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Extension of Marcatili’'s analytical approach for
rectangular silicon optical waveguides

Wouter J. Westerveld, Suzanne M. Leinders, Koen W.A. van Donbe Paul Urbach, and Mirvais Yousefi

Abstract—Marcatili's famous approximate analytical descrip-  waveguide T], [8]. Although numerical solutions such as the
tion of light propagating through rectangular dielectric wave-  circular harmonics method, the film mode matching (FMM)
guides, published in 1969, gives accurate results for low-index- method, the variational mode expansion method (VMEM)

contrast waveguides. However, photonic integrated circuit tech - .
nology has advanced to high-index-contrast (HIC) waveguides. ©" the finite element method (FEM) are availab8-{12,

In this paper, we improve Marcatili's model by adjusting the we believe that an analytical model iS Useful in Ol’del’ to
amplitudes of the components of the electromagnetic fields in gain insight in the physics of the devices, and also for fast

his description. We find that Marcatili's eigenvalue equation explorative simulations of photonic integrated circuiffy].
for the propagation constant is also valid for HIC waveguides.

Our improved method shows much better agreement with rig-  |n this paper, we extend the range of waveguides for which
orous numerical simulations, in particular for the case of HIC Marcatili's approximate approach can be applied, in pakiic
waveguides. We also derive explicit expressions for the effectivet high-ind trast id Similar t M il
group index and the effects of external forces on the propagain 0 high-index-contrast waveguides. 'm'_ar 0 arF:a e
constant. Furthermore’ with our method the phenomenon of use anansathOI’ the fOI’m Of the mOda| fle|dS that IS based
avoided crossing of modes is observed and studied. on separation of variables in the waveguide core. The large
Index Terms—Optical waveguides, Electromagnetic propaga- I"dex contrast causes, in Marcatili’s original approacseeere
tion, Electromagnetic fields, Integrated optics, Silicon on insula- Mismatch of the electromagnetic fields just inside and just
tor technology, Optical sensors. outside the core of the waveguide. We show that Marcatili's
eigenvalue equation for the propagation speed of the light
through waveguides is, in fact, more general and we obtain
) ) . improved modal electromagnetic fields for the same eigeeval
The propagation of light through rectangular dielectrig, ation, which have a much lower mismatch. An analytical
optical waveguides cannot be described in closed analyticas . rintion is presented, and is compared with the fundsahen
form. Marecatili’'s fampus approximate anglytlcal approacn]ismatch of thisansatz which is found by means of an
[1] has been used since the 1970’s and is treated in maé}ﬁ(timization algorithm.

textbooks on optical waveguides theo®}[5]. His method is,

however, derived for waveguides with a low refractive index Next to this, explicit equations are derived for the effeeti
contrast, while nowadays technology has advanced to higjreup index and for the linearized influence of externalaffe
index-contrast (HIC) waveguides. Silicon-on-insulat&O{) on the effective index of the modes. As an example, we
technology has, for example, become one of the focus planalytically calculate the influence of temperature on the
forms for integrated optics over the last decade. The largéfective index of the modes in the waveguide. Also, results
refractive index contrast of the materials allows for smadlre presented on photonic evanescent field sensors, wieere th
device footprint. High-yield mass fabrication is providesing refractive index of the medium in the vicinity of the wavedai
CMOS processes from the electronics industry, that have bde probed with the evanescent tail of the waveguide madg [
tailored to photonic applications]. Behavior of integrated [15].

optical components, such as ring resonator filters or agraye _ o ]
waveguide grating (AWG) based multiplexers depend crigical Throughout this paper, we test the analysis with the first

on the exact knowledge of the propagating modes in tffree modes in a typical SOI waveguide with a guiding layer
height of 300 nm, with infrared light that has a free-space
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Il. THEORY (a)

In this section, we describe an approximate model of how Eﬁy

(b) 3
Ex —
light travels through rectangular high-index-contrasiGH d T/, 4 - 5
2

dielectric waveguides. In Setl-A, we make anmansatzfor Pp--
modes in a rectangular waveguide, and briefly investigage th <\Id,
implications of thisansatzat the interfaces of the waveguide b
core. In Secll-B, we describe Marcatili's choice of parameters © @
for theansatzand Secll-C presents our improved method. In &
Sec.ll-D, we present a quantification of the error that arises K 3 2 g 1 5
from the discontinuities of the electromagnetic field at the
interfaces, and we propose an optimization method based or 4 Ly s
this quantification. In Sedl-E, we use this quantification to ~ ~92 * i 42 (
discuss the different methods. T_, 7 TEX T_, 2 TEX
y

2
—b/2 b/2 -b/2 b/2

A. Rectangular waveguides Y
In regular lossless dielectric waveguides, the core of tig. 1. Schematics of a rectangular waveguide with a widthsf 6m and a
waveguide has a higher refractive index;) than the sur- height of 300 nm, used to guide light with a free-space waggteof 1550

; ; _ ; ; ; ; nm. (a) 3-D sketch of the waveguide, also displaying the tatigleelectric
roundlng medla@ n5), as deplcted in Fid. The refractive field components. (b) Cross-section of the waveguide at 0. Regions 1

indices for the outer quadrants, i.e. in the corner regians, o 5 are indicated. The shaded comer regions are negletttsi analysis.
not specified because we neglect these regions. We consid&heacolor plot represent&’;, the dominant electric field component, of the

: : -~ i~ fundamental TM-like mode. (c) Sketch of the cross-sectiorhefwaveguide
monochromatic wave with angUIar freque ypropagating in with the coordinate frame for a typical TM-like mode. Shapefhf in the x

the waveguide direction (z) with a propagation constarfor girection (solid line) and in the y-direction (dashed linRefractive indices
a two-dimensional refractive index profitdz, y), solutions of n1 = 3.476, na = 1.444, ng = ny = ns = 1. (d) Sketch of the cross-

Maxwell’s equations can be found in the form section of the waveguide with the coordinate frame for a Bipi&-like mode.
q The waveguide geometry is rotated such thatis tangential to the “upper”
E(x,y, 2, t) = Re{E(z,y) expu(wt — B2)]} (1) surface of the waveguide. Refractive indices = 3.476, ny = 1.444,
7 ) ) ) )

na = n3z = ns = 1. The mode profiles in this figure are calculated using

and a similar description of{, with £ and # being the theamplitude optimization method
electric and magnetic field, respectively. The free-spaop-
agation constant iy = w/c, wherec is the speed of light in o )
vacuum. When the propagation constahis larger than the Furthermor_e, when.EqSZ)(—(S) are satisfied, the electric and
propagation constant that is allowed in the regions outsside Magnetic fields satisf - (eonj€) = 0 and V - H = 0,
waveguide core, due to spectral cut-off (i®> kon;, with TESPectively.
j =2,..,5), the light is confined in the core of the waveguide. In this section, we adopt a description of the behavior
The lateral confinement of such guided waves dictates the li@f the light in a rectangular waveguide that is based on
to exist in the form of certain modes, or “standing waves”. Separation of spatial variables, (y) in the core region, similar

