
 
 

Delft University of Technology

A survey on the evolution of stream processing systems

Fragkoulis, Marios; Carbone, Paris; Kalavri, Vasiliki; Katsifodimos, Asterios

DOI
10.1007/s00778-023-00819-8
Publication date
2023
Document Version
Final published version
Published in
VLDB Journal

Citation (APA)
Fragkoulis, M., Carbone, P., Kalavri, V., & Katsifodimos, A. (2023). A survey on the evolution of stream
processing systems. VLDB Journal, 33 (2024)(2), 507-541. https://doi.org/10.1007/s00778-023-00819-8

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s00778-023-00819-8
https://doi.org/10.1007/s00778-023-00819-8


The VLDB Journal (2024) 33:507–541
https://doi.org/10.1007/s00778-023-00819-8

REGULAR PAPER

A survey on the evolution of stream processing systems

Marios Fragkoulis1 · Paris Carbone3,4 · Vasiliki Kalavri5 · Asterios Katsifodimos2

Received: 10 August 2022 / Revised: 1 September 2023 / Accepted: 11 September 2023 / Published online: 22 November 2023
© The Author(s) 2023

Abstract
Stream processing has been an active research field for more than 20 years, but it is now witnessing its prime time due
to recent successful efforts by the research community and numerous worldwide open-source communities. This survey
provides a comprehensive overview of fundamental aspects of stream processing systems and their evolution in the functional
areas of out-of-order data management, state management, fault tolerance, high availability, load management, elasticity, and
reconfiguration. We review noteworthy past research findings, outline the similarities and differences between the first (’00–
’10) and second (’11–’23) generation of stream processing systems, and discuss future trends and open problems.

Keywords Stream processing · Fault-tolerance · Streaming analytics · Cloud applications

1 Introduction

Applications of stream processing technology have gone
through a resurgence, penetrating multiple and very diverse
industries. Nowadays, virtually all Cloud vendors offer first-
class support for deploying managed stream processing
pipelines, while streaming systems are used in a variety
of use-cases that go beyond the classic streaming analytics
(windows, aggregates, joins, etc.). Some examples include
dynamic car-trip pricing, credit card fraud detection, predic-
tive analytics, monitoring, and real-time traffic control. At
the moment of writing, we are witnessing a trend towards
using stream processors to build more general event-driven
architectures [96], large-scale continuous ETL and analytics,
and microservices [91].

B Asterios Katsifodimos
a.katsifodimos@tudelft.nl

Marios Fragkoulis
marios.fragkoulis@deliveryhero.com

Paris Carbone
parisc@kth.se ; paris.carbone@ri.se

Vasiliki Kalavri
vkalavri@bu.edu

1 Delivery Hero Research, Berlin, Germany

2 Delft University of Technology, Delft, The Netherlands

3 KTH Royal Institute of Technology, Stockholm, Sweden

4 RISE, Stockholm, Sweden

5 Boston University, Boston, USA

During the last 20years, streaming technologyhas evolved
significantly, under the influence of database and distributed
systems. The notion of streaming querieswas first introduced
in 1992 by the Tapestry system [148], and was followed
by lots of research on stream processing in the early 00s.
Fundamental concepts and ideas originated in the database
community andwere implemented in prototype systems such
asTelegraphCQ [48], Stanford’s STREAM,NiagaraCQ [51],
Auroral/Borealis [12], and Gigascope [54]. Although these
prototypes roughly agreed on the data model, they differed
considerably on querying semantics [21, 33]. This research
period also introduced various systems challenges, such as
sliding-window aggregation [22, 107], fault-tolerance and
high availability [30, 137], as well as load balancing and
shedding [144]. This first wave of research was highly influ-
ential on commercial stream processing systems that were
developed in the following years (roughly during 2004 –
2010), such as IBM System S, Esper, Oracle CQL/CEP
and TIBCO. These systems focused—for the most part—
on streaming window queries and complex event processing
(CEP). This era of systems was mainly characterized by
scale-up architectures, processing ordered event streams.

The second generation of streaming systems was a result
of research that started roughly after the introduction of
MapReduce [61] and the popularization of Cloud Com-
puting. The focus shifted towards not only distributed,
data-parallel processing engines and shared-nothing archi-
tectures on commodity hardware, but also on the design of
systems that can support the mainstream MapReduce-like

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00819-8&domain=pdf
http://orcid.org/0000-0002-6717-2945


508 M. Fragkoulis et al.

Fig. 1 An overview of the evolution of stream processing systems and respective domains of focus

user-defined function (UDF)-based programming models.
As a result, systems such as Millwheel [14], Storm [3], Spark
Streaming [164], and Apache Flink [37] first exposed prim-
itives for expressing streaming computations as hard-coded
dataflow graphs and transparently handled data-parallel exe-
cution on distributed clusters. The Google Dataflow model
[16] re-introduced older ideas such as out-of-order pro-
cessing [108] and punctuations [155], proposing a unified
parallel processing model for streaming and batch computa-
tions. Stream processors of this era are converging towards
fault-tolerant, scale-out processing of massive out-of-order
streams.

Figure 1 presents a schematic categorization of influen-
tial streaming systems into three generations and highlights
each era’s domains of focus. Although the foundations of
stream processing have remained largely unchanged over
the years, stream processing systems have transformed into
sophisticated and scalable engines, producing correct results
in the presence of failures. Early systems and languages
were designed as extensions of relational execution engines,
with the addition of windows. Modern streaming systems
have evolved in the way they reason about completeness and
ordering (e.g., out-of-order computation) and havewitnessed
architectural paradigm shifts that constituted the founda-
tions of processing guarantees, reconfiguration, and state
management. At the moment of writing, we observe new
variants of streaming systems focusing on integrating data
streaming with either cloud services and serverless apps or
edge computing and specialized hardware. The needs of IoT
and edge computing have attracted the creation of more
hardware-aware [167] and less resource-heavy systems [72]
for event-based pipelines.At the same time,we observe a ten-
dency towards full SQL support, both as an add-on capability
in older systems [159], but also as a foundation for new cloud
streaming database systems [4, 6, 8]. In the space of event-
based cloud and serverless systems, we currently witness

an integration of the actor and data-streaming paradigms,
combining the flexibility of actors with the guarantees and
performance of streaming engines [2, 13, 34, 140].

The evolution of stream processing systems has con-
cerned the research community before [39, 59, 78]. This
survey extends prior work by providing a systematic and
comprehensive investigation of the evolution of fundamen-
tal functional areas rather than presenting the state of the field
at a particular point in time. To the best of our knowledge,
this is also the first attempt at understanding the underlying
reasons why certain early techniques and designs prevailed
in modern systems while others were abandoned. Further, by
examining how ideas survived, evolved, and were often re-
invented, we reconcile the terminology used by the different
generations of streaming systems.

1.1 Contributions

With this survey paper, wemake the following contributions:

– We summarize existing approaches to streaming systems
design and categorize early and modern stream proces-
sors in terms of underlying assumptions andmechanisms.

– We compare early and modern stream processing sys-
tems with regard to out-of-order data management, state
management, fault-tolerance, high availability, loadman-
agement, elasticity, and reconfiguration.

– We highlight foundational works that have influenced
today’s streaming systems design.

– We establish a common nomenclature for fundamen-
tal streaming concepts, often described by inconsistent
terms in different systems and communities.

– We provide a refined definition of availability for stream
processing systems.

123



A survey on the evolution of stream… 509

1.2 Related surveys and research collections

Weview the following surveys as complementary to ours and
recommend them to readers interested in diving deeper into
a particular aspect of stream processing or those who seek
a comparison between streaming technology and advances
from adjacent research communities.

Cugola and Margara [55] provide a view of stream pro-
cessing with regard to related technologies, such as active
databases and complex event processing systems, and dis-
cuss their relationship with data-streaming systems. Further,
they provide a categorization of streaming languages and
streaming-operator semantics. The language aspect is fur-
ther covered in another recent survey [82], which focuses on
the languages developed to address the challenges in very
large data streams. It characterizes streaming languages in
terms of data model, execution model, domain, and intended
user audience. Röger and Mayer [134] present an overview
of recent work on parallelization and elasticity approaches
of streaming systems. They define a general system model,
which they use to introduce operator-parallelization strate-
gies and parallelism-adaptation methods. Their analysis
also aims at comparing elasticity approaches originating in
different research communities. Hirzel et al. [83] present
an extensive list of logical and physical optimizations
for streaming query plans. They present a categorization
of streaming optimizations in terms of their assumptions,
semantics, applicability scenarios, and trade-offs. They also
present experimental evidence to reason about profitability
and guide system implementers in selecting appropriate opti-
mizations. To, Soto, and Markl [150] survey the concept of
state and its applications in big data management systems,
also covering aspects of streaming state. Finally, Dayarathna
and Perera [58] present a survey of the advances of the
last decade with a focus on system architectures, use-cases,
and hot research topics. They summarize recent systems in
terms of their features, such as what types of operations they
support, their fault-tolerance capabilities, their use of pro-
gramming languages, and their best reported performance.

We refer the reader to Garofalakis et al. [69] for a com-
prehensive coverage of related topics, such as theoretical
foundations of streaming data management and streaming
algorithms. That collection focuses on major contributions
of the first generation of streaming systems. It reviews basic
algorithms and synopses, fundamental results in stream data
mining, streaming languages and operator semantics, and a
set of representative applications from different domains.

1.3 Survey organization

We begin by presenting the essential elements of the domain
in Sect. 2. Then we elaborate on each of the important
functionalities offered by stream processing systems: out-of-

order datamanagement (Sect. 3), statemanagement (Sect. 4),
fault tolerance and high availability (Sect. 5), and load man-
agement, elasticity, and reconfiguration (Sect. 6). Each one
of these sections contains a first-generation vs. second-
generation discussion that compares early to contemporary
approaches, and a summary of open problems. In Sect. 7, we
summarize design considerations for stream systems along
each of these dimensions, we highlight our major findings,
and we discuss future prospects.

Summarizing tables Roughly in every section, this survey
provides a summarizing table, containing a set of systems,
as well as their characteristics or features discussed by the
respective section. Note that the set of systems that are con-
sidered and compared against each other in each section may
differ. This difference is because a system (or paper) may not
support a certain characteristic. For instance, Apache Storm
is not part of Table 1, as it does not consider timestamps or
order of event arrivals.

2 Preliminaries

In this section, we provide necessary background and explain
fundamental stream processing concepts on which the rest
of this survey relies. We discuss the key requirements of a
streaming system, introduce the basic streaming datamodels,
and give a high-level overview of the architecture of early and
modern streaming systems.

2.1 Requirements of streaming systems

Adata stream is a data set that is produced incrementally over
time, rather than being available in full before its processing
begins [69]. Data streams are real-time data that might be
unbounded. Therefore, stream processing systems can nei-
ther store the entire stream in an accessible way nor can they
control the data arrival rate or order. In contrast to traditional
data-management infrastructure, streaming systems have to
process elements on-the-fly using limited memory. Stream
elements arrive continuously and bear at least one times-
tamp, which can be assigned at the source or on arrival.

A streaming query ingests events and produces results in
a continuous manner, using a single pass or a limited number
of passes over the data. Streaming query processing is chal-
lenging for multiple reasons. First, continuously producing
updated results might require storing historical information
about the stream seen so far in a compact representation
that can be queried and updated efficiently. Such summary
representations are known as sketches or synopses. Second,
in order to handle high input rates, certain queries might
not afford to continuously update indexes and materialized
views. Third, stream processors cannot rely on the assump-

123



510 M. Fragkoulis et al.

tion that state can be reconstructed from associated inputs.
In contrast to batch queries that are short-lived and process
fixed-size inputs, streaming queries are long-running. As a
result, reconstructing their intermediate state may require
re-processing the entire stream history. Instead, to achieve
acceptable performance, streaming operators need to lever-
age incremental computation.

The aforementioned characteristics of data streams and
continuous queries provide a set of unique requirements for
streaming systems, other than the evident performance ones
of low latency and high throughput. Given the lack of control
over the input order, a streaming systemneeds to produce cor-
rect results when receiving out-of-order and delayed data (cf.
Sect. 3). It needs to implement mechanisms that estimate a
stream’s progress and reason about result completeness. Fur-
ther, the long-running nature of streaming queries demands
that streaming systemsmanage accumulated state (cf. Sect. 4)
and guard it against failures (cf. Sect. 5). Finally, having no
control over the data input rate requires stream processors
to be adaptive so that they can handle workload variations
without sacrificing performance (cf. Sect. 6).

2.2 Streaming datamodels

There exist many theoretical streaming data models, mainly
serving the purpose of studying the space requirements
and computational complexity of streaming algorithms and
understanding which streaming computations are practical.
For instance, a stream can be modeled as a dynamic one-
dimensional vector [69]. Themodel defines how this dynamic
vector is updated when a new element of the stream becomes
available. While theoretical streaming data models are use-
ful for algorithm design, early stream processing systems
instead adopted extensions of the relational data model.
Recent streaming dataflow systems, especially those influ-
enced by theMapReduce philosophy, place the responsibility
of data stream modeling on the application developer.

2.2.1 Relational streamingmodel

In the relational streaming model, as implemented by first-
generation systems [11, 12, 20, 31, 48, 54], a stream is
interpreted as describing a changing relation over a com-
mon schema. Notably, these systems assumed that stream
elements bear timestamps or sequence numbers, allowing
for defining windows over streams. Streams themselves are
either produced by external sources and update relation tables
or are produced by continuous queries and update material-
ized views. An operator outputs event streams that describe
the changing view computed over the input stream accord-
ing to the relational semantics of the operator. Thus, both
the semantics and the relation schema are imposed by the
system.

2.2.2 Dataflow streamingmodel

The dataflow streaming model is represented as a dataflow
graph, that is, a directed graphG= (E, V), where vertices inV
represent operators and edges in E denote data streams. The
dataflow streamingmodel, as implemented by systems of the
second generation [16, 37, 164], does not impose any strict
schema or semantics on the input stream elements, other than
the presence of a timestamp. While some systems, such as
Naiad [120], require that all stream elements bear a logical
timestamp, other systems, such as Flink [37] and Dataflow
[16], expect the declaration of a time domain. Applications
can operate in one of three modes: (i) event (or application)
time is the time when events are generated at the sources, (ii)
ingestion time is the time when events arrive at the system,
and (iii) processing time is the time when events are pro-
cessed in the streaming system. Modern dataflow streaming
systems can ingest any type of input stream, irrespectively of
whether its elements represent additions, deletions, replace-
ments or deltas. The application developer is responsible for
imposing the semantics and writing the operator logic to
update state accordingly and produce correct results. Desig-
nating keys andvalues is also usually not required at ingestion
time, however, keysmust be definedwhen using certain data-
parallel operators.

3 Managing event order and timeliness

Event order is typically enforced using an event timestamp.
An event timestamp is contained in each record and denotes
the event time when the record’s data were generated at the
source. The event timestamps dictate the order of data in the
stream and they are considered part of the stream’s semantics
[113]. Depending on the computations to perform, a stream-
ing system may have to process stream records in a certain
order to provide semantically correct results [142]. However,
in the general case, a stream’s records arrive out of order [104,
155] for reasons explained in Sect. 3.1.
Out-of-order data records [142, 153] arrive at a streaming
system from an input source after records with later event
time timestamps.

In the rest of the paper, we use the terms disorder [113]
and out-of-order [14, 108] interchangeably to refer to the dis-
turbance of order in a stream’s data records. Reasoning about
order andmanaging disorder are fundamental considerations
for the operation of streaming systems.

We highlight the causes of disorder in Sect. 3.1, we clar-
ify the relationship between disorder in a stream’s records
and processing progress in Sect. 3.2, and we outline the two
key system architectures for managing out-of-order data in
Sect. 3.3. Then, we describe the consequences of disorder in
Sect. 3.4 and present mechanisms for managing disorder in

123



A survey on the evolution of stream… 511

Sect. 3.5. Finally, in Sect. 3.6, we discuss the differences of
out-of-order data management in early and modern systems
and we present open problems in Sect. 3.7.

