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Chapter 1
INTRODUCTION

1.1 Objectives and scope

The main objective of this study is to bridge the gap between the fundamental scientific
knowledge of physical processes and mathematical descriptions thereof on one hand and
their application in practical design on the other hand. This means in the first place that,
for practical relevance, the processes are viewed at the macroscopic level. Secondly, the
emphasis lies on the casting of existing formulations for individual phenomena into an
integrated, robust formulation, which enables the viable analysis of the synergism of the
interacting phenomena.

The above endeavor is focused on unreinforced masonry. Because the level of charac-
terisation of this material lags behind concrete, borrowing from the concrete world is
inevitable. It is justified by the shared cementitious nature, which governs the behaviour
of both materials and causes similarities between them. An intended by-product is the
broadening of the research front of masonry, by delivering a numerical model which an-
ticipates experimental observations. In this manner the characterisation process may be
accelerated.

The processes of particular interest for this study are those of shrinkage and creep. The
interest in these phenomena arises from the damage they inflict on structures. To assess
such damage, an ability to capture crack initiation and growth is required. The product
of this work is a numerical model, which has the ability to simulate and predict the inter-
action of shrinkage, creep and cracking in masonry structures of practical relevance and
scale.

It is imperative that the developed model is thoroughly verified and validated. Where ex-
perimental data on masonry are lacking, it is defendable to revert to concrete experiments.




2 1 INTRODUCTION

1.2 Outline

If one embarks on the modelling of a process, it is instructive to study the prominent fea-
tures that are to be captured, in order to distinguish trends and dependencies. In Chapter
2 the main features and mechanisms of shrinkage, creep and cracking of cementitious
materials are described at the hand of experimental observations over the past century.
Where data are not available for masonry, they are borrowed from the concrete literature.

Chapter 3 proceeds with the mathematical modelling of the phenomena described in
Chapter 2. The hygral response is formulated as a nonlinear diffusive process. The me-
chanical response, i.e. the stress-deformational response, is elaborated from the static
equilibrium, the kinematics of deformation and a constitutive relation. Mathematical de-
scriptions of the shrinkage, creep and cracking enter the constitutive relation, which is
in a rate form due to the nonlinearity of these phenomena. For the analysis of practical
problems a numerical solution of the mathematical formulation is necessary. The finite
element solution of the governing set of differential equations is elaborated in Chapter 4.

Chapter 5 presents two alternative strategies to model cracking in masonry. As the joints
are the weak link in masonry, a discrete description of the cracks is particularly useful,
because their position and orientation are predictable. An interface material model is
formulated, which captures the debonding and shearing along the masonry joints. A
continuous description of the cracks, an elegant alternative to the discrete approach when
the structural size is large relative to the brick size, is also formulated.

The model is verified and validated in a modular way. In Chapter 6 the mechanical part is
activated to analyse the interaction between creep and cracking, as exhibited by concrete
beams tested in three-point bending. Subsequently, the hygral part of the model is also
activated in the verifying analyses of masonry drying and creep experiments, Chapter 7.
Special attention is given to the distinction between the basic creep and the drying creep,
or Pickett effect.

Moving away from the verification and validation analyses on small to medium size la-
boratory specimens, large masonry walls are analysed in Chapter 8. These analyses serve
to demonstrate the robustness of the model in capturing crack initiation and growth into
a fully developed crack pattern, as well as the objectivity in terms of crack spacing and
orientation.
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In Chapter 9 a step is made towards deriving practical design rules from numerical results.
A particularly lean design aspect, namely the spacing of movement joints in masonry
walls, which controls cracking due to differential thermal and hygral movement, is taken
as an illustrative example. A simplified modelling strategy is described and verified nu-
merically with reference analyses, to make the repetitive analysis of such large masonry
walls viable.

Finally, in Chapter 10, some concluding and reflecting remarks are made.







Chapter 2
FEATURES OF MASONRY BEHAVIOUR

The behaviour of cementitious materials is complex and is subjected to various influ-
encing factors. To a large extent the complicated microstructure, which is continuously
modified by ongoing chemical and physical processes, causes the complexity. The mi-
crostructural modification is brought about by the formation of hydration products, by
thermal variation, as well as by the forced migration of moisture through the micropores
and the ensuing breakage of bonds at this level. However, for the viable analysis and pre-
diction of the global behaviour of such materials, a macroscopical approach is required.
Then, they are considered as homogeneous continua, which obey laws obtained by the
combination of volume-averaging of the microscopical processes and the attribution of
the most prominent features of the global behaviour. In this chapter these features are
briefly presented, to set the scene for the formulation of a numerical model in the subse-
quent chapters. No attempt is made to present a textbook on the physics and chemistry of
the processes at hand. A summary of the state-of-the-art knowledge was made by Young
(1988) and Neville (1991), while many research results are scattered across scientific jour-
nals, proceedings of conferences, for example Wittman (1982), BaZant and Carol (1993)
and chapters in books, for example Domone (1994).

The features of concrete behaviour have been studied systematically since the beginning
of the 20t century and a vast pool of experimental data has been gathered and trends have
been established. Despite the efforts of the pioneers up to the contemporary researchers
of masonry, the level of characterisation lags behind concrete. However, the shared ce-
mentitious nature governs the behaviour of both materials and causes similarities. In this
chapter this is exploited by reverting to concrete data where masonry experimental data
are inadequate or absent. This is done in the belief that the broadening of the research
front, by adding a provisional numerical tool to the pool of methods of studying masonry,
will accelerate the convergence to the understanding of and the ability to predict masonry
response.
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The major contributors to time-dependent deformation are hygral and thermal shrinkage
and creep. Therefore, the trends and dependencies of these phenomena are outlined at
the hand of experimental evidence. This study focuses on hygral shrinkage and creep.
The evolution of the moisture content in the material to achieve equilibrium with the
environment it is exposed to, is discussed, deemed necessary by the overwelming proof
that it drives the shrinkage and creep. Cracks contribute to the complexity of the time-
dependent behaviour. They exist even when the material is not mechanically loaded,
due to hygral and thermal gradients. An overview is given of the observed trends in the
cracking of masonry. Finally, the coupling between the hygral and thermal processes and
the mechanical behaviour is discussed.

2.1 Shrinkage

Shrinkage is the stress-less volume reduction of matter. The major contributors to this
volume change in cementitious material are the drying shrinkage, which is the shrink-
age/swelling due to the variable humidity and the thermal shrinkage, which denotes the
shrinkage/swelling due to temperature changes. Other sources of shrinkage are the qu-
togeneous shrinkage, which is the volume change caused by the hydration process, and
the carbonation shrinkage, which is the result of the reaction of calcium hydroxide in the
cement paste with atmospheric carbon dioxide.

There is evidence that the autogeneous shrinkage increases in significance with decreasing
water/cement (w/c) ratio in concrete (Le Roy and De Larrard 1993). For the extremely dry
pastes currently obtainable in search of high strength concrete, an autogeneous volume
reduction of 4 mm/m has been reported for the paste and 0.7 mm/m for concrete containing
such paste, Tazawa and Miyazawa (1993). These values are of the same order as the
drying shrinkage. For normal concretes, however, the autogeneous shrinkage is usually
negligible (BaZant 1988, Tazawa and Miyazawa 1993). This source of shrinkage is also
active in masonry with cement-based mortar joints, as well as in masonry containing
concrete units, but is equally, or more insignificant.

Likewise, the carbonation shrinkage can reach levels of 3 to 4 mm/m in cement pasts
(Houst 1993). However, the overall contribution to the shrinkage is usually negligible in
concrete, due to the small penetration depth (a few millimeters) of the carbonation process
in well-compacted, average to high quality concrete (BaZant 1988, Domone 1994). How-
ever, the carbonation may penetrate to a significant depth in poor concrete, or in poorly
compacted regions, in which case the carbonation shrinkage may be of the same order as
the drying shrinkage (Domone 1994). With regard to its importance in masonry, the above
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arguments apply for concrete bricks and cement-based mortars, but this type of shrinkage
has also been identified in calcium silicate units (Schubert 1982). Nevertheless, in this
study the drying and thermal shrinkage are considered to dominate the total shrinkage in
masonry and the autogeneous and carbonation contributions are neglected.

The free drying shrinkage, which is defined as the true, stress-free drying shrinkage, can
not be measured directly, because the distribution of moisture content is never uniform,
which causes differential strains and associated stresses (Picket 1946, Wittmann 1980,
BaZant 1988, Alvaredo 1994). The nonuniformity is caused by the slow nature of the
drying process in cementitious materials like concrete and masonry, where the material
close to an exposed surface dries quicker than the central part, Figure 2.1a. If the material
had consisted of a stack of non-interconnected layers, the different layers would have
different lengths upon shrinkage, as shown by the dotted lines in Figure 2.1b. However,
due to the connection the free deformation is inhibited to take the form indicated by
the solid line, 2.1b. The left layers are extended, which causes tensile stress in them,
while the right layers shorten, generating compressive stress. These internal stresses, or
eigenstresses, are shown in Figure 2.1c.

moisture content (per volume)
— 0.12
— 0.10
— 0.08
— 0.06
— 0.04
— 0.02
— 0.0

drying surface

sealed
(a) 9] ©
Figure 2.1: Illustration of (a) nonuniform drying, (b) shrinkage and (c) eigenstressing due to the
slow drying of cementitious materials.

One way of finding the true drying shrinkage is to measure the shrinkage of very thin
specimens, in which no, or an insignificant hygral gradient exists. Alternatively, it must be
determined indirectly, by assuming a model of the interacting phenomena and iteratively
modifying the model parameters until acceptable agreement is found with the measured
response of drying specimens.

Finding a simple relation between the drying shrinkage and the moisture loss is compli-
cated by the various mechanisms that drive the moisture flow. Figure 2.2a indicates a
bilinear relation, with a distinct change of slope at a relative humidity (RH) of about 10%,
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Figure 2.2: The relation between moisture loss and drying shrinkage in (a) a typical hardened
cement paste (Verbeck and Helmuth 1968) and (b) cement pastes containing different proportions
of pulvarised silica (Powers 1959).

which suggests that a different mechanism becomes active at this point. Powers (1959)
prepared cement pastes containing different proportions of capillary voids, which are the
larger pores in cementitious materials, by adding pulvarised silica to the mixture. The
larger water/cement ratio requirement of such mixtures causes a larger amount of capil-
lary pores. He concluded from his study of the drying shrinkage of these cement pastes
that the loss of free water from the capillary voids causes little or no shrinkage, Figure
2.2b. Only once they are emptied, significant shrinkage occurs upon further drying.

However, the enormous research effort over the last four decades has revealed more mech-
anisms, Table 2.1, which makes the prediction of shrinkage upon drying even more diffi-
cult than indicated by Figure 2.2. For detailed discussions of these mechanisms the reader
is referred to Young (1988), or Domone (1994).

Further complexities in the moisture movement-shrinkage relation is revealed upon cyclic

Relative humidity:
0 0.2 0.4 0.6 0.8 1.0
T T T T
Powers (1965) ~ Disjoining pressure
~«~——Capillary tension ——

Ishai (1965) [~«————Surface energy ————=—————Capillary tension
Feldman and Serada (1970) [~Interlayer water—»—e——— Capillary tension and surface energy —
Wittmann (1968) [~——Surface energy —————Disjoining pressure ————{

Table 2.1: Proposed mechanisms of shrinkage (Soroka 1979).
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fired clay brick

o
=
°
% cement paste/concrete

— ¢ Irreversible

1 shrinkage
[
g
4 Reversible
g nkage
7]

Time

Figure 2.3: Illustration of typical swelling and shrinkage in concrete or masonry constituent ma-
terials (L Hermite et al. 1949).

drying and re-wetting, Figure 2.3 (L'Hermite et al. 1949). A part of the shrinkage is irre-
versible, nearly all of which establishes during the first drying-rewetting cycle (L’ Hermite
et al. 1949, Parrot and Young 1982, Sabri and Illston 1982). This suggests that, in addi-
tion to the various shrinkage mechanisms which cause reversible shrinkage (Table 2.1),
chemical reactions change the microstructure. The large initial irreversible shrinkage is
probably caused by the formation of new links in the cement gel when the particles are
in closer contact upon shrinkage (Neville 1991). The gradual reduction of the irreversible
shrinkage upon subsequent drying/wetting cycles, is largely explained by the continuing
hydration of the cement paste, by which process the proportion of the fine pores decreases
and the shrinkage level at a particular moisture content decreases along with it.

Although the attemps to mathematically model the processes in the microstructure lead
to better understanding of the mechanisms of shrinkage, the complex nature of the mi-
crostructure and the still limited knowledge of the microstructural processes remain stum-
bling blocks. Furthermore, a viable practical analysis of shrinkage requires a macro-
scopical approach. This has led analysts to establish simple relations between the dry-
ing shrinkage and moisture loss, or, for mathematical convenience, relations between the
shrinkage and the relative humidity (Wittmann 1977, BaZant 1988, Alvaredo et al. 1995).
Figure 2.4 shows the shrinkage of several thin samples of hardened cement paste which
were allowed to reach hygral equilibrium with an environmental climate of different, con-
stant humidities and a constant temperature. The significant irreversible shrinkage propor-
tion is evident from Figure 2.4a, which calls for a different shrinkage-humidity relation

I
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Figure 2.4: The relation between relative humidity and drying shrinkage obtained from (a) a single
drying-wetting cycle (Sabri and Iliston 1982) and (b) end values of shrinkage from saturation (RH
= 1.0) to various, constant environmental humidities (Alvaredo et al. 1995).

for the drying than for the (re)wetting. To model the subsequent cycles requires different
sets of relations, because of their hysteretic, ratchetting nature. Figure 2.4b shows the
simple linear approximation by Alvaredo et al. (1995) in the range 0.4 < RH < 1.0. The
applicability of such an approach is clearly limited to a single drying or wetting cycle in
this humidity range.

The above choice of the relative humidity for the characterisation of the shrinkage avoids
the need to account for the significant loss of free water caused by the continuing hydra-
tion, because the self-desiccation humidity drop is negligible (BaZant 1988).

With regard to masonry, it must be noted that, for drying shrinkage to occur, there must be
moisture in the material in the first place. In concrete moisture is naturally present initially
due to the fabrication process. Also in concrete bricks/blocks some moisture is retained,
while moisture is introduced into calcium silicate unit masonry by the standard practice of
pre-wetting the units to a moisture content as high as 9% by weight to achieve better bond
with the mortar. On the other hand, the firing process leaves fired clay bricks dry. After
these bricks have been laid, they absorb moisture from the environment, which causes
the swelling observed in the bricks and the masonry of which it is a constituent by, for
example, Drysdale et al. (1994) and Van der Pluijm and Wubs (1996) and is provided for
in design codes (CEN 1995). This process is accompanied by complex chemical reactions
in the fired clay, which renders the swelling irreversible (Drysdale et al. 1994), unlike the
swelling observed in concrete upon submergence in water, Figure 2.3. Yet, the swelling
of the units can be offset by the mortar shrinkage to result in an overall volume decrease
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of the masonry composite (Van der Pluijm and Wubs 1996, Forth and Brooks 1997).

A further aspect particular to masonry is the anisotropy of the shrinkage. This is not only
caused by the different geometrical arrangements of the units and joints in the orthogonal
directions, because a 25% difference between the vertical and horizontal shrinkage of free
units of calcium silicate has been observed (Van der Pluijm and Wubs 1996).

2.2 Moisture movement in porous, cementitious media

The movement of moisture in porous, cementitious media is complex, driven by various
mechanisms. By accepting a phenomenological approach it is possible to avoid the so-
lution of these transport phenomena at the micro level in a porous medium, i.e. at the
pore level. The formulation of such an approach is facilitated by knowledge of the mois-
ture movement in specimens. By measuring techniques varying from dielectric probes
(L’Hermite and Mamillan 1973) to the contemporary high resolution nuclear magnetic
resonance‘(NMR) method (Pel 1995) it is possible to measure moisture profiles within
the material, Figure 2.5. In this way the high absorbtion/drying rate near the surface in

0.30 o . . R
‘ 1-dimensional
wetting/drying 0.25
position, x
" 020 Time -
0.30 £ .
§

~ 3 . ued—c]ay brick § 0.15
-2 8
B 2
= £ 010
g =
=
S
<
8 0.05
2
@
3
= 0.00 | oo b e

{ | -125  -75 2.5 2.5 1.5 12.5

15 20 Position (mm)
xt (mm s%)
(@) )

Figure 2.5: Distribution of moisture in cementitious materials upon (a) wetting and (b) drying (Pel
1995).
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relation to inner core is revealed. In a macroscopical sense this can be seen as a diffusive
process, the validity of which has been verified by the Boltzmann transformation of the
wetting profiles, Figure 2.5a, i.e. the division of the position with the square root of time.
It remains to define a global diffusivity, which, in a diffusion formulation, accounts for all
the different microscopical flow processes in an average sense.

For the estimation of the shrinkage evolution by the simple approach discussed in the
previous section, the moisture content in a material point must be translated to the relative
humidity via the sorption isotherm, Figure 2.6.

0.10

:m-—a Calcium silicate: Iabsoxptibn i
== Calcium silicate: desorption
0.08 *y____y Mortar: absorption

¥----v Mortar: desorption

E

B

£

= 0.06 |

Q

£

o 004 -
g 7
; 02 0

S 0. T ey
= A g

00 |.‘-._;.,.,£:a;;&f;}ﬂ;{f (T
0.0 02 04 0.6 0.8 1.0
Relative humidity

Figure 2.6: Isothermal sorption curves (Pel 1995) for masonry constituents.

Neither the water transport, nor the heat flow in cementitious materials is influenced by
the mechanical straining of the material (L’Hermite and Mamillan 1968, BaZant 1988,
BaZant and Kaplan 1996). In Figure 2.7 it can be seen that the difference between the
responses of loaded and unloaded specimens, which were subjected to the same environ-
mental conditions, is negligible. Only if large cracks open, the permeability is increased
significantly (BaZant et al. 1987). Therefore, in the absence of large cracks, the mois-
ture migration process is essentially decoupled from the mechanical stresses and strains,
which allows the separate characterisation and solution of the two phenomena.

2.3 Creep

2.3.1 INTRODUCTION

Like concrete, masonry continues to deform, or creeps if it is subjected to a constant load.
Figure 2.8a. Conversely, if a particular deformation is sustained, the force required for the
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Figure 2.7: Weight loss evolution of identical loaded and unloaded specimens (L’Hermite and
Mamillan 1968).
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Figure 2.8: (a) Stages of time-dependent deformation under constant load. (b) Relaxation of the
force required to sustain a constant deformation.

constraint relaxes in time, Figure 2.8b. The creep deformation may become several times
as large as the instant deformation upon loading, rendering creep an important factor in
the medium to long term behaviour of concrete and masonry structures.

Traditionally three stages of “creep” are identified, Figure 2.8a. However, in this repre-
sentation the total time-dependent deformation, excluding only the free shrinkage, is at-
tributed to creep. The time-dependent crack evolution is not distinguished. In the primary
stage the initial high creep rate gradually decreases to a constant rate, at which point the
secondary stage commences. Eventually, an increased deformation rate marks the onset
of the tertiary stage. In the latter stage the deformation rate increases rapidly until failure
occurs. For the last two stages, a sufficiently high level of diffuse micro-cracking has to
be initiated by the applied load, which then coalesces into a macro-crack and propagates
in the secondary phase and eventually reduces the load bearing capacity to cause failure
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under the sustained load.

Only a part of the creep is recovered upon unloading (Lenczner 1981, Young 1988, Neville
1991), Figure 2.8a. This is due to irreversible changes to the microstructure by the hydra-
tion process, micro-cracking, as well as the breakage of interpartical bonds by moisture
seepage.

It is generally agreed that the mechanisms of shrinkage and those of creep are intertwined.
Not only the shrinkage and swelling are dependent on the moisture content and migration,
but also the creep (BaZant 1988), though in a different way. For instance, a sealed spe-
cimen which is in hygral equilibrium does not shrink, because it does not lose moisture
to its environment. Yet, such a specimen creeps under a constant load, due to the forced
redistribution of the moisture from the larger, capillary pores into the micropores of the
complex pore structure of cementitious materials, where it causes a debonding and re-
bonding of solid particles. This means that knowledge of the microscopical moisture
transport is necessary to understand and predict creep, in contrast to the adequacy of a
macroscopical description of the moisture migration for the reasonable prediction of the
shrinkage. This requirement renders the direct determination of the creep impossible, due
to the complexity of the microstructure.

Instead, the apparent mechanisms of creep are studied and characterised. The most impor-
tant factors that have been identified in creep are the stress level, the temperature as well
as the moisture content and transport rate. In the characterisation process care must be
taken to single out the individual mechanisms to minimise cross-coupling between them,
as well as to avoid that behaviour which belongs to another phenomenon, is attributed
to creep. For example, sealed specimens should be used and creep should be performed
at a constant temperature so that no simultaneous drying and thermal shrinkage occurs,
because a coupled effect between these three phenomena otherwise causes an increased
total time-dependent deformation, the so-called Pickett effect (Pickett 1942), or drying
creep. Furthermore, the creep load level must be sufficiently low to minimise cracking.
The time-dependent deformation at a constant hygral and thermal climate in the absence
of cracking defines the basic creep (BaZant 1988, Neville 1991). Once the basic creep
has been characterised, the cross-coupling effects can be investigated separately. To com-
plete the description of the total time-dependent deformation, the cracking process must
be characterised. Such a separate, phenomenological approach is a direct consequence
of not modelling the true, microstructural physics of the problem at hand. Yet, it is justi-
fied as a pragmatic approach to predict the creep and shrinkage behaviour of cementitious
materials in the absence of a complete understanding of the microstructural processes.
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2.3.2 CREEP STRESS DEPENDENCE

At low load levels the secondary and tertiary stages of creep, Figure 2.8a, are not entered,
but the deformation will continue at a monotonically declining rate. Furthermore, under
such low loads, roughly below 40-50% of the instantaneous load capacity (eg. BaZant
1988), the creep appears to be proportional to the stress level, enabling the normalisation
of the (primary) creep strain by division with the average stress to give the so-called
specific creep, or creep compliance. The specific creep concept is usually assumed to
apply to masonry behaviour as well (eg. Warren and Lenczner 1981, Lenczner 1981,
Shrive et al. 1997). Figure 2.9a shows that it is a reasonable approximation. Furthermore,
the specific creep reduces with increasing age upon loading, Figure 2.9b. This is attributed
to the continuing hydration of cementitious materials and the accompanied decrease in the
number of micropores.
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Figure 2.9: (a) Specific creep and (b) its dependence on the age upon loading of a typical clay
brick masonry (Sayed-Ahmed et al. 1998).

Already in the previous century this creep linearity was exploited in the formulation of the
principle of superposition (Boltzmann 1876), which enables the calculation of the strain
caused by a stress history by merely adding the creep strains due to increments of stress
by which the stress history is discretised.

There are deviations from the proportionality (BaZant 1988). In the low creep load range
(below 50% of the peak resistance) it is attributed mainly to the inobjectivity of the de-
termination of the creep, due to simultaneous drying. Thereby cracks may arise, caused
by the eigenstressing. The mechanism of the nonproportionality of creep at high stress
levels is not clear, but it is likely that the nonlinear response to severe loads due to, for
instance the localised cracking in tension and the diffuse cracking in compression, con-
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tributes significantly to the increased apparent creep. This phenomenon, as well as the
aging process of continued hydration, also accounts to a large extent for the irreversibility
of the apparent creep, Figure 2.8a.

2.3.3 CREEP DEPENDENCE ON MOISTURE CONTENT AND TRANSPORT RATE

There is conflicting evidence about the dependence of basic creep on the moisture con-
tent, or the environmental humidity. Neville (1959) reported that cementitious specimens,
which were allowed to reach hygral equilibrium with the surrounding, constant environ-
mental conditions, showed no significant dependence on the humidity, Figure 2.10a. On
the other hand BaZant and Chern (1985) and Wittmann (1968) have claimed that the creep
rate is lower for a lower humidity.

1000 l— — e .__‘ 1200 . P
Relative humidity: a Relative humidity:
800 - ©0.95 9 1.0
*075 oo w07
= = 800 - :
g 600 4032 “. . 3 05
H i
2 us e A 2
g 400 o g
S @ . S 400
fgc,
200 oo &
ol : o L
0 20 40 60 80 100 0
Stress/strength (%) Time (years)
@ )]

Figure 2.10: Creep dependence on relative humidity of specimens (a) at hygral equilibrium
(Neville 1959) and (b) which dry simultaneously from RH=1.0 to the particular, constant rela-
tive humidity (Troxell et al. 1958). The drying shrinkage of separate unloaded specimens has
been subtracted in (b).

By intuitive reasoning, a completely dry material will not creep, because it lacks the mois-
ture which mobilises creep. In a saturated material, the lack of empty micropores inhibits
the moisture transport. Some creep will be caused by the forced redistribution of moisture
due to asymmetry of either the microstructure, or the load. For the intermediate moisture
contents the presence of free micropores and moisture enhances creep, which probably
causes larger creep deformation than in the above moisture content limit cases. This com-
plicates the characterisation of the creep and, together with the scarcity of measurement
data of pure basic creep, tempts the analyst to accept the simple result of Figure 2.10a.
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If, however, the creep specimens are simultaneously drying to a lower humidity level, i.e.
transient creep occurs, the creep strain is higher for a lower ambient humidity, Figure
2.10b. In this figure the apparent creep is plotted, which was calculated by subtracting the
drying shrinkage of separate, unloaded specimens from the total long-term deformation
of the creep specimens (Troxell et al. 1958). This neglects the observed additional creep
deformation which occurs when the creep specimens are also subjected to drying shrink-
age. The additional creep is called the drying creep, or Pickett effect (Pickett 1942),
Figure 2.11. In the figure it is illustrated how the drying creep can be determined ex-
perimentally. Simultaneous experiments on three identical specimens are required. One
specimen is unloaded and is drying. The second specimen is loaded, but sealed to prevent
drying shrinkage. This enables the measurement of the basic creep. The third specimen is
loaded and allowed to dry in the same environment as the first specimen. By subtraction
of the drying shrinkage, i.e. the deformation of the first specimen, and the basic creep, i.e.
the time-dependent deformation of the second specimen, from the total time-dependent
deformation of the transient creep specimen, the drying creep is obtained.
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Figure 2.11: Illustration of the Pickett effect/drying creep.

