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ABSTRACT

Examining the validity and applicability in sonic boom calculations of:

a) the Whitham-Walkden theory and

b) the first order approximation‘of a perturbation theory, based on the
method of characteristics,

it was found by Oswatitsch and Sun, that the two methods yield different

pressure signatures”in the far field of a supersonic delta wing.

The present paper discusses the reason for the differénces; by means of

a simple procedure the reliability of both theories is compared in case

they give different results. ' ‘ '

From these considerations’ it becomes evident that in the near field

of planar systems the method under b) should'be used, that in the mid-

field a second order approximition is sometimes necessary, and that in

the far field the Whitham-Walkden method is reliable and simple.



1. INTRODUCTION

The generally used method for sonic boom calculations for slender
configurations was developed by Whitham |1| and Walkden |2|.

. As a first step the configuration, generating the sonic boom, is
replaced by an equivalent body of revolution, having the same far

field disturbances as the original configuration. The conversion makes
use of the supersonic area rule. As its fundamental starting point the
forward Mach cones To (Fig. 1) from the far field points are,  near the
configuration, approximated by planes I'w tangent to these Mach cones
(Fig. 2). This means that the dependence domains for the far field
points are slightly enlarged (Dw =D+ AD), but this represents
generally a negligible effect in the far field disturbances. After the
conversion to the equivalent body of revolution, the far field pressure
signatures of this body are calculated with the asymptotic method out-
lined by Whitham |l| (see section 2).

Examining the validity and applicability of this Whitham-Walkden theory,
Oswatitsch and Sun |3| found that in the case of a supersonic delta
wing the Whitham-Walkden result for the far field disturbances differs
essentially from the disturbances predicted by the general linearized
theory with correction of the bicharacteristics. In this method, which
will be called corrected linearized theory in the present work, the flow
field is first calculated with linearized theory. As a second step the
straight linear bicharacteristics are corrected by integrating their
local first order direction from the body into the flow field.

The flow properties, originally calculated on the lineair bicharacter-
istics, are now interpreted as the flow properties on the curved first

order bicharacteristics.

The reason for the differences in the results of the two methods for the
far field disturbances of the supersonic delta wing is, as pointed out
in sections 4 and 5, the slight difference in the dependence domains.
From the very near vicinity of the wing, Whitham's theory takes account

of the tip effect in the expansion fan from the trailing edge of the




wing, whereas in the corrected linearized theory this tip effect is
clearly restricted to the flow behind the expansion.

Comparison of the dependence domains D0 and Dw with the first order
domains for points in the expansion-fan, shows that in this special
case the Whitham-Walkden theory is preferable to the corrected
linearized theory in describing the far field flow, while the near
field is better predicted by the corrected linearized theory.

Before discussing the flow field of the supersonic delta wing, the
perturbations in the vicinity of the wave front of a trapezoidal
leading edge wing with infinite chord (Fig. 3) will be considered in
section 4. Here the essential differences between both theories will
be shown. The reason for the differences between the discussed theories
in the expansion fan from the leading edge shows up more clearly than

in the case of the delta wing trailing edge expansion.

2. WHITHAM-WALKDEN THEORY

This generally accepted sonic boom theory is based on the original
theory of Whitham concerning the far field disturbance of slender
bodies of revolution parallel to the free stream direction x |1|.

The fundamental point of this theory is the following hypothesis:
Linearized theory gives a correct first order approximation everywhere,
provided that the value, which it predicts for any physical quantity at
a given distance’'r from the axis on the approximate characteristic

x — Br = const., pointing downstream from a given point on the body
surface, is interpreted as the value at that distance from the axis on
the exact characteristic, which points downstream from the said point.
A good approximation of the exact characteristics is achieved by
integrating the local direction along the linear characteristics. The
local direction is calculated from the linear perturbation velocities

u, and vy (in x and r-direction respectively) and is given by:

' 4
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Here 82 = M2

- 1 and Yy is the ratio of the specific heats.
To get a satisfactory description of the far field disturbances, however,

it is sufficient to calculate the local direction with the asymptotic far
field approximations u, and v,-
This enables Whitham to give an analytical description of the far field

signature of the slender body of revolution.

v:v=-6ua (2)

1 a . /m 1 a

F(£) is the so-called Whitham F~function.