Using Maxwell's equations, it is now possible to describt® Marcatili's ansatz We neglect the effect of the corners
the full electromagnetic fields in terms of the longitudifiald based on the observation that the field is small in those

componentsd], i.e. in region; areas. The modal field then consists of standing waves in the
core of the waveguide and an exponentially decaying field
— OE, OH., outside the core (see Fi. We will show that the form we
E, = 1= (5 5y T WHO By ) : (2)  propose here can not provide an exact solution of Maxwell's
J

equations, and thus provides an approximate descriptitimeof
E = ;22 (gaEZ — Wi 8HZ) , (3) Pphysics. The proposed solution obeys Maxwell's equations i
K; %y Oz regions 1-5, so that all errors that arise from the approtiona
o (5 — wean29E: @) show themselves _at the interfaees between the yvaveguide
® K? ox 0% Oy core and its cladding. At these interfaces, continuity af th
- oH OF electromagnetic field components tangential to thesefates
z 2 z . . . .
2 (6 3y + wegn; O > ) )] is required (referred to as the .elelct.romagnetlc boundanylico
J tions), but we allow for discontinuities that are small cargd
where o ande, are the permeability and the permittivity ofto the field strength in the core of the waveguide. When all

—1 0H, 5 O0F, )

vacuum, andy’; is defined by tangential components are continuous, the normal compsnen
K, = F?kﬁ ) ©6) automatically opey Maxwell's equations. o
J In our analysis, we propose a form where the electric field

All components, and hence in particular the longitudina predominantly polarized in the x-direction. From symmet

componentsE, and H., satisfy the reduced wave equationhe field could as well be chosen predominantly polarized in

(here given forE.) [2]: the y-direction as there is no further discrimination betwe
0’°E.  O°E, ) the x- and the y-direction. Sketches (a)-(c) in Figshow
92 + By + KjE, =0. (7)  the fundamental TM-like mode in a waveguide with a width
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of 600 nm and a height of 300 nm. Sketch (d) showBhe effective (refractive) index of the mode in the waveegusd
the fundamental TE-like mode in this waveguide. Instead defined bynet = 8/ko. From the wave equatiorY), together

rotating the coordinate-frame, the waveguide itself waateal

such that the “top” surface of the waveguide is tangential to

E,.

We make theansatzon the form of the longitudinal com-

ponents of the modal electromagnetic field in region 1:

(4 &)] coslky (y + )], (8)
2 (z + &) sin[ky (y + n)]. 9)

E, =A;sin[k
H, =As coslk

with Eq. 22), we find

’Yg = (”% - nz)ko k2 (24)
73 = (nf —n3)kg — k2, (25)
i = (ni —ni)kg — Ky, (26)
v = (nf —n3)kg — k. (27)

The sine and cosine dependencyoandy, of the transver-
sal electric £,) and magnetic i.) field components, was

Then the transversal electromagnetic field componentsénsthosen such that the dominant electric field componéh) (

region 1 follow from Egs. 2)-(5) as
(BA1ky + wpoAzky) o

B = slh (& + ©)] coslhy (y + ),
(10)
p, =P 0] G o)) sinl o 4+ )
1 (11)
i, = AT Tt i, (04 )] sinlhe (y + )
1
12)
€ 2
i, =02 TR ol (o 4-€) ol 0 -+ )
1
(13)
In region 2, we set
E. =Azexp[ya(z + d/2)] cos[ky(y +n)],  (14)
H. =Agexplyz(x +d/2)]sinlky(y + )],  (15)
in region 3
E. =As exp[—ys(z — d/2)] cos[ky(y +n)],  (16)
H. =Ag exp[—ys(z — d/2)]sin[ky (y +n)l,  (17)
in region 4
Ez :A’? Sin[kz (‘L + 5)] eXP[’Y4(y + b/2)]7 (18)
H. =Ag coslka (v + )] exp[rya(y +0/2)], (19
and in region 5
E. =Agsinlk, (z + )] exp[—ys(y — b/2)],  (20)
H. =Ayq coslka(x + &)] exp[—ys(y —b/2)].  (21)

Here, amplitudesd; - A;o, spatial frequencies,, k,, spatial
shifts&, n, and exponential decay strengths> 0, j = 2,..,5

is described by a cosine function in bathand y direction.

For most common waveguides, ~ ng andny ~ ny, from
which follows that spatial shiftg and n are small. From

the observation that the field of the fundamental mode of
a waveguide has its highest energy density in the center of
the guide, we expect that the field components with a cosine
behavior in both x- and y-directiong’ and H,) carry the
majority the field's energy, next the components with a sine
and a cosine dependence in x or¥.(and H.), and finally

the least energy is expected in the field components that have
a sinusoidal profile in both x- and y-directioi’{ and H.).
These components have antinodes (i.e. high energy density)
in the corners of the waveguide core.

This description hasd; - Ao, & 7, k., and k, as free
parameters. There are 4 interfaces, with 4 tangential field
components to be matched per interface, adding up to 16
equations from the electromagnetic boundary conditiom& T
tangential field components are depicted in Fi¢n). Field
amplitude A; is used as normalization factor, so we end up
with an overdetermined system of only 13 free parameters for
16 equations.

In summary, we proposed amnsatzon the form of the
electromagnetic fields of the modes in a rectangular diétect
waveguide, such that Maxwell’'s equations are obeyed in
all regions 1-5. Thisansatzhas 13 free parameters. From
continuity of the tangential electromagnetic field compuse
at the interfaces, 16 boundary condition equations folllmw.
the remainder of Sedl-A, the requirements that follow from
continuity at either the surface normal (SHeAl) or parallel
(Sec. 1I-A2) to the dominant electric field component, are
given.