3.1 Causes of disorder

Disorder in data streamsmay be due to stochastic factors that
are external to a streaming system or to the operations taking
place inside the system.

Themost common external factor that introduces disorder
to streams is the network [99, 142]. Depending on the net-
work’s reliability, bandwidth, and load, the routing of some
stream records can take longer to complete compared to the
routing of others, leading to a different arrival order in terms
of event time in a streaming system. Even if the order of
records in an individual stream is preserved, ingestion from
multiple sources, such as sensors, even with synchronized
clocks, typically results in a disordered collection of records.
Notably, if the sources do not feature synchronized clocks,
which is often the case, the generated timestamps of records
may not correspond to the real time of production. Con-
sequently, if the timestamps used to specify order do not
represent event time, this cause of disorder is impossible to
fix.

External factors aside, specific operations on streams
break record order. First, join processing takes two streams
and produces a shuffled combination of the two, since a par-
allel join operator repartitions the data according to the join
attribute [157] and outputs join results by order of match
[77, 90]. Second, windowing based on an attribute differ-
ent to the ordering attribute reorders the stream [54]. Third,
data prioritization [130, 156] by using an attribute different
to the ordering one also changes the stream’s order. Finally,
the union operation on two unsynchronized streams yields a
stream with all records of the two input streams interleaving
each other in random order [12].

3.2 Disorder and processing progress

In order to manage disorder, streaming systems need to
detect and measure processing progress. Progress regards
howmuch the processing of a stream’s records has advanced
over time. Processing progress can be defined and quanti-
fied with the aid of an attribute A of a stream’s records that
orders the stream. The processing of the stream progresses
when the smallest value of A among the unprocessed records
increases over time [108]. A then is a progressing attribute
and the smallest (unprocessed) value ofA per se, is a measure
of progress because it denotes how far in the processing of
records the system has reached since the beginning. Process-
ing progress can be quantified using more than one attribute
of a stream’s records.

A streaming system’s capacity to trackprocessingprogress
enables the system to decide a lateness bound in order to
quantify the level of disorder that a streaming system can
accept while it makes processing progress. To elaborate, late-
ness bound is a measure of how late, with respect to the rest
of the stream, data can be to be accepted for processing by a
streaming system. It typically corresponds to a time measure
or count of stream records. For example, a lateness bound
of 1 s makes a streaming system’s window operator to com-
pute the window’s function 1s later than the window’s time
span. The time extension allows the inclusion of out-of-order
records to the window computation.

3.3 System architectures for managing disorder

Twomain architectural archetypes have influenced the design
of streaming systems with respect to managing disorder: (i)
in-order processing systems [12, 21, 54, 142], and (ii) out-
of-order processing systems [14, 37, 108, 120].

In-order processing systems manage disorder using one
of three main strategies. First, they can assume input streams
are ordered and discard late data [12, 21, 54]. Second, they
can buffer and reorder input streams up to a lateness bound
to enforce stream order [12, 21, 142]. Then, they forward
the reordered records for processing and clear the corre-
sponding buffers. Finally, they can admit late data without
reordering up to a lateness bound [12]. Although the last
strategy supports disordered input, it entails that downstream
operators should also quantify and enforce a lateness bound
independently. In order to do so effectively, they need to
track processing progress, which is hard to achieve without
a system-wide progress tracking mechanism. Therefore, in-
order systems commonly enforce and preserve stream order
and use it to deduce processing progress.

In out-of-order processing systems, operators or a global
authority produce progress information using any of the
mechanisms detailed in Sect. 3.5.1, and propagate it to the
dataflow graph. The information typically reflects the oldest
unprocessed record in the system and establishes a lateness
bound for admitting and/or processing out-of-order records.
In contrast to in-order systems, records are processedwithout
delay in their arrival order, as long as they do not exceed the
lateness bound. Even when in-order systems allow disorder,
they apply it on an operator basis, which is inefficient and
uncertain without a system-wide progress-tracking mecha-
nism.

3.4 Effects of disorder

In unbounded data processing, disorder can impede progress
[108] or lead to wrong results if ignored [142].

Disorder affects processing progress when the opera-
tors that comprise the topology of the computation require

123



512 M. Fragkoulis et al.

ordered input.Various implementations of join andaggregate
rely on ordered input to produce correct results [12, 142].
When operators in in-order systems receive out-of-order
records, they typically reorder them prior to including them
in the window they belong. Reordering, however, imposes
processing overhead, memory space overhead, and latency.
Out-of-order systems, on the other hand, track progress and
process data in whatever order they arrive, up to the lateness
bound, and remove processing state related to data earlier
than the lateness bound.As a sidenote, order-insensitive oper-
ators [12, 108, 142], such as apply, project, select, dupelim,
and union, are agnostic to disorder in a stream and produce
correct results even when presented with disordered input.

Ignoring out-of-order data can lead to incorrect results in
many use cases, since the output is computed on an incom-
plete subset of the input data. Thus, a streaming system needs
to be capable of processing out-of-order data and incorporate
their effect to the computation. Embracing data disorder is
important for unblocking the processing of blocking opera-
tors and purging corresponding computation state. We next
discuss how it can be achieved with disorder management
mechanisms.

3.5 Mechanisms for managing disorder

In this section, we elaborate on influential mechanisms for
managing disorder in unbounded data, namely slack [12],
heartbeats [142], low-watermarks [108], pointstamps [120],
and triggers [16]. These mechanisms quantify a lateness
bound using a metric, such as time, and are leveraged by
streaming systems to track processing progress. If records
arrive after the lateness bound expires, triggers can be used
to update computation results in revision processing [11].

We also discuss punctuations [155], a generic mechanism
for communicating information across the dataflow graph,
that has been heavily used as a vehicle in managing disor-
der. Punctuations are metadata annotations embedded in data
streams. A punctuation is itself a stream record, which con-
sists of a set of patterns each identifying an attribute of a
stream data record.

3.5.1 Progress tracking mechanisms

We detail and depict slack, heartbeats, low-watermark, and
pointstamps. Figure2 showcases the differences between
slack, heartbeats, and low-watermarks. The figure depicts a
simple aggregation operator that counts records in 4-second
event-time tumbling windows starting at t=1. The opera-
tor awaits for some indication that event time has advanced
past the end timestamp of a window, so that it computes
and outputs an aggregate per window. The indication varies
according to the progress-tracking mechanism. The input to
this operator are seven records containing only a timestamp

from t=1 to t=7. The timestamp signifies the event time in
seconds that the record was produced in the input source.
Each record contains a different timestamp and all records
are dispatched from a source in ascending order of times-
tamp. Due to network latency, the records may arrive to the
streaming system out of order.

3.5.1.1 Slack is a simple mechanism that involves waiting
for out-of-order data for a fixed amount of a certain metric.
Slack originally denoted the number of records intervening
between the actual occurrence of an out-of-order record and
the position it would have in the input stream if it arrived on
time. However, it can also be quantified in terms of elapsed
time. Essentially, slack marks a fixed grace period for late
records.

Figure 2a presents the slack mechanism. In order to
accommodate out-of-order records, the operator admits out-
of-order records up to slack=1. Thus, the operator, having
admitted records with t=1 and t=2 (not depicted in the fig-
ure), will receive the record with t=4. The timestamp of the
record coincides with the maximum timestamp of the first
window for interval [0, 4). Normally, this record would cause
the operator to close the window and compute and output the
aggregate, but because of the slack value, the operator will
wait to receive one more record. The next record with t=3
belongs to the first window and is included there. At this
point, slack also moves forward and this event finally trig-
gers the window computation, which outputs C=3 for t=[1,
2, 3]. In contrast, the operator will not accept t=5 at the tail
of the input, because it arrives two records after its natural
order and is not covered by the slack value.

3.5.1.2 A heartbeat is an alternative to slack that consists of
an external signal carrying progress information about a data
stream. It contains a timestamp indicating that all succeeding
stream records will have a timestamp larger than the heart-
beat’s timestamp. Heartbeats can either be generated by an
input source or deduced by the system by observing environ-
ment parameters, such as network latency bound, application
clock skewbetween input sources, and out-of-order data gen-
eration [142].

Figure 2b depicts the heartbeatmechanism.An inputman-
ager buffers and orders the incoming records by timestamp.
The number of records buffered, two in this example (t = 5,
t = 6), is of no importance. The source periodically sends a
heartbeat to the input manager, i.e. a signal with a timestamp.
Then, the inputmanager dispatches to the operator all records
with timestamp less or equal to the timestamp of the heartbeat
in ascending order. Although heartbeats are external to the
input stream, in the Figure we position heartbeats (h = 2, h =
4) alongside input records just to show the order of events. For
instance, when the heartbeat h = 2, which carries a timestamp
t = 2, arrives in the input manager (not shown in the figure),
the input manager dispatches the records with timestamp t =

123



A survey on the evolution of stream… 513

Fig. 2 Mechanisms for managing disorder

1 and t = 2 to the operator. The input manager then receives
records with t = 4, t = 6, and t = 5 in this order and puts them
in the right order. When the heartbeat h = 4, which carries
a timestamp t = 4, arrives, the input manager dispatches the
record with timestamp t = 4 to the operator. This record trig-
gers the computation of the first window for interval [0, 4).
The operator outputs C = 2 counting two records with t = [1,
2] not depicted in the figure. The input manager ignores the
incoming record with timestamp t = 3, as it is older than the
latest heartbeat with timestamp t = 4.

3.5.1.3 The low-watermark for an attribute A of a stream is
the lowest value of A within a certain subset of the stream.
Thus, future records will typically bear a higher value than
the current low-watermark for the same attribute. Often, A is
a record’s event time timestamp. The mechanism is used by
a streaming system to track processing progress via the low-
watermark for A, to admit out-of-order data whose attribute
A’s value is not smaller than the low-watermark. Further, it
can be used to remove state that is maintained for A, such
as the corresponding hash table entries of a streaming join
computation. In addition, watermarks have also been lever-
aged to accurately estimate stream progress for unblocking

windowed computations that lead to throughput and latency
performance improvements via optimized scheduling [63].

Figure 2c presents the low-watermark mechanism, which
signifies the oldest pending work in the system. Here, punc-
tuations carrying the low-watermark timestamp decide when
windows will be closed and computed. After receiving two
recordswith t = 1 and t = 2, the corresponding low-watermark
for t = 2 (which is propagated downstream), and record t =
3, the operator receives record t = 5. Since this record car-
ries an event time timestamp greater or equal to 4, which is
the end timestamp of the first window, it could be the one
to cause the window to fire or close. However, this approach
would not account for out-of-order data. Instead, the window
closes when the operator receives the low-watermark with t
= 4. At this point, the operator computes C = 3 for t = [1,
2, 3] and assigns records with t = [5, 6] to the second win-
dow with interval [4, 8). The operator will not admit record
t = 4 because it is not greater (more recent) than the current
low-watermark value t = 4.

3.5.1.4Comparisonamongheartbeats, slack, low-watermark,
and punctuations. Heartbeats and slack are both external to
a data stream. Heartbeats are signals communicated from an
input source to a streaming system’s ingestion point. Differ-
ently from heartbeats, which are an internal mechanism of
a streaming system hidden from users, slack is part of the
query specification provided by users [12].

Heartbeats and low-watermarks are similar in terms of
progress-tracking logic. However, one important difference
sets them apart. The low-watermark generalizes the concept
of the oldest value, which signifies the current progress point,
to any progressing attribute of a stream record, not just times-
tamps.

In contrast to heartbeats and slack, punctuations provide
a channel for communicating progress information such as
a record attribute’s low-watermark produced by an operator
[108], event time skew [142], or slack [12]. Thus, punctu-
ations can convey which data no longer appear in an input
stream; for instance, the data records with smaller times-
tamps than a specific value. Punctuations are useful in other
functional areas of a streaming system as well, such as state
management, monitoring, and flow control.

3.5.1.5 Pointstamps, like punctuations, are embedded in data
streams, but a pointstamp is attached to each stream data
record as opposed to a punctuation, which forms a separate
record. A pointstamp, is a pair of timestamp and location that
positions data records on a vertex or edge of the dataflow
graph at a specific point in time. An unprocessed record p
at location l with timestamp t could result in another unpro-
cessed record p′ at location l ′ with timestamp t ′ when p
can arrive at location l ′ before or at timestamp t ′. An unpro-
cessed record p at location l with timestamp t is in the frontier
of processing progress when no other unprocessed records

123



514 M. Fragkoulis et al.

Fig. 3 High-level workflow of
pointstamps and frontier

could result in p. Thus, when the aforementioned record p
is processed, the frontier moves on. The system enforces
that future records will bear a greater timestamp than the
records that generated them. This modeling of processing
progress traces the course of data records on the dataflow
graph with timestamps and tracks the dependencies between
unprocessed events in order to compute the current frontier.
Under this light, the function of a frontier is similar to a low-
watermark.

The example shown in Fig. 3 showcases how pointstamps
and frontiers work. The example in Fig. 3a includes three
active pointstamps. Poinstamps are active when they corre-
spond to one or more unprocessed events. Pointstamp (1,
OP1) is in the frontier of processing progress, because there
are no active pointstamps that could result in pointstamp (1,
OP1). The number of pointstamps that can result in another
pointstamp are specified by the precursor count. Conse-
quently, the precursor count of pointstamp (1, OP1) is zero.

In the frontier, notifications for unprocessed events can be
delivered. Accordingly, unprocessed events e1 and e2 can be
delivered toOP2 andOP3 respectively. The occurrence count
is 2 because both events e1 and e2 bear the same pointstamp.
Looking at this snapshot of the dataflow graph, it is easy to
see that pointstamp (1, OP1) could result in pointstamps (2,
OP2) and (2, OP3). Therefore, the precursor count of each
of the latter two pointstamps is 1.

A bit later, as Fig. 3b depicts, events e1 and e2 are deliv-
ered toOP2 andOP3, respectively. Their processing results in
the generation of new events e5 and e6, which bear the same
pointstamp as unprocessed events e3 and e4, respectively.
Since there are no more unprocessed events with timestamp
1, and the precursor counts of pointstamps (2, OP2) and (2,
OP3) are 0, the frontier moves on to these active pointstamps.
Consequently, all four event notifications can be delivered.
The obsolete pointstamp (1, OP1) is removed from its loca-

tion, since it corresponds to no unprocessed events. The same
will happen to pointstamps (2, OP2) and (2, OP3), following
the delivery of events e3, e4, e5, and e6. Although this exam-
ple is made simple for demonstration purposes, the progress
tracking mechanism has the power to track the progress of
arbitrary iterative and nested computations.

3.5.2 Tracking progress of out-of-order data in cyclic
queries

Cyclic queries require special treatment for trackingprogress.
A cyclic query always contains a binary operator, such as a
join or a union. The output produced by the binary operator
meets a loop further in the dataflow graph that connects back
to one of the binary operator’s input channels. In a progress
model that uses punctuations for instance, the binary opera-
tor forwards a punctuation only when it appears in both of its
input channels, otherwise it blocks waiting for both to arrive.
Since one of the binary operator’s input channels depends on
its own output channel, a stall is inevitable.

Chandramouli et al. [46] propose an operator for detecting
progress in cyclic streaming queries on the fly. The opera-
tor introduces a speculative punctuation in the loop that is
derived from the passing events’ timestamps.While the punc-
tuation flows in the loop, the operator observes the stream’s
records to validate its guess. When the speculative punctu-
ation re-enters the operator and is validated, it becomes a
regular punctuation that carries progress information down-
stream. Then, a new speculative punctuation is generated and
is fed to the loop. By combining a dedicated operator, spec-
ulative output, and punctuations, this work is able to track
progress and tolerate disorder in cyclic streaming queries.
The approach entails that a loop consists of operators that
a) are able to make correct speculations, b) make forward
progress, and c) will not block due to a punctuation. Oper-

123



A survey on the evolution of stream… 515

ators in the loop are able to revise the original speculative
punctuation. The approach can be applied in systems that
provide speculative output for strongly convergent queries,
which provide finite results for finite inputswith finite deriva-
tions for each result.

