome for the data case with overlapping grid balancing stints
with fixed lengths of 4 hours with starting times 2 hours apart.
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Figure 22: Gantt Charts depicting the outcome of the case with randomly generated grid balancing stints
that overlap. The timing and duration of the tasks that follow from the simulation can be found in Table
29.
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6.1.6 Computational Analysis

To investigate the scalability of the deterministic model the computational time of different sizes
of the model is compared. The main dimension that the problem scales in is the event time-space
of the model. Scaling of the time dimension can be done in two manners:

1. increasing the length of the time horizon

2. increasing the number of events on the current horizon.

The results are given in the following format: the methods AA and BPO give the number of battery
and charging stations (B,M), where the one generated by BPO is optimal, the RPO method gives
the number of additional revenue R that can be generated when using (B,M) generated by BPO.
Figure 47 in appendix C shows the schedules generated by the approximation algorithm for different
time horizons, BPO and RPO produce similar results. The optimization methods are listed in
Section 6.1.2 with t their respective computational time.

Table 17 presents the impact of an increasing time horizon, while Figure 23 illustrates the cor-
responding computational times. The relationship between fleet size and computational time is
described in Table 18, and Figure 24 visualizes this relation. Both figures clearly indicate an ex-
ponential growth in the computational time given an increase in input size for the MIP-based
optimizations (BO, RPO). However, CSO does not follow this trend due to its reliance on BO’s
optimal solution as a starting point and therefore intrinsically using its computations. If the CSO
is the only optimization run its running time also shows an exponential growth. Therefore, this
result is skewed. The exponential growth of all the optimizations resonates with the NP-hardness
of the problems.

The objective of the RPO in Table 24 illustrates the effect that both the number of batteries as
well as charging stations have on the amount of grid balancing stints that can be chosen. As the
number of spare batteries onshore increases, there is a greater chance of having one available for
grid balancing. However, when more batteries have to share a limited number of charging stations,
the available time to utilize these stations for balancing decreases. The optimal number of grid
balancing stints increases drastically if the ratio of charging stations to container batteries rises.

Table 17: Results (FP) Deterministic Case of different time horizons. The optimization methods are listed
in Section 6.1.2 with t their respective computational time.

Days\Methods AA tAA (s) BPO tBO (s) tCSO (s) RPO tRPO (s)

1 (9, 2) 0.186 (9, 2) 4.719 14.109 5 32.922
2 (9, 2) 0.392 (9, 2) 5.859 7.328 8 133.047
3 (9, 3) 0.619 (9, 2) 86.969 35.391 10 584.75
5 (9, 3) 1.096 (9, 2) 226.266 19.562 15 1210.406
7 (BC ) (9, 3) 1.371 (9, 2) 586.578 16.391 20 2357.047
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Figure 23: The computational time of different time horizons (1, 2, 5, 7 days) in the deterministic case for
different optimizations.

Table 18: Results (FP) deterministic case with different fleet sizes. The results are given in the following
format, the methods AA and BPO give the number of battery and charging stations (B,M), where the
one generated by BPO is optimal, the RPO method gives the number of additional revenue R that can be
generated when using (B,M) generated by BPO. Figure 47 shows an example of the schedules generated by
the approximation algorithm. The optimization methods are listed in Section 6.1.2 with t their respective
computational time.

Vessels \ Methods AA tAA (s) BPO tBO (s) tCSO (s) RPO tRPO (s)

1 (2, 1) 0.081 (2, 1) 0.250 0.110 1 0.156
2 (4, 2) 0.246 (4, 1) 0.843 0.547 19 47.39
3 (6, 2) 0.669 (6, 1) 74.672 2.531 6 93.297
4 (8, 2) 1.232 (8, 2) 119.50 19.687 36 1411.447
5 (BC ) (9, 3) 1.371 (9, 2) 586.578 16.391 20 2357.047
6 (11,3) 3.437 (11, 2) 2093.125 103.062 4 25201.125
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Figure 24: The computational time of different fleet sizes in the deterministic case for different optimizations.
The bottom plot shows the same figure but without RPO to show the trend of the other optimizations.
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6.2 Case 2: Energy Uncertain Case

For the second case, we assume the energy consumption (Et) to be uncertain. From Table 33, in
the sensitivity analysis done for the deterministic case (Section 6.1.4), we can conclude that the
number of batteries under energy consumption uncertainty is likely to remain at 9 or 10 and the
number of charging stations at 2. Therefore, this case assumes that the batteries and charging
stations are known. This case fully focuses on maximizing the revenue objective (RP).

The energy consumption Et is a value in the interval [−1, 1] where 1 would mean that 100% of the
container battery capacity is used on the task starting at t and -1 would mean that 100% of the
capacity must be added to the charging level. However, we choose to assume that vessels cannot
add energy to the batteries, uses a least 50% of the battery capacity and never uses the full capacity
of the battery, at most 90%. Also, we assume that grid balancing options do not add or take the
full capacity of the battery. A battery that is allocated to grid balancing could potentially gain
charge. These assumptions are combined in the following assumption that creates the uncertainty
sets for all the energy consumption:

Assumption 6.2 (Energy consumption uncertainty sets). Dependent on the type of event t, all
the time-events t ∈ T have an energy consumption within one of the following sets:

Eta ∈ [0.5, 0.9]

Etg ∈ [−0.4, 0.6]

The different methods used to analyze this case use different types of distributions on the uncer-
tainty sets. To avoid infeasibility in optimization the C−

ta is adjusted to be 90 %, otherwise values
for Et larger than 0.8 may lead to a negative charge level which violates its range constraints.

6.2.1 Base Case 2

Consider the Base Case defined in Section 6.1.1. Base Case 2 is equivalent to the Base Case defined
in Section 6.1.1 except for the values of Et and C−

t . The values for Et are simulated from a uniform
distribution over the uncertainty sets shown in Assumption 6.2. Table 36 in Appendix D shows a
simulation of this case. For all arrival times, the feasible charge interval becomes Cta = [0.9, 1.0].
The interval Ctg is not changed, however, if the sample Etg is not viable within Ctg the battery will
be returned with either a full charge or an empty charge dependent on the overshoot or undershoot.
Table 19 shows the results of this simulated case using the deterministic methods listed in 6.1.2.
The gap in RPO shows that the system cannot prove in reasonable time that a schedule with 9
batteries and 2 changing stations does not exist with 19 balancing options. Figure 26 shows the
respective schedule found.

Table 19: Results simulated version of the Energy Uncertain Case treated as a deterministic case with
simulated values listed in Table 36.

Case \ Methods AA tAA (s) BPO tBO (s) tCSO (s) RPO (9, 2) tRPO (s) Gap (%) RPO (10, 2) tRPO (s) Gap (%)

Base Case 2 (9, 3) 2.249 (9, 2) 3224.187 2764.953 18* 3600.142 11.1% 20* 3600.423 7.6%
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Figure 25: Gantt Charts depicting AA outcome for Base Case 2

Figure 26: Gantt Charts depicting RPO outcome for Base Case 2 with 9 batteries and 2 charging stations

Figure 27: Gantt Charts depicting RPO outcome for Base Case 2 with 10 batteries and 2 charging stations
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6.2.2 Optimization Strategies

To include the energy consumption uncertainty, different methods of optimization are used that
use different assumptions on the uncertainty sets of Assumptions 6.2. Because of the extended
computational times observed in the previous case, the direct Monte Carlo simulation (DCMS)
is excluded as an optimization strategy. This method requires a substantial number of discrete
optimizations to be performed, which becomes impractical due to the time a single optimization
takes.

1. Rolling horizon analysis (RH) as described in Section 5.2.2, assumes a uniform distribution
on the uncertainty sets.

Eta ∼ U([0.5, 0.9]), Etg ∼ U([−0.4, 0.6])

The rolling horizon with Monte Carlo sampling within this uncertainty set is equivalent to
Base Case 2. The rolling horizon takes multiple horizons of 24 hours and iteratively shifts
the horizon for 6 hours further. The total number of optimizations ran equates to 24 runs of
24 hours to cover the full week.

2. Extreme case analysis as described in Section 5.3.1 is already showcased in the deterministic
case, see Section 6.1.4. This consists of Worst case energy consumption (Worst case) and
Best case energy consumption (Best case) optimization. Table 30 in Appendix C shows the
values implemented for Et.

3. Probabilistic constraint analysis (PC) as described in Section 5.2.3 assumes a value for the
revenue and optimizes the schedule to minimize the probability of failure at every time event.
The probabilistic constraint approach assumes that

Eta ∼ N (0.7, σ2
a), Etg ∼ N (0.1, σ2

g)

with the (100 - α)% confidence interval lying within the uncertainty sets. Assume that
α = 1%, then we find the variance of the distributions by constructing a 99% confidence
interval within the uncertainty set described in Assumption 6.2. The z-score of the confidence
interval of the standard normal distribution with α = 0.01 equals 2.576. This results in the
following variances:

σ2
a = (0.200/2.576)2 = 0.07762 = 0.0060

and
σ2
g = (0.500/2.576)2 = 0.19412 = 0.0378.

Rolling horizon employs the same optimization method for every horizon, however the starting
conditions switch between all horizon optimization. The difference in expected and realized energy
consumption is compensated in between the horizon optimization which results in a sudden shift
in charge level. This shift may ensue an infeasible time arrival at the beginning of the following
horizon. To combat this, a charging level violation (V t

b ) is added to Constraint 7 and 10. This
violation is very largely penalized in the objective. The MIP formulation is shown in Appendix B.7.
The violation makes sure that the system can keep on running even if the infeasible intermediate
states show up. The violation is reported in the percentage of the capacity of the battery added to
the system. The time that it would take the system to gain this added energy can be calculated
by using the charging speed.
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Extreme case analysis uses the revenue optimization problem (RPO) as its solution method, which is
equivalent to the deterministic method used for the Base Case. The corresponding MIP formulation
is shown in Appendix B.6. Probabilistic constraint analysis has its separate MIP formulation, which
can be found in Appendix B.8. The revenue values tested in the probabilistic constraint method
are those falling within the range of results determined by the extreme case analysis.

6.2.3 Results

The rolling horizon analysis is compared to the results of the Base Case. Subsequently, the extreme
case analysis shows the limits of the influence of energy consumption uncertainty. The probabilistic
constraint approach is employed to determine the most robust schedules for revenues situated within
the boundaries established by the extreme case analysis.

Rolling horizon is implemented in the following two cases.

1. No Pull Case (NPC), there is no Monte Carlo simulation in between horizon optimizations.

2. Random Pull Case (RPC), the intermediate values are randomly simulated from the uncer-
tainty set.

The simulations are ultimately fed into a deterministic RPO optimization. Then, we are able to
compare the rolling horizon version to its retrospective deterministic counterpart. Table 20 shows
the result of the rolling horizon test cases.

Optimization\ Method RH tRH (s) Violation (%) RPO tRPO Gap (%)

NPC 17 733.730 0% 21 2068.750 0%
RPC 15 1261.220 14.4% 20* 3600.423 7.6%

Table 20: Results of the rolling horizon method on the case with (NPC) and without Monte Carlo simulation
(RPC) compared to their retrospective deterministic counterparts. The infrastructure is set to 10 batteries
and 2 charging stations. The violation found in RPC equates to around 22 min of waiting time across 6 time
arrival events.
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Figure 28: Gantt charts of the rolling horizon without Monte Carlo simulation (NPC). The retrospective
counterpart of this case corresponds to the Base Case, defined in Section 6.1.1.

Figure 29: Gantt charts of the rolling horizon with Monte Carlo simulation (RPC). The retrospective
counterpart of this case corresponds to Base Case 2, defined in Section 6.2.1.
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The extreme case analysis is performed in the sensitivity analysis of deterministic case (Section
6.1.4). The worst case is only feasible for the system with 10 batteries and 3 charging stations.
Figures 30 and 31 show the schedules of the extreme cases where both 10 batteries and 3 charging
stations are used, where the base case makes use of all the grid balancing spots due to the idle
battery and charging station compared to its BPO produce schedule. These results show the impact
the energy consumption uncertainty may produce. While these particular instances are improbable,
they establish the upper and lower boundaries for attainable revenue within the system.

Table 21: Recap of energy consumption extreme case revenue solutions as seen in Table 30. Note that worst
case is optimized with infrastructure (10, 3) and best case with (9,2).

Cases\Methods RPO tRPO (s) Gap (%)

Worst case 14* 3600.235* 14.3 %
Best case 39 937.672 0%

Figure 30: Gannt chart of RPO results worst case energy consumption scenario with 10 batteries and 3
charging stations.