1) Obeying the electromagnetic boundary conditions at the
interfaces normal to the dominant electric field component:
In this section, we derive the requirements that follow from
continuity of the fields at the 1-2 and 1-3 interfaces. The
dominant electric field componenk,,, is orthogonal to these
interfaces, so an infinitely wide, in the y-directioh ¢ oo),

are still to be determined. The transversal components &f§tangle will describe a TM mode in a slab waveguide, see

calculated from Eqgs2)-(5). From the wave equation7) in
region 1, we arrive at

K} =nikg 52—k2+k§» (22)

or, with positive,

B =\/n2k} — k2 — k2. (23)

Fig. 1(c). From all eight electromagnetic boundary conditions
at these interfaces, we find

2
Ay :we;’;iky Ay, (28)
Az =Aysinfk, (€ — d/2)], (29)
Ay =As coslk, (€ — d/2)], (30)
As =A; sin[k, (€ + d/2)], (31)
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Ag =As coslk, (€ + d/2)], (32) 3) Conclusion: The eigenvalue equations that follow from
the analysis of slab waveguides, in which invariance of the
together with field in one direction is assumed, are in fact more general.
Identical equations follow from thansatzfor F, and H,,

2 . . . .
tanlk, (& — d/2)] = _%l{ (33) i.e. Egs. 8)-_(21), and from imposing the boundary conditions
n3 ky on the horizontal or vertical interfaces of the rectangular
n? s waveguide.
tan(k, (€ +d/2)] = 7735 (34) Obeying all electromagnetic boundary conditions at the

interfaces normal toF, (Sec.ll-Al) demand a different

Equations 29)-(32) follow directly from the continuity ofE, amplitude coefficient of the magnetic field in the coré;)
andH.. The continuity of£,, andH, is most easily verified by then the conditions that follow from the interfaces paftatite
substituting Egs.48)-(34) into the remaining electromagneticE, (Sec.ll-A2). Therefore theansatzhas no solutions that
boundary conditions. With these field amplitudés - Ag, the excactly obeys the electromagnetic boundary conditiorl at
magnetic field componentl,, is zero in regions 1, 2 and 3,interfaces simultaneously. The next sections are devaied t
as follows from Eq. 4). different possibilities for choosing the free parametasshs

The last two equations38) and B4), can be recognized asthat a low mismatch of the fields at the boundaries is achieved
the eigenvalue equations for a TM mode in a slab waveguide4) Normalization: Throughout this workA, is normalized
[2], [4]. These eigenvalue equations thus do not only hold fetich that the power flux through waveguide regions 1-5 equals
a slab solution wher®/dy = 0 and H,, E, and E, are the unity, i.e.
non-zero field components, but also for emsatawhere there
is a variation in the y-direction. We eliminagegfrom these two 1
equations, and arrive at the functional P=Re // (B.H, — E,H;)dxdy o =1, (44)

regions 1-5

_ niky(n3y2 + n3vs)

G(ksz, ko,n1,n92,n3,d) = tanlk,d
(kz, ko, m1,n2,n3,d) [k d] n2n2k2 — niva7s

= 0. where the integral runs over the regions 1-5.

(35)

_ 2) Obeying the electromagnetic boun(_jary conditions at t@_ Marcatili's approach

interface parallel to the dominant electric field component

When we obey all eight boundary conditions at the 1-4 andMarcatili has developed a widely used analytical approach

1-5 interface, to which the dominant electric field compdnerfor low-index-contrast waveguides][ For propagating modes
E,, is parallel, we find in these guideskyn; ~ (B because modes are not guided

otherwise, sok,/kon; and k,/kon,; are much smaller then
unity. Therefore those quantities are neglected in secaiher.o

Bk,

A2 " wpoks Y (36) This is often referred to as “far from cutoff”, while, “cloge
A7 =A; coslky,(n — b/2)], (37) core material spectral cutoff” would be more appropriate.
_ . In Marcatili’'s work, H,, is set to zero in all regions. With this
As =4y sinlky (n = b/2)]; (38) requirement, all electromagnetic boundary conditionhatlt-
Ag =4y cosky (n +b/2)], (39) 2 and 1-3 interface can be satisfied. This was shown in Sec.
Ao =Agsinfk, (€ + b/2)], (40) 1I-A1, where the requirement th&f, = 0 in regions 1, 2 and
3 followed from the boundary conditions at these interfaces
together with At the 1-4 and 1-5 interfaces approximations are necessary
since not all boundary conditions can be satisfied at these
tan(ky(n —b/2)] = —ya/ky, (41) interfaces.H, is set to zero and continuity follows trivially.
tanf[k,(n +0/2)] = ~5/ky. (42) In the approximate matching of, across these interfaces,
quantities on the order ofk,/kon;)? are neglected, which
Eliminating  from latter two equations gives is reasonable for low-index-contrast waveguides. Forehes
guides,/uoH. is larger than,/eE., and is matched across
ky(va + 75 the horizontal interfaces, whil&, is not matched. From the
F(ky, ko,n1,m4,n5,b) = tan[kyb] — /;25 - 7475) =0. (43)  requirements above, it is found that the eigenvalue equatio

of this waveguide is identical to the slab eigenvalue equati
Equations 87)-(40) follow from the continuity of £, and (33), (34), (41), and @2). We will refer to this approach as
H,. Continuity of £, and H, is checked by substituting Marcatili's H, = 0 method
Egs. 86)-(42) into the four boundary conditions corresponding Although neglecting terms on the order @f,/kon;)? is
to these field components at the two interfaces. It followalid for low-index-contrast waveguides, this quantityeien
from Eqg. @) that with these field amplituded,, A; - Ajp, larger than unity outside the core region of high-indextcast
the electric field componenk, is zero in regions 1, 4 and waveguides. This approximation introduces a large mismatc
5. Equations 41) and @2) are identical to the eigenvaluein the continuity of £,, which is the dominant electric field
equations for a TE mode in a slab waveguide. component.
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Similarly, another approximate solution is obtained by 2) ImprovedE, ~ 0 method: This improvement removes
setting £, = 0 [1], [3]. With this demand, all boundary the discontinuity of the dominant magnetic field component
conditions at the interface parallel 6, can be satisfied, and H,, that was present iNlarcatili's £, = 0 method We match
mismatches occur at the 1-2 an 1-3 interfaces. Analoguesto #il tangential field components at the 1-4 and 1-5 interface,
approach abovely, is trivially matched andE, is matched, which are parallel to the dominant electric field component.
but H, is not. H,, which is the dominant magnetic fieldFrom Sec.I-A2 follows that £, = 0 in regions 1, 4, and 5.
component, is matched while neglecting terms on the orderA&f the 1-2 and 1-3 interfacesy, is matched because it is
(kz/kon;)?. Although the field amplitudes are different to thehe dominant magnetic field component, ahd is matched
case wherdd, = 0 in all regions, the eigenvalue equations oin favor of H, because an infinitely wide waveguide-t& co)
this waveguide description are identical and thus alsorgibye is identical to a slab waveguide in whidti, = 0.