In Naiad [120, 121], the general progress-tracking model
features logical, i.e. processing-time,multidimensional times-
tamps attached to events. Each timestamp consists of the
input batch towhich an event belongs and an iteration counter
for each loop the event traverses. As in Chandramouli et
al. [46], Naiad supports cyclic queries by utilizing a special
operator. However, the operator is used to increment the iter-
ation counter of events entering a loop. To ensure progress,
the system allows event handlers to dispatch only messages
with larger timestamps than the timestamp of events being
currently processed. This restriction imposes a partial order
over all pending events. The order is used to compute the
earliest logical time of events’ processing completion in
order to deliver notifications for producing output. Naiad’s
progress-tracking mechanism enables a) scalability by pro-
viding efficient delivery of notifications to dataflow nodes
and b) incremental computation that avoids redundant work.

3.5.3 Revision processing

Revision processing is the update of computations in face of
late, updated, or retracted data, which require the modifica-
tion of previous outputs in order to provide correct results.
Revision processing made its debut in Borealis [11]. From
there on, it has been combined with in-order processing
architectures [45, 122], as well as out-of-order processing
architectures [16, 17, 31, 99]. In some approaches, revision
processingworks by storing incoming data and revising com-
putations in face of late, updated, or retracted data [16, 17,
31]. Other approaches replay affected data, revise compu-
tations, and propagate the revision messages to update all
affected results up to the present [11, 122, 135]. Finally, a
third line of approachesmaintainmultiplepartitions, i.e. divi-
sions of the data, that capture events with different levels of
lateness and consolidate partial results [45, 99].

Notably, revision processing introduces a set of chal-
lenges, namely operator support, performance overhead, and
limitations regarding the recency of data that can be revised.
Revision processing can add non-trivial processing overhead
to a streaming system, especially for downstream stateful
operators that will need to recompute entire windows. The
overhead can increase sharply with the increase of revision
data. Finally, since it is impossible to hold all original input
data eternally to be able to revise them, revision processing
is restricted to a subset containing the most recent data.

3.5.3.1 Store and revise. Microsoft’s CEDR [31], StreamIn-
sight [17], and Google’s Dataflow [16] buffer or store stream

data and process late events, updates, and deletions incre-
mentally by revising the captured values and updating the
computations.

The dataflow model [16] divides the concerns for out-of-
order data into three dimensions: the event time when late
data are processed, the processing time when corresponding
results arematerialized, and how later updates relate to earlier
results. The mechanism that decides the emission of updated
results and how the refinement will happen is called a trigger.
Triggers are signals that cause a computation to be repeated
or updated when a set of specified rules fire.

One important rule regards the arrival of late input data.
Triggers ensure output correctness by incorporating the
effects of late input into the computation results. Triggers
can be defined based on watermarks, processing time, data
arrival metrics, and combinations of those; they can also
be user-defined. Triggers support three refinement policies,
accumulating where new results complement older ones,
discardingwhere new results overwrite older ones, and accu-
mulating and retracting where new results overwrite older
ones and older results are retracted. Retractions, or compen-
sations, are also supported in StreamInsight [17].

3.5.3.2 Replay and revise. Dynamic revision [11] and specu-
lative processing [122] replay an affected past data subset
when a revision record is received. An optimization of
this scheme relies on two revision processing mechanisms,
upstream processing and downstream processing [135]. Both
are based on a special-purpose operator, called a connec-
tion point, that intervenes between two regular operators and
stores records output by the upstream operator. According
to the upstream revision processing, an operator downstream
from a connection point can ask for a set of records to be
replayed, so that it can calculate revisions based on old
and new results. Alternatively, the operator can ask from
the downstream connection point to retrieve a set of out-
put records related to a received revision record. Under
circumstances, the operator can calculate correct revisions
by incorporating the net effect of the difference between the
original record and its revised one to the old result.

Dynamic revision emits delta revision messages, which
contain the difference of the output between the original and
the revised value. This approach keeps the input message
history at an operator in the connection point of its input
queue. Since keeping all messages is infeasible, there is a
bound in the history of messages kept. Messages that go
further back from this bound cannot be replayed and, thus,
revised. Dynamic revision differentiates between stateless
and stateful operators. A stateless operator will evaluate both
the original (t) and the revised message (t ′), emitting the
delta of their output. For instance, if the operator is a filter,
t is true and t ′ is not, then the operator will emit a deletion
message for t . A stateful operator, on the other hand, has to

123



516 M. Fragkoulis et al.

process many messages in order to emit an output. Thus, an
aggregation operator has to re-process the whole window for
both a revised message and the original message contained
in that window in order to emit revision messages. Dynamic
revision is implemented in Borealis.

Speculative processing, on the other hand, applies state
snapshot recovery if no output has been produced for a
disordered input stream. Otherwise, it retracts all produced
output. In speculative processing, because revision process-
ing is opportunistic, no history bound is set.

3.5.3.3 Partition and consolidate. Order-independent pro-
cessing [99] and impatience sort [45] partially process
independent data partitions in parallel and consolidate partial
results. The order-independent processing approach opens
a new partition when a record is received after its cor-
responding progress indicator. A new query plan instance
processes this partition using standard out-of-order process-
ing techniques. The impatience sort approach features an
online sorting operator, which incrementally orders the input
arriving at each partition, so that it is emitted in order. The
approach uses punctuations to bound the disorder, as opposed
to order-independent processing, which can handle events
arriving arbitrarily late.

In order-independent processing, partitioning is left for the
system to decide, while in impatience sort it is specified by
the user. In order-independent processing, records that are too
old to be considered in their original partition are included
in the partition which has the record with the closest data.
When no new data enter an ad-hoc partition for a long time,
the partition is closed and destroyed by means of a heartbeat.
Ad-hoc partitions are window-based; when an out-of-order
record is received that does not belong to one of the ad-hoc
partitions, a new ad-hoc partition is introduced. An out-of-
order record with a more recent timestamp than the window
of an ad-hoc partition causes that partition to flush results
and close. Order-independent processing is implemented in
Truviso [99].

On the contrary, in impatience sort, users specify reorder
latencies, such as 1ms, 100ms, and 1s, that define the buffer-
ing time for ingesting and sorting out-of-order input records.
According to the specified reorder latencies, the system
creates different partitions of in-order input streams. After
sorting, a union operator merges and synchronizes the out-
put of a partition P with the output of a partition L that
features lower reorder latency than P . Thus, the output will
incorporate partial results provided by L with later updates
that P contains. This way, applications that require fast but
partial results can subscribe to a partition with small reorder
latency. By letting applications choose the desired extent of
reorder latency, this design provides for different trade-offs
between completeness and freshness of results. Impatience
sort is implemented in Microsoft Trill.

3.6 First generation versus second generation

The importance of event order in data stream processing was
obvious since its early days [27], leading to the first wave of
simple intuitive solutions. Early approaches involved buffer-
ing and reordering arriving records using some measure for
adjusting the frequency and lateness of data dispatched to a
streaming system in order [12, 48, 142]. A few years later,
the introduction of out-of-order processing [108] improved
throughput, latency, and scalability for window operations
by keeping track of processing progress without ordering
records. In the meantime, revision processing [11] was
proposed as a strategy for dealing with out-of-order data
reactively. In the years that followed, in-order, out-of-order,
and revision processing were extensively explored, often in
combination with one another [16, 17, 31, 99, 122]. Modern
streaming systems implement a refinement of these origi-
nal concepts. Interestingly, concepts devised several years
ago, like low-watermarks, punctuations, and triggers, which
advance the original revision processing, were popularized
recently by streaming systems such as Millwheel [14] and
the Google Dataflow model [16], Flink [37], and Spark
[23]. Table 1 presents how both first generation and modern
streaming systems implement out-of-order data manage-
ment.

3.7 Open problems

Managing data disorder entails architecture support and flex-
ible mechanisms. There are open problems at both levels.

First, which architecture is better is an open debate.
Although many of the latest streaming systems adopt an out-
of-order architecture, opponents point to the architecture’s
implementation and maintenance complexity. In addition,
revision processing, which is used to reconcile out-of-order
records is daunting at scale because of the challenging state
size. On the other hand, in-order processing is resource-
hungry and loses events if they arrive after the disorder bound.

Second, applications receiving data streams fromdifferent
sources may need to support multiple notions of event time,
one per incoming stream, for instance. However, streaming
systems to date cannot support multiple time domains.

Finally, data streams from different sources may have dis-
parate latency characteristics that render their watermarks
unaligned. Tracking the processing progress of those appli-
cations is challenging for today’s streaming systems.

4 State management

State captures all internal side-effects of a continuous stream
computation. The state includes, for example, active win-
dows, buckets of records, partial or incremental aggregates

123



A survey on the evolution of stream… 517

Table 1 Event order management in streaming systems

System Architecture Progress-tracking

In-order Out-of-order Revision Mechanism Communication Disorder
bound
metric

Revision
approach

Aurora [12, 52] � Slack User config Number
of records

–

STREAMS [142] � Heartbeat Signal to
input man-
ager

Timestamp
(event
time skew,
net-

–

work
latency,
out-of-
order
bound)

Borealis [11] � � History bound System config Number
of records
or time
units

Replay past data,
enter revised val-
ues, issue delta
output

Gigascope [87] � Low-watermark Punctuation Timestamp –

Timestream [129] � Low-watermark Punctuation Timestamp –

Millwheel [14] � Low-watermark Signal to cen-
tral authority

Timestamp –

Naiad [120] � � Pointstamp Part of data
record

Multidimen
sional
timestamp

Incremental
processing of
updated data
via structured
loops

Trill [44] � Low-
watermark

Punctuation Timestamp –

Streamscope [109] � Low-watermark Punctuation Timestamp;
sequence
number

–

Samza [124] � � Low-watermark Punctuation Timestamp Find, roll
back, recom-
pute affected
input win-
dows

Flink [37] � � Low-watermark Punctuation Timestamp Store and
Recom-
pute/Revise

Dataflow [16] � � Low-watermark Signal to cen-
tral authority

Timestamp Discard and
recompute;
accumulate
and revise;
custom

Spark [23] � � Slack User config Number
of seconds

Discard and
recompute;
accumulate
and revise

123



518 M. Fragkoulis et al.

used in an application, as well as possibly some user-defined
variables created and updated during the execution of a
stream pipeline. This section provides an overview of known
approaches, current directions, and discussions of open
problems in the context of state management.

4.1 Managing stream processing state

The area of streamstatemanagement is still an active research
field, incorporating methods on how state should be declared
in a stream application, as well as how it should be scaled
and partitioned. Furthermore, state management considers
state persistence methods for long-running applications, and
defines system guarantees and properties to maintain when-
ever a change in the system occurs, such as failures or
reconfiguration, e.g., changing the degree of parallelism of a
given operator.

State partitioning State needs to be partitioned in order to
parallelize computations across different keys. For instance,
consider the count of orders of a given customer, during a
time window of a month. The state of the customer in this
case is the count of orders. A parallel streaming application
would partition the different customers on multiple workers.

State changes during reconfiguration Streaming applica-
tions have an inherent need to run continuously over long
periods of time. However, during long executions, a lot of
issues may arise. First, the statistics of the input data (e.g.,
distribution of keys) or the input throughput of the incoming
stream may change. The opposite problem, i.e., allocating
more resources than needed, is also problematic because
it leads to excessive resource utilization. Finally, failures
can happen: the probability of servers failing (e.g., disk or
network failures) is very high for an application that pro-
cesses data continuously for days or months. These failures,
require state reconfiguration: typically specific keys, need
to be assigned to different nodes to balance the workload,
avoiding over- or under-utilization of resources. We review
approaches to state reconfiguration in Sect. 6.3.2 and discuss
how state management decisions may affect the design of
reconfiguration mechanisms in Sect. 7.1.

Most of these research issues were introduced in part
within the context of early streaming processing systems,
such as Aurora and Borealis [41]. Specifically, Borealis set
the foundations in formulating many of these problems, such
as the need for embedded state, persistent store access, and
failure recovery protocols. In Table 2, we categorize data
stream processing systems according to their respective state
management approaches. The rest of this section offers an
overview of each of the topics in stream state management
along with past and currently employed approaches.

4.2 Programmability and responsibility

State in a programming model can be either implicitly or
explicitly declared and used. We define state programma-
bility as the ability of a streaming system to allow its users
to declare and manipulate state. For example, state can be
a local variable within a stateful map function, storing a
counter. Programmability in state requires support from the
underlying execution engine, a feature that directly affects the
engine’s complexity. Different system trends have influenced
both how state can be exposed in a data stream programming
model, as well as how it should be scoped and managed. In
this section, we discuss different approaches and their trade-
offs. As shown in Table 2, most systems allow their users to
declare custom, user-defined state. Those that do not, focus
more on providing a high-level SQL interface on top of a
dataflow processor allowing only their internal operators to
define and use state within stateful operations (e.g., joins,
windows, aggregates).

State management responsibility An orthogonal aspect to
programmability is state management responsibility, which
entails the obligation of maintaining state by either the user
or the system. Statemaintenance includes allocatingmemory
or disk space for storing application variables, persisting
changes to disk and recovering state entries from durable
storage if needed upon system recovery. The first generation
of data-parallel stream processing systems, such as Storm
[152] and S4 [123], required user-managed state. In such
systems, stateful processing was either implemented with no
guarantees, making use of custom in-memory data structures
or, often implemented using external key-value stores that
cover certain scalability and persistence needs. For the rest
of the systems available, state management concerns have
been internally handled by the streaming systems themselves
through the use of explicit state APIs or non-programmable,
yet internally managed, state abstractions.

4.2.1 Discussion

In the early days of data stream management when main
memory was scarce, state had a facilitating role, support-
ing the implementation of system operators, such as CQL’s
join, filter, and sort as employed in STREAM [19]. We term
this type of state, defined by the designers of a given system
and used by the internal operators of that system, system-
defined state. A common term used to describe that type
of state was “synopsis”. Typically, users of such systems
were oblivious of the underlying state and its implicit nature
resembled the use of intermediate results in DBMSs. Sys-
tems such as STREAM, as well as Aurora Borealis [41],
attached special synopses to a stream application’s dataflow
graph supporting different operators, such as a window max,

123



A survey on the evolution of stream… 519

Table 2 State management features in streaming systems

System Programmable state State Mgmt responsibility State Mgmt architecture Storage medium
In-memory Out-of-core External Resilient store Ephemeral None

Local Remote

Aurora/Borealis [52] ✗ System � �
STREAM [19] ✗ System � � �
TelegraphCQ [136] ✗ System � �
S4 [123] � User � �
Storm (1.0) [152] � User � �
Spark(1.0) [23] � System � �
Trident [9] � System � � �
SEEP [65] � System � �
Naiad [120] � System � �
TimeStream [129] � System � �
Millwheel [14] � System � �
Flink [36, 37] � System � � �
Kafka-Streams [5] ✗ System � � �
Samza [124] � System � � �
Streamscope [109] � System � � �
S-Store [42, 147] ✗ System � �

a join index or input source buffers for offsets. A noteworthy
feature in STREAM was the capability to re-use synopses
compositionally to define other synopses in an application
internally in the system. Overall, synopses have been one of
the first forms of state in early stream processing systems,
primarily for stream processing over shared-memory. Sev-
eral of the issues regarding state, including fault tolerance
and load balancing, were already considered back then, for
example in Borealis. However, the lack of user-defined state
limited the expressive power of that generation of systems
to a subset of relational operations. Furthermore, the use of
over-specialized data structures was somewhat oblivious to
the needs of reconfiguration, which requires state to be flex-
ible and easy to partition.

In the post-MapReduce era, there was a primary focus
in compute scalability with systems like Storm [3] allow-
ing the composition of distributed pipelines of tasks. For
application flexibility and simplicity, many of these systems
did not offer state management, leaving both declaration
andmanagement of state to programmers. User-declared and
managed state was either defined and used within the work-
ing memory and scope provided by the hosting framework or
defined and persisted externally, using an existing key-value
storage or database system (e.g. Redis [7, 106]). In summary,
application-managed state offers flexibility and gives expert
users implementation freedom. However, no state manage-
ment support is offered from the system’s side. As a result,
the user has to reason about persistence, whether the state
fits in themain-memory, and all necessary third-party storage

system dependencies. These choices require a combination
of deep expertise, and additional engineering work to inte-
grate stream and storage technologies.