Integration of (1) leads for the characteristic & = const. to:

4
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S(x) is the area distribution of the body of revolution and t is the

integration variable along the x—axis (§ = x at r = 0).

An extension of this theory to more general slender configurations,
including configurations generating lift, is given by Walkden |2|. This
implies the replacement of the configuration by a body of revolution
with the property that its far field behaviour corresponds to the far
field behaviour of the original configuration.

The flow disturbances of this equivalent body are calculated according
to Whitham's method. The substitution of the equivalent body for the
original configuration is based on the "supersonic area rule". This
rule states that in x = X, one part A(x]) of the cross-section of

the equivalent body is given by the cross-section of the configuration
with a plane T'w, having the Mach angle with the x-axis and intersecting
this x-axis in x = X Furthermore this plane should be taken normal to
the meridional plane in which the far field disturbances are to be

calculated. Besides this equivalent area distribution A(x) due to




volume, #n equivalent area distribution B(x) due to lift is to be

determined. This is given by

X
B(x) = gE J 2(t) dt
o

where 2(x) is the lift distribution found by integration of the pressure
perturbations along the contours of the intersection of the configuration
and the various planes Tw.

Superposition of A(x) and B(x) yields the Whitham F-function for a

general lift producing slender configuration.

, & o
F(E) = %E'J A"(t) + B"(t) dt (5)
VE - t

(o]

The far field disturbances of the complete configuration are then
given by (2), (3) and (5). .

In fact, the intersection of the configuration and the plane I'w for a
certain far field point P is an approximation of the intersection of
the configuration and the linear Mach cone o from P (Fig. 2a). This
means that the domain of dependence Dw in the Whitham theory for P

is slightly larger than the linear domain Do'

For planar systems, the intersection with T'o from a point in the
vertical meridional plane is given by a hyperbola. The intersection
with 'w is then a straight line, tangent to the apex of the hyperbola,
as shown in Fig. 2b. In the far field, the effect of this substitution
is negligible as the difference between Do and Dw tends to zero for
large distances r. However, the effect may not be neglected when
considering the near and mid field. This matter will be discussed in

the following sectionms.

3. PERTURBATION THEORY BASED ON THE METHOD OF CHARACTERISTICS

This method was originally given by Oswatitsch_|4| as an extension of



three-dimensional flow problems of the theory of .Lin |5|. It consists
of a perturbation theory in terms of the characteristic variables &,
n and Z, not only for the flow properties but also for the physical

coordinates x, y and z.

u (E,n,z) =1 Ut U, e
v (£,n,8) = v, +v,
vf (€,n,8) = Wt W,
X (E,H,C) = XO + X] + X2
Yy (gan’C) = YO + yl + y2
2 (€,0,0) =z, *+ 2, + 2,

The flow field to first order is given by the linear non-dimensional

perturbation velocities U v and Wi while the perturbations X ¥, and

1

z, are obtained by integrating the local bicharacteristic directions

(using U, vy and Wl) along the original straight linear bicharacteris;ics
As already stated in the introduction, this first order approximation is
called the corrected linearized theory.

Essentially this is the same as .done in the axisymmetric.case by
Whitham |1]|, who calculates the corrected characteristics with respect
to the cylindrical coordinate system. )

The only relevant difference with Whitham's far field theory is, that

in Oswatitsch's method the corrections are made with the linearized
perturbation velocities, valid throughout the whole flow field, while

-Whitham uses the asymptotic far field perturbations for the corrections.

The advantage of the corrected linearized theory with respect to the
Whitham-Walkden procedure is that in the near field the flow calculations
are correct.to the first order, whereas Whitham-Walkden gives the far
field approximation, which is only correct if &/y << 1, i.e. close to

the front shock of the configuration.




Another advantage is the fact- that this perturbation theory has the-
possibility to give second order approximations. However, for this
second order approximation the effect of the first order perturbations
X ¥, and z,, on the shape of the-configuration with respect to &, n
and 7 has to be calculated. Usually this proves to be a very lengthy
procedure.

