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Pref ace

This report was written as a Master's thesis at the Faculty of Civil Engineering, Section Fluid
Mechanics, of Delft University of Technology. Most of the work was do ne at the University of
New South Wales in Canberra, Australia, where was cooperated in a wave measuring project at a
lake.

The first part of this report deals with the response of the wave spectrum after a sudden change in
wind speed on the basis of an academie numerical model. In the second part wave measurements
during changing wind speed are analysed and compared with the results of the academie model
and an operational model.

I thank everybody who had a contribution to this report, either with respect to content, personalor
practical.

Delft, May lllh 1994
Astrid van Agthoven
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Summary

Detailed studies have been carried out for fetch and duration limited wave growth and fully
developed sea state, but much less is known about changing wind conditions. The subject of this
study is the response of waves to a change in wind speed. The main point of interest is the rate of
response at the different frequencies.

Two third generation wave prediction models were used, WAVEW ATCH (Tol man , 1991) and the
model of Resio and Perrie (1991). In third generation models all relevant processes of generation
and dissipation of energy are represented explicitly by the three souree terms: input of energy
from the wind, nonlinear interactions between speetral components and dissipation of wave energy
by various mechanisms. The main difference between the two used models is the way they
calculate the nonlinear interactions. The operational model WAVEW ATCH uses an
approximation; the academie model of Resio and Perrie gives a full solution of the nonlinear
souree term. To reduce the computation time required to calculate all wave-wave interactions, this
model is restricted to either duration or fetch limited wave growth in deep water.

With the model of Resio and Perrie a series of calculations was performed for sudden increases
and decreases in wind speed. A simple equation which describes the model behaviour was
formulated. An important coefficient of this equation is the adjustment rate immediately after the
change in wind speed. Another meaningful parameter of the model behaviour is the time needed
to reach a new equilibrium. Both parameters show that the rate of response increases with
increasing frequency. The adjustment to a new equilibrium is faster for larger increases in wind
speed, but slower for larger decreases.

Field measurements of wind speed, direction and wave height were carried out on Lake George
near Canberra (Australia). Analysis of the wind data resulted in five cases with a clear change in
wind speed and a sufficiently constant wind direction. These cases were analysed with Fast
Fourier Transforms. The measurements were compared with the results of WAVEW ATCH and
the model of Resio and Perrie. The measurements were done in a water depth of about 2 meters;
transitional water depth for the considered situations. Because in the model of Resio and Perrie
bottom influence cannot be taken into account, the comparison with the measurements is only
meaningful in situations with relatively short waves, which are not influenced by the limited depth
of the lake. In these situations the results are reasonable. The results of WAVEW ATCH do not
agree very well with the measurements, e.g. the significant wave heights are too small. The
parameterizations of the souree terms need to be adjusted to the circurnstances at the lake. The
bottom roughness is probably much smaller than the 'standard' roughness for oceans.
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1. Introduetion

1.1 Scope

At the beginning of the nineteenth century Sir Francis Beaufort devised a numbering system for a
descriptive wind scale, later extended to a scale of equivalent wind speed. This numbering system
may be seen as the precursor of modern operational analysis and prediction of wind waves. Until
World War 11this was the only operational procedure for describing sea state. At that time there
was a need for wave forecasts for the planning of the amphibious landing of troops in the Pacific
region and France. For this reason Sverdrup and Munk made a serious study on wave analysis
and prediction, which led to the first operational wave prediction procedure in 1943.

Because wave analysis and prediction techniques are very useful in coasta! engineering, offshore
technology and navigation, the development of wave prediction models continued. Some of the
reasons why wave analysis started relatively recently are the difficulties and costs of reliable
measurements and the mathematical difficulties involved. Because of the apparently chaotic
character of wind waves, it is not possible to give a deterministic description of the sea state at
every point and time. Instead of a deterministic description a probabilistic approach is necessary.

A convenient, often used way to describe wind waves is with the help of energy or varianee
spectra. In a Iinear approximation the wave field can be considered as the sum of an infinite
number of independent sinusoida! waves. Each sinusoidal wave or wave component is
characterised by a deterministic frequency, amplitude and direction and a random phase (random
phase model).
The wave field can be presented as the squared amplitude as a function of frequency and
direction. Because the squared amplitude of a component is proportional to its varianee density
and to the energy density this presentation of the wave field is ca!led the varianee or energy
spectrum. If the two-dimensiona! (frequency and direction) energy spectrum is known, the
statistical parameters of the occurring waves can be derived. Interesting parameters are for
instanee the significant wave height and period, mean wave height, mean direction and probability
of exceedance of the wave height of a certain level.

In the spectra! form the evolution of water waves can be described by the energy balance equation
(for deep water without currents)

àEif,O) + cg·VEif,O) = Stotif,O)
àt

(1.1)

where E(f,O) is the energy density, Cg the wave group velocity and Stot the tota! souree term.

Above equation forms the basis of recent wave prediction models (e.g. WAM Model, WAMDI
Group 1988). The terms on the left hand side of the equation represent the accumulation of energy
per unit of time and the propagation of energy at the wave group velocity Cg. The term on the



right hand side is the souree term which represents the net amount of energy added to a wave
component per unit of time.

The souree term consists of three components

(1.2)

where Sin represents the input of energy from the wind, SnI the nonlinear interactions between
speetral components and Sds the dissipation of energy due to white capping and turbulence.

The many different wave models that have been developed, have been c1assified by the SWAMP
study (Sea WAve Modelling Project, 1985) as first, second and third generation modeis. First
generation wave models (1960s, early 1970s) do not inc1ude the nonlinear wave-wave interactions.
Each speetral component evolves independently of other components. Although these models were
applied for many years, they have two shortcomings:

- they underestimate the observed wave growth
- they are unable to explain the overshoot phenomenon of growing wind sea.

The overshoot effect is the phenomenon that developing waves do not always grow monotonically
to their saturation level. They can grow beyond this level by a considerable amount and return to
the saturation level afterwards. This phenomenon is considered to be an important factor in the
wave generation process and is believed to be caused by the nonlinear interactions. To overcome
these problems second generation models were developed. Because it was not possible to give a
universal solution for the nonlinear souree term at that time, these wave models use a
parameterized version of the wave-wave interaction process. This simplified representation of the
nonlinear souree term requires restrictions on the speetral shape. This meant that the second
generation models were unable to predict complex wind seas generated by rapidly changing wind.

Much progress has been made with the introduetion of third generation modeis, the highest level
of development presently reached. In third generation models all relevant processes of generation
and dissipation of energy are represented explicitly. This means that for each of the three souree
terms of the energy balance equation quantitative expressions are used. Details about these
expressions can be found in chapter 3.
Because the souree terms can be calculated for every frequency and direction, the speetral energy
of each wave component can be calculated for arbitrary wave fields with these modeis.
Although the physical processes are not fully c1ear and consequently the expressions for the souree
terms are still approximations, the third generation wave models are adequate operational wave
prediction modeis.
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1.2 Problem description

It is generally known that it takes a finite time for the wave spectrum to adjust to a changing wind
speed. Low frequency waves respond slowly to a change in wind speed. The adjustment of high
frequency waves, on the other hand, is so fast that it can be considered as an instantaneous
response.