Currently, most stream-processing systems allow a level
of freedom for user-defined state through a form of a stateful
processing API. This feature enables streaming applications
to define custom state, while also granting the underly-
ing system access to state information in order to employ
data management mechanisms for persistence, scalability
and fault tolerance. State information includes the data types
used, serializers and deserializers as well as read and write
operations known at runtime. The main limitation of user-
defined, system-managed state is the lack of direct control
on data structures that materialize that state (e.g., for custom
optimizations).

4.3 State management architecture

The state management architecture refers to the way that a
streaming system stores and manages its internal or user-
defined state. We identify three distinct stateful processing
directions in the architecture of data stream runtime systems:

– In-memory architectures store state using in-memory
data structures. This approach is able to support state that
is within main-memory available in each node executing
stream operators.

– External memory architectures make use of multiple lev-
els of storage media, such as non-volatile memory or

123



520 M. Fragkoulis et al.

hard disks to store state and process, i.e., using mem-
ory outside the address space of a stream operator. The
term “out-of-core” is also frequently used to describe
data structures, algorithms, and embedded databases that
build on external memory. This approach allows exploit-
ing fast main-memory access within each compute node,
while also supporting a growing number of state entries
that are split and archived in secondary storage. We
observe that the out-of-core data structure of choice used
in most systems is a variant of an index, such as FASTER
[47] or an LSM-Tree [125], such as RocksDB/LevelDB.1

– Remote memory architectures decouple compute and
state, offloading state handling to an external database
or key-value store. This approach enables more modu-
lar system designs (state and compute decoupling which
is very Cloud-friendly) and effective re-use of several
desired properties of database systems (e.g., ACID trans-
actions, consistency guarantees, auto-scaling) in support
of more complex guarantees in the context of data
streaming. The use of external state was predominant
within applications inApache Storm. The lack of system-
managed state necessitated users to store all of their
state in an external system. In this architecture, when
state access is needed, the streaming operator has to
reach out to the external system, increasing its latency.
Google’s Millwheel, the cloud engine of Beam/Google
Dataflow, is a representative example of system-managed
external state architecture. Millwheel builds on the capa-
bilities of BigTable [50] and Spanner [53] (e.g., blind
atomic writes). Tasks in Millwheel are effectively state-
less. They do keep recent local changes in memory but
overall they commit every single output and state update
to BigTable as a single transaction. This behavior means
that Millwheel is using an external store for both per-
sisting every single working state per key but also all
necessary logs and checkpoints needed for recovery and
non-idempontent updates.

4.3.1 Storage medium

Another aspect of stateful streaming, auxiliary to the under-
lying fault-tolerance mechanisms, is the management of
state used for recovery and reconfiguration. As shown in
Sect. 5.1.1 there are different options. Recovery state is
preferably making use of a resilient store that is either local
to each stateful operator, or in a remote resilient store. In
the case of Aurora and Borealis [12, 41], recovery state is
maintained in non-resilient ephemeral space (e.g., operator
process memory). Systems that cache data for recovery in
memory, such as output tuples, do not fall in this category.

1 https://www.github.com/google/leveldb.

4.3.2 Discussion

Stream processing has been influenced by general trends
in scalable computing. State and compute have gradually
evolved from a scale-up task-parallel execution model to
the more common scale-out data-parallel model with related
implications in state representations and operations that can
be employed. Persistent data structures have been widely
used in database management systems ever since they were
conceived. The idea of employing internal and external per-
sistence strategies was uniformly embraced in more recent
generations of systems. Section4.4 covers different archi-
tectures and presents examples of how modern systems can
support large volumes of state, beyond what can fit in mem-
ory, within unbounded executions. Another foundational
transitioning step in stream technology was the develop-
ment and adoption of transactional-level guarantees. Section
5.1.1 gives an overview of the state of the art and covers
the semantics of transactions in data streaming, alongside
implementation methodologies.

4.4 Scalability and state management

Scalable state has been the main incentive of the second
generation of stream processing systems which automated
deployment and partitioning of data stream computations.
The need for scalable state was driven by the availability of
voluminous unboundeddata streams. In high-volume stream-
ing computations, the space complexity for stream state is
linear to the ever-increasing input consumed by a stream pro-
cessor. This section discusses types of scalable state, as well
as scalable system architectures that can sustain support for
partitioning, persisting, and committing changes to large vol-
umes of state.

4.4.1 Parallel versus global stateful operations

To employ data-parallelism in a stateful computation (e.g.,
an aggregate on a given key) the state of the computation
also has to be partitioned across different operator instances.
However, partitioning state is not always possible (e.g., when
an aggregate has to be performed across all keys of a stream).
Scalable state takes two forms in a streaming application,
typically referred to as partitioned and non-partitioned state
(also referred to as global state). Depending on the nature of
a specific operation, one or both of these state types can be
employed.

Partitioned state Partitioned state is the most common way
to enable data-parallel computation on massive data streams.
Partitioned state assigns key-wise logical partitions of state
to compute tasks, where each logical task handles a specific
key. This approach is enabled in the API level through an

123

https://www.github.com/google/leveldb


A survey on the evolution of stream… 521

additional operation that is invoked prior to stateful process-
ing that lifts the scope from task- to key-based processing
such as “keyBy” in Apache Flink or “groupBy” in Beam
andKafka-Streams.Note that logical partitioning (i.e., which
logical operator takes over a given key) differs from physical
partitioning (i.e., which nodes take over the computations on
a given set of keys). Typically, multiple keys (or key ranges)
are assigned to a given compute node.

Non-partitioned state Non-partitioned state is mapped as
a singleton to physical compute tasks. Such non-partitioned
state is typically used in two ways. First, it can be used in
order to compute global aggregates over the complete input
stream. Second, it can be used to calculate aggregates at the
level of the physical operator (e.g., count how many keys
have been processed per operator). Task-level state can also
be useful for keeping offsets when consuming logs from a
physical stream source task. Because non-partitioned state
either deals with operator-local computations or with global
aggregates, its use is not scalable and should be used with
caution by practitioners.

4.5 First versus second generation

State has been central to stream processing. The notion of
state itself has been addressed with many names, such as
“summary”, “synopsis”, “sketch” or “stream table” and it
reflects the evolution of data stream management along the
years. Early systems [12, 19, 27, 48] (circa 2000–2010)
hid state and its management from the user. Most contin-
uous processing operators at that time, such as those of the
time-varying relationalmodel ofCQL [21] in STREAM[19],
were implemented using internal in-memory data structures.
Overall, the purpose of state was to support the creation of
a limited set of operators offered by each system.

A decade later, scalable data computing systems based
on the MapReduce [61] architecture allowed for arbitrary
user-defined logic to be scaled and executed reliably using
distributed middleware and partitioned file systems. Follow-
ing the same trend, many existing data management models
were revisited and re-architectured with scalability in mind
(e.g., NoSQL and NewSQL databases). Similarly, a grow-
ing number of scalable data stream processing systems [14,
16, 37, 118] married principles of scalable computing with
stream semantics and models that were identified in the past
(e.g. out-of-order processing [108, 142]).

As of today, modern stream processors can compile and
execute graphs of long-running operators with complete,
user-defined (yet system-managed) state that is fault-
tolerant and reconfigurable given a clear set of transactional
guarantees[14, 36, 64].

4.6 Open problems

Data streaming covers many data management needs today
that go beyond real-time analytics, which was the original
purpose of the stream processing technology. The transitions
of stateful processing showcase this trend.

The decoupling of state programming from state per-
sistence resembles the concept of data independence in
databases. Systems are converging in terms of semantics and
operations on state while, at the same time, many new meth-
ods employed on embedded databases (e.g., LSM-trees, state
indexing, externalized state) are helping stream processors to
evolve in terms of performance capabilities. Recent work
[24, 88, 105] showcases the potential of workload-aware
state management, adapting state persistence and access to
the individual operators of a dataflow graph. To this end,
an increasing number of “pluggable” systems [47, 169] for
local state management with varying capabilities are being
adopted by stream processors. This trend opens new capa-
bilities for optimization and sophisticated, yet transparent,
state management that can automate the process of select-
ing the right physical plan and reconfigure that plan while
continuous applications are executed.

5 Fault tolerance

Fault tolerance is a system’s ability to continue its opera-
tion as if no failures have occurred. Without fault tolerance,
streaming systems, which process potentially unbounded
data,would have to repeat data processing from the beginning
if the state of a computation was lost during a failure. Worse,
it is uncertain whether an input data stream could be recov-
ered following a failure, such that it can be processed again.
Finally, the scale of distributed streaming system deploy-
ments highlights further the importance of fault tolerance.
The larger the scale, the more a failure can affect the sys-
tem’s operation.

We start this section with an account of processing seman-
tics, which characterize the levels of correctness that a
streaming system can achieve considering failure scenarios
(Sect. 5.1). In Sect. 5.2 we describe the important role of state
snapshots in fault tolerance.Wedevote Sect. 5.3 to the output-
commit problem in stream processing, which regards the
correctness of a system’s output as observed by the outside
world. Section5.4 presents the literature on the availability
of streaming systems, which is closely related to fault toler-
ance. Finally, the section ends with a comparison between
first and second generation systems with respect to fault tol-
erance (Sect. 5.5) and open problems (Sect. 5.6).

123



522 M. Fragkoulis et al.

Table 3 Fault-tolerance in streaming systems

System Processing semantics Replication Recovery data Transaction granularity

Least Exactly-once Active Passive None State Output None
State Output

Aurora* [52] � � � No

TelegraphCQ [136] � � � � No

Borealis [11, 30] � � � � No

S4 [123] � � � No

Seep [64, 65] � � � � Epoch-level

Naiad [120] � � � � Epoch-level

Timestream [129] � � � � Epoch-level

Millwheel [14] � � � � Record-level

Storm [152] � � � No

Trident [9] � � � Batch-level

S-Store [42, 147] � � � Batch-level

Trill [44] � � � No

Heron [100] � � � No

Streamscope [109] � � � � � � Epoch-level

Streams [56] � � � Epoch-level

Samza [124] � � � Epoch-level

Flink [36, 37] � � � Epoch-level

Spark [23] � � � Batch-level

5.1 Processing semantics

Processing semantics conveys howa system’s state is affected
by failures. Typically, all systems in the literature are able
to produce correct results in failure-free executions. But to
mask a failure completely is hard, especially in the stream
processing domain where the output should be delivered as
soon as it is produced.

In recent years, the stream processing domain has settled
on the terms at least-once and exactly-once to characterize
the processing semantics [23, 37, 56, 109, 124].Atmost-once
is also part of the nomenclature but it is mostly obsolete, as
systems opt to support one of the two stronger levels. At
least-once processing semantics means that the system will
produce the same results as a failure-free execution with the
addition of duplicate records as a side-effect of recovery.
We detail the consistency guarantees of different systems in
Table 3.

Exactly-once processing lends itself to two different inter-
pretations. A system may support exactly-once processing
semantics within its boundaries ensuring that any inconsis-
tencies or duplicate execution carried out on recovery is not
part of its state. We call this level of semantics exactly-once
processing semantics on state.

It should be noted that most systems in this category
still assume that the computations they apply, as well as

the system’s functions, are deterministic, which is often not
the case; processing-time windows and operators process-
ing input from multiple sources are two prime examples of
nondeterminism. With nondeterminism at play, the system’s
state on recovery can diverge. Clonos [138] provides exactly-
once processing including nondeterministic computations by
means of causal consistency. It keeps determinants about
nondeterministic computations in a resilientmanner and uses
them to regenerate the exact computational state following a
failure.

A systemwith exactly-once processing semantics on state
can still produce duplicate output. One notable example is
while recovering from a failure. This outcome is possible,
because, as opposed to the system’s state, the output cannot
be rolled back. The output can be consumed immediately
by external applications. This problem has been termed the
output-commit problem [62] in the distributed-systems liter-
ature. Systems that produce the same output under failure
as a failure-free execution support exactly-once processing
semantics on output. In Sect. 5.3 we elaborate how streaming
systems address the output-commit problem.

5.1.1 State consistency

Consistent streamprocessinghas been anopen researchprob-
lem for quite some time due to the challenging nature of
distributed processing of unbounded streams, but also due to

123



A survey on the evolution of stream… 523

the lack of a formal definition of the problem itself. Consis-
tency relates to the guarantees that a system can provide in
face of failures.

The Lambda architecture With the advent of cloud com-
puting, a design pattern called the “lambda architecture”
became mainstream. The lambda architecture proposed the
separation of systems across different layers according to
their specialization and reliability capabilities. Hadoop was
reliable in terms of processing guarantees (i.e., exactly-once
processing by atomically processing batches of data), thus, it
could execute correct computation. However, Hadoop-based
solutions suffered from high latency. On the other hand,
early stream-processing systems could achieve low latency
but they did not offer consistency guarantees— they mostly
guaranteed at-least-once semantics.

At the same time, databases had formal guarantees. For
example, a set of transactions would be processed using
ACID guarantees. In the context of data streaming, though,
it took some time in order to decide on the need for exactly-
once processing, and the need for input logging for a possible
replay. We discuss processing guarantees in the following.

Consistent state in stream processing A stream processor
today is a distributed system consisting of different con-
currently executing tasks. Source tasks subscribe to input
streams that are typically recorded in a partitioned log, such
as Kafka, and therefore, input streams can be replayed. Sink
tasks commit output streams to the outside world. Every
task in this system can contain its own state. For example,
source tasks need to keep the current position of their input
streams in their state. A system execution can be often mod-
eled through the concept of “concurrent actions” [35]. An
action includes: invoking stream task logic on an input event,
mutating its state, and producing output events. Every action
happening in such a system causes other actions. Effectively,
just a single record sent by a source contributes to state
updates throughout the whole pipeline and to output events
created by the sinks. If a specific action is lost or happens
more than once, then the complete system enters into an
inconsistent state.

Fault tolerance is an integral aspect of streaming systems
that significantly affects their state consistency. We analyze
the fault tolerance strategies of existing streaming systems in
Sect. 5.1.2. In addition, due to causal dependencies on state,
the order of action execution is also critical. Note that causal-
ity here concerns only the execution order of task actions
after events enter the system, not the order in which events
are ingested. Therefore, a system can tolerate out-of-order
streamswith respect to event timestamps. However, this does
not mean that it is capable of maintaining causal dependen-
cies within its dataflow execution among the event streams
that have been processed (in either ingestion order). Existing

reliable stream processors either define a transaction out of
each action or a coarse-grained set of actions that we call
epochs. We explain these approaches in more detail, next.

5.1.2 Properties of consistency mechanisms

Managing failures in a distributed streaming system entails
maintaining snapshots of state, migrating state, and scaling
out operators while affecting the healthy parts of the sys-
tem as little as possible. Table 3 presents the fault-tolerance
strategies of known streaming systems arranged in order of
publication appearance, from past to present. We analyze the
strategies across the following three dimensions.
1. Replication considers the use of additional computational
resources for recovering an execution.Weadopt the terminol-
ogy of Hwang et al. [85] that classifies replication as either
active, where two instances of the same execution run in
parallel, or passive, where each running stateful operator dis-
patches its checkpointed state to a standby operator.
2. Recovery data addresses what data are regularly stored
for recovery purposes. Data may include the state of each
operator and the output it produces. In addition, many fault
tolerance strategies need to replay tuples of input streams
during recovery in order to reprocess them. For this purpose,
input streams are persistently stored, typically in message
brokers like Apache Kafka. Stream processing consumer
tasks only need to store read input positions from input logs
within their state for recovery.
3. Transaction Granularity considers the categorization of
systems by the frequency at which they obtain snapshots
of their state into Record-, Epoch- or Batch-level snapshot
frequency.