Egs. 83), (34), (41), and @2). We will refer to this approach  We find the slab eigenvalue equatiorg5)(and @3), and

asMarcatili's £, = 0 method field amplitude Eqgs.36)-(40), together with
Az =Aq sinfk, (§ — d/2)], (49)
C. Improved method Ay =A, <1 + w> cos[k, (€ — d/2)], (50)
In this section, we present two improvements of Marcatili's 4. — 4, sin[k, (¢ + 5/2)}7 (51)

methods that give a better description of high-index-asttr k2(n? — n2)
waveguides. Two choices for the matching of the boundary Ag =A4, (1 + 0n12n3> cos[k, (€ + d/2)]. (52)
conditions are presented, one where the fields at the int=fa p

normal to the dominant electrlg field componerﬂr, are R Least-discontinuity optimization of the ansatz pararset
continuous, and one where the fields at the interfaces phral
In Sec.ll-A, we presented aansatzon the form of the

to FE, are continuous. In Sedl-E, we show that the latter is e ) i
electromagnetic field for modes in a rectangular waveguide.

more accurate for the cases considered in this paper. h h h th I 3
We argue that the dominant boundary conditions for dete-l;- IS gnsgtzwag chosen such that Maxwe s_equaﬂons are
éamsﬁed in regions 1-5, so that all errors manifest thevesel

mining k,, and¢ are at the 1-2 and 1-3 interfaces, and therefork i . )
Egs. 83) and @4) are used to determin, and¢. Similarly, at .the_four m@erfacgs .of the Wavegwdg core. This error,
continuity at the 1-4 and 1-5 interfaces is used to determiW@'Ch is the discontinuity Of. the tanger_ltlal electromagnet
k, and using Eq. 41) and @2). This is supported by the flgld components at these interfaces, is r_eferre_zd t(_) as the
argument that the two different approximations of the modg?'smatCh' The measure we adopt to quantify this mismatch,

electromagnetic field as presented by Marcatili both yieése ?hr erro(;,. IS tht(.a axgrag:e egetrsy densgy th?g Its t:;.ssqc;altf.lrl:i Wi
eigenvalue equations. ese discontinuities. In SetV, we show that this intuitive

. . uantity excellently agrees with rigorous numerical resul
1) Improved H, ~ 0 method: In comparison with Mar- d y y a9 g

. : A . This analysis is performed in a cross-section of the wawkgui
catili's approach, we remove the discontinuity of the doanin y b g

at z = 0, at time¢ = 0, as further longitudinal and temporal

electric field at the cost of the weak magnetic field companegi o vior follows trivially from Eq. 7). We define:

H,, being not continuous across the 1-4 and 1-5 interfaces.

In this approach, we demand continuity of the tangential r; —_ (n* +n7)%- o x (B —E*)|2 d - (53)
electromagnetic fields at the 1-2 and 1-3 interfaces, which 4

are normal toE,. This determines the electromagnetic fields + @f % (H+ _ H‘)’Q dl.

in regions 1, 2 and 3 by amplituded,-Ag, analogue to l

Marcatili's H, = 0 method At the 1-4 and 1-5 interfaces, The four interfaces of the waveguide are simultaneously de-
we choose to matclE, and H. perfectly. The first is the scribed by the integral. The line integral runs along theurir-
dominant electric field component. The latter is chosenvoifa ference of the waveguide in the (x,y)-plane, dnd 2(b+d) is

of matchingFE, because an infinitely highl(— oo) waveguide the length of this circumferenc&™ and E— are the electric

is identical to a slab waveguide in which, = 0. These fields just outside and inside the waveguide core region 1, so
requirements determine the electromagnetic field in regin that(E* — E~) represents the discontinuity of this field, aixd
and 5, in whichH, is not necessary zero. We will refer tois a unit vector orthogonal to the waveguide surface. Thescro

this method as thémprovedH, ~ 0 method product of with the discontinuity in the field just selects the
This gives the slab eigenvalue equatioB5)(and @3), and tangential components.™ andn~ are the refractive indices
field amplitude Egs.48)-(32), together with just outside and inside the waveguide. At the interface, an

- , average refractive indefn™+n~)/2 is assumed to calculate
kg (ni —ng) the energy density of the electric field components
A=A (142000 4 STk, (1 — b/2 4 9y Y P -
T < * B2 coslky(n =b/2)],  (49) Although Unm can be intuitively interpreted as an energy
Ag =Agsin[k, (n — b/2)], (46) density, we cannot attach a rigorous physical meaning ® thi
k2(n2 — n2) guantity. The mismatch in the fields only occurs at interace
Ag =A, <1 + 0'15) coslk,(n+b/2)],  (47) which have no physical volume. Therefore the energy density

2
) B cannot be integrated over volume in order to obtain a total
A10 :A2 sm[ky(n + b/2)} (48) energy.
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In this section, we use this quantity to propose a new (semi-) 3
analytical method. In the next section, we use this quatnity
investigate the methods of the two previous sectidhB (and

. . . . . 281
[I-C) without resorting to numerical simulations.

thus the effective refractive index, are calculated using t
analytical methods. The effective indices that follow frdime

eigenvalue equations on the one hand, and from the least-=
mismatch optimization on the other hand, are presentedgin Fi
2. It can be seen that the difference between the two methods

0.01 ¢

In what we call thefull optimization methodthe mismatch §
in the fields at the boundaries, as given by E§3)( is _§ 267
minimized using an unconstrained nonlinear optimizatisn a .€
implemented in MTLAB [17]. The initial parameters are cal- fa: 4
culated from the improved method as presented in B&c2. g '
The full optimization methodnay be compared with the © :
variational mode expansion method (VMEM)1], which is 22} 48
also based on a separation of variables. However, the method
differ substantially because the modal fieldsatzdiffers and 2 ; ; A ;
also the object function used in the variational principfe o _ 003 (b) TE0 | © x A+ Numerical
VMEM differs from the object function that is minimized § 0.04 . Eigenvalue equations
in our approach. The VMEM is applicable to more general 5 003l Effective index method (EIM),
StI’UC.l' ur_es. . S N [T Full optimization method
It is interesting to know how accurate, and k,, and Lé 0.02 k
&

0
0.05

1

erical

0.04

is small. The influence of this difference in propagationeshbe S

on the mismatch of the fields at the interfaces is investigaye 5 003
optimizing the field amplitudes!, - Ao with fixed k,, &, &, L ook
andn as calculated from the analytical eigenvalue equations. %

As Eq. 63) is quadratic in the amplitudesl; - Ajq, this £ 0.01¢
minimum can be found analytically. This method is referred = 0

to as theamplitudes optimization method\s can be seen '
in Fig. 3, the mismatch of the method with the fittdds & *-02[(d) TE1
(k. and k,) and method with the analytical calculatét is §

almost identical. Therefore we conclude that, with #mesatz g

for the fields as described in Set-A, and the error of the | 0
model described by the field mismatch, E§3) the values g

of k, and k, are very accurately calculated from analytical E

slab eigenvalue equations, for the typical SOl waveguides a £-0.02f

considered in this paper. 400 500 600 700 800 900 1000 1100
waveguide width [nm]

E. Discussion of the different methods Fig. 2. Effective refractive indices calculated using falifferent methods.

In Fig. 3, all six different methods are compared. The ener%%Ot () presents the first 3 modes in the waveguide core (TH0, TE1). In.