As shown in sections 4, 5 and 6 however, it is not always necessary
to carry out the entire procedure. In some cases it may be possible
to calculate in physical coordinates the first order domain D] for a
field point P, and to subtract from these calculations the essential
features of the second order terms.

As shown in the following sections, these may have a relevant influence

on the far field perturbations.

4. FLOW PERTURBATIONS IN THE PLANE OF SYMMETRY OF A SEMI-INFINITE WING
WITHOUT THICKNESS, HAVING A SUPERSONIC TRAPEZOIDAL LEADING EDGE

4.1. Compression side

An e;aﬁple of a flow, in which small differences in the dependence
domains D have no relevant influence on the far field perturbaﬁions,

is given by the flow in the vicinity of the wave front at the compression
side of a wing, having a trapezoidal leading edge shape and infinite chord
(Fig. 3). '

For this wing, the flow in the vertical plane of symmetry z = 0 will be
calculated, first with the corrected linearized theory mentioned in-

section 3,.then using‘the Whitham-Walkden theory of section 2.

4.1.1. Corrected linearized theory

In linearized theory the perturbation velocity potential ¢ at a point
P(x,y,0) due to a source distribution I(x,z) in the plane y = 0 1is
given by: I )
I 1 (xo,zo) dxo dzO
b= -5 i (7
2 .22 2 2 .
D \[(x x )" - By Bz

o]




The integration area Zo is the linear domain Do, bounded by To (see
Fig. 4). The source distribution can be given by:

I (x,2) = v, (x,0,2) = g%-(x,o,z> (8)

]
For the flat wing to be considered v (x,0,z) is constant and equal to
the angle of incidence 0.

For the perturbation velocities in the plane z = 0 (7) yields:

4 (6,0 = $¢ (x,y,0)
v, @y,0 = & xy,0 9
v, (x,y,0) =0

Using these perturbations the first order characteristic direction is
calculated by (1). This relation is integrated step by step into the
flow field to construct the first order bicharacteristics. This yields
the pressure signatures at some distances from the wing as given in

Fig. 5.

4.1.2. Whitham-Walkden theory

In this theory the area distribution of the equivalent body of revolution
due to lift is given by:

X

B(x) = B 2(t) dt
2q

o
where %(x) is the lift distribution in x-direction, calculated by inte-
gration of the pressure perturbations along Tw (Fig. 4).
As the equivalent body due to volume is zero for the flat wing, the

Whitham F-function is given by:

£
F(E):LJB_M=+_;F_§_ISL(C)dt
o Ve - t q ETT o

|
(o]




Together with (2.3) this yields the pressure signatures shown in Fig.

5.

In the very near vicinity of the shock, including the shock itself,
these pressure signatures agree reasonably well with the signatures
predicted by the corrected linearized theory. The differences between
the signatures grow with increasing distance to the shock. This %s not
unreasonable, as the Whithgm theory can only be expected to give
reliable results if &/y << 1, and this condition is only satisfied in
the very near vicinity of the shock. _

The pressure signatures obtained with the corrected linear theory are -not
restricted to such conditions and can be thought valid in the whole

region.

Thé ;ery‘small angle of incidenge a = Pin Fig. 5 has been chosen because
for larger angles the condition §£/y << I is only satisfied at large
distances from the wing. As our interest is also directed to the near
fie%@ effects, it seemed not unreasonable to restrict the angle of

incidence to a = i€

4.2. Expansion side

At the expansion side of the flat wing, the difference between D, and
DO appears to result in essgntial deviations between the pressure
signatures in the expansion zone, as calculated by the corrected
linearized theory and fhe Whitham-Walkden method.

As shown in Fig. 6 the 1ine§r domain Do for the point P on the last
bicharacteristic of the expansion fan in z = 0 is given by the hyperbola
To. In z = O this hyperbola is tangent to -the rear of the leading edge;
elsewhere it lies ahead of this edge. As a consequence it does not
contain the leading edge tlpS

The domain D for point P, as used in Whltham-Walkden s theory is
bounded by the stralghp line Fw’ lying immediately beh1n§ the straight
part of the leading edge and enclosing the leading. edge tips.