The Pickett effect/drying creep is the subject of continuing investigation. On one hand it is
ascribed to the drying induced creep, which is the creep dependence on the moisture dif-
fusion rate (BaZant 1988), which increases when moisture can be lost to the environment.
However, because of the interaction of the drying shrinkage and the creep under these cir-
cumstances, it is not clear whether the supplementary deformation is an increased creep,
or whether the drying shrinkage is enhanced. The latter is implied by the stress-induced
shrinkage coefficient introduced by BaZant and Chern (1985). Wittmann (1980), on the
other hand, explains the additional deformation by pointing out that the eigenstressing
causes cracking in the unloaded control specimens on which the drying shrinkage is mea-
sured for the correction of the creep strain, but not in specimens loaded in compression,
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because the load offsets the tensile eigenstresses. The cracking reduces the overall defor-
mation of the control specimens, with the effect that a too small shrinkage is subtracted
from the transient creep, rendering a too large creep. For a lower ambient humidity to
which the specimens are subjected, the amount of cracking is larger and, therefore, the
drying creep will also be larger. It appears that both the drying-induced creep, or the
stress-induced shrinkage and the cracking contribute to the Pickett effect (BaZant 1988),
as is illustrated in Figure 2.12.
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Figure 2.12: Illustration of the contribution by the cracking and stress-induced shrinkage to the
Pickett effect.

2.4 Cracking

The complex microstructure of cementitious materials complicates not only the creep
process, but also the cracking process. To gain insight in the cracking behaviour, the main
features of the behaviour of such materials are usually studied when they are subjected to
mechanical loads. Subsequently, mathematical and numerical models are formulated to
simulate these features in a macroscopical, phenomenological approach.

With regard to the mechanical behaviour of masonry, a comprehensive discussion has
been given by Lourengo (1996). Here, only a brief overview is given to highlight the
main features and to illuminate some extensions to his models.

Masonry lends itself to a discrete treatment in the sense of separate consideration of the
bricks/blocks and the joints. This is due to the structured arrangement of constituents
and the fact that joints usually form the weak links (Page 1978). For such an approach it
is sufficient to characterise the cracking behaviour of the joints, while the bricks mostly
exhibit a linear elastic response to mechanical loads. Van der Pluijm and Vermeltfoort
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(1991) performed deformation-controlled uniaxial tensile tests on small masonry speci-
mens with single joints, Figure 2.13. The average stress-crack displacement response
indicates a gradual degradation from the peak strength to a zero residual strength.
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Figure 2.13: Typical clay brick masonry joint tensile behaviour (Van der Pluijm and Vermeltfoort

1991). The shaded area represents the envelope of responses from several tests.

Shear-slipping along the joints is another important feature of the masonry mechanical
response. Shear tests on small masonry assemblies (Van der Pluijm 1992) revealed its
Coulomb-friction nature, Figure 2.14. The peak shear stresses T for the different, constant
normal confining pressures ¢ indicate that the shear strength is proportional to the con-
fining pressure, but offset with an adhesion strength at zero confining pressure. A gradual
degradation of the shear resistance occurs to a residual value, which is also proportional
to the confining pressure. At this stage the adhesion is destroyed so that a shearing dis-
placement at zero confinement will have no resistance.

By analysing the shearing responses a trend is found of an increased shearing degradation
toughness with increased normal pressure, Figure 2.15a. This toughness is referred to
as the shear fracture energy and defined by the integral of the shear stress-inelastic shear
displacement response between the peak and residual shear strengths. Furthermore, the
shearing along the joints is accompanied by dilatancy, which is the displacement orthogo-
nal to the shearing plane due to the uneven shearing surface, Figure 2.15b. The prevention
of this global volume increase by an external constraint or by internal wedging will cause
the build-up of stresses in masonry. However, in what may be called a smoothing action,
a sufficient confining pressure and/or a sufficient amount of shear slipping will arrest the
normal uplift, Figure 2.15b.
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Figure 2.14: Shear test for characterising masonry joint shear behaviour, showing average shear
stress-displacement responses at various confining pressures (Van der Pluijm 1992). The shaded
areas represent the envelopes of responses from several tests.
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Figure 2.15: Masonry joint (a) shear fracture energy as function of normal confining pressure and
(b) dilatancy, or normal uplift during shear slipping (Van der Pluijm 1992). The shaded areas
represent the envelopes of responses from several tests.
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In large scale analyses the discrete approach is generally not viable. Various experimental
programs have been performed to study the behaviour of masonry as a composite material
subjected to general, biaxial mechanical loads (Page 1981, 1983, Ganz and Thiirlimann
1982, Guggisberg and Thiirlimann 1987 and Lurati et al. 1990). From the peak biaxial
strength data in Figure 2.16 (Page 1981, 1983) it appears that, as for concrete (eg. Kupfer
and Gerstle 1973), a failure envelope exists for masonry. The envelope is asymmetric
and dependent on the angle between the loading axes and the material axes, which are
conveniently orientated along the joints in the figure. This is due to the inherent anisotropy
caused by the brick arrangement, which causes different failure modes for different load
orientations (Dhanasekar et al. 1985). As indicated by the lines connecting the points of
failure, the specimens were subjected to proportional loads. Nonproportional loads may
trigger different failure modes and render the envelopes invalid, but this has not yet been
investigated.

The failure envelopes provide a way of approximating the cracking process. Whereas the
crack pattern in the uniaxial and biaxial compression regime is usually diffuse, a quite
localised failure is found in the tension regime, as well as the tension/compression regime
(Dhanasekar et al. 1985). There the peak strength usually coincides with the localisation
of the damage in a single crack, which may be considered as the initiation of the macro-
crack. Unfortunately information about the softening after the peak response under biaxial
loading is scarce, which fact hinders the characterisation of the crack growth.

Another important aspect of the mechanical behaviour of cementitious materials is the
increase in strength if the loading rate is increased. This is not only the case for high rates,
but has been observed for low, quasi-static rates (Riisch 1960, Bazant and Gettu 1992,
Zhou 1992), Figure 2.17. The figure shows the load-deformational responses, which
were obtained by the central deflection-controlled three-point bending tests on notched
concrete beams. The time it took to reach the peak resistance varied from about 5 seconds
for the 50 um/s deflection rate, to 5000 seconds for the 0.05 um/s deflection rate (Zhou
1992). A marked increase in strength is brought about by the rate increase.
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Figure 2.16: Biaxial strength of clay brick masonry (Page 1981, 1983).
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Figure 2.17: (a) Three-point bending test set-up and (b) load-deformational responses for various
central deflection rates (Zhou 1992).

2.5 Thermal shrinkage and creep

The thermal shrinkage or expansion of cementitious materials contributes significantly to
their volume change. Also, the mechanisms of moisture transport, hygral shrinkage and
creep are dependent on the temperature. Nevertheless, this study is restricted to the hygral
influence on the long-term behaviour. Isothermal conditions are, therefore, implicitly
assumed.

Despite the above restriction, some comments on the thermal interaction are in order.
An attractive feature is that, like the moisture diffusion, the thermal conduction process,
which decribes the evolution of temperature at each material point, is unaffected by the
mechanical stresses and strains (BaZant 1988, BaZant and Kaplan 1996). This means that
the drying and thermal shrinkage can be determined independently from the mechanical
response, i.e. a one-way coupling exists between the hygral and thermal diffusive pro-
cesses on one hand and the mechanical, or stress and strain response on the other hand.
Also, apart from the additional contribution of stress-free strain, the analysis of the stress
and strain response, including cracking, proceeds exactly as when only hygral effects act.
A possible complication lies in the thermal dependence of the creep compliance, of which
contradicting evidence exists. A distinction must be made between the normal environ-
mental thermal conditions and exposure to high temperatures, because the nature of the
microstructure and the acting mechanisms is changed at temperatures in the range 70°C—
100°C (Bazant 1988, Neville 1991, BaZant and Kaplan 1996). This has been revealed by
the intense research effort for the application of concrete in the nuclear industry. In the
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normal operating temperature range below about 50°C, an insignificant thermal influence
on the creep compliance has been reported by Neville (1991), while a clear trend of in-
creased creep at a higher temperature was established by Hannant (1967). If the latter
trend is considered, the creep compliance, or specific creep must be adjusted accordingly
before commencing with the mechanical analysis.

However, the main complication of simultaneous hygral and thermal variation is the cou-
pled nature of the moisture transport and the thermal conductivity in cementitious mate-
rials (BaZant and Kaplan 1996). Both the moisture and heat flux are driven by moisture
content gradients as well as thermal gradients. Another source of the coupling is the heat
sorption of free water, which links the conservation of heat with the moisture content. The
determination of the moisture and thermal evolutions at each material point, the first step
in the calculation of drying and thermal shrinkage strains, would require the simultaneous
solution of the two coupled, governing processes. Furthermore, the subsequent estima-
tion of the shrinkage would require the characterisation of the coefficients of drying and
thermal shrinkage, which are both functions of moisture content and temperature.



Chapter 3
MATHEMATICAL DESCRIPTION

In this chapter a mathematical framework is developed to capture the features of the time-
dependent phenomena shrinkage, creep and cracking of cementitious materials, which
were discussed in the previous chapter. Of primary concern is the kygral response, which
is defined here as the pore humidity evolution, because it governs the time-dependent
phenomena of shrinkage and creep in cementitious materials. Therefore, the point of de-
parture will be the formulation of a diffusion equation that describes the hygral response
macroscopically. Next, a mathematical formalism is given for the mechanical response,
which is defined as the stress and deformational response, including the shrinkage and
creep, as well as the crack initiation and growth. Also included in the mechanical response
is an expression for the drying creep, but in its mathematically equivalent formulation of
stress-dependent shrinkage and thermal strain, following BaZant (1988). The observa-
tion of a rate-enhanced strength is addressed, by defining a cracking mouth opening rate
dependence. The chapter is concluded with some remarks on the adopted formalism.

3.1 Moisture migration

As outlined in sections 2.1 and 2.2 the solution of the various moisture transport pheno-
mena at the micro level in a porous medium, i.e. at the pore level, is hardly possible, due to
the complexity of the pore geometry. Besides, for practical relevance a description at the
macro level is required. However, the description of the phenomena at the micro level and
subsequent volume averaging (Whitaker 1977, Bear and Bachmat 1990) facilitate setting
up such a macroscopic formulation. In this spirit the Navier-Stokes equations for the
microscopic liguid transport are volume-averaged, leading to Darcy’s law for macroscopic
liquid moisture flux

q = —dg/ VO, —d7/VT, 3.1
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where 6; is the volumetric liquid moisture content, 7 is the temperature, dg; is the liquid
moisture diffusivity and dr; is the thermal liquid moisture diffusivity. Fick’s law for
the vapour transport in the micropores is volume averaged, giving the expression for
macroscopic vapour flux

qv=—de,V6,—dy,VT, (3.2)

where dj, is the vapour moisture diffusivity and dr, is the thermal vapour moisture dif-
fusivity. By addition the total moisture flux is

q=-dog V0, —dr VT 3.3)
where
do=dg +d
0 o +dgy (3.4)
dr =dr;+dyp,.

By combining the results with the macroscopic descriptions of mass conservation, the
moisture flow in a non-saturated, porous medium under hygral and thermal gradients can
be described by the nonlinear diffusion-type equation

a0
@ v -
a TVatre=o0 (.5)

q =—dogV0—-dr VT

where 6 is the total moisture content in liquid phase 8; and vapour phase 6, and Q is
the rate of moisture loss due to hydration. Note that gravitational effects on the moisture
transport have been neglected. See for example Philip and De Vries (1957), or Pel (1995)
for comprehensive discussions and the derivation of eq. (3.5).

The nonlinearity is caused by especially the moisture diffusivity being strongly dependent
on the moisture content.

It is convenient to write the diffusion process in terms of the relative pore humidity

h = p/ps, (3.6)

with p the macroscopical pore pressure and p, the macroscopical pore pressure at satura-
tion. Since 8 = 0 (p,T') and thus 6 = 8 (4, T) eq. (3.5) becomes

dr oh oT
w- ¢ (Vat+tQ -5

96 3.7
q = —dyVh— (dT +dea—T) VT,



3.1 Moisture migration 27
where
a0
C ==
oh (3.8)
d, =dgyc.

The parameters in eq. (3.7) can be interpreted physically. The gradient of the hygroscopic
relation c reflects the ability to absorb or release water under unit change in 4. Further-
more, dj, has been shown to represent permeability (BaZant and Najjar 1971). An added
benefit of this formulation is that the influence of the continued hydration can usually
be ignored (BaZant 1988). If, in addition, isothermal conditions are assumed, eq. (3.7)
reduces to

h=-c'V.q

3.9
q = —dVh. B9

Note that the superimposed dot notation has been introduced for the time derivative. Often
the fact that the coefficient of absorption ¢ is approximately constant is exploited, for
example for concrete in the range 0.2 < h < 0.95, simplifying eq. (3.9) to

h=V-(dgVh). (3.10)

In this report the general case of eq. (3.9) will be considered. It is only valid in the

hygroscopic range, i.e. where 3 is defined. Beyond this range of moisture contents

moisture is accumulated in the large (capillary) pores. The migration of the water in these
macropores does not contribute to shrinkage, Figure 2.2b.

3.1.1 INITIAL AND BOUNDARY CONDITIONS

A further advantage of employing the relative pore humidity as potential for the diffusion
equation is that the boundary conditions can be easily identified:

essential,  1i.e. prescribed humidity: hg = hg
natural, i.e. prescribed boundary flux: g-n = —gp 3.11)
convective: gn = PBh—hg)

with a the unit vector pointing outward and normal to the boundary, the subscript B de-
noting the boundary and the subscript £ denoting the prescribed, or environmental value.
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The surface convection coefficient 3, sometimes referred to as the film coefficient, is given
by

’3:%

3.12
o (3.12)

with 3* (s/m) the transfer coefficient depending mainly on air velocity and surface smooth-
ness (Tammes and Vos 1984) and p; (kg/ m3) the liquid moisture mass density.

3.1.2 MOISTURE MIGRATION IN A TWO-PHASE MEDIUM

Masonry is a composite material comprising of bricks/blocks and mortar/lime. It is often
assumed that brick/mortar interfaces are hydraulically perfect, i.e. the contact is perfect.
This implies that the pressure, of which pore humidity is a measure, is considered to be
continuous across the interface:

hy = hy, (3.13)

where the subscript b denotes brick/block and the subscript m denotes mortar. However,
recent studies of moisture transport across such brick/mortar interfaces have indicated that
the contact between the two masonry constituents may not be perfect (Pel 1995), calling
for an interfacial hygral resistance to be included in the model (Brocken and Pel 1997).
The same authors have since reported that by just slightly varying numerical modelling
parameters, the assumption of perfect hydraulic contact does in fact enable numerical
simulation of moisture transport across such interfaces (Brocken et al. 1997).

In the current study perfect contact is assumed, implying that, for the general case that
the hygroscopic relations for brick and mortar differ, a discontinuity in moisture content
occurs at the interface:

O (1) # O (Am) - (3.14)

For a solution of the differential equation in terms of moisture content (3.5), this discon-
tinuity would require the nonlinear constraint of the interfacial values, complicating the
numerical modelling. This is another advantage of adopting the diffusion formalism in
terms of the pore humidity (3.9). Figure 3.1 shows the pore humidity and moisture content
profiles along a vertical line in the centre of a masonry specimen (Van Zijl 1999b).
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Figure 3.1: Illustration of the moisture content discontinuity across the mortar interface. (a) Line
along which the evolution of the (b) pore humidity and (c) moisture content is shown in the single-
jointed, drying calcium silicate masonry specimen. The profiles are shown for 1 hour, 1 day and
subsequently with 10 day intervals.
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3.2 Mechanical behaviour

The usual approach is followed for building the mathematical framework, by firstly con-
sidering the static equilibrium in a material point, secondly describing the kinematics of
deformation and finally formulating the constitutive law.

The static equilibrium in a material point is described by:

aO’[j
A 4p;=0 3.15
¥ +b; (3.15)

where 0;; is a second order tensor representing the Cauchy stresses and b; is a first order
tensor of internal body forces. The relation between strains and displacements is given by
the kinematic equation for small displacements

1 au,- du J
€= — [P— D — . 3.16
CA) (ax i + ox; ( )
To facilitate the description of the constitutive behaviour of the material it is assumed that
the strain rate € can be subdivided as follows:
E=¢+e+&+E+¢, (3.17)

where &, is the elastic strain, €, the creep strain, €; the shrinkage, €, the thermal strain
and g, represents the cracking strain. In this way the constitutive laws for the different
phenomena can be elaborated independently.

3.2.1 CREEP

Creep in a cementitious material is considered to be closely linked to the viscous pro-
cesses, section 2.3. Yet, due to the complex microstructure it is not derived directly from
the pore humidity evolution. Instead, as has become usual for cementitious materials,
visco-elastic behaviour is assumed. This implies the replacement of the sum of the elastic
and creep strain with the visco-elastic strain as follows

Eve = o + & (3.18)

The strain evolution can be formulated as

&e(t) =J(t,7)0(2), (3.19)
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Figure 3.2: (a) Creep and (b) relaxation moduli for various ages T at loading.

with J(t,7) the creep modulus representing the (visco-elastic) strain at time ¢ caused by
a unit stress acting since time T, Figure 3.2a. This formulation exploits the existence of
the specific creep, section 2.3.2. It also provides for the reduced creep upon loading at a
Jater maturation age T, due to the continued hydration. In the absence of aging a single
variable creep modulus J(f — t) would have been adequate. Furthermore, the creep is
considered to be independent of the pore humidity level, following the observations of
Neville (1959), Figure 2.10a, section 2.3.3.

Conversely, the one-dimensional stress evolution in a visco-elastic material is given by
o(t) = R(1,T)&e (1) (3.20)

if zero initial stresses are assumed. The relaxation function or modulus R(z,7) describes
the stress evolution at time ¢ due to a unit strain acting since time T. Age-dependent
relaxation moduli typical for concrete are shown in Figure 3.2b.

In order to calculate the strain caused by a variable stress, the principle of superposition,
section 2.3.2, implies that the strain due to the stress history is the sum of the responses
to all the separate stress increments, leading to:

€e(t) = /0 tJ(t,t)G(‘c)dt. (3.21)

On the other hand, the strain can be considered to be composed of small increments,
which are imposed at times T. By the principle of superposition the stress response is
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equal to the accumulation of the response to each strain increment as follows:
t
o(r) = / R(t,7)éve(T)dr. (3.22)
0

Because of availability of creep experimental data the creep formulation (3.21) is adopted
most frequently, but the relaxation formulation is to be preferred when aging, moisture or
temperature effects are to be considered. In the latter case R(z,T) can be calculated from
the creep formulation by considering constant, unit strains imposed as step functions at
various ages T. Here, only the relaxation formulation is developed further, see for example
Van Zijl (1999a) for the elaboration of the creep formulation.

The one-dimensional expression is generalised to three dimensions, written in matrix-
vector notation as:

!
o(t) = / R(t,7)DE . (T)dT (3.23)
0
where D is the matrix representation of the second order tensor
1 v 1
ikl — —— | ———0;;0; g i i 8, il 3 .24
Djkl 1+v [1—2\’808 k+2(5k8ﬂ+ lsjk)} (3.24)

with v Poisson’s ratio, which is assumed to be time-independent.

The relaxation formulation is an integral form and requires storage and integration of the
entire stress or deformation history. Fortunately it is possible to convert the visco-elastic
formulation into a rate form, which requires a finite number of so-called internal variables
to memorise the history. This conversion is adopted here and entails degeneration of the
kernel of the history integral into a Dirichlet series as follows:

t—1

N
R(1,7) =Eo(1)+ Y En(t)e & (3.25)
n=1

where E, is the stiffness modulus of element », depending on the loading age 7 and {,
is the relaxation time. Instead of a Dirichlet series, a Taylor series degeneration can be
performed. The latter is preferable when short time spans have to be analysed, for instance
for the behaviour of young concrete, where pronounced stress fluctuations may occur (De
Borst and Van den Boogaard 1993). The Dirichlet series is applicable to the long term
behaviour of shrinkage and creep and will be elaborated here.

Replacement of the relaxation kernel in eq. (3.23) by the Dirichlet series (3.25) produces
t—17T

o(t) = /0 : Eo(‘c)+§En(1:)e G | Dée(t)du (3.26)
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which, upon time differentiation becomes

5(1) = Eolt)Dewc(t) + 3, 6400 527
n=1
where
=1
Gu(t) = /0 Enj(t)e G De,(t)dr. (3.28)

Time differentiation of (3.28) (with the aid of Leibnitz’ rule) reveals that

6,() = En(6)Dlre(t) — ~-Gl). (329)
n

By the inspection of egs. (3.27) and (3.29) it becomes clear that this visco-elastic formu-
lation can be represented by a Maxwell chain, with Ej, the spring stiffness and 1, = ChEn
the dashpot viscosity of each element, as shown schematically in Figure 3.3a. If the point
of departure is the creep formulation (3.21), a visco-elastic law is derived, which can be
represented by a Kelvin chain model, Figure 3.3b (Van Zijl 1999a). As mentioned before,
the Maxwell formulation is chosen here.

BN
I En o :}&’—1‘ E; E» E, Ey
c | E :'L‘ o o Eo . Lmjﬂf s
Erp 1 T ;Eq Q Q
Ep no Mz M My
AN
(2 (®

Figure 3.3: (a) Maxwell and (b) Kelvin chain models.

From egs. (3.27) and (3.29) it is possible to express the stress rate as
6=D",,+X (3.30)

where D¥ is an equivalent stiffness modulus, which is dependent only on the current time
t, and T is a viscous stress term which accounts for the history, by virtue of a fading
memory. It will be shown in the next chapter that the latter term can be represented by a
few state variables, avoiding the repeated evaluation of the entire stress history.
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3.2.2 DRYING AND THERMAL SHRINKAGE

In this section the phenomena of hygral and thermal shrinkage/expansion are addressed.
As discussed in Chapter 2, these phenomena are governed by the moisture and thermal
diffusive processes. There it was mentioned that they are coupled and require the solution
of a set of coupled partial differential equations, which is not embarked upon in this study,
where the focus is on the hygral processes. Nevertheless, due to the one-way coupled
nature of the thermal and hygral diffusion processes on one hand and the mechanical
response on the other hand, provision is made for both sources of stress-free strain in the
mechanical formulation. In this way the mechanical response to a variable environmental
humidity and temperature can be analysed if the pore humidity and temperature evolutions
are known.

3.2.2.1 Free drying shrinkage and thermal strain

There is general agreement that the drying shrinkage of cementitious materials is driven
by the pore pressure (Wittmann 1977, Ba¥ant 1988), section 2.1. The free drying shrink-
age is usually obtained from the incremental relation:

€50 = O h. (3.3

Experimental measurements indicate that the shrinkage coefficient oy is constant in the
range 0.4 < h < 0.99, but Van Zijl (1999b) showed by inverse fitting that a polynomial
function of 4 may be more appropriate. This poses no mathematical or numerical diffi-
culty, but until more experimental evidence is obtained, the constant relation is assumed.
Eq. (3.31) can be generalised to three dimensions and allowing for a different free shrink-
age in orthotropic directions, one obtains

& =& ,P;, (3.32)
where P; is a scaling, normalised vector defined as

P;=[PyPyP,000]". (3.33)
The thermal strains are related to the temperature in a similar way:

& = ér,Pr, (3.34)
with

éro=0rT, (3.35)
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where 0; is the thermal expansion coefficient and
Py =[P PryPr,000]" (3.36)

provides for orthotropic thermal expansion.

3.2.2.2 Stress-dependent shrinkage and thermal strain

To address the phenomenon of drying creep, or the Pickett effect (Pickett 1942), the influ-
ence of the pore humidity rate on the creep is investigated. Bazant (1988) has attempted
to find a physical rationale for this effect. He argues that it is reasonable to assume that
the breakage of bonds in the micropores, which is commonly believed to be the physical
mechanism of creep, is promoted by moisture flux. Therefore, it can be postulated that
the creep rate, and thus the viscosity, is dependent on the moisture flux. This dependence
is argued to be equivalent to the viscosity dependence on the humidity rate h and thermal
rate T, expressed as (BaZant 1988)
1_ i+x|h+cT’|, (3.37)
n on
with 1, the viscosity at zero moisture flux and  and c positive constants. With (3.37) the
differential equation for a one-dimensional Maxwell unit reads:

S 1 o 4 . .
£t (F +x|h+cT|)c:s—ash—(xTT, (3.38)

which can be rewritten as

s o . ,
-E-+T?=e—as(1+rsc)h—oc7(1+rro)T, (3.39)
with
re = Lsign (h+cT)
s (3.40)

rr = 7£sign(}'1+cT).
Oir

Thus it can be seen that the viscosity dependence on humidity and thermal rate is equiva-
lent to a stress-induced shrinkage and thermal shrinkage. An experimental scheme for
quantifying the stress-induced shrinkage coefficient 7; for masonry objectively is de-
scribed by Van Zijl (1999b). With the values for concrete reported to be (BaZant and
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Chern 1985)

0.1/fi < Irsl £ 0.6/ f;
Irr| = 2.5/,

(3.41)

f: being the tensile strength, the contribution of this phenomenon is significant and there-
fore included in the current model.

