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Detecting Perivascular Spaces:
a Geodesic Deep Learning Approach

Abstract

Perivascular spaces (PVS) visible on MRI are currently emerging as an important potential neuroimaging marker for several
pathologies in the brain like Alzheimers disease and cerebral small vessel disease. PVS are fluid-filled spaces surrounding vessels as
they enter the brain. Although PVS are normally not noticeable on MRI scans acquired at clinical field strengths, when these spaces
increase in size they become increasingly visible and quantifiable. To study these spaces it is important to have a robust method for
quantifying PVS.

Manual quantification of PVS is challenging, time-consuming and subject to observer bias due to the difficulty of distinguishing
PVS from mimics and the large number of PVS that can occur in MRI scans. Many promising (semi-)automated methods have been
proposed recently to decrease annotation time and intra- and inter-observer variability while providing more information about EPVS.
However there are still various limitations in the current methods that need to be overcome. An important limitation is that most of
the methods are based on elaborate preprocessing steps, feature extraction and heuristic fine-tuning of parameters, making the use of
these methods on new datasets cumbersome. Furthermore the majority of the currently proposed methods have been evaluated on
small sets of barely 30 images, as most of these methods aim to segment PVS and require voxel-wise annotations for evaluation.

In this thesis we propose a method for automated detection of perivascular spaces that combines a convolutional neural network
and geodesic distance transform (GDT). We propose to use dot annotations instead of voxel-wise segmentations as this is less
time-consuming than fully segmenting PVS while still providing the location of PVS. This enables us to use a considerably larger
dataset with ground truth locations than is used in all previously proposed (semi-)automatic methods that provide the location of
PVS. We investigated two approaches of using geodesic distance transform to optimize the CNN to detect PVS. The first approach
focuses on optimizing the CNN for voxel-wise regression of the geodesic distance map (GDM) computed from the dots and the
intensity image. The second approach aims to predict segmentations of the PVS using a CNN that is trained on approximated
segmentations obtained by thresholding GDMs. We use 1202 proton density-weighted (PDw) MRI scans to develop our methods
and 1000 other scans are used to evaluate the performance of the methods. We show that our methods match human intra-rater
performance on detecting PVS without the need for any user interaction. Additionally we show that GDMs are extremely useful for
capturing complex morphologies when computed from dot annotations. Our experiments indicate that GDMs can be used to provide
valuable additional information to CNNs during training.

Keywords: Deep learning, perivascular spaces, detection, geodesic distance transform, dot annotations, weighted loss

1. Introduction

Magnetic resonance imaging (MRI) with its ability to pro-
vide images of the brain in vivo and non-invasively, is an invalu-
able technique for neuroscience. It has enabled a rapid increase
in our understanding of neurophysiology and neuropathology
(Adams et al., 2015; Annese, 2012). Advancing MRI quality
has made it increasingly feasible to study smaller and more sub-
tle structures in the brain and uncover their physiology as well
as their pathology and association with neurological diseases
(Groeschel et al., 2006; Adams et al., 2015).

An example of such structures is the perivascular space
(PVS), also referred to as the Virchow-Robin space, which is cur-
rently emerging as an important potential neuroimaging marker
for several pathologies in the brain like Alzheimers disease and
cerebral small vessel disease (Wang et al., 2016b; Adams et al.,
2015; Charidimou et al., 2013). Although perivascular spaces
are normally not noticeable on MRI scans acquired at clinical
field strengths, when these spaces increase in size they become

increasingly visible and quantifiable (Ramirez et al., 2016; Kwee
and Kwee, 2007; Wardlaw et al., 2013; Doubal et al., 2010).

There is still relatively little known about PVS and a lot of
inconsistencies exist in the literature (Wuerfel et al., 2008; Kils-
donk et al., 2015; Wardlaw et al., 2013). Multiple reasons have
been suggested for this. Firstly enlarged PVS were assumed to
be benign for a long time (Zhu et al., 2010b; Adams et al., 2015).
Additionally image quality has improved a lot over the years,
where it was first hardly possible to visualize PVS that were
enlarged, now it is even possible to discern very faintly enlarged
PVS (Groeschel et al., 2006; Adams et al., 2015). However,
distinguishing PVS from other structures visible on MRI scans
(e.g. lacunar infarcts) remains difficult due to the similarity of
PVS to these structures (Valdés Hernández et al., 2013; Kwee
and Kwee, 2007; Potter et al., 2015). Furthermore, many studies
based the definition of enlarged PVS on the visibility of PVS
on MRI scans. As this is dependent on MRI sequence parame-
ters this is not a very robust definition as well as quite arbitrary
and not based on clinical significance (Valdés Hernández et al.,
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2013; Wardlaw et al., 2013; Adams et al., 2015). Currently more
studies specify the diameters of PVS that are examined, which
improves the reliability of comparing studies. Lastly, studying
these spaces and comparing different studies is also difficult
because of the absence of a general, robust method that is not
unreasonably time-consuming for assessment of PVS burden.
Efforts are ongoing to improve this (Ikram et al., 2017; Adams
et al., 2015, 2013; Wardlaw et al., 2013; Potter et al., 2015;
Valdés Hernández et al., 2013).

Currently manual quantification of PVS is still the golden
standard, however this is very time-consuming and challenging
due to the difficulty of distinguishing PVS from mimics and the
number of PVS that can be large. Many studies have suggested
that computational methods could improve reliability, general-
ization and speed of PVS quantification (Valdés Hernández et al.,
2013; Adams et al., 2015; Park et al., 2016; Boespflug et al.,
2018; Dubost et al., 2018b). Various (semi-)automated methods
have been proposed for different types of PVS quantification,
such as PVS counting (Dubost et al., 2018b,a), PVS burden
categorization (González-Castro et al., 2016b, 2017), or PVS
segmentation (Lian et al., 2018; Park et al., 2016; Ballerini et al.,
2018; Zhang et al., 2017; Boespflug et al., 2018). These promis-
ing methods clearly demonstrate the potential of computational
methods for PVS quantification. However, currently proposed
methods still have important limitations (see section 4.1).

An important limitation is that most of the methods are based
on elaborate preprocessing steps, feature extraction and heuristic
fine-tuning of parameters, making the use of these methods on
new datasets cumbersome. To overcome this limitation we use a
convolutional neural network (CNN). CNNs are taking over the
field of medical image analysis by storm with their extraordinary
improvements in performance and applicability. CNNs are a type
of artificial intelligence that are especially useful and promising
for image analysis. Instead of relying on manually designed
features, these models learn their own customized features. By
optimizing a specified error function referred to as the loss,
CNNs adapt their parameters to improve their performance on
training images with a given ground truth. The ground truth
labels and the loss together specify the objective that the CNN
tries to accomplish (Ronneberger et al., 2015; Zhou et al., 2016;
Kamnitsas et al., 2017; Litjens et al., 2017; Long et al., 2017).
Originally CNNs were used for image classification, predicting
a single value representing the class based on the image that is
given as input.

Fully convolutional neural networks (FCNs) introduced by
Long et al. (2017) are CNNs that perform voxel-wise predic-
tion, meaning their output has the same shape as the given input
image and every voxel in the output contains the prediction of
the network for the corresponding input voxel. FCNs are conse-
quently aimed towards segmentation. Two of the most recently
proposed methods for localizing PVS use CNNs (Dubost et al.,
2017; Lian et al., 2018). Both use architectures based on FCN
and show promising results, Dubost et al. (2017) on detection of
PVS and Lian et al. (2018) on segmentation of PVS. However,
both are evaluated on a small dataset. Furthermore, Dubost et al.
(2017) focus on detection only in the basal ganglia and Lian
et al. (2018) develop and evaluate on MRI scans of the brain at

7 Tesla (T) which is higher than the clinical field strength (1.5
or 3 T).

In this thesis we propose to detect PVS using a CNN that is
trained and validated on a large set of 1202 MRI scans and tested
on a separate set of 1000 images. This test set is considerably
larger than the ones used by Dubost et al. (2017) and Lian et al.
(2018) that contained 30 and 20 images, respectively. Further-
more, these MRI scans are acquired at 1.5 T which is also used
in clinical practice. As the centrum semiovale (CSO) is seen
as the most difficult brain region for PVS detection and most
clinically relevant, we focused on this brain region (Ballerini
et al., 2018; Adams et al., 2015). Like the annotations used for
testing by Dubost et al. (2017), our annotations are dots that
indicate the location of the every PVS. Dot annotations indicate
PVS locations, while being considerably less time-consuming
than PVS manual segmentation.

Recent studies on cell detection have shown the potential
of using CNNs to regress score maps based on distance trans-
forms as a way to use dot annotations for detection (Xie et al.,
2018a,b; Kainz et al., 2015). These methods use score maps
based on euclidean distance, which does not take image inten-
sity values into account. As the morphology of PVS helps to
distinguish PVS from other structures, incorporating the inten-
sity information is necessary (Valdés Hernández et al., 2013;
Boespflug et al., 2018). Geodesic distance incorporates image
context by combining spatial distance and intensity difference
in the image. The intensity is seen as an extra dimension that
defines the landscape. Intuitively distances between voxels that
are connected by flat terrain are shorter than voxels that have
hills and valleys in the space between them. As a consequence
strong edges are emphasized in geodesic distance maps, making
them very useful for segmentation of structures (Toivanen, 1996;
Gaonkar et al., 2015; Wang et al., 2018; Criminisi et al., 2008).
Geodesic distance maps show potential for PVS detection as
they could incorporate their complex morphology (Park et al.,
2016; Valdés Hernández et al., 2013; Boespflug et al., 2018).

In this thesis we address the hypothesis that dot annotations
can be used to develop an automated method for PVS detection.
This method should be as good as human performance and
supply information on quantity and spatial distribution of PVS
without need for user interaction. We investigate this hypothesis
by developing two approaches to optimize a CNN using geodesic
distance maps and comparing performance of these methods to
the performance of an expert rater.

The following sections will further discuss PVS (2), geodesic
distance transform (3) and current methods for PVS assessment
(4.1) and similar methods using (geodesic) distance maps (4.2).
Section 5 will present our contributions and in section 6 the data
will be introduced, followed by the method in section 7 and the
experimental setup in section 8. The results will be presented in
section 9, discussed in section 10 and section 11 will conclude
this thesis. The appendices contain further information on PVS,
distance transforms, additional (exploratory) experiments that
were done and appendix Appendix D contains supplementary
results.

2



2. Perivascular Spaces

2.1. Anatomy and Physiology
PVS, also known as Virchow-Robin spaces, surround ar-

teries, arterioles, veins and venules as they enter and emerge
from the brain (see Figure 1). The brain is enveloped by three
membranes, the dura mater, arachnoid mater and the pia mater.
Between the arachnoid mater and the pia mater which covers the
cerebral cortex lies the subarachnoid space. Vessels entering the
brain from the subarachnoid space or emerging from the brain
into the subarachnoid space are enveloped by pia mater. The
spaces between the pia mater and vessels is referred to as PVS
(Zhang et al., 1990; Braffman et al., 1988; Barkhof, 2004; Kwee
and Kwee, 2007; Valdés Hernández et al., 2013). Controversy
exists as to whether PVS are filled with cerebrospinal fluid (CSF)
(Ramirez et al., 2016; Potter et al., 2015) and/or interstitial fluid
(ISF) (Fanous and Midia, 2007; Öztürk and Aydingöz, 2002).

PVS are believed to be involved in the clearance of fluid
and solutes in the brain as well as play an important role in
immunological and inflammatory responses in the brain (Wang
and Olbricht, 2011; Bacyinski et al., 2017; Faghih and Sharp,
2018; Ramirez et al., 2016; Cserr and Knopf, 1992; Esiri and
Gay, 1990; Fanous and Midia, 2007; Zhang et al., 1990). The
exact role of PVS is still unknown, research about this is still on-
going (Wang and Olbricht, 2011; Bacyinski et al., 2017; Valdés
Hernández et al., 2013).

2.2. Pathology
Formerly the enlargement of PVS was assumed to be benign

(Zhu et al., 2010b; Adams et al., 2015). Recent studies however
support the contrary and an increasing amount of research is
being done on this emerging neuroimaging marker. PVS have
been associated with worse cognition, hypertension, as well
as with markers of cerebral small vessel disease namely white

Figure 1: Anatomy of perivascular spaces Illustration of a perivascular space
surrounding an arteriole penetrating the brain. This is a simplified representation
(adapted from Heier et al. (1989))

matter hyperintensities and lacunar infarctions (Maclullich et al.,
2004; Zhu et al., 2010a; Potter et al., 2015; Chen et al., 2011;
Zhu et al., 2010b; Charidimou et al., 2013). PVS are seen in
individuals of all ages and in the elderly population they are
highly prevalent (Adams et al., 2015; Zhu et al., 2011, 2010b).
With increasing age the number and size of PVS in the brain has
been shown to increase (Doubal et al., 2010; Kwee and Kwee,
2007; Dubost et al., 2018b). Additionally a high number of PVS
has been associated with many neurological conditions including
cerebral small vessel disease, cerebral arteriosclerosis, traumatic
brain injury, poststroke depression, Parkinson’s disease, incident
dementia and Alzheimer’s disease (Zhu et al., 2010a; Maclullich
et al., 2004; Zhu et al., 2011; Ramirez et al., 2016; Zhu et al.,
2010b; Chen et al., 2011; Hurford et al., 2014; Potter et al., 2015;
Liang et al., 2018; Cai et al., 2015; Doubal et al., 2010).

The cause and mechanism of the enlarging of PVS are not
clear yet. Various mechanisms have been proposed that may
contribute to the enlargement of PVS, e.g. atrophy of the brain,
microvascular or lymphatic obstruction, hypertension and in-
flammation (Chen et al., 2011; Adams et al., 2015; Groeschel
et al., 2006).