This results in strongly different pressure signatures in and close



behind the expansion fan, where both methods are supposed to give
reliable | results.

In the region further away from the expansion the Whitham-Walkden method
cannot be applied as the condition &/y << | is not satisfied. In that

region the corrected linearized theory gives reliable results.

The pressure signatures according to both the corrected linearized theory

and the Whitham-Walkden method are shown in Fig. 7.

4.3. Discussion of the results

In 4.1. the flow perturbations in the plane of symmetry of a flat wing,
having a trapezoidal leading édge shape and infinite chord, are calculated
by both the Whitham-Walkden theory and the correctedllinearized theory.
In the vicinity of the wave front at the compression side the results
agree very well. This is not surprising considering the domains of
dependence DO and Dw, enclosed by Fo and Fw’ for a point P at some
distance from the wing on the resulting shock (Fig. 4).

At the expansion side of the wing however, the methods mentioned above
give essentially different results for the expansion fan. Whitham-Walkden'
theory predicts an expansion strength decreasing with distance to the
wing, whereas in the corrected linearized theory this strength remains
constant (this cannot be seen easily from fig. 7, because the expansion
is affected by the formation of a shock).|The difference is introduced by
the dissimilarity 6f Do'and Dwi In such a case, when small differences

in these domains cause large effects in the flow field, it seems

necessary to calculate the first order approximation D, of the dependence

1
domain D, and to compare it to D0 and Dw; this can be done using the
bicharacteristic method outlined in Appendix A.

In this method the flow field is first calculated according to the
corrected linearized theory. Then fromthe pointof interesf(e.g. on the last
characteristic surface of the expansion fan) a family of bicharacteristicy
is constructed, forming the envelope of the domain of dependence for the

point said. The bicharacteristics are calculated stepwise by simultaneous

integration of their local directions.




The most.remarkable feature of this first order dependence domain is

the coincidence of a part of its-enveloping surface with the originating
line of the expansion.

Although these calculations have been performed in two-dimensional flow,
their results are still useful for the three-dimensional flow at the
expansion side of the trapezoidal leading edge wing.

In (corrected) linearized theory the expansion from the trapezoidal wing
is quasi-two-dimensional overithe width of the central part of the leading
edge. Between the tips R - R' in Fig. 8) the first order dependence
domain for the trapezoidal wing will therefore coincide with the corres-
ponding two-dimensional domain, and the influence of the non-two-
dimensionality is restricted to the part of the domains beyond the
leading edge tips.

From Fig. 8 it can be seen that for points at some distance of the
expansion's origin,F] encloses the tips of the central part of the leading
edge. Then the influence of these tips is felt in the expansion in

the plane of symmetry.

It weakens the expansion and makes its strength tend to zero at
infinity, which is not predicted by linearized theory.

This shows that in treating an expansion,the first order corrections

in D, although they cause second order corrections in the perturbation

velocities only, may not be ignored.

In the paragraphs above arguments are given for the non-two-dimensionality
of the expansion in the plane of symmetry of a trapezoidal leading edge
wing. These arguments arebased on first order dependence domains as -
calculated in two-dimensional flow. Indeed they show that two-dimension-
ality (present in corrected linearized theory) is not possible, but the
conclusion that the Whitham-Walkden methode is more reliable in the

far field may need some further explanation. As shown by stretching

the x—coordinate in Figt 9,Fw agrees of course rather well with Tl-for

larger values of y (y > 8). However, I', is calculated assuming an

1
expansion of constant strength, whilst it is shown that this assumption

is dubious.



To allow the conclusion that the Whitham-Walkden method yields reliable
results in the far field, Fw has to agree reasonably well with the exact
dependence domain in the leading edge expansion of variable strength.
From the calculations of F] it is seen that its particular shape is
formed mainly in the part of the expansion fan very close to its origin.
This part of the expansion will be also quasi-two-dimensional in exact
qalculations, so that F]-will be a fairly good approximation of the éxact
‘bicharacteristic surface I'. Consequently, Fw will be in reasonable agree-

ment with'I' and Whitham-Walkden's method may be used for the calculation

of thefar fielddisturbances inthe expansion fan from the leading edge.