In three dimensions (3.39) can be expressed as

1 1

=D '6+-Dlo=¢-¢,—¢ 42

z +oDTlo=e-g &, (3.42)
with

€& = o;(P;+ro)h

. (3.43)
éT = 0 (PT +rTO') T.

Provision is made for orthotropy by defining the stress-induced shrinkage and thermal
expansion coefficient matrices as
rs=diag [ry reyr;; 000]

. (3.44)
}'T=dlag [rTery rTZOOO].

3.2.3 CRACKING

As for the creep, a phenomenological approach is followed for modelling cracking. The
mechanisms are modelled in such a manner that the simulated response is in reasonable
agreement with experimental observations, section 2.4. Cracks are considered to form
and grow at predefined locations in the discrete approach, or are smeared over a finite
width, while the damaged material still behaves as a continuum to which the notions of
stress and strain apply. In the latter case no pre-knowledge is needed where cracks are
likely to occur. For both cases a consistent plasticity formulation is chosen. Due to the
elastic unloading modulus, this formulation is not suitable for analysing the response of
quasi-brittle materials to cyclic loading. Also, its realistic capturing of crack propagation,
which is accompanied by some material points being unloaded, is questionable. Yet, it
has been shown to capture global, quasi-static response of concrete (Feenstra 1993, De
Borst et al. 1994) and masonry structures (Lourengo 1996) reasonably well. Therefore,
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it is considered to be a pragmatic choice, due to its supremacy in terms of robustness and
solution convergence speed.

The stress rate is related to the elastic strain rate by the elastic stiffness matrix D*
6 = D%,, (3.45)

which, when considering the rate form of visco-elasticity in eq. (3.30) and the decompo-
sition of strains (3.17), can be written as

G=D"(¢—&—& —8&,)+XL (3.46)

Note that, in the case of discrete analysis of masonry, the different phenomena are sepa-
rated in the sense that the plastic flow is captured by interface elements, while the creep,
shrinkage and thermal strains are accounted for by continuum elements.

To establish whether yielding occurs, a yield function, which bounds the (visco-)elastic
domain

f(6,x,%x) <0, (3.47)
is evaluated, where K is an equivalent strain or degradation parameter. The Kuhn-Tucker
conditions

A>0 f<0 Af=0 (3.48)

enable convenient distinction between loading and unloading at a material point, where
A is the plastic flow rate. When yielding, or plastic flow is detected, the plastic strain is
calculated from the non-associative plastic flow rule

, . 0g

&= )\,% (3.49)
where the plastic potential function g can be written as

g=g(0,x). (3.50)

The yield surface can grow or shrink according to a hardening or softening rule. The
hardening/softening rule is usually dependent on the equivalent strain or degradation para-
meter K, which is derived from a strain hardening/softening or a work hardening/softening
hypothesis. An example of the former is

1.z,
k=1/ 88, (3.51)
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and of the latter:
k=0"¢,. (3.52)

In the case of complex material behaviour it is often impossible to define a single yield
function, enforcing the use of multi-surface plasticity. The intersections of the yield func-
tions form singular points. Koiter’s generalised plastic flow rule (Koiter 1953) suggests
a linear combination of the plastic strain rates obtained from the two intersecting yield
surfaces as follows

g — b 21 13,282

g 236 (3.53)

3.2.4 CRACK MOUTH OPENING RATE DEPENDENCE

A mathematical formalism to capture the rate-enhanced strength of cementitious materi-
als, as observed for instance by Zhou (1992), Figure 2.17, is given next. The source of the
rate dependence is sought in the viscosity of the cracking process. The time-dependence
of the behaviour of cementitious materials is caused not only by the bulk creep, which is
defined here as the creep in the bulk of the material, as it is represented by the Maxwell
chain, but also by the rate-dependence of the breakage of bonds in the fracture process
zone. BaZant (1993) has derived a formulation for the latter rate effect from the theory
of activation energy, according to which the rupture of a bond requires that the limiting
bond potential, called the activation energy, be exceeded. Departing from the Maxwell-
Boltzmann distribution of the frequency of exceedence of the activation energy, the fol-
lowing expression for the crack opening rate w can be derived (Wu and BaZant 1993):

G — Gy (w) 2_2

. s — O \W

W = W, sinh m] eRTo RT (3.54)
where W, is a constant, reference crack opening velocity, 6;(w) describes the strength
degradation with infinitely slow crack opening displacement, Q is the activation energy, R
the gas constant and Ty the reference temperature. The material parameter kg is estimated
to be in the range 0.01 - 0.08 from the knowledge that for a 10*-fold increase of the loading
rate a 25% increase in peak strength is found experimentally. The material parameter k;
is an offset factor to prevent the denominator in eq. (3.54) from becoming zero. For
isothermal conditions and by approximating the crack opening displacement w = I, x,
with I, the crack band width and « the crack strain, eq. (3.54) can be rewritten as

6 =06,(x) [1+k0 sinh™! (Kﬁ)] +ko ki f; sinh™! (Kﬁ) (3.55)

r
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A simple, alternative approach is illustrated in Figure 3.4. Following Sluys (1992), De
Borst et al. (1993) and Wang (1997) the crack rate dependence is captured via a dashpot
of viscosity m in parallel to the plasticity elements. The rate-dependent cracking stress is
written as

6 = 6,(K) [1+%k], (3.56)

which implies that the rate term is degraded with increasing crack width to avoid a residual
strength. The viscosity m should be derived from experimental strength tests at various
loading rates. However, such tests should represent the rates of the physical process which
are to be simulated.

Both egs. (3.55) and (3.56) have been incorporated in the yield criterion (3.47), causing
its equivalent strain rate dependence.

3.3 Discussion

The combined constitutive model for the mechanical behaviour can be represented rheo-
logically by the series coupling of a Maxwell chain, a shrinkage and thermal source and
a module accounting for the cracking, as illustrated in Figure 3.4. The simple, one-way
coupled approach is justified by the main objective of this study, which is to formulate
a model that can rigorously describe the time-dependent behaviour of cementitious ma-
terials, specifically masonry. It is also motivated by the scarcity of experimental data to
characterise subtle interdependencies and the computational effort to solve them.

A brief reflection on the inclusion of the cracking rate dependence is in order. It has been
introduced in the first place to account for the observed strength increase with an increased
loading rate in a phenomenological way. However, the contribution of the cracking rate
to the strength, eq. (3.56), has been shown to have a stabilising influence in dynamic

_ cracking  bulkcreep __shrinkage thermal
’ " strain

Figure 3.4: Maxwell chain model with cracking, thermal and shrinkage strain elements in series.
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problems (Sluys 1992, Wang 1997), as well as quasi-static problems (De Borst et al.
1993, Wang 1997), under which the problem at hand is categorised. The loss of hyper-
bolicity and ellipticity of the governing equations of dynamic and quasi-static problems
respectively, are avoided. The symptoms of these mathematical instabilities, namely the
emergence of difficulties upon the numerical solution of these problems and the ensuing
inobjectivity with regard to crack orientation and spacing, are then resolved.




Chapter 4
NUMERICAL SOLUTION

To enable the solution of practical problems, a numerical solution of the mathematical
formulation is sought. The finite element (FE) method is adopted. The transformation
of the governing set of differential equations to a set of ordinary equations is a well-
established procedure and described in detail by, for instance, Becker et al. (1981), Bathe
(1982) and Zienkiewicz (1986).

The decoupling of the hygral and the mechanical responses enables separate treatment.
Therefore, the weak formulation, the finite element discretisation and the iterative solution
of these phenomena are elaborated separately. Finally, some remarks are made about the
order of the finite element interpolation.

4.1 Moisture migration

4.1.1 WEIGHTED RESIDUAL FORMULATION
The diffusion equation (3.9) states the process at hand in the strong form, i.e. the condi-

tions must be met at each material point. For a numerical approximation the weak form
is adopted. Now the conditions are met only in an average sense

[ W (ch+V-q) av = [ weav =0, @.1)
14 14
where W is a weight function to force the error or residual € to zero in a volume-averaged

sense. To reduce the order of the differential equation and to introduce non-essential
boundary conditions, the theorem of Gauf is applied, giving

/Wcth—/VW-qu+]Wq.ndB=0. (4.2)
|4 v B
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Assuming natural conditions at a part of the boundary By and surface convection on

‘another part of the boundary B cf. egs. (3.11,3.12), eq. (4.2) becomes

/Wcth—/VW-qu+f WBth:/ WquB+/ WBhe dB.  (4.3)
14 14 B¢ By Bc

4.1.2 FINITE ELEMENT FORMULATION

In the FE approach to solve eq. (4.3) the domain is discretised into finite elements. In-
stead of selecting trial functions that satisfy global boundary conditions, approximation or
interpolation functions are selected to satisfy the element boundary conditions. A variable
is approximated within each element as follows:

h® = N°h¢ (4.4)

where N, is a matrix of element interpolation functions and A° the vector of relative
humidities at discrete points on the boundary and/or within the element. Also, in the
Galerkin approach, the weight function W is chosen to be of the same class as the inter-
polation functions N. By substitution of (4.4) and (3.9b), eq. (4.3) now becomes

/ NTcNhdV + / (VN) d,VNR Qv + / NTBNRdB =
ve ve B,
(4.5)
/ NTgg dB+/ NTBhg dB
By Bt

in each element. For clarity the superscripts e have been retained only on the symbols for
the integration domains. Eq. (4.5) can be written symbolically as

C°he + Dih® = Q° (4.6)
with
C¢= [ N'eNdv
Ve
D= [ (VM) 4,VNav+ [ NTEN B @)
C

Qe=/Be NTgs dB+/BeNTBhE dB.
N C

By accumulation of contributions from all elements the set of differential equations are
assembled as

Ch+Dyh = Q. 4.8)

where h contains the relative pore humidities at the discrete points employed for discretis-
ing the domain.
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4.1.3 TIME INTEGRATION

Eq. (4.8) is solved step-wise by direct time integration for each time step Az at time
t+0Af, 0 < o < 1 in a generalised trapezoidal fashion. Hereby the set of differential
equations is converted into a set of ordinary equations

with
B = t+(lAth
D;; — I+OLAtC+(xAt H-O!AIDh (410)

Q* = o At t+(xAtQ+t+l‘X.AtC h
In eq. (4.10) use is made of the time derivative

X t+0oAt _th
ol _dhAt—' 4.11)

In this study fully implicit Euler backward integration has been used by selecting oo = 1.

4.1.4 INCREMENTAL ITERATIVE SOLUTION PROCEDURE

Due to the nonlinearity of eq. (4.9), caused by the dependence of the diffusivity and
the moisture capacity on the pore humidity, an incremental-iterative solution procedure is
followed:

i1 =h + (D) (QF - D} b}, (4.12)

where i denotes the convergence iteration number. Here, either the regular Newton-
Raphson method is employed, rendering

Dy, =Dy, (4.13)
or the modified Newton-Raphson method, when

Dinc =Dy, ;- (4.14)
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4.2 Mechanical response

4.2.1 WEAK FORMULATION

The mathematical formulation of equilibrium (3.15), the kinematic relation (3.16) and
the constitutive law (3.46) state the process at hand in the strong form, requiring the
conditions to be met at each material point. For a numerical solution a weak form of the
equilibrium eq. (3.15) is adopted:

/Vsu,» (%+b,‘) v =0, @.15)

This form corresponds to the principle of virtual work, stating that when a body, which is
in a state of equilibrium, is disturbed by an admissible virtual displacement du;, the net
work performed is zero. After integration by parts, substitution of the kinematic eq. (3.16)
and taking account of rotational equilibrium, which implies symmetry of the Cauchy
stress tensor (0;; = ©;), the principle of virtual work can be expressed as

d
‘/VSEijO'ij dV—/‘;SujbjdV-l-‘/vé};(G,‘j&t}')dV. (4.16)

The left hand side represents the internal energy and the right hand side the external work.
By applying the Gauss divergence theorem, the third term volume integral is transformed
into a surface integral

/8Eij6ij dVI/Sujbj dV+/6uj0','jnidB, @.17
\Z \'4 B

which introduces the static boundary conditions of prescribed tractions (o; ni). For con-
venience, the matrix-vector notation is adopted so that eq. (4.17) can be written as

/&Todvzfsudev+/8uTz dB. (4.18)
\%4 14 B

4.2.2 FINITE ELEMENT SOLUTION

In the FE method eq. (4.18) is assumed to apply to each finite element into which the
structural geometry is subdivided. Furthermore, the displacements are approximated in
each element by interpolation of the element nodal displacements #& as follows:

U = NG, (4.19)
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where the superscript e indicates that the variable applies to an element and N° is a vector
of interpolation functions that satisfy the element boundary conditions. By writing the
kinematic relation (3.16) in matrix-vector notation

€° = L°u® = L°N°4® = Bi, (4.20)
eq. (4.18) becomes
/ 5aTB 6 dv° = / 5a’NTbave+ [ SaTNTt dB? @21
Ve Ve Be

where, for clarity, the superscripts have been retained only on the integration domains.
The right hand side of eq. (4.21) comprises the virtual work done by body forces and
boundary/surface tractions. These forces can be condensed into a vector of element forces

7, = / NTb dve + / NTt dBe. (4.22)
Ve B¢

Considering that eq. (4.21) must hold for any kinematically admissible virtual displace-
ment i, the elemental equilibrium reads
Blodvé=r,. (4.23)
Ve
Eq. (4.23) is the point of departure for the development of the solution algorithm. How-
ever, the numerical integration of the constitutive relation must be addressed first.

4.2.3 INTEGRATION OF THE VISCO-ELASTICITY CONSTITUTIVE EQUATION

For evaluation of the integral form of the relaxation or creep eq. (3.23) the implication
of considering the total stress (or strain) history at each material point has inspired a
reformulation into a differential or rate-type eq. (3.27), see section 3.2.1. However, further
elaboration of the latter rate form is required to make it suitable for FE solution. For this
purpose it is convenient to return to the second last step of the transformation, eq. (3.26),
and evaluate it at time ¢ + Az, divided into two intervals 0 — 7 and ¢ — ¢ + Ar as follows:

NG = 6(t + Af)
t+At—1
C" Déve(T)dT

t . N ot
- fo E()Deue(dT+ 3, /0 En(1)e
At N t+At _i‘:t.
+ / Eo(t)Déye(t)dt+ S / E.(te G Dél(t)dr.  (4.24)
t n=1 t




t—‘t
'c= / Eo(t)Dé, (T d1:+2 / E(v)e S Dg.(v)dt 4.25)

which, upon substitution into eq. (4.24) enables writing

Ao ="t¥g_'g

_t+At—T
- / Eo(t)Déve(t)dt+ 2 / Eo(t)e & Dén(t)de
t+At T -
+Z / En( ‘C)e & De,.(t)dr— 2 / En( & D (1)dt. (4.26)
This can be simplified to
_t+At—r
= / Eo(t)Dé,(T)dT+ Z / E,(t)e & Dé(t)dt
N r—1 At
: — el
-y / Exte & [1-e & | Dén(n)dr 4.27)
n=1 0
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Note that
and by recognising the state variable ‘G, eq. (3.28) in the last term

t+At—7
t+At N prr4Ar —_—
AG = / Eo(0)DEo()dt+ 3, / E e &  Dén(t)de
t n=1 t

N i
Y |1-e & |6, (4.28)
n=1

The exponential nature of the integrand necessitates a higher-order numerical integration
scheme for accurate calculation of the stress increment. However, the rate equations for
plasticity can be integrated accurately by a linear scheme. It is therefore sensible, from a
computational cost point of view, to reduce the creep equations further to a form which
can be integrated with reasonable accuracy with a linear integration scheme. This is
facilitated by assuming the strain rate to be constant over the time step:

Asve

éve: At

(4.29)
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and the stiffness moduli E,(#*) to be constant in the range 7 < * <t + Ar. Then (4.28)
becomes

t+At—-7T
1+Ar _—
= Eo(t*)DAgy+ — 2 / E,,(t G DdtAg,,
(4.30)
N o —
—2 1—e C" ‘e,
n=1
which can be integrated analytically to give
AG =DYAg,, +'6 4.31)
with
N At
g | B
p* = |E@)+ Y |1-e & | 22| D
o)+ 2, AT,
Ar (4.32)
N _—
F = -y |1-e & | ‘o,
n=1

The accuracy of the visco-elastic formulation above is determined by the assumption
of the constant stiffnesses E, of the individual springs and a constant strain rate (4.29)
during each time increment. For non-aging material the first assumption is exact and, in
the absence of cracks, the latter is reasonable. When cracks initiate or grow, the stress and
strain rates can vary considerably, requiring small time steps to be taken for accurate time
integration. Due to the sensitivity of the global solution at such stages this requirement is
usually satisfied automatically in order to obtain a convergent solution.

4.2.4 INTEGRATION OF THE PLASTICITY CONSTITUTIVE EQUATION

The plasticity constitutive relation (3.46 and 3.49) can be integrated accurately with a
linear scheme. To this end, the visco-elastic incremental stress given by eq. (4.31) can be
supplemented to account for plastic flow, cf. (3.17), as

Ac =D (As—Ass Akg‘gs) +'6. (4.33)
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The current stress can be written as the incremental update
d ~
+hg ='6+A0="6+D" <As —Ags— Ag, — Ak%) +6. (4.34)

Rewriting (4.33) in a standard plasticity predictor-corrector fashion and employing a fully
implicit (Euler backward) integration scheme, the current stress becomes

t+At ag
t+AtG =D° |6"" — DA (%):’ (4.35)

with, cf. egs. (3.32,3.34,3.43)

D’ = I+ D" (At o1y + Agr or;)] !

4.36

0'"=t0'+Dve(A£—A£s,oP_;—AST’OPT)—}-’&. ( )
Eq. (4.35) and the flow criterion (3.47) are written as a set of equations
t+At )
-+ DY)t [(D°) "1 +8ig _ gtr] 4 A %
e [ Fo | _| @9 @) ]+ %) |_,
FA?\. t+Atf
“4.37)

which is solved for the stresses and plastic flow increment with a regular Newton Raphson
iterative scheme

1+At6 t+At6 .
= ~J7'F. (4.38)
i

AN ) AL
i+1

The subscript i depicts the iteration number of this return-mapping scheme. The Jacobian
is defined as:

oFy OF,
J=| 96 oAL | (4.39)
oFy), OFy,
a6 dAA
At convergence of this solution procedure the visco-elastic strain increment follows from
og
Ay, = AE — Ag;— Ag; — Akg (4.40)
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enabling the state variables/internal stresses to be calculated from

{6, +DE,(t*) A, forn=0
At
t+At
G, = £ = (4.41)
‘G, + DNL;C:)MW—G,, l—e & | forn=1,2,..,N.

For a Newton-Raphson incremental-iterative solution of the global set of nonlinear equa-
tions to be derived from eq. (4.23), a tangent stiffness matrix consistent with the return
mapping algorithm is used, the importance of which was emphasised by Simo and Taylor
(1985). Linearisation of eq. (4.37) gives

do de
J = (4.42)

dAL 0

with J the same Jacobian as for the stress-correction (4.39). The consistent tangent stiff-
ness matrix is defined as

do
D’P = — 443
i (4.43)
which, by condensation of eq. (4.42) reads
-1
OFs OFg (9Fam\ " 0Fm
vp— [0 _To T ALY TALE .
b [aa an(an P (4.44)

. oF, . . .
For the computation of the tangent operator ZA% must be non-singular. By ignoring the

second term of eq. (4.44) this problem is avoided, while retaining a good approximation
of the consistent tangent:

oF 5 -1
VP ] .
D'P =~ ( E ) (4.45)

The cracking rate dependence implied by the equation for cracking stress, eq. (3.56)
and the yield function, eq. (3.47) is captured by the foregoing procedure and requires
no further elaboration. The same linear integration employed for the rate law for visco-
elasticity, section 4.2.3, and plasticity, section 4.2.4, implies that the rate term enters the
yield function (4.37) in the incremental form:

. Ax

A (4.46)
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4.2.5 INCREMENTAL-ITERATIVE SOLUTION PROCEDURE

The nonlinear, time-dependent equations are solved at discrete points in time to trace the
evolution of stresses and strains. This leads to an incremental procedure, in which the time
is incremented step-wise, indicated by superscripts combined with the time-dependent
quantities

HAg = fgqAe
Mg — g4 AG (4.47)
t+At

r. = ‘r.+Ar,

with 7, the vector of all the external, nodal actions. For the solution at each time step an
iterative solution procedure is employed, normally the regular Newton-Raphson method.
The convergence iterations are denoted by the subscript j. The stress-update, eq. (4.47b),
follows from the constitutive relation, €q. (4.34) which, upon linearisation, can be ex-
pressed as

61 ="+ DY (de - de, — de;) +6. (4.48)
By considering eq. (3.43), the current stress is given by

NG 1 =D} [N+ DY (de~ dey P, — der oPy) + ‘5], (4.49)
with »

D = (14D} (desor, + der,ory)| - (4.50)

The equilibrium eq. (4.23) at time ¢ + At reads
/BT t+A16j+1 qv =+, .51
v

By substitution of the constitutive eq. (4.49) into the equilibrium €q. (4.51) and conside-
ring the linearised kinematic eq. (4.20)

de =B du, (4.52)
an expression for the vector of incremental displacement du j+1 is derived:
Kjdujp =, - /VBTDj- MGV 4

| BTDY (decoP+-deroPr) av - [ &5 av, (4.53)
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with

D¢ = D'D?
J il (4.54)

K; = [,B'DYBdV.

Hereby, an iterative correction of the displacement increment vector is defined for the
current time step as

Aujpy=Au;+dujiy . (4.55)
At the start of this algorithm (j = 0) the initial estimate of the displacement increment is
given by, cf. egs. (4.53,4.55)
Ko Auy = A, — /V B'D} (‘o +'6)dV +
/V BTD (Ae, oPs + AeroPy) dV. (4.56)
The subsequent iterations are driven by the unbalance in the equilibrium eq. (4.51)

K dujp ="+, /V BT g, dv. @.57)

This process is continued until equilibrium is achieved within an acceptable error. The
consistent tangent modulus, eq. (4.54), ensures quadratic convergence to the equilibrium
state.

4.2.6 ADAPTIVE TIME-STEPPING

An elegant way to trace the evolution of stresses and strains in quasi-static problems has
been proposed by Van den Boogaard et al. (1994). It is similar to the arc-length methods
for purely static cases, Riks (1972), Crisfield (1981), Ramm (1981). Hereby the need for
interference by the analyst at sensitive stages of rapid crack growth or at limit points is
reduced. Furthermore, as for the load increment in the standard arc-length method, the
time increment can become negative. The physical interpretation of this phenomenon is
that the problem becomes truly dynamic at this point. Inertia effects become significant.
In this study inertia effects are not considered.

Unlike in the previous section, the time increment is not constant, but adaptable during
the convergence iterations, denoted by

Atjpy = Atj+dtin (4.58)
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similar to the iterative update of the displacement increment in eq. (4.55). As in the
standard arc-length methods the external load vector is normalised with an adaptive load
factor p;;1, whereby eq. (4.51) becomes

[/BT I+At0'j+1 dv = Pj+1Te- 4.59)

The stress and load factor at the end of the current time step (z + A7) can be written in
truncated Taylor series as

Gjy1 = 6;+D%dej . +D' dt;
j+1 J J+1 j+1 (4.60)

Pi+1 = Pj+pjdiin
where D is the consistent tangent modulus of the previous section, eq. (4.54a) and

0AG
OAt
By substituting eq. (4.60) into the equilibrium equation and considering the kinematic
relation eq. (4.52), an expression for the iterative displacement update is obtained as

D'=—. (4.61)

K;duji =p,-re—/VBch av +dtj4 <p,-re—/VBTD§ dV). (4.62)
By defining

p; = pjre—/VBTdoV—Atj (p,-re—/VBTD;dV) .

g = pjre—/VBTbng ‘
eq. (4.62) becomes

Kjduj.1=pj+Atjq;. (4.64)

For the solution of the variable time step from this equation, the displacement increment
is constrained to remain constant in the time by some norm. Here the linearised version
of the L, norm of the displacement vector

AuT dujp =0 (4.65)
is employed, which, upon combination with eq. (4.64) renders the time increment
AuTK'p;
Ay = 1L P (466)
Au i K j q;
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To evaluate the stress increment time derivative D, we write the stress increment cf. egs.
(4.47b), (4.49) and (4.50) as

A6 =D’ (D"’ AE+'6) (4.67)
with
AE = Ae — Ag; , (Ps+715'6) — Atr, (Pr+77'0). (4.68)

Partial differentiation with respect to the time increment produces

oAc oD’ oD'? _ 0AE  d'6
= —— = — P AE s — gt =
D A aAt(D As+c)+D‘<aAtAs+D aAt+aAt) (4.69)
with
oD* ) 1
W = gl
0 1] _ oD% vp [ 9AEso dAEr ,
§A—t [(Dy) :| = W (Aes,ors +A£T’orr) +D (Wrs AL rr
0AE 0Ag; , dAer,
9 =" (aTPs+ o ”T)
0AEs o -« %ﬁ
0At o oar
0AEr 4 - a_AI
oAs T o
t & N 1
N = ~Yg et
(4.70)
vp
The time derivative of the elasto-plastic consistent tangent stiffness modulus —— de-

pends on the particular yield criterion employed and will be derived after elaboration
thereof.