Figure 31: Gannt charts of RPO results best case energy consumption scenario with 10 batteries and 3
charging stations.
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The probabilistic constraint approach can be employed on the revenues that lay within the worst
and best-case values. We assume that 10 batteries and 2 charging stations are employed in the
system. For the chosen uncertainty sets in this case, every revenue from 0 to 40 lies within the
values found for extreme cases. To limit the experiment time all optimizations are limited to 10
minutes.

Table 22 shows the results of the probabilistic constraint method applied to all revenue values.
The system failed to find a solution within 10 minutes for a revenue greater than 21. The table
clearly shows an increasing probability of failure at higher revenues gained. This correlates with
the expectancy that accepting additional tasks increases the probability of failure.

Figure 32 shows the schedule found for revenue of 21. Under Assumption the assumption that the
energy consumption is normally distributed over the uncertainty set defined in Assumption 6.2, the
maximum probability no battery with sufficient charge is ready at the harbor equals 44.3% at time
event 152. The system ensures that all other time events have a lower chance of failure.

Table 22: Results of the probabilistic constraint for revenue values within the extreme scenarios methods
with a time limit set to 5 minutes. The critical value β is optimized by probabilistic constraint. If a sample is
drawn from the standard normal distribution at time event t and exceeds β, it leads to a scheduling failure.
This β is larger or equal to all critical values at other time events.

Revenue β P (z > β) tPC (s) Gap (%) Time event t

0 1.1887795 0.117263230 600.235 2.05424 070
1 1.1369536 0.127778834 600.421 2.06867 057
2 1.0877297 0.138357226 600.250 1.69011 040
3 1.0346558 0.150414836 600.391 1.73702 067
4 0.9772088 0.164232893 600.375 1.80175 029
5 0.9214808 0.178399735 600.469 1.87355 028
6 0.8640441 0.193781837 600.187 2.05015 044
7 0.8081879 0.209491213 600.437 2.25594 055
8 0.7562307 0.224755435 600.562 2.15074 019
9 0.7023791 0.241221379 600.437 2.43661 038
10 0.6548198 0.256291894 600.359 2.14099 028
11 0.6066775 0.272032494 600.500 2.25537 036
12 0.5605540 0.287550799 600.390 2.38706 036
13 0.5157684 0.303008074 600.422 2.63507 040
14 0.4726980 0.318214332 600.375 2.85265 037
15 0.4326387 0.332638639 600.328 2.77094 142
16 0.3890788 0.348608936 600.328 3.93701 023
17 0.3381372 0.367629906 600.375 7.69287 105
18 0.3159114 0.376034880 600.407 2.98269 076
19 0.2735699 0.392207586 600.391 5.21358 178
20 0.2385810 0.405715279 600.281 5.29492 147
21 0.1431082 0.443102351 600.297 50.78289 152
22 infeasible 1.00 600.296 - -
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Figure 32: Gannt charts of PC results with the scenario of 10 batteries 2 charging stations and 21 revenue.
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6.3 Case 3: Time Uncertain Case

For the second case, we assume the arrival times (ta) to be uncertain. The sensitivity analysis (see
Section 6.1.4) indicates that certain time scenarios necessitate 10 batteries and 2 charging stations.
Due to the small effect on the batteries and charging stations given different time cases, we proceed
with the assumption that this case will have 10 batteries and 2 charging stations and focus on the
changes in revenue given time arrival uncertainty.

There are three kinds of uncertainty sets considered for the arrival times.

1. All the arrival times are pulled independently from a fixed time frame.

2. All the arrival times are pulled independently from a dynamic time frame.

3. Only the first arrival times of the ships are pulled independently from a dynamic time frame.

The fixed time frame is assumed to be an hour on both sides of the expected arrival time, the
dynamic time frame is 10% of the duration on both sides of a time frame. The dynamic time
frame incorporates that as the expected arrival time draws closer, the uncertainty interval narrows,
whereas the fixed time frame stays the same. The dynamic time frame is closer to reality due to
the constantly updated eta predictions of the vessels.

Respectively the different types of uncertainty sets generate the following three assumptions.

Assumption 6.3 (Fixed 1 hour distribution). All the arrival times are independently uniformly
distributed around the expected arrival time values T̄a listed in the Base Case.

Ta ∈ [T̄a − 1 hour, T̄a + 1 hour]

Assumption 6.4 (Individually Independently Distributed (IID) Arrival Time Uncertainty Sets).
All the arrival times are independently uniformly distributed around the expected arrival times
T̄a listed in the Base Case (26). Now we assume an uncertainty of 10%. This gives the following
uncertainty set:

Ta ∈ [T̄a − 0.1
∑
t≤ta

∆t, T̄a + 0.1
∑
t≤ta

∆t]

Assumption 6.5 (Vessel Dependently Distributed (VDD) Arrival Time Uncertainty Sets). Every
vessel is independently uniformly distributed around the values listed in the Base Case, the other
arrivals times of the vessel are scaled with the same pull.

Us ∈ [0.1
∑
t≤ts1

∆t, 0.1
∑
t≤ts1

∆t]

where ts1 is first arrival time of vessel s. Subsequently, all arrival times are shifted with Us, i.e.
Tas = T̄as + Us where as is an arrival time of ship s.
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6.3.1 Base Case 3

The Base Case defined in Section 6.1.1 is also used for the Base Case of this case. The results for
this case can be found in Section 6.1.3. Table 23 shows a short summary of the results.

Table 23: Resuls of Base Case as seen in Tables 9 and 10 in Section 6.1.3. Note that RPO is performed with
10 batteries and 2 charging stations.

Case \ Methods AA tAA (s) BPO tBO (s) tCSO (s) RPO (10,2) tRPO (s)

Base Case (9, 3) 1.371 (9, 2) 576.516 67.797 21 2068.750

6.3.2 Optimization Strategies

The following two optimization methods are used for the time uncertainty case.

1. Rolling horizon analysis (RH), the Base Case is tested and additionally two scenarios are
simulated, one under Assumption 6.4 and the other under Assumption 6.5. The optimizations
are carried out as explained in Section 6.2.2. The MIP formulation can be found in Appendix
B.7. Both simulated timelines are fed into a deterministic RPO optimization to show their
relative performance compared to the deterministic case, where all the information is available.

2. Value at risk analysis (WC). The arrival times are split as explained in Section 5.3.2. The
set splitting uses the uncertainty set defined in Assumption 6.3. Figure 38 shows the split
timeline of the first day.

6.3.3 Results

Rolling horizon is tested in the following scenarios.

1. No Pull Case (NPC), there is no Monte Carlo simulation in between horizon optimizations.

2. Individually Independent Pull Case (IIPC), the intermediate values are simulated from the
uncertainty set under Assumption 6.4.

3. Vehicle Dependent Pull Case (VDPC), the intermediate values are simulated from the uncer-
tainty set under Assumption 6.5.

Table 24 shows the results for the rolling horizon used on the previously mentioned scenarios, with
their deterministic retrospective counterpart. The results clearly show that the rolling horizon
method produces a suboptimal solution. The revenue using the rolling horizon approach may
decrease by 20%. Furthermore, a charge violation may occur as can be seen in the IIPC. However,
the overall impact on the schedule remains minimal, involving only a 25-minute charging time
equivalent charge introduced to the system. Nonetheless, the computational time of rolling horizon
with or without sampling is drastically lower compared to the deterministic solutions.

The Figures 33, 35, 37 display the respective schedules that produced the values shown in Table
24. Figures 34 and 36 show the timeline created by uniform Monte Carlo sampling from the
uncertainty sets specified in Assumptions 6.4 and 6.5. These are the realized timelines for IIPC
and VDPC. The schedule with no Monte Carlo sampling, shown in Figure 33, incorporates fewer
grid balancing stints than the Base Case, which is its retrospective counterpart. This shows that the
rolling horizon method is inherently suboptimal for the whole timeline. The IICP rolling horizon
generated 5 charge violations which summed to be 14.89% of a singular battery capacity. This is
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equivalent to a total of 25 min of waiting time while the batteries are charging upon the arrival of
the 5 vessels.

Table 24: Results of the rolling horizon method, compared to its deterministic counterpart for the different
types of uncertainty sets. All optimizations are run with the assumption that the infrastructure consists of
10 batteries and 2 charging stations. The RPO of the no pull case (NPC) corresponds to the Base Case
RPO using 10 batteries and 2 charging stations which can be seen in Table 15.

Optimization\ Method RH tRH (s) Charge Violations (%) RPO tRPO

NPC 17 733.730 0% 21 2068.750
IIPC 23 1085.450 14.89% 25 3229.031
VDPC 16 1131.810 0% 22* 3600.140

Figure 33: Gantt charts of the Rolling Horizon solution of the Base Case without Monte Carlo sampling. Its
retrospective counterpart is equal to Base Case 6.1.1.
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Figure 34: The retrospective timelines from the rolling horizon simulation employing the uncertainty sets
as specified in Assumption 6.4. The top figure presents the timeline incorporating the grid balancing stints.
The bottom figure illustrates the arrival times of the various vessels.
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Figure 35: Gantt charts of the rolling horizon simulation of IIPC, which employs the uncertainty sets as
specified in Assumption 6.4. The upper figure shows the schedule determined by rolling horizon, the lower
figure shows the schedule of its retrospective deterministic version using RPO.
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Figure 36: The retrospective timelines from the rolling horizon simulation employing the uncertainty sets
as specified in Assumption 6.5. The top figure presents the timeline incorporating the grid balancing stints.
The bottom figure illustrates the arrival times of the various vessels.
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Figure 37: Gantt charts of the rolling horizon simulation of the VDPC which employs the uncertainty sets as
specified in Assumption 6.5. The upper figure shows the schedule determined by rolling horizon, the lower
figure shows the schedule of its retrospective deterministic version using RPO.
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The value at risk time arrival (VAR) analysis only takes a single scenario into consideration. This
scenario takes the Base Case and uses Assumption 6.3 to split the timeline according to the method
discussed in Section 5.3.2. Figure 38 shows the first day of the timeline created with the value at risk
method. Table 25 shows the results of the Base Case compared to the value at risk scenario under
Assumption 6.3. Due to the increase in the time dimension, the RPO optimization takes longer to
complete and is cut short by the 1-hour time limit. Figures 39 and 40 show two representations of
the same schedule that uses 13 grid balancing spots found for VAR. Figure 39 the x-axis is event-
based whereas Figure 40 shows the same information with an actual time indication. In Figure 40,
it clearly shows that all the batteries are allocated simultaneously to the 5 vessels, this shows that
every ship has two allocated batteries within its critical arrival time interval.

Figure 38: Split timeline for value at risk analysis of the arrival time uncertain case. Only the first day is
shown in this figure, the full timeline can be found in Appendix C. Note that the arrival time annotations
appear in both light blue and purple.

Table 25: Results of the value at risk analysis compared to Base Case. The results of Base Case as seen
in Tables 9 and 10 in Section 6.1.3. Note that both RPOs are performed with 10 batteries and 2 charging
stations.

Case \ Methods BPO tBO (s) tCSO (s) RPO tRPO (s) Gap (%)

Base Case (9, 2) 576.516 67.797 21 2068.750 0%
VAR (10,2) 45.813 2824.484 13* 3600.047* 146%
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Figure 39: Gantt chart of the value at risk arrival time uncertainty (VAR) scenario where the batteries are
depicted as the agents

Figure 40: Gantt chart of the value at risk arrival time uncertainty (VAR) scenario where the batteries are
depicted as the agents plotted in real-time. The vessels are shown in blue and the grid balancing is shown
in green.
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7 Conclusion

This section will start with an overview of the problem, the optimization approaches and the
obtained results. Subsequently, the main limitations of the assumptions and methods used in this
research are discussed. Based on these limitations, potential areas for future research exploration
are proposed.

7.1 Overview

In every aspect of transportation, effort should be made to replace fossil fuels with alternative
fuels that are renewable and sustainable. Marine transportation is one of the largest polluters
and requires a whole system change to facilitate a transition to renewable energies. This research
explored the opportunity to transition inland freight vessels to become container battery-powered.
The new system utilizes modular exchangeable containers filled with batteries that will be handled
at the port for recharging and loading. The battery containers are charged at a charging or
docking station in or near the port facilities within the system. While on the charging station,
the batteries may be used for alternative revenues such as grid balancing (net stabilization). Two
core uncertainties of the maritime sector, namely energy consumption and arrival time uncertainty,
are incorporated into the system.

The main objective of research for this thesis was to develop a method that provides port operators
with a deeper understanding of the required infrastructure for a new electrified waterway system
for freight vessels. This method provides a schedule that optimally uses this infrastructure in this
system. A schedule must provide all the vessels in the system with a charged battery upon arrival at
the charging port. Arbitrary revenue options for batteries and charging stations are supported by
this method. The revenue options are used to additionally maximize external profits. The external
profits are formulated as grid balancing positions that require both a battery and a charging station.
Grid balancing has the potential to consume or provide electricity to the allocated battery.

