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Extension of Marcatili’s analytical approach for
rectangular silicon optical waveguides
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Abstract—Marcatili’s famous approximate analytical descrip-
tion of light propagating through rectangular dielectric wave-
guides, published in 1969, gives accurate results for low-index-
contrast waveguides. However, photonic integrated circuit tech-
nology has advanced to high-index-contrast (HIC) waveguides.
In this paper, we improve Marcatili’s model by adjusting the
amplitudes of the components of the electromagnetic fields in
his description. We find that Marcatili’s eigenvalue equation
for the propagation constant is also valid for HIC waveguides.
Our improved method shows much better agreement with rig-
orous numerical simulations, in particular for the case of HIC
waveguides. We also derive explicit expressions for the effective
group index and the effects of external forces on the propagation
constant. Furthermore, with our method the phenomenon of
avoided crossing of modes is observed and studied.

Index Terms—Optical waveguides, Electromagnetic propaga-
tion, Electromagnetic fields, Integrated optics, Silicon on insula-
tor technology, Optical sensors.

I. I NTRODUCTION

The propagation of light through rectangular dielectric
optical waveguides cannot be described in closed analytical
form. Marcatili’s famous approximate analytical approach
[1] has been used since the 1970’s and is treated in many
textbooks on optical waveguides theory [2]–[5]. His method is,
however, derived for waveguides with a low refractive index
contrast, while nowadays technology has advanced to high-
index-contrast (HIC) waveguides. Silicon-on-insulator (SOI)
technology has, for example, become one of the focus plat-
forms for integrated optics over the last decade. The large
refractive index contrast of the materials allows for small
device footprint. High-yield mass fabrication is providedusing
CMOS processes from the electronics industry, that have been
tailored to photonic applications [6]. Behavior of integrated
optical components, such as ring resonator filters or arrayed
waveguide grating (AWG) based multiplexers depend critically
on the exact knowledge of the propagating modes in the
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waveguide [7], [8]. Although numerical solutions such as the
circular harmonics method, the film mode matching (FMM)
method, the variational mode expansion method (VMEM),
or the finite element method (FEM) are available [9]–[12],
we believe that an analytical model is useful in order to
gain insight in the physics of the devices, and also for fast
explorative simulations of photonic integrated circuitry[13].

In this paper, we extend the range of waveguides for which
Marcatili’s approximate approach can be applied, in particular
to high-index-contrast waveguides. Similar to Marcatili,we
use anansatzfor the form of the modal fields that is based
on separation of variables in the waveguide core. The large
index contrast causes, in Marcatili’s original approach, asevere
mismatch of the electromagnetic fields just inside and just
outside the core of the waveguide. We show that Marcatili’s
eigenvalue equation for the propagation speed of the light
through waveguides is, in fact, more general and we obtain
improved modal electromagnetic fields for the same eigenvalue
equation, which have a much lower mismatch. An analytical
description is presented, and is compared with the fundamental
mismatch of thisansatz, which is found by means of an
optimization algorithm.

Next to this, explicit equations are derived for the effective
group index and for the linearized influence of external effects
on the effective index of the modes. As an example, we
analytically calculate the influence of temperature on the
effective index of the modes in the waveguide. Also, results
are presented on photonic evanescent field sensors, where the
refractive index of the medium in the vicinity of the waveguide
is probed with the evanescent tail of the waveguide mode [14],
[15].

Throughout this paper, we test the analysis with the first
three modes in a typical SOI waveguide with a guiding layer
height of 300 nm, with infrared light that has a free-space
wavelengthλ0 = 1550 nm. These guides consist of a thin
monocrystalline silicon layer (n = 3.476) on top of a thick
silicon dioxide (BOX) layer (n = 1.444) [16]. The influence
of the silicon substrate below the BOX layer is neglected.

In the next section, we present our extension of Marcatili’s
approach. In Sec.III , we apply the eigenvalue equation for the
effective index and derive explicit equations for the effective
group index and for the effects of external forces. In Sec.IV,
we compare our theory with rigorous simulations of typical
SOI waveguides. SectionV concludes this paper.
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II. T HEORY

In this section, we describe an approximate model of how
light travels through rectangular high-index-contrast (HIC)
dielectric waveguides. In Sec.II-A , we make anansatzfor
modes in a rectangular waveguide, and briefly investigate the
implications of thisansatzat the interfaces of the waveguide
core. In Sec.II-B, we describe Marcatili’s choice of parameters
for theansatzand Sec.II-C presents our improved method. In
Sec.II-D, we present a quantification of the error that arises
from the discontinuities of the electromagnetic field at the
interfaces, and we propose an optimization method based on
this quantification. In Sec.II-E, we use this quantification to
discuss the different methods.

A. Rectangular waveguides

In regular lossless dielectric waveguides, the core of the
waveguide has a higher refractive index (n1) than the sur-
rounding media (n2-n5), as depicted in Fig1. The refractive
indices for the outer quadrants, i.e. in the corner regions,are
not specified because we neglect these regions. We consider a
monochromatic wave with angular frequencyω, propagating in
the waveguide direction (z) with a propagation constantβ. For
a two-dimensional refractive index profilen(x, y), solutions of
Maxwell’s equations can be found in the form

E(x, y, z, t) = Re{E(x, y) exp[ı(ωt− βz)]} , (1)

and a similar description ofH, with E and H being the
electric and magnetic field, respectively. The free-space prop-
agation constant isk0 = ω/c, wherec is the speed of light in
vacuum. When the propagation constantβ is larger than the
propagation constant that is allowed in the regions outsidethe
waveguide core, due to spectral cut-off (i.e.β > k0nj , with
j = 2, .., 5), the light is confined in the core of the waveguide.
The lateral confinement of such guided waves dictates the light
to exist in the form of certain modes, or “standing waves”.

Using Maxwell’s equations, it is now possible to describe
the full electromagnetic fields in terms of the longitudinalfield
components [2], i.e. in regionj
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whereµ0 and ǫ0 are the permeability and the permittivity of
vacuum, andKj is defined by

Kj =
√

n2
jk

2
0 − β2. (6)

All components, and hence in particular the longitudinal
componentsEz and Hz, satisfy the reduced wave equation
(here given forEz) [2]:
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Fig. 1. Schematics of a rectangular waveguide with a width of 600 nm and a
height of 300 nm, used to guide light with a free-space wavelength of 1550
nm. (a) 3-D sketch of the waveguide, also displaying the tangential electric
field components. (b) Cross-section of the waveguide atz = 0. Regions 1
to 5 are indicated. The shaded corner regions are neglected in this analysis.
The color plot representsEx, the dominant electric field component, of the
fundamental TM-like mode. (c) Sketch of the cross-section of the waveguide
with the coordinate frame for a typical TM-like mode. Shape ofEx in the x
direction (solid line) and in the y-direction (dashed line). Refractive indices
n1 = 3.476, n2 = 1.444, n3 = n4 = n5 = 1. (d) Sketch of the cross-
section of the waveguide with the coordinate frame for a typical TE-like mode.
The waveguide geometry is rotated such thatEx is tangential to the “upper”
surface of the waveguide. Refractive indicesn1 = 3.476, n4 = 1.444,
n2 = n3 = n5 = 1. The mode profiles in this figure are calculated using
the amplitude optimization method.