. . . . mparison with conventional notation, e.g.obEwe dropped a zero, as in
associated with mismatch of the electromagnetic fields @t t§;r waveguide geometries all higher-order modes have higier standing
boundaries of the core of the waveguid&,n, is plotted for waves only in the direction of the width of the waveguide. Fhamerically
hree types of waveguide modesyy, can be erpreted ascaruiies STece Mgk o e 1ML e B s o s
the energy density of the error at the interfaces. In order fQaiytical method with respect to the numerical method.
get a feeling for the magnitude @f,y,, the average energy
density in the core region of the waveguide is also plotted in
this figure (black dashed line). inaccuracy of the method, and this behavior was not observed

For all geometries, the improved methods are better théon the other methods.
Marcatili's original methods. Considering the fundaménta For the waveguide geometries as considered in this paper,
modes in a 400 nm wide waveguide, and the 1st order TE-likee improved £, ~ 0 method has smaller errors in the
mode in a 650 nm wide waveguide, we see that the mismatmbntinuity of the fields at the boundaries than thgroved
in Marcatili's E, = 0 methodis 1.5 to 4 times larger than H, ~ 0 method However, this is geometry dependent, as
the mismatch in thémprovedE, ~ 0 method In Marcatili's is expected from the trend in the TM-like mode. For TM-
method, the power flux through regions 2, 3, 4, or 5, i.e. like modes in waveguides wider than 1765 nb( 6d), the
the evanescent tail of the mode, is sometimes negative (orinmproved H, ~ 0 methodhas a lower mismatch than the
backwards propagating direction). This is an indicatiothef improvedE, ~ 0 method This behavior of the asymptotes is
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Umm [energy density]

Umm [energy density]

Umm [energy density]

600 700 800 900 1000 1100
waveguide width [nm]

---© -- Marcatili Hx=0 Amplitudes optimization

-==%--- Improved Hx~0 Full optimization

—O6— Marcatili Ey=0 Fitting to numerical profile

—— Improved Ey~0 (used in Fig. 4 only)

400 500

Fig. 3. Mismatch of the tangential field components at the fates of the
waveguide core/mm, see Eq. §3). Typical, 300 nm high, SOI waveguide.
Plots (a)-(c) represent the TEO, TMO, and TE1 modes in the guasle. In
each plot, 6 different methods to calculate the free paranretie analytical
description of the waveguide mode profile are presented. Tdek Washed
line indicates the average energy density in the core (tzkal using theull
optimization method

expected from theory of slab waveguides. In the libnit oo,
the waveguide is a slab waveguide with interfaces 1-2 and
1-3, so theimproved H, ~ 0 methodis expected to give
better results, because the fields described by this methods
are continuous across these interfaces. In the limit oo,
only the 1-4 and 1-5 interfaces play a role, so we expect the
improved £, ~ 0 methodto give the most accurate results.
For the cases considered in this plot, average energy gensit
associated with the mismatclt/§m) of the improvedE, ~ 0
methodis below 3% of the average energy density in the core
of the waveguide.

In conclusion, the effective index of the mode is accurately
calculated by the eigenvalue equations. The amplitutieto
Ay are calculated more accurately with the improved methods
than with Marcatili's original methods. A better quantivat
evaluation can be made by a comparison of the methods
with rigorous numerical calculated modal profiles, which is
presented in SedV.

I1l. NOVEL APPLICATIONS OF THE EIGENVALUE EQUATION

OF THE PROPAGATION CONSTANT

In this section, we derive explicit expressions for the ef-
fective group index and for the influence of a change in the
waveguide.

A. Modal dispersion

The modal dispersion can be described by the (effective
refractive) group index:
Oner 0P
Mo Ok
The group index is often used to design photonic integrated
circuits. For example to calculate of the free spectral eang
(FSR) of ring resonators. From E®3J), we find

kma—ko— yak0>‘ (55)

B 1 ony Ok, Ok,
oky B Oko

The 1st and 2nd term on the right-hand-side of this equation
are specified by the material refractive indices. The refrac
tive indicesn;(kyo) may depend on frequency and thus on
ko = w/c. The 3rd term is calculated from E5). Although

k. is only given as implicitly,0k./0ky, can be calculated
explicitly. The total derivative of the left-hand-side ofgE
(35 with respect tokg, dG/dkg, equals zero for solutions
of G = 0. The heightd does not depend on frequency. So we

Ng = Neff — Ao (54)

(kon% + kg’fll

get
4G _ 0G| 9GOk, | 9G Om | 9G Ony | OG Ony
dko a (‘3k:0 8I<;z a]{io 8n1 8/€0 8TL2 8]60 8’113 ako’
or,
ony Ons on:
%:7%+%ﬁm+gfi0ko+gfiﬁ (56)
oy 2 |

Similarly, the 4th term of the right-hand-side of E&5) is
calculated from Eq.43) as

oF IF 9n, OF Ong OF 9ns
aky — _ Oko + ony Okg + ony Oko ons Oko (57)
ko oF
ok,

The partial derivatives in Eqs56) and 67) are straightforward
to calculate, as shown in appendix
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B. Influence of a linear external effect compared the FMM method with the finite element method
Analogue to the derivation of the effective group indexsit i(FEM) that is also implemented in the FimmWave software,

also possible to calculate the linearized influence of aereai USiNg~210 gridpoints in both the x- and the y-direction. For

effect on the propagation constant of the mode. For exampf, datapoints presented in this work, the difference (leefw

the influence of a temperature change in the waveguide or ff¥M and FEM) in effective index is below0~* and the

influence of a change in the refractive index of the surrougdi rélative energy in the difference field is beld®—*.

medium can be calculated. We describe the external effegt by 1he measure that is used to compare two electromagnetic

paramete. In this theory, the waveguide properties b and ields is the relative energy in the difference field, i.e.

d are assumed to be known, as well as the first-order influence [ (n2€O|EA — EN? 4 po|HA — HN|2) dxdy
of the external effect on these properties, ée, /0x, 0d/0x AU __regions 1-5

and 9b/0x. Taking the derivative of Eq.2@) with respect to - [ (2| EN|? + po| HN [2) dxdy

X gives regions 1-5 (61)

98 _! (m (2)% _ km% _ kyaky) ) (58) where E4 and EV are the analytically and rigorous numer-
ox B ox ox Ix ically calculated fields, respectively. This integral rumeer
As in the previous sectiorlk, /0 is calculated by taking the all regions that are described by the analytical solutidme T

derivative of Eq. 85), G = 0, and solvingdk, /x: integrql is c.alcuilate.d ana.lytically with Fhe assumptioattthe
numerical field is piecewise-constant in space.

