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a b s t r a c t

This paper presents a novel approach to (controlled) synchronization of networked nonlinear systems.
For classes of identical single-input–single-output nonlinear systems and networks, including oscillator
networks, we propose a systematic design procedure (with generic as well as constructive conditions)
for specifying nonlinear coupling functions that guarantee global asymptotic synchronization of the
systems’ (oscillatory) states. The proposed coupling laws are in the form of a definite integral of a
nonlinear ‘‘coupling gain’’ function. It can be fit to the system’s nonlinearities and, thus, can avoid
cancelling nonlinearities by feedback or high-gain arguments commonly needed for linear (diffusive)
coupling laws. As demonstrated by two examples, including a network of FitzHugh–Nagumo oscillators,
this design can result in much lower synchronizing coupling gains than for the common case of
linear couplings, therewith increasing energy efficiency of the coupling laws and reducing output-
noise sensitivity. The resulting coupling structure can be of a varying type, when couplings are
activated/deactivated depending on the systems’ outputs without undermining overall synchronization.
The approach is based on a novel notion of incremental feedback passivity with a nonlinear gain. In
addition to the design contribution, these results provide a new insight into potential synchronization
mechanisms in natural and artificial nonlinearly coupled systems.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Synchronization of oscillatory systems and, in particular, of
haotic systems is a phenomenon that received huge attention in
cientific literature for the last 20 years (Strogatz, 2003). The co-
xistence of complex, chaotic or ‘‘irregular’’ dynamics of relatively
imple systems on the one hand, and the possibility of some
ind of ‘‘order’’ or synchrony in such interconnected systems,
n the other hand, forms an intriguing combination for special-
sts in physics, mathematics, control, neuroscience and biology,
hus generating a seemingly endless sequence of various results
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ttps://doi.org/10.1016/j.automatica.2022.110202
005-1098/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
on this subject. This interest is also explained by a number of
applications, already implemented or potential, of synchroniza-
tion phenomena in various fields of science and technology, see,
e.g., Abrams, Pecora, and Motter (2016), Belykh and Porfiri (2016),
Caroll and Pecora (1991), Fradkov and Pogromsky (1998), Levine
(2004), Nijmeijer and Rodriguez-Angeles (2003), Strogatz (2003)
and Oud and Tyukin (2004).

When considering synchronization phenomena in intercon-
nected systems, one can distinguish two directions: synchro-
nization analysis of interconnected systems with given couplings
and interconnection structure, and design of interconnection cou-
plings that guarantee systems synchronization (in a certain
sense). The last problem, called the controlled synchronization
problem, is also closely related to several control problems such as
observer design and the output regulation problem, see, e.g., Ni-
jmeijer and Mareels (1996) and Pavlov, van de Wouw, and Ni-
jmeijer (2005) for links between these problems.

There is an extensive literature on synchronization and con-
trolled synchronization of linearly coupled (nonlinear) systems,
where synchronization is to be understood as asymptotic con-
vergence of the states of the interconnected systems to each
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.automatica.2022.110202
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2022.110202&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:alexey.pavlov@ntnu.no
mailto:e.steur@tue.nl
mailto:n.v.d.wouw@tue.nl
https://doi.org/10.1016/j.automatica.2022.110202
http://creativecommons.org/licenses/by/4.0/


A. Pavlov, E. Steur and N. van de Wouw Automatica 140 (2022) 110202

o
S
T
t
s
t
c
a
c
h

T
a
c
p
w
f
n
L
s
f
a
b
h
s
t
2
o
G
l
a
a
i
S

s
a
c
h
t
o
e
e

e

d
c
b
—
t

s

ther, cf. Gambuzza and Frasca (2019), Liu and Chopra (2012),
tan and Sepulchre (2007), Stoorvogel, Saberi, and Zhang (2017),
una (2017) and Zhang, Trentelman, and Scherpen (2014). Al-
hough for some classes of nonlinear systems, e.g. Euler–Lagrange
ystems (Nijmeijer & Rodriguez-Angeles, 2003), specific struc-
ure of nonlinearities is exploited to design synchronizing linear
ouplings, for generic nonlinear systems, specific nonlinearities
re commonly ignored, as synchronization by linear (diffusive)
oupling can often only be guaranteed by suppressing them using
igh-gain designs (Pogromsky, 1998; Zhang et al., 2014).
Nonlinear couplings provide a greater degree of flexibility.

hey have been studied, in the scope of synchronization, in He
nd Yang (2008) and Liu and Chen (2008), in the context of me-
hanical oscillators (Ramirez, Olvera, Nijmeijer, & Alvarez, 2016),
ower networks (Dörfler, Chertkov, & Bullo, 2013), neuronal net-
orks (Belykh & Hasler, 2011) and generic phase-oscillators (Dör-

ler & Bullo, 2014; Strogatz, 2000), with this list being defi-
itely incomplete. See also Fazlyab, Dörfler, and Preciado (2017),
iu and Iwasaki (2017), Nishikawa and Motter (2006) for re-
ults on the design (or optimization) of the interaction topology
or synchronization of nonlinearly coupled systems. For (first-
nd second-order) integrator networks, nonlinear couplings have
een employed in Andreasson, Dimarogonas, Sandberg, and Jo-
ansson (2014) and Saber and Murray (2003) to achieve consen-
us – a form of synchronization in which all systems converge
o the same constant steady state, see also (Yu, Chen, & Cao,
011; Yu, Chen, Cao, & Kurths, 2010) for the first- and second-
rder consensus problems for systems with nonlinear dynamics.
reater flexibility of nonlinear couplings makes them particu-
arly interesting for design of couplings to achieve consensus
nd flocking of multi-robot systems, in particular, for collision
voidance and preserving connectivity, cf. Dimarogonas and Kyr-
akopoulos (2008), Ji and Egerstedt (2007) and Poonawala and
pong (2017) and the references therein.
Common ways of handling nonlinearities in synchronizing

ystems include changing/cancelling nonlinearities by feedback to
chieve a desired system form or properties (e.g. passivity) (Ar-
ak, 2007; Chopra & Spong, 2008), suppressing nonlinearities by
igh-gain couplings (Pogromsky, 1998), ensuring synchroniza-
ion through absolute stability arguments (Proskurnikov, 2013)
r achieving synchronization or consensus by various methods,
.g. passivity, with synchronization-error feedback couplings, lin-
ar or nonlinear, e.g. Arcak (2007) and Yu et al. (2011, 2010).
Most of the works dealing with synchronization of nonlin-

ar systems focus on attaining synchronization (or consensus).
The practically important questions of transient and steady-state
performance of the overall synchronizing interconnected system,
energy efficiency of the coupling laws and their sensitivity to
noise, remain mostly unaddressed. While for linear systems there
is a well-developed machinery to address these questions, see,
e.g., Liu, Saberi, Stoorvogel, and Nojavanzadeh (2020) and refer-
ences therein, for nonlinear systems the problem is much more
complex and very few works addressing performance of non-
linear synchronizing systems exist, see, e.g., El-Gohary (2006),
Macellari, Karayiannidis, and Dimarogonas (2017) and Modares,
Lewis, Kang, and Davoudi (2018). Nonequilibrium steady-state
dynamics, as in the problem of synchronization of oscillatory
systems, makes the problem even more challenging.

Performance optimization in nonlinear synchronizing systems
is directly linked to finding the range of coupling laws that
yield synchronization. This range can often be characterized by
the lowest and highest (in a certain sense) coupling gains. In
synchronization problems it is often only the lower bound that
needs to be found, as all gains higher than that bound would
yield synchronization. Couplings/controls with gains at this lower

bound often lead to lower sensitivity to measurement noise and

2

higher energy efficiency in attaining and maintaining synchro-
nization. On the other hand, finding synchronizing coupling laws
with minimal gains can increase our understanding of the system
dynamics and reveal novel synchronization mechanisms.

Finding synchronizing coupling laws with minimal gains, as
the first step towards performance optimization/analysis of non-
linear synchronizing systems, is the question that motivates our
study. For nonlinear systems, minimal synchronizing couplings
should generically be nonlinear. Nonlinear coupling laws can be
considered as couplings with varying gains. They can fully utilize
the intrinsic system dynamics: the gains should generically be
low, or even zero, where dynamics is favorable to synchroniza-
tion, and increase/be nonzero only in those parts of the state
space, where system nonlinearities act against synchronization.
This observation calls for research in finding minimal couplings,
as it excludes most of the coupling laws studied in the literature:
linear and nonlinear couplings being functions of the synchro-
nization error e only, cf. Dörfler and Bullo (2014) and Strogatz
(2000)—such couplings do not distinguish different parts of the
state space, as long as the synchronization error e remains the
same.