In summary it can be stated that the first order flow calculations in
the symmetry plane of the trapezoidal leading edge wing,according to the
corrected linearized theory are correct in that part of the expansion
where the tip effect does not influence the flow. In Fig. 10 the ultimate
distance for using this theory is indicated by A.

In the far field Whitham-Walkden theory may give valid results.
Approaching the wing, its validity decreases as can be inferred from
Fig. 9. '

The minimum distance up to which Whithgm—Walkden's theory may be used
for the calculations in the expansion fan, cannot be defined sharply

but will be in the vicinity of B in Fig. 10. In the transition interval
A-B a great deal of éffort should be given to the calculation of the
second. order approximation of the velocities u and v, especially to

the calculation of the first order dependence domains D,, which causes

the most important second order terms in u and v. !
In the region behind the expansion fan Whitham-Walkden's theory may

not be applied unless the condition &/y << | is satisfied. Where this
condition is not met, the predictions of the corrected linearized

theory will be rather reliable, because further downstream Do approximates
D] quite well.

5. WAVE FORMATION DUE TO A SUPERSONIC DELTA WING

In this section the influence is discussed of the first order terms in




the dependence domains for points in the flow field of a delta wing
with supersonic-leading edges (see Fig. 11).

The flow in the vertical plane of symmetry of this delta wing is
calculated up to the first order by Oswatitsch and Sun |3| using the
corrected linear theory.

The correction of the bicharacteristics in the compression zone A (Fig.
11) leads to intersections with bicharacteristics of the free stream.
This results in the formation of a shock, having a constant stremngth

up to point Q, where the last bicharacteristic of zone A meets the
shock.

Beyond Q the shock is weakened by the interference with the bicharacter-
istics of the two-dimensional expansion zone B. This results ultimately
in an elimination of the front shock. A fraction of the expansion remains,
which at the rearward side is followed by a new shock. The pressure
signatures calculated by this method for various distances from the wing
are shown in Fig. 12.-

Comparing these signatures to the results of the Whitham-Walkden method
severe differences are found, as Fig. 12 shows. These are a consequence
of the fact that in this Whitham-Walkden theory the strength of the
expansion decreases with growing distance to the wing. Therefore the
shock expansion interaction cannot be sufficient intensive to cancel

the shock.

As in the previous section these differences in the expansion fan are

- primarily caused by the differences in the dependence domains D, and

D, Comparison with the first order domain D, shows that in the vicinity
of the wing (y < Ygo Fig. 11) the corrected linearized theory gives

reliable results (Fig. 13).

At larger distances,beyond, Yro itsresults are correct in the whole flow
field,except in and immediately behind the last part of the expansion fan.
In the latter thefirst order terms in the expressiondescribing the shape of
the dependence domain may not be neglected, as can be seen from Fig. 13:

At large distances (y > 8) the first order domain D, shows strong

1
similarity to D, and large deviation from D,. This means that in this’




region the Whitham results are rather reliable for the whole flow field,
including the expansion, while the corrected linearized theory is only

correct outside the expansion fan.

The effect of this being incorrect of the corrected linearized theory
within the expansion fan on the shock-expansion interaction will now be
discussed.

One might consider the possibility that the major part of this inter-
action occurs at relatively small distances from the wing, where the
first order correction of D is not yet relevant and therefore the
corrected linearized theory can still be applied;Then the shock cancell-
ation would occur in that part of the flow field where the description
of the flow field by Whitham would not be valid. In this hypothetical
case the result of the.Whitham~Walkden theory would be incorrect in the
far field as well.

Some arguments relative to this questions can be taken from Fig. 12 and
13.

Fig. 13 shows that for points on the shock at distances y > 8 the
approximation of the first order dependence domain by a straight line,
as assumed in the Whitham=-Walkden theory, will be acceptable. For
points behind the shock the approximation is even better. Therefore ‘it
seems not unreasonable to expect the Whitham-Walkden theory to be valid
for the prediction of the value.of the flow perturbations behind the
shock.