4.3 Finite element interpolation order

For the mechanical analysis, a displacement interpolation polynomial of one order higher
than for the pore humidities in the hygral analysis (or temperatures in a thermal analysis)
is needed to avoid oscillating stress fields. This is illustrated in Figure 4.1 for a one-
dimensional, restrained, shrinking bar. The linear shrinkage field (€,) shown in the figure
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can be represented by the two two-noded elements. However, by subsequently employing
the same, linear interpolation order for the displacement field, a piece-wise constant total
strain field (g) is found, following from the kinematic equation. In the absense of cracking,
the elastic strain is the difference between the total and shrinkage strain (g, = € — &,).
Because the two terms on the right hand side are not of equal order, an oscillating elastic
strain field and, therefore, stress field is found instead of a constant stress which satisfies
equilibrium at each point in the bar.

ot I

&

'
[ S]

-1 b7

Figure 4.1: One-dimensional, restrained, shrinking bar, exhibiting oscillating stresses in case of
equal-order interpolation of pore humidity and displacement fields.

This phenomenon is less pronounced in a multi-dimensional analysis, because then equal-
order interpolation of the pore humidity and the displacements produces compatible shrink-
age and total strain component fields in the orthogonal directions. For instance, the normal
strain component €, is constant in the x-direction, but linear in the orthogonal directions
when employing linear displacement interpolation.




Chapter 5
CRACK MODELLING STRATEGIES

As suggested by the features of masonry cracking in section 2.4, two alternative modelling
approaches can be followed to model cracks in masonry, namely discrete or continuum
modelling (eg. Rots 1994, Lourengo 1996). Here discrete modelling does not refer to the
discretisation of the microstructure of a cementitious material, but rather to the way in
which cracks are modelled. The general mathematical and numerical frameworks for the
plasticity formulation, which is adopted here for capturing the crack initiation and growth,
have been discussed in Chapters 3 and 4. In this chapter the particular choices of crack
initiation criteria, which depend on the modelling strategy, are made and elaborated in the
context of the numerical setting. Whereas the crack modelling strategies were verified
and validated by Lourengo (1996), the enhancements made here to the interface model
with respect to the dilatancy formulation and the stress-enhanced shear fracture energy,
are validated. Subsequently, the extension of the interface model to three dimensions
is described. Finally, the continuum approach is discussed and the regularisation of the
crack localisation by the crack rate dependence is demonstrated by a simple example.

5.1 Discrete modelling

With the knowledge that the masonry joints are the weak link, they are modelled with
interface elements, which capture debonding, shear-slipping and crushing between the
two constituent phases in a discrete/discontinuous way, Figure 5.1a. The brick and mortar
are discretised with continuous elements. This strategy can be simplified by discretising
only the bricks, while interface elements account for the joint actions, Figure 5.1b. In
some cases it is necessary to supplement the modelling strategy to include the cracking in
the bricks. It usually suffices to model central, vertical brick cracks, by placing interfaces
at these locations, Figure 5.1a,b. Furthermore, the creep, as well as the hygral and thermal
shrinkage act on the continuum.
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Mortar Interface "Brick" Joint/interface

Potential brick crack Potential brick crack
(@ ()
Figure 5.1: (a) A discrete modelling strategy and (b) a simplified discrete modelling strategy for
masonry.

5.1.1 AN INTERFACE MODEL FOR 2-D MASONRY DISCRETE MODELLING

A plane stress interface model was formulated by Lourenco (1996). It is based on multi-
surface plasticity, comprising a Coulomb friction model combined with a tension cut-off
and an elliptical compression cap, Figure 5.2. Softening acts in all three modes and is
preceded by hardening in the case of the cap mode. The model is described in detail by
Lourengo (1996). This model is enhanced here to allow for the apparent stress dependence
of the shear fracture energy, as found experimentally by Van der Pluijm (1992), Figure
2.15a, as well as to capture the observed dilatant behaviour of masonry joints, Figure
2.15b. This dilatancy, if confined externally, or by the surrounding masonry, contributes
significantly to the strength and toughness of masonry and may determine the failure
mode.

The tension cut-off and compression cap formulations by Lourenco remain unaltered, but
the shear mode and its intersections with the former two modes are modified. To sketch a
clear picture of the modifications to the model, the shear mode is elaborated in detail.

,:' Intermediate

i\ yield surface y R\

Initial yield surface’” |
Residual yield surfac

Figure 5.2: Interface model (Lourengo 1996).
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The interface model is derived in terms of the generalised stress and strain vectors:
c = {o1}7
e = {uv),

with ¢ and u the stress and relative displacement respectively in the interface normal

direction and T and v the shear stress and relative displacement respectively. In the elastic
regime the constitutive behaviour is described by

G.1)

¢ =Dg, 5.2)
with the stiffness matrix

D = diag [knks]. (5.3)

A Coulomb-friction yield/crack initiation criterion is an obvious choice, Figure 2.14.
Thereby, shear-slipping occurs if the yield function

f=lhl+o®—c (5.4

becomes zero. Both adhesion softening and friction softening are apparent in Figure 2.14.
The adhesion softening is described by

Co
T AT
c(0,K) =co e Gy , (5.5)

where c, is the initial adhesion of the brick-mortar interface and G}I the shear-slip fracture
energy. The friction softening is coupled to the adhesion softening via

@(, ) = tan ¢, + (tan ¢, — tan ¢,) C"C_ < (5.6)

with ¢, the initial and ¢, the residual friction angle. The adhesion and friction para-
meters are found by linear regression of the micro-shear experimental data, Figure 2.14,
while the fracture energy is determined by the appropriate integration of the stress-crack
width response. Note that this integration produces the total energy dissipated by both the
adhesion and the friction softening, which amounts to

G =Gl [1 + 2 (an 6, — tan ¢,,)J . 5.7

The experimentally observed linear relation between the fracture energy and the normal
confining stress, Figure 2.15a, is captured by letting

GIIZ{ a6+b, o<0 (58)

b, c>0
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with a and b constants to be determined by linear regression of the experimental data.
If the contribution of the friction softening energy is significant, which is revealed upon
evaluation of the second term between the square brackets of eq. (5.7), the regressed
coefficients ¢ and b should be adjusted to avoid a too high energy dissipation at high
compressive stresses.

The flow rule

. ip . 0g
€= =A> 5.9
{0 b5 o
provides a way of describing the dilatancy, by choice of a suitable potential function
dg ¥y
=S — 5.1
=1 e | 10

Y = tan y being the mobilised dilatancy coefficient. Following directly from the flow rule

¥ = 22 Gign(v). (5.11)
Vp

By integration the shear-slip induced normal uplift is found to be:

up= [¥ d|av|. (5.12)

There is experimental evidence, Figure 2.15b, that dilatancy is dependent on the confining
stress and the shear-slip. A dilatancy formulation of separate variables, i.e.

¥ =¥ (0) ¥2(vp) (5.13)
simplifies curve fitting and ensures convexity of the potential function g:
og\"
g= / 2) do=pil+¥a(v) / ¥, (o) do. (5.14)

Therefore, a description of the normal uplift upon shear-slipping is chosen as

0, 6 < Oy
tan (o —
=) S (1-3) (1-7), aisoco .19
tan\y,, _Sv
10 - >
5 (1 e P), c >0,
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which yields after differentiation

0, o< 0y
_S |,y
¥={ tany, |1 e e %', 0,<06<0 (5.16)
U
tan y, e Vp, c>0.

The dilatancy at zero normal confining stress and shear slip (tan ,), confining (compres-
sive) stress at which the dilatancy becomes zero (6,,) and the dilatancy shear slip degrada-
tion coefficient (8) are material parameters to be obtained by, for instance, a least squares
fit of eq. (5.15) to experimental test data. Note that for tensile stress a stress-independent
dilatancy coefficient is assumed.

The above relations are cast into the standard plasticity formulation next. A strain softe-
ning hypothesis is employed, where the softening is governed by shear-slipping, yielding

Ak = |Av,| = AL (5.17)

upon substitution of egs. (5.9, 5.10). The stress-update, eq. 4.35, is here given by

At ag]

t+Af .t _ -°
0—6+D[A£ n% (5.18)

which reduces to

i (g 07 — ky, AN AN
{ T } N { T — kg Al sign ("H407) } (5.19)

in the standard plasticity predictor-corrector fashion, with the trial stresses defined as

il o+ k,Au
{ T } = { kAv [ (5.20)
The remaiﬁing updating equations are:

t-}-AtK = ¢4 Ak

way _ g (5:21)

By substitution of the stress and plastic strain-update eqs. (5.19,5.21a) into the yield cri-
terion (5.21b), a single, nonlinear equation with one independent variable A\ is produced.
A Newton-Raphson iterative scheme is employed to find the solution:

t+AL d -1
Ay = AN — [(fo) f} - (5.22)
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The derivation of the Jacobian [(%L“ is elaborated by Van Zijl (1999a).
The consistent tangent stiffness modulus is given by

o6 . _H_l‘YTlTH_l

ep — —— — -+ -
D7 s =H - T (5.23)
with
2
H = D‘1+M§?‘g
)
"o Y
3 3 (5.24)
_ o8 -
Y = 3% 500
_ [afa® | 3f\ dc
h = (55%*&)&

See Van Zijl (1999a) for the detailed elaboration of all the derivatives above.

At each of the intersections of the Coulomb-friction criterion with the tension cut-off and
compression cap the plastic strain increment is, cf. eq. (3.53)

dg1 982

=+ A== 5.25
36 TAM 3 (5.25)
where the subscripts 1 and 2 refer to the two intersecting criteria. Lourenco (1996) de-
scribes this procedure in detail. Here only the main features of the two corners are out-
lined.

Agp =AMy

The yield function for the tension cut-off (criterion number » of the interface model) is:
fr=06-0; (5.26)

with o, the tensile, or brick-mortar bond strength. The strength is assumed to soften
exponentially

0',=f,e

G
f (5.27)

with f; the bond strength and G? the mode I fracture energy. The softening is governed
by a strain softening hypothesis:

Aky = |Aup| (5.28)
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which, upon consideration of an associated flow rule

9f2
Ag, = A?ng, (5.29)
reduces to
Ay = Al (5.30)

In the shear/tension corner the stress corrections can be written as

1A ol — ANy
[0 _ kn M] kn A)x,z (5.31)
T T — ks AN
where the trial stresses are as defined before in eq. (5.20). Upon substitution of these
stress corrections into the yield functions (5.4) and (5.26), a set of two coupled, nonlinear
equations arises, to be solved for the two plastic flow increments in an iterative Newton-

Raphson algorithm as follows:

t+At 9 fl ] fl ! t+At

Ml — Akl — aAy\«] G‘AM f] . (5'32)
oy of
S P BN N | 2],

The Jacobian above is elaborated in Van Zijl (1999a) along with the consistent tangent
modulus for this corner regime.

The yield function for the compression cap (here referred to as criterion number 3,
1 being the shear mode) is

f3=0*+C1* ~ 2 (5.33)

with C; a parameter controlling the shear stress contribution to failure and 6, the compres-
sive strength. The latter is assumed to evolve according to the strain hardening hypothesis:

Ax3 = ,/As;Asp (5.34)
which, upon consideration of an associated flow rule

Ag, = A?»3%§, (5.35)



62 5 CRACK MODELLING STRATEGIES

becomes

Ak =2 Ah3y/ 02 + (Cyt)2. (5.36)

In the shear/compression corner the stress-corrections can be written as

t+At

(5.37)

6 ) _ [ O —ky AN AW — 2k, AN3 G
T | T | T =k AN =2k, Cs AR 1TAT

where the trial stresses are as defined before in eq. (5.20). Upon substitution of these
stress-corrections into the yield functions (5.4) and (5.33), a set of two coupled, nonlinear
equations arises. It is solved for the two plastic flow increments in an iterative Newton-
Raphson algorithm as follows:

t+Ar afl afl ! t+At

A)ul _ A;»l 3 aAM _aA}\@ fl ' (5.38)
afs 9dfs
A3 i+1 A3 i 0AN;  JAA3 | s i

The Jacobian above is elaborated in Van Zijl (1999a) along with the consistent tangent
modulus for this corner regime.

5.1.2 VERIFICATION AND VALIDATION OF DISCRETE APPROACH

The discrete modelling approach has been verified and validated by numerical analyses
(Lourengo 1996, Van Zijl 1996, Van Zijl et al. 1997) of micro-experiments performed
by Van der Pluijm and Vermeltfoort (1991) and Van der Pluijm (1992) and meso-scale
experiments on small masonry walls (Backes 1985, Vermeltfoort and Raijmakers 1993).

It should be noted that the clear distinction between mode I and II failure suggested by the
tension cut-off of the Coulomb-friction criterion is an approximation of the real behaviour.
The objective characterisation of the apex regime is virtually impossible due to stress
nonuniformity in even the most carefully planned experimental set-up. For example, for
normal tension and even for low normal compression in a specimen tested in the Van
der Pluijm micro-shear test, Figure 2.14, mixed-mode failure may occur. The proposed
material model thus presents a failure envelope which may, in some cases, predict the
mode of failure incorrectly.

In this section the dilatant normal uplift upon shear and its influence on the masonry
behaviour if it is constrained, are investigated. Van der Pluijm (1992,1998) performed a
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Figure 5.3: Schematical set-up of masonry shear tests (Van der Pluijm 1992, 1998).

ke | ke | f G o GY tand, | tand, | tany, | Oy | 8
N N N N N N N
mm3 | mm3 | mm? mm mm? mm mm?

(a) | 825 | 345 | 04 [ 0.012 | 0.87 | 0.006—0.09c | 1.1 070 | 0.74 | -1.57 | 5.6
(b) | 438 | 182 | 0.1 | 0.005 | 0.28 | 0.02—0.030 | 097 | 075 067 |-122 | 17

Table 5.1: Parameters employed for the joint/interface in the (a) clay brick and (b) calcium silicate

specimens.

series of shear tests on small masonry specimens, each containing a single joint. In the
first part of the experimental program a constant confining pressure was maintained on
the specimens, Figure 5.3. Typical results of these tests have been shown in section 2.4.
By regression of these results, the model parameters have been obtained for a typical clay
brick masonry and a calcium silicate masonry, Table 5.1. The tensile strength and fracture
energy are exceptions. They are average values obtained from separate displacement-
controlled tension tests of the respective masonry types (Van der Pluijm and Vermeltfoort
1991, Van der Pluijm 1998). Also, the employed Young’s moduli E = 17400 and E =
13400 for the clay brick and calcium silicate unit respectively, as well as a Poisson’s ratio
v = 0.2 for both, are reported average values. The interface stiffnesses k,, ks have been
calculated to match the observed initial elastic responses of the masonry shear specimens.

Figure 5.3 also shows the finite element mesh used for the analyses. Note that the simpli-
fied discrete analysis strategy, Figure S.1b, is followed. The plane stress interface model
outlined in the previous section is employed. This strategy has been shown to simulate
the shear stress-deformational response accurately (Van Zijl 1996). Also, the normal up-
lift upon the shearing displacement along the joint for this experimental set-up, where a
constant confining pressure is maintained, has been verified (Van Zijl et al. 1997). The
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Figure 5.4: Comparison of the measured (Van der Pluijm 1992, 1998) and numerical dilatant
normal displacement upon shear displacement of a (a) clay brick masonry and a (b) calcium silicate
masonry.

experimental and numerical dilatancy responses are compared in Figure 5.4 for the two
types of masonry investigated. Note that the joint normal and shear displacements are
shown, which are calculated from the measurements at the gauge points and the elastic
properties of the bricks (Van der Pluijm 1992). The agreement is not surprising, because
the model parameters have been calculated from these experimental responses. Neverthe-
less, it shows that the chosen form of the dilatancy equation is appropriate.

A more severe test of the model is presented by the confinement of the dilatancy and
the associated normal stress build-up. Van der Pluijm (1998) modified his experimental
set-up to control the displacement normal to the joint. He performed shear tests on two
specimens of the clay brick masonry type, Table 5.1. In the first test he applied an initial
normal displacement to cause an average stress of -0.1 N/mm?. The normal boundaries
were then fixed in this position, before the displacement-controlled shearing was com-
menced, as shown schematically in Figure 5.5a. The same procedure was followed for
the second test, except that an initial average tensile stress, 6y = +0.1 N /mm? was ap-
plied instead of the compression in the first test. In Figure 5.5b the normal force build-up
upon shearing is shown. Van der Pluijm limited the normal force to 27.5 kN to protect the
test apparatus, at which point he switched back to force control of the normal boundary
to sustain the limit force. This has been simulated numerically, Figure 5.5b. However,
the case of unrestricted normal force build-up has also been analysed. These numerical
responses are shown in dotted lines. Due to the smoothing of the interface, a point is
reached where no further dilatancy occurs and the normal force is arrested. This point co-
incides with the pressure at which the dilatancy becomes zero 6,,. The measured response
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for the case of initial compression (Gp = —0.1 N/ mm?) indicates that a limit point was ap-
proached just before the switch to force control was made, which confirms the numerical
result. In Figure 5.5¢ the numerical and experimental shear force-deformation responses

are compared. Reasonable agreement is found.
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Figure 5.5: (a) Schematical set-up of the normal confined masonry shear tests (Van der Pluijm
1998). Comparison of experimental and numerical (b) shear force vs. normal reaction force and
(c) shear force vs. joint shear displacement.




66 5 CRACK MODELLING STRATEGIES

Whereas the agreement of the numerical responses with the measured responses is rea-
sonable, the inappropriate dilatancy modelling can lead to large errors. This is illustrated
in Figure 5.6. For even a small, constant dilatancy coefficient an unlimited strength is pre-
dicted for the shear specimen of Figure 5.5a. A dilatancy coefficient of zero reproduces
the response under force control of the normal boundaries, Figure 5.3, in which case the

initial confining pressure governs the response. The responses for 6, = —0.1 N /mm? are
shown.
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Figure 5.6: The response to inappropriate dilatancy modelling.

5.1.3 EXTENSION TO PLANE INTERFACE BEHAVIOUR FOR 3-D DISCRETE ANALYSIS

The two-dimensional interface model can be extended to a three-dimensional interface,
which describes the delamination and relative shear-slipping of two planes. Now the
generalised stress and strain vectors are:

{ot 1w}’
Y (5.39)

€

Il

where the shear stresses T, and T, act in the local plane of the interface, v and w are the
relative shearing displacements in the interface plane and o and u the stress and relative
displacement respectively normal to the plane. The stiffness matrix is defined as

D =diag [kyks k] . (5.40)

Here a tension cut-off and a Coulomb-friction yield criterion are combined, Figure 5.7.
Apart from the added stress and strain component, the two-dimensional tension criterion
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e - Tt
Figure 5.7: Three-dimensional interface yield function.
f» of section 5.1.1 remains unchanged. For the Coulomb-friction part the yield function
becomes:
f=yB+t+od-c (5.41)

As for the two-dimensional case adhesion softening and friction softening is modelled as
described by eqs. (5.5,5.6). A non-associated plastic potential is chosen, giving the flow
rule

¥
3 s
Ae, = Ak% =l VE2+2 Y, (5.42)
T

with the mobilised dilatancy ¥ defined as before by eq. (5.16). However, now the strain
softening is governed by the equivalent shear displacement

Ak = 1/ (Avp)? + (Awp)* = AL. (5.43)

The stress corrections can be written as:
o' — k, AL AN

t4Ar
T
t+A1 T — ks AA —_—
NG — g+ D [Ae—Ax 5%] ={ 7 N . (5.44)
1+At
T~k AL ki

Ve

By substituting these stress-updating equations into the yield function and assuming the
same shearing stiffnesses in orthogonal directions (k; = k;), a single equation with un-
known AX can be derived

S e 0 = /(1) 4 (1) — ke AL+ [0 D(0,40)] - TVe(0, ML) (5.45)
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and is solved iteratively in a Newton-Raphson scheme as before, eq. (5.22). The Jacobian
and consistent tangent stiffness matrix for this solution are given by Van Zijl (19992a).

In the shear/tension corner the stress-corrections can be written as

t+At ggy H—Ataf2>

g = " D[ AL —=— —A =

° 1% M 36
o' —k, A\ t+A“I"s — Kk, AAy

-1
= 4 (1+ks A?q/[ (1) + ()2 =k, MID | (5.46)
-1
TVO+MAM/[(wf+mw?wou>

As for the plane-stress case, a set of two coupled, nonlinear equations arise upon substi-
tution of the stress-corrections into the two yield functions (5.26, 5.41). The Jacobian for
the solution of the plastic flow increments from this set of equations has been elaborated
by Van Zijl (1999a).

By differentiation of the updating equations the following consistent tangent modulus can
be derived:

D?=H'"-H'W(V'H'U-E) 'vVTH"! (5.47)
with

_ o%g
H =D 1+Ax5;2—

iy
dA =

s

9 Pe o af Pe1 ok
U o= | %1, Pada 3N g1 9%

36 T Micsem | e T Mo,
o133

% %

o0 an) ki | (900, a0 3edn
e _ | \e@ac o) o 309 T o ) I o,

9/2 90 9% 9/296: 9%z

30, 3% 98 30, 9%, 380,

(5.48)
the derivation of which is also given by Van Zijl (1999a).
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5.2 Continuum modelling

An alternative, continuous modelling approach has become usual for concrete. However,
the relation between the structural and “grain/particle” (brick) dimensions places masonry
at, and in some cases beyond the limit of applicability of this approach. For instance,
buildings of calcium silicate elements/blocks sometimes contain piers of the width of a
single unit, which calls for the separate modelling of the elements/blocks and their con-
nections. Yet, where the brick dimension is sufficiently small compared to the structural
dimension, the continuum strategy may be followed to model large masonry structures
in a compromise between computational accuracy and viability. Then the material can
be considered to be homogeneous and continuous, in which a relation can be established
between average stresses and strains.

5.2.1 AN ANISOTROPIC RANKINE-HILL MODEL

A plane-stress continuum model was formulated by Lourengo (1996). It is based on multi-
surface plasticity, comprising of a Rankine yield criterion combined with a Hill criterion
for compression, Figure 5.8. This choice was inspired by the form of the observed failure
envelopes shown in Figure 2.16. This model is elaborated here to illuminate its interaction
with the total mechanical model.

To account for the different strengths parallel and perpendicular to the bed joints in ma-
sonry, anisotropic versions of both the Rankine and Hill yield criteria are employed. Ten-
sion softening and compression hardening, followed by softening capture the total degra-
dation process, governed by different values of the fracture energy along each material

T,>T,>T,>T,=0 Icy
3 2 1 7]
v fty Gx T

~]
T
I

/ Hill type yield surface / Rankine type yield surface

Figure 5.8: Continuum material model (Lourengo 1996).
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axis in both compression and tension. The strength parameters are the tension (fiy, fiy)
and compression ( f.x, fcy) strengths in both directions, while the softening parameters are
the tension (Gyy, Gy) and the compression (G ‘fex» Gfey) fracture energies and the limiting
equivalent plastic strain between initial parabolic hardening and subsequent softening in
compression (Kp). The parameters which determine the shape of the yield functions are
o, which controls the shear stress contribution to tensile failure (ot; = 1.0 being the stan-
dard Rankine value), B, which couples the normal compressive stresses (typically B = —1
for masonry) and 7, which controls the shear stress contribution to compressive failure
(Y = 3.0 for the isotropic Von Mises model).

Cracking due to eigenstressing and structurally restrained shrinkage is of particular im-
portance here. Therefore, in the analyses reported in this report the Hill criterion is not
activated. As the plasticity formulation is influenced by the combination with visco-
elasticity, stress-dependent shrinkage and crack opening rate dependence, the Rankine
formulation is elaborated in detail.

The yield criterion (3.47) for the Rankine model reads
f=+/38TPE+1nTE (5.49)
with the projection matrix P, and vector T given by
-1
Po= o
t - by - .
2 - . 4o (5.50)
7 = {110}.

The parameter o; controls the shear stress contribution to failure and can be expressed as
(Lourengo 1996)

(5.51)

where 1, is the shear strength at zero normal stress. The normal Rankine value is o; = 1.
The reduced stress vector reads
E=0c-T (5.52)

with

o’ { oxroy 1y}
5.53
I7 = {ox0y0}. (5.33)
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Exponential softening is assumed in the orthogonal directions, described by
i
fixe 8fx

I3
L

th = ﬁye 8fy .