The table is meant to be read both horizontally, to describe
a specific system’s approach to fault tolerance, and vertically,
to uncover how the different building blocks shape the land-
scape of fault tolerance in stream processing. Two remarks
are necessary. Streamscope [109] presents and evaluates
three distinct fault-tolerance strategies; an active replication-
based strategy, a passive one, and a strategy that relies on
recomputing state by replaying data from input streams. Fur-
thermore, the state column in the recovery data dimension
captures not only checkpointed state but also state metadata
that allow recomputing the state, such as a changelog [124]
or state dependencies [129].

The table reveals four interesting patterns. First, of all
columns, two accumulate the majority of checkmarks: pas-
sive replication and storing state for recovery. This pattern
is perhaps the most visible on the table and signifies that
passive replication by storing state is, unsurprisingly, a very
popular option for streaming systems. One typical recovery
approach is to restore the latest checkpoint of a failed oper-
ator in a new node and replay input that appeared after the
checkpoint. Variations of this approach include saving in-

123



524 M. Fragkoulis et al.

flight tuples along with the state and maintaining in-flight
tuples in upstream nodes. Second, storing in-flight tuples for
recovery is not preferred anymore, although it was a popular
option for streaming systems in the past. One major develop-
ment that explains this shift is the advent of message brokers,
such as Apache Kafka [98], which can produce an ordered
stream of data starting from a specific point in time using an
offset, which is, for instance, provided by a streaming sys-
tem on recovery. Third, while past systems strived to support
exactly-once output processing semantics, later systems opt
for exactly-once semantics on state and outsource the de-
duplication of output to external systems. We will elaborate
on this aspect in Sect. 5.3.

5.2 Fault tolerance and state snapshots

Snapshots are persisted copies of the stream-processing
states for the purposes of fault recovery and reconfigura-
tion. The consistency properties and employed mechanisms
in each system impose different requirements on how often
such copies need to be obtained. We differentiate systems by
the frequency at which they record snapshots of their state
into Record- and Epoch-level snapshot frequency.

Record-granularity Anopposite extreme to the epoch-based
approach is to snapshot after each record. This approach,
as seen in Millwheel [14], requires the stream processor
to obtain a copy of all changes that occurred in the state
after the complete processing of a each stream record. This
copy includes the newly updated states and produced output
records.

Epoch-granularity is typically achieved in the form of
application-level snapshots.Most commonly, systems employ
a form of asynchronous consistent snapshotting, such as
the Chandy–Lamport algorithm [49]. In each epoch, i.e.,
either periodically or after a certain number of records have
been ingested by the system, each operator records a copy
of its state. The batch-level snapshotting seen in systems
such as Spark Streaming and Trident/Storm adopts a strict
micro-batching processing paradigm: i.e., a batch execution
is submitted after collecting a sizable number of records, and
the state of an operator is stored right after a given batch has
been processed. S-Store orchestrates the batch granularity as
a series of ACID transactions on top of a relational database.

5.2.1 State durability at record granularity

A form of consistent processing in data streaming is employ-
ing a transaction per local action. Google’s Millwheel,
the cloud runtime for the dataflow data streaming service,
employs such a strategy. Millwheel uses BigTable to commit
each full compute action which includes: input events, state

Fig. 4 Transactional epoch commits in data streaming

transitions and generated output. The act of committing these
actions is also called a “strong production” in Millwheel.

Persisting state of an operator per output event, is an
approach which seemingly induces high latency overhead.
However, traditional database optimizations can be used to
speed up commit and state read times. Write ahead logging,
blind writes, bloom filters, and batch commits at the storage
layer can be used to reduce the commit latency. More impor-
tantly, since the order of actions is predefined at commit time,
state persistence on a per-event basis also guarantees deter-
ministic executions. In addition, this approach has important
effects on consistency as perceived by applications that con-
sume the system’s output. This benefit follows from the fact
that “exactly-once processing” in this context relates to each
action being atomically committed, aswe discuss in Sect. 5.3.
The core observation behind the correctness of this approach
is based on the fact that each action is invoked by an atom-
ically committed action. Following the natural causal order
of actions, the transitive closure of all actions in the system
is, therefore, also atomically committed.

5.2.2 State durability at epoch granularity

The frequency of recordings per state in epoch-level pro-
cessing is more coarse-grained compared to the per-record
granularity.

In Fig. 4 we depict the overall approach, marking input,
system states, and outputs with a distinct epoch identifier.
Epochs can be defined through markers at the logged input
of the streaming application. A system execution can be
instrumented to process each epoch and commit the state
of the entire task graph after each epoch is processed. If a
failure or other reconfiguration action happens during the
execution of an epoch, then the system can roll back to
a previously committed epoch and recover its execution.
The term “exactly-once processing” in this context relates to
each epoch being atomically committed. In Sect. 5.1.2,where
we presented the different levels of processing semantics in
streaming, we called this flavor exactly-once processing on

123



A survey on the evolution of stream… 525

state. The rest of this section focuses on various approaches
used to commit stream epochs.

Strict two-phase epoch commits A common coordinated
protocol to commit epochs is a strict two-phase commit
where Phase 1 corresponds to the full processing of an epoch
and Phase 2 ensures persisting the state of the system at the
end of the computation.

This approach was popularized by Apache Spark [164]
through the use of periodic “micro-batching” and it is an
effective strategy when using batch processing systems for
unbounded processing. The main downside of this approach
is the risk of low task utilization due to synchronous execu-
tion, since each task has to wait for all other tasks to finish
their current epoch. Drizzle [158] mitigates this problem by
chaining multiple epochs in a single atomic commit. S-Store
employs a similar approach [116],where each database trans-
action corresponds to an epoch of the input stream that is
already stored in the same database.

Asynchronous two-phase epoch commits For pure dataflow
systems, strict two-phase committing is problematic, since
tasks are uncoordinated and long-running. Furthermore, it is
feasible to achieve the same functionality asynchronously
through consistent snapshotting algorithms, known from
classic distributed systems literature [35]. Consistent snap-
shotting algorithms exhibit beneficial properties because they
do not require pausing a streaming application. Furthermore,
they acquire a snapshot of a consistent cut in a distributed exe-
cution [49]. In other words, they capture the global states of
the system during a “valid” execution. Throughout different
implementations we can identify i) unaligned and ii) aligned
snapshotting protocols.
I. Unaligned (Chandy–Lamport [49]) snapshots provide
one of the most efficient methods to obtain a consistent
snapshot. Several stream processors currently support this
approach, such as IBM Streams and more recently seen as
an experimental configuration option in Flink [10]. The core
idea is to insert a punctuation or “marker” into the regular
stream of events and use that marker to separate all actions
that come before and after the snapshot, while the system
is running. A caveat of unaligned snapshots is the need to
record input (a.k.a. in-flight) events that arrive to individual
tasks until the protocol is complete. In addition to space over-
head for logged inputs, unaligned snapshots require more
processing during recovery, since logged inputs need to be
replayed (similarly to redo logs in database recovery with
fuzzy checkpoints).

II. Aligned snapshots Aligned snapshots aim to improve
performance during recovery and minimize reconfiguration
complexity exhibited by unaligned snapshots. The main dif-
ference is prioritizing input stream events that are expected

before the snapshot and, thus, end up solely with states that
reflect a complete computation of an epoch and no in-flight
events as part of a snapshot. For example, Flink’s epoch snap-
shotting mechanism [36, 38] resembles the Chandy Lamport
algorithm in terms of using markers to identify epoch fron-
tiers. However, it additionally employs an alignment phase
that synchronizes markers within tasks before disseminating
them further. Alignment is achieved through partially block-
ing input channels where markers were previously received
until all input channels have transferred all messages corre-
sponding to a particular epoch.

In summary, unaligned snapshots are meant to offer the
best runtime performance but sacrifice recovery times due
to the redo-phase needed upon recovery. Whereas, aligned
snapshots can lead to slower commit times due to the align-
ment phase, while providing a set of beneficial properties.
First, aligned snapshots reflect a complete execution of an
epoch, which is useful in use cases where snapshot-isolated
queries need to be supported on top of data streaming [159].
Furthermore, aligned snapshots yield the lowest reconfigura-
tion footprint, as well as set the basis for live reconfiguration
within the alignment phase as exhibited by Chi [112].

5.3 The output-commit problem

The output-commit problem [62] specifies that a system
should only publish its output to the outside world, under
the certainty that the system can recover its state from where
the output was published. This is to ensure that every output
is only published once, since output cannot be retracted once
it ismade available to the outsideworld. If output is published
twice, then the system manifests inconsistent behavior with
respect to the outside world. The systems comprising the
outside world fall out of the problem’s scope and, thus, it is
assumed that they cannot fail. An important instance of this
problemmanifests when a system is restoring some previous
consistent state due to a failure.

The output-commit problem is relevant in streaming sys-
tems, which typically conform to a distributed architecture
and process unbounded data streams. In this setting, the side
effects of failures are difficult to mask. For example, assume
that a streaming systemwith exactly-once processing seman-
tics on state takes a snapshot and, shortly afterward, one of
its operators crashes. After the operator took a snapshot of its
state, it continued to produce output until it crashed. When
the operator recovers using the most recent snapshot, it will
process the input data that succeeded the snapshot opera-
tion again. Consequently, it will re-produce the output that it
had produced under its normal operation after taking the last
snapshot and before suffering the crash.

Streaming systems that solve the output-commit problem
have received multiple descriptions in the literature, includ-
ing that they provide (1) exactly-once processing semantics

123



526 M. Fragkoulis et al.

on output, (2) output exactly-once, (3) precise recovery [85],
and (4) strong productions [14].

Although the problem is relevant and hard, solutions in
the stream-processing domain are scattered in the literature
pertaining to each system in isolation. We group the various
solutions into three categories: transaction-based, progress-
based, and lineage-based. We now describe each of those,
focusing on the assumptions they involve. Each of the three
types of techniques uses a different characteristic of the
input or computation, to identify whether a certain tuple
has appeared previously. Transaction-based techniques use
tuple identity, while progress-based techniques use order.
Finally, lineage-based techniques use input–output depen-
dencies. Finally,weprovide twomore categories of solutions,
special sink operators and external sinks that do solve the
problem in practice, but, strictly speaking, they do not meet
the problem’s specification because they are either specific
or external to a streaming system.

Transaction-based Millwheel [14] and Trident [9] rely on
committing unique ids with records to eliminate duplicate
retries. Millwheel assigns a unique id to each record entering
the system and commits every record it produces to a highly-
available storage system before sending it downstream.
Downstream operators acknowledge received records. Mill-
wheel assumes no input ordering or determinism. Trident, on
the other hand, batches records into a transaction, which is
assigned a unique transaction id and applies a state update
to the state backend. Assuming that transactions are ordered,
Trident can accurately ignore retried batches by checking the
transaction id.

Progress-based Seep [64, 65] uses timestamp comparison
to deliver exactly-once output, relying on the order of times-
tamps. Each operator generates increasing scalar timestamps
and attaches them to records. Seep checkpoints the state and
output of each operator together with the vector timestamps
of the latest records fromeachupstreamoperator that affected
the operator’s state. On recovery, the latest checkpoint is
loaded to a new operator, which replays the checkpointed
output records and processes replayed records sent by its
upstream operators. Downstream operators discard duplicate
records based on the timestamps. The system assumes deter-
ministic computations that do not rely on system time or
random input.

Lineage-based Timestream [129] and Streamscope [109]
use dependency tracking to provide exactly-once output.
During normal operation, both systems track operator input
and output dependencies by uniquely identifying records
with sequence numbers. Streamscope persists records with
their identifiers asynchronously. Both systems store opera-
tor dependencies periodically in an asynchronous manner. In

Streamscope, however, each operator checkpoints individu-
ally not only its dependencies but also its state.

On recovery, Timestream retrieves the dependencies of
failed operators by contacting upstream nodes recursively,
until all inputs required to rebuild the state, are available.
Streamscope follows a similar process, but starts froma failed
operator’s checkpoint snapshot. For each input sequence
number in the snapshot that is not found in persistent stor-
age, Streamscope contacts upstream operators, which may
have to recompute the record starting from their most rele-
vant snapshot that can produce the output record given its
sequence number. Finally, both systems use garbage collec-
tion to discard obsolete dependencies but in subtly different
manners.

Timestream computes the input records required by
upstream operators in reverse topological order from the
final output to the original input and discards unneeded
ones. Streamscope does the same, but instead of comput-
ing dependencies, it uses low watermarks per operator and
per stream to discard older, unneeded snapshots and records.
In Timestream, storing dependencies asynchronously can
lead to duplicate recomputation, but downstream opera-
tors bearing the correct set of dependencies can discard
them. Streamscope applies the same process only if dupli-
cate records cannot be found in persistent storage. Both
Timestream and Streamscope assume deterministic compu-
tation and input in terms of order and values.

The progress-based and lineage-based solutions are vul-
nerable to failures of the last operator(s) on the dataflow
graph, which produces the final output, since both solutions
rely on downstream operators for filtering duplicate records.
In contrast, transaction-based approaches do not require a
downstream operator for deduplication, since they can use
the unique id of a record to check whether it is a duplicate
(Table 4).

Special sink operators Streams [56] implements special
sinks for retractingoutput fromfiles anddatabases. The appli-
cation of this approach solves the output-commit problem for
specific use cases, but it is not applicable in general, since it
defies the core assumption of the problem that output cannot
be retracted.

External sinks Some systems like Streams [56], Flink [37],
and Spark [23] provide exactly-once semantics on state and
outsource the output-commit problem to external sinks that
support idempotent writes, such as Apache Kafka.

One way to categorize the solutions provided by spe-
cial sink operators and external sinks, is optimistic and
pessimistic output techniques. Optimistic output techniques
publish their output immediately and retract, or update it if
needed. Pessimistic output techniques use a form of write-
ahead log, to write the output they will publish, if everything

123



A survey on the evolution of stream… 527

Table 4 Assumptions that systems make for solving the output-commit problem

System Assumptions

Millwheel External high-throughput transactional store

Timestream Deterministic computation and input

Streamscope Deterministic computation and input

Trident Deterministic computation and input, ordering of transactions

Seep Deterministic computation, monotonically- increasing logical clock, records ordered by timestamp

goes well, until the output is permanently committed [36].
Optimistic output techniques, which resemble multi-version
concurrency control from the database world, include modi-
fiable and versioned output destinations, while pessimistic
output techniques include transactional sinks and similar
tools.

5.4 High availability

Existing studies of high availability in stream processing pro-
posed an active replication approach [30, 136], a passive
replication approach [75, 86, 102], or a hybrid active-passive
replication approach [81, 143, 168]. Finally, two benchmark
evaluations assessed the approaches above, under simulated
experiments [43, 85].

Active replication Flux [136] implements active replication
by duplicating the computation and coordinating the progress
of the two replicas. Flux restores operator state and in-flight
data of a failed partition while the other partition continues
to process input. A new primary dataflow that runs following
a failure quiesces when a new secondary dataflow is ready in
a standby machine, in order to copy the state of its operators
to the new secondary. In contrast, Borealis [30] has nodes
address upstream node failures by switching to a live replica
of the failed upstream node. If a replica is not available, the
node can produce tentative output for incomplete input to
avoid the recovery delay. The approach sacrifices consistency
to optimize availability, but guarantees eventual consistency.

Passive replication Hwang et al. [86] propose that a server
in a cluster has one or more servers as backup where it ships
independent parts of its checkpointed state. When a node
fails, its backup servers that hold parts of its checkpointed
state initiate recovery in parallel by starting to execute the
operators of the failed nodewhose state they have and collect-
ing the input tuples they have missed from the checkpointed
state they possess.

SGuard [102] and Clonos [138] save computational
resources in an alternative fashion, by checkpointing state
asynchronously to a distributed file system. Upon failure,
a node is selected to run a failed operator. The operator’s

state is loaded from the file system and its in-memory state
is reconstructed before it can join the job. Beyond asyn-
chronous checkpointing, a new checkpoint mechanism [75]
preserves output tuples until an acknowledgment is received
from all downstream operators. Next, an operator trims its
output tuples and takes a checkpoint. The authors show that
passive replication still requires longer recovery time than
active replication, but with 90% less overhead due to reduced
checkpoint size.