2.3. Visualization
Normal PVS are too small to be noticed on MRI scans at

clinical field strengths, however when PVS increase in size they
become more visible and quantifiable (Ramirez et al., 2016;
Kwee and Kwee, 2007; Doubal et al., 2010; Wardlaw et al.,
2013). As there is no clear threshold in terms of diameter yet for
when PVS are clinically enlarged, the term enlarged perivascular
spaces was often used in studies to refer to any PVS visible on
MRI scans. However the visibility of PVS on MRI is depen-
dent on the MR sequence characteristics so this is very study
dependent and arbitrary in terms of clinical significance (Valdés
Hernández et al., 2013; Wardlaw et al., 2013; Adams et al.,
2015). For this reason referring to all PVS (visible on MRI or
not) as PVS and specifying the range of PVS diameters that is
examined in the study is recommended now (Wardlaw et al.,
2013; Adams et al., 2015, 2013).

As PVS follow the course of the vessel they surround, they
appear as elongated structures on 3D MRI scans. In a 2D image
slice PVS can be round, ovoid or linear dependent on what
the orientation of the PVS is with respect to the image slice
(Wardlaw et al., 2013). PVS with a diameter between 1 mm
and 3 mm is an often used range for examining PVS that are
enlarged. PVS with a smaller diameter than this are barely
enlarged and larger PVS (> 3 mm) might be dependent on
different pathology. PVS have a similar intensity to CSF on all
MR sequences (Ramirez et al., 2016; Kwee and Kwee, 2007).

The appearance of PVS on MRI scans bears most resem-
blance to lacunar infarcts, lacunes and small punctual white
matter hyperintensities (WMH) (Potter et al., 2015; Valdés
Hernández et al., 2013; Kwee and Kwee, 2007; Bokura et al.,
1998). As sulci contain CSF, they can look similar to PVS and
motion artifacts can look similar as well. Especially the shape,
location, size, and spatial distribution are thought to be impor-
tant descriptors for distinguishing PVS from mimics (Valdés
Hernández et al., 2013; Dubost et al., 2018b; Chen et al., 2011;
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Boespflug et al., 2018) (see Appendix B.4 for more information
on this).

PVS appear mainly in the basal ganglia, hippocampus, cen-
trum semiovale en mesencephalon. The CSO is seen as the most
difficult region to distinguish PVS as it is the largest and contains
many similar structures (see Figure 4b) (Kwee and Kwee, 2007;
Barkhof, 2004; Adams et al., 2015; Dubost et al., 2018b).

2.4. Assessment
MRI is without a doubt an invaluable tool for research on

PVS. However, to be able to study PVS associations, a way of
measuring is needed to compare PVS burden in the brain. Until
recently most studies used a visual scoring system, categorizing
PVS burden in an image into in general 4 to 6 burden levels
(Doubal et al., 2010; Maclullich et al., 2004; Hurford et al.,
2014; Chen et al., 2011; Potter et al., 2015). Almost every study
had its own method of assessing PVS burden, making it difficult
to compare studies. Efforts have been made to establish a more
general and robust way of evaluating burden of PVS (Ikram
et al., 2017; Adams et al., 2015; Wardlaw et al., 2013; Doubal
et al., 2010; Potter et al., 2015; Valdés Hernández et al., 2013;
Ballerini et al., 2018).

Visual scoring systems are a fast way of PVS assessment.
However, these scales are based on subjective classification. Fur-
thermore, clustering the PVS burden into few categories results
in floor and ceiling effects. Evidently these scales do not directly
indicate any information on location, morphology or volume
of PVS (Wang et al., 2016b; Ballerini et al., 2018; Boespflug
et al., 2018; Ramirez et al., 2015). Established visual scoring
systems that currently appear to be most used are the Patankar
scale and the Potter scale (Patankar et al., 2005; Ramirez et al.,
2015; Potter, 2011; Wang et al., 2016b; González-Castro et al.,
2017).

Other proposed measures of PVS burden are counting the
number of PVS per slice or per full brain region, voxel-wise
binary labels with either a dot per PVS or segmentations of
the PVS (in order of containing increasing information about
PVS). Besides containing more information about PVS, these
measures also pose a more objective way of assessing PVS
burden. However, as PVS are difficult to distinguish from other
structures like lacunes, these measures still do suffer from some
subjectivity (Adams et al., 2015; Dubost et al., 2018b; Valdés
Hernández et al., 2013; Wang et al., 2016b). An important
disadvantage of these measures is that obtaining them manually
is very time-consuming. Especially for a large brain region like
the CSO this would take very long. However the number of
PVS found in one slice of the CSO was shown to be highly
correlated with the number of PVS in the whole brain region.
This considerably decreases the annotation time (Adams et al.,
2015).

3. Geodesic Distance Transform

A distance map is an image that shows for every pixel how
far away it is from a chosen subset of pixels and was first pre-
sented by Rosenfeld and Pfaltz (1968) (Cárdenes et al., 2010;

G(xi)

d
spatial

G(e)

d
geodesic

G(e)-G(xi)

Figure 2: Displacement on curved space. To compute the geodesic distance
map value for pixel ’e’, the geodesic distance dgeodesic to all neighboring pixels
xi is calculated. The intensity is perceived as an extra dimension and is defined
in the gray-scale image G(x). The spatial distance dspatial for WDTOCS dspatial

is 1 for horizontal and vertical neighbors (N4(e)) and
√

2 for diagonal neighbors
(N8(e) \ N4(e)). Using Pythagoras dgeodesic is calculated from G(e) - G(xi) and
dspatial. A 2D input image is assumed, but 3D input images are possible as well
with a different connectivity grid (adapted from Toivanen (1996))

Saito and Toriwaki, 1994). A distance map is computed from a
binary image using an operation called a distance transform (see
Figure 3). The binary image distinguishes between pixels be-
longing to the background (0) and foreground (1). The distance
transform calculates for every pixels the closest distance to the
specified foreground. The output is an image with pixels that
have a value corresponding to their distance to the chosen subset
defined by the binary image. Essentially a distance map is a
composition of distance isocontours, each contour containing all
pixels that are a certain distance from the foreground (Paglieroni,
1992; Borgefors, 1986; Rosenfeld and Pfaltz, 1966; Grevera,
2007; Wang and Tan, 2013).

The definition of the distance in a distance transform greatly
effects the resulting distance map. For gray-scale images taking
the intensity into account besides the spatial information is useful
to encode the image context into the distance map. Toivanen
(1996) developed a measure for this called the weighted distance
on curved space (WDOCS) also referred to as the geodesic
distance. Combining the spatial and intensity information by
using the intensity as an extra dimension, the image is seen as a
curved space defined by the spatial coordinates and one intensity
coordinate (see Figure 2). The shortest path on curved space is
referred to as the geodesic distance, as the path is restricted to
the top surface of this height map. Intuitively distances between
pixels that are connected by flat terrain are shorter than pixels
that have hills and valleys in the height map between them
(Grazzini et al., 2007; Toivanen, 1996). The corresponding
transform called the weighted distance transform on curved
space (WDTOCS) requires a binary image F(x) defining the
foreground as well as a gray-scale image G(x). The WDOCS
between pixel e and its neighboring pixel xi ∈ (N8(e), with
intensities G(e) and G(xi) respectively, is defined as

d(e, xi) =


√(

G(e) −G(xi)
)2

+ 1 if xi ∈ N4(e)√(
G(e) −G(xi)

)2
+ 2 if xi ∈ (N8(e) \ N4(e))

(1)

Geodesic distance maps are used a lot in medical image
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(a) (b) (c) (d)

Figure 3: Distance Transforms Euclidean distance transform (EDT) computes a euclidean distance map (EDM) (a) from a binary image (b). The weighted distance
transform on curved space, also referred to as geodesic distance transform, combines the spatial distance and the intensity differences between pixels to compute a
geodesic distance map (d). It uses a binary image to define foreground and background (like EDT) and a gray-scale image (c) to define the ’curved space’. In this
example the binary image are the dot annotations and the gray-scale image is an axial slice of a proton density-weighted (PDw) MRI scan. Both transformations were
computed on 2D images with an assumed pixel connectivity of 8 (N8, meaning horizontal, vertical and diagonal neighbors in a 2D grid) was used, but can be adapted
to 3D and different connectivities.

analysis especially for segmentation as these maps show large
differences in values at edges in the intensity image (Wang et al.,
2018; Criminisi et al., 2008). Geodesic distance maps clearly
show potential to use for incorporating important information
from the intensity image with the dot annoations. As annota-
tions are only available for one slice of the data (see section 6)
this section assumed 2D images, however 3D images are also
possible and different connectivity grids.

4. Related Work

4.1. Computational Methods for PVS burden
Several promising (semi-)automated methods have already

been proposed to decrease annotation time and intra- and inter-
observer variability while providing more information about
PVS (Lian et al., 2018; Dubost et al., 2018b; Park et al., 2016;
Boespflug et al., 2018; Ballerini et al., 2018).

However, current methods still suffer from at least one of the
following issues. The proposed methods that are semi-automated
still rely on some user interaction, making these methods incon-
venient to use for large datasets as well as more susceptible to
inter-observer variation (Wuerfel et al., 2008; Ramirez et al.,
2015; Wang et al., 2016b). Furthermore, the proposed unsu-
pervised methods depend on elaborate preprocessing steps and
heuristic fine-tuning of parameters which hinders the use of these
methods on new datasets (Wuerfel et al., 2008; Uchiyama et al.,
2008). Some methods use patches instead of full images, reduc-
ing the (spatial) information the method gets (Lian et al., 2018;
Jung et al., 2018). Moreover, several of the proposed methods
require MR images acquired at higher field strengths than the
current standard used in practice (1.5 T or 3 T), greatly limiting
clinical applicability of these methods (Lian et al., 2018; Zhang
et al., 2017; Ballerini et al., 2018). Additionally, the majority
of the proposed algorithms is evaluated on a relatively small set
namely less than 30 images due to requiring voxel-wise anno-
tations for testing (and training) (Lian et al., 2018; Park et al.,

2016; Boespflug et al., 2018). It would be very useful to evaluate
these methods on larger datasets to evaluate their true potential
and robustness. Besides this, most of the methods are developed
and evaluated on data from the same hospital, acquired by the
same scanner (Dubost et al., 2018b; Hou et al., 2017; Cai et al.,
2015). Evaluating these methods on images from other hospitals
and scanners would be beneficial to see if the methods generalize
well. Similarly some methods are evaluated using annotations
from only one observer (Dubost et al., 2018b; Ballerini et al.,
2018). As it is difficult to identify PVS, annotations are subject
to observer bias (Adams et al., 2015; González-Castro et al.,
2016a; Hou et al., 2017). Comparing annotations computed by a
method developed on annotations of one observer, with the anno-
tations of another observer would be valuable to evaluate to what
extent the method is overfit on annotations of one observer. In
addition many papers do not mention any intra- or inter-observer
correlation of the annotations they used (Park et al., 2016; Lian
et al., 2018; Uchiyama et al., 2008). However, it is important to
know the confidence of the ground truth to compare methods to
human performance. Lastly, the amount of information about
PVS provided by methods vary from binary classification of
the general PVS density to segmentation of PVS. All are useful
for research on PVS burden, however additional information
given on PVS like location and morphology enables additional
research possibilities on e.g. associations with spatial distribu-
tion of PVS or with size of PVS (Boespflug et al., 2018). Even
though a lot of promising methods have been proposed already
on PVS assessment, there is clearly still room for improvement.

In this thesis we use dot annotations as ground truth to de-
velop and evaluate our proposed methods. As this is less time-
consuming than fully segmenting PVS this enables us to use a
considerably larger dataset with ground truth locations than is
used in all previously proposed (semi-)automatic methods that
provide the location of PVS. We use 1202 images to develop our
methods and 1000 images are used to evaluate the performance
of the methods.
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(a) (b) (c) (d)

Figure 4: Shifting dots inside the volume of their corresponding enlarged perivascular space (PVS) Zoom in of axial slice of intensity image without annotated
dots (a), with annotations (indicated by red Xs) and shifted annotations to the PVS center as described in section 7.4 (indicated by blue +s) (b), the geodesic distance
map computed from shifted annotations described in the same section (c), and the intensity image of one full axial slice with annotations (indicated by red Xs) and
shifted annotations (indicated by blue +s) (d).

4.2. Methods using Distance Transform
Several methods have been proposed using spatial maps to

optimize neural networks for the detection of cells. These meth-
ods use maps that are based on Euclidean distance. For these
methods this makes sense as the cells they aim to detect are
mainly circular (Xie et al., 2018b,a; Raza et al., 2018). Fur-
thermore, these methods use 2D images causing problems with
occlusion that are tackled using e.g. a density surface (Xie et al.,
2018a).

PVS on the other hand are elongated structures and have
a complex morphology (Park et al., 2016; Valdés Hernández
et al., 2013; Boespflug et al., 2018). As Euclidean distance does
not take image context into account, using a different distance
measure would make sense. Furthermore, the data we use in our
study is 3D. Without the problem of occlusion, a density surface
is less advantageous. However, geodesic distance combines
spatial distance and intensity differences (see section 3) and
show potential for PVS detection as they could incorporate the
complex morphology of PVS.

Geodesic distance maps are used in medical image analysis
in a lot of different ways. A lot of promising methods have
already been proposed using GDMs, like a method proposed by
Gaonkar et al. (2015) that uses geodesic distance maps combined
with thresholding for tumor volume segmentation. Furthermore,
(Jang et al., 2016) use a combination of Hough transform and
geodesic distance maps for aorta segmentation. Kontschieder
et al. (2013) tackle semantic segmentation with a forest-based
model using geodesic distance to compute connectivity features.
Moreover, Krähenbühl and Koltun (2014) present a method that
produces objects proposals in images using critical level sets in
geodesic distance maps computed using seeds placed by trained
classifiers. Another interesting approach is a method presented
this year by Wang et al. (2018) that combines geodesic distance
transformation and deep learning for interactive segmentation.
User interactions are encoded as geodesic distance maps and
together with the intensity image and the current segmentation
these maps are given to a CNN that outputs a refined segmenta-
tion. The GDMs provide a useful way to provide the network
with extra spatial and intensity information about the foreground

or background that can be derived from the user input.
In our proposed methods we also use geodesic distance trans-

formation in combination with a CNN. However, we use the
GDT for creating label images for optimization of the network,
instead of using the GDM as input to the network. We train the
CNN to either predict the geodesic distance map computed from
the dot annotations or a thresholded version of it. Park et al.
(2016) mention as a recommendation for enlarged PVS segmen-
tation that geodesic distance might be useful for capturing the
complex patterns of enlarged PVS. In our experiments we show
that this is the case.