In the light of the above exposition of the existing literature,
the current paper takes on the following combined open chal-
lenge: how to design nonlinear coupling laws that (1) achieve
synchronization in networks of nonlinear systems (including os-
cillatory systems), (2) achieve this synchronization through non-
linear couplings that exploit system nonlinearities where they
help synchronization and counteract nonlinearities where they
act against synchronization, (3) provide performance improve-
ments over conventional, e.g., linear, coupling laws.

1.1. Contributions

We present a systematic approach to the problem of design
of nonlinear coupling functions to establish synchronization in
networks of identical nonlinear single-input–single-output sys-
tems. Synchrony is here to be understood as the asymptotic
match of the states of the systems, while the nonlinear systems
are allowed to exhibit complex oscillatory (even chaotic) intrinsic
ynamics. The presented approach allows one to find nonlinear
ouplings with minimal gains (understood in a nonlinear sense to
e clarified later) that are tailor-made to system’s nonlinearities
both helping and counteracting synchronization depending on

he location of the system in its state-space.
The proposed couplings are of the form of a definite integral of

ome non-negative weight function (or, as we call it, a nonlinear
gain – the main design parameter) with the limits being the
outputs of the systems. This type of coupling has a greater degree
of flexibility not only compared to linear (diffusive) couplings, but
also compared to arbitrary nonlinear couplings depending only
on the synchronization error. It enables variable coupling gains
in different parts of the state space — the flexibility essential for
finding coupling gains tailor-made to system’s nonlinearities.

To formalize in which part of the state space and to what ex-
tent system nonlinearities act against synchronization, we intro-
duce the novel notion of incremental feedback passivity with a non-
linear gain. The minimal nonlinear integral coupling is then se-
lected to counteract system nonlinearities only in these counter-
synchronization parts of the state space, while being zero in the
parts where system dynamics render synchronization naturally.

To extend nonlinear integral couplings from 2 to N intercon-
nected systems with a fixed communication graph, we develop
new analysis and design tools, as conventional methods based on
analysis of the Laplacian matrix do not apply to couplings with
gains that can be zero over large parts of the state space. Based on
these tools, we present a class of networks – characterized by the



A. Pavlov, E. Steur and N. van de Wouw Automatica 140 (2022) 110202

e
i
t
i

l
i
p
c
t
N
n
t
i
i
s

t
p
o
(
t
t
w

1

t
s
t
p
p
a
p
v
c
i
m
d
t
i
n
p
s
d

2

f

x

p
W
s
t
g

x
s
g

·

t
o
i

∫
i
d

e

B
a
−

t
f

T
w
v
f
(
c

a
p
(

t
o

xistence of hierarchies of synchronization subspaces, expressed
n terms of relaxed balanced coloring and sequential decoloring of
he network graph – which support synchronization via nonlinear
ntegral coupling in its full potential.

We demonstrate by two examples that the proposed non-
inear integral couplings can render synchronization by lower
nput energy (understood in the L2 sense of the coupling in-
ut functions), and with less sensitivity to measurement noise
ompared to the minimal linear coupling laws that guarantee
he same rate of convergence. For the example with FitzHugh–
agumo oscillators, the proposed integral couplings lead to a
ovel type of synchronization: the couplings are zero most of the
ime and synchronization is achieved and maintained by spikes
n the nonlinear coupling gains. This result can be interesting
n neuroscience, where most of the communication happens via
pikes.
The developed generic framework is supplied with construc-

ive results leading to verifiable conditions and concrete design
rocedures for a class of nonlinear systems. This paper extends
ur initial results reported in Pavlov, Steur, and van de Wouw
2009) and Pavlov, Proskurnikov, Steur, and van de Wouw (2018):
he new results are less conservative, exploit the full potential of
he nonlinear coupling functions in networks, and are supplied
ith examples demonstrating novel phenomena.

.2. Organization

In Section 2, we state the problem of controlled synchroniza-
ion and introduce nonlinear integral couplings. We also present a
imple example that demonstrates the potential of the proposed
ype of coupling in comparison to the conventional linear cou-
ling functions. In Section 3 we introduce incremental feedback
assivity with a nonlinear gain—the notion central in the design
nd analysis of systems interconnected through integral cou-
lings. In that section we also present constructive conditions for
erifying this property for a class of nonlinear systems. Section 4
overs synchronization of two systems interacting via nonlinear
ntegral coupling. Extension of these results to synchronization of
ultiple networked systems is presented in Section 5, where we
efine the class of networks and the main result on synchroniza-
ion in such networks with nonlinear integral couplings. Section 6
llustrates the developed theory with an application to synchro-
ization of FitzHugh–Nagumo oscillators, which represent sim-
lified models of neuron dynamics and are a benchmark in the
tudy of synchronization of nonlinear oscillators. Conclusions are
rawn in Section 7.

. Controlled synchronization problem

In this paper we consider N identical nonlinear systems of the
orm1

˙i = f (xi, t) + Bui, yi = Cxi, i = 1, . . . ,N, t ≥ 0 (1)

with xi ∈ Rn, yi, ui ∈ R, continuously differentiable in x and
iecewise-continuous in t function f (x, t) and vectors B, CT

∈ Rn.
e assume that f (x, t) satisfies the following technical condition:

upt≥0 |f (0, t)| < +∞. The problem of controlled synchroniza-
ion studied in this paper is to find control laws for each ui that
uarantee

1 General results presented in this paper also hold for systems of the form
˙i = f (xi, ui, t), yi = h(xi) under an additional condition that |∂h/∂x(x)| ≤ Ch for
ome Ch > 0 and all x ∈ R. For simplicity of presentation we have chosen a less
eneric form (1).
 t

3

A. boundedness of solutions of the interconnected systems.2
B. asymptotic synchronization of the systems’ states:

|xi(t) − xj(t)| → 0, as t → ∞, ∀i, j. (2)

For each system i, ui is allowed to depend on the system’s output
yi and on the outputs of neighboring systems that can commu-
nicate to system i. In addition, it is required that for identical
outputs y1 = y2 = · · · = yN , the controls satisfy u1 = u2 =

· · = uN = 0, such that in exact synchrony the systems exhibit
he (oscillatory) dynamics of the unforced systems in (1). The set
f systems that can communicate to system i is denoted byNi. For
= 1, . . . ,N , these sets define communication graph G = (V, E),

where V = {1, . . . ,N} is the set of nodes, which represent the
systems (1), and E ⊂ V × V is the set of edges.

2.1. Motivating example

Let us demonstrate the main idea put forward in this paper
(namely that of using nonlinear integral couplings) with a simple
example of synchronization of two scalar systems given by

ẏ1 = y1 −
1
3
y31+G(t) + u1, ẏ2 = y2 −

1
3
y32+G(t) + u2,

with a bounded piecewise-continuous excitation term G(t). The
approach developed in this paper, can be demonstrated by rep-
resenting the system dynamics in an equivalent form: ẏ1 =

y1
0 (1− s2)ds+G(t)+ u1, ẏ2 =

∫ y2
0 (1− s2)ds+G(t)+ u2. Then the

ntegral coupling u1 = −u2 =
∫ y2
y1
λ(s)ds gives the following error

ynamics, with the synchronization error defined as e := y1 −y2:

˙ =

∫ y1

y2

(1 − s2 − 2λ(s)  
=:ψ(s)

)ds = ψ(ξ )e, (3)

where ξ (y1, y2) ∈ (y1, y2) results from the mean value theorem.
y designing λ(s) we can ensure that ψ(s) ≤ −ε for some ε > 0
nd all s ∈ R. Thus, for V (e) = 1/2e2, we have V̇ = 2ψ(ξ )V ≤

2εV , which guarantees exponential synchronization, provided
hat solutions of the closed-loop system are defined and bounded
or all t ≥ 0. The latter condition needs to be proven separately.

The design of λ(s) can be done in different ways:

• λ(s) ≡ K := 1/2 sups∈R(1− s2 + ε) = 1/2(1+ ε) gives linear
coupling;

• λ(s) = 1/2(1 − s2 + ε) cancels the systems dynamics
(feedback linearizing coupling) and imposes linear GES error
dynamics ė = −εe;

• λ(s) ≥ 1/2max{1 − s2 + ε, 0} cancels the system dynamics
only in the area where they act against synchronization
and does nothing in the areas where synchronization occurs
naturally.

hese three choices are illustrated in Fig. 1.3 The last approach,
hile providing synchronization with the same guaranteed con-
ergence rate as for the other two approaches, has several
avorable properties. Namely, for λ(s) = 1/2max{1 − s2 + ε, 0}:
1) the coupling law is more energy-efficient since it avoids
oupling actions in the areas where synchronization is naturally

2 Boundedness of solutions is a natural and desired property in many
pplications. Moreover, if overlooked, it may even undermine the validity of
roof of asymptotic synchronization, as demonstrated in Proskurnikov and Cao
2017).
3 As it will be seen from technical results and examples presented further in

he paper, the nonlinear integral coupling does not necessarily have to consist
f a combination of a feedback-linearizing coupling and a zero coupling, as it is
he case for the example presented in Fig. 2.
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Fig. 1. Gain functions λ(s) for linear-, feedback linearization-based and nonlinear
ntegral couplings.

chieved by the system dynamics (in our case, where both y1
nd y2 lie in the area where λ(s) ≡ 0: for y1, y2 >

√
1 + ε

r y1, y2 < −
√
1 + ε). (2) Since λ(s) ∈ L1, then the coupling

ctions are always bounded by |u1,2(t)| ≤
∫

+∞

−∞
λ(s)ds. (3) It

as a lower coupling gain (if we define the coupling gain as
=

∫ y2
y1
λ(s)ds/(y2 − y1), as in Pavlov et al. (2009)) than for the

other two approaches. The lower coupling gain generically gives
lower sensitivity to measurement noise on the measured outputs
y1 and y2. Notice that these favorable properties do not hold for
the other two approaches. Moreover, they cannot be achieved
by couplings of the form u = φ(y2 − y1) often studied in the
iterature, cf. Dörfler and Bullo (2014) and Strogatz (2000), as
hese couplings do not distinguish between different locations of
he output variables yi.