Hybrid replication Zwang et al. [168] propose a hybrid
approach to replication, which operates in passive mode
under normal operation, but switches to active mode using
a suspended pre-deployed secondary copy when a transient
failure occurs. According to their experimental results, their
approach saves 66% recovery time compared to passive repli-
cation and produces 80% less message overhead than active
replication.

Alternatively, Heinze et al. [81] propose to dynamically
choose the replication scheme for each operator, either active
replication or upstream backup, in order to reduce the recov-
ery overhead of the system by limiting the peak latency under
failure below a threshold. The upstream backup approach
maintains that each upstream operator preserves its out-
put data until its downstream operators process them. If an
operator fails, the upstream operators will replay the output
data they preserve, such that the substitute operator of the
failed operator can reconstruct the state of its predecessor.
Similarly, Su et al. [143] counter correlated failures by pas-
sively replicating processing tasks, except for a dynamically
selected set that is actively replicated.

Benchmarking of high availability approaches In their sem-
inal work, Hwang et al. [85] model and evaluate the recovery
time and runtime overhead of four recovery approaches,
active standby, passive standby, upstream backup, and amne-
sia (i.e., dropping data for faster recovery), across different
types of query operators. The simulated experiments suggest
that active standby achieves near-zero recovery time at the
expense of high overhead in terms of resource utilization,
while passive standby produces worse results in terms of
both metrics compared to active standby. However, passive

123



528 M. Fragkoulis et al.

standby poses the only option for arbitrary query networks.
Upstream backup has the lowest runtime overhead at the
expense of longer recovery time. With a similar goal, Shrink
[43], a distributed systems emulator, evaluates the models of
five different resiliency strategies with respect to uptime sla
and resource reservation. The strategies differ across three
axes, single-node vsmulti-node, active vs passive replication,
and checkpoint vs replay. According to the experiments with
real queries on real advertising data using Trill [44], active
replicationwith periodic checkpoints is proved advantageous
in many streaming workloads, although no single strategy is
appropriate for all workloads.

5.5 First generation versus second generation

In the early years, streaming systems put emphasis on
approximate (at-most- or at-least-once) results, while mod-
ern systemsmaintain exactly-once processing semantics over
their state under failures. Although past systems lacked
in terms of consistency, mainly due to state management
aspects, they strived to solve the output-commit problem.
Instead, a typical avenue for modern systems that is gaining
traction is to outsource the deduplication of output to external
systems. Finally, while streaming systems used to store their
output to enable replaying tuples to downstream operators
recovering from a failure, now, systems increasingly rely on
replayable input sources for replaying input subsets.

At the same time, it was very common to implement
high availability using active replication. In contrast, mod-
ern systems tend to leverage passive replication, especially
by allocating extra resources on demand, which is appropri-
ate in Cloud settings.

5.6 Open problems

We highlight three open problems in the scope of fault toler-
ance and high availability in streaming systems. These regard
novel solutions to the output-commit problem, defining and
measuring availability in stream processing, and configuring
availability for different application requirements.

First, the importance of the output-commit problem has
the prospect to increase as streaming systems are used
in novel ways, such as running event-driven applications.
Althoughwe presented five different types of solutions, these
suffer from computational cost, strong assumptions, limited
applicability, and freshness of output results. New classes of
solutions are required that score better in these dimensions.

Second, the literature of high availability in stream pro-
cessing has significantly enhanced the availability of stream-
ing systems throughout the years. But, to the best of our
knowledge, there has been scant research on the seman-
tics of availability for stream processing in particular. The
generic definition of availability for computer systems by

Fig. 5 Measuring availability with the slack between processing time
and event time over time

Gray et al. [73] relates availabilitymerely to failures.Accord-
ing to the definition, a system is available when it responds
to requests with correct results, which is termed as service
accomplishment. In stream processing however, processing
is continuous and potentially unbounded. Responding with
correct results becomes more challenging.

The factors that may impair availability in streaming
include software and hardware failures, overload, backpres-
sure, and types of processing stall, such as checkpoints, state
migration, garbage collection, and calls to external systems.
The common denominator among those factors, is that the
system falls behind input. This lag may not be a problem for
other types of systems, such as databases where non updated
responses can be perceived as adequate by applications, as
long as the serializability property is satisfied. Streaming sys-
tems, though, are typically expected to continuously keep
processing up with the input in order to provide fresh results.

This survey contributes a more refined definition of avail-
ability for stream processing as follows. A streaming system
is available when it can provide output corresponding to the
processing of its most recent input. This definition affects
how availability is measured. An appropriate way would be
via progress tracking mechanisms, such as the slack between
processing time and event time over time, which quantifies
the system’s processing progress with respect to the input as
per Fig. 5. The plot depicts the slack between event time and
processing time over time. The surface enclosing A amounts
to 100% availability, while the surface containing B equals
60% availability.

Finally, availability is a prime non-functional character-
istic of a streaming system and non-trivial to reason about,
as we have shown. Providing user-friendly ways to specify
availability, as a contract that the system will satisfy dur-
ing its operation, can significantly improve the position of
streaming systems in production environments. Configuring
availability in this way has the potential to impact resource
utilization, performance overhead during normal operation,
recovery time, and consistency.

123



A survey on the evolution of stream… 529

6 Loadmanagement, elasticity, and
reconfiguration

Due to the push-based nature of streaming inputs from exter-
nal data sources, stream processors have no control over the
rate of incoming events. Satisfying Quality of Service (QoS)
under workload variations has been a long-standing research
challenge in stream processing systems.

To avoid performance degradation when input rates
exceed system capacity, the stream processor needs to take
actions that will ensure sustaining the load. One such action
is load shedding: temporarily dropping excess tuples from
inputs or intermediate operators in the streaming execution
graph. Load shedding trades off result accuracy for sustain-
able performance and is suitable for applications with strict
latency constraints that can tolerate approximate results.

When result correctness is more critical than low latency,
dropping tuples is not an option. If the load increase is tran-
sient, the system can instead choose to reliably buffer excess
data and process it later, once input rates stabilize. Several
systems employ back-pressure, a fundamental load manage-
ment technique applicable to communication networks that
involve producers and consumers. Nevertheless, to avoid
running out of available memory during load spikes, load-
aware scheduling and rate control can be applied.

A more recent approach that aims at satisfying QoS while
guaranteeing result correctness under variable input load is
elasticity. Elastic stream processors are capable of adjusting
their configuration and scaling their resource allocation in
response to load. Dynamic scaling methods are applicable to
both centralized and distributed settings. Elasticity not only
addresses the case of increased load, but can additionally
ensure no resources are left unused when the input load
decreases.

Next, we review load shedding (Sect. 6.1), load-aware
scheduling and flow control (Sect. 6.2), and elasticity tech-
niques (Sect. 6.3). As in previous sections, we conclude with
a discussion of first generation vs. modern systems and open
problems.

6.1 Load shedding

Load shedding [28, 144, 145, 154] is the process of discard-
ing data when input rates increase beyond system capacity.
The system continuously monitors query performance and if
an overload situation is detected, it selectively drops tuples
according to a QoS specification. Load shedding is com-
monly implemented by a standalone component integrated
with the stream processor. The load shedder continuously
monitors input rates or other system metrics and can access
information about the running query plan. Its main function-
ality consists of detecting overload (when to shed load) and
deciding what actions to take in order to maintain accept-

able latency and minimize result quality degradation. These
actions presume answering the questions of where (in the
query plan), how many, and which tuples to drop.

Detecting overload is a crucial task, as an incorrectly
triggered shedding action can cause unnecessary result
degradation. To facilitate the decision ofwhen, load shedding
components rely on statistics gathered during execution. The
more knowledge a load shedder has about the query plan and
its execution, the more accurate decisions it can make. For
this reason, many stream processors restrict load shedding to
a predefined set of operators, such as those that do notmodify
tuples, i.e. filter, union, and join [57, 90, 144].Other operator-
restricted load shedding techniques target window operators
[28, 146], or even more specifically, query plans with SUM
or COUNT sliding window aggregates [28]. An alternative,
operator-independent approach is to frame load shedding as
a feedback control problem [154]. The load shedder relies
on a dynamic model that describes the relationship between
average tuple delay (latency) and input rate.

Once the load shedder has detected overload, it needs to
perform the actual load shedding. This includes the decision
of where in the query plan to drop tuples from, as well as
which tuples and how many. The question of where is equiv-
alent to placing special drop operators in the best positions
in the query plan. In general, drop operators can be placed at
any location in the query plan, however, they are often placed
at or near the sources. Dropping tuples early avoids wasting
work later, but it might affect results of multiple queries
if the stream processor operates on a shared query network.
Alternatively, a load shedding roadmap (LSRM) can be used
[144]. This map is a pre-computed table that contains mate-
rialized load-shedding plans, ordered by the amount of load
shedding they will cause.

The question of which tuples to drop is relevant when
load shedding takes into account the semantic importance
of tuples with respect to results quality. A random dropping
strategyhas been applied to slidingwindowaggregate queries
to provide approximate results by inserting random sampling
operators in the query plan [28]. Window-aware load shed-
ding [146] applies shedding to entire windows instead of
individual tuples, while concept-driven load shedding [92]
is a semantic dropping strategy that selects tuples to discard
based on the notion of concept drift.

6.2 Scheduling and flow control

When load bursts are transient and a temporary increase in
latency is preferred to missing results, back-pressure and
flow control can provide load management without sacrific-
ing accuracy. Flow control methods include buffering excess
load, load-aware scheduling that prioritizes operators with
the objective to minimize the backlog, regulating the trans-
mission rate, and throttling the producer. Flow control and

123



530 M. Fragkoulis et al.

back-pressure techniques do not consider application-level
quality requirements, such as the semantic importance of
input tuples. Their main requirement is availability of buffer
space at the sources or intermediate operators and that any
accumulated load is within the system capacity limits, so that
it will be eventually possible to process the data backlog.

Load-aware scheduling tackles the overload problem by
selecting the order of operator execution and by adapting the
resource allocation. For instance, backlog can be reduced
by dynamically selecting the order of executing filters and
joins [25, 29]. Alternatively, adaptive scheduling [26, 40]
modifies the allocation of resources given a static query
plan. The objective of load-aware scheduling strategies is
to select an operator execution order that minimizes the total
size of input queues in the system. The scheduler relies on
knowledge about operator selectivities and processing costs.
These statistics are either assumed to be known in advance,
or need to be collected periodically during runtime. Oper-
ators are assigned priorities that reflect their potential to
minimize intermediate results, and, consequently, the size
of queues. Online shuffle grouping [132] is an adaptive per-
tuple scheduling technique that aims to reduce the imbalance
caused by non-uniform tuple execution times. It relies on
sketches to continuously monitor tuple execution times and
uses a greedy scheduling algorithm to assign tuples to parallel
tasks in an online fashion.

Back-pressure and flow control In a network of consumers
and producers such as a streaming execution graph with mul-
tiple operators, back-pressure has the effect that all operators
slow down to match the processing speed of the slowest con-
sumer. If the bottleneck operator is far down the dataflow
graph, back-pressure propagates to upstreamoperators, even-
tually reaching the data stream sources. To ensure no data
loss, a persistent inputmessage queue, such asApacheKafka,
and adequate storage space are required.

Buffer-based back-pressure implicitly controls the flow
of data via buffer availability. Considering a fixed amount of
buffer space, a bottleneck operator will cause buffers to grad-
ually fill up along its dataflow path. Figure6a demonstrates
buffer-based flow control when the producer and the con-
sumer run on the samemachine and share a buffer pool.When
a producer generates a result, it serializes it into an output
buffer. If the producer and consumer run on the samemachine
and the consumer is slow, the producer might attempt to
retrieve an output buffer when none is available. The pro-
ducer’s processing ratewill, thus, slow down according to the
rate the consumer is recycling buffers back into the shared
buffer pool. The case when the producer and consumer are
deployed on different machines and communicate via TCP
is shown in Fig. 6b. If no buffer is available on the consumer
side, the TCP window mechanism will inform the sender to

halt data transmission. The producer can use a threshold to
control how much data is in-flight and it is slowed down if it
cannot put new data on the wire.

Credit-based flow control (CFC) [101] is a link-by-link,
per virtual channel congestion control technique used in
ATM network switches. In a nutshell, CFC uses a credit sys-
tem to signal the availability of buffer space from receivers
to senders. This classic networking technique turns out to
be very useful for load management in modern, highly-
parallel stream processors and is implemented in Apache
Flink [1]. Figure7 shows how the scheme works for a
hypothetical dataflow. Parallel tasks are connected via vir-
tual channels multiplexed over TCP connections. Each task
informs its senders of its buffer availability via credit mes-
sages. Thisway, senders always knowwhether receivers have
the required capacity to handle data messages. When the
credit of a receiver drops to zero (or a specified threshold),
back-pressure appears on its virtual channel. An important
advantage of this per-channel flow control mechanism is that
back-pressure is inflicted on pairs of communicating tasks
only and does not interfere with other tasks sharing the same
TCP connection. This aspect is crucial in the presence of data
skew, where a single overloaded task could otherwise block
the flow of data to all other downstream operator instances.
On the downside, the additional credit announcement mes-
sages might increase end-to-end latency.

6.3 Elasticity

The approaches of load shedding and back-pressure are
designed to handle workload variations in a statically pro-
visioned stream processor or application. Stream processors
deployed on cloud environments or clusters can make use of
a dynamic pool of resources.Dynamic scaling or elasticity is
the ability of a stream processor to vary the resources avail-
able to a running computation in order to handle workload
variations efficiently. Building an elastic streaming system
requires a policy and a mechanism. The policy component
implements a control algorithm that collects performance
metrics and decides when and howmuch to scale. The mech-
anism effects the configuration change. It handles resource
allocation, work re-assignment, and state migration, while
guaranteeing result correctness. Table 5 summarizes the
dynamic scaling capabilities and characteristics of elastic
streaming systems.

6.3.1 Elasticity policies

A scaling policy involves two separate decisions. First, it
needs to detect the symptoms of an unhealthy or ineffi-
cient computation and decide whether scaling is necessary.
Symptom detection is a well-understood problem and can
be addressed using conventional monitoring tools. Second,

123



A survey on the evolution of stream… 531

Fig. 6 Buffer-based flow control. Circles denote operator tasks and edges denote data dependencies. In the case of local exchange, tasks are
processes on the same physical node. In the case of remote exchange, the producer and consumer tasks are processes on separate physical nodes
(shown as N1 and N2).

Fig. 7 Credit-based flow control in a dataflow graph. Receivers regu-
larly announce their credit upstream (gray and white squares indicate
full and free buffers, respectively) (color figure online)

the policy needs to identify the causes of exhibited symp-
toms (e.g. a bottleneck operator) and propose a scaling
action. This is a challenging task which requires perfor-
mance analysis and prediction. It is common practice to
place the burden of scaling decisions on application users
who have to face conflicting incentives. They can either plan
for the highest expected workload, possibly incurring high
cost, or they can choose to be conservative and risk degraded
performance. Automatic scaling refers to scaling decisions
transparently handled by the streaming system in response
to load. Commercial streaming systems that offer automatic
scaling include Google Cloud Dataflow [95], Heron [100],
and IBM System S [71], while DS2 [89], Seep [64] and
StreamCloud [76] are recent research prototypes with such
support.

In Table 5, we categorize policies into heuristic and pre-
dictive. Heuristic policies rely on empirically predefined
rules and are often triggered by thresholds or observed condi-
tions while predictive policies make scaling decisions guided
by analytical performance models.

Heuristic policy controllers gather coarse-grained met-
rics, such as CPU utilization, observed throughput, queue
sizes, and memory utilization, to detect suboptimal scal-
ing. CPU and memory utilization can be inadequate metrics
for streaming applications deployed in cloud environments
due to multi-tenancy and performance interference [131].
StreamCloud [76] and Seep [64] try to mitigate the prob-
lem by separating user time and system time, but preemption
can make these metrics misleading. For example, high CPU

usage caused by a task running on the same physical machine
as a dataflow operator can trigger incorrect scale-ups (false
positives) or prevent correct scale-downs (false negatives).
Google Cloud Dataflow [95] relies on CPU utilization for
scale-down decisions only but still suffers false negatives.
Dhalion [66] and IBM Streams [71] also use congestion and
back-pressure signals to identify bottlenecks. These metrics
are helpful for identifying bottlenecks but they cannot detect
resource over-provisioning.