Oix

(5.54)

A simple way of including the rate contribution to cracking resistance, eq. (3.56), is by
adding it to the “static” strength

Jix

A -——K
O = (.ftx'f'mEK)e 8fx
(5.55)

ty K
Ax\ T oo
Oy = (fty-l-mE)e 8y .
Lourengo (1996) does not include the second, crack mouth opening rate term. To en-
sure that the results are objective with regard to mesh refinement, he relates the energy
released per unit crack area Gy to a representative mesh dimension /,, following BaZant

and Oh (1983), Crisfield (1984), Rots (1988) and Feenstra (1993). If it is assumed that
the inelastic work g is uniformly distributed over /, this relation is given by

=9

=7

8f (5.56)

The softening is governed by the maximum principal plastic strain as follows

/1 1
Ak=Ag; = E(Ae,,)TPAe,,+§1:TAe,, (5.57)
with
MR
P=z|-1 1 .| (5.58)

1

The plastic strain follows from the flow rule
9%

ac

with the plastic potential given by

N 1
g= §§T P&+ 3 ' E (5.60)

As, = A (5.59)
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1 -1 .
[ -1 1 . J . (5.61)
. . 4

By substitution of the plastic strains into eq. (5.57) the equivalent strain increment reduces
to

Ax = A\ (5.62)

For the solution of the stresses and plastic flow increment the stress-update eqgs. (4.35,4.36)
and yield function eq. (5.49) are solved simultaneously, as described by egs. (4.37 - 4.39).
The Jacobian (4.39) required is

92 ) o2
ve —1 _—g _g ——g
(D)™ +Agg o 15+ Ao rr+ AA 362 | ac+A}u o
J=| == + - (5.63)
ary’ .
oo Jx
with
a;f o L+lu
do 23 PE 2
of  _ _(a\'ar
ok o6/ ok
a_l" - ac”‘ao_’yo r
ok JK ok s
® o afiee 2
o’g P, P,EET P,
. _
© 2/l eE 4(ERY)”
P _ _Pgor
960k 902 K’

For treatment of the apex the reader is referred to Lourengo (1996).
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The approximate tangent modulus excluding the stress-induced shrinkage and thermal
strain is, cf. eqgs. (4.45,5.63):

oc d%g
D?P=—= ve AA ) 5.65
> [( )7+ 3 2] (5.65)
which is to be substituted into eq. (4.54a) to obtain the consistent tangent D',

The time derivative (4.69) needed for adaptive time-stepping discussed in section 4.2.6
can now be completed by deriving

aDVP vp P ] e 32g vp_
s =D aAt[( )AL =2 }D (5.66)

The first term is completed by elaborating

d _j0Dv¢ _

[ =) 55 @) 5.67)
with, by differentiation of eq. (4.32)

D & En [1 _afr, 1 _At/G,

Feaap i [-ge —E(l—e )]D. (5.68)

The second term is dependent upon the time increment due to the crack mouth opening
rate dependence and reads
& ,r 08" 3§ rp %5
P P
B G PE-EPeay ) Pe
JAt \ 862 r
8 (55 P g&)

3 (%%ng +§Tpg5) PEETP,

(5.69)
OAt

)

5.2.2 THE REGULARISATION OF THE LOCALISATION PROBLEM

As mentioned in the previous section, the equivalent length /,, may be related to a repre-
sentative FE mesh dimension to strive at objective results upon mesh refinement, follow-
ing the crack band model by BaZant and Oh (1983). However, this does not prevent the

-
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loss of well-posedness in softening solids (Sluys 1992), which is associated with mesh-
dependent crack spacing and alignment. In this study the simplest form of regularisation
of the problem in terms of implementation ease is employed, by including a rate term,
of which a physical rationale has been given in section 3.2.4. As an illustration of the
regularisation the one-dimensional tension bar shown in Figure 5.9a is analysed.

The bar has a linearly increasing cross section area A such that A(L)/A(0) = 1.5 to avoid
a homogeneous solution. It is discretised into 10, 20 and 40 elements, respectively, along
the length. If no rate term is included, as is simulated by setting m=0, an inobjective
response is obtained. This is reflected by the plastic strain localisation, Figure 5.9b for
m=0. For each mesh the plasticity is restricted to a single element at the left support.
Furthermore, a reduced energy dissipation upon mesh refinement can be seen in Fig-
ure 5.9c for m=0. Note that if the energy dissipation is related to the element size, the
stress-deformational response may be corrected, but the localisation zone remains mesh
dependent.

For the case of crack rate dependence three viscosities, m=1,2, 5 Ns/ 'mm?, are employed.
From Figure 5.9b it is evident that a mesh-objective localisation width is produced in each
of the three cases. Now also the energy dissipation is objective upon mesh refinement,
Figure 5.9c.

Note that the divergence in stress-displacement responses for the different meshes after
some degradation (in the case of m = 1 Ns/ mm? for u > 0.2 mm, Figure 5.9¢) is caused
by the exponentially diminishing rate term contribution, eq. (5.55).

The same bar is analysed employing the crack mouth opening rate model proposed by
BaZant (1993), eq. (3.55). The offset parameter is chosen as k;=0.1. The remaining two
parameters ko and K, are estimated to obtain the same approximate 20% peak strength
increase as computed with the simple cracking rate model for m=1 Ns/mm?, Figure 5.9c.
However, with this criterion a unique combination of these parameters does not exist.
Three pairs, (kp=0.03, k,=5.107% 571, (ko=0.14, %,=0.1 s~1) and (ko=1.0, k,=1.0 s~ 1),
are employed. Figure 5.10 shows the stress-deformation responses. An approximate 20%
increase in the peak strength is indeed computed for all three cases. However, for the
first case and, except for the initial part of the localisation process, for the second case
this formulation does not regularise sufficiently, because in the post-peak regime a mesh-
dependent solution response prevails, Figure 5.10a,b. This is due to the strong damping
nature of the inverse hyperbolic operator in the formulation for large values of k/X,, or
small values of the reference cracking strain k,. Note that the first set of parameters,
Figure 5.10a, is the more appropriate choice proposed by Wu and BaZant (1983), which
produces a realistic strength increase upon an increased loading rate, section 3.2.4.
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Figure 5.9: (a) Tension bar example for illustration of the regularisation by considering the crack
mouth opening rate dependence. (b) Plastic strain localisation with various crack mouth opening
viscosities m at a bar end displacement # = 0.21 mm. (c) Stress in the bar at the constraint vs. bar

end displacement.
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Chapter 6

VALIDATION OF THE MECHANICAL MODEL.:
FAILURE UNDER SUSTAINED LOAD

It makes sense to validate and verify the model in a modular fashion. In this chapter only
the mechanical part is activated to study its ability to simulate the interaction between
fracture and creep. The three-point bending creep tests performed by Zhou (1992) are
analysed. During these experiments the drying of the specimens was prevented, which
avoids the further complication introduced by the simulitaneous drying shrinkage. If the
intricate mechanical behaviour is captured by the model satisfactorily, the next level of
complication can be entered with confidence. This is done in Chapter 7, where transient
creep experiments are analysed.

The creep tests by Zhou relate to concrete. Tensile creep experiments on masonry appear
to be very scarce. However, despite the obvious difference in the microstructural scale,
the shared cementitious nature of both materials is of dominant importance in governing
their behaviour. For the model to correctly simulate creep and cracking in masonry, the
ability to do so for concrete seems a prerequisite.

The creep deformation as well as the time to failure under the sustained creep load is
investigated. The role of the cracking rate dependence is brought out. Also, new light
is shed on the long term behaviour, which brings about an increased deformability and
requires a new definition of the creep failure envelope. This chapter ends with a brief
discussion of the requirement of a nonuniform stress field for the correct description of
creep failure with a macroscopic approach.
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6.1 Description of three-point bending tests

The geometry of the 100 mm thick notched concrete beams which were tested by Zhou
(1992), is shown in Figure 6.1a. He performed both displacement-controlled and force-
controlled experiments, the results of which are shown in Figure 6.1b. With the first type
of tests the total load-deformation response from elastic behaviour, through the peak load
and the degradation up to zero resistance was found. Force control enabled the load to
be increased to a predefined level, which was subsequently sustained. A sustained load
of larger than about 60% of the peak load eventually led to failure of the beams. In these
cases sufficient micro-cracking was initiated to eventually coalesce into a macro-crack
and to subsequently propagate until failure. The displacement-controlled response seems
to form a failure envelope, which determines the deformation at failure under the sustained
load. Typical results of total load-deformation response under displacement control at 5
umy/s, as well as the results of sustained load tests at 92%, 85%, 80% and 76% of the
average of the peak loads obtained in the former tests are shown in Figure 6.1b. Both
the load versus the crack mode opening displacement (CMOD) and the load versus the
deflection at midspan are shown in the figure. The CMODs at failure under sustained
loads are indicated by an X.

The finite element mesh employed for the analyses is also shown in Figure 6.1a. It consists
of plane-stress, four-noded quadrilateral elements. Symmetry is exploited, enabling one
half of the model only to be modelled.

The Rankine plasticity formulation is employed to capture the crack initiation and propa-
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Figure 6.1: Three-point bending tests by Zhou (1992). (a) Specimen geometry, set-up and FE
model, (b) force-CMOD and force-deflection results (Zhou 1992).
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gation in a smeared fashion. A crack band width ,, = 4 mm is assumed, which is equal to
the notch width. To study the cracking rate dependence, the formulation proposed by Wu
and BaZant (1993), eq. (3.55), as well as the simple cracking viscosity model, eq. (3.56),
are employed. Bulk creep is considered by activating the Maxwell chain incorporated in
the constitutive model. The own weight is compensated for by applying a volume load of
mass density 2400 kg/m? in an initial step in each analysis.

6.2 Characterisation of the model parameters

Separate tests were performed to determine the material parameters, yielding a Young’s
modulus 36 kN/ mm? and the tensile strength f;=2.8 N/ mm? (Zhou 1992). Also, relax-
ation tests were performed on cylindrical, notched tensile specimens, providing informa-
tion for determining the bulk creep parameters, Figure 6.2. Unfortunately, the relaxation
was measured over short times (maximum 1 hour), calling for extrapolation. Two such ex-
trapolations were made to give creep coefficients of ¢ = €./€, = 2 and 5 respectively after
100 days, considered to be the limiting cases for concrete. A 10-element Maxwell chain
model was fitted by a least squares method to each relaxation curve - Figure 6.2. The
initial load on the specimens was about 75% of the strength, so inevitably micro-cracking
must have occurred and influenced the amount of relaxation.
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Figure 6.2: Maxwell chain fits to the extrapolated relaxation data.

Zhou (1992) also performed three-point bending tests under displacement control on
smaller beams (600 mm long by 50x50 mm? section) to determine the fracture energy
Gy. By varying the deflection rate from slow (0.05 um/s - peak load after about 80 mi-
nutes) to fast (50 um/s - peak load after about 5 s) he studied the rate influence on the
fracture energy, Figure 6.3a, and peak strength, Figure 6.3b.
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Figure 6.3: Rate effect on (a) fracture energy and (b) peak strength (Zhou 1992).

To derive the parameters for the crack mouth opening rate (CMOR) dependence models,
egs. (3.55,3.56), a process of inverse fitting has been followed. For these analyses the
smaller beam has been modelled with the same mesh shown in Figure 6.1a, scaled to the
small beam geometry. The parameters which have been obtained in this way are, for eq.
(3.55): ko =0.05,k; =0.1,%, = 1077 s~! and for eq. (3.56): m = 1500 Ns/mm?. In figure
6.3b the normalised numerical peak strengths are compared with the measured values.
Reasonable agreement is found with the three parameter model, but with the simple one
parameter model it is impossible to fit the stength increase over the total range of loading
rates. A possible remedy is to employ a rate-dependent viscosity m (k). This has not been
attempted. Instead, the three parameter model has been employed for the subsequent
analyses in this Chapter. In all cases localisation has occured over the prescribed crack
band width /,, = 4 mm, which indicates that the correct amount of cracking energy has
been dissipated.

With regard to the apparent increase in fracture energy with loading rate, it must be noted
that it follows from the numerical model while employing a prescribed constant fracture
energy. This value can be estimated by extrapolation to the deflection rate at the reference
CMO strain rate k,, Figure 6.3a. A constant value of G '=0.035 N/mm has been used.

6.3 The failure envelope by displacement control

The experimental results indicate that the displacement-controlled response forms an en-
velope for failure under a sustained load, Figure 6.1b. Therefore, this case is analysed first,




6.4 Sustained load response 81

with the deflection rate 5 um/s, as employed in the experiment. Note that the Maxwell
model fit 2, Figure 6.2, is employed. Figure 6.4 compares the numerical response with
the experimental responses. To obtain this agreement a 5% lower tensile strength than
the reported f,=2.8 N/mm? (Zhou 1992) and a Young’s modulus 30 kN/ mm? have been
used. On the one hand these adjustments have been made to give reasonable agreement
with the experimental responses, in order to make possible the subsequent comparison
between the responses under sustained load. On the other hand the strength and stiffness
are rate dependent. Thus, the reduction of the measured parameters is in line with the
determination of the “rate-independent” values, as has been done in the previous section
for the fracture energy.
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Figure 6.4: Displacement-controlled (5 wn/s) experimental and numerical force-deflection and
force-CMOD responses.

6.4 Sustained load response

Next, the sustained load cases are analysed. As for the displacement-controlled ana-
lyses of the previous section, the Maxwell model fit 2 is employed. Figure 6.5 shows
the results. Following the experiments (Zhou 1992), the load is increased to a certain
portion of the peak load F, of the displacement-controlled analysis. Four cases are con-
sidered, namely load levels of 0.76F),, 0.80f,, 0.85F, and 0.92F,. As was attempted in
the experiments (Zhou 1992), the initial, ascending loading rate is the same as for the
displacement-controlled case. Beyond this ascending branch the load level is kept con-
stant and the creep behaviour is analysed. During this stage the crack propagates and the
deflection and CMOD increase up to a point where equilibrium can no longer be achieved
for the sustained load level. Here, the load bearing capacity of the beam is exceeded. To
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Figure 6.5: Three-point bending numerical results. (a) Force-deflection responses and (b) CMOD
evolutions.

ensure that failure under the sustained load is indeed imminent, the analyses are conti-
nued, by replacing the force control with displacement control at this point. This results
in the subsequent softening responses, Figure 6.5a, which prove that failure would have
occurred under continued load control. The CMOD evolutions are shown in Figure 6.5b.
The points of failure are marked, with dashed lines indicating the subsequent continued
crack mouth opening under displacement control.

These results confirm the experimental observation that the displacement-controlled re-
sponse serves as an envelope for failure under sustained loads. Also, reasonable agree-
ment is found with the measured times between reaching the sustained load level and
failure #5. Figure 6.6a shows these times for the experiments and for the analyses. Also,
the agreement between the measured and computed CMOD values at the point of failure
is reasonable. This is quantified in Figure 6.6b.

6.5 The failure envelope for long term, rate-independent response

It is interesting to study the sustained load numerical response when the crack rate de-
pendence is ignored. In the first place, it illustrates that the crack rate dependence is
more than a numerical regularisation tool, sections 3.3, 5.2.2. Secondly, it reveals that the
failure envelope should be modified in the case of very slow load application, where the
cracking rate becomes negligible.

To illustrate these issues, the displacement-controlled and sustained load analyses are
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Figure 6.6: Three-point bending (a) time to failure and (b) CMOD at the point of failure under
sustained load.

repeated, but now with the CMOR contribution deactivated. Once again the Maxwell
model fit 2 shown in Figure 6.2 is employed to capture the bulk creep. For these crack
rate-independent analyses the model parameters applicable at the 5 um/s loading rate,
namely G¢=0.08 N/mm, f;=2.8 N/ mm? and E = 36 kN /mm?, are employed. This is done
to obtain agreement with the measured behaviour under displacement control, Figure 6.7,
so as to allow subsequent comparison of the experimental and numerical sustained load
responses.

1000 . Fe—

———- Measured (Zhou 1992}
—— Numerical

Force (N)
g

Deflection (mm)

Figure 6.7: Displacement-controlled (5 pm/s) experimental and numerical force-deflection re-
sponses when the crack rate dependence is deactivated in the analysis.

Figure 6.8a shows the numerical load-deflection responses for both the displacement-
controlled and the sustained load analyses. For the former various deflection rates have
been employed, with times to peak approximately 30 s (the 5 um/s case), 10 hours, 75
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Figure 6.8: Numerical three-point bending results when only the bulk creep is considered. (a)
Force-deflection response for four levels of sustained loads and for displacement control at four
deflection rates. (b) CMOD evolutions under sustained load.

days and several years respectively. The X symbols denote the point after which no fur-
ther convergence can be found under the sustained load, which indicates a reduced load
carrying capacity and thus failure. The vertical slope of the CMOD responses shown in
Figure 6.8b confirms that failure is due in each case.

Now, unlike in the previous section, a single displacement-controlled response does not

define the displacement at which failure occurs under sustained load. Instead, the enve-

lope which is formed by the responses to the two extreme loading rates, serves this role.

The upper limit is found when loading is so fast that there is no time for relaxation, but

the crack rate dependence is still negligible. This case can be simulated by considering
N

an instantaneous response, i.e. a time-independent analysis with £ = E, + ZE =36
n=1

kN/mm?. The lower limit is defined by the response when only the Maxwell element

without dashpot resists extension, thus the elastic-cracking response with E = E,,.

In Figure 6.9 it can be seen that the time between reaching the sustained load level and
failure is greatly overestimated if only the bulk creep is considered. In the figure the
predicted times are shown also for the lower bulk creep, which is obtained by employing
the Maxwell model fit 1, Figure 6.2. From the insignificant reduction in the times to
failure brought along by the higher bulk creep, it is clear that by considering the bulk creep
only, the time to failure can not be predicted correctly. This provides strong evidence of
the validity of the inclusion of the cracking rate dependence.
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Figure 6.9: Comparison of measured and computed times to failure of three-point bending beams
under sustained loads.

6.6 Discussion

The ability to reasonably simulate the experimentally observed interaction between creep
and fracture in concrete goes a long way in verifying and validating the mechanical part
of the model. It has been demonstrated that the inclusion of the crack rate dependence
is essential. As a bonus, the numerical tool enables the investigation of the long term
behaviour and the failure under sustained loading of such specimens, which is probably
too time consuming and expensive to do physically. In this manner the increased defor-
mational capacity of concrete has been revealed.

Based on the knowledge that the displacement-controlled response forms the envelope for
failure under sustained load, it seems natural to formulate a crack initiation criterion based
on stresses and strains, De Borst and Van den Berg (1986). This would enable the analy-
sis of creep failure for specimens with uniform stress distributions, such as the dog-bone
concrete specimens tested by Cornelissen and Siemes (1984), Figure 6.10. Limited life
of their specimens was observed at tensile creep loads in the range 0.6-0.9F,. However,
through the redistribution of stresses in a general stress state, the current model repre-
sents the crack growth and eventual structural failure correctly, which renders the above
mentioned reformulation of the local cracking criterion unnecessary.

Furthermore, due to imperfection and asymmetry, a homogeneous stress state hardly ever
occurs. This is illustrated in Figure 6.11, where notches cause the nonuniformity of the
stress distribution at the plane of failure. Also, in a discrete modelling approach, section
5.1, the geometrical arrangement of bricks and joint interfaces ensures a nonuniform stress
distribution even under uniform loading and without the introduction of imperfections,



86 6 FAILURE UNDER SUSTAINED LOADING

Figure 6.12.
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Figure 6.10: Times to failure under sustained, uniaxial load, for specimens with an approximate
uniform stress distribution (Cornelissen and Siemes 1984).
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Figure 6.11: Stress evolution in a geometrically imperfect tensile specimen under a sustained
uniaxial tensile load.
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Chapter 7

VALIDATION OF THE TOTAL MODEL.:
MASONRY TRANSIENT CREEP

After the validation for the mechanical part of the model in the previous chapter, the free
shrinkage and the creep of masonry specimens are analysed in this chapter. This provides
a particularly demanding challenge to the model, because of the intricate interaction of
the moisture migration, shrinkage, creep and cracking.

Two typical Dutch masonry combinations tested by Van der Pluijm and Wubs (1996) are
studied, namely a large block calcium silicate specimen, which will be referred to as the
CS-block specimen, and a small brick (200 mm long, 100 mm wide and 50 mm high)
calcium silicate specimen, referred to as CS-brick, Figure 7.1. They are modelled in
three dimensions to capture the important out-of-plane hygral gradient and the associated
eigenstressing. The discrete modelling approach is followed, because the ratio of the
brick/block size to the specimen size renders these specimens beyond the applicability
of the continuum approach. The model parameters are estimated from experimental data
and, after the analyses with the initial choice of parameter values, the influence of the
parameters deemed to be the most important is investigated in a sensitivity study. Special
attention is given to the coefficient of stress-induced shrinkage, because of its crucial role
in the Pickett effect, which refers to the significant overestimation of the bulk creep.

7.1 Modelling approach

Two masonry specimens tested by Van der Pluijm and Wubs (1996), Figure 7.1a, are
analysed. They are modelled in three dimensions, due to the deficiency of plane (two-
dimensional) modelling in capturing the slow drying response of a typical cementitious
material (Van Zijl 1999b). Due to the slow drying, out-of-plane gradients of moisture
content exist before hygral equilibrium is established, which causes nonuniform shrinkage




90 7 MASONRY TRANSIENT CREEP

and associated eigenstressing in the specimens, which can only be captured in a three-
dimensional representation.

The discrete modelling approach, Figure 5.1a, is followed, whereby both the bricks/blocks
and mortar are discretised. A continuum approach is not valid here, because of the do-
minating micro-structure of the relatively small specimens, especially in the case of the
CS-block specimen. Besides, no simple extension of the anisotropic Rankine model to
three dimensions exists. The bricks and mortar are modelled with eight-noded brick el-
ements, which account for the shrinkage, elastic response and bulk creep. The cracking
is concentrated at the brick/mortar interfaces, where eight-noded plane interface elements
are used, which obey the three-dimensional interface material model described in section
5.1.3. The use of the pore humidity as potential in the diffusion analyses offers the conve-
nience of no special treatment of these interfaces, if they are assumed to be hydraulically
perfect, section 3.1.2. However, special eight-noded plane interface elements are needed
to account for the interaction with the environment at the exposed faces of the specimens
in the pore humidity analyses. There, surface convection is modelled, eq. (3.11¢).

CS-brick specimen CS-block specimen
450mm

(@)

432 mm

360 mm
L4
[

H

o .

Figure 7.1: (a) Masonry shrinkage specimens investigated. (b) One eighth of each specimen
modelled by assumption of symmetry.
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Note that symmetry is assumed, requiring only one-eighth of the specimens to be model-
led, Figure 7.1b. This is clearly not the case for CS-brick, but the reduced computational
effort justifies this simplification. It is believed that the error in the global response intro-
duced by this simplification is insignificant compared with the crudeness of the parameter
estimation enforced here by insufficient experimental data. This matter will be discussed
next.

7.1.1 CHARACTERISATION OF THE MODEL PARAMETERS

No single, complete set of experimental data exists from which all the model parameters
can be derived. The next best option is taken here, by performing parameter estimation
with data from different experiments, but on similar materials. Hereby, the introduction
of an error is unavoidable, because of the different experimental conditions involved. A
further complication is presented by the discrete approach, which requires test data of the
constituents separately. This specifically hampers the characterisation of the shrinkage
coefficient o, and the bulk creep parameters, E,, {,, because only shrinkage and creep
data of masonry as a composite are available, requiring some assumptions to be made.
Furthermore, no data exist from which the masonry stress-induced shrinkage coefficient
matrix r; can be calculated. All these issues have inspired the proposal of an experimental
program (Van Zijl 1999b). For the time being, the crude estimates found along the lines
described above are employed, as discussed in the following sections.

7.1.1.1 Model parameters: moisture migration

Pel (1995) performed NMR measurements of moisture profiles during drying of sand-lime
specimens, similar to the calcium silicate material bricks/blocks used for the specimens
tested by Van der Pluijm and Wubs (1996). The diffusion coefficient derived from the
moisture profiles by solution of the one-dimensional moisture diffusion differential equa-
tion, as well as by the receding drying front method (Pel 1995) is assumed for the current
analyses. The required hygroscopic relation 8(%) is also obtained from Pel (1995).

Furthermore, Pel measured moisture profiles in a typical masonry mortar, but cured in
and subsequently taken from baked clay brick masonry. This procedure ensures that the
mortar properties, as significantly influenced by the particular brick/block it is contact
with, are measured. As no other mortar drying data are currently available, the diffusivity
and hygroscopic curves measured by Pel are employed here. With regard to moisture loss
this assumption is justifiable, because the total mortar volume in especially the CS-block
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specimen is relatively small. However, the influence on the nonuniform shrinkage field
and, accordingly, eigenstressing and cracking in the shrinking masonry specimen, is not
easy to predict. The diffusion coefficient and hygroscopic curves employed are shown in
Figure 7.2a,b respectively.
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Figure 7.2: (a) Diffusion coefficient variation with moisture content and (b) isothermal desorption
curves (Pel 1995).

The surface convection coefficient (also known as film coefficient) is assumed as 5 mm/day
for zero air speed (Tammes and Vos 1984). It turns out that the global drying response is
insensitive to this coefficient in the range 0.5 < B < oo mm/day - see section 7.4.1. How-
ever, the finite value is employed, because it helps to prevent numerical overshoot (Van
Zijl 1999b). Note that surface convection is modelled only at the wall face, because the
edges of each specimen were sealed in the experiments.

7.1.1.2 Model parameters: mechanical behaviour

The parameters needed to describe the mechanical behaviour are summarised in Tables
7.1 and 7.2. These parameters are based on the experimental studies by Van der Pluijm
and Vermeltfoort (1991) and Van der Pluijm (1992) and have recently been verified tho-
roughly (Van Zijl 1996, Van Zijl et al. 1997).

The Maxwell creep model parameters have been obtained by least squares curve fitting of
measured compressive creep data of Van der Pluijm and Wubs (1996) - Figure 7.3.

Their transient creep specimens were subjected to a constant load, with an average com-
pressive stress of 2.5 N/mm?. They measured shrinkage strains on free shrinkage speci-
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Brick Mortar
E \Y E v
N N
mm? mm?
11500 | 0.2 | 3300 | 0.2

Table 7.1: Mechanical model parameters employed for bricks and mortar.

kn ke L] G| e GY tan¢, | tan¢, | tanwy, | o©, | B
N N N N N N N
mm3 mm3 mm? mm mm? mm mmZ
1.0x10° | 1.0x10° | 0.1 [ 0.005 | 0.28 [ 0.02—0.03c | 097 | 075 | 067 |-122 | 17

Table 7.2: Mechanical interface model parameters employed.

(a)

Figure 7.3: (a) Measured creep and fitted five-element Dirichlet function. (b) Relaxation function

derived from (a).

mens and approximated the basic creep €, i.e. creep on non-drying specimens, by sub-
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tracting the free shrinkage €, and elastic strains €, as follows:

€ =E—E,—&

with € the total strain measured on the transient creep specimens and €, the total strain
measured on the drying, non-loaded specimens. This method ignores not only the influ-
ence of the stress level on the shrinkage strain, but also the influence of cracking due to
eigenstressing in the free shrinkage specimens. Nonetheless, these data are used for a first

estimate of the bulk creep parameters here.