Satellite based microwave instruments such as the scatterometer can image the high frequency
portions of the wave spectrum. Assuming that this section of the spectrum is in equilibrium with
the wind, enables to make an estimate of the wind speed. However, the rate of adjustment of the
different frequencies to a change in wind speed is unknown.

Detailed studies have been carried out for fetch and duration limited wave growth and fully
developed sea state (e.g. Hasselmann et al., 1973; Donelan et al., 1992). Much less is known
about changing wind conditions. A few studies have been made of changing wind direction (e.g.
Hasselmann et al., 1980; Günther et al., 1981; Holthuijsen et al., 1987; Young et al., 1987; Van
Vledder & Holthuijsen, 1993), but to the author's knowledge only one study has been carried out
for changes in wind speed (Toba et al., 1988).

In order to increase the practical knowledge and the understanding of the physical processes
involved, the response of waves to changes in wind speed has been analysed in this study. This
has been done by a numerical experiment with the one dimensional third generation numerical
model of Resio and Perrie (1991) which takes all nonlinear interactions into account, and by field
measurements on Lake George (see figure 1.1) hindcasted with the above mentioned model and
the third generation model WAVEW ATCH (Tolman, 1991).

Figure 1.1 Lake George
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1.3 Approach

In chapter 2 the results of a literature review of waves in transient conditions can be found.
The main features of the two used numerical models are described in chapter 3.
The numerical experiment involves a series of calculations with the model of Resio and Perrie for
a number of ideal changes in wind speed. The results are analysed to obtain insight in the
behaviour of the model. This is presented in chapter 4.
Chapter 5 describes the way the field measurements were carried out and the processing of the
measurements to workable data.
The most suitable measured data has been simulated with both numerical modeis. Similarities and
discrepancies are discussed in chapter 6.
Conclusions of this study are presented in chapter 7.
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2. Previous Studies of Transient Wind Conditions

2.1 The response of waves to changing wind direction

The directional response of wind waves has been the subject of several studies, e.g. Hasselmann
et al. (1980) among the first. Analysing the measurements of two buoys in veering wind situations
they found good agreement between the rate of change of the wave direction and the wind
direction for high frequencies, while the directions at the lower frequencies adjust more slowly to
a new wind direction. Very low frequencies keep the old direction and are considered as swell.

As a simple model to describe the observations they proposed

(2.1)

in which 00,f is the mean wave direction as a function of frequency, Ow is the wind direction, w
the radian frequency and b=b(u!c,f/fpJ a relaxation coefficient with!p the peak frequency, U the
wind speed and c the phase velocity . They found b :::::2.10-5.

This relaxation model was used in many other studies on this subject in slightly different forms.
The factor wb is usually replaced by T-1, where T is called the time scale. The model assumes that
the rate of change of the wave direction, °0, is determined by the angle between the wind
direction Ow and the wave direction °0. According to Quanduo and Komen (1993) it is better to
use the angle between the mean direction of the rate of change of the spectrum, 0aE/iJt' and °0.
Howevér, because it is difficult to measure 0iJE/iJt' this direction is usually approximated by Ow·

Allender et al. (1983) also determined the relaxation coefficient b of equation (2.1) from
observations . They found values of b within the same ranges of Hasselmann et al. (1980).
In the studies of Allender et al. (1983) and Hasselmann et al. (1980) the relaxation is described
for. single frequencies, which results in frequency dependent time scales T. Instead of a frequency
dependent time scale Günther et al. (1981) averaged the directional behaviour over the frequencies
resulting in the following model

(2.2)

with 00 the mean direction of the spectrum. Using the same data as Hasselmann et al. (1980) they
found X ::::: 0.21.10-2.

Holthuijsen et al. (1987) quantified the time scale Tof relaxation models by using universal
growth characteristics of waves in an ideal situation in which a homogeneous wind field starts
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blowing over an infinite ocean at t = O. Frorn the premise that the net wave growth is centred
around the wind direction they derived that the relaxation model can also be written as

(2.3)

in which e is the total wave energy

(2.4)

In dimensionless form equation (2.3) gives

1 af . (0 (0)= -:;-sm -
af e af W

(2.5)

in which t=gt/U and ë=ei/U4, where U is the wind speed.

The evolution of e can be approximated with € = a tanhd(btc) (SWAMP study 1985). The values
of the coefficients a.b,c, and d were chosen as more or less an average of all SWAMP growth
curves. Holthuijsen et al. (1987) determined T with help of observed growth rate of the wave
energy, the above mentioned growth curve and pitch-and-roll buoy observations. The time scale
determined by the observations and the universal growth curve are consistent with the results of
Günther et al. (1981). The theoretically expected dependency of T on the dimensionless energy
could not be confirmed by the observations.

Young et al. (1987) compared the results of two numerical models with each other and with field
observations of Hasselmann et al. (1980) and Allender et al. (1983). Both models give quite
similar results. The models show that for wind shifts of 30° and 60° the entire spectrum rotates to
the new wind direction. The high frequencies respond almost instantaneous as immediately after
the wind shift the total sou ree term balances at these frequencies.
The input of energy from the wind shows two peaks, one in the old wind direction and a higher
frequency peak in the new wind direction. The new peak is counteracted by the nonlinear
interactions because the nonlinear interactions develop a negative contribution to the total souree
term in the area of the new peak.
A wind shift of 90° or more gives a second peak that initially develops a little beside the new
wind direction, biased to the old wind direction. This is caused by the fact that the energy input
by the wind needs some initial level of energy to become effective. The new peak quickly adjusts
to the wind direction, grows and moves to lower frequencies. The old sea gradually decays by
dissipation. In these cases the two seas are so far from each other in directional space that there is

6



no nonlinear coupling between them.
At comparable values of U/c the time scale of the models agrees with the data of Hasselmann et
al. (1980) and Allender et al. (1983).

Van Vledder and Holthuijsen (1993) did a numerical experiment too and compared it with
directional wave observations. The observed time scales are generally two to three times shorter
than the model results. In the numerical model for both small and large wind shifts a second peak
developed, rapidly merging with the old peak for small shifts. These numerical calculations were
for more developed sea states than those of Young et al. (1987). As the time scales for younger
sea states are smaller than for relatively older waves the response of the waves in the cases of
Young et al. (1987) were so fast that a second peak was not visible for the small wind shifts.
The behaviour of the souree terms of the model is as follows. The atmospheric input generates
energy at the high frequencies between the old and new wind direction. For a smal I wind shift this
process still supports the old spectrum. The nonlinear interactions have a positive contribution to
the net souree term for the old direction and negative for the new direction. The dissipation of
energy is largest in the new direction. So both the nonlinear interactions and the dissipation
counteract the turning of the wave direction. Whitecapping appears to be a stronger process than
the effect of the nonlinear interactions.
It is speculated that at some moment during a turning wind event the role of the nonlinear
interactions changes from opposing to supporting the turning of the waves. This is based on the
property of the nonlinear interactions to support a unimodal spectrum. The nonlinear interactions
would support the prevailing peak, shifting from the old to the new peak.

2.2 The response of waves to changing wind speed

Only one paper about the response of wind waves to changing wind speed was found (Toba et al.,
1988). The most important features are summarised below.