Furthermore, when Eqs. (2)-(5) are satisfied, the electric and
magnetic fields satisfy∇ · (ǫ0n2

jE) = 0 and ∇ · H = 0,
respectively.

In this section, we adopt a description of the behavior
of the light in a rectangular waveguide that is based on
separation of spatial variables (x, y) in the core region, similar
to Marcatili’s ansatz. We neglect the effect of the corners
based on the observation that the field is small in those
areas. The modal field then consists of standing waves in the
core of the waveguide and an exponentially decaying field
outside the core (see Fig1). We will show that the form we
propose here can not provide an exact solution of Maxwell’s
equations, and thus provides an approximate description ofthe
physics. The proposed solution obeys Maxwell’s equations in
regions 1-5, so that all errors that arise from the approximation
show themselves at the interfaces between the waveguide
core and its cladding. At these interfaces, continuity of the
electromagnetic field components tangential to these interfaces
is required (referred to as the electromagnetic boundary condi-
tions), but we allow for discontinuities that are small compared
to the field strength in the core of the waveguide. When all
tangential components are continuous, the normal components
automatically obey Maxwell’s equations.

In our analysis, we propose a form where the electric field
is predominantly polarized in the x-direction. From symmetry,
the field could as well be chosen predominantly polarized in
the y-direction as there is no further discrimination between
the x- and the y-direction. Sketches (a)-(c) in Fig.1 show
the fundamental TM-like mode in a waveguide with a width
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of 600 nm and a height of 300 nm. Sketch (d) shows
the fundamental TE-like mode in this waveguide. Instead of
rotating the coordinate-frame, the waveguide itself was rotated
such that the “top” surface of the waveguide is tangential to
Ex.

We make theansatzon the form of the longitudinal com-
ponents of the modal electromagnetic field in region 1:

Ez =A1 sin[kx(x+ ξ)] cos[ky(y + η)], (8)

Hz =A2 cos[kx(x+ ξ)] sin[ky(y + η)]. (9)

Then the transversal electromagnetic field components inside
region 1 follow from Eqs. (2)-(5) as

Ex =
(βA1kx + ωµ0A2ky)

ıK2
1
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2
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(13)

In region 2, we set

Ez =A3 exp[γ2(x+ d/2)] cos[ky(y + η)], (14)

Hz =A4 exp[γ2(x+ d/2)] sin[ky(y + η)], (15)

in region 3

Ez =A5 exp[−γ3(x− d/2)] cos[ky(y + η)], (16)

Hz =A6 exp[−γ3(x− d/2)] sin[ky(y + η)], (17)

in region 4

Ez =A7 sin[kx(x+ ξ)] exp[γ4(y + b/2)], (18)

Hz =A8 cos[kx(x+ ξ)] exp[γ4(y + b/2)], (19)

and in region 5

Ez =A9 sin[kx(x+ ξ)] exp[−γ5(y − b/2)], (20)

Hz =A10 cos[kx(x+ ξ)] exp[−γ5(y − b/2)]. (21)

Here, amplitudesA1 - A10, spatial frequencieskx, ky, spatial
shiftsξ, η, and exponential decay strengthsγj > 0, j = 2, .., 5
are still to be determined. The transversal components are
calculated from Eqs (2)-(5). From the wave equation (7) in
region 1, we arrive at

K2
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1k
2
0 − β2 = k2x + k2y, (22)

or, with positiveβ,
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√
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2
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The effective (refractive) index of the mode in the waveguide is
defined byneff = β/k0. From the wave equation (7), together
with Eq. (22), we find
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The sine and cosine dependency onx andy, of the transver-
sal electric (Ez) and magnetic (Hz) field components, was
chosen such that the dominant electric field component (Ex)
is described by a cosine function in bothx and y direction.
For most common waveguidesn2 ≈ n3 andn4 ≈ n5, from
which follows that spatial shiftsξ and η are small. From
the observation that the field of the fundamental mode of
a waveguide has its highest energy density in the center of
the guide, we expect that the field components with a cosine
behavior in both x- and y-directions (Ex andHy) carry the
majority the field’s energy, next the components with a sine
and a cosine dependence in x or y (Ez andHz), and finally
the least energy is expected in the field components that have
a sinusoidal profile in both x- and y-direction (Ey andHx).
These components have antinodes (i.e. high energy density)
in the corners of the waveguide core.

This description hasA1 - A10, ξ, η, kx and ky as free
parameters. There are 4 interfaces, with 4 tangential field
components to be matched per interface, adding up to 16
equations from the electromagnetic boundary conditions. The
tangential field components are depicted in Fig.1(a). Field
amplitudeA1 is used as normalization factor, so we end up
with an overdetermined system of only 13 free parameters for
16 equations.

In summary, we proposed anansatzon the form of the
electromagnetic fields of the modes in a rectangular dielectric
waveguide, such that Maxwell’s equations are obeyed in
all regions 1-5. Thisansatzhas 13 free parameters. From
continuity of the tangential electromagnetic field components
at the interfaces, 16 boundary condition equations follow.In
the remainder of Sec.II-A , the requirements that follow from
continuity at either the surface normal (Sec.II-A1) or parallel
(Sec. II-A2) to the dominant electric field component, are
given.

1) Obeying the electromagnetic boundary conditions at the
interfaces normal to the dominant electric field component:
In this section, we derive the requirements that follow from
continuity of the fields at the 1-2 and 1-3 interfaces. The
dominant electric field component,Ex, is orthogonal to these
interfaces, so an infinitely wide, in the y-direction (b → ∞),
rectangle will describe a TM mode in a slab waveguide, see
Fig. 1(c). From all eight electromagnetic boundary conditions
at these interfaces, we find

A2 =
ωǫ0n

2
1ky

βkx
A1, (28)

A3 =A1 sin[kx(ξ − d/2)], (29)

A4 =A2 cos[kx(ξ − d/2)], (30)

A5 =A1 sin[kx(ξ + d/2)], (31)
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A6 =A2 cos[kx(ξ + d/2)], (32)

together with

tan[kx(ξ − d/2)] = −n2
1

n2
2

γ2
kx

, (33)

tan[kx(ξ + d/2)] =
n2
1

n2
3

γ3
kx

. (34)

Equations (29)-(32) follow directly from the continuity ofEz

andHz. The continuity ofEy andHy is most easily verified by
substituting Eqs. (28)-(34) into the remaining electromagnetic
boundary conditions. With these field amplitudesA2 - A6, the
magnetic field componentHx is zero in regions 1, 2 and 3,
as follows from Eq. (4).