7.1
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Nearly equal creep coefficients, defined as

14
e = 8— (7.2)
were reported for the CS-block and CS-brick specimens. Therefore, equal creep coef-
ficients are assumed for the bricks, blocks, as well as the mortar. This means that the
same relaxation times ({;,{,,...Cx) are used for both constituents and, once the Maxwell
spring stiffnesses (E1, E, ..., Ex) have been found for one constituent, those for the other

are obtained by mere factorisation:

N
E
ngl n,m E,
En,m = —N"—_En,b = EEn,b (7.3)
ZEn,b
n=1

where the subscripts m and b refer to mortar and brick respectively. Aging is not consi-
dered, despite evidence of masonry compressive creep aging (Shrive et al. 1997).

The measurement of true shrinkage, i.e. the volume reduction of a material element at
zero stress, is virtually impossible, hampered by the slow drying process in cementitious
materials which causes humidity gradients, eigenstresses and cracking. Furthermore, tests
by Alvaredo et al. (1995) indicate that for cement paste of various water/cement (w/c)
ratios, the coefficient depends on the relative humidity, as will be discussed in detail
in section 7.4.2. As a first approach constant shrinkage coefficients are assumed. If, in
addition, one ignores the influences of cracking and stress-dependence of shrinkage (r =0
in eq. 3.43a), the coefficients can be estimated from the “final” shrinkage strain (£°). This
is done by solving the differential equation (3.43a) with initial condition & (0) = 0:

&5, = Os P, (h —hy) 74

and substituting €;° and environmental humidity (hg) as follows:

oo

— &
(hE - ho) .

The shrinkage parameters calculated in this manner are listed in Table 7.3. Note that, due
to the absence of separate shrinkage data for the mortar and the bricks, the coefficients
derived from the masonry data are assumed and employed for each constituent in the
discrete analyses.

o P; (7.5)

The coefficients which reflect the apparent stress dependence of shrinkage, 7y, eq. (3.43a,
3.44a), should be determined by performing simultaneous transient creep, basic creep
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and free shrinkage tests. The discrepancy between transient creep on the one hand and
the superposition of basic creep and free shrinkage on the other hand, quantifies r. In the
absence of such data, these coefficients are set to zero.

7.1.2 SPATIAL AND TIME DISCRETISATION

It is well known that care should be taken with spatial and time discretisation, with regard
to the numerical solution of both the diffusion equation and the mechanical behaviour. To
avoid numerical overshoot of the pore humidity, time steps should be not too small, while
the elements should be small close to surface and other phase boundaries. At the same
time step sizes should be limited to avoid large humidity-time gradients. Here, time steps
are chosen to restrict increments in humidity to A b = 0.025. This gives time steps for
the diffusion analyses of one half hour initially and up to 20 days towards the end of the
test period (200-300 days). For the mechanical analyses the time steps are roughly one
quarter of those for the diffusion analyses to ensure accuracy and to avoid convergence
problems.

The spatial discretisation is equally important. The overshoot is attenuated by a too coarse
mesh. The non-smoothness of the diffusion equation coefficients contributes to the re-
quirement for dense FE meshes, (Van Zijl 1999b). Furthermore, by intelligent discretisa-
tion in areas of large shrinkage strain gradients, i.e. in the thickness direction, the gradient
per element can be minimised, ensuring the most accurate representation of the stress and
strain fields for a given mesh density. This is illustrated by Figure 7.4, where the pore
humidity evolution is shown at points through the specimen thickness for uniform, Figure
7.4a, and nonuniform discretization, Figure 7.4b, through the thickness. In the nonuni-
form case element sizes in the thickness direction increase with a factor two from the
surface inwards.

specimen | O PP [P
CS-block | 0.000525 {1.0|12 | 1.0
CS-brick | 0.0007 1.0 1.08 | 1.0

Table 7.3: Shrinkage coefficients derived from final shrinkage strain values of masonry shrinkage
specimens.
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Figure 7.4: Humidity evolution at points through the masonry specimen thickness for (a) uniform
and (b) nonuniform spatial discretisation in the thickness direction.

7.1.3 BOUNDARY CONDITIONS AND INITIAL VALUES

The experiments were conducted in a controlled climate of 50% humidity and 20°C. For
a zero air flow velocity a surface convection transfer coefficient (3.12) of B = 0.025 s/um
is appropriate (Tammes and Vos 1984). This gives a film coefficient of:

B* ps _ 0.025.107° x 2338

B= Py 1000

=0.058 um/s or 5 mm/day

The calcium silicate bricks and blocks were pre-wetted to a moisture content of between
6% and 8% by weight, according to standard building procedure for this material (Van
der Pluijm and Wubs 1996). The total weight was measured at each time of shrinkage
and creep strain measurement. After the experiments the dry weight of the specimens
was measured, enabling the average moisture content at any time during the experiment
to be calculated. In this manner the initial moisture content in the CS-block and CS-
brick specimens was calculated to be 6.5% and 8.0% respectively. To convert the initial
moisture content to initial pore humidity two assumptions need to be made. Firstly, the
interfaces between brick and mortar are assumed to be hydraulically perfect, meaning that
the pore humidity is continuous across them. Secondly, the pore humidity is assumed to
be uniform initially in the mortar and bricks in each specimen. This initial value can then
be calculated which, by considering the respective hygroscopic curves, corresponds with
the total initial moisture content. This calculation leads to h, = 0.96 for the CS-block
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specimen and A, = 1.0 for the CS-brick specimen.

7.2 Shrinkage and transient creep response

7.2.1 LARGE BLOCK (CS-BLOCK) SPECIMEN RESPONSE

Figures 7.5a-d show the numerical pore humidity contours at various stages of drying of
the CS-block specimen. Good agreement is obtained with the measured moisture content
in time, Figure 7.5e.

By inspection of the humidity contours, it can be seen that the exposed surface is nearly
in equilibrium with the environment after one day. However, due to the low diffusivity
the bulk of the specimen remains saturated, causing large gradients through the depth,
especially close to the exposed surface. The gradients gradually reduce until equilibrium
is reached with the environment after about 100 days of drying.

Figures 7.6a-d show the maximum principal eigenstresses accompanying the hygral gra-
dients in the free drying specimen. In the early stages high tensile stresses occur at the
surface, causing initiation of debonding. The brick strength (2 N / mm?) is also slightly ex-
ceeded in the brick faces, so that some drying cracks could initiate and grow there, but this
fact is ignored in our modelling strategy. As time passes the peak stresses reduce along
with the hygral gradients until a virtually (eigen)stress-free state is reached after 100 days.
Note that the deformations have been scaled up by a factor of 1000. The maximum crack
width is in the order of 7um, reached after ten days.

Figure 7.6¢ shows that reasonable agreement is obtained between the measured and nu-
merical average strains in the gauge length in the x direction, as well as in the y direction.
The dashed line shows the numerical result if the debonding at the interfaces is not mod-
elled.

When a vertical (y-direction) compressive creep pressure of -2.5 N /mm? is applied si-
multaneously in order to simulate the transient creep experiment, the tensile eigenstresses
are offset sufficiently to prevent cracking. In Figure 7.7 the numerical transient and basic
creep strains are compared with the experimental data. The basic creep is obtained by
subtracting the free shrinkage strain, Figure 7.6, from the total strain in the gauge length
on the transient creep specimen. Note that the creep experiments were only performed in
the y-direction.
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Figure 7.5: (a-d) Pore humidity contours and (e) moisture content (% by weight) evolution in
drying single joint calcium silicate (CS-block) specimen.
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Figure 7.6: (a-d) Contours of maximum principal stress (N/ mm?) and (e) total strain in the gauge
length in free drying single joint calcium silicate (CS-block) specimen.
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Figure 7.7: CS-block transient and basic creep response.

7.2.2 SMALL BRICK (CS-BRICK) SPECIMEN RESPONSE
7.2.2.1 Assumed moisture migration parameters

Itis well known that the calcium silicate blocks and the small bricks exhibit quite different
behaviour (Van der Pluijm and Wubs 1996). In the above section it has been shown
that the parameters taken from Pel (1995) give reasonable agreement with the CS-block
measured moisture loss and shrinkage response. This is not so for the CS-brick specimen.
Having no experimental data for this specimen, the Pel (1995) parameters are simply
modified to obtain better agreement to allow subsequent comparison of the experimental
and numerical shrinkage and creep responses. Firstly, the desorption curve is adjusted,
Figure 7.8a, to give the same residual moisture content (2% by weight) in the CS-brick
specimen at the environmental humidity (50%) as measured by Van der Pluijm and Wubs
(1996). Secondly, the diffusion coefficient is taken as one tenth of the measured value,
Figure 7.8b, to fit the drying rate better.

7.2.2.2  CS-brick response for the assumed moisture migration parameters

In Figure 7.9 the hygral response of the CS-brick specimen is summarised. Figure 7.9¢
shows the significant difference in the measured moisture content evolution between the
CS-block and CS-brick specimens. Also, the numerical responses with and without the
modifications to the model parameters have been drawn. A large discrepancy is found if
the differences in hygral properties are ignored between the small brick and large block
calcium silicate units.
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Figure 7.8: Assumed (a) desorption curve and (b} diffusion coefficient for the CS-brick specimen.

Also shown in Figure 7.9 are the pore humidity profiles at various stages of drying. Af-
ter one day large gradients exist through the depth close to the exposed surface. Large
humidity gradients also occur between the mortar and bricks, due to the different hygro-
scopic relations of the two constituents. Because of the higher diffusivity, the mortar dries
quicker than the bricks, yet the pore humidity in the mortar reduces at a lower rate. The
gradients reduce until equilibrium is reached with the environment after about 100 days

of drying.

Figures 7.10a-d show the maximum principal eigenstresses accompanying the hygral gra-
dients. In the early stages high tensile stresses occur at the surface, causing initiation of
debonding. The brick strength (2 N/mm?) is also slightly exceeded in the brick faces, so
that drying cracks could develop there, but this fact is ignored in our modelling strategy.
As time passes the peak stresses reduce along with the hygral gradients until a virtually
(eigen)stress-free state after 100 days. Note that the deformations have been scaled up by
a factor of 500. The maximum crack width is in the order of 7 um, reached after ten days.

Figure 7.10e shows that reasonable agreement is obtained between the measured and nu-
merical average strains in the gauge length in the x direction, as well as in the y direction.
If the debonding at the interfaces is not included in the model, a significantly larger shrink-
age, the dashed line in Figure 7.10e, is obtained in the y direction, where 3 delaminating
interfaces are included in the gauge length. As the shrinkage parameters have been es-
timated ignoring the influence of cracking, the uncracked numerical response represents
the experimental response well.
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Figure 7.9: (a-d) Pore humidity contours and (e) moisture content (% by weight) evolution in
drying CS-brick specimen.
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The response to the 2.5 N/mm? compressive creep load is shown in Figure 7.11, where
the deformations have been scaled up with a factor of 375. Splitting is initiated along the
vertical interfaces in response to the creep load, which is assumed to be applied linearly
over a period of 5 minutes. Subsequently the superimposed eigenstresses cause the split-
ting cracks to open wider, while the debonding along the horizontal interfaces seen in the
case of the free drying CS-brick specimen is prevented by the compressive creep load.
The basic creep strains are obtained by subtracting the free shrinkage strain, Figure 7.10e,
from the total strain in the gauge length on the transient creep specimen, Figure 7.11e.
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to shrinkage (transient creep) and with free shrinkage subtracted (basic creep).
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7.3 Mesh objectivity

The free shrinkage CS-brick specimen has been analysed with the three meshes shown in
Figure 7.12. The global behaviour, as reflected by total moisture content (by weight) and
total strain, as calculated from the total displacement at the gauge point at the surface, see
for example Figure 7.11e, is shown in Figure 7.13. The response converges with mesh
refinement.

Mesh 1 Mesh 2 Mesh 3
Bricks (LxH) 4x2 6x4 9x6
Total (LxHxD) 11x11x4 15x17x4 23x26x6
Total 484 1020 3588

Figure 7.12: Finite element meshes employed to investigate mesh objectivity of the numerical
simulation of the CS-brick shrinkage specimen.
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Figure 7.13: (a) Moisture content (% by weight) and (b) total strain in the gauge length for the
three meshes employed, Figure 7.12.
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Furthermore, oscillating stress fields may occur when employing the same interpolation
order for pore humidity and displacement, as has been done in the above analyses. This is
because the linear shrinkage strain variation in each eight-noded brick element obtained
from the diffusion analysis, has to be represented by the constant strain capacity of this e-
lement in the mechanical analysis. However, in the three-dimensional analyses performed
here, equal-order interpolation of pore humidity and displacements produces compatible
strain fields in the orthogonal directions. For instance, the normal strain component g,
is constant in the x-direction, but linear in the orthogonal directions in the eight-noded
brick. To verify that a multi-dimensional analysis with equal-order interpolation does
indeed cause less pronounced disturbance in the stress fields, the CS-brick free shrinkage
case has been re-analysed with mesh 2, but employing twenty-noded bricks. In terms of
countours of principle stresses no significant difference between the linear element and
quadratic element results has been found. A more detailed study of stress component
fields should be performed to investigate the existence and extent of stress oscillations.
However, the global deformational response matches the eight-noded mesh 2 response,
Figure 7.12, with an insignificant improvement in the early stages. To avoid excessive
computational effort mesh 2 with eight-noded elements has been employed for all the
CS-brick analyses reported.

7.4 Sensitivity study

Having only experimental data on the meso-scale available for estimation of the model
parameters, some quantification of the sensitivity to the estimation error is required.

7.4.1 MOISTURE CONTENT DEPENDENCE ON SURFACE CONVECTION COEFFICIENT

The film coefficient B is dependent mostly on wind speed and surface roughness. As
mentioned in section 7.1.1.1 a coefficient of 5 mm/day has been assumed to simulate the
zero wind velocity in the experimental environment. To evaluate the sensitivity to this
parameter, two extreme cases were analysed additionally, namely for B = 0.5 and ff = e
mm/day. The infinite film coefficient is modelled by setting the surface humidity equal to
the environmental humidity. In Figure 7.14 the evolution of the total moisture content by
percentage of weight is shown for the three cases. The global drying response is clearly
insensitive to the film coefficient, but, a finite value sufficiently slows down surface drying
to prevent overshoot near the surface (Van Zijl 1999b).
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Figure 7.14: Influence of surface convection coefficient on masonry moisture content.

7.4.2 SHRINKAGE COEFFICIENT DEPENDENCE ON HUMIDITY

As discussed in section 7.1.1.2, a constant coefficient of shrinkage ¢ has been estimated
from the “final” shrinkage strain obtained from the drying tests. However, a strong de-
pendence on the relative humidity has been reported by Alvaredo et al. (1995). Their
tests indicate that for cement pastes of various water/cement (w/c) ratios, the coefficient
depends on the relative humidity, as summarised in Table 7.4. To study the sensitivity
of masonry shrinkage to the variation of o; with humidity, also a linear and a parabolic
relation have been employed. The relations reflect the “final” shrinkage strain, as derived

from:
/ésdt = /ocs(h)izdt+constant (7.6)
with
o (x1073)
wic=04 | w/ic=0.5

0.75<h<1.00 1.5 2.3

0.60< K <0.75 0.7 0.2

0.45 < h <0.60 0.1 0.5

Table 7.4: Shrinkage coefficients derived from final shrinkage values of cement pastes at different
environmental humidities (Alvaredo et al 1995).
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Figure 7.15 shows that better agreement is obtained with the measured shrinkage when
considering humidity dependence of the shrinkage coefficient.
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Figure 7.15: Influence of shrinkage coefficient dependence on humidity on free shrinkage.

7.4.3 PICKETT EFFECT

No experimental data are available from which the shrinkage stress-dependence coeffi-
cients 7y, ry and 7; in eq. (3.44a) can be estimated. They have been shown to be in the
range 0.2/ f; < r; < 0.8/ f; for concrete (BaZant and Chern 1985). The CS-block specimen
is re-analysed for the two extreme, isotropic cases. Figure 7.16a shows the free shrinkage
strain distribution through the thickness at the gauge point after 30 and 120 days of dry-
ing. The corresponding vertical stress components are shown in Figure 7.16b, revealing a
relaxation effect of the stress-dependence coefficient. Whereas cracking is expected also
in the blocks and bricks for r;f; = 0 (sections 7.2.1, 7.2.2.2), the maximum coefficient
(rif; = 0.8) reduces the stresses to within the calcium silicate block and the small brick
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tensile strength. However, it has only an insignificant influence on the observed strain
of both the free drying CS-block and CS-brick specimens. When the creep load acts, a
significant influence is seen, Figure 7.17. The total compressive strain is increased by up
to 30%, which means that, if such a dependence does exist, the experimentally measured
basic creep is overestimated, because it contains the stress-dependent shrinkage strain
component not reflected by the free shrinkage. Only by testing similar, but non-drying
creep specimens the error can be quantified.
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Figure 7.16: (a) “Free” shrinkage evolution and (b) stress distribution through the thickness at the
gauge point in the CS-block specimen.

7.4.4 CREEP/RELAXATION

A variation in the creep modelled is obviously directly translated into increased or de-
creased total deformation in creep analyses. However, if the free shrinkage response is
sensitive to the assumed creep parameters, an inverse process of parameter determina-
tion becomes more difficult. To investigate this sensitivity, both CS-block and CS-brick
specimens are re-analysed with no bulk creep. The case of r =0, i.e. zero Pickett effect,
is chosen. Figure 7.18 shows the influence of bulk creep on the free drying shrinkage.
If bulk creep is included in the model, a significantly larger total vertical deformation is
found at the gauge point( CS-block +3%, CS-brick +9%), but a decrease in maximum
crack width is computed (CS-brick, from 8.7um to 7.5um). Also, the maximum principal
stress is relaxed by up to 20% in CS-block and 12% in CS-brick.
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Figure 7.17: Illustration of Pickett-effect in (a) CS-block and (b) CS-brick creep specimen.
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Figure 7.18: Influence of bulk creep on (a) CS-block and (b) CS-brick masonry free shrinkage.
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7.5 Discussion

From the numerical results presented in the above sections it is clear that the model pa-
rameters for time dependent behaviour cannot be derived directly from the available ex-
perimental data. The good agreement obtained with the measured moisture loss in the
CS-block specimen can be considered as coincidental, because the moisture migration
parameters were obtained from measurements by a different research group on sand-lime
material not unlike the blocks in the CS-block specimens, but probably subjected to a
different manufacturing process. This argument is strengthened by the large difference
in moisture loss evolution found for the CS-brick specimen when employing the same
(CS-block) diffusion and hygroscopic parameters. Experimental determination of these
material parameters for the large block and small calcium silicate units is necessary. Also,
the moisture migration in the mortar taken from CS-block and CS-brick type specimens
should be characterised experimentally, because, although exactly the same mortar is used
for manufacturing CS-block and CS-brick, the units strongly influence the properties of
the cured mortar.

With regards to the mechanical behaviour, the difficulty in deriving the material parame-
ters from the experimental data is due to the tests being carried out on the meso scale and,
even more importantly, not carefully designed to distinguish between the various mecha-
nisms. No information about stress-induced shrinkage (r) can be derived from the data.
It has been argued in section 7.4.3 that this leads to an overestimation of the basic creep
if derived by subtracting the free shrinkage strain from the (compressive) transient creep.
This is illustrated in Figure 7.19. Note that, for the purpose of illustration, the lower limit
of r = 0.2/f; published for concrete has been employed to analyse the transient creep
response. The stress-induced shrinkage should be subtracted to obtain a better estimate
of the basic creep.

An additional source of error is also unveiled in the figure. Cracking reduces the material
(stress-free) shrinkage in the free drying specimen, but does not occur in the creep spe-
cimen, the tensile stresses being offset sufficiently by the creep load. This effect should
also be quantified to derive the basic creep. It can be done numerically by comparing the
numerical results of the free shrinkage specimen with the response if the cracking criterion
is ignored, i.e. no cracking is modelled. However, also in these analyses the basic creep
modelled influences the response significantly, Figure 7.18 section 7.4.4, calling for an
inverse approach.

Two alternative ways can be followed to find better approximations of the model pa-
rameters. The first involves an iterative numerical approach of adjustment of the model
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parameters and re-analysis until a satisfactory agreement between the numerical and ex-
perimental results has been obtained. In the above sections only the first iteration has been
done. The second iteration would involve selection of:

e an increased shrinkage coefficient to allow for the reduction of the free shrinkage
strain caused by cracking,

o smaller bulk creep, by selecting increased stiffnesses for the Maxwell elements, to
allow for stress-induced shrinkage in the transient creep specimen and cracking in
the free shrinkage specimen.

However, information about the stress dependence of shrinkage is lacking. Also, the
moisture migration in the different comprising materials must be characterised, calling
for a new set of experiments. This causes the second approach, a carefully designed
experimental program, which addresses all known mechanisms, to be favoured. Such a
program is proposed in Van Zijl (1999b).

Here, tensile creep is of importance. In tensile creep tests cracking may occur in all three
specimens (the free shrinkage, basic creep and transient creep specimens), but to a varying
degree. It is possible to design the experiments and specimens that avoid cracking in the
gauge area (Van Zijl 1999b). BaZant and Xi (1993) have proposed bending experiments
from which results the contribution of cracking can be distinguished. However, bending
tests introduce additional difficulties, especially when dealing with masonry.
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Figure 7.19: Determination of basic creep for (a) CS-block and (b) CS-brick masonry.







Chapter 8

MASONRY WALLS UNDER RESTRAINED
SHRINKAGE

Moving away from the verifying and validating analyses of small to medium size labo-
ratory specimens, large masonry walls are analysed in this chapter. In particular, walls
subjected to drying, but restrained at the base by a non-shrinking foundation are stud-
ied. This choice is motivated by the wide-spread occurrence of unsightly and, in some
cases, serviceability impairing cracks in masonry buildings in The Netherlands, due to
restrained shrinkage (De Jong 1992). Limited measurement data exist (Berkers and Rade-
maker 1992), but the quantitative verification of the numerical results is frustrated by the
lack of experimental data from which the material/model parameters can be characterised,
a matter addressed in the previous chapter. Also, the need for three-dimensional analysis
to capture the moisture gradient-induced eigenstressing and associated cracking renders
the quantitative verification unviable. This internal restraint to shrinkage and the initial
damage it causes may significantly reduce the resistance to the external restraint. Instead,
the focus is on a qualitative study to gain insight in the wall response to the external re-
straint through two-dimensional analyses. The ability of the numerical model to capture
the initiation and propagation of the primary and secondary cracks realistically is demon-
strated. Finally, it is shown that the objectivity of the numerical response in terms of
an unique crack spacing and alignment irrespective of the finite element type and size,
requires the inclusion of the viscosity of the cracking process.
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Figure 8.1: Observed crack pattern in base-restrained shrinkage wall. Dimensions in mm.
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8.1 Modelling approach

The single leaf wall shown in Figure 8.1 is modelled as a two-dimensional, homogeneous
plane, in a compromise between computational accuracy and viability. A plane stress
formulation is adopted, which captures the response to mechanical in-plane actions accu-
rately (Rots 1994, Lourengo 1996). By employing the anisotropic Rankine yield criterion,
section 5.2, the different strengths and softening characteristics of masonry in the direc-
tion normal and parallel to the bed joints are accounted for. However, this is the only
representation of the microstructure, here to be understood as the two constituents of ma-
sonry and their arrangement in the wall, as a detailed representation of the stress and strain
fields in the wall is not possible. Yet, this modelling strategy has been shown to reason-
ably capture the global behaviour of masonry structures, which are subjected to in-plane,
mechanical actions (Lourenco 1996). With regard to drying shrinkage, the conclusion was
made in the previous chapter that only a three-dimensional representation of the wall can
capture the moisture gradients and associated internal restraint, which causes the eigen-
stressing and debonding at the interfaces between the constituents. The influence of such
“initial”, three-dimensional cracking, which is neglected in the two-dimensional model,
on the resistance to the external restraint has not yet been investigated. However, a simple
way of accounting for the partial debonding is to employ a reduced tensile strength in the
two-dimensional analysis. Often, the tensile strength is measured on specimens which
have been allowed to dry to a particular relative humidity. In these cases, the measured
strength already reflects the reduced, average strength.

Only one half of the wall is modelled, because of symmetry. Both the wall and the foun-
dation beam are modelled as homogeneous continua with four-noded quadrilateral ele-
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ments. Four-noded interface elements are employed to model the interface between the
foundation and the wall. The dimensions are shown in Figure 8.1.

8.1.1 MOISTURE MIGRATION ANALYSIS

The wall faces are assumed to be exposed to the environment. This causes a dilemma
in the light of the two-dimensional modelling strategy, because in a large, thin wall the
moisture flux is essentially normal to the wall plane. However, by the following reasoning
the drying process can be modelled in a simple way. For low diffusivity, a moisture
content gradient will exist in that direction before hygral equilibrium is reached with the
environment. Thereby the surface convection at the wall face is delayed. If, however, the
diffusivity is sufficiently high, the surface convection governs the drying process (Van Zijl
1999b). A wall fabricated of such material can be modelled as a plane. As in the three-
dimensional models of the previous chapter, plane interfaces parallel to the wall plane
capture for the out-of-plane surface convection. The model of the drying process can be
simplified even more, if one assumes equal surface convection properties for the masonry
constituents and ignores the spatially random nature of the material properties and the
environmental humidity. The former is not so far-fetched, keeping in mind that the film
coefficient is mainly dependent on the wind speed (Tammes and Vos 1984). The latter has
no implication for the main focus of gaining insight into externally restrained masonry
wall behaviour. With these assumptions, the moisture content, or the pore humidity is
spatially uniform. This justifies the homogeneous representation of the wall, but also
renders numerical analysis for determining the pore humidity evolution unnecessary. This
can be seen by inspection of eqs. (4.6,4.7) which, in one dimension and for the case of
surface convection domination, reduce to

cLyh+2Bh=2Bhg, (8.1

with Ly the wall thickness. After solution of this differential equation, with the initial
uniform pore humidity #,, the pore humidity evolution

h=hg+(hy—hg) e €La 8.2)

is found, which occurs at each point in the wall. This equation is shown in Figure 8.2 for
c=1,L; =100 mm, B = 5 mm/day, h, = 1.0 and hg = 0.6 .
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Figure 8.2: Humidity and free shrinkage strain in the wall.