These benefits are illustrated through simulations for G(t) =

sin t in Fig. 2, which also includes a comparison to synchroniza-
ion by the linear coupling with the minimal gain K = 1/2(1+ε).
s can be seen from the figure, nonlinear integral coupling yields
ynchronization by lower coupling values, with lower sensitivity
o measurement noise (both in controls and steady-state syn-
hronization error), and with higher energy efficiency. Over the
imulated period, the L2 norms of input signals for the linear
nd nonlinear integral couplings are equal to ∥uLin

i ∥L2 = 1.12,
uNLin
i ∥L2 = 0.35.
Note that although the nonlinear integral coupling yields the

ame guaranteed synchronization rate characterized by ε, its
ctual convergence rate for the given initial conditions can be
ower than for the case of linear coupling. By designing a larger
ain function λ(s) ≥ 1/2max{1 − s2 + ε, 0}, which is the
ntrinsic property of the method, one can improve the transient
onvergence rate, yet at the expense of increased sensitivity to
he measurement noise and decreased energy efficiency. The
ossibility of such a trade-off between convergence rate and
oise sensitivity/ energy efficiency (at lower coupling gains) is the
lexibility not present in the case of linear couplings: the constant
oupling gains needed for the guaranteed convergence rate ε are
ower bounded by K = 1/2(1 + ε).

In the remainder of the paper we investigate the application
f nonlinear integral coupling of the form u =

∫ yj
yi
λ(s)ds to

nsure synchronization of N n-dimensional nonlinear systems
oupled through a communication network with a fixed topol-
gy. Our motivation is to design synchronizing couplings with
ower gains and better performance properties compared to the
tandard methods of linear and nonlinear couplings based on
rror feedback only, and nonlinear couplings based on feedback
inearization. We are interested both in generic conditions under
hich one can find such integral nonlinear couplings (both on
he level of the system dynamics, as well as on the level of
ommunication network topology) and in constructive conditions
or specific classes of nonlinear systems.

.2. Nonlinear integral coupling

Below, we give a formal definition of nonlinear integral cou-
ling between dynamical systems.
4

Fig. 2. Simulation results for synchronization with measurement noise for
nonlinear integral coupling, ε = 0.001, y1(0) = 2, y2(0) = 0 — plot 1.
Comparison with synchronization by linear coupling with the gain K = 1/2(1+ε)
— plots 2–4 for synchronization error e, coupling value u1 and coupling gain g .

Definition 1. Given N systems with a communication topol-
ogy specified by the graph G with the corresponding sets of
neighboring nodes Ni, i = 1, . . . ,N , we say that systems are in-
terconnected through integral coupling with a nonlinear coupling
gain λ(s) ≥ 0, ∀s, if

ui =

∑
j∈Ni

∫ yj

yi

λ(s)ds, i ∈ V. (4)

This kind of coupling satisfies the requirement that for identi-
cal outputs the coupling must be zero, since for yi = yj ∀i, j ∈ V ,
e have ui = 0. Notice that for λ(s) ≡ K = Const > 0,
he nonlinear integral coupling (4) represents linear diffusive
oupling ui = K

∑
j∈Ni

(yj − yi), i ∈ V as a special case, which is
ell studied in literature, see, e.g. Fradkov and Pogromsky (1998),
ambuzza and Frasca (2019), Liu and Chopra (2012), Pogromsky
1998), Stan and Sepulchre (2007), Stoorvogel et al. (2017) and
hang et al. (2014).

. Incremental feedback passivity

In this section, we present the definition, some properties and
onstructive conditions for incremental feedback passivity (iFP)
ith a nonlinear gain, which is the key property for synchroniza-
ion analysis in this paper. It is an extension of the incremental
assivity property employed in various works within nonlinear
ystems and control, see, e.g. Pavlov and Marconi (2008) and Stan
nd Sepulchre (2007).

.1. Incremental feedback passivity with nonlinear gain

efinition 2. System (1), for N = 1, is called incrementally
eedback passive with nonlinear gain γ (s) ≥ 0 – denoted as
FP(−γ (s)) – if there exists a C1 function S(x) : Rn

→ R+ and
function ρ(x) : Rn

→ R+ such that for any two inputs ua(t)
nd ub(t) any two solutions xa(t), xb(t) of system (1), for N = 1,
orresponding to these inputs, with outputs ya and yb, satisfy the
nequality
d
dt

S(xa(t) − xb(t)) ≤ −ρ(xa − xb) (5)

+ (ya − yb)
(∫ ya

γ (s)ds + ua − ub

)
.

yb
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f ρ(x) is positive definite, we call system (1), for N = 1, incre-
entally strictly feedback passive with nonlinear gain γ (s). It is
enoted by the acronym iSFP(−γ (s)).

For γ (s) ≡ 0 we obtain the standard definition of incremental
assivity. For γ (s) ≥ 0, system (1) can be made incrementally
assive by feedback transformation u =

∫ p(t)
y λ(s)ds+ v, for some

ntegrable function λ(s) ≥ γ (s), ∀s ∈ R, arbitrary continuous
unction p(·) and v, which is a new input after the transformation.
n this case, for two outputs ya and yb, the corresponding ua and
b will satisfy ua−ub =

∫ yb
ya
λ(s)ds+va−vb. This difference multi-

lied by (ya − yb) dominates the positive term (ya − yb)
∫ ya
yb
γ (s)ds

n (5). Thus, for the two solutions xa(t), xb(t) corresponding to
these ua and ub, we have
d
dt

S(xa(t) − xb(t)) ≤ −ρ(xa − xb) + (ya − yb)(va − vb),

i.e., the system is incrementally passive with respect to the new
input v.4 For the synchronization analysis in this paper, we re-
quire an additional assumption on S(x) and ρ(x).

Assumption 1. System (1), for N = 1, has the iSFP(−γ (s))
property with the functions S(x) and ρ(x) from (5) satisfying

α1(|x|) ≤ S(x) ≤ α2(|x|), (6)⏐⏐⏐⏐∂S∂x (x)
⏐⏐⏐⏐ ≤ CS |x|, (7)

ρ(x) ≥ |x|κ(|x|), (8)

for some CS > 0 and class-K∞ functions5 α1(·), α2(·), and κ(·).

This assumption holds, for example, for quadratic positive
efinite S(x) = xTPx and ρ(x) = xTRx. An important secondary
roperty of iSFP(−γ (s)) systems (1) is given in the following

lemma (see the proof in the Appendix). For notational conve-
nience, in this lemma we omit the subscript i from the state x
and control u.

Lemma 1. Suppose system (1) has iSFP(−γ (s)) property with
S(x) and ρ(x) satisfying Assumption 1 and γ (s) ≥ 0 satisfying∫

+∞

−∞
γ (s)ds =: Cγ < +∞. Let the control u = u(x, t) satisfy

|u(x, t)| ≤ Cu, ∀x, t and some Cu > 0. Then, any solution of the
closed-loop system lies in a compact positively invariant set for all
t ≥ 0.

3.2. Constructive conditions

All subsequent results on synchronization are formulated in
terms of the iSFP(−γ (s)) property. In this section, we provide
constructive results on how to verify this property and to find
γ (s) in (5) for systems of the form (1). All the proofs can be found
in the Appendix.

Theorem 1. Suppose there exist P = PT > 0, R = RT
≥ 0 and a

scalar continuous function γ̃ (s) such that

P
∂ f
∂x

(x, t) +
∂ f T

∂x
(x, t)P − 2CTC γ̃ (Cx) ≤ −R ∀x ∈ Rn,

PB = CT , t ≥ 0 (9)

hen system (1) is iFP(−γ (s)) with γ (s) = max{0, γ̃ (s)}, S(x) =

/2xTPx and ρ(x) = 1/2xTRx (see (5)). If R > 0, then system (1) is
iSFP(−γ (s)) with functions S(x) and ρ(x) satisfying Assumption 1.