The last two equations, (33) and (34), can be recognized as
the eigenvalue equations for a TM mode in a slab waveguide
[2], [4]. These eigenvalue equations thus do not only hold for
a slab solution where∂/∂y = 0 andHy, Ex andEz are the
non-zero field components, but also for ouransatzwhere there
is a variation in the y-direction. We eliminateξ from these two
equations, and arrive at the functional

G(kx, k0, n1, n2, n3, d) ≡ tan[kxd]−
n2
1kx(n

2
3γ2 + n2

2γ3)

n2
2n

2
3k

2
x − n4

1γ2γ3
= 0.

(35)
2) Obeying the electromagnetic boundary conditions at the

interface parallel to the dominant electric field component:
When we obey all eight boundary conditions at the 1-4 and
1-5 interface, to which the dominant electric field component,
Ex, is parallel, we find

A2 =
βky

ωµ0kx
A1, (36)

A7 =A1 cos[ky(η − b/2)], (37)

A8 =A2 sin[ky(η − b/2)], (38)

A9 =A1 cos[ky(η + b/2)], (39)

A10 =A2 sin[kx(ξ + b/2)], (40)

together with

tan[ky(η − b/2)] = −γ4/ky, (41)

tan[ky(η + b/2)] = γ5/ky. (42)

Eliminating η from latter two equations gives

F (ky, k0, n1, n4, n5, b) ≡ tan[kyb]−
ky(γ4 + γ5)

k2y − γ4γ5
= 0. (43)

Equations (37)-(40) follow from the continuity ofEz and
Hz. Continuity of Ex and Hx is checked by substituting
Eqs. (36)-(42) into the four boundary conditions corresponding
to these field components at the two interfaces. It follows
from Eq. (3) that with these field amplitudesA2, A7 - A10,
the electric field componentEy is zero in regions 1, 4 and
5. Equations (41) and (42) are identical to the eigenvalue
equations for a TE mode in a slab waveguide.

3) Conclusion:The eigenvalue equations that follow from
the analysis of slab waveguides, in which invariance of the
field in one direction is assumed, are in fact more general.
Identical equations follow from theansatzfor Ez and Hz,
i.e. Eqs. (8)-(21), and from imposing the boundary conditions
on the horizontal or vertical interfaces of the rectangular
waveguide.

Obeying all electromagnetic boundary conditions at the
interfaces normal toEx (Sec. II-A1) demand a different
amplitude coefficient of the magnetic field in the core (A2)
then the conditions that follow from the interfaces parallel to
Ex (Sec. II-A2). Therefore theansatzhas no solutions that
excactly obeys the electromagnetic boundary conditions atall
interfaces simultaneously. The next sections are devoted to
different possibilities for choosing the free parameters such
that a low mismatch of the fields at the boundaries is achieved.

4) Normalization:Throughout this work,A1 is normalized
such that the power flux through waveguide regions 1-5 equals
unity, i.e.

P =
1

2
Re











∫∫

regions 1-5

(

ExH
∗
y − EyH

∗
x

)

dxdy











= 1, (44)

where the integral runs over the regions 1-5.

B. Marcatili’s approach

Marcatili has developed a widely used analytical approach
for low-index-contrast waveguides [1]. For propagating modes
in these guides,k0nj ≈ β because modes are not guided
otherwise, sokx/k0nj and ky/k0nj are much smaller then
unity. Therefore those quantities are neglected in second order.
This is often referred to as “far from cutoff”, while, “closeto
core material spectral cutoff” would be more appropriate.

In Marcatili’s work,Hx is set to zero in all regions. With this
requirement, all electromagnetic boundary conditions at the 1-
2 and 1-3 interface can be satisfied. This was shown in Sec.
II-A1, where the requirement thatHx = 0 in regions 1, 2 and
3 followed from the boundary conditions at these interfaces.
At the 1-4 and 1-5 interfaces approximations are necessary
since not all boundary conditions can be satisfied at these
interfaces.Hx is set to zero and continuity follows trivially.
In the approximate matching ofEx across these interfaces,
quantities on the order of(kx/k0nj)

2 are neglected, which
is reasonable for low-index-contrast waveguides. For these
guides,

√
µ0Hz is larger than

√
ǫ0Ez, and is matched across

the horizontal interfaces, whileEz is not matched. From the
requirements above, it is found that the eigenvalue equation
of this waveguide is identical to the slab eigenvalue equations
(33), (34), (41), and (42). We will refer to this approach as
Marcatili’s Hx = 0 method.

Although neglecting terms on the order of(kx/k0nj)
2 is

valid for low-index-contrast waveguides, this quantity iseven
larger than unity outside the core region of high-index-contrast
waveguides. This approximation introduces a large mismatch
in the continuity ofEx, which is the dominant electric field
component.
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Similarly, another approximate solution is obtained by
setting Ey = 0 [1], [3]. With this demand, all boundary
conditions at the interface parallel toEx can be satisfied, and
mismatches occur at the 1-2 an 1-3 interfaces. Analogue to the
approach above,Ey is trivially matched andEz is matched,
but Hz is not. Hy, which is the dominant magnetic field
component, is matched while neglecting terms on the order of
(kx/k0nj)

2. Although the field amplitudes are different to the
case whereHx = 0 in all regions, the eigenvalue equations of
this waveguide description are identical and thus also given by
Eqs. (33), (34), (41), and (42). We will refer to this approach
asMarcatili’s Ey = 0 method.

C. Improved method

In this section, we present two improvements of Marcatili’s
methods that give a better description of high-index-contrast
waveguides. Two choices for the matching of the boundary
conditions are presented, one where the fields at the interfaces
normal to the dominant electric field component,Ex, are
continuous, and one where the fields at the interfaces parallel
to Ex are continuous. In Sec.II-E, we show that the latter is
more accurate for the cases considered in this paper.

We argue that the dominant boundary conditions for deter-
miningkx andξ are at the 1-2 and 1-3 interfaces, and therefore
Eqs. (33) and (34) are used to determinekx andξ. Similarly,
continuity at the 1-4 and 1-5 interfaces is used to determine
ky and η using Eq. (41) and (42). This is supported by the
argument that the two different approximations of the modal
electromagnetic field as presented by Marcatili both yield these
eigenvalue equations.

1) ImprovedHx ≈ 0 method: In comparison with Mar-
catili’s approach, we remove the discontinuity of the dominant
electric field at the cost of the weak magnetic field component,
Hx, being not continuous across the 1-4 and 1-5 interfaces.
In this approach, we demand continuity of the tangential
electromagnetic fields at the 1-2 and 1-3 interfaces, which
are normal toEx. This determines the electromagnetic fields
in regions 1, 2 and 3 by amplitudesA2-A6, analogue to
Marcatili’s Hx = 0 method. At the 1-4 and 1-5 interfaces,
we choose to matchEx and Hz perfectly. The first is the
dominant electric field component. The latter is chosen in favor
of matchingEz because an infinitely high (d → ∞) waveguide
is identical to a slab waveguide in whichEz = 0. These
requirements determine the electromagnetic field in regions 4
and 5, in whichHx is not necessary zero. We will refer to
this method as theImprovedHx ≈ 0 method.