Since no experimental data exist from which to calculate the coefficients of the matrix of
stress-induced shrinkage 75, egs. (3.43,3.44), they are set to zero. Isotropic shrinkage is
assumed (P; =[ 1 1 0]). For this case the shrinkage strain is given by, cf. egs. (3.43,8.2):

Dyl
gs=0s(hg—ho) | 1—e ¢La|. (8.3)

This evolution is also shown in Figure 8.2 for o; = 0.001 and is assumed to act at each
point in the wall.

8.1.2 MECHANICAL ANALYSIS

Apart from the drying shrinkage, the own weight and an in-plane load of eight times the
own weight, which bears on the upper edge of the wall, are modelled. To capture the crack
initiation and propagation in the wall, the Rankine plasticity formulation is employed.
Material parameters typical for calcium silicate masonry are chosen, Table 8.1. Tensile
strengths and fracture energies that are 10% higher than those tabulated are employed for
the wall away from the central column of elements in order to simulate material property
variation in a simple way and to fix the primary crack location.

The interface elements between the base and the wall obey the interface material model
outlined in section 5.1.1. The model parameters employed are given in Table 8.2. Note
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that due to the lack of experimental data a constant dilatancy angle, tan ¢ =0.2, is em-
ployed. This choice facilitates wall cracking, instead of mere shear slipping along the
bottom joint upon differential shrinkage. The foundation beam has a Young’s modulus
E = 30000 N /mm? and a Poisson’s ratio v = 0.2.

The Maxwell chain is activated to capture the bulk creep, as it is incorporated in the
constitutive model, section 3.2.1. Because of the lack of tensile creep measurements,
a typical compressive creep behaviour of calcium silicate masonry (Van der Pluijm and
Wubs 1996) is employed for the least-squares fitting of a five-element Kelvin-Voigt chain,
Figure 8.3a. For the same reason aging is not considered, despite evidence of masonry
compressive creep aging (Shrive et al. 1997). By a constant strain analysis the five-
element Maxwell chain shown in Figure 8.3b is derived. Initially no cracking rate term
is included (m=0 in eq. (5.55)). Instead, a crack band width /;, eq. (5.56), is assumed to
be related to the area of an element (Feenstra 1993, Lourengo 1996) to achieve a mesh-
objective energy dissipation.

8.2 Base-restrained shrinkage response

In the analyses, the wall is subjected the shrinkage evolution of Figure 8.2, while accoun-
ting for creep and cracking. The crack patterns and the maximum primary crack width
development with the free shrinkage evolution are shown in Figure 8.4. Some limited
debonding occurs at the foundation beam interface. The Coulomb-frictionally enhanced
shear resistance, which is caused by the top load, prevents shear-slipping there.

Different finite elements and mesh densities have been employed to discretise the wall,

E v fix | fiy | G Gy | Ot
N N N

N N N
”l'rl2 mmf mmi mm mm
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Table 8.1: Masonry wall mechanical material parameters employed.
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Table 8.2: Mechanical parameters employed for the interface between the masonry wall and the
foundation.
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Figure 8.3: (a) Measured creep and fitted five-element Dirichlet function. (b) Relaxation function
derived from (a).

Figure 8.4a. Figure 8.4b shows the computed responses in terms of the width of the
primary crack versus the applied shrinkage. The wall behaves elastically up to a shrinkage
of approximately 0.13 mm/m. Then the primary crack is initiated at the bottom centre of
the wall. Subsequently the primary crack propagates upward and widens, while also se-
condary cracking occurs. The momental/incremental displacements, the tensile principal
stresses and the principal plastic/crack strains are shown in Figure 8.4b at the final stage
of Figure 8.4a. The analyses have been terminated just before the primary crack reaches
the top surface. This snap-through behaviour will be investigated in Chapter 9. Here, the

focus is on the (in)objectivity of the pre-snap results with respect to the finite element
mesh.

The secondary crack spacing and alignment are clearly inobjective with regard to the
element size and shape. Different secondary crack patterns are found, with persistent
vertical secondary cracking when the quadrilateral elements are employed, as opposed to
a 45° inclined secondary crack obtained with the crossed triangular mesh. Despite these
differences with regard to the secondary cracking, no significant difference in the primary
crack width evolution has been found, Figure 8.4b.
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Figure 8.4: Base-restrained shrinking masonry wall response showing (a) the mesh-dependent

pattern of secondary cracks, but (b) the mesh-independent primary crack evolution.
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The rate dependence of the restrained shrinkage behaviour is briefly studied next with the
mesh of 12x15 quadrilateral elements. For this purpose, either the bulk creep characteris-
tics, or the shrinkage rate can be varied. Both approaches are followed here. Firstly, the
analysis is repeated for the low, constant shrinkage rate shown in Figure 8.5a. Obvious-
ly, now a smaller maximum crack width is obtained for the same amount of shrinkage,
Figure 8.5b. Conversely, a higher maximum crack width is computed when imposing a
high shrinkage rate. The limiting case of an infinite shrinkage rate is simulated next, via
an analysis in which creep is set to zero, Figure 8.5b. It can be concluded from these
results that the bulk creep enhances the constrained shrinkage resistance. The omission
of the bulk creep in the modelling strategy, as was done in previous studies (Rots 1994,
Lourengo 1996) is, therefore, a conservative approach.
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Figure 8.5: The influence of bulk creep and (a) different shrinkage rates on (b) the primary crack
width in a base-restrained shrinking masonry wall.

8.3 Regularisation through the cracking rate dependence

The inobjectivity with regard to the crack pattern has been shown in the previous section,
where no cracking rate term has been included. Yet, the primary crack width evolution has
been unaffected. This is not always the case, as is shown in Figure 8.6 for a slight change
in the model parameters. This significant difference in the primary crack growth has been
brought about by employing a 5% difference instead of the previous 10% difference in
the strength and fracture energies between the primary crack region and the rest of the
wall. Now the secondary crack becomes dominant in the quadrilateral mesh, as can be

seen from the arrest of the primary crack at a width of 0.1 mm when the shrinkage strain
exceeds 0.2 mm/m, Figure 8.6b.
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Figure 8.6: Base-restrained shrinking masonry wall with slightly altered material model parame-
ters, showing the (a) mesh-dependent crack pattern 4nd (b) mesh-dependent global response in
terms of the primary crack evolution.
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Next the crack rate term, section 3.2.4, is activated by employing the simple cracking
viscosity model, eq. (3.56). No direct way of determining the dashpot viscosity m

exists. In Chapter 6 it has been shown how an inverse process can be employed for
this purpose. Since no experimental data exists from which it can be characterised, a
numerical investigation has been made of the influence of the viscosity on the mechanical
response of a uniaxially restrained masonry specimen, which is fabricated of the same
material as the wall under investigation. Because of the low rate of the shrinkage process
(€50 = 2 x 107> /day during the first 10 days, Figure 8.2), it requires a high viscosity
to modify the mechanical response. A value of m = 2000 Nday/mm? produces a slight
increase in strength compared to the rate-independent response, Figure 8.7, which is the
minimum requirement for the rate effect to modify the base-restrained shrinking wall
response. Furthermore, a 50% increase in peak strength is achieved by a 10*-fold increase
in the shrinkage rate, which is in agreement with the increase reported by Zhou (1992),
Figure 6.3b. However, there is an excessive strength increase beyond this loading range
(€50 > 2 x 10~4 /day). This does not mean that the viscosity is invalid, but rather that
either a rate-dependent viscosity should be used, or that a logarithmic-type formulation
such as eq. (3.55) should be considered for application in loading ranges beyond the
current loading range. In the latter case care must be taken to preserve the regularisation
ability.
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Figure 8.7: The mechanical response of uniaxially restrained masonry subjected to various, con-
stant shrinkage rates for m = 2000 Nday/mm?.

By the inclusion of the rate term with m = 2000 Nday/mm?, the crack patterns shown in
Figure 8.8 are obtained. The primary crack evolution and the secondary crack location
and orientation are now captured objectively.
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Chapter 9
TOWARDS RATIONAL DESIGN RULES

The value of the numerical model can be increased considerably if its application is ex-
tended from the analyses of experimental specimens and existing designs to include the
design of engineering structures. In this Chapter a step in this direction is made. It is
illustrated how, through numerical analyses, design rules can be derived. A particularly
lean design aspect, namely the spacing of movement joints in masonry walls, which con-
trols cracking due to differential thermal and hygral movement, is taken as illustrative
example. This choice is inspired by the claim that cracking due to restrained shrinkage is
the dominant cause of damage in masonry buildings in The Netherlands (De Jong 1992).
Although the damage investigated in this chapter does not jeopardise structural safety, the
serviceability in terms of moisture impermeability, thermal and acoustic characteristics,
and aesthetics are impaired.

The purpose of this chapter is to demonstrate a simplified modelling strategy, which
makes the repetitive analyses of shrinking walls viable. The strategy is verified with refe-
rence behaviour, which is obtained from the discrete analyses of the walls. Subsequently,
the step to derive design rules is described.

9.1 Current status of movement joint spacing design

The design of movement joints in masonry buildings remains an art, guided by empirical
rules, which differ from design office to design office (Rots 1996). Semi-analytical rules
have been proposed by Copeland (1957), Hageman (1968) and Schubert (1988) for walls
without openings, such as the base-restrained wall analysed in the previous chapter and
shown again in Figure 9.1a for ease of reference. The omission of a movement joint has
led to the cracking and eventual separation of the wall at the location of the primary crack.
The analytical rules are based on the linear elastic stress distribution in walls, which are
considered to be homogeneous continua, Figure 9.1b.
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Figure 9.1: (2) Crack pattern and in base-restrained shrinking wall. (b) Principal tensile stresses
for linear elastic behaviour and a homogeneous wall.

Furthermore, these rules employ strength-based criteria. A certain average tensile stress
in the wall should not exceed a strength limit. Such a criterion does not include fracture
mechanics, which partly explains the large differences in the proposed joint spacing by
these rules. This is illustrated in Figure 9.2, where the semi-analytical design curves for
movement joint spacing (L) to height (H) ratios for single leaf, masonry walls, which are
restrained at the foot by a concrete beam of different hygral and thermal properties, are
shown for two different types of masonry.

Another shortcoming of the existing design rules is that no indication of crack width can
be given. By a numerical approach it is possible to get rid of some of the simplifying
assumptions necessary for analytical derivations. Also, a numerical approach allows for a
realistic simulation of the cracking that occurs in a wall. Hereby, the occurrence of cracks
of maximum width deemed to be unacceptable for a particular structural application, can
be established, which enables the derivation of rational design rules. However, some
simplification has to be accepted in order to circumvent the high demand on modelling
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Figure 9.2: Discrepancy in semi-analytically derived spacing of movement joints in base-
restrained shrinking walls. Figure (a) and (b) represent wall types of different stiffness modulus,
tensile strength and foundation rigidity.

and computing time. In the following sections a simplified modelling strategy is discussed
and verified.

9.2 Modelling approach

The same modelling approach is followed as introduced by Rots (1994), Figure 9.3. This
approach considers a plane-stress representation of the wall and assumes that all nonli-
near behaviour concentrates at the primary crack. There interface elements are employed,
obeying the interface material model described in section 5.1. The continuum away from
the central, primary crack is assumed to behave linear elastically. As has been demon-
strated in Chapter 8, secondary cracking and creep can be captured by activating the Ran-
kine yield criterion combined with visco-elasticity, section 5.2. However, the inclusion of
smeared secondary cracking complicates the analyses. Due to the almost homogeneous
stress state in long walls, many integration points will crack simultaneously, often leading
to numerical difficulties caused by several, hardly distinguishable equilibrium paths, in-
dicated by multiple negative eigenvalues of the stiffness matrix. To continue an analysis
beyond such a point of bifurcation calls for some branch switching capability (Van der
Veen 1998). Alternatively, the homogeneous situation can be avoided by the adequate
modelling of imperfections in the walls. Here, a conservative approach is adopted by
neglecting the secondary cracking. Also, the effect of bulk creep has been ignored for
simplicity. In section 8.2 this has been explained to give a base-restrained shrinkage re-
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sponse which is on the safe side. Furthermore, these simplifications do not render the
verification of the equivalent mode I crack modelling strategy, Figure 9.3, invalid, neither
so the illustration of the derivation of design rules from the results of numerical analyses,
which are the two major goals of this chapter. Moreover, it enables direct comparison
with the simplified analytical design rules, which neglect these phenomena.

T

Wall, as homogeneous,
orthotropic continuum

Potential crack

‘Wall-foundation interface

Stiff, elastic foundation beam
i 7 / / 77 "/

-
Figure 9.3: Modelling approach for analysis of base-restrained shrinking walls.

A stiff, elastic concrete foundation is modelled with a Young’s modulus £ = 30000 N [mm?
and a Poisson’s ration v = 0.2. Slipping along the wall/base interface is not included for
lack of experimental data, but also to demonstrate the worst case scenario. For all the
analyses quadratically interpolated finite elements are employed. Eight-noded quadrilate-
ral elements discretise the continuous parts and six-noded interface elements capture the
(potential) discrete cracks.

The own weight is included, by initially applying a vertical volume load of the density of
the particular masonry type, multiplied by the gravitational acceleration. The same sim-
plified shrinkage and thermal strain evolutions are assumed as by the analysts (Copeland
1957, Hageman 1968, Schubert 1988). This entails a combined hygral and thermal shrink-
age, which is spatially uniform and increases linearly in time. The proper investigation of
a stochastically varying environmental conditions and the accompanied hygral and ther-
mal distributions and gradients, see for instance Chapter 7, lies beyond the scope of this
study.

9.2.1 CHARACTERISATION OF THE EQUIVALENT VERTICAL CRACK

To characterise the equivalent vertical crack for the simplified modelling strategy, Figure
9.3, an appropriate constitutive law is sought for the interface elements which represent
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Figure 9.4: Illustration of determination of the equivalent vertical crack constitutive behaviour. (a)
The periodic wall part analysed with the discrete approach, also showing the simplified strategy of
a single mode I crack. (b) The stress-deformational response of the discrete model. By subtraction
of the elastic deformation, the constitutive law for the equivalent crack is found.

the crack. For this purpose a periodic wall part is analysed, Figure 9.4. By studying
the behaviour of such a representative wall part under conditions which reasonably simu-
late those in the actual wall in the area of the primary crack, a constitutive law for the
equivalent crack can be derived.

Figure 9.4 illustrates the characterisation process. A discrete analysis is performed of
the periodic part, Figure 9.4a, to determine its deformational response, Figure 9.4b. By
subtraction of the elastic deformation, the cracking deformation is found, which defines
the constitutive behaviour of the equivalent mode I crack in the simplified modelling
strategy. The elastic response is captured by the homogeneous, continuous part of the
simplified model.

The important issues which should be captured with reasonable accuracy in this cha-
racterisation process are the loading conditions, the failure mechanism and the level of
confinement, or boundary conditions. If one assumes that the main actions in the base-
restrained shrinkage wall are horizontal, as the principal stresses indicate for the case of
the homogeneous wall of Figure 9.1b, the response of such a periodic part under uniaxial
tension should represent the behaviour of the wall in the vicinity of the primary crack. The
correct failure mechanism can be captured by employing the discrete modelling approach,

-
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section 5.1. The third issue, namely the simulation of the in-situ confinement, is not tri-
vial. This will be demonstrated by studying two extreme cases of vertical confinement in
the next section.

The choice of the specimen length is governed by two criteria. Firstly, a sufficient number
of head joints should be included to capture all the significant cracking in the area of the
primary crack. Secondly, the influence of the tensile load introduction should be limited
according to the St. Venant principle.

9.2.2 TYPICAL DUTCH MASONRY CHARACTARISATION

Two typical Dutch masonry types have been investigated, namely a clay brick (210mm x
52mm x 100mm) with 10mm thick 1:2:9 volume cement:lime:sand mix mortar joints
(JOB) and a calcium silicate unit with 10mm joints of 1:%:4% mortar (KZC). The total
set of material model parameters is given in Tables 9.1 and 9.2.

All parameters have been obtained by averaging, regression or least square fits to experi-
mental data (Van der Pluijm and Vermeltfoort 1991, Van der Pluijm 1992). Imperfection
is simulated in both the JOB and KZC specimens by employing the above parameters in
the central area, where the primary crack is expected; while the remainder is assumed to
be 10% stronger and 33% tougher (higher fracture energies). This spread lies within the
coefficients of variation found for these parameters.

To obtain the correct wall part response found in the structure of interest, the influence
of boundary conditions is important. A simple simulation of the confining effect of sur-

Potential brick crack

E v k, ks fi | G;
N N N N N
mm7 mm3 mm3 mmi mm

(a) | 16700 | 0.28 | 1.0x 10° | 1.0x 10° | 2.0 | 0.08
(b) | 13400 | 0.20 | 1.0x10° | 1.0x 10° | 2.0 | 0.06

Table 9.1: Parameters for bricks in (a) JOB and (b) KZC specimens.

ke | k | £ Gj, Co GY tang, | tan o, | tany, | o, | &
N N N N N N N
wnd | md | | mm | m? mm o

(a) | 825 1355 | 0.6 {0012 | 0.88 | 0.06—0.136 | 1.01 | 0.75 106 |-1421| 5
(b) | 438 | 182 | 0.1 | 0.005 | 0.28 | 0.02—-0.036 | 0.97 | 0.75 067 | -122 |17

Table 9.2: Parameters for head and bed joints in (a) JOB and (b) KZC specimens.
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rounding masonry on the wall part is obtained by forcing the upper and lower edges to
remain horizontal. The left and right edges are kept vertical, but due to the chosen wall
part length, which now includes four bricks, no influence from these edges exist. Two
levels of such vertical confinement are applied, namely:

boundary (1): free vertical translation of the horizontal upper and lower edge and
boundary (2): zero vertical translation of the horizontal upper and lower edge.

The respective wall part responses are shown in Figure 9.5. JOB exhibits unit crack-
ing irrespective of the confinement. This is due to the relatively strong adhesion of the
JOB joints, Table 9.1, which prevents shearing along the bed joints. KZC is sensitive to
the confinement, failing in stepwise fashion for unconfined boundaries and vertical crack
mode when confined. The KZC joints are relatively weak when no confining pressure
exists, Table 9.1, allowing the bed joints to fail in the case of boundary (1). However,
when the vertical dilation upon shearing is prevented, boundary (2), wedging occurs and
the Coulomb-frictional strength of the bed joints increases so that the units become the
weak link. Quite different global load-deformational responses accompany the two fail-
ure modes, Figure 9.5b. This inhomogeneous primary cracking behaviour complicates
the simplified modelling approach. A pragmatic solution is to employ both constitutive
relations for the equivalent crack in the large, base-restrained shrinking wall analyses and
subsequently choose the global behaviour which requires the most conservative move-
ment joint spacing.

JOB Boundary KZC
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Figure 9.5: Influence of boundary conditions on (a) JOB and (b) KZC wall part response.
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9.3 Verification of modelling approach

The modelling strategy is verified numerically. This is done by comparing the responses
of single leaf base-restrained shrinking masonry walls, which are calculated with the equi-
valent vertical crack modelling strategy, with the responses obtained from the discrete
analysis modelling strategy, section 5.1. From the latter the reference behaviour is ana-
lysed. For the simplified analyses, the constitutive behaviors, which are obtained from
the periodic wall part analyses of the previous section, are employed for the equivalent
vertical cracks.

9.3.1 REFERENCE RESPONSE: DISCRETE ANALYSES OF BASE-RESTRAINED WALLS

To restrict the model size, the masonry wall is only partially discretised. Only the central
four units and their joints are discretised, which enables the capturing of the primary
crack, Figure 9.6. The remaining part of the wall is modelled as a orthotropic, linear
elastic continnum, with homogenised masonry elasticity parameters.
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L] ——
o ==S===
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i T L T . T -
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&_ Elastic interface e e s
§ Stiff, elastic foundation beam
'T 7 77777 ¢ 777 777 7T T TT 777777777 777777777 777777 7777

Figure 9.6: Schematic representation of model for (partially) discrete analyses.

An imperfection is simulated in the same manner as has been done in the wall part ana-
lyses, section 9.2.2. For the KZC specimens a non-symmetric crack pattern is chosen
and triggered by prescribing the lower strength and fracture energy also for the column of
bricks just to the left of the centre.

Two walls of each masonry type of respectively 6 m and 12 m long are analysed. In
Figures 9.7 and 9.8 the crack propagation is shown at different stages of shrinkage in 6
m JOB and KZC walls respectively. The responses for the 12 m JOB and KZC walls are
portrayed in Figures 9.9 and 9.10. In each of the figures the primary crack width evolution
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with shrinkage is shown. Four stages of wall deformation can be identified. At stage 1
micro-cracks have opened in the head joints. For all four cases this stage marks the initial
peak shrinkage capacity, Figures 9.7-9.10a. Stage 2 marks the localisation of the micro-
cracks into a macro-crack. This occurrence coincides with a reduced shrinkage capacity,
a so-called snap-back in the global behaviour, during which the bulk of the walls does
not shrink, but expands, while the crack grows and widens. In the short walls, the crack
initiates near the wall base, Figures 9.7, 9.8. In contrast, the macro-crack originates at
mid-height in the long JOB wall, Figure 9.9 and at the top in the long KZC wall, Figure
9.10 Subsequently the macro-cracks grow, stage 3, until the walls separate, stage 4.

Note that the reduction in shrinkage with the increasing crack width means that the en-
vironment should enable the wall to adhere to this particular shrinking history for the
shrinkage-crack width responses shown to realise. In reality, the crack will open dynami-
cally for increased shrinkage to a configuration of sufficient shrinkage resistance, as indi-
cated for the 6 m KZC wall, Figure 9.8d. To trace this “snap-back” in shrinkage, and thus
in time for the assumed continuously increasing shrinkage, the adaptive time-stepping
procedure of section 4.2.6 has been employed.

Note further that the “wiggles” in the response are due to the mesh roughness. Each
post-peak local minimum corresponds with the crack propagation through an element.
However, the snap-back in the 6 m KZC wall response between stages 2 and 3, Figures
9.8a,c,d, occurs when the propagation of the step-wise crack is prohibited by the limited
discretisation and forced vertically.
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Figure 9.7: 6 m JOB wall base-restrained shrinkage deformation.
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Figure 9.8: 6 m KZC wall base-restrained shrinkage deformation.
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The clay brick walls (JOB) exhibit a vertical failure mode, in agreement with the wall
part study of the previous section. This is due to the relatively strong bed joints in the
JOB masonry, Tables 9.1, 9.2. The bricks fail in tension before the Coulomb-friction
strength of the bed joints is reached. Vertical cracking also occurs in the lower part of the
6 m KZC wall, but then step-wise cracks along head and bed joints grow. The latter are
then inhibited by the limited discretisation and forced into vertical cracks until the upper,
unbounded part again fails in stepwise fashion. This behaviour confirms the sensitivity of
the KZC material to the level of confinement, as has been revealed by the wall part study,
Figure 9.5b. It has a low adhesion strength, Table 9.2, but due to the confinement of
the dilational normal uplift upon shearing near the base, the Coulomb-frictional strength
increase of the bed joints prevents further shear-slipping, enforcing brick cracking. Closer
to the free upper surface there is less confinement, so that the brick tensile strength is not
reached. In the nearly homogeneous stress state in the centre of a long wall the crack
initiates at the weakest spot. Due to the low confinement at the upper surface in the
12 m KZC wall, the crack starts at the top and subsequently propagates downward in a
step-wise fashion along the weak, unconfined joints.

9.3.2 EQUIVALENT MODELLING RESPONSE

Now the walls analysed in the previous section are re-analysed with the simplified equi-
valent vertical crack modelling strategy, Figure 9.3. The vertical crack constitutive be-
haviour is taken as the nonlinear response of the wall part Figure 9.5, section 9.2.2.

Figures 9.11 and 9.12 reveal that there is reasonable agreement between the responses
obtained from the simplified and the discrete models in the case of the 6 m and the 12 m
JOB walls. This is not surprising, because the JOB walls indeed fail in a mode I fashion,
Figures 9.7, 9.9. Also, the crack initiation location and subsequent growth are captured
accurately for both the 6 m and 12 m wall.