4 Notice that for γ (s) ≡ K , with K constant, Definition 2 turns into the already
known definition of incremental feedback passivity (Hamadeh, Stan, Sepulchre,
& Goncalves, 2012), with the linear passifying transformation u = −Ky + v.
5 A function α : R+ → R+ is a class-K∞ function if it is continuous, strictly

increasing, α(0) = 0 and α(r) → ∞ as r → ∞, cf. Khalil (1996).
5

This result can be made more constructive (see Theorem 2
below) for the following class of systems:

ż = q(z, y, t), ẏ = p(z, y, t) + u, z ∈ Rn−1, y, u ∈ R, t ≥ 0 (10)

where q(z, y, t) and p(z, y, t) are continuously differentiable in
(z, y) and piecewise continuous in t . Notice that this system is
of the form (1) with x = [zT , y]T , f (x, t) = [qT , p]T , B = [0T , 1]T
and C = [0T , 1].

Theorem 2. Consider system (10). Suppose there exist (n − 1) ×

(n−1) matrices Q = Q T > 0 and M = MT > 0 such that inequality

Q
∂q
∂z

(z, y, t) +
∂qT

∂z
(z, y, t)Q ≤ −M (11)

olds for all (z, y) and t ≥ 0. Let γ̃ (y) satisfy

˜ (y) ≥ ϵ +
∂p
∂y

(12)

1
2

(
Q
∂q
∂y

+
∂pT

∂z

)T

(M − ϵIn−1)−1
(
Q
∂q
∂y

+
∂pT

∂z

)
for all (z, y) and some ϵ > 0 satisfying

M − ϵIn−1 > 0, (13)

where In−1 is the (n − 1) × (n − 1) identity matrix. Then system
(10) is iSFP(−γ (s))with γ (s) = max{0, γ̃ (s)} and quadratic positive
efinite S(x) and ρ(x) satisfying Assumption 1.

A function γ̃ (y) satisfying (12) can be found if the right-hand
ide of (12) is independent of z and t or can be bounded from
bove by a y-dependent function.
Condition (11) guarantees that the zero dynamics of system

10) (i.e., the z-dynamics) are convergent (Pavlov, Pogromsky,
an de Wouw, & Nijmeijer, 2004), which implies that for a given
unction y(t) all solutions of the system ż = q(z, y, t) converge
o a unique bounded globally asymptotically stable steady-state
olution determined only by y(t). This property of the zero dy-
amics can be considered as a specific minimum phase property
f the overall system (10).

. Synchronization of two systems

Below we apply the iSFP(−γ (s)) property to the controlled
ynchronization problem for two systems.

heorem 3. Consider two systems a and b of the form (1) inter-
onnected through the integral coupling:

a =

∫ yb

ya
λ(s)ds, ub =

∫ ya

yb

λ(s)ds. (14)

uppose (1) is iSFP(−γ (s)) with S(x) and ρ(x) satisfying Assump-
ion 1. If λ(·) ∈ L1 and

λ(s) ≥ γ (s) (15)

hen all solutions of the closed-loop system (1), (14) are bounded for
ll t ≥ 0 and satisfy (2) for i = a, j = b.

roof. Boundedness: The L1 condition on λ(·) and (14) imply
hat both ua and ub satisfy |ua,b| ≤ ∥λ(·)∥L1 . The L1 condition on
(·) together with conditions (15) and γ (s) ≥ 0 (see Definition 2)
lso imply that γ (·) ∈ L1. Thus, by Lemma 1, both xa(t) and xb(t)
ie in a compact positive invariant set for all t ≥ 0.

ynchronization: From (14) we obtain ua − ub =
∫ yb
ya

2λ(s)ds.
ubstituting this expression into (5) and utilizing inequality (15),
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e obtain
d
dt

S(xa(t) − xb(t)) ≤ −ρ(xa − xb) (16)

(ya − yb)
(∫ ya

yb

γ (s) − 2λ(s)ds
)

≤ −ρ(xa − xb).

Since xa(t) and xb(t) belong to a compact set for all t ≥ 0, by
Barbalat’s lemma (Khalil, 1996, Section 8.3) we obtain ρ(xa(t) −

xb(t)) → 0 as t → +∞. Due to positive definiteness of ρ(x), this
implies (2). □

Remark 1. The case of master–slave synchronization, when one
of the control inputs in (14) equals zero (e.g., ua =

∫ yb
ya
λ(s)ds,

ub = 0) is proven in the same way. In this case, condition (15) is
replaced by the condition λ(s) ≥ γ (s), ∀s ∈ R.

Remark 2. In case if S(x) = xTPx and ρ(x) = xTRx for some
P = PT > 0 and R = RT > 0, one can easily see that (16) implies
exponential synchronization, i.e.:

|xa(t) − xb(t)| ≤ αe−βt
|xa(0) − xb(0)|, ∀t ≥ 0, (17)

for some α > 0, β > 0. In this case, one can expect a certain
degree of robustness of synchronization against variations in the
right-hand sides of individual systems (1) and communication ef-
fects such as sampling and time-delays. Depending on how these
variations appear in the systems’ dynamics, synchronization is
achieved either exactly (i.e. the asymptotic match of the systems’
states) or practically (i.e. the differences in all state-trajectories
evolve to a small neighborhood of zero), cf. Panteley and Loría
(2017) and Steur and Nijmeijer (2011).

Remark 3. The condition that ρ(x) is positive definite in (5) can
be relaxed; In particular, ρ(xa − xb) can be substituted by ρ(ya −

yb), where ρ(y) is a positive definite function. In this case, the
conditions in Theorem 3 will guarantee output synchronization:
ya(t) − yb(t) → 0, as t → +∞. Full state synchronization can
be achieved by the observability condition that ya(t)− yb(t) → 0
and ua(t) − ub(t) → 0 imply xa(t) − xb(t) → 0, as t → +∞.

5. Synchronization of multiple systems

In this section, we extend the results from the previous section
to the case of N systems (1) interconnected through integral
coupling (4) with a communication network given by graph G.
This task appears to be challenging because of the nonlinear
nature of the coupling (4), which prevents the use of standard
techniques for synchronization analysis based on analysis of the
Laplacian of the network graph. The main difficulty is related to
the fact that λ(s) is allowed to be zero, thereby leading to regions
of output values where nodes lose connectivity. In these regions,
it is not the coupling, but the original system dynamics that takes
care of synchronization. Synchronization results stemming from
absolute stability methods, see, e.g., Proskurnikov (2013, 2014),
cannot be applied here given the generic nonlinear nature of
both the integral couplings and the system dynamics. The only
applicable result in this direction was reported in Pavlov et al.
(2018), stating that, for a given λ(s) and given network topology
with a connected bidirectional communication graph, there exists
k∗ > 0 such that synchronization is achieved through coupling

ui = k
∑
j∈Ni

∫ yj

yi

λ(s)ds, i ∈ V, ∀ k ≥ k∗. (18)

That result is more of a qualitative nature, since there are no
constructive methods for finding k .
∗

6

Fig. 3. Example of 4 interconnected systems.

In this section, we provide a method for analyzing synchro-
nization of N systems interconnected through nonlinear integral
couplings over directed communication graphs. We firstly explain
the idea behind the method with an illustrative example, then
we provide the formal method for synchronization analysis of
multiple systems interconnected over a given communication
graph.

5.1. Illustrative example

Consider a network of 4 systems with iSFP(−γ (s)) property
satisfying Assumption 1 interconnected through nonlinear inte-
gral couplings (4) with the communication graph as in Fig. 3. To
demonstrate synchronization of all nodes, let us first consider
nodes 1 and 3. The nonlinear integral couplings u1 and u3 are
iven by

1 =

∫ y2

y1

λ(s)ds +

∫ y4

y1

λ(s)ds +

∫ y3

y1

λ(s)ds (19)

3 =

∫ y2

y3

λ(s)ds +

∫ y4

y3

λ(s)ds +

∫ y1

y3

λ(s)ds. (20)

aking into account the fact that
∫ y∗
y1
λ(s) −

∫ y∗
y3
λ(s) =

∫ y3
y1
λ(s)ds,

e obtain u1 − u3 =
∫ y3
y1

4λ(s)ds. Substituting this equality in (5),
ives
d
dt

S(x1(t) − x3(t)) ≤ −ρ(x1 − x3)

+ (y1 − y3)
(∫ y1

y3

γ (s) − 4λ(s)ds
)
.

herefore, if

λ(s) ≥ γ (s), ∀s ∈ R, (21)

or Γ = 4, then d
dt S(x1(t) − x3(t)) ≤ −ρ(x1 − x3), which, by

boundedness of solutions and Barbalat’s lemma (Khalil, 1996, Sec-
tion 8.3), implies that x1(t) and x3(t) asymptotically synchronize.
Applying the same reasoning for nodes 2 and 4, we obtain that
these nodes synchronize if (21) holds for Γ = 3. The difference in
Γ from the case of nodes 1, 3 is due to the fact that there is only
one link between nodes 2 and 4 compared to two links between
1 and 3. Thus, under condition (21) for Γ = 3, nodes 1, 3 and 2,
4 form two clusters with synchronizing elements.