5. Contributions

We present two approaches for optimizing a CNN for auto-
mated detection of PVS. Both approaches use a geodesic dis-
tance transform to extract the complex morphology of PVS from
the MRI scan and its corresponding dot annotations. The first ap-
proach focuses on optimizing the CNN for voxel-wise regression
of the geodesic distance map computed from the dots and the
intensity image. The second approach aims to predict segmenta-
tions of the PVS using a CNN that is trained on segmentations
approximated using GDMs. Both approaches provide more in-
formation to the network than just the dot annotations would
have. Various label images and losses are presented per approach
to optimize the CNN to automatically detect PVS as accurately
as possible. Both approaches brought forth methods that match
human performance on detecting PVS without the need for any
user interaction. To the best of our knowledge we are the first
to compare and match human performance on the detection of
PVS.

A substantial dataset of 1202 MRI scans was used to develop
the methods. The methods were tested on a set of 1000 MRI
scans, which is considerably larger than any other papers on
automated methods for PVS quantification have reported as far
as we know.

Recently many methods use MRI scans acquired at 7 T
which has a better spatial resolution (Lian et al., 2018; Park et al.,
2016; Zhang et al., 2016), raising the question how these models
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perform on scans obtained at clinical field strength (Ballerini
et al., 2018; Boespflug et al., 2018). All 2202 scans used in this
study have been acquired at a clinical field strength of 1.5 T.

Lastly, even though geodesic distance transformation itself
has been used repeatedly in medical image analysis applications,
hardly any methods use GDMs in combination with neural net-
works. We show that GDMs are extremely useful for capturing
complex morphologies when computed from dot annotations.
Our experiments indicate that GDMs can be used to provide
valuable additional information to CNNs during training.

6. Data

6.1. MRI scans
For this study we used 2202 proton density-weighted (PDw)

MRI scans from the third cohort of the Rotterdam Study (Ikram
et al., 2017). This is a prospective cohort study that investigates
diseases in the elderly population in Rotterdam (Ikram et al.,
2017). All scans were from different individuals and were ac-
quired on a 1.5 T MRI scanner (General Electric Healthcare,
Milwaukee, USA) using an 8-channel head coil. A fast spin echo
sequence was used to obtain scans with a slice thickness of 1.6
mm (echo time (TE) = 17.3 ms, repetition time (TR) = 12,300
ms, flip angle = 90-180◦, bandwidth = 17.86 KHz, field of view
= 25 cm2, matrix size = 416 × 256, scan time = 369 seconds).
After reconstruction the images have a size of 512 × 512 × 192
with a voxel resolution of 0.49 × 0.49 × 0.8mm3. Further details
on the image acquisition of our data is discussed by (Ikram et al.,
2015)

Preprocessing of the images was performed as described
by (Dubost et al., 2018b). For every MRI scan the CSO was
segmented with the FreeSurfer multi-atlas segmentation algo-
rithm (Desikan et al., 2006) producing a binary mask. The scans
were subsequently cropped around the center of mass of the
mask to reduce the size of the images and with that the mem-
ory requirements. As only one slice of the CSO was annotated,
we further reduce the size of the scans by selecting only the
slices surrounding the annotated slice. This slice is located 1
centimeter above the lateral ventricles as described by Adams
et al. (2013). The slice number is estimated automatically by
segmenting the lateral verntricles with the FreeSurfer algorithm
and choosing the slice located 1 centimeter above the ventricles.
The resulting scans with their size of 256 × 292 × 16 fit in the
memory of our GPU and contain (part of) the segmented CSO
surrounded by zeros. An example slice is shown in Figure 3c.

6.2. Annotations
PVS have been annotated for 2202 MRI scans. Only one

axial slice per scan was annotated, as the number of PVS in
one slice is highly correlated with the number of PVS in the
whole CSO (Adams et al., 2015) and annotating the whole CSO
would be much more time-consuming. This slice was defined by
Adams et al. (2013) as the slice 1 cm above the lateral ventricles.
The location of the annotated slice in the final 3D image that is
used for the automated methods is dependent on the FreeSurfer
segmentation of the lateral ventricles and the brain region.

Sensitivity FPPI

0.560 (± 0.300) 4.54 (± 3.69)
0.553 (± 0.289) 4.32 (± 3.70)

Table 1: Annotation variability. A separate set of 40 MRI scans was annotated
twice by the same expert rater in a different random order with two weeks
in between. For both time points the sensitivity and average amount of false
positives per scan (FPPI) was computed by using the other set of annotations
as the ground truth measure. The standard deviation across images is shown
in brackets (Maybe not needed because the two points are also plotted in the
FROCs)

An expert rater was provided with (full brain) T1w, T2w
and FLAIR MR images. The rater selected this slice to annotate
defined by Adams et al. (2013) and marked every PVS visible
in that slice with a dot near its center (shown as red crosses in
Figure 4b for more clarity). The guidelines about PVS discussed
by Adams et al. (2013) were used for assessing PVS. PVS are
defined to be at least 1 millimeter (mm) in diameter and the
maximum diameter is 3 mm, because the pathogenesis of larger
PVS might be different.

The variability in the annotations was evaluated on a separate
set of 40 MRI scans. The expert rater annotated these scans two
times in a different random order with two weeks in between.
The sensitivity and average amount of false positives per scan
(FPPI) was computed for both sets of annotations by using the
other set of annotations as the ground truth measure (see Table
1).

7. Methodology

We propose a method for PVS detection using geodesic dis-
tance transform and a convolutional neural network (CNN). This
method is optimized using dot annotations. If the dot annota-
tions were directly used as labels, the network would be required
to learn the exact voxel chosen by the annotator. Besides the
complications this would cause due to the severe class imbalance
and contradictory information about exact location, this is highly
sensitive to annotation error or bias (see Figure 4b). Another
approach is to consider the complete PVS volume as positive.
Using the segmentation of the PVS would be ideal to incorporate
the prior knowledge that PVS are elongated structures (see sec-
tion 2). As manual segmentation is very time consuming, we use
geodesic distance maps computed from the dot annotations in-
stead. Geodesic distance maps (GDMs) combine spatial distance
with intensity differences, they have been used for segmentation
before, especially because of the emphasis that is given on sharp
edges (Criminisi et al., 2008; Gaonkar et al., 2015; Wang et al.,
2018). We investigated two approaches of using the GDM to
optimize the CNN to detect PVS. The first approach is using
the CNN for voxel-wise regression of geodesic distances to the
nearest PVS which is discussed in section 7.2. Secondly we use
the CNN for voxel-wise segmentation using a thresholded GDM
as approximations of the segmentation of PVS as described in
section 7.3. Besides what is described in these sections the rest
of the method is the same for both approaches.As we only have
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Figure 5: Architecture of the CNN used for detection. Preprocessed images of the centrum semiovale are given to the CNN as input images, after which the CNN
outputs a prediction map. The CNN consists of seven convolutional layers with kernels of 3 x 3 x 3 and either a ReLU activation or an ELU activation, one max
pooling layer, one trilinear interpolation layer, one concatenation and one convolution of 1 x 1 x 1 and a sigmoid activation function.

annotations of one specific axial slice of the CSO we only eval-
uate the loss on this slice of the volume. The slice 1 cm above
the lateral ventricles was chosen for this, Adams et al. (2015)
show that this slice is highly correlated with the total number of
PVS in the whole CSO. The location of the annotated slice in
the volume is different per image, forcing the network to learn
to detect PVS in not only one slice but in at least a subset of the
slices and possibly even the whole volume.

7.1. Architecture
The architecture of our CNN is inspired by U-Net and FCN

(Ronneberger et al., 2015; Long et al., 2017). Our CNN can
accept an image of arbitrary size, because it is a fully convolu-
tional neural network with a convolutional layer with a kernel of
1 × 1 × 1 instead of a fully connected layer (see Figure 5). The
network consists of first two convolutional layers, a maxpooling
layer, followed by again two convolutional layers, a trilinear
upsampling layer, another convolutional layer, after which it is
concatenated with the output of the second convolutional layer,
two more convolutional layers and finally the last convolutional
layer with a kernel of size 1×1×1. The rest of the convolutional
layers have kernels with sizes 3 × 3 × 3 and the maxpooling
layer has a kernel size of 2 × 2 × 2. The number of feature maps
for the convolutional layers are 16 for the full spatial resolution
and 32 for the downsampled resolution and padding is applied
so the layers output the same sized images as they got as input.
For all convolutional layers except the last layer the generally
used rectified linear units (ReLUs) are used as activation func-
tion to provide non-linear transformations for the regression
approach (section 7.2). For the segmentation approach (section
7.3) exponential linear units (ELUs) are used (Clevert et al.,
2015).

ELUs were proposed by Clevert et al. (2015) and are said to
improve the learning speed of networks and the generalization
performance.

The last layer has a sigmoid activation function which scales
the output values between 0 and 1, as the label images are

also between 0 and 1. Weights for the convolutional layers
were initialized by random sampling from a normal distribution
with zero mean and unit variance. Biases are initialized at a
value of 0.01. Previous exploratory experiments on a subset of
the training data indicated sigmoid output worked better than
linear output, that having less feature maps slightly harmed
performance and that adding more feature maps had no effect on
performance. Linear interpolation for upsampling gave better
results than transposed convolution and the standard method
for upsampling in keras which is just repeating the neighboring
voxels. Furthermore, deepening the network did not improve the
performance.

7.2. Regression approach
In this approach we aim to optimize the CNN for voxel-

wise regression of the GDM and with this detection of PVS.
Optimizing a CNN to predict this geodesic distance map is not
straightforward. For this reason we compare how well various
loss functions combined with several different label images opti-
mize performance of PVS detection. In line with the work by
Xie et al. (2018a) we use mean squared error as the basic loss
function and formulated two additional loss functions.

As the loss is only evaluated on one slice, a 2D GDM is
computed of this slice and its corresponding annotations and
used as label image. We also experiment with several adaptations
performed voxel-wise to emphasize the edges more in the GDM
and create more contrast, by taking the exponential of the GDM,
by squaring the values and by taking the GDM to the power 3.
All GDM versions are normalized and inverted, resulting in a
label image between 0 (farthest voxel from PVS) and 1 (PVS).
An example of the four different GDMs used in this thesis are
shown in Figure 6c - 6f.

7.2.1. Loss Functions
The goal of optimizing the CNN to predict the geodesic

distance map is to handle class imbalance and at evaluation time
providing the network with better feedback with which voxels
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(a) PDw MRI Scan (b) Original Ground Truth (c) GDM (d) eGDM

(e) GDM2 (f) GDM3 (g) Threshold = 0.95 (h) Threshold = 0.96

Figure 6: Label images for CNN An axial slice of the proton density-weighted (PDw) MRI scan (a) and its corresponding dot annotations (b) indicating the location
of the PVS in the image. Geodesic distance transform uses these images to compute a geodesic distance map (GDM) (c). To further emphasize the edges surrounding
the PVS we modified the GDM by taking the exponential GDM (d), squaring all values in the GDM (e) and by taking all values to the power 3 (f). The increase in
contrast and noticeably of PVS is clear to see between the different GDMs. The original dot annotations (b) are shown in black on the GDM images (c-f). Note that
this is is an overlay and not part of the label images.Thresholding the original GDM at 0.95 and overlaying this on the intensity image (g) shows the approximate
segmentation that is obtained. The segmentations obtained by a threshold of 0.96 are slightly smaller (h) which improves segmentation in some cases and decreases it
in others (visually assessed). All these label images are scaled between 0 and 1.

are part of the PVS or close to it. However, the overall objective
is to detect the PVS and this is not directly optimized by the loss.
In former, exploratory experiments we observed that when using
the widely used mean squared error (MSE) loss to optimize the
network, there was not a clear improvement of performance in
line with the decreasing loss. It seemed like the network was
focusing too much on getting the exact background values right.
We therefore propose three different ways to improve the MSE
by weighting the loss. We compare the ability of these losses
to optimize the network combined with the four described label
images.

Mean Squared Error. The mean squared error quantifies the
difference between the prediction (computed by the CNN) and
the ground truth and can be used as a loss function. For every
voxel i in the ground truth slice the squared difference between
the predicted value ŷi and the ground truth yi is computed. To
obtain the resulting MSE the mean is taken over the squared
distances of all n voxels in this slice.

MSE =
1
n

n∑
i=i

(ŷi − yi)2 (2)

Label-Weighted Mean Squared Error. To place the focus of
the optimization on the most important labels, namely those
close to the PVS, the MSE can be weighted by multiplying with
the corresponding value in the label image. The voxels in the
PVS are approximately 1 and the voxel farthest away in geodesic
distance from all PVS is 0. Multiplying this voxel-wise forces
the loss to be higher for more important voxels close or in the
PVS and voxels further away count less. The label-weighted
mean squared error (wMSE) is defined as follows

wMSE =
1
n

n∑
i=i

yi (ŷi − yi)2 (3)

Thresholded Label-Weighted Mean Squared Error. Combin-
ing advantageous of DSC and wMSE seemed like the next step
to further focus the loss on optimizing the overall goal namely
detection of PVS. The idea behind this loss is to only optimize
for the background if it is ”false positive” and otherwise ignore
it. This is inspired by DSC as this also does not take into account
background values unless they are false positives.