Furthermore, at y = 8 the shock .predicted by Whitham-Walkden shows
reasonable similarity with the shock calculated by the corrected ..
linearized theory (Fig. 12). Thus Whitham's results for the pressure
signature in the far field seem essentially correct. This would mean
that beyond y = 8 the shock-expansion interaction is reasonably well
described by Whitham-Walkden's method and that the shock is not eliminated

as was expected from corrected linearized theory.

These considerations .are in agreement with, and contain a certain

quantification of the suggestions of Seebass ‘and George |6|, who state




that in linear theory the distance from the intersection hyperbolas (of
the tipcones and the symmetry plane) to the trailing edge expansion
becomes very soon negligible. Although the hyperbolas do not penetrate
Ebe expansion fan, Seebass and George expect some influence in the two-
dimensionality of the expansion, which would yield a Whitham-Walkden
behaviour in the'far field. The present work shows that these tip

cones do not only approach but actually penetrate into the expansion
which is necessary for influencing the flow perturbation within it.
Another effect that has been criticized in [6| is the shock-expansion
interaction in the plane of symmetry. It was argued that this might

be incorrect in the corrected linearized theory, because the disturb-
ances in the expansion zone B (Fig. 11) are calculated as a super-
position of the compression zone A and a two-dimensional expansion.
After correction of the bicharacteristies, this zone A no longer

exists beyond Q, and it might be incorrect to keep up the superposition.
It can be commented that this effect would also be included in the
second order terms of the characteristic perturbation theory of section
2, and might be essential in the calculations for the midfield (roughly

between y = YR and y = 8).

6. CONCLUDING REMARKS

In some special cases the predictions of the far field disturbances

by the Whitham-Walkden theory deviate essentially from the predictions
by the corrected linearized theory. These deviations are introduced by
the differences of the dependence domains as used in both theories.
Formally, these differences are expected to have negligible influence.
In the cases discussed in sections 4.2. and 5 they prove to be essential.
In compressing flow fields the differences in the dependence domains
generally do not influence the far field perturbations, because a great
deal of the detailed information about thé-shape of the configuration
is lost in the formation of shock waves. '

In expanding flow fields, however, individual disturbances are not
absorbed by shock waves and persist to large distances, while the space

in which they are felt is enlarged, because of the diverging bicharacter-
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istics.

It is a striking fact’ that in the expanding fields the predictions of
the far field disturbances by the Whitham-Walkden theory, which contains
some rather rigorous approximations, seem more reliable than the pertur-—
bations calculated by the corrected linearized theory. Applying the per-
turbation theory, based on the method of characteristics in the far
field, it seems necessary to take into account the second order approx-
imation for the perturbation velocities. Comparing Fw and FI however,

it seems not unreasonable to expect that the second order method yields
the same results as the Whitham-Walkden theory. ‘

In the near field the corrected linearized théory is of course very
useful, as it does not contain any further ‘approximations besides the
conditions for linearization, while the linear dependence domain D,

does not yet diverge essentially from D,. '

In the mid field, that is to say at a few characteristic lengths from
the configuration, both the Whitham-Walkden theory and the corrected
linearized theory ‘may yield incorrect results. In this area the second
order- approximation of the characteristic perturbation theory is

expected to yield useful and reliable predictions for the flow pertur-

bations.

As a final remark, it may be noted that a fairly simple procedure can be
used to compare -the applicability of the sonic boom methods.discussed

in sections 2 and 3 for a given case. It consists of comparing the
dependence domains Do and Dw, as used in these theories, to the first

order dependence domain D,. From this comparison it can be learned

1
whether a second order approximation of the flow perturbations is
necessary, or that it is sufficient to use either the corrected
linearized theory (generally in the near field) or the Whitham-Walkden

theory (generally in the far field).

P
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APPENDIX A

The first order approximation of the dependence domain D, for a point on

1
a characteristic surface of a two-dimensional expansion fan is calculated
using the bicharacteristic method as given by Oswatitsch |4|.