This gives the slab eigenvalue equations (35) and (43), and
field amplitude Eqs. (28)-(32), together with

A7 =A1

(

1 +
k20(n

2
1 − n2

4)

β2

)

cos[ky(η − b/2)], (45)

A8 =A2 sin[ky(η − b/2)], (46)

A9 =A1

(

1 +
k20(n

2
1 − n2

5)

β2

)

cos[ky(η + b/2)], (47)

A10 =A2 sin[ky(η + b/2)]. (48)

2) ImprovedEy ≈ 0 method: This improvement removes
the discontinuity of the dominant magnetic field component
Hy, that was present inMarcatili’s Ey = 0 method. We match
all tangential field components at the 1-4 and 1-5 interface,
which are parallel to the dominant electric field component.
From Sec.II-A2 follows thatEy = 0 in regions 1, 4, and 5.
At the 1-2 and 1-3 interfaces,Hy is matched because it is
the dominant magnetic field component, andEz is matched
in favor ofHz because an infinitely wide waveguide (b → ∞)
is identical to a slab waveguide in whichHz = 0.

We find the slab eigenvalue equations (35) and (43), and
field amplitude Eqs. (36)-(40), together with

A3 =A1 sin[kx(ξ − d/2)], (49)

A4 =A2

(

1 +
k20(n

2
1 − n2

2)

β2

)

cos[kx(ξ − d/2)], (50)

A5 =A1 sin[kx(ξ + d/2)], (51)

A6 =A2

(

1 +
k20(n

2
1 − n2

3)

β2

)

cos[kx(ξ + d/2)]. (52)

D. Least-discontinuity optimization of the ansatz parameters

In Sec. II-A , we presented anansatzon the form of the
electromagnetic field for modes in a rectangular waveguide.
This ansatzwas chosen such that Maxwell’s equations are
satisfied in regions 1-5, so that all errors manifest themselves
at the four interfaces of the waveguide core. This error,
which is the discontinuity of the tangential electromagnetic
field components at these interfaces, is referred to as the
mismatch. The measure we adopt to quantify this mismatch,
or error, is the average energy density that is associated with
these discontinuities. In Sec.IV, we show that this intuitive
quantity excellently agrees with rigorous numerical results.
This analysis is performed in a cross-section of the waveguide
at z = 0, at time t = 0, as further longitudinal and temporal
behavior follows trivially from Eq. (1). We define:

Umm =
ǫ0
4l

∮

(n+ + n−)2 ·
∣

∣ν̂ ×
(

E
+ −E

−
)∣

∣

2
dl (53)

+
µ0

l

∮

∣

∣ν̂ ×
(

H
+ −H

−
)∣

∣

2
dl.

The four interfaces of the waveguide are simultaneously de-
scribed by the integral. The line integral runs along the circum-
ference of the waveguide in the (x,y)-plane, andl = 2(b+d) is
the length of this circumference.E+ andE− are the electric
fields just outside and inside the waveguide core region 1, so
that(E+−E

−) represents the discontinuity of this field, andν̂

is a unit vector orthogonal to the waveguide surface. The cross
product ofν̂ with the discontinuity in the field just selects the
tangential components.n+ andn− are the refractive indices
just outside and inside the waveguide. At the interface, an
average refractive index(n++n−)/2 is assumed to calculate
the energy density of the electric field components.

Although Umm can be intuitively interpreted as an energy
density, we cannot attach a rigorous physical meaning to this
quantity. The mismatch in the fields only occurs at interfaces,
which have no physical volume. Therefore the energy density
cannot be integrated over volume in order to obtain a total
energy.
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In this section, we use this quantity to propose a new (semi-)
analytical method. In the next section, we use this quantityto
investigate the methods of the two previous sections (II-B and
II-C) without resorting to numerical simulations.

In what we call thefull optimization method, the mismatch
in the fields at the boundaries, as given by Eq. (53), is
minimized using an unconstrained nonlinear optimization as
implemented in MATLAB [17]. The initial parameters are cal-
culated from the improved method as presented in Sec.II-C2.

The full optimization methodmay be compared with the
variational mode expansion method (VMEM) [11], which is
also based on a separation of variables. However, the methods
differ substantially because the modal fieldansatzdiffers and
also the object function used in the variational principle of
VMEM differs from the object function that is minimized
in our approach. The VMEM is applicable to more general
structures.

It is interesting to know how accuratekx and ky, and
thus the effective refractive index, are calculated using the
analytical methods. The effective indices that follow fromthe
eigenvalue equations on the one hand, and from the least-
mismatch optimization on the other hand, are presented in Fig.
2. It can be seen that the difference between the two methods
is small. The influence of this difference in propagation speed
on the mismatch of the fields at the interfaces is investigated by
optimizing the field amplitudesA2 - A10 with fixed kx, ky, ξ,
andη as calculated from the analytical eigenvalue equations.
As Eq. (53) is quadratic in the amplitudesA2 - A10, this
minimum can be found analytically. This method is referred
to as theamplitudes optimization method. As can be seen
in Fig. 3, the mismatch of the method with the fittedk’s
(kx andky) and method with the analytical calculatedk’s is
almost identical. Therefore we conclude that, with theansatz
for the fields as described in Sec.II-A , and the error of the
model described by the field mismatch, Eq. (53), the values
of kx and ky are very accurately calculated from analytical
slab eigenvalue equations, for the typical SOI waveguides as
considered in this paper.

E. Discussion of the different methods

In Fig. 3, all six different methods are compared. The energy
associated with mismatch of the electromagnetic fields at the
boundaries of the core of the waveguide,Umm, is plotted for
three types of waveguide modes.Umm can be interpreted as
the energy density of the error at the interfaces. In order to
get a feeling for the magnitude ofUmm, the average energy
density in the core region of the waveguide is also plotted in
this figure (black dashed line).

For all geometries, the improved methods are better than
Marcatili’s original methods. Considering the fundamental
modes in a 400 nm wide waveguide, and the 1st order TE-like
mode in a 650 nm wide waveguide, we see that the mismatch
in Marcatili’s Ey = 0 methodis 1.5 to 4 times larger than
the mismatch in theimprovedEy ≈ 0 method. In Marcatili’s
method, the power flux through regions 2, 3, 4, or 5, i.e. in
the evanescent tail of the mode, is sometimes negative (or in
backwards propagating direction). This is an indication ofthe
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Fig. 2. Effective refractive indices calculated using fourdifferent methods.
Plot (a) presents the first 3 modes in the waveguide core (TE0, TM0, TE1). In
comparison with conventional notation, e.g. TE00, we dropped a zero, as in
our waveguide geometries all higher-order modes have higher-order standing
waves only in the direction of the width of the waveguide. Thenumerically
calculated effective index of the TM1 mode is included for completeness.
Plots (b)-(d) show the difference in the effective index as calculated by the
analytical method with respect to the numerical method.

inaccuracy of the method, and this behavior was not observed
for the other methods.