In essence TwMSE is a masked wMSE in a way. The mask
defined by the threshold T indicates which voxels of the label
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image are important to predict exactly and for which voxels
predicting them as any value below the threshold is sufficient.
The thresholded label-weighted mean squared error (TwMSE) is
defined in the following way

TwMSET =


0 if p ≤ T and y ≤ T
1
n

n∑
i=i

yi (ŷi − yi)2 otherwise
(4)

where T is the chosen threshold. The voxels that are below
the threshold in the label slice and in the predicted slice are seen
as true negatives and are excluded from the loss (first case in
Equation 4). Optimizing these values further is not necessary,
as long as these voxels are below the threshold they are seen
as unimportant. The voxels in the label slice that are higher
than the threshold will always be taken into account as these are
important to predict exactly (second case in Equation 4).

Two thresholds are applied for the TwMSE loss, one at
0.5 (TwMSET=0.5) and a threshold at 0.8 (TwMSET=0.8). The
modified GDMs would have a different mask than the other
GDMs if the same threshold would be taken for these images
without taking into account their modification. For this reason
the corresponding thresholds are computed by applying the same
modification as for the type of GDM, e.g. T2 for GDM2

7.3. Segmentation Approach
Binary cross entropy (BCE) and the Dice similarity coef-

ficient (DSC) were used as voxel-wise segmentation losses in
varying combinations with label images. The GDMs are used
to segment the PVS by thresholding at two different thresholds
producing an approximate segmentation of the enlarged PVS
(see Figure 6g and 6g). These approximated segmentations can
provide the CNNs with valuable inforation on morphology and
spatial distribution of PVS. To

7.3.1. Loss Functions
For the segmentation approach Binary cross entropy (BCE)

and the Dice similarity coefficient (DSC) were used, which
are both used a lot for optimizing CNNs for medical image
segmentation.

Dice Similarity Coefficient. DSC quantifies the amount of agree-
ment between two sets of labels. DSC loss focuses on the true
positives and is often used when datasets are highly class imbal-
anced, which explains why it is frequently used for segmenta-
tion in which this is regularly the case (Andrews and Hamarneh,
2015; Trebeschi et al., 2017; Pinto et al., 2016; Sudre et al.,
2017). The standard definition for DSC is

DSC(P,Y) =
2|P ∩ Y |
|P| + |Y |

=
2TP

2TP + FP + FN
(5)

with DSC(P,Y) = 0 for completely disjoint sets, and DSC(P,Y) =

1 for completely identical sets. Evidently with increasing perfor-
mance DSC increases as well. However, per definition loss is
minimized by neural networks so the DSC has to be flipped. This
is in general simply done by defining the DSC loss as negative

DSC or by using 1 minus the DSC. As the standard definition of
DSC is not differentiable a continuous version of DSC is gener-
ally used instead (Shen et al., 2017; Zhou et al., 2016; Andrews
and Hamarneh, 2015; Pinto et al., 2016; Sudre et al., 2017). The
following DSC loss was used in our experiments

DSC = 1 −
2 ∗

n∑
i=1

ŷi ∗ yi

n∑
i=1

ŷi +
n∑

i=1
yi

(6)

Binary Cross Entropy. BCE is an often used loss in deep learn-
ing. It quantifies the difference between the distribution of the
data and the distribution of the predictions made by the network.
The BCE is defined as

BCE =

n∑
i=i

(
− yi ∗ log(ŷi) − (1 − yi) ∗ log(1 − ŷi)

)
(7)

As the log of zero is not defined, in the Keras implementation
a very small value ε is added in both log functions to ensure
stability.

7.4. Implementation
The GDM is very dependent on the specified foreground.

If the annotated dots are not placed in the volume of the PVS
but next to it, the voxels of the corresponding PVS will have
very high values (low in the inverted distance map). There
will be a large intensity difference between the value at the dot
annotation and the intensity of the PVS, which corresponds to a
large geodesic distance. In the corresponding normalized and
inverted GDM the voxels in the PVS will have low values while
the surroundings containing the annotated dot will have high
values which would indicate that region corresponds to a PVS.
This would give very inconsistent information to the CNN. For
this reason, to compute the GDM, dots have to be located in the
volume of the PVS. For our dot annotations this was occasionally
not the case (see Figure 4b).

To solve this problem, we developed an algorithm to shift all
dots inside the volume of their corresponding PVS. In general
the PVS’ have a relatively high intensity compared to their
surroundings in the image and the dots are in general close to
the PVS they belong to (see Figure 4). Following these two
observations, we shift the dots to the highest intensity value
in a cube centered around the dot annotation. The size of the
cube is a trade-off between making it large enough to shift to the
corresponding PVS and small enough to prevent the dot from
shifting to a different PVS. To further prevent the latter, the dots
were restricted to only be able to shift to voxels in the same
connected component with a connectivity of 8 (N8, meaning
horizontal, vertical and diagonal neighbors in a 2D grid). By
visual examination of several images the size of this square was
set to 7×7 voxels centered around the dot. The shifted dots were
only used to compute a geodesic distance map for the training
and validation set. For testing the original ground truth dots
were used.
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Figure 7: Histograms of the spread in number of PVS in training and validation set. The spread in number of PVS over the full set (1202 scans) used for
developing the method (a), over the training set (1000 scans) (b) and over the validation set (202 scans) (c)

The geodesic distance maps are computed from the shifted
dot annotations by using the geodesic distance transform pro-
posed by Toivanen (1996) also referred to as the WDTOCS
(see section 3). We used the same method as in the original
paper, which implemented the method by adapting the raster
scan method proposed by Rosenfeld and Pfaltz (1966). This
algorithm (or a slightly adapted version of it) is often used in
methods for medical image analysis (Wang et al., 2018; Crimin-
isi et al., 2008; Kontschieder et al., 2013; Jang et al., 2016; Wei
et al., 2012; Zhang et al., 2015; Cerrolaza et al., 2017). Various
papers state the method is efficient with an optimal complexitys
of O(N), relatively accurate and straightforward to implement
(Zhang et al., 2015; Wei et al., 2012). Wang et al. (2018) pro-
pose a method for interactive segmentation using this algorithm,
clearly showing the algorithm is quite fast.

Raster scanning is an iterative algorithm consisting of two
passes over the image per iteration. The minimal geodesic
distance per pixel is updated sequentially by passing a mask
operation over the image first from the left upper corner to
the lower right corner (forward pass using the kernel in Figure
A.12b) and the second pass goes over the image in reversed
order (backward pass using the kernel in Figure A.12c). All
background pixels are initiated with the maximal integer number
and the foreground pixels with 0. As the mask moves over the
image, the new distance value F∗(e) for pixel e is computed
using the neighbors defined in the mask. This is done by first
calculating the distance d(e, xi) (as defined in equation 1) for all
neighbors xi in the mask. Per neighboring pixel this distance
d(e, xi) is added to the already calculated value for this pixel
F∗(xi). The new distance value F∗(e) for pixel e is the minimum
value of these calculated distances and the initial value of pixel
e F(e)

F∗(e) = min(F(e),min{d(e, xi) + F∗(xi) | i ∈ mask}) (8)

After computing the geodesic distance transform the result-
ing GDMs were normalized and inverted as this was convenient
for implementation in the neural network pipeline.

We implemented this in Python inspired by the C++ code
on GitHub from Wang et al. (2018).

7.5. Model Training
The network is optimized using Adadelta (Zeiler, 2012) to

minimize the loss on the training set. Due to memory limits we
use a mini-batch of one, so after every training sample the loss is
computed and the network is adapted to minimize the loss for the
training sample. As this is prone to overfit it is standard practice
to monitor the training with a validation set, which is a set of im-
ages separate from the training set. This way the performance of
the model on new data can be evaluated. The loss on the training
set normally either decreases or plateaus as this is the measure
that is being optimized. The validation loss generally decreases
during training, might plateau for a bit and when the model
starts to overfit on patterns specific for the training set the loss
on the validation set typically increases again. Early stopping
is a general method used for regularization of the network. The
ideal timing for stopping the optimized network is just before the
overfitting starts. We generally waited for the model to overfit
somewhat to be sure we were not looking at a local minimum
instead of the global minimum, and stopped training after that.
As we save the best model based on the validation loss we can
then select the best model before overfitting.

Another method for regularization is to use data augmenta-
tion. By shifting, rotating and flipping the data more examples
are generated for the network to learn from. As only annnota-
tions for one axial slice are available, we do not do any of the
affine transformation with respect to the depth dimension. For
the validation set no augmentation is used. We use on-the-fly
augmentation for the training set which means we apply random
transformations to the training images every epoch. For every
image a random shift between -4 and 4 voxels in horizontal and
a shift in vertical direction is used, combined with a random ro-
tation around the depth direction with a maximum of 20◦ either
way, and random flipping in horizontal or vertical direction.

As in our approach (and many other approaches) the loss
does not directly focus on detection of PVS, the optimization of
the network was also monitored in other ways. Every 10 epochs
the predictions of the current network on a few images of the
validation set were saved to visually examine if the network
was improving its ability to detect PVS. To further monitor the
training of the models every 30 epochs the best model was saved
(based on the validation loss). All models were subsequently
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evaluated on performance of detecting PVS on the validation
set. This was useful for evaluating if the best performance on
the detection task was also at the best performance of the loss.

7.6. Post-Processing
After optimizing the network to output a GDM or segmen-

tations of PVS, a few steps are followed to obtain the final
detections proposed by the method. The 3D intensity images are
given as input to the trained model, resulting in a prediction of
the GDM or segmentation. The output of the network is a 3D
volume, however only for one slice annotations are available (as
mentioned in section 6). Only the slice for which annotations
are available is used for evaluating performance. Non-maximum
suppression is applied to the predicted slice to decrease the
amount of false positive detections. This is implemented by
applying a 5 × 5 maximum filter to the predicted slice with a
connectivity of 8 (N8, meaning horizontal, vertical and diagonal
neighbors in a 2D grid). The voxels that have the same value in
the filtered slice as in the original predicted slice are the local
maximums which are referred to as the proposed detections of
the network. These detections are ordered by their value, which
is assumed to be an indication of the certainty of the network
that this is a detection or not and will be referred to as the cer-
tainty value.The amount of detections proposed by the network
depends on the threshold that is chosen for the certainty value,
only detections with a higher certainty value are accepted as de-
tections. Section 8.2 describes how the varying of this threshold
is used to evaluate performance of a method.

8. Experiments

8.1. Experimental Settings
Implementation of the methods was done in Python and

Keras (Chollet and Others, 2015) with Tensorflow as backend
(Abadi et al., 2015). Code provided by Dubost et al. (2017)
was used and adapted for the current methods. The exploratory
and currently presented experiments were run on Nvidia Tesla
K40 GPUs that are available for research purposes at the Dutch
national cluster Cartesius and on an Nvidia Geforce GTX 1080
GPU and on 3 different Nvidia Geforce GTX 1070Ti GPUs. An
experiment with the current CNN architecture with added batch
normalization layers and an experiment with twice as many
feature maps per convolutional layer was run on an NVIDIA
QUADRO P6000 as this GPU has a higher memory capacity.

Stratified random sampling based on the number of PVS was
used to split the 2202 scans into a set of 1202 for development
of the method and a separate set of 1000 for testing that we did
not use until after the whole development phase had ended.

The set of 1202 scans was split into 1000 training scans and
202 validation scans (distribution of number of PVS per image
shown in Figure 7). Dubost et al. (2017) further improved and
extended their proposed method that is optimized using weakly
supervised labels (the number of PVS in a slice) and detects PVS.
The same training and validation set were used by them to further
improve and extend their proposed approach of detecting PVS
with weakly supervised labels namely the number of PVS in a

slice. The test set was used to evaluate and compare the different
experiments on as well as to compare to the performance of the
weakly supervised methods of Dubost et al. (2017) that they
developed further.

A subset of the training set was first used for exploratory
experiments to set up an initial pipeline and to investigate which
loss functions improved detection performance most. The best
performing pipelines on this subset were further developed on a
larger training set with additional experiments for verification.

The validation set was used to monitor the validation loss and
detection performance during training, to stop the training when
the network was overfitting on the training set. The methods
reached their optimal performance on PVS detection on average
after around 200 epochs.

8.2. Evaluation
The objective of our methods is to detect PVS. We evaluate

this by comparing with the annotations provided by the expert
rater. The maximum diameter of PVS is defined as 3 mm for our
annotations (see section 6). As the voxel-resolution is 0.49×0.49
in the annotated axial slice, this corresponds to a distance of 6
voxels in the annotated slice. Therefore we set the maximum
distance for a correct detection to 6 voxels. Using the hungarian
algorithm we match the detections proposed by the methods
with the expert rater’s annotations (Kuhn, 1955).

8.2.1. Free-Response Operating Characteristic
The main evaluation of the detection performance is done by

computing the Free-Response Operating Characteristic (FROC)
curve and its area under the curve (FAUC). This enables evalua-
tion and comparison of the methods at varying thresholds. The
methods output as indicated in section 7.6 a list of proposals
ordered by highest certainty of being a detection. To compute
the FROC curve for every method we decrease the threshold
value from 1.0 (the highest value in the prediction map) in steps
of 0.005 and either stop at 0.2 or after more than 500 detections
are proposed. Based on the spread of counts seen in the training
distribution (see Figure 7) the chance that there are more than
500 PVS in the image is not realistic.

For every threshold we evaluate the corresponding proposed
set of detections for every image as discussed with the hungar-
ian algorithm resulting in a number of true positives (TP, the
proposed detection and the annotation match), false positives
(FP, a proposed detection that matches no annotated dot) and
false negatives (FN, an annotated dot that has no proposed de-
tection) per image. The sensitivity per image is calculated by
dividing the amount of TPs by the amount of total annotated
dots in the image. The mean sensitivity is computed by taking
the mean over the sensitivities of all images at that threshold.
The average amount of FPs per image (FPPI) is computed by
taking the mean over all FPs in all images. When there is no
PVS annotated in the image the sensitivity is not defined and
the image is not counted in the average sensitivity. The amount
of FPs on the other hand is defined, because there can either
be proposed detections which are all FP or there are zero FPs
in the image when there are no proposed detections. Both give
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important information on performance, therefore the amount of
FPs is incorporated into the FPPI even if no sensitivity is defined.
For every threshold a point of the FROC curve is calculated in
this way defined by the FPPI and the average sensitivity and
eventually the FROC is plotted for every method.