Phillips (1958) proposed on dimensional grounds a form of the one-dimensional frequency speetral
density E(w) of wind waves for the high frequency side of the speetral peak (= equilibrium range)

(2.6)

where I} is a dimensionless constant.
Based on empirical data and with the aid of dimensional analysis, Toba (1973) proposed another
form for the equilibrium range

(2.7)

with as a constant, u. the air friction velocity at the water surface, S the surface tension, k the
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wave number and Pw the density of water. This speetral form has also been found in other
experiments, although there is a difference in observed values of Cts which ranged between 6 x 10-
2 and 11 x 10-2 (phiIlips, 1985). The physical interpretation of equation 2.7 is sought in overall
constraints imposed by the coupled turbulent boundary layers of air and water. This imp lies that
the processes responsible for the adjustment of wind waves to a change in wind are strongly
nonlinear.

Three series of observations are analysed in the paper. In these observed situations the wind
fluctuates with a general trend to increase. If the energy level of the equilibrium range of
frequencies immediately follows the change of us, Cts would be a constant. The observations show
that Cts becomes smaller for increasing wind and larger for decreasing wind on short time scales,
but the general trend of Cts is to remain constant, This means that the energy level does not follow
the change in u. immediatel y, but it adjusts itself to the variation of the wind on a larger time
scale. This timescale is in the order of several minutes, which is faster than the time scale of the
growth of the total energy of the spectrum. Sa the high frequency tail responds faster than the low
frequencies.

When the wind increases rapidly, the peak frequency shifts to higher frequencies presumably
caused by an increase of energy supply of the nonlinear interactions at the high frequencies at the
expense of energy near the speetral peak. When the equilibrium at the high frequencies is
restored, the growing total energy farces the peak frequency to lower frequencies. For decreasing
wind speed the opposite happens.

The peak of the spectra is broad when u. is increasing and narrow for decreasing u•. This
indicates that for increasing wind speed the energy of the waves on bath sides of the speetral peak
are fed. When u. is decreasing the energy on bath sides of the peak decreases, feeding the waves
at the peak frequency. In this way the speetral peak remains symmetrical.
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3. Numerical Models

3.1 Introduetion

In this chapter the solution of the energy balance equation, especially the three souree terms, is
treated in general and with respect to the two numerical, third generation models used in this
study. The numerical models that have been used are the model of Resio and Perrie (1991) and
WAVEWATCH, the model of Tolman (1991).

The model of Resio and Perrie (referred to as Resio's model in the following) is a third
generation wave model with a full solution of the nonlinear interactions. Because of the enormous
computation time WAVEW ATCH uses an approximation for the nonlinear souree term, like most
wave modeis.

Calculation of all nonlinear interactions within acceptable computation time causes some
restrictions of the model in other respects.
The differential equation (l.1) has to be simplified to one dimension, either duration limited
growth

(3.1)

or fetch limited growth,

(3.2)

The vers ion for duration limited growth, used in this study, assumes VE=O, so no spatial
variation, i.e. an ocean with infinite dimensions.

A second Iimitation is that bottom influence can not be incorporated without very large increase of
the computation time, because only in deep water the nonlinear interactions show some regular
features that make it possible to simplify the calculations.

For the numerical experiment of chapter 4 Resio's model was used, since it gives the best
representation of the physics behind wave generation because of the full solution of the nonlinear
interactions. A second reason for the choice of this model is the fact that the model is relatively
simple because of the above mentioned restrictions. This allows insight in the model behaviour,
which is a requirement for a numerical experiment.

WAVEW ATCH is an operational, third generation wave model, which does not have these
restrictions of infinite depth and fetch. This makes it more suitable to hindeast the measured data

9



of Lake George. Both WAVEWATCH and Resio's model were used to compare the
measurements with numerical calculations.

In WAVEW ATCH equation (1.1) is solved by treating the propagation and souree term
integration separately. Various schemes are available. Here a flrst order upstream scheme is used
for the propagation, which is calculated before the souree term integration. The souree term is
integrated with a straightforward explicit (Euier) integration. This is the same integration scheme
as used in Resio's model to solve equation (3.1).

3.2 Wind input

The transfer of energy and momentum from the wind to waves is an intricate, turbulent process at
the transition between air and water. In this process two phases can be distinguished.
In the flrst phase the wind profile is not influenced by the waves. Phillips (1957) found that in this
ph ase the energy density of a wave component increases linearly with time.
In the second phase, analysed by Miles (1957), the wind profile is affected by the waves. In this
ph ase the rate of input of energy to a wave component is proportional to the energy density of that
wave component, so the energy density grows exponentially with time.

The input souree term of the energy balance can be modelled as the summation of linear and
exponential growth

Sin(j,O) = A +BE(j,O) (3.3)

in which A and B are functionaIs of the energy density E(f,O) and the wind vector.
Because the exponential growth term is much larger than the linear term, the linear term is often
omitted in wave prediction modeis.

The equation for wind input used in both models is the formulation of the souree term by Snyder
et al. (1981), scaled to the friction velocity u. by Komen et al. (1984) instead of the wind speed
U5 at 5 meters height

Pa U.
Sin(j,O) = max { 0 , 0.25 -w(28P(-)cos(8-0w)-1)E(j,O)}

Pw c
(3.4)

wh ere Pa is the density of air, Pw is the density of water, w is the radian frequency, c is the phase
velocity, 0 is the direction of the speetral component, Ow is the wind direction andfl is an
empirical coefficient close to unity. This formula implies that Sin=O if the angle between the
direction of the wave component and the wind direction is larger than 900 or u. is small compared
to the ph ase velocity .
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3.3 Dissipation of wave energy

Two main mechanisms of wave energy dissipation can be distinguished, wave breaking (in deep
water referred to as whitecapping) and energy dissipation due to wave bottom interactions. Both
mechanisms are still poorly understood.

Wave breaking is a very complicated, strongly nonlinear process. In both models the expression
for wave breaking proposed by Komen et al. (1984) is used

S,uif.6) = -Co; [~ ]2 [ a~Mj2Eif.6)
(3.5)

with.

ex (3.6)

in which C is a constant, (ij the mean radian frequency, & the integral mean wave steepness, and
apM the theoretical value of & for a Pierson-Moskowitz spectrum. This equation is based on
general assumptions for any nonlinear, small-scale and local process (Hasselmann, 1974).

Dissipation of wave energy due to wave-bottom interactions can be caused by three mechanisms,
i.e. percolation, bottom mot ion and bottom friction. Percolation takes place in very porous soils,
bottom motion in cases of soft mud and vegetation. The most important mechanism is bottom
friction, because it is the main process for sand bottoms as found in many seas.
Wave-bottom interactions are not taken into account in Resio's model. In WA VEW ATCH the
parameterization for bottom friction of Madsen et al.(1988) was used, which can be written as

S lf, .0) - 8 f. u k Elf, .0)bol '
v - b ,v31f w .r sinh 2kd

(3.7)

where fw is a non-dimensional friction factor, d the water depth and ub,r is a representative near-
bottom orbital velocity .