For the waveguide geometries as considered in this paper,
the improved Ey ≈ 0 method has smaller errors in the
continuity of the fields at the boundaries than theimproved
Hx ≈ 0 method. However, this is geometry dependent, as
is expected from the trend in the TM-like mode. For TM-
like modes in waveguides wider than 1765 nm (b > 6d), the
improvedHx ≈ 0 methodhas a lower mismatch than the
improvedEy ≈ 0 method. This behavior of the asymptotes is
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(used in Fig. 4 only)

Fig. 3. Mismatch of the tangential field components at the interfaces of the
waveguide core,Umm, see Eq. (53). Typical, 300 nm high, SOI waveguide.
Plots (a)-(c) represent the TE0, TM0, and TE1 modes in the waveguide. In
each plot, 6 different methods to calculate the free parameterin the analytical
description of the waveguide mode profile are presented. The black dashed
line indicates the average energy density in the core (calculated using thefull
optimization method).

expected from theory of slab waveguides. In the limitb → ∞,
the waveguide is a slab waveguide with interfaces 1-2 and
1-3, so theimprovedHx ≈ 0 method is expected to give
better results, because the fields described by this methods
are continuous across these interfaces. In the limitd → ∞,
only the 1-4 and 1-5 interfaces play a role, so we expect the
improvedEy ≈ 0 methodto give the most accurate results.
For the cases considered in this plot, average energy density
associated with the mismatch (Umm) of the improvedEy ≈ 0
methodis below 3% of the average energy density in the core
of the waveguide.

In conclusion, the effective index of the mode is accurately
calculated by the eigenvalue equations. The amplitudesA2 to
A10 are calculated more accurately with the improved methods
than with Marcatili’s original methods. A better quantitative
evaluation can be made by a comparison of the methods
with rigorous numerical calculated modal profiles, which is
presented in Sec.IV.

III. N OVEL APPLICATIONS OF THE EIGENVALUE EQUATION

OF THE PROPAGATION CONSTANT

In this section, we derive explicit expressions for the ef-
fective group index and for the influence of a change in the
waveguide.

A. Modal dispersion

The modal dispersion can be described by the (effective
refractive) group index:

ng ≡ neff − λ0

∂neff

∂λ0

=
∂β

∂k0
. (54)

The group index is often used to design photonic integrated
circuits. For example to calculate of the free spectral range
(FSR) of ring resonators. From Eq. (23), we find

∂β

∂k0
=

1

β

(

k0n
2
1 + k20n1

∂n1

∂k0
− kx

∂kx
∂k0

− ky
∂ky
∂k0

)

. (55)

The 1st and 2nd term on the right-hand-side of this equation
are specified by the material refractive indices. The refrac-
tive indicesnj(k0) may depend on frequency and thus on
k0 = ω/c. The 3rd term is calculated from Eq. (35). Although
kx is only given as implicitly,∂kx/∂k0 can be calculated
explicitly. The total derivative of the left-hand-side of Eq.
(35) with respect tok0, dG/dk0, equals zero for solutions
of G = 0. The heightd does not depend on frequency. So we
get

dG

dk0
=

∂G

∂k0
+

∂G

∂kx

∂kx
∂k0

+
∂G

∂n1

∂n1

∂k0
+

∂G

∂n2

∂n2

∂k0
+

∂G

∂n3

∂n3

∂k0
,

or,

∂kx
∂k0

= −
∂G
∂k0

+ ∂G
∂n1

∂n1

∂k0

+ ∂G
∂n2

∂n2

∂k0

+ ∂G
∂n3

∂n3

∂k0

∂G
∂kx

. (56)

Similarly, the 4th term of the right-hand-side of Eq. (55) is
calculated from Eq. (43) as

∂ky
∂k0

= −
∂F
∂k0

+ ∂F
∂n1

∂n1

∂k0

+ ∂F
∂n4

∂n4

∂k0

+ ∂F
∂n5

∂n5

∂k0

∂F
∂ky

. (57)

The partial derivatives in Eqs. (56) and (57) are straightforward
to calculate, as shown in appendixA.
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B. Influence of a linear external effect

Analogue to the derivation of the effective group index, it is
also possible to calculate the linearized influence of an external
effect on the propagation constant of the mode. For example,
the influence of a temperature change in the waveguide or the
influence of a change in the refractive index of the surrounding
medium can be calculated. We describe the external effect bya
parameterχ. In this theory, the waveguide propertiesnj , b and
d are assumed to be known, as well as the first-order influence
of the external effect on these properties, i.e.∂nj/∂χ, ∂d/∂χ
and∂b/∂χ. Taking the derivative of Eq. (23) with respect to
χ gives

∂β

∂χ
=

1

β

(

n1k
2
0

∂n1

∂χ
− kx

∂kx
∂χ

− ky
∂ky
∂χ

)

. (58)

As in the previous section,∂kx/∂χ is calculated by taking the
derivative of Eq. (35), G = 0, and solving∂kx/∂χ:

∂kx
∂χ

= −
∂G
∂n1

∂n1

∂χ
+ ∂G

∂n2

∂n2

∂χ
+ ∂G

∂n3

∂n3

∂χ
+ ∂G

∂d
∂d
∂χ

∂G
∂kx

. (59)

And for ∂ky/∂χ, we find from Eq. (43) that

∂ky
∂χ

= −
∂F
∂n1

∂n1

∂χ
+ ∂F

∂n4

∂n4

∂χ
+ ∂F

∂n5

∂n5

∂χ
+ ∂F

∂b
∂b
∂χ

∂F
∂ky

. (60)

Equations (59) and (60) are given explicitly in AppendixB.
1) Influence of temperature on SOI waveguides:In the case

of a temperature change,∂nj/∂χ is given by the thermo-optic
effect. The change in cross-section of the waveguide,∂d/∂χ
and ∂b/∂χ are described by linear thermal expansion. The
thermo-optic coefficients of silicon and silicon dioxide, as well
as the linear thermal expansion coefficients, are reported in
Refs. [16] and [18], respectively.

2) Evanescent field sensor:In evanescent field sensors,
liquids with varying refractive indices flow over the SOI
waveguides. In this case,χ describes the liquid refractive
index, so that for TM-like modesn3 = n4 = n5 = χ
and ∂n3/∂χ = ∂n4/∂χ = ∂n5/∂χ = 1, while the other
waveguide properties are constant. For TE-like modes,n2 =
n3 = n5 = χ and ∂n2/∂χ = ∂n3/∂χ = ∂n5/∂χ = 1 (see
Fig. 1).