8.2.2. FAUC
The FAUC was obtained by calculating the area under the

FROC curve until 10 FPPI. This amount of false positives was
chosen based on the performance of the expert rater at about
0.56 average sensitivity and about 4.4 average FPPI. It was set
at approximately twice the FPPI of the rater. As often there is
not an exact point at 10 false positives per image but there are
values before and after, we interpolate the sensitivity value at 10
FPPI and add this point to the curve. The composite trapezoidal
rule was used to numerically approximate the area under the
curve. The resulting area is divided by the full possible area
to get the ratio. This maximum possible area is 10.0 as the
sensitivity ranges from 0 to 1 and we set the limit of the false
positives from 0 to 10. So the FAUC corresponds to the area
under the curve divided by 10, possibly multiplied by 100%
to get the percentage. To provide a measure of the uncertainty
of the FAUC we computed the standard deviation of the FAUC
using bootstrapping of the test set. Bootstrapping was performed
by random sampling with replacement from the test set, which
means scans can be included more than once in the resulting
set (Efron and Tibshirani, 1993). Sets of 1000 were obtained
in this way and evaluated by computing the FAUC. After 1000
runs the mean FAUC and standard deviation of the FAUC were
calculated.

9. Results

The proposed methods are compared in four ways. Firstly, to
evaluate if the loss is indeed optimizing the CNN for detecting
PVS, the FAUC (as described in section 8.2) is computed on
the validation set on a regular interval during training. Figure
8 shows how the loss and detection performance quantified in
FAUC vary during training of the network. Secondly, the FROC
curve is computed per method on the test set which is shown in
Figure 9. The FROC curves show how the methods perform at
different thresholds in terms of sensitivity and FPPI. Thirdly, the
mean FAUC is computed per method along with the standard
deviation using bootstrapping on the test set. The results are
shown in Table 2. Lastly, the methods are compared visually by
computing the predicted map on a random image of the test set
and overlaying this predicted map on the corresponding intensity
image as shown in Figure 10 (more Figures like this are shown
in Appendix D). Figure 11 also shows the intensity image with
the predicted map as overlay as well as the separate predicted
maps for a different image of the test set only for the four best
performing methods (see Table 2 and 3) in terms of FAUC.

To examine how well the different loss functions and label
images combine to optimize the CNN for detection of PVS,
every 30 epochs the best models based on the validation set
were saved and the corresponding FAUC was computed on the

validation set. Figure 8 shows per method the training and
validation loss as well as the FAUC during training. If the loss
optimizes for detection the loss and the FAUC performance
are highly correlated and follow the same trend in the plots.
For most of the methods the loss and FAUC follow at least a
similar trend. A particularly nice example of this is the CNN
optimized using GDM3 and wMSE (Figure 8h) as the loss and
performance first improve together steadily after which they both
plateau. However, sometimes this is clearly not the case, see e.g.
eGDM MSE (Figure 8a) and GDM wMSE (Figure 8e) that reach
the maximum in their performance long before convergence and
decrease in performance during convergence. The best model per
method was chosen based on these FAUC values and evaluated
on the test set.

To compare the performance of the proposed methods on
the test set of 1000 images the FROC curves were computed
as described in section 8.2 and plotted in groups based on the
different losses. The FROCs per loss function are shown in
Figure 9. The color of the curve indicates the label image that
was used as ground truth during optimization. This is shown
in the legend along with the CNNs corresponding FAUC value.
Learning failed for the two CNNs using DSC loss as well as
for the CNN that were supposed to predict the GDM using
TwMSET=0.8 loss. For this reason the FROC curves for these
methods are missing in the plots.

The performance of the expert rater (shown in Table 1) is
added in the FROCs with a red star. The best methods on
weakly labels developed by Dubost et al. (2017) are GP-Unet
and Grad-CAM and are shown in the FROCs as a blue + and
a purple x respectively. These methods were developed on the
same training and validation set and tested on the same test set
to allow for optimal comparison of performance between the
methods.

If a curve passes under the points indicating the performance
of the rater, this method is considered to be inferior in perfor-
mance. Curves that pass above these points would seem to
show increased performance compared to the rater. However,
we consider the performance of the expert rater as the limit, as
the performance measure is dependent on the annotations of
this rater. Therefore curves that are higher than this point might
actually overfit on the annotations.

For the regression approach especially the CNNs trained with
the GDM3 as label image perform very well, matching the expert
rater’s performance almost exactly for some thresholds. Only
the CNN optimized with MSE loss and GDM3 as label image
showed worse performance. In general the CNNs optimized
with MSE loss did not perform well. Without the weighting
used in the other loss functions the optimization might be too
focused on the whole image and not enough on the PVS.

Out of the four methods proposed for the segmentation ap-
proach the two using DSC loss failed to learn and were excluded.
Meanwhile the remaining two methods for this approach that
were both optimized using BCE even surpassed the expert rater’s
performance by the most distance of all proposed methods. How-
ever, as mentioned before this performance is based on the an-
notations of this expert rater, so better performance on those
annotations could mean the CNNs are overfitting on the rater’s
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(b) eGDM MSE
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(c) GDM2 MSE
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(d) GDM3 MSE
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(e) GDM wMSE
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(f) eGDM wMSE
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(g) GDM2 wMSE
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(h) GDM3 wMSE
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(i) GDM TwMSET=0.5
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(j) eGDM TwMSET=0.5
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(k) GDM2 TwMSET=0.5
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(l) GDM3 TwMSET=0.5
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(m) eGDM TwMSET=0.8
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(n) GDM2 TwMSET=0.8
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(o) GDM3 TwMSET=0.8

0 50 100 150 200 250
Epoch

800

900

1000

1100

1200

1300

1400

1500

1600

Lo
ss

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

FA
UC

(p) T=0.95 BCE
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(q) T=0.96 BCE

Figure 8: Loss and detection performance during training. Training was monitored by looking at the training loss (dark blue, left y-axis) and the validation loss
that was computed on the validation set (cyan, left y-axis). Every 30 epochs the best model based on the validation loss was saved. These models were subsequently
evaluated on the validation set on detection performance which was quantified by the FAUC value (described in section 8.2. Using these FAUC values the detection
performance can be plotted along the epochs (red, right y-axis). These plots show how the detection performance varies during convergence of the network. Ideally if
the loss optimizes for detection, the performance on the loss and on detection should be highly correlated and the same trend would be seen in the loss and in the
detection performance over the epochs. A nice example of this is the CNN optimized using GDM3 and wMSE (h) as the loss and performance first improve together
steadily after which they both plateau. However sometimes this is clearly not the case, see e.g. eGDM MSE (b) and GDM wMSE (e) that reach the maximum in their
performance way before convergence and decrease in performance during convergence. Note that the axes are customized for every plot. This is because the methods
vary largely in how high their best performance is, how long it takes for the network to converge based on the optimization and the losses they are optimized for span
different ranges.
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(c) TwMSET=0.5 loss
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(d) TwMSET=0.8 loss

0 2 4 6 8 10
Average False Positives per Image

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e 

Se
ns

iti
vi

ty

T = 0.95 (FAUC: 0.5668)
T = 0.96 (FAUC: 0.5711)

(e) BCE loss

Figure 9: Free-Response Operating Characteristic (FROC) curves for CNNs optimized using different losses and label images. The curves are computed as
described in section 8.2 on the test set of 1000 scans. They are grouped in plots according to the loss function that was used to optimize the CNN. The color of the
curve indicates the label image that was used as ground truth during optimization. This is shown in the legend along with the CNNs corresponding FAUC value. As
described in section 7 for the voxel-wise regression approach CNNs were optimized using mean squared error (MSE) loss (a), label-weighted MSE (wMSE) loss (b),
thresholded wMSE loss with a threshold at 0.5 (TwMSET=0.5) (c) and with a threshold at 0.8 (TwMSET=0.8) (d). The CNNs were optimized to either predict the
geodesic distance map (GDM) computed from the dot annotations or a modified GDM (see Figure 6). For the segmentation approach binary cross entropy (BCE)
loss (e) and dice similarity coefficient (DSC) loss were used to optimize the CNNs to predict the approximated segmentations of the PVS that were obtained by
thresholding the GDM at 0.95 or 0.96 (see Figure 6). Learning failed for the two CNNs using DSC loss as well as for the CNN that was supposed to predict the GDM
using TwMSET=0.8 loss. For this reason the FROC curves for these methods are missing in the plots. The red stars correspond to the performance of the expert rater
on a separate set of 40 images. The blue + corresponds to the performance of GP-UNet and the purple X to Grad-CAM, two detection methods developed and adapted
respectively for PVS detection by Dubost et al. (2017). These methods were trained and validated on the same sets as our methods. The plots are scaled with a
sensitivity range until 0.8 to make the plots more clear.
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(a) Intensity Image (b) GDM MSE (c) eGDM MSE

(d) GDM2 MSE (e) GDM3 MSE (f) GDM wMSE

(g) eGDM wMSE (h) GDM2 wMSE (i) GDM3 wMSE

Figure 10: Predictions on an image from the test set. For every method the predicted map is overlaid on the intensity image given as input to the model. Red
crosses are the ground truth given by the expert rater (so no shifting of dots during inference). The blue asterisks indicate the proposed detections at the threshold
closest to the performance of the expert rater on the test set. The overlaid prediction map is shown in a sequential perceptually uniform color scale that ranges from
purple for the lowest value in the image to yellow for the highest value. The contrast in the predicted maps illustrate the spread of the values in the predicted maps.
Note that the predicted maps are not scaled, so the range of values in predicted maps may vary. Learning failed for the two CNNs using DSC loss as well as for the
CNN that was supposed to predict the GDM using TwMSET=0.8 loss. For this reason the visualizations for these CNNs are missing.
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(j) GDM TwMSET=0.5 (k) eGDM TwMSET=0.5 (l) GDM2 TwMSET=0.5

(m) GDM3 TwMSET=0.5 (n) eGDM TwMSET=0.8 (o) GDM2 TwMSET=0.8

(p) GDM3 TwMSET=0.8 (q) T=0.95 BCE (r) T=0.96 BCE

Figure 10: Predictions on an image from the test set. For every method the predicted map is overlaid on the intensity image given as input to the model. Red
crosses are the ground truth given by the expert rater (so no shifting of dots during inference). The blue asterisks indicate the proposed detections at the threshold
closest to the performance of the expert rater on the test set. The overlaid prediction map is shown in a sequential perceptually uniform color scale that ranges from
purple for the lowest value in the image to yellow for the highest value. The contrast in the predicted maps illustrate the spread of the values in the predicted maps.
Note that the predicted maps are not scaled, so the range of values in predicted maps may vary. Learning failed for the two CNNs using DSC loss as well as for the
CNN that was supposed to predict the GDM using TwMSET=0.8 loss. For this reason the visualizations for these CNNs are missing.
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Table 2: FAUCs Varying losses and ground truth images on test set (1000 images). Bootstrapping is used to quantify the uncertainty, resulting in a mean FAUC and a
standard deviation given in the brackets. Note that the FAUCs and corresponding standard deviations are shown in percentages, to improve readability.

GDM eGDM GDM2 GDM3

MSE 21.91 (± 0.63) 37.02 (± 0.73) 32.96 (± 0.81) 41.56 (± 0.83)
wMSE 36.73 (± 0.73) 44.24 (± 0.81) 49.39 (± 0.81) 54.90 (± 0.84)
TwMSET=0.5 35.95 (± 0.75) 41.78 (± 0.78) 50.06 (± 0.85) 53.85 (± 0.83)
TwMSET=0.8 - 50.45 (± 0.83) 49.38 (± 0.87) 55.11 (± 0.82)

(a) Corresponding Intensity Im-
age

(b) GDM3 wMSE (c) GDM3 wMSE (d) GDM3 TwMSET=0.8 (e) GDM3 TwMSET=0.8

(f) T=0.95 BCE (g) T=0.95 BCE (h) T=0.96 BCE (i) T=0.96 BCE

Figure 11: Predictions by the four best performing CNNs. For every method the predicted map is separately shown and is overlaid on the intensity image given as
input to the model. Red crosses are the ground truth given by the expert rater (so no shifting of dots during inference). The blue asterisks indicate the proposed
detections at the threshold closest to the performance of the expert rater on the test set. The overlaid prediction map is shown in a sequential perceptually uniform
color scale that ranges from purple for the lowest value in the image to yellow for the highest value. The contrast in the predicted maps illustrate the spread of the
values in the predicted maps. Note that the predicted maps are not scaled, so the range of values in predicted maps may vary. Learning failed for the two CNNs using
DSC loss as well as for the CNN that was supposed to predict the GDM using TwMSET=0.8 loss. For this reason the visualizations for these CNNs are missing.
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annotation style.
To quantify the uncertainty in the FAUC values bootstrap-

ping was performed on the test set as described in section 8.2.2
and producing a mean FAUC per method as well as a standard
deviation. For the regression approach the performance of the
CNNs is shown in Table 2 and for the segmentation approach
this is shown in Table 3. The best performances in terms of
FAUC are shown in bold. Note that the values in the brackets
shown in the tables are standard deviations and not confidence
intervals.

To visually examine the performance of the CNNs the pre-
diction maps produced by the CNNs are overlaid on a random
image of the test set shown in Figure 10. The predicted maps are
shown using a color scale that is perceptually uniform. This way
the difference in range and distribution of values in the predicted
maps can be seen. The most clear difference is between the
CNNs optimized to predict the GDM e.g. which have a very
gradual increase in values from the borders to the predictions
(Figures 10b and 10f), while the CNNs of the segmentation ap-
proach seem to have a bimodal distribution of values (Figures
10q and 10r). This corresponds with the label images they were
optimized with, namely the GDM that has a gradual spread in
values and the approximated segmentations that are binary. It
is interesting to see that the CNNs optimized with TwMSET=0.8
show a quite bimodal distribution as well. Also valuable to note
is that even though the mask voxels can have any value below
0.8, most voxels have the same approximate value (see also 11).