The system is modeled as a discrete event time-space, in which the batteries situated at the port
are allocated to the task that starts at the specific time event. Constraints on the charge level of
the batteries and the capacity of charging stations are formulated. These constraints regulate the
amount of energy charged or self-discharged during intervals between two consecutive time events.

This thesis proposes an approximation algorithm, a MIP formulation, and five stochastic program-
ming extensions to the MIP formulation. All the methods try to find the optimal number of
batteries, charging stations, and grid balancing revenue of an arbitrary waterway system in dif-
ferent contexts. The approximation algorithm and the MIP formulation find feasible solutions for
all counts only using a deterministic case. The direct Monte Carlo simulation extends the MIP
formulation to find the counts for all cases that lie within the predefined uncertainty. Rolling hori-
zon adapts the system to step-by-step gather more information through Monte Carlo sampling and
solving partial event time-spaces. This method closely relates to real-life information gathering,
where more information is added within the run. Probabilistic Constraint assumes the revenue
gained by the system and minimizes the probability of failure at any time event. Extreme value
analysis assumes the extreme values of the energy consumption uncertainty and creates the bound-
aries of viable scenarios. Value at risk analysis splits the event time-space in both extremes of the
arrival time uncertainty and assumes a scenario satisfying the worst of both outcomes.

The results show that the optimization approaches produce an optimal or near-optimal schedule
in their respective contexts, with a single exception of direct Monte Carlo simulation. The key
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findings of these approaches are listed below.

The approximation algorithm is solved extremely fast but produces unreliable results in its esti-
mates. Given certain cases the solutions produced by the approximation algorithm are overesti-
mated. This approach is very suitable for getting an insight into the upper bound for the optimal
number of batteries and charging stations that should be employed in a system. The approximation
algorithm is unsuitable for hourly planning due to its limited perspective on the broader context.

The MIP formulation performs well for small experimental data cases and produces schedules that
utilize the optimal count of batteries, charging stations, and revenue. However, the method scales
very poorly and is computationally heavy, even to the point of exceeding reasonable solving time
limits. Performing a sensitivity analysis of the input parameters of the system gives insights into
how the optimal values react in different input scenarios. Additionally, the sensitivity analysis
identifies areas where the system can easily be improved upon. It shows the influence of critical
factors such as the charging speed and a different assortment of revenue options upon the potential
of the outcomes.

The computational time encountered by solving the MIP formulation renders the direct Monte
Carlo simulation impractical for the cases examined in this research. The number of simulations
that can be done in a reasonable time is too few to draw any conclusions from the results found.
Therefore, this method was not further explored in the experiments.

The rolling horizon approach is very versatile in incorporating uncertainty and significantly de-
creases the computational time. The approach emulates a real-life scenario and can easily be
implemented in practice. However, the system may find substantially worse answers and suffers
from connectivity challenges between different horizon optimizations.

The probabilistic constraint method produces optimal schedules for the revenues in the sense of
minimizing the chance of failure. This provides an overview of the possibility of failure occurring
at any time event. However, the approach relies on strong assumptions regarding the normal
distribution of uncertainty, which is rarely the case in reality.

Extreme value analysis is inherently the same as the MIP formulation approach and therefore suffers
from computational heaviness. However, in the context of uncertainty, it does provide boundaries
that could limit the search space for other approaches such as the probabilistic constraint approach.

The value at risk approach forms a great tool to check the robustness incorporated within time
uncertainty. It provides an indication of the flexibility available within the event time-space.

In summary, the conclusion is that the approximation algorithm is the appropriate first step. The
MIP formulation provides a valuable additional step in insight into the complexities of the system.
However, it scales too poorly to extend to bigger data cases or to integrate uncertainties. In
scenarios involving uncertainty, the rolling horizon approach is recommended due to its adaptability
and realistic modeling, with secondary limit analyses of both value at risk and extreme value
analyses. The probabilistic constraint approach is a suitable alternative if normally distributed
uncertainty is inherent to the uncertainty data.

In general conclusion, the model with these optimization methods provides port operators with
essential insights into the system they are managing. An analysis of a real-life situation with these
approaches empowers the business case to transition an inland waterway system to become fully
container battery-powered.
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7.2 Limitations and Further Research

The research inherently introduces three categories of limitations: missing data, model assump-
tions, and limitations associated with the chosen optimization approaches. This section shows the
limitation in the specified order and recommends further research to extend the findings presented
in this thesis.

The model is only tested on simulated data, for further research I would recommend running
the model on actual arrival times that can be retrieved from historical data. Large databases
of historical data exist in the form of AIS-data on inland shipping, such as the data collected
by Cofano7 and MarineTraffic8. This data can be refined and the arrival times of vessels at the
charging port can be extracted. This information can be used to build a system with real vessels
and accurate uncertainty assumptions in both time and energy consumption. The arrival time can
be extracted by the timestamps included in the AIS-data. Approximations for energy can be made
by extracting the distance traveled and the approximate weight, these can be combined to deduce
the energy needed for a voyage. The historical data is left outside of the scope of this research
due to the time it takes to refine the data. Accurate implementation eliminates the need for all
uncertainty set assumptions (6.2 - 6.5).

The revenues of the inland shipping industry are also left outside the scope of this research due to
a lack of data. This can be included lifting the requirement of facilitating all vessels with batteries
and treating every task as a revenue option. Alternatively, revenues can be generated by ensuring
timely arrivals and penalties for extended waiting times could be incorporated.

In the model description in Section 2.2.1, we made several assumptions about the inland waterway
system to simplify the problem. The effects of the relaxation of the most influential assumptions
are listed below.

Firstly, Assumption 2.1 assumes that there is just a single charging port. To investigate a system
with multiple ports with charging stations, extensions to the model are necessary. Not all batteries
that are on land can be allocated to all tasks, therefore both batteries and tasks are location
dependent at all time events. This further increases the size of the model. Moreover, this system
adds more challenges due to the intricacies of the placement of the batteries and the accumulation
of batteries in certain sections of the system. Alternative transport of the container batteries
between ports is necessary to avoid over-dimensioning the number of batteries, with its own costs.
Also, additional uncertainty is introduced by not knowing the next charging port destination of the
vessels included in the system.

Secondly, Assumption 2.10 can be easily implemented by changing the constraint 1 to be equal to
the number required at the time event. However, it does ask for an additional assumption on the
energy consumption spread over these batteries.

Thirdly, some uncertainties that characterize the maritime sector are excluded by Assumption 2.13.
These uncertainties, identified by Ksciuk et al. [2022], are port duration, spot rate revenue, supply,
demand, and weather. These uncertainties have an effect on refining the historical data to be
able to generate a distribution for energy consumption and arrival times uncertainties. Also, the
sampling methods are likely to become dependent on these additional uncertainties.

Fourthly, the harboring times and waiting times at the charging port are excluded from this research

7https://www.cofano.nl/nl/
8https://www.marinetraffic.com/en/ais/home/
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by Assumptions 2.5 and 2.6. These can be implemented into a model by also treating harboring as
a task that must be performed by the batteries before they can be attached to a charging station
and adding violations to the formulation that represent the waiting times at arrival. Adding these
times asks for an increased knowledge of the ship harboring practices. Moreover, another level of
uncertainty is added which would require an even larger model, that likely will further increase the
computational cost.

Lastly, the equivalence Assumptions 2.8 and 2.9 might be necessary to be relaxed due to net
congestion or performance differences. This creates a time and pairwise battery charging station
dependence on the charging rate d. Also, charging a battery might not be linear which would turn
Constraint 7 into a nonlinear constraint. This would require a nonlinear solver that most likely
even further increases the computational time. More data needs to be collected on a specific data
case to make these insights worthwhile.

The approaches used in this thesis also carry their limitations. Most of the approaches stem from
stochastic programming. Bertsimas and den Hertog [2022] state the following disadvantages on the
shortcomings of stochastic programming:

1. the distribution of the uncertain data is often difficult to specify,

2. the probabilities that appear in the problem are often hard to calculate,

3. the resulting feasible regions are often non-convex, and

4. the computer traceability is often problematic because of the large number of scenarios that
are used.

The first and fourth comments are not encountered in this research due to the missing data and
the inability to optimize a large number of scenarios. The second comment is encountered by the
probabilistic constraint approach, where very strict assumptions on the distributions are necessary
to be able to calculate the desired probability. The third comment does not apply due to the
reliance on integer programming: the feasible regions are never convex.

The approximation algorithm is only tested on the deterministic case with either no or all grid
balancing stints included in the input. Multiple extensions of the approximation algorithm can be
explored. It could be tightened by starting from the back of the timeline to better evaluate the
number of charging stations necessary. By iteratively adding and deleting grid balancing spots, the
approximation algorithm can showcase the transition of the objective functions, i.e. the number
of batteries and charging stations necessary for a system with some grid balancing spots included.
Also, the usage of the approximation algorithm can be explored in cases with uncertainty.

The MIP formulation is highly dependent on the number of batteries due to the decision variables
being defined for every battery on every time event. This results in being unable to investigate
the Pareto Optimal solutions with a lot of batteries. The limiting factor in optimizing the MIP
formulation is the computational time it requires. Only a single set of parameter cuts is explored
in this thesis. Surely more system characteristics can be exploited to improve the LP bounds even
further. Another method to cut down computational time is feeding the approximation algorithm
or any other polynomial approximation solution as a starting point of MIP’s branch and bound.
This eliminates initial branches that have an LP relaxation higher than the approximated solution.
The results of the computational analysis, see Section 6.1.6, clearly show the impact of providing
an initial solution on reducing computational time to solve the MIP.

The Monte Carlo sampling methods, direct Monte Carlo simulation and rolling horizon, are only
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tested with a single scenario. To better cover the uncertainty a lot more simulations should be
performed. This also requires the MIP formulation to be faster. The horizon length and save length
of rolling horizon can also be optimized on computational time and objective values. Moreover,
rolling horizon can also be used to incorporate different decision deadlines, where ship allocations
can be decided at the moment of arrival but grid allocations are decided in advance. This extension
brings the simulation even closer to real-world scenarios.

The critical values βt
b are linearized to be able to maintain the linearity of the program, this changes

the resulting probabilities. This method is improved by applying quadratic optimization methods.

Extreme scenarios are all logically constructed. Further research can implement an adversary that
optimizes the worst cases. The value at risk should be tested with more types of uncertainty sets.

Further research might explore the application of different types of optimization methods suitable
for this problem such as heuristics and machine learning algorithms, due to the size of this research
these have been omitted.

Given a realistic data characteristic, further research does best to cherry-pick the method extensions
that best fit the data. The recommended basic setup is to formulate an approximation method as
well as a MIP formulation.
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A Appendix Complexity

Definitions

Decision Problems

Definition A.1 (Partition). We say that Q is a partition of some set A if:

• Q is a collection of non-empty sets: Q ⊆ P(A)

• No element occurs in two of these subsets: ∀A1, A2 ∈ Q,A1 ∪A2 = ∅ or A1 = A2

• Every element occurs once:
⋂
Q = A

Definition A.2 (Decision problem). A decision problem Π is a yes or no problem that is given by
a set of instances I. An instance of the problem specifies the following:

• a set of feasible solutions F for I;

• a cost function c : F → R;

• a limit constant k.

The objective of the problem is to determine if the exists a F ∈ F such that c(F ) ≤ k. If the F
exists for instance I we have a yes-instance, otherwise, we call I a no-instance.

Definition A.3 (Boolean satisfiability problem). he Boolean satisfiability problem is the yes or no
problem (decision problem) given by a function F consisting of n variables x1, · · · , xn and Boolean
operators. The objective is to find assignments to let the expression both be true and false. If both
assignments exist, the instance is called a yes-instance otherwise it is called a no-instance.

Definition A.4 (Partition problem). The Partition problem is the yes or no problem (decision
problem). The objective is to partition the set S = {s1, · · · , sn} into subsets S1, S2 such that∑

i ∈ S1si =
∑

j ∈ S2sj . If such a partition exists, the instance is called a yes-instance otherwise
it is called a no-instance.

Definition A.5 (3-Partition problem). The 3-Partition problem is the yes or no problem (decision
problem) given by a set A of 3k elements and mapping w : A → N of weights and β ∈ N. The
question is if there exists a partition {S1, · · · , Sm} (A.1) such that

∑
a∈S1

w(a) = β., where all
sets Si contain exactly 3 elements. If such a partition exists, the instance is called a yes-instance
otherwise it is called a no-instance.