Two clusters with synchronizing elements can be merged into
a larger synchronizing cluster as can be seen below with clusters
{1, 3} and {2, 4}. Consider two nodes from these clusters: 1 and
2. For them, we have

u1 =

∫ y2

y1

λ(s)ds +

∫ y4

y1

λ(s)ds +

∫ y3

y1

λ(s)ds,

= 2
∫ y2

y1

λ(s)ds +

∫ y4

y2

λ(s)ds +

∫ y3

y1

λ(s)ds  
=:ϵ1(t)→0, as t→+∞

(22)

2 =

∫ y1

y2

λ(s)ds +

∫ y3

y2

λ(s)ds +

∫ y4

y2

λ(s)ds

= 2
∫ y1

y2

λ(s)ds +

∫ y3

y1

λ(s)ds +

∫ y4

y2

λ(s)ds   (23)
=:ϵ2(t)→0, as t→+∞
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here the vanishing terms correspond to synchronizing nodes
ithin the two clusters (provided that λ(s) is bounded on R). Ap-
lying inequality (5) to nodes 1 and 2, together with expressions
22), (23), we obtain
d
dt

S(x1(t) − x2(t)) ≤ −ρ(x1 − x2)

+ (y1 − y2)
(∫ y1

y2

γ (s) − 4λ(s)ds
)

+ (y1 − y2)(ϵ1(t) − ϵ2(t)).

For λ(s) satisfying (21) with Γ = 4, this implies
d
dt

S(x1(t) − x2(t)) ≤ −ρ(x1 − x2) + (y1 − y2)(ϵ1(t) − ϵ2(t)).

t can be demonstrated that since ϵ1(t), ϵ2(t) → 0, as t → +∞,
nder Assumption 1 the last inequality implies that x1(t) and x2(t)

asymptotically synchronize (for rigorous proofs see subsequent
technical results). This leads to synchronization of two clusters
{1, 3} and {2, 4}, i.e., synchronization of the overall network.

In our example we sequentially merged nodes and clusters
into larger clusters of synchronizing nodes until all nodes in
the network are merged in one synchronizing cluster. This pro-
cess, together with the corresponding values of Γ that guaran-
ee that after each merger, the new cluster will still consist of
ynchronizing nodes, is described below

0 := {{1}, {2}, {3}, {4}} , Γ1 = 4
P1 := {{1, 3}, {2}, {4}} , Γ2 = 3
P2 := {{1, 3}, {2, 4}} , Γ3 = 4
P3 := {{1, 2, 3, 4}} ,

here each partition Pi, i = 0, . . . , 3 consists of either indi-
idual nodes or clusters of synchronizing nodes. Note that for
= mink=1,2,3 Γk, condition (21) will be satisfied also for all Γk.

ondition (21) with this Γ is our final condition on the nonlinear
ain λ(s).
For general graphs, this method is applicable under certain

onditions on the graph. The idea behind these conditions can be
nderstood from the example above . The key property to ensure
erging of two individual nodes a, b (a, b = 1, 3 or a, b = 2, 4

n our example) into a larger synchronizing cluster is that they
ave the same external neighbors, i.e. Na\{a, b} = Nb\{a, b}.
urthermore, external neighbors from the same synchronizing
luster (i.e., these have the same asymptotic behavior) can be
reated as the same neighboring node (for details, see exact proofs
f further technical results in this section). Each merger operation
s thus performed on two nodes/clusters that have (asymptoti-
ally) the same external neighbors. Graphically, the easiest way
o represent this sequential operation is by coloring the nodes and
lusters, such that nodes in merged clusters get the same color.
his approach is formalized in the next subsection.

.2. Synchronization analysis by relaxed balanced coloring

Relaxed balanced coloring and related notions presented be-
ow provide both a formal framework as well as an algorithmic
upport for the method demonstrated in the previous subsection.
he main result presented in this section provides synchroniza-
ion conditions for a class of networks – so-called sequentially
ecolorable networks – defined below. We will arrive at this re-
ult in three steps: (1) definition of relaxed balanced coloring
it conveniently captures the necessary network partitions into
odes with the (asymptotically) the same neighboring nodes), (2)
efinitions of color reduction and sequentially reducible networks
the class of networks that allows for sequential merger of syn-

hronizing clusters leading to synchronization of the whole net-
ork and (3) the main synchronization result that links nonlinear
ntegral coupling and sequentially decolorable networks.

7

Fig. 4. A communication network graph.

5.2.1. Relaxed balanced coloring

Definition 3. A coloring of the nodes with k ∈ {1, . . . ,N} colors
c1,. . . , ck is called a relaxed balanced coloring if

• each node is assigned a color, and
• every ci-colored node receives an equal number of edges

from cj-colored nodes for all j ∈ {1, 2 . . . , k}\{i}.

This notion is a relaxation of balanced coloring, where each ci-
colored node receives an equal number of edges from cj-colored
odes for all j ∈ {1, 2 . . . , k}, and from the nodes with its own
olor ci.6 It will be shown below that this relaxation is enough
or our purposes and that it covers cases not covered by the
non-relaxed) balanced coloring.

A graph can be colored according to relaxed balanced coloring
n multiple ways. Each coloring defines the corresponding parti-
ioning of the nodes denoted by Pi. The two trivial colorings are
iven by (a) assigning each node an individual color and (b) by
ssigning all nodes the same color. An example of a graph and the
orresponding relaxed balanced colorings are presented below.

xample 1. Consider the graph G shown in Fig. 4. All its relaxed
balanced colorings are presented in Fig. 5. The corresponding
partitions defined by the colors are:

P0 := {{1}, {2}, {3}, {4}, {5}, {6}} ,
P1 := {{1}, {2, 3}, {4}, {5}, {6}} ,
P2 := {{1}, {2, 3}, {4, 5}, {6}} ,
P3 := {{1, 3}, {3}, {4}, {5}, {6}} ,
P4 := {{1, 2}, {3}, {4}, {5}, {6}} ,
P5 := {{1, 2, 3}, {4}, {5}, {6}} ,
P6 := {{1, 2, 3}, {4, 5}, {6}} ,
P7 := {{1, 2, 3}, {4, 5, 6}} ,
P8 := {{1, 2, 3, 4, 5, 6}} .

Suppose that a given graph G admits K additional relaxed
balanced colorings besides the above two trivial ones. Of course,
we require these K other relaxed balanced colorings to be dis-
tinct in the sense that the partitions corresponding to the re-
laxed balanced coloring are all different. We then denote the
relaxed balanced coloring with N-colors by partitioning P0 =

{{1}, {2}, . . . , {N}}, the coloring with one color by partitioning
PK+1 = {{1, 2, . . . ,N}}, and the other relaxed balanced colorings
by partitionings Pj, j = 1, . . . , K .

6 (Relaxed) balanced coloring is a common terminology in the analysis of
ynchronization (in particular, cluster synchronization) (Belykh & Hasler, 2011;
olubitsky, Stewart, & Török, 2005; Steur, Ünal, van Leeuwen, & Michiels,
016). For the problem considered in this paper, a relaxed balanced coloring
s equivalent to an almost equitable partition (Cardoso, Delorme, & Rama, 2007),
which is frequently used in the framework of consensus theory and the analysis
of network controllability (Gambuzza & Frasca, 2019; Notarstefano & Parlangeli,
2013).
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Fig. 5. All balanced colorings of the graph from Fig. 4.

.2.2. Color reduction
Relaxed balanced colorings can be ordered in a hierarchy by

eans of refinement. Here a partition Pi of the set V is a refinement
f a partition Pj of V , denoted by Pi ⊂ Pj, if every element of Pi
s a subset of some element of Pj. We say that Pi is finer than Pj,
nd Pj is coarser than Pi. For example, P0 is finer than PK+1, or,
quivalently, PK+1 is coarser than P0. Clearly, if Pi is finer (resp.
oarser) than Pj, then the relaxed balanced coloring associated
o Pi has more (resp. less) colors than the one associated to Pj.
imilar hierarchies have been utilized for analysis of synchrony
ubspaces (Aguiar & Dias, 2014).
This hierarchy defines multiple ‘‘chains’’ of refinement. For

xample, the network graph shown in Fig. 4 has multiple chains
f refinement, e.g.