Furthermore, the detections proposed by the CNNs at the
threshold closest in performance on the test set (in terms of
Euclidean distance) to the rater’s performance are shown as
blue asterisks. The dot annotations are shown as red crosses.
The same visualization is shown in Appendix D for another
randomly chosen image from the test set.

Lastly, Figure 11 shows for a different random image of the
test set the prediction maps overlaid on the intensity image and
the proposed detections and also the predicted map by itself for
the four best performing CNN in terms of FAUC (see Table 2 and
3). This figure shows more clearly the difference in predicted
maps computed by the CNNs, with the regression CNNs pre-
dicting a more smoothed prediction map and the segmentation
CNNs predicting the PVS more precisely.

The CNNs took about a week of training to fully converge,
some took even longer. However, once trained the whole method

Table 3: FAUCs Binary cross entropy (BCE) and the Dice similarity coefficient
(DSC) were used as voxel-wise segmentation losses in varying combinations
with a thresholded geodesic distance map (GDM) at two different thresholds
producing an approximate segmentation of the enlarged perivascular spaces
(PVS). The performance is evaluated on the test set (1000 images). Bootstrap-
ping is used to quantify the uncertainty, resulting in a mean FAUC and a standard
deviation given in the brackets. Note that the FAUCs and corresponding standard
deviations are shown in percentages, to improve readability. Learning failed for
both CNNs using DSC loss.

BCE DICE

Threshold 0.95 56.67 (± 0.85) -
Threshold 0.96 57.19 (± 0.83) -

takes less than a minute, with the CNNs outputting the predicted
map based on the input image and the post-processing steps
defined in section 7.6 outputting the final detection proposals.

10. Discussion

Both approaches for optimizing the CNN to detect PVS
brought forth methods that match human performance in de-
tecting PVS. Once optimized the whole method including the
CNN takes less than a minute to detect the PVS in a given image.
From our experiments we can conclude that for the regression
approach modifying the GDMs to emphasize the PVS improved
performance as well as weighting the loss to focus more on the
PVS. For the segmentation approach only the BCE loss managed
to optimize the CNN to detect PVS.

The best method in terms of performance (see Table 2 and
3) is the CNN optimized with BCE and smallest approximated
segmentations (T=0.96, Figure 6h). However the other CNN
optimized with BCE performs almost as well with less than 1
standard deviation between the FAUCs. However, both CNNs
even surpass the performance of the expert rater, raising the
question if they are overfitting on the annotation style. We
defined the performance of the expert rater to be the limit of
what is possible. In this way the CNNs that were optimized
for regression with GDM3 as label image and either wMSE and
TwMSE as loss function had the best performance as they almost
exactly match the performance of the rater.

The methods that perform best on the test set are all methods
that show a similar trend in loss and detection performance
during training (see Figure 8) indicating that their combination
of loss function and label image really seem to optimize for
detection.

Both CNNs that were optimized for segmentation seem to
output more precise predictions than the other methods. This is
understandable as they are trained with binary images contain-
ing the approximated segmentations while the other methods
are trained with continuous images. The CNNs optimized for
regression show predictions that are more smoothed. This was
part of our logic of using GDM regression for detecting PVS.
As the annotations are subject to observer bias, our idea was to
use a more smoothed ground truth to regularize and decrease
the chance of overfitting to the labels. The following observa-
tion contributes to this hypothesis. The CNNs optimized for
segmentation perform very well, but do seem to overfit on the
annotations as they even surpass the rater’s performance, while
the best CNNs optimized for regression almost exactly match
the performance of the rater.

The best trade-off between sensitivity and average false pos-
itives per image is not very clear. Due to the difficulty of distin-
guishing PVS it is more ambiguous how many false-positives are
still acceptable because some might actually be false negatives
in the ground truth. It would be beneficial to find a way to let the
CNN learn a detection threshold like Dubost et al. (2017) show
with GP-UNet. However as the current objective was to match
the raters performance, we now choose the threshold based on
the closest Euclidean distance to the raters performance. Further
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research would be beneficial to figure out a sensible threshold
for detection.

It is noteworthy that methods that do better in the low FP
range do not reach full sensitivity while methods that perform
worse at low FP do reach full sensitivity at a lot of false positives.
This could indicate that the brightness plays an important role at
first but when methods are better at predicting PVS they rely on
other image features.

The TwMSE might not optimize correctly because the thresh-
olding in the loss makes this loss function less nicely differen-
tiable. Especially the TwMSE with a higher threshold showed
some convergence problems especially for the GDM and expo-
nentially weighted GDM.

This method might also work for similar image analysis
applications, especially when structures with a complex mor-
phology are the aim of detection.

The current methods were not evaluated on performance of
segmentation of PVS. It would be interesting to see how well
these methods trained with dot annotations perform in terms
of segmenting the PVS. Furthermore combining the currently
proposed methods for detection with (semi-)automated methods
for PVS segmentation currently proposed in the literature (Zhang
et al., 2016; Ballerini et al., 2018; Park et al., 2016) has the
potential to perform very well at segmentation of PVS.

Many neural network architectures require a fixed input
image size due to fully connected layers, however since FCNs
consist of only convolutional layers and pooling layers these
neural networks accept images of arbitrary size. As the CNNs
in this study are fully convolutional, once they are trained they
can accept images of any size and compute PVS detections.
This has not been tried yet. It would be interesting to see how
well the CNNs would handle different sized images as well as
different spatial resolution. The PDw MRI scans used in this
thesis were acquired at a clinical field strength of 1.5 T. It would
be interesting to see how the methods perform on 3 T or 7 T
scans which have a higher spatial resolution.

Our best CNNs clearly outperform the weakly labeled meth-
ods for PVS detection. The dot annotations that we used for
optimizing the CNN contained the location information of the
PVS while the weak labels (number of PVS per slice) used to
optimize Grad-CAM and GP-UNet did not contain this informa-
tion. Our results show that the location information is important
for improving the performance of CNNs for detecting PVS.

Most of the networks took quite long to converge. Various
methods have been proposed in the literature to speed up conver-
gence e.g. ELU and batch normalization (Clevert et al., 2015).
This would be interesting to look at, if the convergence could be
sped up while maintaining the same performance.

As shown in the results PVS detection can be improved by
training on the location of the PVS. However it is not clear
how much the CNNs overfit on style of the rater. Sensitivity
rate is only 0.55 in CSO so there are a lot of false negatives
and false positives in both annotations of the rater, which is
understandable as PVS are very difficult to distinguish from
their mimics. It would be very interesting and valuable to test
the current methods on annotations from another rater to see how
much these methods have overfit on our current annotations.

As the intra-rater agreement is quite low and this was the
limit for the performance of our models, the next step would be
to improve the ground truth. Combining annotations from multi-
ple raters could help decrease the variability in the annotations.

Furthermore trying the best methods on the other brain re-
gions would be valuable to see which methods are most robust
for PVS detection in the brain.

11. Conclusion

In this thesis we proposed two approaches for optimizing
a CNN to detect PVS. For both approaches various label im-
ages and loss functions were combined and compared. Both
approaches brought forth methods that match human intra-rater
performance in detecting PVS without the need for any user
interaction.

Once optimized our one-stage detection method takes less
than a minute to detect the PVS in a given image.

We can conclude that it is possible to use dot annotations to
optimize a CNN for detection of perivascular spaces that matches
the performance of an expert rater. To the best of our knowledge
we are the first to compare and match human performance on
the detection of PVS.
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Appendix A. Distance Map

Appendix A.1. Distance Transform
A distance map is an image that shows for every pixel how

far away it is from a chosen subset of pixels and was first pre-
sented by Rosenfeld and Pfaltz (1968) (Cárdenes et al., 2010;
Saito and Toriwaki, 1994). A distance map is computed from
a binary image using an operation called a distance transform.
The binary image distinguishes between pixels belonging to

the background (0) and foreground (1). The distance transform
calculates for every pixel the closest distance to the specified
foreground.The output is an image with pixels that have a value
corresponding to their distance to the chosen subset defined by
the binary image. Essentially a distance map is a composition
of distance isocontours, each contour containing all pixels that
are a certain distance from the foreground (Paglieroni, 1992;
Borgefors, 1986; Rosenfeld and Pfaltz, 1966; Grevera, 2007;
Wang and Tan, 2013).

To acquire an exact distance map, the distance transform
would have to be a global operator. This is an operator that
applies the same operation to every pixel independent of its lo-
cation using (almost) all other pixels in the image. As you can
imagine this would be by far too costly. Instead an approximated
distance map is computed by using only a pixel’s local neigh-
borhood to compute the distance for that pixel. This is based
on the assumption that the global distance can be approximated
by propagating local distances (Wang and Tan, 2013; Borge-
fors, 1986; Rosenfeld and Pfaltz, 1966). Various algorithms
using different local distance measures have been proposed to
approximate the distance map as accurately as possible while
also optimizing speed (Rosenfeld and Pfaltz, 1966; Yatziv et al.,
2006; Danielsson, 1980).

Appendix A.2. Distance Measures
The definition of the distance in a distance transform greatly

effects the resulting distance map. The distance in general is
defined as the shortest path between two pixels. Which path is
shortest is greatly dependent on the chosen distance measure
and corresponding assumed pixel connectivity. Well-known
distance measures are the city block distance (also known as
Manhattan distance), the chessboard distance and the Euclidean
distance (Rosenfeld and Pfaltz, 1966; Vincent, 1993; Fabbri
et al., 2008; Jain et al., 1995). These first two measures are solely
dependent on the number of pixels that connect one pixel to
another. The definition of how pixels are connected vary between
these two methods. City block distance assumes 4-connectivity
(N4), meaning that it allows only horizontal and vertical steps
between pixels. Pixels at a diagonal angle are therefore defined
as a distance of 2 away from each other. For chessboard distance
this distance would be 1, because 8-connectivity (N8) is assumed
which also allows diagonal steps (Jain et al., 1995; Rosenfeld and
Pfaltz, 1966; Borgefors, 1986). These two distance measures are
a relatively rough approximation of global Euclidean distance,
however they are less costly in terms of computation (Fabbri
et al., 2008; Wang and Tan, 2013). A better approximation is
given by using local Euclidean distance defined on the Cartesian
discrete plane, meaning horizontal and vertical neighbors are at
a distance of 1 and diagonal neighbors are at a distance of

√
2

(Danielsson, 1980; Wang and Tan, 2013).
All of these distance measures are for binary images, they

take only the spatial difference into account (Wang and Tan,
2013; Borgefors, 1986; Paglieroni, 1992; Ćurić et al., 2014). To
calculate the distance in gray-scale images however it is impor-
tant to take the intensity values into account as well. Several
intensity-weighted distance measures for gray-scale images have
been proposed with varying ways of combining the spatial and
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intensity values (Strand and Normand, 2012; Levi and Mon-
tanari, 1970). Besides weighting, combining the spatial and
intensity information by using the intensity as an extra dimen-
sion is also possible, resulting for 2D images in the image being
viewed as a height map. In other words the image is seen as a
curved space defined by (two) spatial coordinates and one inten-
sity coordinate. The shortest path on curved space is referred
to as the geodesic distance, as the path is restricted to the top
surface of this height map. Intuitively distances between pixels
that are connected by flat terrain are shorter than pixels that have
hills and valleys in the height map between them (Grazzini et al.,
2007; Toivanen, 1996).

Toivanen (1996) proposed two (geodesic) distance measures
using this idea, the distance on curved space (DOCS) and the
weighted distance on curved space (WDOCS). The spatial dis-
tance used in DOCS is chessboard distance. In WDOCS this is
local Euclidean distance, which explains why WDOCS is also
referred to as Euclidean distance on curved space (EDOCS) (see
Figure 2). The corresponding geodesic distance transforms (for
gray-scale images) to compute a geodesic map are referred to as
distance transform on curved space (DTOCS) and the weighted
distance transform on curved space (WDTOCS). Both trans-
forms require a binary image F(x) defining the foreground as
well as a gray-scale image G(x). The DOCS between pixel e
and its neighboring pixel xi ∈ (N8(e), with intensities G(e) and
G(xi) respectively, is defined as

d(e, xi) =

√(
G(e) −G(xi)

)2
+ 1 (A.1)

For WDOCS this is defined as

d(e, xi) =


√(

G(e) −G(xi)
)2

+ 1 if xi ∈ N4(e)√(
G(e) −G(xi)

)2
+ 2 if xi ∈ (N8(e) \ N4(e))

(A.2)

Appendix A.3. Computation
Many algorithms for distance transforms of binary images

have been proposed. How these methods search for the clos-
est foreground pixel to each background pixel can be roughly
summarized in three general approaches. Firstly, ordered prop-
agation handles this by starting at the foreground pixels and
iteratively propagating a front with a velocity over the image
until all pixels have gotten a value (Yatziv et al., 2006; Wang
and Tan, 2013). Secondly independent scanning computes the
distance map by dimensional reduction. The distance transform
is initially done separately on every column or row of the image,
after which the result is combined in various ways to compute
the eventual distance map (Paglieroni, 1992; Saito and Tori-
waki, 1994; Wang and Tan, 2013). Lastly raster scanning is
an approach that passes a mask over the image multiple times
sequentially computing and updating the distance for every pixel
(Wang and Tan, 2013; Rosenfeld and Pfaltz, 1966; Danielsson,
1980).

Originally DTOCS and WDTOCS proposed by Toivanen
(1996) were implemented by adapting the raster scan method
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Figure A.12: 3 by 3 kernel for raster scan. Full kernel (a), split kernel for
forward pass (b), split kernel for backward pass (c) (adapted from Toivanen
(1996))

proposed by Rosenfeld and Pfaltz (1966). This iterative al-
gorithm consists of two passes over the image. The minimal
geodesic distance per pixel is updated sequentially by passing a
mask operation over the image first from the left upper corner to
the lower right corner (forward pass using the kernel in Figure
A.12b) and the second pass goes over the image in reversed
order (backward pass using the kernel in Figure A.12c). All
background pixels are initiated with the maximal integer number
and the foreground pixels with 0. As the mask moves over the
image, the new distance value F∗(e) for pixel e is computed
using the neighbors defined in the mask. This is done by first
calculating the distance d(e, xi) (as defined in equation A.1 for
DTOCS and equation A.2 for WDTOCS) for all neighbors xi in
the mask. Per neighboring pixel this distance d(e, xi) is added
to the already calculated value for this pixel F∗(xi). The new
distance value F∗(e) for pixel e is the minimum value of these
calculated distances and the initial value of pixel e F(e)

F∗(e) = min(F(e),min{d(e, xi) + F∗(xi) | i ∈ mask}) (A.3)

After several iterations the algorithm converges and the op-
timal approximation of the geodesic distance map is reached
(Toivanen, 1996).