Predictive policy controllers build an analytical perfor-
mance model of the streaming system and formulate the
scalingproblemas a set ofmathematical functions. Predictive
approaches include queuing theory [67, 111, 151], control
theory [18, 93, 115], and instrumentation-driven linear per-
formancemodels [89]. Thanks to their closed-formanalytical
formulation, predictive policies are capable of makingmulti-
operator decisions in one step.

6.3.2 Elasticity mechanisms

Elasticity mechanisms are concerned with realizing the
actions indicated by the policy. They need to ensure cor-
rectness and low-latency redistribution of accumulated state
when effecting a reconfiguration. To ensure correctness,
many streaming systems rely on the fault-tolerance mech-
anism to provide reconfiguration capabilities. When adding
newworkers to a running computation, themechanism needs
not only re-assign work to them but also migrate any neces-
sary state that these new workers will now be in charge of.
Elasticity mechanisms need to complete a reconfiguration
as quickly as possible and at the same time minimize per-
formance disruption. We review the main methods for state
redistribution, reconfiguration, and state transfer next. We
focus on systems with embedded state, as reconfiguration
mechanisms are significantly simplified when state is exter-
nal.

State redistribution State redistribution must preserve key
semantics, so that existing state for a particular key and all

123



532 M. Fragkoulis et al.

Table 5 Elasticity policies and mechanisms in streaming systems

System Policy Objective Reconfiguration State migration

Heuristic Predictive Latency Throughput Stop-and-restart Partial pause Live At-Once Progressive

Borealis [11] � � � n/a n/a

StreamCloud [76] � � � �
Seep [64] � � � � �
IBM Streams [71] � � � �
FUGU [79, 80] � � � �
Nephele [111] � �
DRS [67] � �
MPC [115] � � � �
CometCloud [151] � � � n/a

Chronostream [160] n/a n/a � �
ACES [18] � � � n/a n/a

Stella [161] � �
Google Dataflow [95] � � �
Dhalion [66] � � � �
DS2 [89] � � � �
Spark Streaming [23, 163] � � � �
Megaphone [84] � �
Turbine [117] � � � �
Rhino [119] n/a n/a � �

future events with this key are routed to the same worker.
For that purpose, most systems use hashing methods. Uni-
form hashing evenly distributes keys across parallel tasks.
It is fast to compute and requires no routing state but might
incur high migration cost. When a new node is added, state
is shuffled across existing and new workers. It also causes
random I/O and high network communication. Thus, it is
not particularly suitable for adaptive applications. Consis-
tent hashing and variations aremore often preferred.Workers
and keys are mapped to multiple points on a ring using mul-
tiple random hash functions. Consistent hashing ensures that
state is not moved across workers that are present before and
after the migration. When a new worker joins, it becomes
responsible for data items from multiple of the existing
nodes. When a worker leaves, its key space is distributed
over existing workers. Apache Flink [37] uses a variation
of consistent hashing in which state is organized into key
groups and those are mapped to parallel tasks as ranges. On
reconfiguration, reads are sequential within each key group,
and often across multiple key groups. The metadata of key-
group-to-task assignments are small and it is sufficient to
store key-group range boundaries. The number of key groups
limits the maximum number of parallel tasks to which keyed
state can be scaled.

Hashing techniques are simple to implement and do
not require storing any routing state, however, they do not
perform well under skewed key distributions. Hybrid par-

titioning [70] combines consistent hashing and an explicit
mapping to generate a compact hash function that provides
load balance in the presence of skew. Themain idea is to track
the frequencies of the partitioning key values and treat nor-
mal keys and popular keys differently. The mechanism uses
the lossy counting algorithm [114] in a sliding window set-
ting to estimate heavy hitters, as keeping exact counts would
be impractical for large key domains. DKG [133] is a similar
key-grouping mechanism that explicitly maps popular keys
to sub-streams together with groups of less popular keys to
achieve load balance.

Reconfiguration strategy Regardless of the re-partitioning
strategy used, if the elasticity policy makes a decision to
change an application’s resources, the mechanism will have
to transfer some amount of state across workers on the same
or different physical machines.

The stop-and-restart strategy halts the computation, takes
a state snapshot of all operators, and then restarts the applica-
tionwith the new configuration. Even though thismechanism
is simple to implement and it trivially guarantees correctness,
it unnecessary stalls the entire pipeline even if only one or
few operators need to be rescaled. As shown in Table 5, this
strategy is common in modern systems.

Partial pause and restart, introduced by FLUX [137],
is a less disruptive strategy that only blocks the affected
dataflow subgraph temporarily. The affected subgraph con-

123



A survey on the evolution of stream… 533

Fig. 8 An example of the partial-pause-and-restart protocol. To move
state from operator a to b, the mechanism executes the following steps:
(1) Pause a’s upstream operators, (2) extract state from a, (3) load state
into b, and (4) send a restart signal from b to upstream operators

tains the operator to be scaled, as well as upstream channels
and upstream operators. Figure8 shows an example of the
protocol. To migrate state from operator a to operator b,
the mechanism will execute the following steps: (1) First,
it pauses a’s upstream operators and stops pushing tuples
to a. Paused operators start buffering input tuples in their
local buffers. operator a continues processing tuples in its
buffers until they are empty. (2) Once a’s buffers are empty,
it extracts its state and sends it to operator b. (3) Operator
b loads the state and (4) sends a restart signal to upstream
operators. Once upstream operators receive the signal they
can start processing tuples again.

Systems like ChronoStream [160] and CometCloud [151]
perform reconfiguration in a nearly livemanner by leveraging
a proactive replication strategy. The core idea is to maintain
state backup copies in multiple nodes. To this end, state is
organized into smaller partitions, each of which can be trans-
ferred independently. Nodes have a set of primary state slices
and a set of secondary state slices. Figure9 shows an example
of ChronoStream’s protocol.

State transfer Another important decision to make when
migrating state from one worker to another is whether the
state is moved all-at-once or in a progressive manner. If a
large amount of state needs to be transferred, moving it in one
operation might cause high latency during re-configuration.
Alternatively, progressive migration [84] moves state in
smaller pieces andflattens latency spikes by interleaving state
transfer with processing. On the downside, progressive state
migration might lead to longer migration duration.

6.4 First generation versus second generation

Comparing early tomodern approaches, wemake the follow-
ing observations. While load shedding was popular among
early stream processors, modern systems do not favor the

Fig. 9 An example of the proactive replication protocol. To move slice
#1 from Nsrc to Ndest , the mechanism executes the following steps:
(1) the leader instructs Ndest to load slice #1, (2) Ndest loads slice #1
and sends ack to the leader, (3) the leader notifies upstream operators
to replay events, (4) upstream start rerouting events to Ndest , (5) the
leader notifies Nsrc that the transfer is complete and Nsrc moves slice
#1 to the backup group.

approach of degrading result quality anymore. Another
important difference is that load management approaches
in first-generation systems used to affect the execution of
multiple queries as they formed a shared dataflow plan (cf.
Sect. 2). Queries in modern systems are typically executed
as independent jobs, thus, back-pressure on a certain query
will not affect the execution of other queries running on the
same cluster. Scaling down is a quite recent requirement that
was not a matter of concern before cloud deployments. The
dependence on persistent queues for providing correctness
guarantees is another recent characteristic, mainly required
by systems employing back-pressure. Finally, while early
load shedding and load-aware scheduling techniques assume
a limited set of operatorswhose properties and characteristics
are stable throughout execution, modern systems implement
general load management methods that are applicable even
if cost and selectivity vary or are unknown.

6.5 Open problems

Adaptive schedulingmethods have been studied so far in the
context of simple query plans with operators whose selectivi-
ties and costs are fixed and known. It is unclear whether these
methods generalize to arbitrary plans, operators with UDFs,
general windows, and custom joins. Load-aware scheduling
can further cause starvation and increased per-tuple latency,
as low-priority operators with records in their input buffers
would need to wait a long time during bursts. Finally, exist-
ing methods are restricted to streams that arrive in timestamp
order and do not support out-of-order or delayed events.

Re-configurable stream processing is a quite recent
research area, where stream processors are designed to
not only be capable of adjusting their resource alloca-

123



534 M. Fragkoulis et al.

tion but other elements of their runtime as well. Elasticity,
the ability of a stream processor to dynamically adjust
resource allocation can be considered as a special case of
re-configuration. Others include code updates for bug fixes,
version upgrades, or business-logic changes, execution-plan
switching , dynamic scheduling and operator placement, as
well as skew and straggler mitigation. So far, each of the
aforementioned re-configuration scenarios have been largely
studied in isolation. To provide general re-configuration
and self-management, future systems will need to take into
account how optimizations interact with each other.

7 Lessons learned and the road ahead

7.1 Discussion of design considerations

In the previous sections, we examined the evolution of
progress tracking, state management, fault tolerance, and
load management throughout the generations of streaming
systems. While we have so far discussed each of these con-
cerns in isolation, in practice, architectural decisions often
have to simultaneously consider multiple of these aspects. In
the following, we discuss how functional choices for han-
dling time, state, fault tolerance, and reconfiguration can
impact one another or become incompatible.

Managing event order and timeliness does not only affect
semantics and result completeness, but can also have sig-
nificant impact on the design of the state management and
fault tolerance components. To illustrate this association, let
us consider systems employing low watermarks for man-
aging disorder. Watermarks inherently encode a trade-off
between latency and result completeness, which, in turn
directly affects the size of state that needs to be buffered
and checkpointed. Slow watermarks can potentially lead to
higher state size and longer checkpoint duration. The archi-
tecture of the watermark propagation mechanism can also
affect the recovery and reconfiguration duration. External

watermarkmanagement, as inGoogleDataflow [15], enables
faster recovery and reconfiguration, as the central authority
can be queried to retrieve progress information. In contrast,
in-band mechanisms, such as the one in Flink, need to prop-
agate watermarks from the sources to the affected parts of the
dataflow. Interestingly, we observe that systemswith external
state management tend to rely on external progress tracking
as well, though in-band approaches are not incompatible.

It comes as no surprise that the approach to state manage-
ment must be designed with fault tolerance and reconfigura-
tion as first-class concerns. In fact, modern systems often rely
on the same mechanism (e.g. consistent snapshots) for fault
tolerance and reconfiguration. Decoupling state from com-
pute substantially simplifies recovery and load management,
as the external state store and the compute resources can be
scaled and configured independently. Finally, we note that
the load management approach directly impacts the result
semantics. For example, load shedding is inherently incom-
patible with exactly-once guarantees.

7.2 Evolution take-aways

The typical streamprocessing systemarchitecture has evolved
significantly over the last three decades. While early systems
extended relational execution engines with data streaming
capabilities, the design ofmodern systems evolved to address
new application demands and exploit advances in cloud com-
puting and hardware. Table 6 summarizes our main findings
concerning the evolution of stream processing systems. In
this section, we aim to shed light on the reasons why some
approaches persisted throughout generations, while others
had to be adjusted or abandoned.

While early systems often returned approximate results,
later generations rejected the notion that stream processing
is a synonym of approximate computation. In particu-
lar, streaming systems that originated as extensions of the
MapReduce model focused on providing exact and correct
results, even under failures. To some extent, approximate pro-

Table 6 Evolution of streaming systems

1st generation 2nd–3rd generation

Results Approximate or exact Exact

Programming interface SQL extensions, CQL UDF-heavy—Java, Scala, Python, SQL-like, etc.

Query plans Global, optimized, with pre-defined operators Independent, with custom operators

Query execution (Mostly) scale-up Distributed

Parallelism Pipeline Data, pipeline, task

Time and progress Heartbeats, slack, punctuations Low-watermark, frontiers

State management Shared synopses, in-memory Per query, partitioned, persistent, larger-than-memory

Fault tolerance HA-focused, limited correctness guarantess Distributed snapshots, exactly-once

Load management Load shedding, load-aware scheduling Backpressure, elasticity

123



A survey on the evolution of stream… 535

cessing was a necessity in early systems that were deployed
on restricted resources. By carefully dropping some events
or emitting early incomplete results, these systems achieved
high availability and low latency. In contrast, streaming
systems that were designed for cloud environments could
leverage the capability of adjusting their resource require-
ments according to the workload. As a result, these systems
persist or redistribute excess load to avoid data loss and
guarantee exact outputs. Despite differences in the reaction
mechanism, we emphasize that the problem of detecting
and quantifying overload is fundamental in both early and
modern systems and it has been consistently addressed with
continuous monitoring and feedback control.

In terms of programming interface, we observe a full
circle. As first-generation streaming systems evolved from
database management systems, the first programming inter-
faces for data stream queries were designed around SQL-like
languages.On the other hand, second-generation systems are
UDF-centric and favor general-purpose programming lan-
guages, such as Java, Scala, and Python. However, as stream
processing tools are becoming widespread, we witness a
trend to return to extensions for streaming SQL [32] to
accommodate a larger variety of users and use cases.

Over the years, the design of streaming query execu-
tion engines has also gradually transitioned from mainly
centralized to mainly distributed, exploiting data, pipeline,
and task parallelism. Most modern streaming systems tar-
get shared-nothing in-house or on-cloud clusters. This shift
has also impacted architectural decisions in query schedul-
ing, optimization, and deployment. 1st-generation systems
commonly share resources among multiple queries that are
jointly optimized and executed. On the contrary, modern sys-
tems provide per-query resource allocation and guide users
to develop and deploy independent applications, even if they
ingest events from common sources. While this prevail-
ing approach may lead to higher resource requirements and
redundant computation, it offers more flexibility. Separate
query deployments enable faster and easier fault recovery
and reconfiguration.

Regarding time, order, and progress, many of the inven-
tions of the past proved to have survived the test of time,
since they continue to hold a place in modern streaming
systems. In particular, Millwheel and the Google Dataflow
Model popularized punctuations, watermarks, the out-of-
order architecture, and triggers for revision processing.
Streaming state management witnessed a major shift, from
specialized in-memory synopses to large partitioned and per-
sistent state supported today. To some extent, this change is
a consequence of shifting from approximate to exact com-
putation and from centralized to distributed and cloud-based
deployments. As a result, fault tolerance and high availabil-
ity also shifted towards passive replication and exactly-once
processing. Many approaches to fault tolerance and high

availability that are in use today, such as active and passive
replication and upstream backup, were already proposed in
1st-generation systems. However, later generations refined
these techniques and extended them to guarantee exactly-
once semantics.

In statemanagement, we identify themost radical changes
seen in data streaming so far. The most obvious advances
relate to the scalability of state and long-term persistence
in unbounded executions. Today’s systems have invested
thoroughly in providing transactional guarantees that are
in par with those of current database management systems.
Transactional stream processing has pivoted data streaming
beyond data analytics use cases and has also opened new
research directions in terms of efficient methods for backing
and accessing state that grows in unbounded terms. Stream
state and compute are gradually being decoupled, and this
trend allows for better optimizations, wider interoperabil-
ity with storage technologies as well as novel semantics for
shared and external state.

7.3 A future outlook

As we detailed throughout this survey, the landscape of data
streaming systems has changed significantly in recent years.
Yet, the road ahead for data streaming systems is still evi-
dently long and full of transformations. We list out ongoing
and future trends in stream processing in the key categories
of: serverless/cloud, query capabilities, edge and hardware
acceleration.