3.4 NonIinear wave-wave interactions

In addition to the atmospheric input and the dissipation term there is a third, less obvious, though
important souree term caused by the nonlinear wave-wave interactions, flrst introduced by
Hasselmann (1960) and Phillips (1960). The principle of wave-wave interactions is that a group of
wave components in a special conflguration can supply energy to another wave component.
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Hence, the wave components do influence each other by exchanging energy. In many applications
the wave field is considered as the sum of a large number of independent wave components, a
linear system. For small time and space scale the energy exchange is so small that it can be
neglected. For computations over long periods and large areas the nonlinear effects are
considerable. Measurements (JONSWAP, Hasselmann et al. 1973) suggest that the nonlinear
interactions play an important role in the evolution of the energy spectrum.

The nonlinear wave-wave interactions have a few characteristic features. The interactions do not
supply to, or remove energy or momentum from, the wave field; they only redistribute
momentum and energy among speetral components. An important property of nonlinear
interactions is that the peak of the spectrum gains energy at the expense of higher frequencies for
broad spectra (Hasselmann, 1963 and Webb, 1978) and the peak of narrow spectra tends to lose
energy especially to frequencies below the speetral peak (Hasselmann et al., 1973). This results in
a shift of the peak frequency towards lower frequencies.
Another effect of the nonlinear interactions is that they stabilise the shape of the spectrum. Small,
local perturbations of the spectrum are smoothed out as a result of the redistribution of wave
energy by nonlinear interactions (Young and Van Vledder, 1993).

Hasselmann (1962) developed a theory for the nonlinear interactions. He found that a set of 4
waves, aquadruplet, can exchange energy, if it satisfies the following two resonance conditions

(3.8)

(3.9)

The first condition conserves momentum, the second takes energy conservation into account.
He gave a formula for the nonlinear interactions in teems of action density n, the ratio of the
energy E to the radian frequency. The rate of change in action density of a wave component due
to all interactions involving this component, is given by the Boltzmann integral

I I I G<5:I,!i2,!i3,!i4) X 0<5:1+~ -!i3 -!i4) X 0(w1 +w2-w3 -w4)

x [nln3(n4-~)+~ni~-nl)]d!ild!i2d!i3

(3.10)

where 0( ... ) the Dirac delta function and G the coupling coefficient

(3.11)

in which the interaction coefficient D is a complicated function of the four wave numbers.
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The Boltzmann integral also conserves the wave action, because of the symmetry of the two pairs
of wavenumbers «k J,k2) and (kJ,k4» within one quadruplet. The absolute value of the rate of
change of the action density is equal for all wavenumbers within the quadruplet

d~
dt

(3.12)

This is useful in methods for the computation of the nonlinear transfer.

Numerical integration of the Boltzmann integral is very time consuming due to the six dimensions
of the integral and to the complexity of the coupling coefficient G. Because of the excessive
computer time full numerical solutions are impractical. An alternative for use in operational
models is a parametrie method. In parametrie models the energy spectrum is approximated by a
spectrum with a standard shape for which the nonlinear interactions were calculated previously

with a full numerical solution technique.

An obstacle for the calculation and understanding of the nonlinear interactions is the difficulty to
visual ise the interaction space. Webb (1978) introduced a visualisation technique for the
interaction space for fixed kJ and kJ. In this case the possible values of k2 and k4, which satisfy
the conditions (3.8) and (3.9) form two 'egg-shaped' figures, called loci. See figure 3.1 (aft er
Young and Van Vledder 1993). The solution of the integra1 can now be reduced to the evaluation
of a series of line integrals around the loci. Although this simplifies the problem, the number of
possible loci is enormous. Hence, the computation time is still too long to be used in wave

prediction models.

1.2

-,0.8 -'

0.4

-0.6 -0.3 0.3

Figure 3.1 Loci of the veetors k2 (---) and k4 (---) for a given combination of k1 and kj
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Tracy and Resio (1982) found that for deep water conditions the loci are geometrically similar.
This permits the calculation of the k2 and k4 loci and the line integrals around the loci with a
sealing technique. This is the method used in Resio's model.

Hasselmann and Hasselmann (1981) introduced a computation method, referred to as the
symmetrie method. This method uses the symmetry properties of both the Boltzmann integral and
the interaction coefficient. This method, incorporated in the numerical wave prediction model
EXACT-NL, calculates the interactions of about 600 000 quadruplets.
A simplified integration technique known as the discrete interaction approximation (Hasselmann et
al., 1985) was developed on the basis of the symmetrie method. Only one type of wave number
configuration and its mirror image is used, reducing the number of quadruplets considerably. This
method can give sufficiently accurate computations, because only a small amount of the huge
number of quadruplets represents the largest part of the energy transfer. For the other interactions
the energy transfer is very smalI.
The discrete interaction approximation made it possible to develop third generation global modeis.
The method has been used in the WAM model (WAMDI group, 1988) and in WAVEWATCH.
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4. Numerical Analysis of Sudden Change in Wind Speed

4.1 Runs performed

With Resio's model a series of runs was performed for the ideal situation that the wind speed
suddenly increases or decreases. To simulate this, the program was run first with a constant wind
speed for a while. Then arestart from the tinal situation of this run was made with a different
wind speed. The moment of the restart is referred to as t = O.
For both increasing and decreasing wind speed the program was run for an absolute change in
wind speed of 5, 10 and 15 mis during period of 4200 s.
In the case of increasing wind speed the program started from a situation with an initial wind
speed Uo of 10 mis, in the case of decreasing wind speed Uo was 20 mis.
All runs were performed a second time starting with a more developed spectrum with a lower
peak frequency. This peak frequency is referred to as fp2, while the peak frequency of the initial
spectrum of the runs described above is referred to as fpl'

An overview of the runs performed is given in table 4.1. In this table all runs have been
numbered to make it easier to refer to the runs in the following paragraphs.

6U = 5 mis 6U = 10 mis 6U = 15 mis
.

increasing wind fpl = 0.24 Hz 1 2 3

Uo = 10 mis fp2 = 0.19 Hz 4 5 6

decreasing wind fpl = 0.19 Hz 7 8 9

Uo = 20 mis fp2 = 0.14 Hz 10 11 12

Table 4.1 Runs performed

The program was run with a timestep of 5 s and aspectral resolution of 68=6.67° and 43
frequencies, unevenly spaeed according to fj+1 = 1.063fj ranging from 0.0705 Hz to 0.9175 Hz.

4.2 Behaviour of the model

In this paragraph the behaviour of the model is shown on basis of the results of run 2 and 8. The
other runs show the same trends, so they are not treated separately.

The flgures 4.1 and 4.2 show the growth of the one dimensional spectrum for run 2 on a Iinear
and logarithmic scale respectively. These tigures show that first the most obvious growth occurs at
frequencies higher than the peak frequency. 500n the highest frequencies do not gain energy any
more. At the end the situation typical for growing wind sea has been reached. In that stage the
peak of the spectrum is growing and moving to lower frequencies.