Several other methods have been proposed to improve the ap-
proximation of geodesic distance maps and the computational ef-
ficiency, e.g. using wave-front propagation (Kimmel and Sethian,
1998; Yatziv et al., 2006; Ikonen, 2007; Ikonen and Toivanen,
2007; Cárdenes et al., 2010). Surprisingly the original (or a
slightly adapted version of the) algorithm using raster scan as
described by (Toivanen, 1996) in 1996 is still often used in meth-
ods for medical image analysis (Wang et al., 2018; Criminisi
et al., 2008; Kontschieder et al., 2013; Jang et al., 2016; Wei
et al., 2012; Zhang et al., 2015; Cerrolaza et al., 2017). Various
papers state the method is efficient with an optimal complexity
of O(N), relatively accurate and straightforward to implement
(Zhang et al., 2015; Wei et al., 2012). Wang et al. (2018) propose
a method for interactive segmentation based on this algorithm,
clearly showing the algorithm is quite fast.

Appendix A.4. Application
Many image processing fields like pattern recognition and

image analysis use distance maps. Useful applications for dis-
tance maps are for instance shape analysis, clustering, k near-
est neighbor classification, level set segmentation, handwritten
character recognition and connected component analysis (Cuise-
naire, 1999; Wang and Tan, 2013; Lantuejoul and Beucher, 1981;
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Cárdenes et al., 2010; Holuša and Sojka, 2015). Which distance
measure is most suited is dependent on the application.

Examples of applications for distance maps in medical image
analysis are centerline detection (Sironi et al., 2014), nerve mor-
phometry prediction (Cuisenaire, 1999) and cell detection (Xie
et al., 2018a,b). Specifically geodesic distance maps seem to be
useful for a lot of applications in medical image analysis because
it takes image context into account. At edges in the intensity
image the geodesic distance map will show large differences in
values (Wang et al., 2018; Criminisi et al., 2008). This property
is especially useful for semi-automatic methods for segmenta-
tion (Wang et al., 2018; Criminisi et al., 2008; Bai and Sapiro,
2007). A clear example of this is the method proposed by Wang
et al. (2018). This method first computes an initial segmentation
using a neural network. The user can refine this segmentation
by drawing doodles indicating either background or foreground.
These doodles are transformed to geodesic distance maps and
together with the input image given to a different neural network.
This network refines the segmentation based on this and outputs
a new segmentation proposal. This continues until the user is
satisfied with the result (Wang et al., 2018). Furthermore (Jang
et al., 2016) use a combination of Hough transform and geodesic
distance maps for aorta segmentation. Kontschieder et al. (2013)
tackle semantic segmentation with a forest-based model using
geodesic distance to compute connectivity features. Gaonkar
et al. (2015) propose a semi-automatic approach using geodesic
distance maps combined with thresholding for tumor volume
segmentation (see Figure A.13). Krähenbühl and Koltun (2014)
present a method that produces objects proposals in images us-
ing critical level sets in geodesic distance maps computed using
seeds placed by trained classifiers. An important disadvantage
of geodesic distance transform for image segmentation is that is
sensitive to noise in the image. Holuša and Sojka (2015) discuss
this problem and propose a new geodesic distance that is more
robust to noise. Park et al. (2016) mention as a recommenda-
tion for enlarged perivascular spaces segmentation that geodesic
distance might be useful for capturing the complex patterns of
enlarged perivascular spaces.

Figure A.13: Example of segmentation using geodesic distance map. The
original intensity image (a), the geodesic distance map computed with a seed
located in the tumor (b) and the resulting segmentation of the tumor after
thresholding the geodesic distance map. In the geodesic distance map the
tumor is more clearly defined than in the original images, enabling a better
segmentation (adapted from Gaonkar et al. (2015))

Appendix B. Perivascular Spaces

Appendix B.1. Anatomy
PVS, also known as Virchow-Robin spaces, surround ar-

teries, arterioles, veins and venules as they enter and emerge
from the brain (see Figure 1). The brain is enveloped by three
membranes, the dura mater, arachnoid mater and the pia mater.
Between the arachnoid mater and the pia mater which covers
the cerebral cortex lies the subarachnoid space. Vessels entering
the brain from the subarachnoid space or emerging from the
brain into the subarachnoid space are enveloped by pia mater.
The space between the pia mater and the vessel is referred to
as PVS (Zhang et al., 1990; Braffman et al., 1988; Barkhof,
2004; Kwee and Kwee, 2007; Valdés Hernández et al., 2013).
In the subarachnoid space vessels are also covered by pia mater.
Consequently PVS are separated from the subarachnoid space
by the pia mater. Differences exist in structure of PVS and its
surroundings in different brain regions and with different types
of vessels (Bakker et al., 2016; Hutchings and Weller, 1986).

Controversy exists as to whether PVS are filled with cere-
brospinal fluid (CSF) (Ramirez et al., 2016; Potter et al., 2015)
and/or interstitial fluid (ISF) (Fanous and Midia, 2007; Öztürk
and Aydingöz, 2002). The signal intensity of PVS has been com-
pared to the signal intensity of CSF on T2-weighted (T2w) MR
sequences. Visually on all pulse sequences these signal inten-
sities seem to be similar if not identical. However quantitative
analysis shows that the signal intensity of PVS is significantly
lower than CSF-filled structures in and surrounding the brain.
This could indicate that PVS are filled with ISF instead of CSF.
However this could also be caused by partial volume effects
(Öztürk and Aydingöz, 2002; Kwee and Kwee, 2007). The pia
mater has a selective permeability and could affect the composi-
tion of CSF that passes through it to perivascular spaces (Bakker
et al., 2016).

Appendix B.2. Physiology
PVS are believed to be involved in the clearance of ISF, CSF,

metabolic waste and solutes in the brain. The exact (fluid) me-
chanics of this process are not yet fully understood, research on
this is ongoing (Wang and Olbricht, 2011; Zhang et al., 1990; Ba-
cyinski et al., 2017; Fanous and Midia, 2007; Valdés Hernández
et al., 2013; Faghih and Sharp, 2018; Ramirez et al., 2016; Cserr
and Knopf, 1992). Knowing the exact mechanics could help un-
derstanding the pathology of neurodegenerative diseases as well
as for research in drug delivery in the brain (Valdés Hernández
et al., 2013; Bakker et al., 2016; Bacyinski et al., 2017).

Studies using tracer injections attempt to shed light on where
and how the drainiage of CSF and ISF happens. Various path-
ways and explanations for transport of fluid and solutes have
been proposed (Wang and Olbricht, 2011; Faghih and Sharp,
2018; Fanous and Midia, 2007). In general PVS are assumed to
be in contact with the cervical lymphatics (Esiri and Gay, 1990;
Ramirez et al., 2016). Peristaltic motions of the blood vessel
walls are thought to aid in the transport of fluid and solutes in
PVS. The observation that fluid drainage stops post-mortem sup-
ports this theory (Wang and Olbricht, 2011; Faghih and Sharp,
2018; Iliff et al., 2013; Bakker et al., 2016).
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Furthermore PVS are thought to play an important role in
immunological and inflammatory responses in the brain (Esiri
and Gay, 1990; Etemadifar et al., 2011; Fanous and Midia, 2007;
Ramirez et al., 2016; Zhang et al., 1990). PVS appear to be con-
stantly monitored by macrophages in the blood (Groeschel et al.,
2006; Bechmann et al., 2001). Moreover PVS supply an impor-
tant site of interaction between macrophages and lymphocytes
as well as for accumulation and migration into the brain (Esiri
and Gay, 1990; Fanous and Midia, 2007; Wang et al., 2016a,b).

Appendix B.3. Pathology
Formerly the enlargement of PVS was assumed to be benign

(Zhu et al., 2010b; Adams et al., 2015). Recent studies however
support the contrary and an increasing amount of research is
being done on this emerging neuroimaging marker. PVS have
been associated with worse cognition, hypertension, as well
as with markers of cerebral small vessel disease namely white
matter hyperintensities and lacunar infarctions (Maclullich et al.,
2004; Zhu et al., 2010a; Potter et al., 2015; Chen et al., 2011;
Zhu et al., 2010b; Charidimou et al., 2013). PVS are seen
in individuals of all ages and in the elderly population these
lesions are highly prevalent (Zhu et al., 2011, 2010b). With
increasing age the number and size of PVS in the brain has been
shown to increase (Doubal et al., 2010; Kwee and Kwee, 2007;
Dubost et al., 2018b). Additionally a high number of PVS has
been associated with many neurological conditions including
cerebral small vessel disease, cerebral arteriosclerosis, traumatic
brain injury, poststroke depression, Parkinson’s disease, incident
dementia and Alzheimer’s disease (Zhu et al., 2010a; Maclullich
et al., 2004; Zhu et al., 2011; Ramirez et al., 2016; Zhu et al.,
2010b; Chen et al., 2011; Hurford et al., 2014; Potter et al., 2015;
Liang et al., 2018; Cai et al., 2015; Doubal et al., 2010).

The cause and mechanism of the enlarging of PVS is not
clear yet. Atrophy of the brain, tissue fibrosis, arterial wall per-
meability, microvascular or lymphatic obstruction, perivascular
demyelination, hypertension and inflammation have been pro-
posed as mechanisms that may contribute to the enlargement of
PVS (Chen et al., 2011; Adams et al., 2015; Groeschel et al.,
2006).

Understanding the function of PVS and why these spaces
become enlarged could help improve treatment of diseases that
are associated with PVS (Charidimou et al., 2013; Chen et al.,
2011; Ramirez et al., 2016).

Appendix B.4. Visualization
Normal PVS are too small to be noticed on MRI scans at

clinical field strengths, however when PVS increase in size they
become more visible and quantifiable (Ramirez et al., 2016;
Kwee and Kwee, 2007; Doubal et al., 2010; Wardlaw et al.,
2013). In other words, the PVS that are visible on MRI are
larger than normal PVS, which explains why often any PVS
visible on MRI is referred to as an enlarged perivascular space or
dilated Virchow-Robin space. However it is not clear yet when
PVS are enlarged enough to be clinically significant and the
visibility of PVS is dependent on the MRI sequence parameters
used for acquisition, which vary per study. Basing the definition

(a) (d)

(b) (c)

Figure B.14: Perivascular spaces (PVS) in different brain regions. T2-
contrast axial slices showing the centrum semiovale (a), the mesencephalon
(b), the basal ganglia (c) and the hippocampi (d). Hyperintensities are either
enlarged perivascular spaces or structures that look similar (adapted from Dubost
et al. (2018b))

of the term enlarged perivascular spaces on visibility is therefore
not very robust (Wardlaw et al., 2013). A clear example of the
inconvenience this entails, is the observation that studies using
3 T MRI scans report a prevalence of 100% of enlarged PVS,
while a lot lower prevalences are reported by studies using 1.5
T MRI scans. This is logical as scans acquired at 1.5 T have a
lower spatial resolution than scans acquired at 3 T. If all visible
PVS without a lower limit in size are seen as enlarged PVS then
the spatial resolution of the MRI scans will determine the lower
bound of PVS that are taken into account in the study. Clearly
these sets will have different lower thresholds and will count
different numbers of PVS. For this reason referring to all PVS
(visible on MRI or not) as PVS and specifying the sizes of PVS
that are examined in the study is recommended (Wardlaw et al.,
2013; Adams et al., 2015, 2013)

As PVS follow the course of the vessel they surround, they
appear as elongated structures on 3D MRI scans. In a 2D im-
age slice PVS can be round, ovoid or linear dependent on what
the orientation of the PVS is with respect to the image slice
(Wardlaw et al., 2013). The minimum diameter of PVS is as-
sumed to be 1 mm. However there are different opinions on
the maximum diameter of PVS. The most general assumption
seems to be 3 mm (Adams et al., 2015; Zhu et al., 2011; Ramirez
et al., 2016; Valdés Hernández et al., 2013). PVS appear mainly
in the basal ganglia, centrum semiovale, hippocampus and in
the mesencephalon (see Figure B.14) (Kwee and Kwee, 2007;
Barkhof, 2004; Adams et al., 2015). PVS have a similar intensity
to CSF (see Figure B.15) (Ramirez et al., 2016; Kwee and Kwee,
2007). Although PVS can be distinguished on scans acquired
at field strengths of 1.5 and 3 Tesla (T) which is used clinically,
visibility of PVS is noticeably better on scans acquired at a
field strength of 7 T which have a higher spatial resolution and
contrast (Bouvy et al., 2016; Lian et al., 2018; Feldman et al.,
2018). PVS that are barely enlarged can occasionally be seen on
MRI scans at clinical field strengths. 7 T MRI scans due to the
increased spatial resolution appear to be able to even visualize
PVS that are barely or not enlarged (with a diameter smaller
than 1 mm) (Bouvy et al., 2016).