Definition A.6 (Bin Packing problem). Let I be a set of items with size s : I → Q∩ (0, 1] and let
there be a large number of bins with capacity 1. Then, the bin packing problem is an optimization
problem where the objective is to find the smallest number of bins k ∈ N such that there exists
a partition of disjoint sets I1, · · · , Ik such that the sum of sizes of each item in bin j (i in Ij) is
smaller equal to one.

Complexity Classes

Definition A.7 (The complexity class P). The complexity class P consists of all decision problems
for which exists an algorithm that in for every instance I can determine whether it is a yes- or
no-instance in polynomial time. The time the algorithm takes to converge is polynomial regarding
the input size.
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Definition A.8 (The complexity class NP). The complexity class NP consists of all decision
problems with the property that every yes-instance can be verified to be a yes-instance in polynomial
time.

Definition A.9 (Polynomial-time reduction). Let Π1 : {0, 1}p → {0, 1},Π2 : {0, 1}q → {0, 1} be
two decision problems. We say Π2 reduces from Π1 if there exists a function ϕ : {0, 1}p → {0, 1}q
that maps every instance of I1 ∈ {0, 1}p to I2 = ϕ(I1) ∈ {0, 1}q such that

• the reduction that is polynomially bounded by the input size of I2.

• I1 is a yes-instance iff I2 is a yes-instance.

Informally the polynomial-time reduction from Π1 to Π2 implies that Π1 is ’no harder’ than Π2,
in the sense that a polynomial-time algorithm for Π2 implies a polynomial-time algorithm for Π1.
This is formalized in the Cook-Levin Theorem which can be found at A.16.

Definition A.10 (The complexity class NP-hard). The complexity class of NP-hard consist of
all problems Π for which holds that, for every problem Π̂ in NP there exists a polynomial-time
reduction from Π̂ to Π.

Definition A.11 (The complexity class NP-complete). The complexity class of NP-complete
consist of all problems Π for which holds that:

• Π ∈ NP

• Π is NP-Hard

The class of NP-complete will be split into two subclasses: weakly and strongly NP-complete.

Definition A.12 (Weakly NP-complete). A decision problem is called weakly NP-complete if
the problem can be solved in polynomial time (in P) when all the input numbers parameters are
represented in unary (Natural numbers).

Definition A.13 (Strongly NP-complete). A decision problem is called strongly NP-complete if
the problem remains in NP even if all input numbers are represented in unary.
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Algorithms

Algorithm A.14 (First-Fit for the Bin Packing Problem). This algorithm looks at the bins one
by one and fits the current item in the first bin where there is enough space. The algorithm has the
following pseudo-code:

1. For i in Items do

(a) For b in Bins do

i. If i fits in b: pack i in b and break;

(b) If i is not packed: generate a new bin b and pack i in b.

2. Set B to be the number of bins.

Algorithm A.15 (Best-Fit for the Bin Packing Problem). This algorithm looks at the bins one by
one and fits in the bin where there is the tightest fit to the maximum capacity if the current item is
added. The algorithm has the following pseudo-code:

1. For i in Items do

(a) For b in Bins do

i. Calculate remaining space if i is packed in b.

(b) Pack i in bin b with the least remaining space. If no b exists with enough space: generate
a new bin b and pack i in b.

2. Set B to be the number of bins.

Theorems

Theorem A.16 (Cook-Levin Theorem (Levin [1973], Cook [1971])). The Boolean Satisfiability
problem is NP-Complete. Also, all the decision problems that are in NP and polynomially reducible
to the Boolean Satisfiability problem are NP-complete.

Proof. The proof can be found in Garey and Johnson [1979].

Theorem A.17 (Law of Large Numbers). The average result of a large number of trials should
be close to the expected value and tends to get closer to the expected value the more trials are
performed. The formal mathematical formulation is as follows:

Let X1, X2, X3, · · · be a sequence of independent and identically distributed random variables with
the distribution function Fx and expected value µ. Denote the sample mean of the first n random
variables as Sn = (X1 +X2 + · · ·+Xn)/n. Then, the theorem states that:

Sn → µ, as n → ∞
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B Appendix Model and MIP Formulations

Availability Matrix

Definition B.1 (The availability matrix). The availability matrix A shows the relation of battery
availability at consecutive time events. If a battery is assigned to a vessel at time t1, the same
battery is unavailable for assignment for the following k time events. The number k could be
different for each t1. The availability matrix is an upper triangular matrix with a specific number
of connected ones on each row. Therefore the matrix has the following form:

At1,t2 =



1 1 · · · 1 1 1 0 · · · 0
1 1 · · · 1 0 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

∅ 1 1 1
1 1

1



. (41)

Definition B.2 (The availability matrix for value at risk time uncertainty). The availability matrix
Â shows the relation of battery availability at consecutive time events in the value at risk arrival
time uncertainty case. This matrix is larger than the matrix defined in Equation 41 due to the split
of ta into t−a and t+a . The rows that correspond with time event t−1 are similar to the rows seen in
the standard At1,t2 matrix, the difference lies in that the ones extend to the column corresponding
to time event t+2 . The rows that correspond with time event t+1 are zero rows, because no battery
is allocated at this event. Therefore the matrix has the following form:

Ât−1 ,t+2
=



1 1 · · · 1 1 1 0 · · · 0
1 1 · · · 1 0 0 · · · 0

0 0 · · · 0 0 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

∅ 1 1 1
1 1

0



. (42)
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No Parameter Cuts

Definition B.3 (Feasibility Problem). Given a timeline of arriving ships, we have the following
optimization problem:

minimize:

[∑
b

yb, z

]
subject to:

∑
b

xtab =1∑
t

xtbAt1,t ≤1

ctb ≥Ct · xtb
ct+1
b ≤ctb − Etx

t
b + (1− xtb)

ct+1
b ≤ctb + d∆t+1wt+1

b − e∆t+1(1− wt+1
b )

xt1b

∑
t

(At1,t)≤
∑
t

((1− wt
b)At1,t)

ctmin
b =c0b

xtbw
t
b =0,∀t ∈ tmin ≤ t < tSb

,

Nyb ≥
∑
t

xtb

M ≥
∑
b

(wt
b)

ytb, x
t
b ∈{0, 1}

ctb, w
t
b ∈[0, 1]
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Definition B.4 (Revenue Problem). Given a yb,M , we have the following optimization problem:

maximize:
∑
tg

∑
b

Rtgx
tg
b

subject to:
∑
b

xtab =1∑
t

xtbAt1,t ≤1

ctb ≥Ct · xtb
ct+1
b ≤ctb − Etx

t
b + (1− xtb)

ct+1
b ≤ctb + d∆t+1wt+1

b − e∆t+1(1− wt+1
b )

xt1b

∑
t

(At1,t) ≤
∑
t

((1− wt
b)At1,t)

ctmin
b =c0b

xtbw
t
b =0, ∀t ∈ tmin ≤ t < tSb

,

M ≥
∑
b

(wt
b)

xtb ∈{0, 1}
ctb, w

t
b ∈[0, 1]
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Parameter Cuts

Definition B.5 (Feasability Problem with parameter cuts). We have the following optimization
problem:

minimize:

[∑
b

yb, z

]
(43)

subject to:
∑
b

xtab =1 (44)∑
b

x
tg
b ≤1 (45)∑

t

xtbAt1,t ≤1 (46)

ctb ≥C−
t · xtb (47)

ctb ≤C+
t · xtb + (1− xtb) (48)

ct+1
b ≤ctb − Etx

t
b + (1− xtb) (49)

ct+1
b ≤ctb + d∆t+1wt+1

b − e∆t+1(1− wt+1
b ) (50)

xt1b

∑
t

(At1,t)≤
∑
t

((1− wt
b)At1,t) (51)

ctmin
b =c0b (52)

xtbw
t
b =0, ∀t ∈ tmin ≤ t < tSb

, (53)

M ≥
∑
b

(wt
b) (54)

U t
b + Itb ≤y(b) (55)

U t
b =

∑
t̂

xt̂b ·A(t̂, t) (56)

wt
b ≤Itb (57)

xtb ∈{0, 1} (58)

ctb, w
t
b, U

t
b , I

t
b ∈[0, 1] (59)
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Definition B.6 (Revenue Problem with parameter cuts). Given a yb and M , we have the following
optimization problem:

maximize:
∑
tg

∑
b

Rtgx
tg
b (60)

subject to:
∑
b

xtab =1 (61)∑
t

xtbAt1,t ≤1 (62)

ctb ≥C−
t · xtb (63)

ctb ≤C+
t · xtb + (1− xtb) (64)

ct+1
b ≤ctb − Etx

t
b + (1− xtb) (65)

ct+1
b ≤ctb + d∆t+1wt+1

b − e∆t+1(1− wt+1
b ) (66)

xt1b

∑
t

(At1,t) ≤
∑
t

((1− wt
b)At1,t) (67)

ctmin
b =c0b (68)

xtbw
t
b =0, ∀t ∈ tmin ≤ t < tSb

, (69)

M ≥
∑
b

(wt
b +

∑
tg

x
tg
b Atg ,t) (70)

U t
b + Itb ≤y(b) (71)

U t
b =

∑
t̂

xt̂b ·A(t̂, t) (72)

wt
b ≤Itb (73)

xtb ∈{0, 1} (74)

ctb, w
t
b, U

t
b , I

t
b ∈[0, 1] (75)
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Rolling Horizon: Parameter Cuts with Charging Violation

Definition B.7 (Revenue Problem with parameter cuts and a charging violation used for rolling
horizon analysis). Given a yb and M , we have the following optimization problem:

maximize:
∑
tg

∑
b

Rtgx
tg
b −N

∑
t

∑
b

V t
b (76)

subject to:
∑
b

xtab =1 (77)∑
t

xtbAt1,t ≤1 (78)

ctb ≥C−
t · xtb (79)

ctb ≤C+
t · xtb + (1− xtb) (80)

ct+1
b ≤ctb − Etx

t
b + (1− xtb) (81)

ct+1
b ≤ctb + d∆t+1wt+1

b − e∆t+1(1− wt+1
b ) + V t

b (82)

xt1b

∑
t

(At1,t) ≤
∑
t

((1− wt
b)At1,t) (83)

ctmin
b =c0b + V 0

b (84)

xtbw
t
b =0,∀t ∈ tmin ≤ t < tSb

, (85)

M ≥
∑
b

(wt
b +

∑
tg

x
tg
b Atg ,t) (86)

U t
b + Itb ≤y(b) (87)

U t
b =

∑
t̂

xt̂b ·A(t̂, t) (88)

wt
b ≤Itb (89)

xtb ∈{0, 1} (90)

ctb, w
t
b, U

t
b , I

t
b ∈[0, 1] (91)
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Probabilistic Constraint

Definition B.8 (Revenue Problem with probabilistic constraint). Given a yb,M , R, X̄t
a, and X̄t

g

we have the following optimization problem:

maximize: β

subject to:
∑
b

xtab =1∑
t

xtbAt1,t ≤1

ctb ≥Ct · xtb
ct+1
b ≤ctb − Etx

t
b + (1− xtb)

ct+1
b ≤ctb + d∆t+1wt+1

b − e∆t+1(1− wt+1
b )

xt1b

∑
t

(At1,t)≤
∑
t

((1− wt
b)At1,t)

ctmin
b =c0b

xtbw
t
b =0, ∀t ∈ tmin ≤ t < tSb

,

M ≥
∑
b

(wt
b)

R =
∑
tg

∑
b

Rtgx
tg
b

β ≤
1 +

∑
t1≤t∆t1 · w

t1
b1
−
∑

ta≤t x
ta
b µta +

∑
tg≤t x

tg
b µtg∑

ta≤t X̄
t
aσta +

∑
tg≤t X̄

t
gσtg

xtb ∈{0, 1}
ctb, w

t
b ∈[0, 1]

94



C Appendix Figures

Industry Information

Figure 41: This figure shows the concept of Zero Emission Services, a commercial supplier of battery contain-
ers with the battery swapping service Incorporated. https://zeroemissionservices.nl/en/homepage/,
Accessed on 16-06-2023
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Figures Cyclic Case

Figure 42: Timelines Cyclic Case
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Figure 43: Gantt charts of the solution of the Cyclic Case using the Approximation Algorithm.
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Figures Tight Case

Figure 44: Timelines Tight Case
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Figure 45: Gantt charts of the solution of the Tight Case using the Approximation Algorithm.
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Figures Random Grid Balancing Case

Figure 46: Gantt charts of the random duration of grid balancing stints by RPO.
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Figures Time Horizons

Figure 47: Gantt charts of the different time horizons produced by the approximation algorithm. The
different horizons are shown from small to big: the first row of charts has a horizon of one day, the second
row of two days, and the final row of five days.