15



This behaviour can be understood by looking at the souree terms at a few different times, see
figure 4.3 a and b.
At t = 0 s the souree terms show their characteristic features in a situation of growing wind sea.
The input and dissipation terms are large around the peak frequency, gradually decreasing towards
the high frequencies. The nonlinear term has a positive lobe just left and a negative lobe right of
the peak frequency, staying negative for the high frequencies. This results in a total souree term
that balances for the high frequencies and a positive-negative lobe around the speetral peak. After
the increase in wind speed the input term increases significantly, as expected. Hence the total
souree term becomes positive for all frequencies. The nonlinear interactions respond to the
increasing wind speed by larger negative values at the highest frequencies and an extra positive
lobe right of the speetral peak. In this way the nonlinear interactions force the total souree term
back to zero for the high frequencies and give energy to lower frequencies. Gradually the extra
positive lobe disappears and all terms are back to a shape equal to the beginning.

For run 8, where the wind speed decreases from 20 mIs to 10 mIs, the energy spectra are shown
in figure 4.4 on a Iinear scale and in figure 4.5 on a logarithmic scale. The changes in the spectra
are smaller than in the case of an increasing wind speed. Again the high frequencies respond first.
The souree terms, see figure 4.6 a and b, show that only the input term drops significantly
immediately after the change in wind speed, while the dissipation and nonlinear term are of the
same order of magnitude as at t = 0 s. The total souree term is negative everywhere except for a
small peak due to the positive lobe of the nonlinear interactions.
All souree terms gradually decrease in magnitude. At t = 4200 s the souree terms are not back to
their normal proportions yet, as in the increasing wind case. This indicates a difference in rate of
the relaxation process for decreasing wind and the forced growth for increasing wind speed.
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4.3 Rate of response of speetral components

Because the high frequencies respond most rapidly to a change in wind speed, they are most
interesting for this study. Hence the further analysis in the following paragraphs considers
frequencies above 0.3 Hz. This frequency is larger than the peak frequency in all runs.
In the figures 4.7 and 4.8 the dimensionless energy density E· has been plotted as a function of
time and frequency tor run 2 and 8, wh ere E· is the energy scaled by the energy at t=O, Eo(t)·

E· if,t) Eif,t)
Eofl)

(4.1)

In these figures it can be seen that the high frequencies respond faster than lower frequencies.
To get a better understanding of the general trends in the different runs, a simple equation was
searched for to describe the response of the speetral components. A good fit was found with an

exponential equation (see tigure 4.9).

. ....
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Figure 4.7 Non dimensional energy run 2
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The following equation was forrnulated

(4.2)

where Ee·=Ee ·(f,.6U) is the dirnensionless energy in the new equilibrium (for t = (0) and a =
a (f,.6U ,fpl,2) is a measure for the rate of response of a speetral component. To get positive values
for a for both increasing and decreasing wind speed the plus sign should be used in case of
increasing wind speed, for decreasing wind speed the minus sign should be used.
Ee· can easily be estimated from the model results.
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Figure 4.8 Non dimensional energy run 8
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The time-derivative of equation (4.2) yields

(a)*-- t
1 E'

±ae •

which shows that at t = 0 the rate of response of a spectra) component is equal to a. So
comparing the value of a for different frequencies or situations is interesting for analysing the rate
of response of a speetral component immediately aft er a sudden change in wind speed.
The value of a was determined by using a least square method. In figure 4.10 the results for a for
increasing wind are shown. The figures show an increasing value of a for increasing frequencies,
indicating a faster response of the high frequencies. Comparing the value of a for different
increase in wind speed, a faster response for a larger increase is found.

Run2, f = 0.56 Hz Run 2, f = 0.76 Hz
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Figure 4.9 Examples of fits with an exponential function
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For a decreasing wind speed a shows the same trend (see figure 4.11), an increasing value of a
for increasing frequency. The variation of a for different ~U does not follow a logical trend. This
may be caused by the fact that especially in the case of ~U = 5 mis the used equation does not
give a very good fit. The runs 7, 8 and 9 were performed starting with a peak frequency of 0.19
Hz, a little developed spectrum for the wind speed of 20 mis. Even for a wind speed of 15 mis
(run 7) this is not a full y developed spectrum. In this run the high frequencies first lose energy,
but soon the souree terms balance again and the spectrum even starts growing despite the smaller
wind speed. In run 9, ~U = 15 mis, the total souree term stays negative until the end of the
calculation (t = 4200 s).

A significant result is that for increasing wind speed the values of a are almost the same for the
two different peak frequencies, so in these cases the response of the high frequencies seems to be
independent of the rest of the spectrum. However for decreasing wind a is larger for the runs with
the larger peak frequency. So if the spectrum has less developed, it adjusts faster to new
circumstances than in case of a more developed sea.
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Another way to obtain more insight into the model behaviour is by looking at t'h' the time needed
to reach an energy density of IhCEo· + Ee·). This gives information about the rate of adjusting to
a new equilibrium, in contrast to a, which is the adjustment rate immediately after a change in
wind speed.

In figure 4.12 t.h was plotted as a function of f for all runs with increasing wind speed, in figure
4.13 for decreasing wind speed. From the figures it is clear that the high frequencies adjust faster
to a new equilibrium than low frequencies, both for increasing and decreasing wind speed.

For increasing wind speed t'h increases with decreasing ~u,so the process is slow for a smal I
increase in wind speed. Although E/ is larger for larger ~U, lhCEo• + E/) is reached earlier
because the input of energy increases even more.

For decreasing wind speed the opposite happens. Now the process is slower for a larger decrease
in wind speed. As explained before, in run 7 the high frequencies do not lose much energy and
reach a new equilibrium level quickly, while in runs 8 and 9 the spectrum must lose much more
energy which takes more time.

The curves for t.h for the different initial peak frequencies are almost equal for increasing wind
speed. For decreasing wind speed t'h is larger for the runs 11, 12 en 13. These runs started from
a more developed spectrum, so more energy must be dissipated before a new equilibrium is
reached, which takes more time.
t'h is of the same order of magnitude for increasing and decreasing wind speed, in contrary to a
which is larger for increasing wind speed. So the initial response of the waves to an increase in
wind speed appears to be faster than the response to a decrease in wind speed, but a new
equilibrium is reached in about the same time.
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5. Field Measurement Instruments and Procedure

S.l The equipment on Lake George

The field measurements for this study were carried out on Lake George as a part of a large wave
measuring project of the University of New South Wales started in 1991.
Lake George is situated about 50 kilometres North East of Canberra (Austral ia), see figure 5.1. It
has a length of approximately 20 kilometres and is about 10 kilometres at its widest point.
It is filled by precipitation and three brooks discharge into the lake at the east side.

The water level of the lake shows very large fluctuations. The lake has reached depths of over 7
meters and has fallen dry as weil. Over recent years the mean depth has been approximately 1.7

meter with a variation of 0.4 meter.

o Sydney

•
Canberra

Melbourne 0

Figure 5. J Australia
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As the measuring project on Lake George has already been working for two and a half years, the
choice or design and location of the equipment was fixed. At the lake 8 framework towers (see
figure 5.2) for the measuring equipment were built along the north-south axis (see figure 5.3).

Figure 5.2 One of the measuring stations
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Figure 5.3 POSitiOIl of the equipment on Lake George
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At each of the stations a wave gauge has been installed. More information about the wave gauges
can be found in the next paragraph.
At 5 of the stations (2, 4, 6, 7 and 8) the wind speed and direction is measured at 10 meters
above the water surface. At station 6 a R.M. Young propeller anemometer is used, the other
stations have VDO cup anemometers.
At the stations 2, 4, 7 and 8 the wind data is registered with a data logger and must be collected
on the spot once a month. The wind data of station 6 is transmitted to the base station on the
shore by a radio at a sampling frequency of 0.83 Hz.
The energy for the instruments is obtained by solar panels. The sol ar energy feeds batteries which
collect enough energy for nightly supply.