The appearance of PVS on MRI scans bears most resem-
blance to lacunar infarcts, lacunes and small punctual white
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matter hyperintensities (WMH) (Potter et al., 2015; Valdés
Hernández et al., 2013; Kwee and Kwee, 2007; Bokura et al.,
1998). As all three of these are defined to be larger than 3 mm (in
diameter), and PVS are mainly defined with a diameter between
between 1 and 3 mm, size seems to be a helpful measure in
distinguishing PVS. Furthermore PVS are described as linearly
elongated slit-like structures, whereas lacunes and lacunar in-
farcts seem to be more ovoid or spherical in shape and WMH
are said to be flame or cotton wool-like shaped. Lacunar in-
farcts, lacunes and especially WMH often have more irregular,
vague edges in comparison to PVS which have sharp edges. All
four types of lesions are hypointense on T1-weighted (T1w)
sequences and hyperintense on T2w sequences. However on
fluid-attenuated inversion recovery (FLAIR) sequences PVS and
lacunes are hypointense as opposed to WMH which are hyper-
intense on FLAIR. Acute lacunar infarcts are hyperintense on
FLAIR or can have a hyperintense rim, older lacunar infarcts
can evolve into a lacune. As the intensity range of PVS on T2w
overlaps with the other three lesion types this is not a useful mea-
sure for identifying PVS (Valdés Hernández et al., 2013; Dubost
et al., 2018b; Chen et al., 2011; Jungreis et al., 1988). Especially
the shape, location, size, spatial distribution and appearance on
different MRI sequences are thought to be important descriptors
for distinguishing PVS from mimicks (Valdés Hernández et al.,
2013; Boespflug et al., 2018)

Determining whether a faintly enlarged PVS is large enough
to count as an PVS is difficult as well, especially on 7 T MRI
scans due to the improved visibility of not or barely enlarged
PVS (Bouvy et al., 2016; Potter et al., 2015). Furthermore
motion artifacts can also look similar to PVS in MRI scans
(Dubost et al., 2018b; Park et al., 2016).

Appendix B.5. Assessment
MRI is without a doubt an invaluable tool for research on

PVS. However to be able to study PVS associations, a way of
measuring is needed to compare PVS burden in the brain. Until
recently most studies used a visual scoring system, categorizing
PVS burden in an image into in general 4 to 6 burden levels
(Doubal et al., 2010; Maclullich et al., 2004; Hurford et al.,
2014; Chen et al., 2011; Potter et al., 2015). Almost every study
had its own method of assessing PVS burden, making it difficult
to compare studies. Efforts have been made to establish a more

Figure B.15: Appearance of perivascular spaces (PVS) on different MR
sequences. Axial slices showing the centrum semiovale on a T1-weighted (left)
T2-weighted (middle) and fluid-attenuated inversion recovery (FLAIR) MRI
scan (right). An example of an PVS is indicated by the red arrow (adapted from
Valdés Hernández et al. (2013))

general and robust way of evaluating burden of PVS (Ikram
et al., 2017; Adams et al., 2015; Wardlaw et al., 2013; Doubal
et al., 2010; Potter et al., 2015; Valdés Hernández et al., 2013;
Ballerini et al., 2018).

Visual scoring systems are a fast way of PVS assessment.
However these scales are based on subjective classification. Fur-
thermore clustering the PVS burden into few categories results
in floor and ceiling effects. Evidently these scales do not directly
indicate any information on location, morphology or volume
of PVS (Wang et al., 2016b; Ballerini et al., 2018; Boespflug
et al., 2018; Ramirez et al., 2015). Established visual scoring
systems that currently appear to be most used are the Patankar
scale and the Potter scale (Patankar et al., 2005; Ramirez et al.,
2015; Potter, 2011; Wang et al., 2016b; González-Castro et al.,
2017).

Other proposed measures of PVS burden are counting the
number of PVS per slice or per full brain region, pixel-wise
binary labels with either a dot per PVS or segmentations of the
PVS (in order of containing increasing information about PVS).
Besides containing more information about PVS, these measures
also pose a more objective way of assessing PVS burden. How-
ever, as PVS are difficult to distinguish from other structures
like lacunes (see section Appendix B.4), these measures still
do suffer from some subjectivity (Adams et al., 2015; Dubost
et al., 2018b; Valdés Hernández et al., 2013; Wang et al., 2016b).
An important disadvantage of these measures is that obtaining
them manually is very time-consuming, especially for the basal
ganglia and the centrum semiovale which are large brain re-
gions. This could be somewhat alleviated by the observation
that for these two regions the number of PVS found in one slice
of is highly correlated with the number of PVS in the whole
brain region (Adams et al., 2015). However this correlation was
computed on a set of only 40 scans, so additional studies that
further examine this correlation would be favorable. Also fur-
ther research on which slice best represents the full brain region
would be beneficial. As these are large brain regions, annotating
only one slice to describe PVS burden in the full volume would
be very useful and considerably decrease the annotation time
(Adams et al., 2015).

Appendix B.6. Computational Methods
Various studies have suggested that computational meth-

ods could improve reliability and generalization of PVS mea-
sures while decreasing the time this takes considerably (Valdés
Hernández et al., 2013; Adams et al., 2015; Park et al., 2016;
Boespflug et al., 2018; Dubost et al., 2018b). In line with this
idea various (semi-)automated methods have been proposed to
compute these measures of PVS burden. Three important distinc-
tions can be made in these methods. Firstly some methods are
semi-automated and others automated, with the former requiring
some user interactions and the latter requiring none (Ballerini
et al., 2018). Secondly methods differ in being supervised or
unsupervised, with unsupervised meaning methods that require
no labels and supervised meaning methods that require a dataset
with ground truth labels to learn from (Goodfellow et al., 2016).
Lastly, the PVS measures computed by these methods vary be-
tween classification, quantification (number of PVS per slice
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or brain region), detection (location of PVS) and segmentation
(location and morphology). Additionally methods have been
proposed that aim to enhance MRI scans to improve visibility
of PVS and with that facilitate assessment of PVS burden. The
most recent and promising methods will be discussed per PVS
measure.

Most of the currently proposed (semi-)automated methods
focus on segmenting PVS. Obtaining the segmentations of PVS
is most ideal in terms of information that it contains, as it in-
cludes information on quantity, location and morphology. Ob-
taining ground truth on the other hand for development and
evaluation of these methods is time-consuming as it requires
a pixel-wise ground truth. Various semi-automatic methods
have been proposed using for instance Frangi’s vessel enhanc-
ing filter (also referred to as vesselness filter) (Frangi et al.,
1998) and adaptive thresholding (Ramirez et al., 2015; Wang
et al., 2016b; Wuerfel et al., 2008; Zong et al., 2016). However
these methods still require some user interaction, which can
lead to inter-observer variations and especially for large datasets
can become excessively time-consuming (Ballerini et al., 2018).
(Ballerini et al., 2018) use ordered logit models to optimize pa-
rameters for vesselness filtering based on visual ratings of PVS
burden of the images. Boespflug et al. (2018) propose a segmen-
tation method that also evaluates morphologic features per PVS.
They use voxel-wise regression based on the intensities in four
MRI modalities, T1w, T2w, FLAIR and proton density-weighted
(PDw). The fact that they need four different MR modalities
restricts the applicability of this method however. (Lian et al.,
2018) developed a method using a fully convolutional neural
network. The network is given the original image and filtered
image that is enhanced with respect to tabular structures and
outputs a probability map. Resulting probability maps are recur-
sively incorporated into the network to further refine the output
of the model, which can be iterated until convergence. This
method is developed on 7 T MRI scans. Zhang et al. (2017) and
Park et al. (2016) also propose methods for 7 T MRI scans both
using region proposal, random forest and vessel enhancing, the
former using vascular features for classification of the regions
and the latter using randomized Haar features. Cai et al. (2015)
segment PVS using k-means clustering also on 7 T MRI scans.
Although these methods are promising for PVS segmentation,
MRI scans at 7 T have a higher spatial resolution than MRI scans
at clinical field strength (1.5 T or 3 T), which limits the applica-
bility of these methods for clinical use (González-Castro et al.,
2017; Ballerini et al., 2018). Uchiyama et al. (2008) perform
region proposal by combining morphological operations with
intensity thresholding and subsequently classify the proposed
regions as PVS or lacunar infarcts based on properties like size
and location.

Furthermore several methods have been proposed for auto-
mated detection, quantification and classification of PVS (bur-
den).

Dubost et al. (2017) uses a convolutional neural network
that is trained to regress the number of PVS. At inference the
network is used to predict the lesion count and to generate a
heatmap. The heatmap is obtained by removing the last layer
(global pooling), which changes the output of the network from

the predicted count to a heatmap image that can be used for
detection. The heatmap is thresholded in such manner that the
number of connected components in the heatmap is equal to the
predicted count. This method is promising because it can be
trained on the number of PVS and it will output the location
of the PVS, which would take much longer to annotate. This
is also apparent in the data that is used, as the count labeled
dataset for training is very large (over a thousand) and the detec-
tion labeled set used for testing is only 30 images. However all
mentioned methods in this section up till now have been eval-
uated on relatively small sets, as pixel-wise annotations are so
time-consuming to produce. Many methods are developed and
evaluated on barely 20 images. Especially for learning based
models this is a problem because if there are only few images
available for training, the method will be prone to overfit. Using
cross-validation and training on patches helps this somewhat.
Testing these methods on larger datasets would be very useful to
evaluate their true potential and robustness. The same authors
of the PVS detection method also propose a different convo-
lutional neural network for quantification of PVS in the basal
ganglia Dubost et al. (2018a). Later they extend their work to
other brain regions (Dubost et al., 2018b). González-Castro et al.
(2016a) proposed a supervised method for binary classification
of PVS burden (absent/mild PVS to moderate/severe PVS) us-
ing a support vector machine combined with texture descriptors
(González-Castro et al., 2016a) and combined with bag of vi-
sual words based descriptors descriptors (González-Castro et al.,
2016b). In a later paper comparing these methods the same
authors show that the combination of a support vector machine
with bag of visual words based descriptors performs best and its
performance is close to human performance (González-Castro
et al., 2017). As the ground truth needed for this binary classifi-
cation problem is less time-consuming, the dataset used in this
paper is also larger (264 images). However visual scoring of
PVS is more prone to inter-observer variability (Ballerini et al.,
2018).

To improve performance of identifying PVS, several meth-
ods have been proposed for enhancing PVS by highlighting thin
tubular structures. Uchiyama et al. (2008) and Hou et al. (2017)
show unsupervised methods can be used to improve visibility of
PVS. Uchiyama et al. (2008) uses white top hat transformation
to emphasize tubular structures. Hou et al. (2017) use Haar
transform of non-local cubes to suppress noise in the image and
to intensify details of PVS.

Appendix C. Previous Experiments

Appendix C.1. Varying Loss Functions
Optimizing the network to detect PVS was not straightfor-

ward. The loss that we started with, namely mean squared error
(MSE), does not directly optimize the detection of the PVS. In-
stead it optimizes the voxelwise regression of a geodesic distance
map (GDM).

The first networks trained using MSE seemed to show that
mainly the background was being optimized instead of the detec-
tion of the PVS. In multiple experiments models with a higher
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loss turned out to perform better than models with a lower loss
on the detection objective (when looking at the Free-Response
Receiver Operating Characteristic curve (FROC curve)). It was
clear the optimization was not working. We experimented with
different losses and ground truth images to shift the focus more
to detecting the PVS. For instance clipping the GDM so only
high values were kept, so only using GDM values surrounding
the PVS and elsewhere zero. We also tried optimizing the CNN
with multiple losses and label images, first the GDM then the
segmentation etc. Most of these approaches did optimize the
CNN to detect PVS, but the detection performance was often not
following the same trend as the loss while training the network.
Tensorboard was used to monitor training. Only looking at the
loss did not paint the full picture of what was happening, what
the network was focusing on. Writing the output of the network
to Tensorboard every 10 epochs, made it possible to follow the
progress of the network visually, making it possible to see if
what the network was focusing on. Additionally every 30 epochs
the model with the lowest loss on the validation set was saved.
After the network was converged, all saved models were evalu-
ated on FAUC. This way we could see how the performance of
the model varied during optimization of the network.

For the segmentation approach we tried first with ReLU and
BCE and DICE. However the CNN failed to learn anything.
When we tried ELU it did learn with BCE. ELU has a normaliz-
ing effect which helped the network to learn.

Based on the experiments on this subset of the training data
we set up the experiments described in the paper.

Appendix D. Extra Visualizations of the Results

Figure D.16 shows the predictions for another image of the
test set.
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(a) Intensity Image (b) GDM MSE (c) eGDM MSE

(d) GDM2 MSE (e) GDM3 MSE (f) GDM wMSE

(g) eGDM wMSE (h) GDM2 wMSE (i) GDM3 wMSE

Figure D.16: Predictions on another image of the test set. For every method the predicted map is overlaid on the intensity image given as input to the model. Red
crosses are the ground truth given by the expert rater (so no shifting of dots during inference). The blue asterisks indicate the proposed detections at the threshold
closest to the performance of the expert rater on the test set. The overlaid prediction map is shown in a sequential perceptually uniform color scale that ranges from
purple for the lowest value in the image to yellow for the highest value. The contrast in the predicted maps illustrate the spread of the values in the predicted maps.
Note that the predicted maps are not scaled, so the range of values in predicted maps may vary. Learning failed for the two CNNs using DSC loss as well as for the
CNN that was supposed to predict the GDM using TwMSET=0.8 loss. For this reason the visualizations for these CNNs are missing.
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(a) GDM TwMSET=0.5 (j) eGDM TwMSET=0.5 (k) GDM2 TwMSET=0.5

(l) GDM3 TwMSET=0.5 (m) eGDM TwMSET=0.8 (n) GDM2 TwMSET=0.8

(o) GDM3 TwMSET=0.8 (p) T=0.95 BCE (q) T=0.96 BCE

Figure D.16: Predictions on another image of the test set (continued). For every method the predicted map is overlaid on the intensity image given as input to the
model. Red crosses are the ground truth given by the expert rater (so no shifting of dots during inference). The blue asterisks indicate the proposed detections at the
threshold closest to the performance of the expert rater on the test set. The overlaid prediction map is shown in a sequential perceptually uniform color scale that
ranges from purple for the lowest value in the image to yellow for the highest value. The contrast in the predicted maps illustrate the spread of the values in the
predicted maps. Note that the predicted maps are not scaled, so the range of values in predicted maps may vary. Learning failed for the two CNNs using DSC loss as
well as for the CNN that was supposed to predict the GDM using TwMSET=0.8 loss. For this reason the visualizations for these CNNs are missing.
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