9G On G Onc G On: 9G dd

Oky  Bny ox T Ons ox T Ons ox T 9d Ox 59

Oy oG - (59) )

X 9k, A. Improved analytical methods
And for 9k, /0x, we find from Eq. 43) that The effective refractive indices are calculated using four

OF 9ny | OF dng | OF Ons | OF 0b different methods, including the FMM method, and are pre-

Oky _ _ 0y ox " ni ox " ons ox T 5% 9x  (e0) sented in Fig.2. For completeness, results of the effective

2% g,f; index method (EIM) 2] are also included. The analytical

eigenvalue equations, described in SBe, give, for most
geometries, the most accurate effective index. The method

of a temperature chang@p, /dy is given by the thermo-optic where the effective index is calculated using least-mismat
P gen; /Ox 1S 9 y P fitting in the boundary conditions as presented in Se@

effect. The change in cross-section of the waveguiiil x is less accurate for TM-like modes. The error in the EIM

and 0b/0x are described by linear thermal expansion. que o .
. . " . Ny ecomes significantly large for strong confined modes. The
thermo-optic coefficients of silicon and silicon dioxids,waell

as the linear thermal expansion coefficients, are re Oneddiscontinuities in plots () and (d) at a width of 833 nm are
Pe * POMEC fiscussed in SedV-B. The other small “wiggles” in théull

Refs. [L6] and [18], respectively. S o

2) Evanescent field sensotn evanescent field Sensorsopt|m|zat|on methodre due to numerical instabilities. It can

liquids with varving refractive indices flow over the SOIbe seen that the error in the effective index calculatedguia

V\?V id n %hig describes the liquid refractiv analytical eigenvalue equation remains below 2% for alésas

waveguldes. S casg describes he lquid Teractiveé tp o “arror is, for all methods, lower for the weaker-confined

index, so that for TM-like modesi; = ny = ns = x modes

and 8n3_/8X — 8n_4/8x = Ons/0x = 1, wh_|le the other Figure4 presents the energy of the difference field between

waveguide properties are constant. For TE-like modes: h Iytical and the numerical FMM method. First of alisit

ny = ns = x and Ony /Iy = Onz/0x = Ins/Ix = 1 (see the analy . ) : >

Fig. 1) clear that something special happens for the fundamental TM
e like (TMO) and the 1st TE-like (TE1) modes in the waveguide

with a width of ~830 nm. We will explain this in SedV-B.

IV. COMPARISON WITH RIGOROUS NUMERICAL METHODS  The very small “wiggles” in the fundamental TE-like mode
In this section, we compare the analytical results of tHeetween waveguide widths of 820 nm and 840 nm are due

previous section with rigorous numerical results. To find thto our numerical discretization of the electromagneticdiel

transverse modes of the waveguide, we use the film modbich not exactly match the refractive index distributicr f

matching (FMM) method as implemented in the FimmWavieatures below 10 nm.

software packagelf)], [12]. In this method the cross-section The fundamental limit of thansatzis found by optimizing

of the ridge waveguide is split in vertical slices, and 1all free parameters such that the energy in the differente fie

dimensional modes are computed analytically for each .slicmmpared to the numerical result (the quantity plotted ia th

The 2-D modes are now found by simultaneously solvinfigure) is minimal.

the modal amplitude factors of the 1-D modes in all slices The method that gives the least difference with the rigorous

such that they construct a field obeying Maxwell’s equationsumerical result is the method whekg, k,, £, andn follow

The area of the numerical simulation extendar from the from the slab eigenvalue equations, while the field ampditud

waveguide, and 200 1-D modes are used per slice. The width-A;y are optimized by minimizing the mismatcbiym, in

of the waveguide is varied in steps of 10 nm, and in stefgs). 63) (amplitude optimization methpd~or this method, the

of 1 nm between 820 nm and 840 nm. For verification, wenergy in the difference field is below 2% for all waveguide

Equations %9) and 60) are given explicitly in AppendiB.
1) Influence of temperature on SOl waveguidesthe case
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optimization methodand thefull optimization methods very
small, especially considering that there is a fundamentar e
in the ansatz and that the error of the fields only manifests
itself at the interfaces of the waveguide core, which is diffi

to interpret from a physical perspective.

The improved approaches are, for all cases, more accurate
then Marcatili's original approaches. For these methols, t
full field-profiles are easily and intuitively calculatedh&
fields of the SOI waveguides considered in this work are
accurately described by thenproved £, ~ 0 method with
less than 3% energy in the difference field (except for the
crossing at 830 nm).

The improved £, ~ 0 methodis more accurate than the
improvedH, ~ 0 methodfor (b < 3d), i.e. for TE-like modes
and for TM-like modes in waveguides that are not very wide.
From the mismatch in the boundary conditions, the same trend
was expected and this crossing was expected at (6d).
Also, the difference between thmproved £, ~ 0 method
the improved H,, =~ 0 methodand the optimization methods
follows the same trend as expected from Se@.

In conclusion, the improved Marcatili's method describes
the effective indices and the field distributions of typical
0.001 + v ] SOl waveguides sufficiently accurately for many appliaadio
except when the effective indices of two modes are simitar. |
the next section, the modes found from our approximation are

relative error, in energy, Eq. (61)

relative error, in energy, Eq. (61)

1 H(c)TE1 G\.\ P ; used to explain what happens in these regions. When compared
e- -Fs. to rigorous numerical solutions, the error in the effectivéex
" \‘ [RRET - TN o.. ] was below 2% and the relative error in terms of the energy
0.1t Ik : of the fields was less than 3%. In addition, the optimization

method gives even more accurate results for the fields.

relative error, in energy, Eq. (61)

0.01y B. The avoided crossing phenomenon
Figures2 and4 suggest that something interesting happens
0.001 | at the apparent crossing of the effective indices of the TMO-

like and the TE1l-like modes when the width of the guide is
changed. A detailed inspection of the waveguides with vgidth
around 833 nm is presented in Fig.In plot (a), it can be seen
that the numerically computed effective indices of the 2nd a
Fig. 4. Energy in the electromagnetic difference field betwibe analytically _3rd mode in the waveguide (counted from high to low eﬁeCtIV_e
calculated fields and the rigorous numerically calculatddgijenormalized to index) actually do not cross each other, but show a behavior
the energy in the numerically calculated field. The fields arg considered that is known in guantum mechanicsamided crossing19].

in regions 1-5. Legend and layout of the figure is identicaFig. 3. We investigate the modes that where found numericﬂy

and E, in terms of the analytically computed approximate

. . modes of the waveguide.
modes considered here (except for the crossing at 830 nM)we will verify that the actual modes£) and EY can