0 ⊂ P1 ⊂ P2 ⊂ P6 ⊂ P7 ⊂ P8. (24)

hese chains of refinement can be represented in a diagram called
Hasse diagram (Birkhoff, 1948). In this diagram, there is an

rrow from Pi to Pj (i.e. Pi → Pj) if and only if Pj ⊂ Pi and there
s no other partition Pℓ such that Pj ⊂ Pℓ ⊂ Pi. (The edges in
Hasse diagram are sometimes undirected. We prefer the use of
irected edges.) Furthermore, if Pi ⊂ Pj, then Pj appears lower in
he diagram than Pi. Consequently, P0 is at the top of the diagram
nd PK+1 is at the bottom. For the network graph considered in
xample 1 (Fig. 4), the corresponding Hasse diagram is presented
n Fig. 6.

efinition 4. A network G that admits a relaxed balanced col-
ring Pi with ki colors from the set Ci = {c1, . . . , cki} is color-
educible if there exists another relaxed balanced coloring Pj with
j < ki colors from the set Cj such that

• Cj ⊂ Ci;
• for all ℓ = 1, . . . , kj, every cℓ-colored node in Pi has (or can

be assigned) the same color in Pj.

Clearly, all possible color reductions starting from a relaxed
alanced coloring Pi are specified by the directed paths in the
asse diagram with Pi as the root node. The following result is
mmediate.
8

Fig. 6. Hasse diagram for the network graph from Example 1 (Fig. 4) and the
corresponding chains of refinement.

Lemma 2. If the Hasse diagram of relaxed balanced colorings of a
graph G with the operation of refinement contains a directed path of
length N−1, then there exists a sequence of color reductions from P0
to PK+1, where in each reduction step exactly one color is removed.

Definition 5. A network that satisfies the condition of Lemma 2
is called sequentially decolorable.

The property that the graph G is sequentially decolorable is the
main condition for synchronization analysis presented further. It
can be verified algorithmically. The corresponding MATLAB code
is available at Steur (2019).

Note that the existence of a path of length N − 1 in the Hasse
diagram is equivalent to the existence of a chain of refinements

P0 = Pi1 ⊂ Pi2 ⊂ . . . ⊂ PiN = PK+1 (25)

of length N −1, with i1, i2, . . . , iN ∈ {0, 1, 2, . . . , K +1} (here the
length of the chain is understood as the number of symbols ⊂ in
the chain). As can be seen from the Hasse diagram presented in
Fig. 6, the network graph from Example 1 (Fig. 4) is sequentially
decolorable, with the corresponding chain of refinements given
by (24).

The following lemma details the structure of the chain of
refinements of length N−1 of a sequentially decolorable network
(see the Appendix for the proof).

Lemma 3. Consider a sequentially decolorable network G with
the corresponding chain of refinements (25). In each step from ik to
ik+1 in the chain of refinements (25), Pik+1 is obtained from Pik by
merging two elements:

Pik = A,B, C1, . . . , Cl,

Pik+1 = A ∪ B, C1, . . . , Cl, (26)

for some A, B, C1, . . . , Cl. Moreover, for all a ∈ A and b ∈ B it holds
that

|Na ∩ Cj| = |Nb ∩ Cj| ∀j = 1, . . . , l. (27)

Moreover, |Na ∩ B|, |Nb ∩ A|, |Na ∩ Cj| and |Nb ∩ Cj|, ∀j = 1, . . . , l,
are independent of the particular choice of a ∈ A and b ∈ B.

Before formulating the main result of this section, let us give
the following definition.

Definition 6. Consider a sequentially decolorable network graph
G with the corresponding chain of refinement (25). For each
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ransition Pik → Pik+1 given in (26), k = 1, . . . ,N − 1, define
he local coupling characteristic Γk:

k = |Na ∩ B| + |Nb ∩ A| + |Na\(A ∪ B)|, (28)

or some a ∈ A, b ∈ B, with A,B defined in (26). The global
oupling characteristic Γ is defined as

= min
k=1,...,N−1

Γk. (29)

Even though Γk are defined for some arbitrary a ∈ A and b ∈

B, according to Lemma 3, it is independent of the specific choice
of a ∈ A and b ∈ B. Thus Γk, k = 1, . . . ,N − 1 and Γ are well
defined. Γk and Γ are defined for a specific choice of the chain
refinement. Thus Γ may vary depending on the selected chain of
refinement (25). For the network from Example 1, one can see, by
simple observation, that the global coupling characteristics equals
Γ = 1.

5.2.3. Main result on network synchronization

Theorem 4. Consider N systems (1) interconnected with integral
oupling (4) with the corresponding communication network graph
. Suppose

A1 system (1) is iSFP(−γ (s)) with the corresponding functions
S(x) and ρ(x) satisfying Assumption 1,

A2 the graph G is sequentially decolorable with the corresponding
global coupling characteristic Γ ,

A3 the nonlinear coupling gain λ(s) is bounded, and satisfies the
conditions7 λ(·) ∈ L1 and

Γ λ(s) ≥ γ (s), ∀s ∈ R. (30)

Then, for any set of initial conditions, all systems states xi(t), i =

, . . . ,N, are bounded for t ≥ 0 and asymptotically synchronize:
xi(t) − xj(t)| → 0 as t → +∞ for all i, j = 1, . . . ,N.

See the Appendix for the proof. This theorem links together
ncremental feedback passivity properties [A1] and network prop-
rties [A2] through conditions on the nonlinear integral coupling
ith gain λ(s) in [A3]. Condition [A1] can be verified using,

or example, constructive results from Section 3.2 (Theorems 1
nd 2). The network condition [A2] can be verified with simple
lgorithms based on the analysis presented in this section. The
orresponding MATLAB code is available in Steur (2019). Once
he chain of refinements corresponding to sequential decoloring
f the network graph G is found, one can calculate the global
oupling characteristic Γ and verify condition (30) in [A3].
The result of Theorem 4, in combination with previously pre-

ented constructive results, can be considered both as analysis
nd design tools. For design problems, as demonstrated by the
xample in Section 2.1, the nonlinear integral coupling with the
inimal coupling ‘‘gain’’ λ(s) = γ (s)/Γ can lead to more energy
fficient synchronization with lower sensitivity to measurement
oise. For analysis problems, the minimal nonlinear coupling
ain λ(s) can provide better understanding of the system dy-
amics and reveal new synchronization mechanisms, as will be
emonstrated by an example in Section 6.

7 One can avoid the condition λ(·) ∈ L1 in proving boundedness of the
olutions by using the machinery of semi-passive systems (Pogromsky, 1998)
or fixed bidirectional communication graphs. Interested readers are referred
o Pavlov et al. (2009).
9

6. Illustrative example

Let us consider the FitzHugh–Nagumo (FHN) oscillator, which
represents a simplified model of neuron dynamics (FitzHugh,
1961):

żi =
1
τ
(a + yi − bzi)+

Aext
τ

cosωt =: q(zi, yi, t),
˙ i = yi − 1

3y
3
i − zi + r + ui =: p(zi, yi) + ui,

(31)

here yi represents the membrane potential, zi is an internal vari-
ble related to the ionic currents, and input ui is used to establish
oupling with other neurons. All other parameters are positive
onstants. For numerical simulations we choose the following
alues: a = 0.7, b = 0.8, τ = 100, and r = 0.3. We added a

common periodic forcing Aext
τ

cosωt to the internal zi-dynamics,
which can make the neurons oscillate irregularly. (Note that for
a = b = 0, we recover the dynamics of the forced Van Der
Pol oscillator, which is known to behave chaotically for certain
parameter values.) We take Aext = 0.03 and ω = 0.026.

We consider two cases of network topology: (a) two nodes in-
terconnected with bi-directional coupling and (b) network topol-
ogy from Fig. 4. Analysis of synchronization in a network of such
oscillators with linear coupling is presented in Gorban, Jarman,
Steur, van Leeuwen, and Tyukin (2015). Let us apply the theory
developed in the previous sections and find a nonlinear integral
coupling (4) that guarantees global exponential synchronization
of networked identical oscillators (31). The analysis is based on
Theorem 4, where we need to check conditions [A1] and [A2],
then select coupling gain λ(s) satisfying [A3].

[A1]: System (31) is iSFP(−γ (s)) and satisfies Assumption 1:
System (31) is of the form (10). Let us find γ (s) for which this sys-
tem is iSFP(−γ (s)) with quadratic positive definite S(x) and ρ(x).
Notice that the latter condition guarantees that Assumption 1 is
satisfied. We find this γ (s) using Theorem 2. Condition (11) is
satisfied with Q = [τ ], M = [b]. This particular choice of Q
and M) ensures that the right-hand side of inequality (12) is
ndependent of z. Moreover, as Q ∂q

∂y + ( ∂p
∂z )

T
= 0, we obtain γ̃ (s)

from (12):

γ̃ (s) ≥ ϵ + 1 − s2 ⇒ γ (s) := max{0, ϵ + 1 − s2}, (32)

here ϵ > 0 is an arbitrary parameter satisfying ϵ < b due to
13). For implementation, we select ϵ = 0.0001.