IV. COMPARISON WITH RIGOROUS NUMERICAL METHODS

In this section, we compare the analytical results of the
previous section with rigorous numerical results. To find the
transverse modes of the waveguide, we use the film mode
matching (FMM) method as implemented in the FimmWave
software package [10], [12]. In this method the cross-section
of the ridge waveguide is split in vertical slices, and 1-
dimensional modes are computed analytically for each slice.
The 2-D modes are now found by simultaneously solving
the modal amplitude factors of the 1-D modes in all slices
such that they construct a field obeying Maxwell’s equations.
The area of the numerical simulation extends 2µm from the
waveguide, and 200 1-D modes are used per slice. The width
of the waveguide is varied in steps of 10 nm, and in steps
of 1 nm between 820 nm and 840 nm. For verification, we

compared the FMM method with the finite element method
(FEM) that is also implemented in the FimmWave software,
using∼210 gridpoints in both the x- and the y-direction. For
all datapoints presented in this work, the difference (between
FMM and FEM) in effective index is below10−3 and the
relative energy in the difference field is below10−4.

The measure that is used to compare two electromagnetic
fields is the relative energy in the difference field, i.e.

∆U =

∫∫

regions 1-5

(

n2ǫ0|EA −E
N |2 + µ0|HA −H

N |2
)

dxdy

∫∫

regions 1-5
(n2ǫ0|EN |2 + µ0|HN |2) dxdy

(61)
whereEA andE

N are the analytically and rigorous numer-
ically calculated fields, respectively. This integral runsover
all regions that are described by the analytical solution. The
integral is calculated analytically with the assumption that the
numerical field is piecewise-constant in space.

A. Improved analytical methods

The effective refractive indices are calculated using four
different methods, including the FMM method, and are pre-
sented in Fig.2. For completeness, results of the effective
index method (EIM) [2] are also included. The analytical
eigenvalue equations, described in Sec.II-A , give, for most
geometries, the most accurate effective index. The method
where the effective index is calculated using least-mismatch
fitting in the boundary conditions as presented in Sec.II-D
is less accurate for TM-like modes. The error in the EIM
becomes significantly large for strong confined modes. The
discontinuities in plots (c) and (d) at a width of 833 nm are
discussed in Sec.IV-B. The other small “wiggles” in thefull
optimization methodare due to numerical instabilities. It can
be seen that the error in the effective index calculated using the
analytical eigenvalue equation remains below 2% for all cases.
The error is, for all methods, lower for the weaker-confined
modes.

Figure4 presents the energy of the difference field between
the analytical and the numerical FMM method. First of all, itis
clear that something special happens for the fundamental TM-
like (TM0) and the 1st TE-like (TE1) modes in the waveguide
with a width of∼830 nm. We will explain this in Sec.IV-B.
The very small “wiggles” in the fundamental TE-like mode
between waveguide widths of 820 nm and 840 nm are due
to our numerical discretization of the electromagnetic fields,
which not exactly match the refractive index distribution for
features below 10 nm.

The fundamental limit of theansatzis found by optimizing
all free parameters such that the energy in the difference field
compared to the numerical result (the quantity plotted in this
figure) is minimal.

The method that gives the least difference with the rigorous
numerical result is the method wherekx, ky, ξ, andη follow
from the slab eigenvalue equations, while the field amplitudes
A2-A10 are optimized by minimizing the mismatch,Umm, in
Eq. (53) (amplitude optimization method). For this method, the
energy in the difference field is below 2% for all waveguide
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Fig. 4. Energy in the electromagnetic difference field between the analytically
calculated fields and the rigorous numerically calculated fields, normalized to
the energy in the numerically calculated field. The fields are only considered
in regions 1-5. Legend and layout of the figure is identical toFig. 3.

modes considered here (except for the crossing at 830 nm).
Also, this method is very close to the fundamental limit of the
ansatz.

The fact that the eigenvalue equations work so well, justifies
the assumption that the boundary conditions at the 1-2 and 1-3
interfaces can be best used to calculatekx and the boundary
conditions on the 1-4 and 1-5 interfaces can be best used
to calculateky. Deviating from thesek-values to minimize
the total mismatch in the boundary conditions only slightly
reduces this mismatch and increases the error in thek-values.
Still, the quantification of the mismatch as done in Sec.II-D
gives surprisingly accurate results. The difference between
the fundamental limit of theansatzand both theamplitude

optimization methodand thefull optimization methodis very
small, especially considering that there is a fundamental error
in the ansatz, and that the error of the fields only manifests
itself at the interfaces of the waveguide core, which is difficult
to interpret from a physical perspective.

The improved approaches are, for all cases, more accurate
then Marcatili’s original approaches. For these methods, the
full field-profiles are easily and intuitively calculated. The
fields of the SOI waveguides considered in this work are
accurately described by theimprovedEy ≈ 0 method, with
less than 3% energy in the difference field (except for the
crossing at 830 nm).

The improvedEy ≈ 0 method is more accurate than the
improvedHx ≈ 0 methodfor (b < 3d), i.e. for TE-like modes
and for TM-like modes in waveguides that are not very wide.
From the mismatch in the boundary conditions, the same trend
was expected and this crossing was expected at (b ≈ 6d).
Also, the difference between theimprovedEy ≈ 0 method,
the improvedHx ≈ 0 methodand the optimization methods
follows the same trend as expected from Sec.II-D.

In conclusion, the improved Marcatili’s method describes
the effective indices and the field distributions of typical
SOI waveguides sufficiently accurately for many applications,
except when the effective indices of two modes are similar. In
the next section, the modes found from our approximation are
used to explain what happens in these regions. When compared
to rigorous numerical solutions, the error in the effectiveindex
was below 2% and the relative error in terms of the energy
of the fields was less than 3%. In addition, the optimization
method gives even more accurate results for the fields.

B. The avoided crossing phenomenon

Figures2 and4 suggest that something interesting happens
at the apparent crossing of the effective indices of the TM0-
like and the TE1-like modes when the width of the guide is
changed. A detailed inspection of the waveguides with widths
around 833 nm is presented in Fig.5. In plot (a), it can be seen
that the numerically computed effective indices of the 2nd and
3rd mode in the waveguide (counted from high to low effective
index) actually do not cross each other, but show a behavior
that is known in quantum mechanics asavoided crossing[19].
We investigate the modes that where found numerically,E

N
2

andE
N
3 , in terms of the analytically computed approximate

modes of the waveguide.
We will verify that the actual modesEN

2 and E
N
3 can

in good approximation be written as a superposition of the
TM0-like, ETM0, and TE1-like,ETE1 modes that where cal-
culated using the approximate theory (amplitude optimization
method), i.e.