Figures Value At Risk Time Arrival Uncertainty
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Figure 48: Full timeline of value at risk time arrival uncertainty case (WCTA)
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D Appendix Simulation Tables

Table 26: Base Case: Vessel Time Simulation

Time Ship Annotation

01/01/2019, 03:58:42 2 t0
01/01/2019, 04:50:27 5 t2
01/01/2019, 05:45:33 3 t3
01/01/2019, 06:50:18 4 t4
01/01/2019, 06:58:50 1 t5
01/01/2019, 10:50:39 4 t8
01/01/2019, 10:58:55 5 t9
01/01/2019, 11:15:27 3 t10
01/01/2019, 11:17:12 2 t11
01/01/2019, 13:05:21 1 t14
01/01/2019, 17:15:18 5 t17
01/01/2019, 17:28:54 2 t18
01/01/2019, 17:57:06 4 t19
01/01/2019, 18:23:11 3 t20
01/01/2019, 19:05:37 1 t21
01/01/2019, 21:38:11 5 t24
01/01/2019, 23:41:19 3 t25
01/01/2019, 23:52:55 2 t26
01/02/2019, 00:11:47 4 t29
01/02/2019, 00:55:08 1 t30
01/02/2019, 03:03:48 5 t31
01/02/2019, 05:32:40 2 t34
01/02/2019, 05:36:27 3 t35
01/02/2019, 06:08:04 4 t36
01/02/2019, 07:21:07 1 t37
01/02/2019, 07:44:34 5 t38
01/02/2019, 11:04:41 3 t41
01/02/2019, 11:22:50 4 t42
01/02/2019, 12:48:03 2 t45
01/02/2019, 14:33:18 1 t46
01/02/2019, 14:58:44 5 t47
01/02/2019, 18:04:08 2 t50
01/02/2019, 18:05:33 4 t51
01/02/2019, 18:07:28 3 t52
01/02/2019, 19:35:24 1 t53
01/02/2019, 22:42:21 3 t56
01/02/2019, 23:26:39 5 t57
01/03/2019, 00:43:45 2 t60
01/03/2019, 01:00:39 4 t61
01/03/2019, 02:37:05 1 t62
01/03/2019, 04:20:36 3 t65
01/03/2019, 06:22:42 2 t66
01/03/2019, 06:31:43 4 t67
01/03/2019, 06:49:39 5 t68
01/03/2019, 08:50:48 1 t71
01/03/2019, 10:13:17 3 t72
01/03/2019, 11:26:20 2 t73

Time Ship Annotation

...
...

...
01/03/2019, 12:37:06 4 t76
01/03/2019, 13:10:26 5 t77
01/03/2019, 15:17:31 1 t78
01/03/2019, 16:32:27 3 t81
01/03/2019, 16:56:58 2 t82
01/03/2019, 19:26:43 4 t83
01/03/2019, 20:09:19 1 t86
01/03/2019, 20:11:47 5 t87
01/03/2019, 22:08:42 2 t88
01/03/2019, 23:00:06 3 t89
01/03/2019, 23:29:27 4 t90
01/04/2019, 02:17:26 1 t93
01/04/2019, 02:21:47 5 t94
01/04/2019, 03:55:56 2 t95
01/04/2019, 04:47:09 3 t98
01/04/2019, 05:36:30 4 t99
01/04/2019, 09:35:35 2 t102
01/04/2019, 09:42:03 4 t103
01/04/2019, 09:46:30 1 t104
01/04/2019, 10:01:11 5 t105
01/04/2019, 11:46:30 3 t106
01/04/2019, 14:41:43 1 t109
01/04/2019, 14:46:40 4 t110
01/04/2019, 15:54:19 2 t111
01/04/2019, 16:41:16 5 t114
01/04/2019, 18:05:23 3 t115
01/04/2019, 18:43:03 1 t116
01/04/2019, 21:14:51 4 t119
01/04/2019, 22:27:28 5 t120
01/04/2019, 22:28:13 2 t121
01/04/2019, 22:58:27 1 t122
01/05/2019, 02:33:26 3 t125
01/05/2019, 03:06:12 4 t126
01/05/2019, 03:19:42 5 t127
01/05/2019, 04:19:23 2 t130
01/05/2019, 05:14:25 1 t131
01/05/2019, 07:02:56 3 t132
01/05/2019, 08:41:18 5 t135
01/05/2019, 08:42:11 4 t136
01/05/2019, 10:17:49 2 t137
01/05/2019, 13:37:30 1 t140
01/05/2019, 13:40:10 3 t141
01/05/2019, 14:24:26 4 t142
01/05/2019, 15:00:07 5 t143
01/05/2019, 16:35:10 2 t146

Time Ship Annotation

...
...

...
01/05/2019, 18:37:28 3 t147
01/05/2019, 19:46:34 5 t148
01/05/2019, 20:44:56 1 t151
01/05/2019, 21:15:19 4 t152
01/05/2019, 22:02:47 2 t153
01/05/2019, 23:49:35 3 t154
01/06/2019, 01:33:16 5 t157
01/06/2019, 03:57:44 4 t158
01/06/2019, 04:25:17 1 t161
01/06/2019, 04:45:16 2 t162
01/06/2019, 07:48:41 3 t163
01/06/2019, 08:53:40 5 t166
01/06/2019, 09:10:30 4 t167
01/06/2019, 10:31:14 1 t168
01/06/2019, 11:35:48 2 t169
01/06/2019, 14:55:25 5 t172
01/06/2019, 15:28:04 4 t173
01/06/2019, 15:33:23 3 t174
01/06/2019, 17:48:01 2 t177
01/06/2019, 17:55:07 1 t178
01/06/2019, 19:42:01 3 t179
01/06/2019, 20:59:49 4 t182
01/06/2019, 22:54:33 5 t183
01/06/2019, 23:38:50 1 t184
01/07/2019, 01:28:39 3 t187
01/07/2019, 02:11:42 2 t188
01/07/2019, 05:24:05 4 t191
01/07/2019, 06:15:38 1 t192
01/07/2019, 06:21:22 5 t193
01/07/2019, 07:24:41 3 t194
01/07/2019, 09:06:45 2 t197
01/07/2019, 10:39:43 4 t198
01/07/2019, 11:16:47 3 t199
01/07/2019, 11:59:36 1 t201
01/07/2019, 12:04:07 5 t203
01/07/2019, 15:00:00 2 t204
01/07/2019, 16:20:57 4 t207
01/07/2019, 16:42:33 5 t208
01/07/2019, 17:13:52 3 t209
01/07/2019, 17:26:38 1 t210
01/07/2019, 20:38:17 2 t213
01/07/2019, 22:00:01 4 t214
01/07/2019, 22:39:40 5 t215
01/07/2019, 23:34:36 1 t216
01/07/2019, 23:37:28 3 t217
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Table 27: Base Case: Grid Times

Time Grid balancing number Annotation length

01/01/2019, 04:00:00 1 t1 0 days 04:00:00
01/01/2019, 08:00:00 2 t7 0 days 04:00:00
01/01/2019, 12:00:00 3 t13 0 days 04:00:00
01/01/2019, 16:00:00 4 t16 0 days 04:00:00
01/01/2019, 20:00:00 5 t23 0 days 04:00:00
01/02/2019, 00:00:00 6 t28 0 days 04:00:00
01/02/2019, 04:00:00 7 t33 0 days 04:00:00
01/02/2019, 08:00:00 8 t40 0 days 04:00:00
01/02/2019, 12:00:00 9 t44 0 days 04:00:00
01/02/2019, 16:00:00 10 t49 0 days 04:00:00
01/02/2019, 20:00:00 11 t55 0 days 04:00:00
01/03/2019, 00:00:00 12 t59 0 days 04:00:00
01/03/2019, 04:00:00 13 t64 0 days 04:00:00
01/03/2019, 08:00:00 14 t70 0 days 04:00:00
01/03/2019, 12:00:00 15 t75 0 days 04:00:00
01/03/2019, 16:00:00 16 t80 0 days 04:00:00
01/03/2019, 20:00:00 17 t85 0 days 04:00:00
01/04/2019, 00:00:00 18 t92 0 days 04:00:00
01/04/2019, 04:00:00 19 t97 0 days 04:00:00
01/04/2019, 08:00:00 20 t101 0 days 04:00:00
01/04/2019, 12:00:00 21 t108 0 days 04:00:00
01/04/2019, 16:00:00 22 t113 0 days 04:00:00
01/04/2019, 20:00:00 23 t118 0 days 04:00:00
01/05/2019, 00:00:00 24 t124 0 days 04:00:00
01/05/2019, 04:00:00 25 t129 0 days 04:00:00
01/05/2019, 08:00:00 26 t134 0 days 04:00:00
01/05/2019, 12:00:00 27 t139 0 days 04:00:00
01/05/2019, 16:00:00 28 t145 0 days 04:00:00
01/05/2019, 20:00:00 29 t150 0 days 04:00:00
01/06/2019, 00:00:00 30 t156 0 days 04:00:00
01/06/2019, 04:00:00 31 t160 0 days 04:00:00
01/06/2019, 08:00:00 32 t165 0 days 04:00:00
01/06/2019, 12:00:00 33 t171 0 days 04:00:00
01/06/2019, 16:00:00 34 t176 0 days 04:00:00
01/06/2019, 20:00:00 35 t181 0 days 04:00:00
01/07/2019, 00:00:00 36 t186 0 days 04:00:00
01/07/2019, 04:00:00 37 t190 0 days 04:00:00
01/07/2019, 08:00:00 38 t196 0 days 04:00:00
01/07/2019, 12:00:00 39 t202 0 days 04:00:00
01/07/2019, 16:00:00 40 t206 0 days 04:00:00
01/07/2019, 20:00:00 41 t212 0 days 04:00:00
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Table 28: Base Case: ∆t in seconds

Time Annotation ∆t (s)

t0 0.000000
t1 77.552306
t2 3027.197531
t3 3306.764488
t4 3885.002009
t5 511.881988
t6 3609.153984
t7 60.000000
t8 10239.146457
t9 496.026079
t10 992.565444
t11 105.212805
t12 2507.049215
t13 60.000000
t14 3921.620709
t15 10418.379291
t16 60.000000
t17 4518.150088
t18 816.848502
t19 1691.897512
t20 1564.468429
t21 2545.705329
t22 3202.930140
t23 60.000000
t24 5891.295396
t25 7387.953025
t26 696.506127
t27 364.245452
t28 60.000000
t29 707.254418
t30 2601.254684
t31 7719.578192
t32 3311.912706
t33 60.000000
t34 5560.278134
t35 226.930425
t36 1897.162553
t37 4383.032274
t38 1407.072743
t39 865.523871
t40 60.000000
t41 11081.742667
t42 1088.613786
t43 2169.643547
t44 60.000000
t45 2883.578284
t46 6314.759648
t47 1526.477371
t48 3615.184697
t49 60.000000
t50 7448.488077
t51 84.920835
t52 114.592040
t53 5276.100566
t54 1415.898482
t55 60.000000
t56 9741.199247
t57 2658.786351
t58 1940.014402
t59 60.000000
t60 2625.321661
t61 1013.856196
t62 5786.710342
t63 4914.111801
t64 60.000000
t65 1236.202188
t66 7325.980664
t67 541.459705
t68 1075.979067
t69 4160.378376
t70 60.000000
t71 3048.956667
t72 4948.385033

Time Annotation ∆t (s)

t73 4382.881057
t74 1959.777243
t75 60.000000
t76 2226.157962
t77 1999.902877
t78 7625.391234
t79 2488.547927
t80 60.000000
t81 1947.024816
t82 1471.583960
t83 8984.744228
t84 1936.646996
t85 60.000000
t86 559.684110
t87 147.434715
t88 7014.961839
t89 3084.194598
t90 1760.834110
t91 1772.890628
t92 60.000000
t93 8246.176872
t94 261.458914
t95 5648.733379
t96 183.630835
t97 60.000000
t98 2829.431650
t99 2960.590102
t100 8549.978248
t101 60.000000
t102 5735.464279
t103 387.712676
t104 267.333124
t105 881.305555
t106 6318.276863
t107 749.907503
t108 60.000000
t109 9703.212490
t110 297.491112
t111 4058.572448
t112 280.723950
t113 60.000000
t114 2476.218226
t115 5046.987875
t116 2260.184579
t117 4556.609320
t118 60.000000
t119 4491.808765
t120 4356.601543
t121 45.415353
t122 1813.424754
t123 3632.749585
t124 60.000000
t125 9206.749904
t126 1965.338514
t127 809.937590
t128 2357.973992
t129 60.000000
t130 1163.112733
t131 3301.990272
t132 6511.689545
t133 3363.207450
t134 60.000000
t135 2478.160633
t136 53.429718
t137 5738.263169
t138 6070.146480
t139 60.000000
t140 5850.985396
t141 159.969541
t142 2655.093543
t143 2141.902031
t144 3532.049489
t145 60.000000