A much poorer agreement is obtained in the case of the KZC walls, Figures 9.13 and
9.14. A homogeneous vertical crack cannot capture the reference response. It has been
revealed already in the wall part analyses, Figure 9.5b, that the KZC response is sensitive
to the surrounding confinement, which has been simulated by employing two different
sets of boundary conditions. This fact has been confirmed by the reference failure pattern
in the KZC wall, Figure 9.8, where successive vertical cracking and step-wise, zig-zag
cracking occur. These two failure modes are associated with a quite different constitutive
behaviour, Figure 9.5b, which calls for an inhomogeneous vertical crack to be employed
in the simplified modelling strategy. Also, the confinement level may vary in time, which
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may lead to re-strengthening locally. These matters will be illuminated in the next section.
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Figure 9.11: 6 m JOB wall base-restrained shrinkage deformation, from simplified analyses.
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Figure 9.13: 6 m KZC wall base-restrained shrinkage deformation, from simplified analyses with
(a) boundary (1) and (b) boundary (2) constitutive behaviour of the central crack respectively.
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9.3.3 DEFICIENCIES OF SIMPLE MODELLING STRATEGY

It has been shown in the previous section that the equivalent mode I crack strategy re-
produces the shrinking wall behaviour with reasonable accuracy for masonry which in-
variably fails in a mode I fashion. However, this is not the case for masonry which ex-
hibits a preference for a step-wise failure pattern along head and bed joints. The cause is
the dilational behaviour of the shearing bed joints and the associated Coulomb-frictional
strength increase if this volume increase is prevented by the surrounding, confining ma-
sonry. This phenomenon complicates the determination of the equivalent mode I constitu-
tive behaviour, because the level of confinement must be included in the characterisation
process. For example, a considerable improvement can be made in the response obtained
from the simplified modelling strategy, by assuming the high level of confinement of the
boundary (1) in the lower part (say one third of the height) of the 6 m KZC wall and the
boundary (2) level of confinement in the upper part (two third). Figure 9.15 shows the
wall response if such an inhomogeneous vertical crack is employed.
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Figure 9.15: 6 m KZC wall response with inhomogeneous vertical crack.

The trend in the reference response is now captured much better. For the 12 m KZC
wall, however, the underestimation by the simplified modelling strategy, Figures 9.14a,b,
cannot be corrected by employing an inhomogeneous vertical crack. The reason is that the
two boundary conditions do not characterise the limits in behaviour in terms of shrinkage
resistance of masonry susceptible to mixed mode failure. If the confinement level varies in
time, a significantly increased strength and toughness may be instigated. This is illustrated
by Figure 9.16, where the KZC wall part response is shown for the hypothetical time-
dependent confinement of initially free translation of the upper and lower edges according
to boundary (1), and subsequent fixed edges, boundary (2). The instant of fixing the
normal displacement of the upper and lower edges marks the onset of re-strengthening of
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such a wall part. The second peak strength depends on the level of degradation before the
edges are fixed vertically. This is because the remaining potential dilation upon shearing
along the bed joints, the restraint of which is the underlying mechanism of the strength
increase, decreases with the degradation, eq. (5.16). The re-strengthening response varies
from a marked strength increase due to the restraint of significant remaining dilation,
which leads to unit failure (Figure 9.5b(2)), through significant strengthening, but not to a
sufficient level to change the step-wise head and bed joint failure mode (Figure 9.5b(1)), to
no strengthening if the boundaries are fixed only after the bed joints have been smoothed
by the shear-slipping.
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Figure 9.16: KZC wall part behaviour for initially free vertical translation of the upper and lower
edges, boundary (1), but subsequent suppression, boundary ( 2), of further dilation.

If such a double hardening constitutive law is employed for the equivalent crack, much
better agreement with the tough 12 m KZC reference behaviour will be obtained. Such an
exercise is, however, futile, as no objective way of determining the true evolution of the
confinement in the wall exists.

These shortcomings do not outweigh the major achievement of obtaining conservative
estimates of the base-restrained shrinking walls response relatively cheaply via the sim-
plified strategy. In each case the critical shrinkage, i.e. the shrinkage at which the snap-
back starts, is lower than the value in the reference analysis. When repetitive analyses
are required from which design rules are to be derived, such savings in modelling and
computation time render the underestimation of shrinkage resistance acceptable.
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9.4 Design rules

Through the analyses of wall parts, as have been discussed in section 9.2.2, the equivalent
vertical crack behaviour is obtained. At this stage the sensitivity to the level of confine-
ment can be assessed and a pragmatic choice be made of the constitutive behaviour which
renders the most conservative wall restrained shrinkage resistance.

For the derivation of design rules for movement joint spacing in masonry walls, the sim-
plified modelling strategy should be employed in repetitive analyses to quantify the ef-
fects of the various influencing factors, such as the wall length to height ratio, the axial
and bending rigidity of the base restraint, the bearing load on the wall and slip along the
wall-base interface (Rots 1994). The numerical simulation of these factors presents no
problem. As an illustration of the derivation of design rules, the influence of the wall
length on the behaviour of the same walls analysed in the previous section is now investi-
gated, Figure 9.17. The same procedure should be repeated to study the effect of each of
the above mentioned influencing factors.
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Figure 9.17: (a) JOB and (b) KZC wall response to base-restrained shrinkage, obtained by the
equivalent vertical crack modelling strategy. The wall lengths vary from 4 to 16 m.

By plotting the shrinkage values that will cause a particular crack width just not to be ex-
ceeded, say 0.5 mm, against the various wall lengths, the connection with practical design
rules is made. These values of wall lengths can be considered as crack-free, or rather un-
acceptable crack width-free wall lengths for the applied shrinkage level. Therefore, these
wall lengths also serve as minimum spacing of movement joints, which will ensure that
cracks wider than 0.5 mm will not occur. In Figure 9.18 the latter, numerical values are
compared with strength-based analytical rules (Copeland 1957, Hageman 1968, Schubert
1988).
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Figure 9.18: Comparison of numerically and analytically determined “uncracked” (a) JOB and (b)
KZC wall length under base-restrained shrinkage.

Note that the briftle numerical curves have been derived from the responses shown in Fi-
gure 9.17, which were computed with the wall part constitutive relations shown in Figure
9.5 (2). For these brittle masonry types it appears that more than one movement joint
spacing applies for a particular design shrinkage, which obviously allows the designer to
choose the larger spacing. However, if masonry walls with tougher constitutive relations
are analysed, the intuitive smaller spacings are computed for higher shrinkage levels -
see the brittle curves in Figure 9.18. A more detailed discussion of this issue is given in
the next section. This underlines the supremacy of the numerical tool, as fracture ener-
gy/toughness does not enter the analytical relations.

Furthermore, the consequence of the exceedence of the design shrinkage level is not re-
flected in Figure 9.18. It will be illustrated in the next section that the larger spacings
should be penalised to apply for lower shrinkage levels, because, if the design shrinkage
is marginally exceeded, the crack widths will increase dynamically to large values, as
opposed to a gradual increase in walls with smaller movement joint spacings.

9.5 Discussion

In this chapter a step has been taken towards applying the numerical model to derive
rational design rules. It has been applied to establish and verify a simplified modelling
strategy to make large scale computations viable, while predicting the structural behaviour
with sufficient accuracy for deriving design rules. Such a simplification is necessary,
because the analyses need to be repeated several times to investigate the influence of the
various interacting phenomena. The error introduced by the simplification is acceptable
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in bridging the gap between fundamental research and practical design rules.

Two further issues deserve a brief discussion. The first is of practical interest and regards
the surprising greater resistance of longer walls to restrained shrinkage damage. Secondly,
the error introduced by the elastic unloading stiffness employed in the plasticity formula-
tion is studied.

When the influence of the wall length on the restrained shrinkage response is evaluated,
the conclusion is that, in contradiction with the analytical models, as well as intuitive
reasoning, the numerical analyses indicate a greater resistance to restrained shrinkage for
longer walls than shorter walls; see for example Figures 9.17 and 9.18 (the brittle case).
The underlying cause is the central, vertical tensile stress gradient variation with wall
length. For the longer walls a smaller tensile stress gradient exists across the wall height
(Copeland 1957, Schubert 1988). In the 12 m JOB wall this causes the central crack to
initiate over nearly the total wall height simultaneously, instead of initiating low down
and subsequently gradually growing upwards, as in the 6 m wall. The masonry types
which have been studied exhibit a low toughness, or fracture energy, which causes the
cracked wall part to lose strength relatively quickly, a fact not considered by the analytical
models. If a tougher vertical crack is employed, the cracked part can keep its strength
longer and contribute to shrinkage resistance. To illustrate this, the JOB walls have been
re-analysed with the tougher constitutive behaviour for the central crack shown in Figure
9.19a. As expected, only the shorter walls exhibit significantly different base-restrained
shrinkage responses, compare Figure 9.17a with Figure 9.19b. This is also reflected by
the movement joint spacing, Figure 9.19c.

Furthermore, in the derivation of design rules the consequences of exceeding the design
shrinkage levels must be considered. The danger of exploiting the greater shrinkage resis-
tance of brittle long walls is highlighted in Figure 9.20, where the responses of a 4 m and
a 8 m KZC wall are compared. For a 0.2 mm crack width restriction, the shrinkage level
may be higher for the longer wall, due to its larger shrinkage resistance before the snap.
However, in the event of a shrinkage increase beyond the respective limits, a gradual crack
width increase will occur in the short wall, as opposed to an instant crack growth in the
long wall to a fully developed, wide primary crack of more than 0.8 mm. If this danger
is quantified in the design rules, the large movement joint spacings are penalised to apply
for lower expected shrinkage levels. This causes the numerically derived design curve to
follow the trend of the semi-analytical curves, namely a reduced movement joint spacing
requirement for a higher expected shrinkage level.

These demonstrations highlight the superiority of the numerical model in gaining insight
and producing data from which design rules can be derived.
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Figure 9.20: Danger of large crack if long wall shrinkage capacity is exceeded illustrated.
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The second aspect regards the inability of the numerical model to capture crack closure
upon unloading and has been referred to briefly in section 3.2.3. The plasticity formula-
tion employs the elastic modulus for unloading. However, for the simple mode I fracture
of the equivalent vertical crack, the tensile mode of the interface material model can be
modified to employ an unloading modulus which allows a user-prescribed percentage of
crack closure. This is done by writing the one-dimensional stress-update equation for
unloading as follows:

Hhg ='c+(1—d)k, Au

10
c
d; :l_k,,u ©.1
i = ady
T 1-ds(1-a)

where 0 < a < 1 is the crack closure factor, d and d; represent the reduction in the virgin
stiffness and “Oc is the stress corresponding with the largest strain reached before, as
illustrated in Figure 9.21a. Upon re-loading it is necessary to first find the yield surface,
after which the usual plasticity predictor-corrector iterations follow to obtain the updated
stress. This is formulated as follows:

MG =16+ (1 — d) ky Dug + E (Au— Aug — AuP) 9.2)

where Auy is the fraction of the crack opening displacement increment required to reach
the yield surface, obtained by a simple elastic calculation from

tOo._ 'y

Ug = m 9.3)
Now this modified material model is employed to study the influence of the unloading
stiffness on the base-restrained shrinking wall behaviour. Figure 9.21b compares the ex-
treme responses of elastic unloading (¢ = 0) and secant unloading (@ = 1). The only
difference occurs during the snap-back, which accompanies wall separation. The neg-
ligence of inertia already renders this part of the response, which is in fact explosive,
doubtful. Therefore, it can be concluded that the unloading stiffness has an insignificant
influence on the numerical response.
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Chapter 10
SUMMARY AND CONCLUSIONS

The main objective of this study, namely to develop an integrated model for the analysis
of creep, shrinkage and cracking of masonry, has been addressed by the integration of
reasonably accurate constitutive descriptions of these phenomena and formulating robust
strategies to solve the resulting governing equations. Although the numerical tool is not
intended for design analyses on the platform of consulting engineering, its pragmatic
relation between simulation accuracy and computational effort may be exploited by the
specialist involved in the derivation of rational design rules.

The moisture migration dominates the time-dependent behaviour of cementitious mate-
rials. In this study it is considered at the macroscopic level and is, for computational
convenience, expressed in terms of the pore humidity. Thereby, interfaces between mate-
rials of different diffusivities can be treated in a natural way. Also, the convective process
at the interface with the environment is expressed in terms of the humidity. The drying
shrinkage is derived from the pore humidity and in this way forms the one-way coupling
between the hygral and mechanical response. Any mechanically enhanced drying is ig-
nored, based on experimental observations in specimens which exhibit no large cracks.
This assumption avoids a set of fully coupled hygral and mechanical equations, which
usually requires special solution techniques due to the ill-posedness caused by large dif-
ferences in the “stiffness” coefficients.

The mechanical model is formulated by the serial combination of constitutive descriptions
for the shrinkage, creep and cracking, based on the decomposition of the total deforma-
tion into these three contributions. In this way the characterisation process is simplified,
because each phenomenon can be studied and characterised separately.

Due to the complexity of the microstructure of cementitious materials and the limited
knowledge of the micromechanical processes that drive creep, an alternative way to ma-
thematically relating these processes to macroscopically observed creep is chosen. The
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short memory visco-elastic behaviour of cementitious materials is exploited for the de-
scription of the bulk creep, by employing an aging Maxwell chain formulation. Further-
more, in recognition of the interaction of the shrinkage and creep, which is exhibited most
clearly by the increased time-dependent deformation when these processes occur simulta-
neously, a stress-induced shrinkage is incorporated in the model. Together with cracking,
this feature accounts for the Pickett effect.

The limited range of applicability of the proportionality and superposition (up to 50%
or 60% of the peak load) inherent to the visco-elastic formulation is compensated for by
accounting for the cracking separately. The cracking can be captured with reasonable
accuracy by a discrete approach, because the joints are the obvious locations for placing
interfaces which, in combination with a multisurface interface material law, have been
shown to accurately describe joint debonding and shearing. The addition of a potential
vertical crack in the centre of each brick by modelling interfaces there, provides for a
limited brick strength and in so doing, supplements the strategy to include the most im-
portant crack modes/patterns in masonry. In previous studies a constant dilatancy angle
was adopted for the uplift upon shearing along an interface. Here, it has been shown that
such a technique may fail. Instead, a new dilatancy softening formulation has been deve-
loped, which accounts for the smoothing effect of shear-slipping and confining pressure.
It has been verified and validated via micro-shear tests. By this formulation the arbitrary
choice of a constant dilatancy angle is circumvented.

Alternatively, the cracking can be modelled in a smeared, continuous way. In this ap-
proach, which is a compromise between accuracy and computational effort, the hetero-
geneity of the masonry is usually ignored. An anisotropic Rankine cracking criterion is
suggested by the envelopes formed by the failure loads in biaxial masonry tests at various
biaxial force ratios, as well as at various orientations of the orthogonal loads relative to
the bed joints. This continuous approach must be regularised to avoid the dependence of
the calculated crack pattern on the finite element size and edge orientations. The crack
mouth opening viscosity employed in this study introduces a rate term, which regularises
the cracking process even for low rates of the shrinkage and creep processes. In addition,
the rate term accounts for the observed strength increase with an increased loading rate in
this range.

The mechanical part of the model has been verified and validated for notched concrete
beams under three-point bending sustained/creep loads. The slow, time-dependent crack
growth until and beyond failure is simulated correctly. Although the experiments relate
to concrete, it can be seen also as validation for masonry, due to the shared dominating
influence in both materials, namely their cementitious nature. To proceed to a next, higher
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level of complexity, the hygral model has been activated as well, to validate the model for
the case of simultaneous drying. The temptation to analyse masonry experiments of this
nature has been overwhelming, despite the fact that they were not designed to distinguish
between the various phenomena in a way that enables the objective characterisation of
the model parameters. Nevertheless, the numerical results with the preliminary estimated
parameters are promising. Furthermore the error in the estimation of the basic creep if the
traditional experimental procedures are followed, has been illustrated. The error arises
due to the ignorance of the drying creep effect. A proposal for a complete experimental
program to characterise masonry creep and shrinkage parameters, as well as to provide
validation data, was presented recently (van Zijl 1999b).

Although the current (mechanical) formulation provides for both the drying and thermal
shrinkage contributions, the temperature evolution at each material point, from which the
thermal shrinkage is derived, is not solved. To enhance the practical relevance of the
model, the numerical solution of the thermal conduction process, which is coupled with
the moisture diffusion, should be added.

The analyses reported in this study were performed with fixed, prescribed finite element
meshes. In pursuing a reduced computational effort without compromising the accuracy
of the simulation, an elegant and general method lies in an adaptive remeshing strategy.
Such a strategy for masonry may entail an initially coarse, continuous mesh which con-
siders the general brick arrangement. Upon an error/remeshing indication the elements in
the indicated areas of potential localisation may be progressively subdivided. Ultimately,
the discrete approach may be regained in the critical areas by the placing of interface
elements at the joints and in the bricks there. In this way the accuracy of the discrete ap-
proach may be exploited, while the computational effort required by a discrete approach
on the whole structure is avoided.
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SUMMARY

COMPUTATIONAL MODELLING OF MASONRY CREEP AND SHRINKAGE
G.PA.G. van Zijl

To fully exploit the fundamental descriptions of the mechanisms of moisture transport,
shrinkage, creep and cracking of cementitious materials, their formulation into integrated
computational models for application in practical structural engineering problems is im-
perative. This is the main focus of this dissertation.

Masonry is the cementitious material of particular interest in this study. The main features,
trends and dependencies of masonry creep and shrinkage are presented in Chapter 2.
Because the level of characterisation of masonry lags behind concrete, borrowing from
the concrete world is inevitable, but justified to a large extent by the cementitious nature
these materials have in common.

The mathematical modelling of these phenomena follows in Chapter 3. For practical re-
levance it is considered at the macroscopic level. The moisture migration dominates the
creep and shrinkage behaviour and its description forms the starting point. It is modelled
as a diffusive process in terms of the pore humidity. Subsequently, the mechanical be-
haviour is formulated in terms of time-dependent stresses and strains. The shrinkage is
derived from the pore humidity, while the creep is formulated as aging visco-elasticity. In
recognition of the interaction of the shrinkage and creep, which is exhibited most clearly
by the increased time-dependent deformation when these processes occur simultaneously,
a stress-induced shrinkage is incorporated in the model. The cracking is formulated in the
framework of plasticity, including a cracking rate contribution, which regularises the con-
tinuum description of localisation and captures the rate-dependent strength enhancement.

For the analysis of practical problems a numerical solution of the mathematical formula-
tion is necessary. A finite element solution to the governing set of differential equations
is elaborated in Chapter 4.

Chapter 5 describes the particular cracking criteria, which depend on the crack modelling
strategy. The predictability of the crack locations in masonry is exploited in a discrete




R

168 SUMMARY

approach to model the cracks. For this case interface elements discretise the masonry
joints. An interface material model is employed, which combines a tension cut-off and a
non-associative Coulomb-friction criterion. The same material law may be used to capture
brick cracking in a simple way. Alternatively, the cracks are described in a continuous
way, in which case an anisotropic Rankine criterion is employed.

Chapters 6 and 7 are devoted to the verification and validation of the model. First the
mechanical model alone is activated and its ability illustrated to simulate the interaction
between the creep and fracture in three-point-bending experiments. An important con-
clusion of this chapter is the significant role of the cracking rate dependence even at the
normal, quasi-static loading rates employed in these experiments. Subsequently, in Chap-
ter 7, masonry drying and creep experiments are analysed to validate the combined hygral
and mechanical model. Due to the lack of measurement data for the characterisation of
all the model parameters, a full validation has not been possible, but the preliminary re-
sults are promising. An experimental program has been proposed to produce the required
characterisation and validation data.

In Chapter 8 the model is employed in the structural analysis of masonry walls to illustrate
its robustness in capturing the crack initiation and growth to a fully developed crack pat-
tern. Particular attention is given to the objectivity of the pattern of primary and secondary
cracks. The role of the cracking rate dependence is shown in this regard. In Chapter 9
a step is made towards deriving practical design rules from numerical results calculated
with the model. The particularly lean design aspect of the spacing of movement joints in
masonry walls, which control cracking due to differential thermal and hygral movement,
is taken as an illustrative example. A simplified modelling strategy is described and ve-
rified numerically with reference analyses, to make the repetitive analysis of such large
masonry walls viable.

The major conclusion of this thesis is that it is possible to bridge the gap between the
fundamental research front of the creep, shrinkage and cracking of cementitious materials
and the application of the knowledge to overcome practical problems in structures. With
the benefit of the numerical tool presented, an analyst can both qualitatively and quantita-
tively study structural behaviour, which is otherwise too complex or of too a large scale.
Alternatively, particular aspects of structural behaviour can be analysed in an intermediate
step in the formulation of rational design rules.




SAMENVATTING

NUMERIEKE MODELLERING VAN KRUIP EN KRIMP VAN METSELWERK
G.PA.G. van Zijl

Om de fundamentele beschrijvingen van de mechanismen van vochttransport, krimp,
kruip en scheurvorming van cement-gebonden materialen volledig te kunnen exploiteren,
dienen ze geformuleerd te worden in geintegreerde numerieke modellen ten behoeve van
toepassing op problemen uit de constructieve ingenieurspraktijk. Dit is het hoofdonder-
werp van deze dissertatie.

Metselwerk is het cement-gebonden materiaal waarop deze studie zich richt. De belang-
rijkste fenomenen, trends en relaties van kruip en krimp in metselwerk worden gepresen-
teerd in hoofdstuk 2. Aangezien het niveau van karakterisering van metselwerk achter-
loopt bij dat van beton, is het onvermijdelijk dat geleend wordt van de betonwereld. Dit is
echter gerechtvaardigd gezien de grote mate van overeenkomst in het cement-gebonden
karakter van deze materialen.

De wiskundige formulering van deze fenomenen volgt in hoofdstuk 3. Deze wordt be-
schouwd op macro-niveau wegens relevantie voor problemen uit de praktijk. De vocht-
transport domineert het kruip- en krimpgedrag en de beschrijving ervan vormt het start-
punt. Zij wordt gemodelleerd als een diffusief proces in termen van de porievochtigheid.
Vervolgens wordt het mechanisch gedrag geformuleerd in termen van tijdsathankelijke
spanningen en rekken. De krimp wordt afgeleid van de porievochtigheid, terwijl de kruip
wordt geformuleerd als verouderingsviscoelasticiteit. De interactie tussen krimp en kruip,
welke het meest duidelijk naar voren komt in de toegenomen tijdsathankelijke vervorm-
ing bij gelijktijdig optreden van deze processen, is verdisconteerd in het model middels
spanningsgestuurde krimp. Scheurvorming is geformuleerd in het raamwerk van plas-
ticiteit, inclusief een bijdrage van de scheursnelheid, welke de continuumbeschrijving
van localisatie regulariseert en de snelheidsafhankelijke toename van sterkte ondervangt.

Voor de analyse van problemen uit de praktijk is de numerieke oplossing van de wiskun-
dige formulering noodzakelijk. Een eindige-elementenoplossing van de geldende set
differentiaalvergelijkingen wordt uitgewerkt in hoofdstuk 4. Hoofdstuk 5 beschrijft de
specifieke scheurcriteria, die afhangen van de wijze waarop de scheur gemodelleerd is.
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De voorspelbaarheid van de scheurlocaties in metselwerk wordt gebruikt in een dis-
crete scheurmodellering. Voor dit geval zijn de voegen gediscretiseerd door interface-
elementen. Een interface-materiaalmodel is gebruikt dat een ’tension cut-off” combineert
met een niet-associatief Coulombs wrijvingscriterium. Dezelfde materiaalwet zou ge-
bruikt kunnen worden om scheurvorming in de baksteen op eenvoudige wijze te kunnen
beschrijven. Anderzijds kunnen de scheuren als continue worden beschreven, waarbij een
anisotroop Rankine-criterium is gebruikt.

Hoofdstuk 6 en 7 zijn gewijd aan de verificatie en de validatie van het model. In de eerste
plaats is alleen het mechanische model gebruikt, waarvan het vermogen is geillustreerd
om de interactie tussen kruip en breuk te simuleren in driepuntsbuigproeven. Een belang-
rijke conclusie van dit hoofdstuk vormt de significante rol van de scheursnelheidsaf-
hankelijkheid, zelfs bij de normale, quasi-statische belastingsnelheden die bij deze expe-
rimenten toegepast worden. Vervolgens worden in hoofdstuk 7 het uitdrogen van metsel-
werk en kruipproeven geanalyseerd om het gecombineerde hygrisch-mechanische model
te valideren. Wegens een gebrek aan meetgegevens voor de karakterisering van alle mo-
delparameters was een volledige validatie niet mogelijk. De voorlopige resultaten zijn
echter veelbelovend. Een experimentenprogramma is voorgesteld om de data voor de
gewenste karakterisering and validatie te genereren.

In hoofdstuk 8 is het model gebruikt in de constructie-analyse van metselwerkmuren
om zijn robuustheid te illustreren in het beschrijven van scheurinitiatic en -groei tot
een volledig ontwikkeld scheurpatroon. Speciale aandacht gaat uit naar de objectiviteit
van het patroon van primaire en secundaire scheuren. De rol van de scheursnelheidsaf-
hankelijkheid wordt in deze context aangetoond. In hoofdstuk 9 wordt een aanzet gegeven
tot het afleiden van rekenregels voor praktijkontwerpen. In het bijzonder worden de
ontwerpaspecten van de plaatsing van dilatatievoegen in metselwerkmuren beschouwd,
welke scheurvorming sturen als gevolg van verschillen in thermische en hygrische uitzet-
ting. Een versimpelde modelleringsstrategie wordt beschreven en numeriek geverifieerd
aan de hand van referentieanalyses, zodat de herhaaldelijke analyse van dergelijke grote
metselwerkmuren haalbaar wordt.

De hoofdconclusie van deze dissertatie is dat het mogelijk is de kloof te overbruggen
die bestaat tussen enerzijds fundamenteel frontonderzoek op het gebied van kruip, krimp
en scheurvorming van cement-gebonden materialen en anderzijds toepassing van deze
kennis om praktijkproblemen met constructies te voorkomen. Met de beschikking over
het voorgestelde model kan de analyst zowel kwalitatief als kwantitatief constructiegedrag
bestuderen dat anders te complex of te grootschalig zou zijn. Verder kunnen specifieke
aspecten van het constructiegedrag geanalyseerd worden om rationele ontwerpregels te
formuleren.
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