E
N
i ≈ aETM0 + bETE1, (62)

for some reala andb, andi = 2 or 3. The phase of modeEi

is chosen such that coefficientb is positive. The coefficienta
of the TM0-like mode can be either positive or negative. The
approximate calculated modesETM0 and ETE1, are in good
approximation orthonormal such that normalization ofEi in
the norm of Eq. (44) implies b =

√
1− a2.
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Fig. 5. Investigation of the avoided crossing of effective indices of two modes.
Plot (a): numerically calculated effective indices of the 2nd and 3rd mode,
zoom-in of Fig.2(a). Plot (b): power in the TM0-like mode when the fields of
the modes in plot (a) are written as a superposition of a TM0-like and a TM1-
like mode. The curves in plot (a) are color-coded accordingly. Plot (c): Relative
energy in the electromagnetic difference field between the superposition and
the rigorous numerically calculated fields, to be compared with Fig 4 (b,c).

The coefficienta of the TM0-like mode is optimized such
that the difference measured using Eq. (61) between the left-
and right-hand sides of Eq. (62) is minimum. The result is
plotted in Fig.5(b), where it can be seen that mode 2 looks
like a TM0-mode at the left of the crossing, while it looks
like a TE1-like mode on the right-hand-side of the crossing,
whereas close to the crossing the modes are an equal mixture
of ETM0 andETE1. In Fig. 5(c), it can be seen that the error
between the superpositionEi and the rigorous numerically
calculated fieldEN

i close to the apparent crossing is small
and similar to the error that was found away from the crossing
(see Fig. 4). Therefore we may indeed conclude that the
field around the crossing can be written as a superposition of
modes of the types that are present away from the crossing.
Figure 6 presents the electric fieldsETM0, ETE1, E

N
2 and

E
N
3 for a 833 nm wide by 300 nm high waveguide, where

a2 ≈ b2 ≈ 0.5.

Using this observation, we will derive a qualitative de-
scription of thisavoided crossing. The exact description of
propagation of light through waveguides that are invariantin
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2
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3
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with a negative field strength are indicated with a minus sign (-) and blue.

the z-direction can be formulated as an eigenvalue problem
with the propagation constant as eigenvalue. In fact, by
eliminating the longitudinal componentsEz and Hz from
Maxwell’s equations, one obtains the following eigenvalue
problem for the transverse components only

Ô









Ex(x, y)
Ey(x, y)
Hx(x, y)
Hy(x, y)









= βi









Ex(x, y)
Ey(x, y)
Hx(x, y)
Hy(x, y)









(63)

with the propagation constantβi as eigenvalue and witĥO
a second order partial differential operator with respect to
transverse variablesx andy. We consider forward propagating
waves with positiveβi. The operatorÔ is not symmetric,
however it can be shown that solutions of Eq. (63) are
orthogonal with respect to the bilinear form derived from the
power flux [3]

〈i|j〉 ≡
∞
∫∫

−∞

(

Ei ×H
∗
j

)

· ẑ dxdy = δij (64)

where the inner product between two solutionsi and j is
defined,δij is the Kronecker delta function, and the eigenfields
have been normalized. We adopt abra-ketnotation and write
Eq. (63) as

Ô|i〉 = βi|i〉 (65)

We now apply the aforementioned observation that in good
approximation the electromagnetic fields of the modes in the
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waveguide, also around the crossing, can be written as a
superposition of the approximate fields, hence

Ei ≈ aETM0 + bETE1, or |i〉 ≈ a|a〉+ b|b〉, (66)

where|a〉 and|b〉 represent the TM0-like and TE1-like modes
in the waveguide, respectively, while|i〉 represents the exact
solutions of Eq. (65). We only consider the 2nd and 3rd
approximate solutions here. As will become clear, only modes
with similar propagation constants have to be taken into
account around the crossing, whereas the other modes are
already accurately calculated by the approximate methods
presented in this paper. Substituting Eq. (66) in Eq. (65) and
taking the inner product with〈a| gives

a〈a|Ôa〉+ b〈a|Ôb〉 ≈ βi (a〈a|a〉+ b〈a|b〉) . (67)

If we also take the inner product of Eq. (65) with 〈b| we arrive
at the (2x2)-system:
(

〈a|Ôa〉 〈a|Ôb〉
〈b|Ôa〉 〈b|Ôb〉

)(

a
b

)

≈ βi

(

〈a|a〉 〈a|b〉
〈b|a〉 〈b|b〉

)(

a
b

)

, (68)

or,

M

(

a
b

)

≈ βi

(

a
b

)

, (69)

whereM =

1

D

(

〈b|b〉〈a|Ôa〉 − 〈a|b〉〈b|Ôa〉 〈b|b〉〈a|Ôb〉 − 〈a|b〉〈b|Ôb〉

−〈b|a〉〈a|Ôa〉+ 〈a|a〉〈b|Ôa〉 −〈b|a〉〈a|Ôb〉+ 〈a|a〉〈b|Ôb〉

)

and
D = 〈a|a〉〈b|b〉 − 〈a|b〉〈b|a〉.

The modes that we found in our approximate analysis are
almost orthonormal, so〈a|a〉 and〈b|b〉 are approximately unity
and 〈a|b〉 and 〈b|a〉 are approximately zero. Away from the
crossing, we found that the approximate solutions|a〉 and |b〉
obey relation Eq. (65) so that 〈a|Ôa〉 ≈ βa, 〈b|Ôb〉 ≈ βb,
while 〈a|Ôb〉 and 〈b|Ôa〉 are small. This allows us to write
the relation Eq. (69) as

(

βa + δa δab
δba βb + δb

)(

a
b

)

≈ βi

(

a
b

)

, (70)

whereδa, δb, δab, andδba are quantities that are much smaller
than theβ’s. This system has the eigenvalues [19]

β2,3 =
β′
a + β′

b

2
±

√

(β′
a − β′

b)
2 + 4δabδba

2
, (71)

with corresponding eigenvectorsv2,3 (not normalized)
(

2δab
−β′

a + β′

b ±
√

(β′
a − β′

b
)2 + 4δabδba

)

, (72)

whereβ′
a ≡ βa + δa andβ′

b ≡ βb + δb. The two propagation
constants are closest whenβ′

a = β′
b but are always separated

by a minimum distance4
√
δabδba, so that they never intersect.

For smallδa, δb, δab, δba ≪ |βa − βb|, we find the eigenvector
for βa > βb to be v2 ≈ (1, 0) and v3 ≈ (0, 1). The upper
propagation constant,β2, has a TM0-like mode in this limit,
while the lower propagation constant,β3, has a TE1-like mode.
For βb > βa we find v2 ≈ (0, 1) andv3 ≈ (1, 0), so that the
upper propagation constant now has a TE1-like mode while
the lower propagation constant has a TM0-like mode. An

interesting case occurs whenβ′
a = β′

b andδab = δba. Then the
normalized eigenvectors of this system arev2 = 1√

2
· (1, 1)

and v3 = 1√
2
· (1,−1), i.e. they are either an addition or

subtraction of the eigenvectors far from the crossing.
This simple description of theavoided crossingagrees with

the observations of the numerically computed modal profiles
as presented in Figs.5 and6.