Time Annotation ∆t (s)

t146 2110.592654
t147 7337.885148
t148 4146.463178
t149 745.059020
t150 60.000000
t151 2696.273908
t152 1823.325564
t153 2847.428525
t154 6408.618061
t155 564.353942
t156 60.000000
t157 5596.485689
t158 8667.703420
t159 75.810891
t160 60.000000
t161 1517.713876
t162 1198.690193
t163 11005.546518
t164 618.049413
t165 60.000000
t166 3220.220405
t167 1009.800570
t168 4844.630078
t169 3873.762074
t170 1391.586873
t171 60.000000
t172 10525.735364
t173 1958.872220
t174 318.673937
t175 1536.718479
t176 60.000000
t177 6481.303997
t178 426.134014
t179 6413.575780
t180 1018.986209
t181 60.000000
t182 3589.701479
t183 6883.422571
t184 2657.821204
t185 1209.054746
t186 60.000000
t187 5319.028474
t188 2583.208717
t189 6437.762809
t190 60.000000
t191 5045.273660
t192 3093.206659
t193 344.439893
t194 3799.056010
t195 2058.023778
t196 60.000000
t197 4005.089366
t198 5578.500035
t199 2224.223230
t200 2532.187369
t201 36.138440
t202 23.861560
t203 247.454323
t204 10553.454147
t205 3539.091530
t206 60.000000
t207 1257.405875
t208 1296.530385
t209 1878.086530
t210 766.603199
t211 9141.374011
t212 60.000000
t213 2297.058860
t214 4904.372109
t215 2379.556520
t216 3295.388365
t217 171.675317
t218 1291.948829
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Table 29: Grid Time Simulation

Time Grid balancing number Annotation Length Revenue

01/01/2019, 03:47:05 1 t0 0 days 04:21:39.911109 1.090208
01/01/2019, 08:09:44 2 t7 0 days 05:35:51.868707 1.399375
01/01/2019, 13:46:36 3 t14 0 days 02:51:36.825473 0.715000
01/01/2019, 16:39:13 4 t16 0 days 03:35:40.579391 0.898611
01/01/2019, 20:15:54 5 t23 0 days 04:18:56.459818 1.078889
01/02/2019, 00:35:50 6 t29 0 days 05:07:05.903423 1.279514
01/02/2019, 05:43:56 7 t35 0 days 04:29:38.571881 1.123472
01/02/2019, 10:14:35 8 t40 0 days 04:23:51.471508 1.099375
01/02/2019, 14:39:26 9 t46 0 days 05:19:40.377924 1.331944
01/02/2019, 20:00:06 10 t53 0 days 04:28:36.655142 1.119167
01/03/2019, 00:29:43 11 t57 0 days 03:44:46.784936 0.936528
01/03/2019, 04:15:30 12 t62 0 days 04:02:26.226541 1.010139
01/03/2019, 08:18:56 13 t68 0 days 03:16:34.542791 0.819028
01/03/2019, 11:36:31 14 t73 0 days 04:31:47.993415 1.132431
01/03/2019, 16:09:19 15 t78 0 days 04:55:33.001472 1.231458
01/03/2019, 21:05:52 16 t85 0 days 01:00:13.451624 0.250903
01/03/2019, 22:07:05 17 t87 0 days 05:12:05.335861 1.300347
01/04/2019, 03:20:10 18 t94 0 days 03:55:36.525397 0.981667
01/04/2019, 07:16:47 19 t99 0 days 04:26:39.198429 1.111042
01/04/2019, 11:44:26 20 t105 0 days 04:38:44.546442 1.161389
01/04/2019, 16:24:11 21 t111 0 days 01:41:17.628016 0.422014
01/04/2019, 18:06:28 22 t115 0 days 02:47:14.654479 0.696806
01/04/2019, 20:54:43 23 t118 0 days 03:39:00.835816 0.912500
01/05/2019, 00:34:44 24 t124 0 days 03:11:30.993225 0.797917
01/05/2019, 03:47:15 25 t129 0 days 04:15:27.022011 1.064375
01/05/2019, 08:03:42 26 t134 0 days 03:28:06.324279 0.867083
01/05/2019, 11:32:48 27 t139 0 days 02:16:20.143690 0.568056
01/05/2019, 13:50:08 28 t143 0 days 04:35:44.270325 1.148889
01/05/2019, 18:26:53 29 t148 0 days 05:05:00.465746 1.270833
01/05/2019, 23:32:53 30 t155 0 days 04:32:51.669095 1.136875
01/06/2019, 04:06:45 31 t160 0 days 03:16:13.922027 0.817569
01/06/2019, 07:23:59 32 t164 0 days 03:43:20.905877 0.930556
01/06/2019, 11:08:20 33 t170 0 days 04:31:54.341039 1.132917
01/06/2019, 15:41:14 34 t176 0 days 04:35:11.516581 1.146597
01/06/2019, 20:17:25 35 t181 0 days 04:59:24.700099 1.247500
01/07/2019, 01:17:50 36 t186 0 days 03:41:20.066373 0.922222
01/07/2019, 05:00:10 37 t190 0 days 02:33:44.830145 0.640556
01/07/2019, 07:34:55 38 t196 0 days 03:18:15.791611 0.826042
01/07/2019, 10:54:11 39 t200 0 days 04:31:01.985314 1.129236
01/07/2019, 15:26:13 40 t206 0 days 04:43:38.307854 1.181806
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Table 30: Energy Consumption Scenarios (Et)

Table 31: Standardized (BC )

Vessels Et

1 0.7
2 0.7
3 0.7
4 0.7
5 0.7

Grid Balancing 0.1

Table 32: Worst case

Vessels Et

1 0.9
2 0.9
3 0.9
4 0.9
5 0.9

Grid Balancing 0.6

Table 33: Random

Vessels Et

1 0.851
2 0.686
3 0.817
4 0.818
5 0.768

Grid Balancing 0.1

Table 34: Best case

Vessels Et

1 0.5
2 0.5
3 0.5
4 0.5
5 0.5

Grid Balancing -0.4
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Table 35: Grid balancing time simulation of two overlapping contracts

Time Grid balancing number Annotation Length Revenue

01/01/2019, 03:47:05 1 t0 0 days 04:21:39.911109 1.090208
01/01/2019, 06:20:00 42 t4 0 days 04:06:01.853113 1.025069
01/01/2019, 08:09:44 2 t8 0 days 05:35:51.868707 1.399375
01/01/2019, 10:27:02 43 t10 0 days 04:13:40.612273 1.056944
01/01/2019, 13:46:36 3 t17 0 days 02:51:36.825473 0.715000
01/01/2019, 14:41:43 44 t19 0 days 03:48:21.724238 0.951458
01/01/2019, 16:39:13 4 t21 0 days 03:35:40.579391 0.898611
01/01/2019, 18:31:05 45 t27 0 days 03:34:39.373700 0.894375
01/01/2019, 20:15:54 5 t30 0 days 04:18:56.459818 1.078889
01/01/2019, 22:06:44 46 t33 0 days 04:45:54.390685 1.191250
01/02/2019, 00:35:50 6 t38 0 days 05:07:05.903423 1.279514
01/02/2019, 02:53:38 47 t41 0 days 04:20:12.519410 1.084167
01/02/2019, 05:43:56 7 t46 0 days 04:29:38.571881 1.123472
01/02/2019, 07:14:51 48 t49 0 days 03:46:33.793851 0.943958
01/02/2019, 10:14:35 8 t53 0 days 03:42:03.182995 0.925208
01/02/2019, 11:02:25 49 t55 0 days 03:36:01.377931 0.900069
01/02/2019, 13:57:38 50 t60 0 days 03:51:36.948617 0.965000
01/02/2019, 14:39:26 9 t63 0 days 05:19:40.377924 1.331944
01/02/2019, 17:50:15 51 t66 0 days 03:35:32.464133 0.898056
01/02/2019, 20:00:06 10 t72 0 days 04:28:36.655142 1.119167
01/02/2019, 21:26:47 52 t74 0 days 05:14:18.625434 1.309583
01/03/2019, 00:29:43 11 t78 0 days 03:44:46.784936 0.936528
01/03/2019, 02:42:06 53 t83 0 days 04:55:49.653881 1.232569
01/03/2019, 04:15:30 12 t85 0 days 04:02:26.226541 1.010139
01/03/2019, 07:38:56 54 t91 0 days 02:57:39.681508 0.740208
01/03/2019, 08:18:56 13 t93 0 days 03:16:34.542791 0.819028
01/03/2019, 10:37:35 55 t97 0 days 05:09:01.806126 1.287569
01/03/2019, 11:36:31 14 t100 0 days 04:31:47.993415 1.132431
01/03/2019, 15:47:37 56 t105 0 days 03:24:40.883472 0.852778
01/03/2019, 16:09:19 15 t107 0 days 04:55:33.001472 1.231458
01/03/2019, 19:13:18 57 t111 0 days 02:52:47.259187 0.719931
01/03/2019, 21:05:52 16 t116 0 days 02:14:25.487426 0.560069
01/03/2019, 22:07:05 17 t118 0 days 05:12:05.335861 1.300347
01/03/2019, 23:21:17 58 t122 0 days 05:11:09.877946 1.296458
01/04/2019, 03:20:10 18 t127 0 days 03:55:36.525397 0.981667
01/04/2019, 04:33:27 59 t130 0 days 02:57:30.889319 0.739583
01/04/2019, 07:16:47 19 t134 0 days 04:23:48.378796 1.099167
01/04/2019, 07:31:58 60 t136 0 days 04:11:28.256620 1.047778
01/04/2019, 11:41:35 61 t142 0 days 02:51:10.288966 0.713194
01/04/2019, 11:44:26 20 t144 0 days 04:38:44.546442 1.161389
01/04/2019, 14:33:46 62 t147 0 days 02:02:31.321148 0.510486
01/04/2019, 16:24:11 21 t152 0 days 01:41:17.628016 0.422014
01/04/2019, 16:37:17 63 t154 0 days 04:16:26.038456 1.068472
01/04/2019, 18:06:28 22 t158 0 days 03:29:00.368164 0.870833
01/04/2019, 20:54:43 23 t161 0 days 03:39:00.835816 0.912500
01/04/2019, 21:36:29 64 t164 0 days 04:00:41.618522 1.002847
01/05/2019, 00:34:44 24 t169 0 days 03:11:30.993225 0.797917
01/05/2019, 01:38:10 65 t171 0 days 03:09:39.476648 0.790208
01/05/2019, 03:47:15 25 t176 0 days 03:25:23.393475 0.855764
01/05/2019, 04:48:50 66 t179 0 days 03:13:52.042197 0.807778
01/05/2019, 07:13:38 67 t183 0 days 03:34:54.697850 0.895417
01/05/2019, 08:03:42 26 t185 0 days 03:28:06.324279 0.867083
01/05/2019, 10:49:33 68 t190 0 days 02:59:35.398655 0.748264
01/05/2019, 11:32:48 27 t192 0 days 04:36:16.590458 1.151111
01/05/2019, 13:50:08 28 t196 0 days 04:35:44.270325 1.148889
01/05/2019, 16:10:05 69 t200 0 days 04:23:08.888737 1.096389
01/05/2019, 18:26:53 29 t203 0 days 05:05:00.465746 1.270833
01/05/2019, 20:34:14 70 t207 0 days 03:36:38.058901 0.902639
01/05/2019, 23:32:53 30 t212 0 days 03:57:39.373964 0.990208
01/06/2019, 00:11:52 71 t215 0 days 03:53:53.010760 0.974514
01/06/2019, 03:31:32 72 t218 0 days 03:51:26.217158 0.964306
01/06/2019, 04:06:45 31 t221 0 days 03:30:08.628367 0.875556
01/06/2019, 07:23:59 32 t225 0 days 02:40:04.406933 0.666944
01/06/2019, 07:37:53 73 t227 0 days 03:29:26.199537 0.872639
01/06/2019, 10:05:03 74 t232 0 days 05:19:41.303438 1.332014
01/06/2019, 11:08:20 33 t235 0 days 04:31:54.341039 1.132917
01/06/2019, 15:25:44 75 t239 0 days 04:29:11.481054 1.121597
01/06/2019, 15:41:14 34 t243 0 days 04:35:11.516581 1.146597
01/06/2019, 19:55:56 76 t248 0 days 05:10:39.662169 1.294375
01/06/2019, 20:17:25 35 t250 0 days 04:59:24.700099 1.247500
01/07/2019, 01:07:36 77 t255 0 days 03:25:11.379584 0.854931
01/07/2019, 01:17:50 36 t257 0 days 03:41:20.066373 0.922222
01/07/2019, 04:33:47 78 t261 0 days 03:00:08.126936 0.750556
01/07/2019, 05:00:10 37 t263 0 days 04:23:54.086732 1.099583
01/07/2019, 07:34:55 38 t269 0 days 03:18:15.791611 0.826042
01/07/2019, 09:25:04 79 t272 0 days 04:40:16.457012 1.167778
01/07/2019, 10:54:11 39 t275 0 days 04:31:01.985314 1.129236
01/07/2019, 14:06:21 80 t280 0 days 02:27:00.952614 0.612500
01/07/2019, 15:26:13 40 t283 0 days 04:43:38.307854 1.181806
01/07/2019, 16:34:22 81 t286 0 days 04:07:56.258524 1.033056
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Table 36: Case 2 simulated Et uniformly distributed under Assumption 6.2.