In cooperation with the Bureau of Meteorology in Melbourne the water temperature at the surface,
middle .and bottom, the air temperature and humidity are measured at the stations 2, 6 and 8. At
station 6 the Bureau of Meteorology also has a radiation meter, which measures the net radiation
just above the water level, giving a measure for the amount of radiation energy transported from
the atmosphere to the water.

Figure 5.4 The platform at Lake George

Station six has, ex cept for the tower, a platform (see figure 5.4) which functions as a base for
additional experiments. Near the platform an array of 7 wave gauges was placed to measure
directional spread. The platform is equipped with a shed with a computer, among others to
operate the array. Recently also a hydrophone was instalIed here for an experiment to investigate
the relation between the dissipation of wave energy and the noise made by breaking waves. This is
a future project, for which also video equipment will be used to record optical data about wave
breaking.
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5.2 The wave gauges

The wave gauges are Zwarts poles (Zwarts, 1974), working on the following principle.
A gauge consists of an inner and outer pole. The outer pole has holes all around, so the water
level between the inner and outer pole follows the water level outside (see figure 5.5). At the top
of the pole is a Iittle box, from where an electromagnetic wave is sent through the inner pole
towards the water level. Between the box and the water level a standing wave is formed. From the
wavelength of this standing wave the distance between the top of the pole and the water surface
can be derived. In this way the wave height is determined at a frequency of 8 Hz.

L _j
Figure 5.5 Zwans pole
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To be able to check the data for transmission errors, the Zwarts poles have a counter card,
counting at the same frequency of 8 Hz. By gaps in the sequence count transmission errors can be
detected.

The advantages of Zwarts poles are that they require little maintenance and the calibration is valid
for a long time, in contrast to capacity and resistance wave gauges. In addition, they are rugged
and not easily damaged.

The measured wave data is transmitted to the base station on the shore by radios. At the base
station two computers log the data received by the radios (see figure 5.6). The data is logged
during half an hour every hour, except for pole 6. For the purpose of this study, looking at
changing wind situations, it is better to have continuous time series. So the logging procedure of
this gauge was changed in continuous data logging. For the logging of the data a real-time
program has been made which stores the data in files, separate files for wind and wave data, each
file containing the measured data of one hour.

Figure 5.6 Receiving radios at the base station
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5.3 Field Work

The measuring of wave and wind data occurs fully automatically and continuously, except the
array of wave gauges, which is only operational when interesting weather conditions are expected.
(The data logging of these poles can be switched on via the modem at the university.) This does
not mean that everything can be do ne sitting behind your desk at the university. There is still a lot
of field work to do to keep the system working. The author assisted in all activities mentioned
below.

The onJy routine work that had to be done was to get the measured data from the tempo ral storage
at the base station to the university. This was done by copying the data from the two personal
computers at the base station (see figure 5.7) to two portable computers. The hard disks were full
within ten days, so this meant a drive to the base station very regularly (including a meeting with
the dangerous 'killer cow' in the paddock where the base station is situated).

Figure 5. 7 The base station
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In addition the data for the Bureau of Meteorology must be collected from the data loggers once a
month. This was considerably more time consuming, because these data loggers were situated at
the stations on the lake itself. For the purpose of going to the lake the university owns a little
power boat. All work on the lake was preferred to be carried out on calm days, because a lot of
time could be saved sailing on the lake without the choppy waves at windy days.

Another aspect of the field work was all kind of maintenance activities. An example is the
replacement of the batteries at each station by new ones. A large operation was the cleaning of the
gauges from algae, which could hinder the water running into the holes of the poles. To clean the
poles they had to be dismantled which requires scuba diving to undo the bolts under water (see
figure 5.8). Other hindrance by animals was the bird droppings on the solar panels. So these had
to be cleaned once in a while. To avoid this, sharp metal points were placed at the top edge of the
solar panels.

Figure 5.8 Installing the Zwans po/es of the array

Besides the above activities an aspect of the field work not to be underestimated concerns
repairing things. When (a part of) the complex system is not working, the most difficult task is to
find out what is wrong. Often the broken link has to be found by trial and error. A few examples
are given below.

One day the radios used to transmit the data to the base station were brought to the university to
tune them, just for preventive maintenance. After bringing them back to the lake the reception of
the radios appeared to be worse than before, giving much more transmission errors. What was
wrong? It could be a mistake at installing the radios, or the new car-telephone mast, interfering at
the frequencies of the radios, but theoretically everything could have been broken coincidentally.
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Finally the radios were taken from the lake again and brought to the factory in Sydney, where
they found out that the tuning was wrong.

A thunder storm was nearly a1ways a reason for at least one of the stations to stop working.
Putting the switch on the electronics board off and on again, usually worked to restart the data
transmission. As the switch is located at the station itself it asks a lot of time for only pressing a
button.

Other things to repair incidentally were oblique aerials and wind vanes, caused by wind or
pelicans.

5.4 Wind data analysis

The wind data consists of two parts, wind speed and direction, both measured at a level of 10
meters above the water surface at a frequency of 0.83 Hz and stored in files of one 'hour. To
make these data suitable for general processing, transmission errors (e.g. unintentional received
data) have to be repaired first. This was do ne by a kind of filtering program.

For the presentation of the wind data in this report the data is averaged over about 1 minute (50
sample points). The average wind direction has been calculated in two ways. The first method
uses equal weights for every sampled wind direction, in the second method the wind direction is
first multiplied by the wind speed before averaging. In most cases this does not make a significant
difference. The average wind direction cannot be calculated in a straightforward summation and
division, because this gives a problem for wind directions around zero. For instanee one sample
point with a direction of 20 and another of 3580 would give an average direction of 1800• This
problem is removed by decomposition of the wind direction into two perpendicular vectors.

To obtain data suitable for this study out of the large amount of measured data, all data has first
been checked for the range in wind speed within one file. The files with a range in wind speed of
more than 6 mIs were selected.
A second selection criterion is the wind direction. Only files with a wind direction that does not
deviate by more than 300 from the average direction have been used. This criterion reduces the
amount of data considerably, because most changes in wind speed come together with a large
change in wind direction.
It appeared that generally an increase in wind speed occurs much faster than a decrease. Because
very slow decreasing wind is not very interesting for this study, there is not much useful data of
decreasing wind.

An interesting fact is that nearly all cases with a significant increase in wind speed happened at
about 17.00 h with wind coming from the east. This is caused by the rising of the air above the
land surface heated during the day and the cooler air from the above the sea coming inland. This
phenomenon is c1early visible at Lake George a1though the sea is about 125 km away.
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5.5 Wave data analysis

The wave data matching the selected wind files has been subjected to a wave analysis program
doing the following two things. First it checks the data for transmission errors. When a file
contains too many errors the data is rejected, a limited number of errors is accepted, but
mentioned in the output. The wrong data points are replaced by dummies.