[A2]: The communication network graph is sequentially decol-
rable. Both networks considered in this example (two
i-directionally coupled systems and six systems coupled as in
ig. 4) are sequentially decolorable with the corresponding min-
mal coupling characteristics equal to Γ = 2 (for 2 systems) and

= 1 (for 6 systems).
[A3]: Selection of the coupling gain λ(s): As mentioned in the

revious sections, we are interested in finding the smallest cou-
ling that leads to synchronization. The structure of the smallest
oupling gain λ(s) can give insights into mechanisms of syn-
hronization present in real systems. For design problems, it can
ead to lower coupling actions needed to achieve synchronization,
ower energy spent on coupling actions and lower sensitivity to
oise. Therefore, we select the minimal λ(s) according to the
ower bound in (30): λ(s) =

1
Γ
γ (s), ∀s. This choice of λ(s) satisfies

all conditions in [A3] of Theorem 4. Thus, all conditions of The-
orem 4 are satisfied. This theorem guarantees that all solutions
of the closed-loop system remain bounded for t ≥ 0 and global
asymptotic synchronization occurs for all systems/nodes in the
network.

Simulation results for two bi-directionally coupled systems
with initial conditions [2,−4]T and [−1, 5]T are presented in
Fig. 7. The first three plots depict the states of the systems and the
corresponding coupling actions (controls), and the last plot shows
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Fig. 7. Simulation results for two bi-directionally coupled FHN models: system
states, controls and the variable coupling gain g21(t) between the 1st and 2nd
ystem.

he generalized variable gain g21(t) of the nonlinear integral cou-
ling defined as g21(t) =

∫ y1(t)
y2(t)

λ(s)ds/(y1(t)− y2(t)), Pavlov et al.

2009). We observe that the two systems rapidly synchronize.
he generalized variable gain is most of the time equal to zero,
ndicating that no interaction is required. Only when the neuron
pikes, the generalized variable gain is non-zero with a maximum
f (1 + ϵ)/2. This variable gain (seen over the whole simulation
eriod) is much lower than the best estimate of the synchronizing
inear diffusive coupling gain we are aware of, which equals
.5 (Gorban et al., 2015; Stan & Sepulchre, 2007). Lower coupling
ains is a distinctive feature of the proposed method over linear
iffusive couplings. Another feature of the proposed coupling is
hat it is bounded for all values y1, y2, which is not the case for
inear diffusive coupling.

Interestingly, our proposed integral coupling turns out to gen-
rate a pulse-type of interaction, as demonstrated by the spiky
eneralized variable gain. The gain is zero most of the time
nd spikes only when the y variable jumps. This is a novel
ype of synchronizing interaction which turns to be more energy
fficient and less sensitive to measurement noise, compared to
inear diffusive couplings. This will be demonstrated by the next
imulation with 6 systems and measurement noise.
In Fig. 8 we depict synchronization of six FHN oscillators

nterconnected as in Fig. 4 through the integral coupling with the
inimal gain λ(s) = γ (s)/Γ (note that in this case Γ = 1). We
dd noise to the outputs to simulate the effect of measurement
oise. It is clearly visible in the inputs ui and the synchroniza-
ion error e := maxi,j∈1...6 |yi − yj| that this measurement noise
nly affects the dynamics when a spike in the outputs is either
nitiated or ended, i.e. when the generalized variable gain is non-
ero. In Fig. 9 this simulation is repeated with linear coupling,
(s) ≡ 1 + ϵ, which guarantees the same rate of convergence

characterized by ϵ. Comparing the nonlinear and linear coupling
results, we clearly see that the nonlinear coupling is less sensitive
to measurement noise both in the control inputs ui, and the
steady-state synchronization errors ei, at least, in L1 and L2 sense.
The energy efficiency of the nonlinear integral coupling follows
from comparing L2 norms of the inputs for both the linear and
nonlinear couplings: ∥ulin

∥L2 = 18.9, ∥unl
∥L2 = 10.6. For the

infinity norm, we have∥ulin
∥L∞ = 10.0, ∥unl

∥L∞ = 2.7. Simi-
lar relations were observed for various initial conditions. These
results demonstrate the effectiveness of the selected nonlinear
integral couplings also for the case of more complex network
topologies. Another example demonstrating the effectiveness of
the proposed approach can be found in Pavlov et al. (2018), where
the developed theory was applied to Hindmarsh–Rose oscillators,
 u

10
Fig. 8. Simulation result of the six nonlinearly coupled FHN neurons.

Fig. 9. Simulation result of the six linearly coupled FHN neurons.

n which not only the y-dynamics, but also the z-dynamics are
onlinear.

. Conclusions

In this paper, we have considered the controlled synchro-
ization problem for a class of identical nonlinear single-input–
ingle-output systems8 and proposed a novel nonlinear integral
ouplings design to achieve synchronization of systems on a
lass of interconnection networks. As demonstrated by the ex-
mples, the proposed nonlinear integral couplings with minimal
ains (understood in a nonlinear sense) can lead to more effi-
ient synchronization with lower input energy and lower sen-
itivity to measurement noise compared to conventional lin-
ar couplings. Application of the results to synchronization of
itzHugh–Nagumo oscillators revealed a novel type of synchro-
izing interaction, where synchronization is achieved and main-
ained through generically zero, but spiking coupling gains. From
design point of view, the obtained results give a constructive
ethod to design nonlinear couplings and communication net-
orks that render more efficient synchronization of the intercon-
ected systems. From an analysis point of view, they can provide
nsight into potential nonlinear synchronization mechanisms in
ature.

8 An extension to the multiple-input–multiple-output case is possible by
eneralizing the iFP notion along the lines of Pavlov and Marconi (2008) and,
nder mild assumptions, our results cover specific cases of non-identical and
ncertain systems, see Remark 2.
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ppendix. Proofs

.1. Proof of Lemma 1

Inequality (5) can be written in the form
∂S
∂x

(xa − xb)(f (xa, t) + Bua − f (xb, t) − Bub)

≤ −ρ(xa − xb) + (ya − yb)
(∫ ya

yb

γ (s)ds + ua − ub

)
,

which holds for any xa, xb, ua, ub and ya = Cxa, yb = Cxb. For
xa = x, ua = u, xb = 0, ub = 0, and after taking the term
∂S
∂x (x)f (0, t) to the right-hand side, we obtain

d
dt

S(x(t)) =
∂S
∂x

(x)(f (x, t) + Bu)

−ρ(x) + y
(∫ y

0
γ (s)ds + u

)
+
∂S
∂x

(x)f (0, t)

−|x|κ(|x|) + |C∥x|
(
Cγ + Cu

)
+ CS |x∥f (0, t)|

≤ −|x|(κ(|x|) − (|C |(Cγ + Cu) + CsCf  
=:L

)). (A.1)

n this derivation we have utilized inequalities (7), (8), condition
upt≥0 |f (0, t)| =: Cf ≤ +∞, see (1), as well as inequalities
n |u(x, t)| and γ (s) from the formulation of the lemma. Thus,

d/dtS(x(t)) ≤ 0 for |x| ≥ κ−1(L). This inequality, together with
property (6), implies that the compact set {x : S(x) ≤ kS} is
positively invariant for all kS > k∗

S , for some k∗

S > 0. Since S(x) is
radially unbounded, for any initial condition of x(0) there exists
kS > k∗

S such that x(t) lies in the compact positively invariant set
{x : S(x) ≤ kS}. □

A.2. Proof of Theorem 1

Consider system (1) written in an equivalent form:

ẋ = f̃ (x, t) + B
∫ y

0
γ̃ (s)ds + Bu, y = Cx, (A.2)

where f̃ (x, t) := f (x, t) − B
∫ y
0 γ̃ (s)ds. With this new notation,

condition (9) is equivalent to

P
∂ f̃
∂x

(x, t) +
∂ f̃ T

∂x
(x, t)P ≤ −R ∀x ∈ Rn, t ≥ 0. (A.3)

his matrix inequality implies (see, e.g. Demidovich (1967) and
avlov et al. (2004)) that for any x1, x2 it holds that

x1 − x2)TP(f̃ (x1, t) − f̃ (x2, t)) ≤ −
1
2
(x1 − x2)TR(x1 − x2). (A.4)

ow consider the storage function S(x) = 1/2xTPx. For any two
olutions x1(t) and x2(t) of system (1) with inputs u1, u2 and
utputs y1, y2:

d
dt

S(x1(t) − x2(t))

= (x1 − x2)TP
(
f̃ (x1, t) + B

(∫ y1
γ̃ (s)ds + u1

))

0

11
− (x1 − x2)TP
(
f̃ (x2, t) + B

(∫ y2

0
γ̃ (s)ds + u2

))
(x1 − x2)TP(f̃ (x1, t) − f̃ (x2, t))

+ (x1 − x2)TPB
(∫ y1

0
γ (s)ds −

∫ y2

0
γ̃ (s)ds

)
+ (x1 − x2)TPB(u1 − u2)