In cartesian coordinates Oswatitsch gives the following relation for

the bicharacteristic direction in a given point on a characteristic

surface, emanating from a given initial line,

Xy 1Yy o7y S (u=-csinw):(v - c cos wsin ¢):(w + ¢ cos w cos ¢).

(A.1)

The index A refers to the partial derivatives with respect to the bi-
characteristic parameter A, while u, v and w are the velocities in x,
y and z-directions and c is the local speed of sound. The angles ¢ and
w couple the local normal vector of the characteristic surface to the
cartesién coordinates as given in Fig. Al. Since a characteristic
surface can be thought to be genera£ed by bicharactéristics,

it is sufficient for the determination of this surface to follow the
bicharacteristics into the flow field.

In the scope of the characteristic perturbation theory this procedure,
which is given in more detail in |7| can be outlined as follows:

First the flow field is calculated using the linearized supersonic
theory. Then the linear bicharacteristics, pointing downstream from

a certain point of the configuration,are corrected for the local bi-
characteristic direction, and the values of the flow perturbations,
calculated on the original straight bicharacteristics are interpreted
as the values on the corrected bicharacteristics.

By this procedure the discontinuity, present in the linear representation
(Fig. A2a), is spread out in an expansion fan (Fig. A2b).

In this up to first order correct flow field the upstream bicharacter-
istics, constructing the characteristic surfaces to be determined (the
cones A], Bl) are calculated stepwise using (A.1), again using the

linear perturbation velocities.




By this procedure the first order approximation of the boundaries Al
and B] of the dependence domains for points A and B on the first and
last characteristic surface of a two-dimensional expansion, is deter-
mined. Its shape is given in Fig. A2.a’b’c.

This shows the essential feature that the first order domain for B is
enlarged with respect to the jzeroth order domain. Its boundary P]
coincides partly with the expansion's originating line.

The various bicharacteristics, constructing S -S' (Fig. A2e), meet the

originating line under various angles V between V. and v, (as illustrated

in Fig. A3). Here v, and v, are the angles of thelfirst and last
characteristic of the expansion fan. Therefore Fl essentially traverses
through the originating line. This is shown in Fig. A4, where the x-
coordinate is stretched at the line, and the location of the points

where the bicharacteristics meet the "expansion-zone" is coupled to Vv

according:

This means that in the stretched "expansion zone" a linearly varying
normal velocity v is put in, and that the various bicharacteristics

meet the "expansion zone" at a correct intermediate stream angle.

From Fig. A4 it is seen that F] is tangent to the trailing edge of the
expansion zone and traverses through the zone to S and S'. There it
leaves the expansion and runs into the flow field ahead of the expansion.
In Fig. A5 the first order approximation of the influence domains for
points at the origin of the expansion is given. Two essentially different
cases may be distinguished.

In the first case the origin P" of the influence cone is situated imme-
diately behind the origin of the expansion.Then the whole domain is
restricted to the space behind the expansion and enveloping the
characteristic surface isithe Mach cone from the origin, tangent to the
last characteristic surface of the expansion fan.

In the second case the origin P' of the influence cone is situated

immediately in front of the origin of the expansion. Then the character-



istic cone is tangent to the first characteristic surface of the ex-
pansion fan and traverses through the expansion into the space behind

the fan.

Here it is tangent to the influence cone from P'".




PR =B R T T T —

domain for the point P.

influence

Fig. 1. Dependence and
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Fig. 2. The approximation of the linear Mach cone
Fo by the plane Tw
a) in spatial representation

b) in planar view
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Compression side.
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Expansion side.



Fig. 8. The dependence "hyperbolas" Fo and Fw in comparison
to the first order envelope FI for a two~dimensional expansion

(for a point at y=8 on the last characteristic surface).
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Fig. 9. The boundaries [; for the first order dependence domains for points
on the last bicharacteristic of the trailing edge expansion at various dis-

tances from the wing (x-coordinate stretched).
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symmetry plane of the trape¥oidal leading edge wing (w=/45°, M=2,

a=l°).
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Fig. Al.

The coupling of the angles » and ¥ to the normal n
on the characteristic surface at the point P.
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Fig. A2. The first order dependence domains in an expanding
flow (for points A and B in the plane y=1).
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