C. Novel applications of the eigenvalue equation of the prop-
agation constant

We applied the analytical eigenvalue equations for the
effective index of the modes in rectangular waveguide to
explicitly calculate of the effective group index (Sec.III-A ),
as well as the linearized influence of an external effect (Sec.
III-B ). In this section, we compare those analytical results with
rigorous numerical simulations. For numerical calculation of
the linearized influence of an external effect on the effective
index of the modes in the waveguide, we use the following
procedure: first, we calculated the effective refractive index
(neff) for different values of the external effect (χ) that are
around the starting value (χ0), then, a linear fit is used to
obtain the∂neff/∂χ.

1) Effective group index:The method presented in Sec.
III-A is investigated in this section. Equations (54), (77) and
(78) are used to calculate the effective group index of the
modes in the waveguides. The silicon dispersion is taken into
account, with∂n1/∂k0 = 3.147 · 108 m−1 [16]. These results
are compared with the group index that was numerically calcu-
lated using the FMM method as implemented in FimmWave.
Results are presented in Fig.7 where can be seen that the
error remains below 4%.

2) Temperature-induced effective index change:To rigor-
ously compute the linearized influence of temperature varia-
tions on the effective index of the waveguide, the temperature
in the simulation is varied from 20◦C to 28◦C in steps of 2
◦C. The influence∂neff/∂T is compared with the analytically
calculated influence in Fig. 8. Two effects are taken into
account: the thermo-optic effect using∂n1/∂χ = 1.83 · 10−4

◦C−1, and the thermal expansion using∂b/∂χ = αb m/oC and
∂d/∂χ = αd m/◦C, with linear thermal expansion coefficient
α = 2.6 · 10−6 ◦C−1 [16], [18]. The effects are investigated
simultaneous (net effect) and the effect of the expansion only
is also shown separately. This separate investigation does, of
course, not simulate a physical measurement but it gives a
good test case for the method. From Fig.8, it can be concluded
that the effects are well estimated with a relative error below
7%. The error is much smaller for modes that are less confined,
and the effect of the geometrical change is better estimated
than the effect of the silicon index change.

3) Cladding-index induced effective index change:In Sec.
III-B2, we described the linearized influence of a change in
refractive index of the cladding of the waveguide. This is, for
example, used in evanescent field sensors, where a liquid flows
over the waveguide surface. For example, aqueous solutions
with different concentrations of sucrose or sodium chlorine are
used in Refs. [14] and [15], respectively. The rigorous numer-
ical results are obtained by changing the cladding refractive
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index from 1.310 (water) to 1.320 in steps of 0.002. From this,
∂neff/∂nclad is extracted. Results are shown in Fig.9, where
it can be seen that relative errors are up to 23%. These errors
rapidly decrease for wider waveguides, i.e. for less-confined
modes.

V. CONCLUSION

We derived a model for high-index-contrast rectangular
dielectric waveguides, based on anansatzthat describes the
fields in the core of the waveguide as standing waves. As in
Marcatili’s work, we also arrive at eigenvalue equations for the
spatial frequencies of the standing waves, i.e.kx andky, that
are identical to the eigenvalue equations of slab waveguides. In
order to obtainkx, we use the limit that the waveguide extends
to infinity in the y-direction, and order to obtainky, we use the
limit that the waveguide extends to infinity in the x-direction.
The effective refractive index of the mode in the waveguide,
which directly follows fromkx andky, agrees excellently with
rigorous numerical mode solvers (relative error< 2%). In
comparison with Marcatili’s original work, our novel choice
of electromagnetic field amplitudes in theansatzremoved the
discontinuity of the dominant electromagnetic field compo-
nents, which was severe for high-index-contrast waveguides.
This improvement led to better agreement with numerical
simulations, with a relative energy of the difference field below
3%, except when the effective indices of two modes in the
waveguide are similar. We quantified the error that arises from
the discontinuity of the fields in terms of energy density. With
this quantification, we accurately predicted the trend in the
error of the different analytical methods. In addition, this
quantification allowed us to optimize the amplitudes in the
ansatzsuch that minimal mismatch is achieved. Ouramplitude
optimization methodaccurately describes both TE-like as well
as TM-like modes in the rectangular waveguides (except when
two modes have similar effective indices), and the error of this
method with respect to the numerical results is very close to
the fundamental error in theansatz.

Next to this, we derived explicit expressions for the effective
group index of the waveguide, taking dispersion into account.
The error in comparison with rigorous numerical methods
was below 4%. Also, explicit expressions are derived for the
linearized influence of an external effect. We predicted the
influence of temperature, as well as the influence of a change
of the refractive index of the cladding of the waveguide.

We applied our method to interpret the results of a rigorous
numerical mode solver, and showed that the modes in the
waveguide showavoided crossingbehavior when the effective
indices of a TE-like and a TM-like mode are similar. A quick
analysis of waveguides can be performed with this method,
while the results of this method can be used as starting point
for rigorous mode solvers. Marcatili’s method has long been
used for educational purposes, as is indicated by its frequent
occurrence in textbooks. With our work, the development of
intuitive analytical methods now follows the technological
developments to high-index-contrast waveguides.

APPENDIX A
EXPLICIT EQUATION FOR MODAL DISPERSION

In Sec. III-A , partial derivatives∂kx/∂k0 and ∂kx/∂k0
were given by Eqs. (56) and (57). In this section, we give
∂kx/∂k0 and ∂ky/∂k0 for the case when only the core ma-
terial is dispersive, i.e.n1(k0) and where the other refractive
indices do not depend on the frequency, thus also not onk0.
We define:

α2 ≡
(

k2x
n4
1

+
γ2
3

n4
3

)

1

n2
2γ2

, (73)

α3 ≡
(

k2x
n4
1

+
γ2
2

n4
2

)

1

n2
3γ3

, (74)

α4 ≡
k2y + γ2

5

γ4
, (75)

α5 ≡
k2y + γ2

4

γ5
. (76)

And find that Eqs. (56) and (57) are explicitly given by Eqs.
(77) and (78), which are shown on the next page.

APPENDIX B
EXPLICIT EQUATION FOR EXTERNAL EFFECT

In this appendix, we give the explicit form of Eqs. (59) and
(60). Let:

αa ≡ γ2
n2
2

+
γ3
n2
3

, (79)

α2
b ≡k2x

n4
1

− γ2γ3
n2
2n

2
3

. (80)

Then Eqs. (59) and (60) are identical to Eqs. (81) and (82),
see next page, whereα2-α5 are defined in Eqs. (73) - (76).
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