≤ −
1
2
(x1 − x2)TR(x1 − x2)

+ (y1 − y2)
(∫ y1

y2

γ̃ (s)ds + u1 − u2

)
, (A.5)

here in the last inequality we utilized (A.4), equality PB =
T and the additive property of definite integrals. Taking into
ccount the definition γ (s) = max{0, γ̃ (s)}, we obtain

y1 − y2)
(∫ y1

y2

γ̃ (s)ds
)

= (y1 − y2)
(∫ y1

y2

γ (s)ds
)

(y1 − y2)

⎛⎜⎝∫ y1

y2

γ̃ (s) − γ (s)  
≤0

ds

⎞⎟⎠
(y1 − y2)

(∫ y1

y2

γ (s)ds
)

(A.6)

or all y1, y2. Substituting (A.6) into (A.5), we obtain (5) with
uadratic S(x) = 1/2xTPx and ρ(x) = 1/2xTRx. Thus, system
1) is iFP(−γ (s)). Moreover, if R is positive definite, then the
ystem is iSFP(−γ (s)) and the functions S(x) and ρ(x) satisfy
ssumption 1. □

.3. Proof of Theorem 2

Choose the matrices P and R in (9) as

:=

[
Q 0
0 1

]
, R :=

[
ϵIn−1 0
0 2ϵ

]
.

otice that this P satisfies the equality PB = CT . By combining
ll the terms in the first inequality in (9) in the right-hand side,
ne can see that for the chosen P = PT > 0 and R = RT > 0 this
atrix inequality is equivalent to

:=

[
A M
MT N

]
≥ 0, (A.7)

here

= −Q
∂q
∂z

−
∂qT

∂z
Q − ϵIn−1,

M = −Q
∂q
∂y

−
∂pT

∂z
, N = −2

∂p
∂y

+ γ̃ (y) − 2ϵ.

Due to (11), inequality (A.7) holds if

J̃ :=

[
M − ϵIn−1 M

MT N

]
> 0. (A.8)

Recall that J̃ is positive definite if and only if M − ϵIn−1 > 0 and
N−MT (M−ϵIn−1)−1M > 0. The first inequality is guaranteed by
(13), while the last one holds due to the choice of γ̃ (y) satisfying
(12). Application of Theorem 1 concludes the proof. □

A.4. Proof of Lemma 3

Since Pik is a refinement of Pik+1 , every element of Pik is a
subset of an element of Pik+1 . Since the number of elements
(colors) in Pik+1 is less than the number of elements (colors) in
P by exactly 1, two elements from P will form one element
ik ik
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f Pik+1 . Let us denote these two elements by A and B and the
emaining elements of the partition Pik by C1, . . . , Cl for some l.
hen (26) holds. Let a ∈ A and b ∈ B. Since Pik+1 is a partition
orresponding to relaxed balanced coloring, and A ∪ B ∈ Pik+1 ,
hen, by the definition of relaxed balanced coloring, for any two
oints a, b ∈ A∪B, (27) holds. In particular, it holds for any a ∈ A
nd b ∈ B.
Finally, since Pik is a partition corresponding to relaxed bal-

nced coloring, for any a1, a2 ∈ A, it holds that Na1 ∩B = Na2 ∩B
and Na1 ∩ Cj = Na2 ∩ Cj, for j = 1, . . . , l. Thus |Na ∩ B|, and
Na ∩ Cj|, and, in the same way, |Nb ∩ A| and |Nb ∩ Cj|, ∀j =

, . . . , l, are independent of the particular choice of a ∈ A and
∈ B. □

.5. Proof of Theorem 4

oundedness: Condition λ(·) ∈ L1 implies that |ui| ≤ (N −

)∥λ(·)∥L1 . In the same way, (30) and γ (s) ≥ 0 (see Definition 2)
mply that γ (·) ∈ L1. Thus, by Lemma 1, xi(t), i = 1, . . . ,N , lie in
compact positive invariant set for all t ≥ 0.

ynchronization: To prove synchronization in Theorem 4, we
nly need to demonstrate that each element of each partition
ik , k = 1, . . . ,N , is either an individual node, or a cluster of
odes that asymptotically synchronize. Since PiN contains only
ne element – the set of all nodes – this will prove asymptotic
ynchronization of all nodes in the network. We will show this
y induction.

nduction base: Partition Pi0 , consists of individual nodes.

nduction step: Suppose partition Pik contains either individual
odes or clusters of nodes that asymptotically synchronize. Let
s show that Pik+1 also consists of either individual nodes, or
luster of nodes that asymptotically synchronize. The structure
f partitions Pik and Pik+1 is specified in (26), Lemma 3. Thus
e only need to show that A ∪ B consists of nodes with asymp-
otically synchronizing states. For simplicity of presentation, we
onsider the case of the partition Pik consisting of 3 elements:
ik = {A,B, C}. The case of more elements Cj in the partition or
he case when C is empty can be proven by a minor modification.
ince all nodes within A synchronize as well as all nodes within
, it is enough to demonstrate that two nodes a ∈ A and b ∈ B
ynchronize, i.e. |xa(t) − xb(t)| → 0 as t → +∞. Since V =

∪ B ∪ C, by the definition of the integral coupling (4), we have

a =

∑
j∈Na

∫ yj

ya
λ(s)ds =

∑
j∈Na∩B

∫ yj

ya
λ(s)ds (A.9)

+

∑
j∈Na∩A

∫ yj

ya
λ(s)ds  

∗

+

∑
j∈Na∩C

∫ yj

ya
λ(s)ds.

ince nodes within A, B and C synchronize, these nodes can be
asymptotically represented by single nodes from the correspond-
ing sets: a ∈ A, b ∈ B and c ∈ C. Thus

∑
∈Na∩B

∫ yj

ya
λ(s)ds =

∑
j∈Na∩B

⎛⎜⎜⎜⎝
∫ yb

ya
λ(s)ds +

∫ yj

yb

λ(s)ds  
∗

⎞⎟⎟⎟⎠ ,

∑
∈Na∩C

∫ yj

ya
λ(s)ds =

∑
j∈Na∩C

⎛⎜⎜⎜⎝
∫ yc

ya
λ(s)ds +

∫ yj

yc
λ(s)ds  

⎞⎟⎟⎟⎠ .
∗

12
The integral terms marked with ∗ tend to zero, since the corre-
sponding states (and outputs) synchronize (by the assumption
that A, B and C are (individually) synchronizing clusters) and
since λ(s) is bounded. Denoting the sum of these vanishing el-
ements by ϵa, we can rewrite ua from (A.9) and, in the same way,
ub as

ua = |Na ∩ B|

∫ yb

ya
λ(s)ds + |Na ∩ C|

∫ yc

ya
λ(s)ds + ϵa,

ub = |Nb ∩ A|

∫ ya

yb

λ(s)ds + |Nb ∩ C|

∫ yc

yb

λ(s)ds + ϵb.

herefore,

a − ub = Γk

∫ yb

ya
λ(s)ds + ϵa − ϵb, (A.10)

ith Γk = (|Na ∩ B| + |Nb ∩ A| + |Na ∩ C|). Notice that this
k coincides with the one from Definition 6, since, in our case
a ∩ C = Na ∩ (A ∪ B). In (A.10), we also utilized the fact that

Na ∩ C| = |Nb ∩ C|, see condition (27) in Lemma 3, and that
yc
ya
λ(s)ds−

∫ yc
yb
λ(s)ds =

∫ yb
ya
λ(s)ds. Note that by the definition of

he global coupling characteristic Γ (see Definition 6), inequality
30) from condition [A3] and (29) implies that

kλ(s) ≥ Γ λ(s) ≥ γ (s), ∀s ∈ R. (A.11)

ubstituting (A.10) into (5) and utilizing inequality (A.11) (note
hat in our case Na ∩ C = Na\(A ∪ B)), we obtain

d
dt

S(xa(t) − xb(t)) ≤ −ρ(xa − xb) + (ya − yb)(ϵa − ϵb). (A.12)

y the conditions on the function ρ(x), we have

d
dt

S(xa(t) − xb(t)) ≤ −
1
2
ρ(xa − xb)

− |xa − xb|
(
1
2
κ(xa − xb) − |ϵa − ϵb|

)
.

Therefore, for 1
2κ(xa − xb) ≥ |ϵa − ϵb| it holds that

d
dt

S(xa(t) − xb(t)) ≤ −
1
2
ρ(xa − xb). (A.13)

his fact, together with conditions on function S(x) implies,
hrough an incremental ISS argument (Angeli, 2002), that vanish-
ng ϵa(t) − ϵb(t) (as both ϵa(t) and ϵb(t) vanish) yields
xa(t) − xb(t)| → 0 as t → +∞. This completes the proof of the
nduction step that Pik+1 also consists of either individual nodes,
r clusters of nodes that asymptotically synchronize, and thus
oncludes the proof of the theorem. □
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