Also, this method is very close to the fundamental limit af th;, good approximation be written as a superposition of the

ansatz _ . ~_TMO-like, Erwo, and TE1-like, Ere; modes that where cal-
The fact that the eigenvalue equations work so well, justifieulated using the approximate theognplitude optimization
the assumption that the boundary conditions at the 1-2 a@d hethod, i.e.

interfaces can be best used to calculateand the boundary E} ~ aErvo + bEre1, (62)
conditions on the 1-4 and 1-5 interfaces can be best used

to calculatek,. Deviating from thesek-values to minimize for some reak andb, and: = 2 or 3. The phase of modE;

the total mismatch in the boundary conditions only slightlis chosen such that coefficiebtis positive. The coefficient
reduces this mismatch and increases the error irkth@lues. of the TMO-like mode can be either positive or negative. The
Still, the quantification of the mismatch as done in Sé® approximate calculated moddsryo and E+1g;, are in good
gives surprisingly accurate results. The difference betweapproximation orthonormal such that normalization&f in
the fundamental limit of theansatzand both theamplitude the norm of Eq. 44) impliesb = v/1 — a2.

400 500 600 700 800 900 1000 1100
waveguide width [nm]
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"""" mode 3 Fig. 6. Electric fields of different modes in a 833 nm wide by 300
0.1 high waveguide. The dashed lines separate the differengdsee Fig. 1).

Modes Etyo, Ete1, EY and EY are plotted from top to bottom. Color
indicates the field strength, white regions have a low fietdrgith. Regions
0.01 with positive field strength are indicated with a plus (+)rs&nd red. Regions
---------------- with a negative field strength are indicated with a minus siyrafd blue.
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relative error, in energy, Eq. (61)

320 325 330 335 340 th.e z-direction can be formulated as an eigenvalue problem
waveguide width [nm] with the propagation constant as eigenvalue. In fact, by
eliminating the longitudinal componentg, and H, from

Fig. 5. Investigation of the avoided crossing of effectiveices of two modes. Maxwell's equations, one obtains the following eigenvalue

Plot (a): numerically calculated effective indices of thed2and 3rd mode,
zoom-in of Fig.2(a). Plot (b): power in the TMO-like mode when the fields ofpmblem for the transverse components Only

the modes in plot (a) are written as a superposition of a TM@dind a TM1-

like mode. The curves in plot (a) are color-coded accordirigjigt (c): Relative E, ($7 y) E, (:C, y)

energy in the electromagnetic difference field between tipemosition and ~ | E (ac y) E (x y)

the rigorous numerically calculated fields, to be comparedi Wwig 4 (b,c). 0 L = YA 63
9 y p 4 (b,c) H(z,y) Bi Howy) (63)

The coefficienta of the TMO-like mode is optimized suchith the propagation constart; as eigenvalue and witl)
that the difference measured using Egfl)(between the left- 5 second order partial differential operator with respect t
and right-hand sides of Eq62) is minimum. The result is transverse variablesandy. We consider forward propagating
plotted in Fig.5(b), where it can be seen that mode 2 lookgaves with positive3;. The operatorO is not symmetric,
like a TMO-mode at the left of the crossing, while it look§yowever it can be shown that solutions of E3)( are

like a TE1-like mode on the right-hand-side of the crossingythogonal with respect to the bilinear form derived frore th
whereas close to the crossing the modes are an equal mixiyéRer flux ]

of Etmo and Eqg1. In Fig. 5(c), it can be seen that the error

between the superpositioR’; and the rigorous numerically 2

calculated fieldEN close to the apparent crossing is small (ilg) = // (E2 X Hj) - 2 dxdy = d;; (64)

and similar to the error that was found away from the crossing Zi

(see Fig.4). Therefore we may indeed conclude that the

field around the crossing can be written as a superpositionwfere the inner product between two solutiongnd j is

modes of the types that are present away from the crossifligfinedd;; is the Kronecker delta function, and the eigenfields

Figure 6 presents the electric field&rvo, Ere1, EJ and have been normalized. We adopbia-ketnotation and write

EY for a 833 nm wide by 300 nm high waveguide, wher&d. 63) as

a? =~ b? ~0.5. Oli) = Bili) (65)
Using this observation, we will derive a qualitative de-

scription of thisavoided crossingThe exact description of We now apply the aforementioned observation that in good

propagation of light through waveguides that are invariant approximation the electromagnetic fields of the modes in the
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waveguide, also around the crossing, can be written asngeresting case occurs whef) = 5, andd,, = dyq. Then the

superposition of the approximate fields, hence normalized eigenvectors of this system are= % -(1,1)

E; ~ aBryo + bEres, o |i) ~ ala) + b|b), (66) and vs = % : (1,71_), i.e. they are either an ac_idition or
subtraction of the eigenvectors far from the crossing.

where|a) and|b) represent the TMO-like and TE1-like modes This simple description of thavoided crossinggrees with
in the waveguide, respectively, whilé) represents the exactthe observations of the numerically computed modal profiles
solutions of Eq. §5). We only consider the 2nd and 3rdas presented in Fig$. and6.
approximate solutions here. As will become clear, only nsode
with similar propagation constants have to be taken in — . .
account around the crossing, whereas the other modes Eg're'\!m/e' applications of the eigenvalue equation of the prop
already accurately calculated by the approximate metho%gatlon constant
presented in this paper. Substituting EG6)(in Eq. 65) and ~ We applied the analytical eigenvalue equations for the

taking the inner product witlia| gives effective index of the modes in rectangular waveguide to
R . explicitly calculate of the effective group index (Set-A),

a{a|Oa) + b{a|Ob) ~ B; (a(ala) + b{alb)) - (67) as well as the linearized influence of an external effect (Sec

If we also take the inner product of Eg5) with (5| we arrive !lI-B). In this section, we compare those analytical results with
at the (2x2)-system: rigorous numerical simulations. For numerical calculatf

. . the linearized influence of an external effect on the eféecti
<<GQCL> <G|Qb>> <a> ~ Bi <<a|a> <a|b>) (a) (68) index of the modes in the waveguide, we use the following
(blOa)  (b|lOb) ) \b *\(bla) (blb) ) \b) " procedure: first, we calculated the effective refractiveein
or, (nesr) for different values of the external effect)(that are
M (a> ~ B; <a> (69) around the starting valuey{), then, a linear fit is used to
b “\b)’ obtain thednes/ 0.
where M — 1) Effective group index:The method presented in Sec.
1 (blb)(alOa) — {alb) (5|0a) (blB) (|OB) — {alB) (|OB) [lI-A is investigated in this section. Equatiors), (77) and
— ( > (78) are used to calculate the effective group index of the

D \~(bla)(alOa) + (ala)(b]Oa) - —(bla){alOb) + (ala) (blOB) ] 115 es in the waveguides. The silicon dispersion is taken int
and account, withdn, /0ky = 3.147-10% m~! [16]. These results
D = {(a]a)(b|b) — (a|b)(bla). are compared with the group index that was numerically ealcu

Iaeted using the FMM method as implemented in FimmWave.
al&esults are presented in Fig.where can be seen that the
error remains below 4%.