Time Annotation Energy Consumption Et

t0 0.728561
t1 0.028889
t2 0.731237
t3 0.582439
t4 0.825329
t5 0.829436
t6 0.000000
t7 0.253473
t8 0.564092
t9 0.708268
t10 0.631109
t11 0.599999
t12 0.000000
t13 0.552817
t14 0.898623
t15 0.000000
t16 -0.355444
t17 0.844064
t18 0.741276
t19 0.652642
t20 0.613447
t21 0.769986
t22 0.000000
t23 0.056831
t24 0.774345
t25 0.764739
t26 0.553191
t27 0.000000
t28 0.367838
t29 0.892965
t30 0.887755
t31 0.745331
t32 0.000000
t33 -0.355739
t34 0.501622
t35 0.553589
t36 0.876401
t37 0.621144
t38 0.646458
t39 0.000000
t40 0.498196
t41 0.625746
t42 0.719593
t43 0.000000
t44 0.036031
t45 0.525998
t46 0.733818
t47 0.837627
t48 0.000000
t49 -0.243581
t50 0.589720
t51 0.665148
t52 0.514770
t53 0.698641
t54 0.000000
t55 0.417983
t56 0.763156
t57 0.713393
t58 0.000000
t59 0.455126
t60 0.559875
t61 0.726894
t62 0.649670
t63 0.000000
t64 0.201305
t65 0.545166
t66 0.810205
t67 0.538642
t68 0.566545
t69 0.000000
t70 0.407450
t71 0.879078
t72 0.673293

Time Annotation Energy Consumption Et

t73 0.665632
t74 0.000000
t75 -0.154518
t76 0.609881
t77 0.746901
t78 0.571384
t79 0.000000
t80 -0.280517
t81 0.682294
t82 0.565975
t83 0.759490
t84 0.000000
t85 0.421056
t86 0.811005
t87 0.692053
t88 0.639029
t89 0.673884
t90 0.502003
t91 0.000000
t92 0.312573
t93 0.632663
t94 0.627769
t95 0.531970
t96 0.000000
t97 0.048056
t98 0.733140
t99 0.656235
t100 0.000000
t101 0.469546
t102 0.769341
t103 0.596563
t104 0.710142
t105 0.864214
t106 0.708044
t107 0.000000
t108 0.202105
t109 0.525109
t110 0.695754
t111 0.684577
t112 0.000000
t113 0.001130
t114 0.668174
t115 0.733974
t116 0.715467
t117 0.000000
t118 0.089896
t119 0.566319
t120 0.676539
t121 0.887471
t122 0.666069
t123 0.000000
t124 -0.364682
t125 0.501132
t126 0.714167
t127 0.520229
t128 0.000000
t129 -0.307257
t130 0.543503
t131 0.681631
t132 0.897075
t133 0.000000
t134 0.085055
t135 0.683456
t136 0.674604
t137 0.700445
t138 0.000000
t139 0.047087
t140 0.790486
t141 0.859177
t142 0.779148
t143 0.669324
t144 0.000000
t145 0.249529

Time Annotation Energy Consumption Et

t146 0.863816
t147 0.561451
t148 0.594937
t149 0.000000
t150 0.219112
t151 0.774808
t152 0.757040
t153 0.735411
t154 0.831769
t155 0.000000
t156 0.078943
t157 0.823036
t158 0.884942
t159 0.000000
t160 0.035357
t161 0.843538
t162 0.787297
t163 0.855473
t164 0.000000
t165 -0.353764
t166 0.865239
t167 0.806735
t168 0.884952
t169 0.892528
t170 0.000000
t171 -0.114514
t172 0.768001
t173 0.556509
t174 0.738053
t175 0.000000
t176 0.519580
t177 0.576789
t178 0.639947
t179 0.531898
t180 0.000000
t181 -0.205344
t182 0.583081
t183 0.538400
t184 0.899879
t185 0.000000
t186 0.487534
t187 0.685504
t188 0.797481
t189 0.000000
t190 0.295237
t191 0.708982
t192 0.669395
t193 0.765629
t194 0.722208
t195 0.000000
t196 -0.134110
t197 0.645730
t198 0.750907
t199 0.750852
t200 0.000000
t201 0.583838
t202 0.209773
t203 0.849972
t204 0.848535
t205 0.000000
t206 0.252263
t207 0.528069
t208 0.669407
t209 0.535609
t210 0.522100
t211 0.000000
t212 -0.145302
t213 0.682750
t214 0.803760
t215 0.751537
t216 0.612994
t217 0.778028
t218 0.000000

109



E Appendix Lookup Lists

List of Theorems

3.2 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.12 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.16 Theorem (Cook-Levin Theorem (Levin [1973], Cook [1971])) . . . . . . . . . . . . 87
A.17 Theorem (Law of Large Numbers) . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

List of Lemmas

3.4 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

List of Assumptions

2.1 Assumption (Single Port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Assumption (Set Routes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Assumption (Reducing to Event Time-Space) . . . . . . . . . . . . . . . . . . . . 6
2.4 Assumption (Asynchronous Event Times) . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Assumption (No Harboring Times) . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Assumption (No Waiting Times) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 Assumption (Docking Space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.8 Assumption (Battery Equivalence) . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.9 Assumption (Charging Station Equivalence) . . . . . . . . . . . . . . . . . . . . . 7
2.10 Assumption (Single Battery) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.11 Assumption (Fixed Grid Balancing Times) . . . . . . . . . . . . . . . . . . . . . . 7
2.12 Assumption (Fixed Grid Balancing Revenue) . . . . . . . . . . . . . . . . . . . . 7
2.13 Assumption (Capturing the Uncertainty) . . . . . . . . . . . . . . . . . . . . . . . 7
2.14 Assumption (Uncertainty is Estimable) . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 Assumption (Energy consumption uncertainty sets) . . . . . . . . . . . . . . . . . 61
6.3 Assumption (Fixed 1 hour distribution) . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Assumption (Individually Independently Distributed (IID) Arrival Time Uncer-

tainty Sets) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5 Assumption (Vessel Dependently Distributed (VDD) Arrival Time Uncertainty

Sets) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

List of Algorithms

3.13 Algorithm (First-fit Approximation algorithm FP) . . . . . . . . . . . . . . . . . 23
4.7 Algorithm (One-by-One optimization method for FP to construct the Pareto front) 26
A.14 Algorithm (First-Fit for the Bin Packing Problem) . . . . . . . . . . . . . . . . . 87
A.15 Algorithm (Best-Fit for the Bin Packing Problem) . . . . . . . . . . . . . . . . . 87

110



List of Definitions

3.1 Definition (FP-dec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Definition (BBP-Dec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Definition (RP-Dec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10 Definition (Constant-factor Approximation Scheme (CFAS)) . . . . . . . . . . . . 22
4.1 Definition (Multi-objective optimization problem (MOP)) . . . . . . . . . . . . . 24
4.2 Definition (Feasibility space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Definition (Feasibility criterion space) . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Definition (Pareto optimal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Definition (Pareto Optimal Set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Definition (Pareto front) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 Definition (Uncertainty set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Definition (General formulation of Robust optimizations problems) . . . . . . . . 35
6.1 Definition (Base Case (BC )) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.1 Definition (Partition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 Definition (Decision problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.3 Definition (Boolean satisfiability problem) . . . . . . . . . . . . . . . . . . . . . . 85
A.4 Definition (Partition problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.5 Definition (3-Partition problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.6 Definition (Bin Packing problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.7 Definition (The complexity class P) . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.8 Definition (The complexity class NP) . . . . . . . . . . . . . . . . . . . . . . . . 86
A.9 Definition (Polynomial-time reduction) . . . . . . . . . . . . . . . . . . . . . . . . 86
A.10 Definition (The complexity class NP-hard) . . . . . . . . . . . . . . . . . . . . . 86
A.11 Definition (The complexity class NP-complete) . . . . . . . . . . . . . . . . . . . 86
A.12 Definition (Weakly NP-complete) . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.13 Definition (Strongly NP-complete) . . . . . . . . . . . . . . . . . . . . . . . . . . 86
B.1 Definition (The availability matrix) . . . . . . . . . . . . . . . . . . . . . . . . . . 88
B.2 Definition (The availability matrix for value at risk time uncertainty) . . . . . . . 88
B.3 Definition (Feasibility Problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.4 Definition (Revenue Problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
B.5 Definition (Feasability Problem with parameter cuts) . . . . . . . . . . . . . . . . 91
B.6 Definition (Revenue Problem with parameter cuts) . . . . . . . . . . . . . . . . . 92
B.7 Definition (Revenue Problem with parameter cuts and a charging violation used

for rolling horizon analysis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.8 Definition (Revenue Problem with probabilistic constraint) . . . . . . . . . . . . . 94

List of Figures

1 The inland waterway system of the Netherlands with all major harbors and water-
ways that connect them. Retrieved from BVB website, accessed on 13-08-2023 . . . 4

2 Schematic view of a charging port with connected routes on which the electrified
vessels could move through the inland waterways of the Netherlands . . . . . . . . . 6

3 Schematic view of a fictional charging port where the positional nodes of the batteries
are shown. (Note that this figure is not to scale.) . . . . . . . . . . . . . . . . . . . . 8

111



4 The theoretical timeline of a port operator that makes the allocation decisions of
the batteries. The arrival times of the ships are known to an extent. The further a
vessel is from arriving at the port the more uncertain the arrival time is for the port
operator. The grid balancing times are known beforehand and are therefore exactly
represented. The length of the timeline is called the event horizon, this is the event
time-space that includes all the events for which an operator plans. . . . . . . . . . . 10

5 A realization of a three-day timeline at the charging harbor. This is a scenario that is
only known in retrospect. It corresponds to the deterministic version of the timeline
seen in Figure 4. This is a stylized case where the arrival times are exactly an hour
apart. A timeline can be created by Monte Carlo sampling from the time uncertainty
boxes seen in Figure 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Schematic diagram of rolling horizon (Erichsen et al. [2019]) . . . . . . . . . . . . . . 32
7 The arrival times are split according to the 100 · (1 − α)%-confidence interval (CI)

of the distribution of the arrival time. This is showcased in the normal distribution,
but it can be applied to all distributions that the arrival time may have, including
an empirical distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 The simulated event time-space for the deterministic Base Case without grid balanc-
ing with only the arrival times of the vessels. The timeline is created by individually
simulating the return times of all vessels. The return times are all distributed nor-
mally with an expectation of 6 hours and a variance of an hour. The full timetable
can be found in Appendix D in Table 26. . . . . . . . . . . . . . . . . . . . . . . . . 39

9 The full simulated event time-space for the deterministic Base Case with grid balanc-
ing. This figure combines Figure 8 with non-overlapping grid balancing stints, every
4 hours. Note that the timeline consists of 137 ship arrivals and 41 grid balancing
stints. The timing of the grid balancing stints can be found in Appendix D in Table
27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10 Gantt charts of the solution of the Base Case using the Approximation Algorithm
3.13. Note that the time axis is event-based rather than time-based. The timeline
in Figure 9 presents the event time relation. . . . . . . . . . . . . . . . . . . . . . . . 41

11 The utilization of charging stations between the time events for the Base Case are
computed using the approximation algorithm. . . . . . . . . . . . . . . . . . . . . . . 42

12 The charging levels of all the batteries for the Base Case are determined using the
approximation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

13 Gantt Charts Depicting outcomes for the Base Case using Battery Priority Opti-
mization for the Feasibility Problem (FP) with parameter cuts (B.5). Note that this
figure is event-based rather than time-based. The event time relation is depicted in
the timeline shown in Figure 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

14 The charging levels of all the batteries for the Base Case are determined using the
Battery Priority Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

15 The utilization of charging stations between the time events for the Base Case are
computed using the Battery Priority Optimization. . . . . . . . . . . . . . . . . . . . 45

16 Gantt charts of the solution of the Base Case with all grid balancing stints included
using the Approximation Algorithm 3.13. Note that the time axis is event-based
rather than time-based. The timeline in Figure 9 presents the event time relation. . 47