Second the program calculates the spectra with a Fast Fourier Transform (FFT) procedure. FFT
procedures were introduced in 1965. Previous methods of Fourier transforms were very time
consuming. Usually first an auto-correlation function was calculated, The speetral density was
estimated by the Fourier transform of the correlation function. FFT procedures estimate the
speetral density directly from the time record.

Aigorithms for Fourier transforms are based on the following principle. Assume a sample record
x(t) sampled at N equally spaeed timesteps .1.t seconds apart

n=O,1,2,3, .... ,N-1 (5.1)

For arbitrary f the discrete vers ion of the flnite-range of the Fourier transform of above equation
is

N-I
xif. 1) =!:J r. xnexp( -j27rfn!:J)

n..o
(5.2)

The usu al selection of the discrete frequencies for the computation of X(f,T) are

k kIk - _-_
T N.1.t

k = O,1,2, .... ,N-1 (5.3)

Note that the results are only unique to k= N/2 because f= 1/(2.1.t) is the Nyquist frequency above
which aliasing occurs.

Equation (5.2) combined with equation (5.3) yields

k = O,1,2, .... ,N-1 (5.4)

To compute all of the Xltterms involved, approximately N2 complex multiply-add operations are
necessary (1 complex multiply-add operation = 4 real multiply-adds).
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FFT procedures are based upon decomposing N into its composite factors and computing the
Fourier transforms over the number of terms of the composite factors. If N is the product of p
factors

(5.5)

equation (5.4) can be found by the summation of

(N/r1) Fourier transforms requiring 4r)2 real operations
(N/r2) Fourier transforms requiring 4rl real operations

(N/rp) Fourier transforms requiring 4r/ real operations.

Hence the total number of real operations becomes

p

4(Nrl +Nr2+········+Nrp) = 4NI: ri
i=1

(5.6)

The speed ratio to the standard Fourier transform is

speed ratio = N
(5.7)

The speed can be enlarged when N is a power of 2. If N = 2P the exponential term of equation
(5.4) is always + 1 or -1. This results in doubling of the speed.

For the FFT of the wave analysing program, available software was used. The FFT was carried
out for blocks of 256 sample points. As the sample speed was 8 Hz the Nyquist frequency is 4 Hz
and the frequency resolution is 0.03125 Hz.
The reliability of the results was increased by averaging the spectra of 14 blocks, leading to
spectra with 28 degrees of freedom.
One spectrum contains (14x256xO.125 s =) 7.5 minutes of data. This is relatively short, but
necessary because of the non-stationary data.
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Besides the estimates of the spectra the program calculates the significant wave height H, and the
95 % confidence Iimits of both spectra and the significant wave height. The significant wave
height is defined by the average of the highest third part of the waves, which can be approximated
by

(5.8)

in which

(5.9)
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6. Comparison of Field Measurements and Modelling

6.1 Introduetion

The most suitable data measured at station 6 (referred to as lake data in the following) was
selected to be simulated with the two numeri cal modeis. These suitable situations can be divided
in three categories: a sudden increase, a gradual increase and a gradual decrease in wind speed. In
this chapter the lake data and numerical results are cornpared and significant results will be
discussed.

With WAVEW ATeR three runs for each case were made. In the first series of runs (WW -I) the
calculations were made for an infinite large and deep ocean to compare these results with the
results of Resio's model. The second series of runs (WW-U) takes the borders of the lake into
account, but assumes the depth of the lake infinite to see the influence of the Iimited fetch. The
bottom influence and fetch were taken into account in the last series (WW-lIl), which was carried
out with a constant water depth of 1.8 m (approximately the average depth at the lake).

The values of a few important input parameters of the two numerical models are given in
Appendix A.

The presentation of the lake data and numerical results is the same for all cases. Each case
represents a period of one hour (t = 0 s to t = 3600 s). During the hour preceding the analysed
one the wind speed was more or less constant with a speed the same as at t = 0 s. The figures
consist of 5 parts: part a for the wind speed UlO' measured and model input; part b for spectra at
4 instants measured at the lake; part c for the measured and calculated significant wave height;
part d for the peak frequencies (measured and calculated) and part e for the measured and
calculated spectra at t = 3375 s.
The measured wave heights and spectra were calculated for each 7.5 minutes (see paragraph 5.5).
The four instants of part b of the figures concern the intervals 7.5-15, 22.5-30, 37.5-45 and 52.5-
60 minutes, referred to as ti' tz, t3 and t4. The spectra presented in part e of the figures are the
spectra of the time interval 52.5-60 minutes, which are compared with model results at the
midpoint of this interval (t = 3375 s).

6.2 Analysed cases

The fetch on the lake depends on the wind direction. Both wind direction and fetch of the five
cases are given in table 6.1. The fetches are just short enough that the waves can be fetch limited
instead of duration Iimited after one hour according to available nomograms. For instanee the
nomogram of Groen and Dorrestein (1976) gives for a wind speed of 10 mIs blowing for one
hour, that the situation is fetch-Iimited if the fetch is shorter than 5 kilometres.
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case I case 11 case III case IV case V

wind direction 540 880 -710 -rr -960

fetch 4.7 km 4.7 km 5.1 km 5.1 km 4.1 km

Table 6.1 Wind direction and fetch

The value of ~d (wave number at the peak frequency times water depth) was determined as a
measure for the shallowness, see table 6.2. According to the classification by CERC (1984) water
is considered deep for kpd > 7r and shallow for ~d < 0.25. This means transitional conditions
for the lake with frequencies around 0.4 Hz and a water depth of about 2 meters.

case I case 11 case III case IV case V

tI = 675 s 5.14 2.61 1.78 2.26 1.13

tz= 1575 s 2.01 1.56 1.38 2.01 1.13

t3=2475 s 1.48 1.16 1.10 1.42 1.13

t4=3375s 1.42 1.16 0.94 1.36 1.56

In the following the most significant features of the measurements and model results are treated
per category (sudden increase, gradual increase and gradual decrease).
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Sudden increase in wind speed

Case land 11, two cases of a sudden increase in wind speed, are presented in the figures 6.1
a,b,c,d,e and 6.2 a,b,c,d,e. In case I the wind speed was simulated by a sudden change from 2
mis to 8.5 mis at t = 400 s, in case 11from 3 mis to II mis at t = 250 s.
The significant wave heights of the lake data and Resio's model agree reasonably. The results of
WAVEW ATCH of H, show that the intluence of the Iimited fetch is small compared to the bottom

intluence. The WW-lil results give a too small wave height.
Note that in figure 6.1 b the spectrum at t3 is larger than at t4• This unexpected fact can be
explained by the slightly smaller wind speed at t4. It is a significant fast response to the relatively

small decrease in wind speed.
The figures 6.1 c en 6.2 c show that the peak frequency of the lake data moves quicker to lower

frequencies than the peak frequency of the modeis.
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Gradual increase in wind speed
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Two suitable cases with gradually increasing wind speed were measured. These cases, 111and IV,
are shown in the figures 6.3 a,b,c,d,e and 6.4 a,b,c,d,e. The wind speed grows from 7.5 mIs to
20 mIs in case III and from 8 mis to 17 mis in case IV. For the wind speed in the models a

linearly growing wind speed was used.
The wave heights of both cases show that in the model calculations without bottom friction the
waves grow faster than in reality. So in contrast to case land 11now the bottom friction plays an
important role. In case lIl, where the wind speed is larger than in case IV, the differences are
considerable. The waves on the lake finally reach a significant wave height of about 0.7 m. This
is very large in about 2 m water depth. When the bottom friction is included in WAVEW ATCH
(WW-lIl) the significant wave height is too small and the peak frequencies are too large.
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Gradual decrease in wind speed