The modes that we found in our approximate analysis
almost orthonormal, s@z:|a) and(b|b) are approximately unity

and (a|b) and (bla) are approximately zero. Away from the ) L .
crossing, we found that the approximate solutigprisand |b) 2) Temperature—mduceq effgcnve index change: rigor- .
ously compute the linearized influence of temperature varia

obey relation Eq. §5) so that(a|Oa) ~ B4, (b|Ob) ~ By, . - )
while (a|Ob) and (b|Oa) are small. This allows us to write tions on the e_ffecfuve m_dex of the Wavegwgle,_the tempeeatu
the relation Eq. §9) as in the simulation is varied from 20C to 28°C in steps of 2
°C. The influencene/9T is compared with the analytically
<ﬁa+§a Sab > (a> ~ B, <a> (70) calculated influence in Fig. 8. Two effects are taken into
~ M b ’

Oba  Bot+d) \b account: the thermo-optic effect usidg, /0x = 1.83 - 1074

whered,, &y, dap, anddy, are quantities that are much smallerC '+ and the thermal expansion usiéiyy 0x = ab m/°C' and

than thes'’s. This system has the eigenvaluds][ dd/dx = ad m/°C, with linear thermal expansion coefficient
a = 2.6-107%°C! [16], [1§]. The effects are investigated
_ 5; + ﬂl/) £+ \/(5& - 61/7)2 + 4611!)51)(1

B (71) simultaneous (net effect) and the effect of the expansidyn on
’ 2 2 ’ is also shown separately. This separate investigation, ddes
with corresponding eigenvectots 3 (not normalized) course, not simulate a physical measurement but it gives a
25 good test case for the method. From Rgit can be concluded
ab . . .
) y , (72) that the effects are well estimated with a relative erroowel
— I )2
( B+ By /(B = B)* + 45“b6b“) 7%. The error is much smaller for modes that are less confined,

where 3, = 8, + 0, and 8, = (3, + 0. The two propagation and the effect of the geometrical change is better estimated
constants are closest whe¥) = §; but are always separatedthan the effect of the silicon index change.

by a minimum distancé+/0,,95., SO that they never intersect. 3) Cladding-index induced effective index change:Sec.

For smalld,, 3y, 0ap, dba < |Ba — B, we find the eigenvector 111-B2, we described the linearized influence of a change in
for 5, > By to be vy =~ (1,0) and vs =~ (0,1). The upper refractive index of the cladding of the waveguide. This o, f
propagation constanti,, has a TMO-like mode in this limit, example, used in evanescent field sensors, where a liquid flow
while the lower propagation constagt;, has a TE1-like mode. over the waveguide surface. For example, aqueous solutions
For 8, > 8, we find vy = (0,1) andwvs = (1,0), so that the with different concentrations of sucrose or sodium chiemsme
upper propagation constant now has a TEl-like mode whilsed in Refs.f4] and [15], respectively. The rigorous numer-
the lower propagation constant has a TMO-like mode. Ainal results are obtained by changing the cladding refracti
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index from 1.310 (water) to 1.320 in steps of 0.002. From, this APPENDIXA

Onett/Onglag iS extracted. Results are shown in F&j.where EXPLICIT EQUATION FOR MODAL DISPERSION

it can be seen that relative errors are up to 23%. These errorg, gec. [II-A, partial derivativesdk, /dk, and dk, /Okq

rapidly decrease for wider waveguides, i.e. for less-cedfin\yere given by Egs.56) and 67). In this section, we give

modes. Ok, /0ko and dk, /Ok, for the case when only the core ma-
terial is dispersive, i.en; (ko) and where the other refractive
indices do not depend on the frequency, thus also noton

V. CONCLUSION We define:
k2 ’)/2 1

4 2 ?
nq ng ns7Y2

«
We derived a model for high-index-contrast rectangular ?

dielectric waveguides, based on ansatzthat describes the k2 2 1

: ) : . . Qo= [Tz 2 (74)
fields in the core of the waveguide as standing waves. As in 3= nd " nd ) nZyg’

Marcatili’'s work, we also arrive at eigenvalue equationstfee k2 4 A2

spatial frequencies of the standing waves, igeandk,, that =45 (75)
are identical to the eigenvalue equations of slab waveguide ) 4 )

order to obtairk,, we use the limit that the waveguide extends s Eky +7% . (76)
to infinity in the y-direction, and order to obtaly, we use the s

limit that the waveguide extends to infinity in the x-dir@tti  And find that Eqs. %6) and 67) are explicitly given by Egs.
The effective refractive index of the mode in the waveguidgz7) and (78), which are shown on the next page.

which directly follows fromk, andk,, agrees excellently with
rigorous numerical mode solvers (relative errar 2%). In APPENDIXB

comparison with Marcatili's original work, our novel cheic EXPLICIT EQUATION FOR EXTERNAL EFFECT
of electromagnetic field amplitudes in thasatzremoved the

discontinuity of the dominant electromagnetic field comp In this appendix, we give the explicit form of Eq&9 and

nents, which was severe for high-index-contrast waveguid 60). Let:

This improvement led to better agreement with numerical Qq zlg + li; (79)
simulations, with a relative energy of the difference fiedddw N N3

3%, except when the effective indices of two modes in the o :kjc _ e (80)
waveguide are similar. We quantified the error that arises fr R

the discontinuity of the fields in terms of energy densitytWi then Egs. 9) and 60) are identical to Egs.8() and 82),

this quantification, we accurately predicted the trend i@ thyee next page, where,-a; are defined in Eqs.7Q) - (76).
error of the different analytical methods. In addition, sthi

guantification allowed us to optimize the amplitudes in the ACKNOWLEDGMENT

ansatzsuch that minimal mismatch is achieved. @unplitude .

optimization metho@ccurately describes both TE-like as well The authors WOUId. like 1o thz_ink dr. Omar__EI Gawhary,
as TM-like modes in the rectangular waveguides (except whg Jose Pozo, mr. Vlnf:ent Brulis, dr. Jos Thu;sen, .dr. Ad
two modes have similar effective indices), and the errohaf t ferbruggen, and ir. Kevin van Hoogdalem for fruitful diseus
method with respect to the numerical results is very close s

the fundamental error in thensatz

Next to this, we derived explicit expressions for the effext
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group index of the waveguide, taking dispersion into actoun for integrated optics, The Bell System Technical Journabl. 48, pp.
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