112



17 Gantt Charts depicting the results of the Base Case using Revenue Problem Opti-
mization (RPO) (B.6) for the Revenue Problem RP. The number of batteries and
charging stations is an input found by Battery Priority Optimization (BPO) as shown
in Figure 13 and equals (B,M) = (9, 2). Note that the time axis is event-based rather
than time-based. The timeline in Figure 9 shows the event time relation. . . . . . . . 48

18 Gantt Charts depicting the results of the Base Case using Revenue Problem Opti-
mization (RPO) (B.6) for the Revenue Problem RP. This Gantt chart depicts the
same data as Figure 17. However, its x-axis shows the timeline instead of the time
events event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

19 The utilization of charging stations between the time events for the Base Case are
computed using the Revenue Problem Optimization. Note that using charging sta-
tions for balancing is not included in this figure. . . . . . . . . . . . . . . . . . . . . 49

20 The charging levels of all the batteries for the Base Case are determined using the
Revenue Problem Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

21 Gantt Charts depicting RPO outcome for the data case with overlapping grid bal-
ancing stints with fixed lengths of 4 hours with starting times 2 hours apart. . . . . 56

22 Gantt Charts depicting the outcome of the case with randomly generated grid bal-
ancing stints that overlap. The timing and duration of the tasks that follow from
the simulation can be found in Table 29. . . . . . . . . . . . . . . . . . . . . . . . . . 57

23 The computational time of different time horizons (1, 2, 5, 7 days) in the determin-
istic case for different optimizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

24 The computational time of different fleet sizes in the deterministic case for different
optimizations. The bottom plot shows the same figure but without RPO to show
the trend of the other optimizations. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

25 Gantt Charts depicting AA outcome for Base Case 2 . . . . . . . . . . . . . . . . . . 62
26 Gantt Charts depicting RPO outcome for Base Case 2 with 9 batteries and 2 charging

stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
27 Gantt Charts depicting RPO outcome for Base Case 2 with 10 batteries and 2

charging stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
28 Gantt charts of the rolling horizon without Monte Carlo simulation (NPC). The

retrospective counterpart of this case corresponds to the Base Case, defined in Section
6.1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

29 Gantt charts of the rolling horizon with Monte Carlo simulation (RPC). The ret-
rospective counterpart of this case corresponds to Base Case 2, defined in Section
6.2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

30 Gannt chart of RPO results worst case energy consumption scenario with 10 batteries
and 3 charging stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

31 Gannt charts of RPO results best case energy consumption scenario with 10 batteries
and 3 charging stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

32 Gannt charts of PC results with the scenario of 10 batteries 2 charging stations and
21 revenue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

33 Gantt charts of the Rolling Horizon solution of the Base Case without Monte Carlo
sampling. Its retrospective counterpart is equal to Base Case 6.1.1. . . . . . . . . . 71

34 The retrospective timelines from the rolling horizon simulation employing the un-
certainty sets as specified in Assumption 6.4. The top figure presents the timeline
incorporating the grid balancing stints. The bottom figure illustrates the arrival
times of the various vessels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

113



35 Gantt charts of the rolling horizon simulation of IIPC, which employs the uncertainty
sets as specified in Assumption 6.4. The upper figure shows the schedule determined
by rolling horizon, the lower figure shows the schedule of its retrospective determin-
istic version using RPO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

36 The retrospective timelines from the rolling horizon simulation employing the un-
certainty sets as specified in Assumption 6.5. The top figure presents the timeline
incorporating the grid balancing stints. The bottom figure illustrates the arrival
times of the various vessels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

37 Gantt charts of the rolling horizon simulation of the VDPC which employs the un-
certainty sets as specified in Assumption 6.5. The upper figure shows the schedule
determined by rolling horizon, the lower figure shows the schedule of its retrospective
deterministic version using RPO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

38 Split timeline for value at risk analysis of the arrival time uncertain case. Only the
first day is shown in this figure, the full timeline can be found in Appendix C. Note
that the arrival time annotations appear in both light blue and purple. . . . . . . . . 76

39 Gantt chart of the value at risk arrival time uncertainty (VAR) scenario where the
batteries are depicted as the agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

40 Gantt chart of the value at risk arrival time uncertainty (VAR) scenario where the
batteries are depicted as the agents plotted in real-time. The vessels are shown in
blue and the grid balancing is shown in green. . . . . . . . . . . . . . . . . . . . . . 77

41 This figure shows the concept of Zero Emission Services, a commercial supplier
of battery containers with the battery swapping service Incorporated. https://

zeroemissionservices.nl/en/homepage/, Accessed on 16-06-2023 . . . . . . . . . 95
42 Timelines Cyclic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
43 Gantt charts of the solution of the Cyclic Case using the Approximation Algorithm. 97
44 Timelines Tight Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
45 Gantt charts of the solution of the Tight Case using the Approximation Algorithm. . 99
46 Gantt charts of the random duration of grid balancing stints by RPO. . . . . . . . . 100
47 Gantt charts of the different time horizons produced by the approximation algorithm.

The different horizons are shown from small to big: the first row of charts has a
horizon of one day, the second row of two days, and the final row of five days. . . . . 101

48 Full timeline of value at risk time arrival uncertainty case (WCTA) . . . . . . . . . . 102

List of Tables

1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Parameters without uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Parameters with uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Parameter Cut Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6 Changed parameters in value at risk formulation . . . . . . . . . . . . . . . . . . . . 36
7 Parameters Base Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8 Estimate P̂F of Pareto front (PF∗) calculated by the Approximation Algorithm

3.13 with a fixed number of charging stations. . . . . . . . . . . . . . . . . . . . . . . 43
9 The Pareto front (PF∗) by the one-by-one method 4.7 for FP MIPs. . . . . . . . . . 43

114

https://zeroemissionservices.nl/en/homepage/
https://zeroemissionservices.nl/en/homepage/


10 Results RP of the Base Case with different number of batteries (B) and charging
stations (M). The starting values of the B and M are based on the The +1 denotes
an extra battery or charging station on top of the previously listed optima. . . . . . 46

11 Results of Feasibility Problem (FP) for the Deterministic Case of different time
scenarios (Point 1 of Section 6.1.4). The results are given in the following format,
the methods AA and BPO give the number of battery and charging stations (B,M),
where the one generated by BPO is optimal. The optimization methods are listed
in Section 6.1.2 with t their respective computational time. . . . . . . . . . . . . . . 52

12 Results of Revenue Problem (RP) for the Deterministic case of different Time cases
(Point 1 of Section 6.1.4). (B,M) is the optimum retrieved from Table 11: (9, 2) for
Random, (8, 2) for Cyclic, and (10, 2) for Tight. The +1 denotes an extra battery
or charging station on top of the previously listed optima. . . . . . . . . . . . . . . . 53

13 Results (FP) Deterministic Case of different energy consumption scenarios (Point
2 of Section 6.1.4). The cases can be seen in Table 30. The results are given in
the following format, the methods AA and BPO give the number of battery and
charging stations (B,M), where the one generated by BPO is optimal, the RPO
method gives the number of additional revenue R that can be generated when using
(B,M) generated by BPO. The optimization methods are listed in Section 6.1.2
with t their respective computational time. Note that the RPO of worst case uses
an extra battery and charging station compared to the other cases. . . . . . . . . . . 53

14 Results (FP) Deterministic Case of charging speeds (Point 3 of Section 6.1.4). The
optimization methods are listed in Section 6.1.2 with t their respective computational
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

15 Results (FP) Deterministic Case of different lengths of grid balancing stints (Point
4 of Section 6.1.4). RPO is the Revenue problem optimization, where the number
of batteries and charging stations is equal to the (9, 2) that are found for the Base
Case. The length is the tally of the balancing stints chosen by the optimization. . . . 54

16 Results (RP) Deterministic Case of the overlapping grid balancing scenarios. RPO
is the Revenue problem optimization, where the number of batteries and charging
stations found for the Base Case (9, 2) is used as the input and the number of accepted
grid balancing stints is optimized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

17 Results (FP) Deterministic Case of different time horizons. The optimization meth-
ods are listed in Section 6.1.2 with t their respective computational time. . . . . . . 58

18 Results (FP) deterministic case with different fleet sizes. The results are given in
the following format, the methods AA and BPO give the number of battery and
charging stations (B,M), where the one generated by BPO is optimal, the RPO
method gives the number of additional revenue R that can be generated when using
(B,M) generated by BPO. Figure 47 shows an example of the schedules generated
by the approximation algorithm. The optimization methods are listed in Section
6.1.2 with t their respective computational time. . . . . . . . . . . . . . . . . . . . . 59

19 Results simulated version of the Energy Uncertain Case treated as a deterministic
case with simulated values listed in Table 36. . . . . . . . . . . . . . . . . . . . . . . 61

20 Results of the rolling horizon method on the case with (NPC) and without Monte
Carlo simulation (RPC) compared to their retrospective deterministic counterparts.
The infrastructure is set to 10 batteries and 2 charging stations. The violation found
in RPC equates to around 22 min of waiting time across 6 time arrival events. . . . 64

21 Recap of energy consumption extreme case revenue solutions as seen in Table 30.
Note that worst case is optimized with infrastructure (10, 3) and best case with (9,2). 66

115



22 Results of the probabilistic constraint for revenue values within the extreme scenarios
methods with a time limit set to 5 minutes. The critical value β is optimized by
probabilistic constraint. If a sample is drawn from the standard normal distribution
at time event t and exceeds β, it leads to a scheduling failure. This β is larger or
equal to all critical values at other time events. . . . . . . . . . . . . . . . . . . . . 67

23 Resuls of Base Case as seen in Tables 9 and 10 in Section 6.1.3. Note that RPO is
performed with 10 batteries and 2 charging stations. . . . . . . . . . . . . . . . . . . 70

24 Results of the rolling horizon method, compared to its deterministic counterpart for
the different types of uncertainty sets. All optimizations are run with the assumption
that the infrastructure consists of 10 batteries and 2 charging stations. The RPO of
the no pull case (NPC) corresponds to the Base Case RPO using 10 batteries and 2
charging stations which can be seen in Table 15. . . . . . . . . . . . . . . . . . . . . 71

25 Results of the value at risk analysis compared to Base Case. The results of Base
Case as seen in Tables 9 and 10 in Section 6.1.3. Note that both RPOs are performed
with 10 batteries and 2 charging stations. . . . . . . . . . . . . . . . . . . . . . . . . 76

26 Base Case: Vessel Time Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
27 Base Case: Grid Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
28 Base Case: ∆t in seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
29 Grid Time Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
30 Energy Consumption Scenarios (Et) . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
31 Standardized (BC ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
32 Worst case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
33 Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
34 Best case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
35 Grid balancing time simulation of two overlapping contracts . . . . . . . . . . . . . . 108
36 Case 2 simulated Et uniformly distributed under Assumption 6.2. . . . . . . . . . . . 109

116


	Introduction
	The Model
	Problem Description
	Scope

	Model Description
	Model Assumptions
	Mathematical Formulation

	Sets, Parameters, and Variables
	Sets
	Known Parameters
	Parameters With Uncertainty
	Variables

	Constraints
	Battery Allocation Constraints
	Charge Level Constraints
	Charging Decision Constraints
	Starting Conditions
	Infrastructural Usage Constraints

	Objective Functions
	Feasibility objective functions
	Revenue objective function


	Complexity Analysis
	Complexity
	Complexity of the Feasibility Problem
	Complexity of the Revenue Problem

	Approximation
	Lower bound of approximation algorithms of the Feasibility Problem
	First Fit Approximation algorithm for the Feasibility Problem


	Pareto Optimality
	Definitions
	Methods To Find Pareto Front
	One-by-one Optimization Method
	Weighted Sum Method


	Methodology
	Mixed integer linear programming
	Parameter Cuts
	MIP Pareto Optimization

	Stochastic Programming
	Direct Monte Carlo Simulation
	Rolling Horizon
	Probabilistic Constraint

	Robust techniques in stochastic programming
	Extreme Value Analysis Energy Consumption Uncertainty
	Value At Risk Analysis Arrival Time Uncertainty


	Experimental results
	Case 1: Deterministic Case
	Base Case
	Optimization Strategies
	Results Base Case
	Sensitivity Analysis
	Overlapping Grid Balancing Analysis
	Computational Analysis

	Case 2: Energy Uncertain Case
	Base Case 2
	Optimization Strategies
	Results

	Case 3: Time Uncertain Case
	Base Case 3
	Optimization Strategies
	Results


	Conclusion
	Overview
	Limitations and Further Research

	References
	Appendix Complexity
	Appendix Model and MIP Formulations
	Appendix Figures
	Appendix Simulation Tables
	Appendix Lookup Lists