Case V is shown in figure 6.5 a,b,c,d,e. In this case the wind speed decreases gradually from 14

mis to 6 mis.
The wave height in Resio's model,WW-1 and WW-U initially grows. Apparently the spectrum at
the beginning is far from fully developed, so even a smaller wind speed can cause growth of the
wave energy. However the lake data and WW-lIl show that a decreasing wind speed immediately
causes energy loss. In WW-lil the significant wave height is again too smalt.
Figure 6.5 c shows that for the lake data the peak frequency stays more or less constant for a
while, finally increasing. On the other hand the peak frequency of WW-lIl responds very fast

immediately.
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6.3 Discussion

Because both fetch and depth limitations play a role at the lake, the best results of the different
model simulations should be expected from the WAVEW ATCH calculations with the right lake
dimensions (WW-lil). However the results do not agree very weil with the lake data, e.g. the
significant wave heights are too smalt. The differences between the fetch-limited (WW-11) and
unlimited (WW-I) calculations are small compared to difference with the WW-lIl calculations, so
the limited depth of the lake has much more influence than the fetch. As the results of WW-I and
WW-II give generally higher significant wave heights than Resio's model and the lake data, it is
likely that the parameterization for bottom friction in WAVEW ATCH gives too much dissipation
of energy in the analysed situations. The 'standard' bottom roughness length scale (kN = 0.04 m)
was used, which seems to be too large.

Comparing the results of WW -I and Resio' s model the differences are not negl igible. The ma in
difference of the two models is the way they calculate the nonlinear interactions, so the Discrete
Interaction Approximation of WAVEW ATCH seems to differ considerably from the full solution
used in Resio's model, at least in these cases with changing wind speed. However, differences in
numerical details can have a large influence, too.

It would be interesting to determine the factor a and t'h of chapter 4 from the measurements.
According to the numerical results I/a and t'h are in the order of magnitude of 100 s. However,
for the calculation of the spectra record lengths of 7.5 minutes (450 s) were used. Because of the
reliability of the results the record length cannot be taken much shorter . So the details of the
speetral response, like a and t'h' were averaged out. In theory it could be possible to determine a
and t'h calculating the spectra e.g. every 10 s using record lengths of 7.5 minutes, so working
with a large overlap. However, apart from the question whether this is really meaningful, the
problem arises that the spectra are so irregular, that it is impossible to determine a or t'h.

Because of the non-stationarity of the considered problem it might be better to replace the
traditional data analysis by Fourier transforms by joint time-frequency analysis, e.g. wavelet-
theory or Gabor Spectrogram (Doubrava, 1993).

Because of the difficulties of a detailed analysis of measurements, the only way to determine the
time scale of the speetral response is with help of numerical modeis. The merit of the numerical
results depends, of course, on the reliability of these modeis, which can be tested in terms of
parameters like the significant wave height and peak frequency. If hindcasts of these parameters
agree with the measurements, it could be assumed that the theoretically found values of a and t'h

are realistic. In case I and 11, where the wind speed and significant wave heights are relatively
small, Resio's model results agree reasonably with the lake data. To give a more solid
confirmation of the model more suitable data should be analysed, especially for decreasing wind
speed, or the model should be extended with possibilities for bottom friction and limited fetch.
The discrepancies between WAVEW ATCH and the measurements are so large that it is not
meaningful to use this model to determine a and t numerically.
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7. Conclusions and Recommendations

The numerical experiment with the model of Resio and Perrie demonstrates that the response of
waves to a sudden change in wind speed is faster for high frequencies than for lower frequencies.
The initial response is larger for increasing than for decreasing wind speed, but the time needed to
reach a new equilibrium is of the same order of magnitude. The adjustment to a new equilibrium
is faster for a larger increase in wind speed, but slower for a larger decrease.
The response of the spectrum to decreasing wind speed is dependent of the shape of the initial
spectrum, as the relaxation of the spectrum to a lower wind speed is considerably slower for an
initially more developed spectrum. For increasing wind speed the initial spectrum is less
important.

Because of the averaging of the data by the Fourier transform and the irregularities of the spectra,
it is not possible to determine the frequency-dependent time scales of the response.from the
measurements. Application of joint time-frequency analysis may give better information.

The comparison of the field measurements with the results of the model of Resio and Perrie and
of WA VEW ATCH show that the limited fetch of the lake has a small influence on the wave filed,
but the influence of the bottom friction is considerable. So a comparison of the measurements with
the results of the model of Resio and Perrie is only meaningful for short waves, which are not
influenced by the limited depth of the lake. Reasonable results were found for two cases with
suddenly increasing wind speed. For decreasing wind speed no suitable data was available.

It is not possible to give a good prediction of the wave field at Lake George with WAVEW ATCH
under changing wind conditions. The parameterization for the bottom friction seems to give too
much energy dissipation. Tests in steady wind situations should be interesting.
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List of symbols

a parameter of growth rate
b relaxation coefficient
A Iinear growth term wind input
B exponential growth term wind input
c ph ase velocity
Cg group velocity
C proportionality factor of dissipation souree function
d water depth
D interaction coefficient
E energy density
f frequency
fp peak frequency
fw friction factor
g gravitational acceleration
G coupling coefficient of nonlinear interactions
H, significant wave height
k wavenumber
~ peak wavenumber
n action density
Stot total souree function
Sin wind input souree function
Sds dissipation souree function
SnI nonlinear interactions souree function
t time
t,;, parameter of adjustment to new equilibrium
ub.r near-bottom orbital velocity
u. friction velocity at sea surface
U wind speed
U IO wind speed at 10 meters above water surface
& mean wave steepness
&pm mean wave steepness of Pierson-Moskowitz spectrum
as energy scale parameter of Toba's spectrum
6 energy scale parameter of Phillips spectrum
ó Dirac delta function
f total wave energy° direction°0 mean wave direction
Ow wind direction
Pa density of air
Pw density of water
T . time scale of directional response
w radian frequency
w mean radian frequency
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Appendix A Input parameters of the models

Model Resio and Perrie

* general

frequency increment factor 1.063
number of frequencies 43
number of points along locus 50
t10 = 6.67°

* Numerical experiment

frequency range
time step

0.07 < f < 0.92 Hz
t1t = 5 s

* Hindeasts

I I1 frequency range [Hz] I time step [sj I
Case I 0.20 - 2.59 0.5

Case 11 0.15 - 1.95 1.0

Case III 0.07 - 0.92 5.0

Case IV 0.15 - 1.95 1.0

Case V 0.10 - 1.30 5.0

WAVEWATCH

geometrie grid t1x = 1 km
t1y = 1 km

frequency increment factor 1.1
number of frequencies 25
t10 = 15°
t1t = 45 s

Case I and 11
Case lIl, IV and V

0.30 < f < 2.95 Hz
0.15 < f < 1.48 Hz
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