Serverless and cloud The advent of serverless comput-
ing has introduced new opportunities for processing and
analyzing data streams with greater flexibility and cost effi-
ciency. However, it also brings forth new challenges, such
as handling stateful operations, orchestrating and managing
resources in a highly volatile distributed environment, and
ensuring low-latency processing in the face of the inherent
unpredictability of serverless platforms. As data stream-
ing applications increasingly adopt serverless architectures,
addressing these challenges becomes crucial to harness the
full potential of serverless computing for real-time data pro-
cessing and analytics. The ability to tune schedulingof stream
tasks is also particularly promising in serverless and cloud
deployments,where virtualization necessitates runtime adap-
tation capabilities [110]. Lachesis [127] is one example of a
middleware designed for scheduling stream programs at run-
time. Meces [74] presents an effective method to frequently
migrate state across dynamic reconfigurations of stream pro-
cessing pipelines, whereas, Xu et.al [162] also investigate the
prospect of maintaining SLAs in multi-tenant environments.
Future research in serverless and cloud adaptation for stream-
ing systems is essential to gain a deeper understanding of
the performance trade-offs associatedwith statemanagement

123



536 M. Fragkoulis et al.

approaches, as well as to explore reconfiguration strategies in
the context of virtualized and highly dynamic infrastructures.

Query capabilities With the increased adoption of stateful
stream engines, a recent research focus targets the enhance-
ment of the stateful capabilities beyond local-only dataflow
access to the states. S-Query [159] examines the possibil-
ity of exposing operator states for external queries with
different isolation levels. Snapshotted state enables read-
only queries using snapshot isolation. Provenance in stream
queries is another emergent aspect of stream processing.
Provenance has multiple uses that are particularly interest-
ing in stream execution, such as explainability as well as
profiling of streaming queries. Ananke [126] is one exam-
ple of a provenance execution strategy. Future research on
query capabilities will further need to address the chal-
lenges of SQL integration (e.g., streams and tables [32]) and
develop new standards in how users can interact with stream
pipelines, beyond the restricted dataflow model.

Programming models for stateful serveless functions
Streaming dataflow systems at the moment are only pro-
grammable through functional-programming style dataflow
APIs. As a result, general cloud applications such as pay-
ment processing, reservation systems, inventory keeping,
and low-latency business workflows need to be rewritten by
programmers to match the event-driven dataflow paradigm.
Although it is possible to rewrite lots of applications in this
paradigm, it takes a considerable amount of programmer
training and effort to do so.We argue that streaming dataflow
systems would benefit from new programming abstractions
[128], for them to be adopted by programmers for general
cloud applications.

Transactional serverless functions Although it has been
shown that it is possible to introduce transaction coordina-
tion among stateful functions running on top of a streaming
dataflow system [60], we argue that a more efficient imple-
mentation of transactions would require the dataflow system
to be aware of transaction boundaries and to incorporate
transaction processing into its state management and fault-
tolerance protocols. The most important reason for using
dataflow systems for general cloud applications, is that mod-
ern streaming dataflow systems offer message processing
guarantees (exactly-once processing). As a result, program-
mers do not need to “pollute” their business logic with
consistency checks, state rollbacks, timeouts, retries, and
idempotency [94, 103].

Edge streaming The emergence of 5G and compatible edge
hardware has created great interest in moving data stream
pipelines to edge nodes (e.g., sensor devices, wearables,

mobiles, base-stations etc.). Moving processing closer to the
sources can lead to unmatched low processing-latency and
create pre-processing cost savings. Two major challenges
that are being addressed in this setting are low-end IoT
hardware execution and the decentralization of data stream-
ing pipelines. Edgewise [68] proposes a new schedulling
methodology for streaming tasks on IoT nodes employing a
more resource-lightweight processing and IO without heavy
compromises in performance. Similarly, Hazelcast Jet [72]
removes the cost of heavy persistent state and transactional
guarantees to compromise for low-latency and in-memory
processing. Portals [140, 141] proposes the use of pre-defined
transactional processing by dividing streams into atomic
segments called “atoms”. Atoms in portals instrument trans-
actional execution when different stream pipelines across
edge and cloud need to communicate data. Future research
in edge streaming will continue to investigate lightweight
techniques and their integration with data streaming systems
to enable efficient and low-latency processing in resource-
constrained environments.

Hardware acceleration Optimized codegeneration in stream
processing is currently on the rise due to the increased adop-
tion of accelerators in the form of GPUs and FPGAs, as
well as the proliferation of enhanced memory and storage
technologies, such as NVMEs. Among ongoing examples,
Brisk [166] is a showcases of stream scalability on shared-
memorymulticore architectures. FineStream [165] enhances
the performance of window-based execution for CPU-GPU
integrated architectures. A typical challenge when interfac-
ing with GPUs is the need to write custom driver instructions
for specific stream operators. One practical direction in
hardware acceleration is automated GPU execution directly
from translated bytecode code fragments in JVM-specific
streaming frameworks (e.g., Flink) as demonstrated in the
Tornado/GraalVM projects [97]. The prospect of using
FPGAs for data streaming has also been demonstrated in
the Fleet project [149]. Future research will need to explore
the potential of emerging hardware technologies, such as
RISC-V instruction sets, as well as new paradigms. Near-
Memory Computing (NMC) [139] is one such paradigm that
is particularly attractive for stream processing, which aims to
co-locate computing tasks with their corresponding address
space in the same chip, thereby, avoiding the Von-Neumann
data transfer bottleneck between RAM and CPU, which is
common in streaming applications.

Acknowledgements We thank the anonymous VLDBJ reviewers for
their detailed and valuable feedback on prior drafts of this paper. This
work was partially supported by a Google DAPA award,WASPNESTS
(Data-Bound Computing), and the Dutch Research Council (NWO)
Vidi project No. 19708.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-

123



A survey on the evolution of stream… 537

tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Apache Flink. http://flink.apache.org/. Last access: July (2023)
2. Apache flink statefun documentation. https://nightlies.apache.

org/flink/flink-statefun-docs-stable/. Last access: 2023-04-08
3. Apache Storm. http://storm.apache.org/. Last access: July (2023)
4. Arroyo. https://github.com/ArroyoSystems/arroyo. Last access:

July (2023)
5. Introduction to Kafka Streams. http://www.confluent.io/blog/

introducing-kafka-streams-stream-processing-_made-simple.
Last access: July (2023)

6. Materialize documentation. https://materialize.com/docs/. Last
access: July (2023)

7. Redis. https://redis.io/. Last access: July (2023)
8. Risingwave. https://github.com/risingwavelabs/risingwave. Last

access: July (2023)
9. TheTrident StreamProcessingProgrammingModel. http://storm.

apache.org/releases/0.10.0/Trident-tutorial.html. Last access:
July (2023)

10. Unaligned Checkpoints - Flink. https://nightlies.apache.org/
flink/flink-docs-release-1.17/docs/ops/state/checkpointing_
under_backpressure/#unaligned-checkpoints. Last access: July
(2023)

11. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherni-
ack, M., Hwang, J., Lindner, W., Maskey, A., Rasin, A., Ryvkina,
E., Tatbul, N., Xing, Y., Zdonik, S.B.: The design of the bore-
alis stream processing engine. In Second Biennial Conference on
Innovative Data Systems Research, CIDR 2005, Asilomar, CA,
USA, pp. 277–289, (2005)

12. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey,
C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Aurora: a
new model and architecture for data stream management. VLDB
J. 12(2), 120–139 (2003)

13. Akhter, A., Fragkoulis, M., Katsifodimos, A.: Stateful functions
as a service in action. Proc. VLDB Endow. 12(12), 1890–1893
(2019)

14. Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman,
J., Lax, R., McVeety, S., Mills, D., Nordstrom, P., Whittle, S.:
Millwheel: fault-tolerant stream processing at internet scale. Proc.
VLDB Endow. 6(11), 1033–1044 (2013)

15. Akidau, T., Begoli, E., Chernyak, S., Hueske, F., Knight, K.,
Knowles, K., Mills, D., Sotolongo, D.:Watermarks in stream pro-
cessing systems: semantics and comparative analysis of apache
flink and google cloud dataflow. Proc. VLDB Endow. 14(12),
3135–3147 (2021)

16. Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S.,
Fernández-Moctezuma, R.J., Lax, R., McVeety, S., Mills, D.,
Perry, F., Schmidt, E. et al.: The dataflow model: a practical
approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. In:VLDB, (2015)

17. Ali, M., Chandramouli, B., Goldstein, J., Schindlauer, R.: The
extensibility framework in Microsoft StreamInsight. In 2011

IEEE 27th International Conference on Data Engineering, pp.
1242–1253. IEEE, (2011)

18. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adap-
tive control of extreme-scale stream processing systems. In 26th
IEEE International Conference on Distributed Computing Sys-
tems (ICDCS’06), pp. 71–71. IEEE, (2006)

19. Arasu,A., Babcock, B., Babu, S., Cieslewicz, J., Datar,M., Ito, K.,
Motwani, R., Srivastava, U.,Widom, J.: Stream: the Stanford data
streammanagement system.Data StreamManage. Process. High-
Speed Data Streams, 317–336 (2016) <error l="303" c="Invalid
<error l="301" c="Invalid <error l="302" c="Invalid
command: paragraph not started." /> command: paragraph not
started." /> command: paragraph not started." />

20. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa,
I., Rosenstein, J., Widom, J.: STREAM: the stanford stream data
manager. In Halevy, A.Y., Ives, Z.G., Doan, A. (eds.) Proceedings
of the 2003ACMSIGMOD International Conference onManage-
ment of Data, San Diego, California, USA, June 9-12, 2003, p.
665. ACM, (2003)

21. Arasu, A., Babu, S., Widom, J.: The CQL continuous query lan-
guage: semantic foundations and query execution.VLDB J. 15(2),
121–142 (2006)

22. Arasu, A., Widom, J.: Resource sharing in continuous sliding-
window aggregates. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases, VLDB, pp. 336–347
(2004)

23. Armbrust, M., Das, T., Torres, J., Yavuz, B., Zhu, S., Xin, R.,
Ghodsi, A., Stoica, I., Zaharia, M.: In Proceedings of the 2018
International Conference on Management of Data, SIGMOD
Conference 2018, pp. 601–613. ACM, (2018)

24. Asyabi, E., Wang, Y., Liagouris, J., Kalavri, V., Bestavros, A.:
A new benchmark harness for systematic and robust evalua-
tion of streaming state stores. In Proceedings of the Seventeenth
European Conference on Computer Systems, EuroSys ’22, pp.
559-574, New York, NY, USA, (2022). Association for Comput-
ing Machinery

25. Avnur, R., Hellerstein, J.M.: Eddies: Continuously adaptive query
processing. In Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 261–272. ACM,
(2000)

26. Babcock, B., Babu, S., Datar, M., Motwani, R.: Chain: operator
scheduling for memory minimization in data stream systems. In
Proceedings of the 2003ACMSIGMODInternationalConference
on Management of Data, pp. 253–264. ACM, (2003)

27. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Mod-
els and issues in data stream systems. In Proceedings of the
Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 1–16. ACM, (2002)

28. Babcock, B., Datar, M., Motwani, R.: Load shedding for aggre-
gation queries over data streams. In Proceedings of the 20th
International Conference on Data Engineering, ICDE 2004, pp.
350–361, (2004)

29. Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.:
Adaptive ordering of pipelined stream filters. In Proceedings of
the ACM SIGMOD International Conference on Management of
Data, pp 407–418, (2004)

30. Balazinska,M., Balakrishnan,H.,Madden, S.R., Stonebraker,M.:
Fault-tolerance in the Borealis distributed stream processing sys-
tem. ACM TODS 33(1), 44 (2008)

31. Barga, R.S., Goldstein, J., Ali, M.H., Hong, M.: Consistent
streaming through time: a vision for event stream processing. In
Third Biennial Conference on Innovative Data Systems Research,
CIDR pp. 363–374 (2007)

32. Begoli, E., Akidau, T., Hueske, F., Hyde, J., Knight, K., Knowles,
K.L.: One SQL to rule them all - an efficient and syntactically
idiomatic approach to management of streams and tables. In Pro-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://flink.apache.org/
https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://nightlies.apache.org/flink/flink-statefun-docs-stable/
http://storm.apache.org/
https://github.com/ArroyoSystems/arroyo
http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-_made-simple
http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-_made-simple
https://materialize.com/docs/
https://redis.io/
https://github.com/risingwavelabs/risingwave
http://storm.apache.org/releases/0.10.0/Trident-tutorial.html
http://storm.apache.org/releases/0.10.0/Trident-tutorial.html
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/ops/state/checkpointing_under_backpressure/#unaligned-checkpoints
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/ops/state/checkpointing_under_backpressure/#unaligned-checkpoints
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/ops/state/checkpointing_under_backpressure/#unaligned-checkpoints


538 M. Fragkoulis et al.

ceedings of the 2019 International Conference on Management
of Data, SIGMOD Conference 2019, pp. 1757–1772. ACM

33. Botan, I., Derakhshan, R., Dindar, N., Haas, L.M., Miller, R.J.,
Tatbul, N.: SECRET: amodel for analysis of the execution seman-
tics of stream processing systems. Proc. VLDB Endow. 3(1),
232–243 (2010)

34. Burckhardt, S., Gillum, C., Justo, D., Kallas, K., McMahon,
C., Meiklejohn, C.S.: Durable functions: semantics for stateful
serverless. Proc. ACMProgram. Lang. 5(OOPSLA), 1–27 (2021)

35. Carbone, P.: Scalable and Reliable Data Stream Processing. PhD
thesis, KTH Royal Institute of Technology (2018)

36. Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., Tzoumas,
K.: State management in Apache Flink®: consistent stateful
distributed streamprocessing. Proc. VLDBEndow. 10(12), 1718–
1729 (2017)

37. Carbone, P., Ewen, S., Haridi, S., Katsifodimos, A., Markl, V.,
Tzoumas, K.: Apache Flink: Stream and batch processing in a
single engine. IEEE Data Eng. Bull., 38 (2015)

38. Carbone, P., Fóra, G., Ewen, S., Haridi, S., Tzoumas, K.:
Lightweight asynchronous snapshots for distributed dataflows.
(2015) arXiv preprint arXiv:1506.08603

39. Carbone, P., Fragkoulis, M., Kalavri, V., Katsifodimos, A.:
Beyond analytics: The evolution of stream processing systems.
In Proceedings of the 2020 International Conference on Manage-
ment of Data, SIGMOD Conference 2020, pp. 2651–2658

40. Carney, D., Çetintemel, U., Rasin, A., Zdonik, S. B., Cherniack,
M., Stonebraker, M.: Operator scheduling in a data stream man-
ager. In Proceedings of 29th International Conference on Very
Large Data Bases, VLDB 2003, pp. 838–849, (2003)

41. Çetintemel, U., Abadi, D., Ahmad, Y., Balakrishnan, H., Bal-
azinska, M., Cherniack, M., Hwang, J.-H., Madden, S., Maskey,
A., Rasin, A. et al.: The aurora and borealis stream processing
engines. In Data Stream Management, pp. 337–359. Springer
(2016)

42. Çetintemel, U., Du, J., Kraska, T.,Madden, S.,Maier, D.,Meehan,
J., Pavlo,A., Stonebraker,M., Sutherland, E., Tatbul,N., Tufte,K.,
Wang, H., Zdonik, S.B.: S-store: a streaming newsql system for
big velocity applications. Proc. VLDB Endow. 7(13), 1633–1636
(2014)

43. Chandramouli, B., Goldstein, J.: Shrink—prescribing resiliency
solutions for streaming. Proc. VLDB Endow. 10(5), 505–516
(2017)

44. Chandramouli, B., Goldstein, J., Barnett, M., DeLine, R., Platt,
J.C., Terwilliger, J.F., Wernsing, J.: Trill: a high-performance
incremental query processor for diverse analytics. Proc. VLDB
Endow. 8(4), 401–412 (2014)

45. Chandramouli, B., Goldstein, J., Li, Y.: Impatience is a virtue:
revisiting disorder in high-performance log analytics. In 34th
IEEE International Conference on Data Engineering, ICDE 2018,
pp. 677–688, (2018)

46. Chandramouli, B., Goldstein, J., Maier, D.: On-the-fly progress
detection in iterative stream queries. Proc. VLDB Endow. 2(1),
241–252 (2009)

47. Chandramouli, B., Prasaad, G., Kossmann, D., Levandoski, J.J.,
Hunter, J., Barnett, M.: FASTER: a concurrent key-value store
with in-place updates. In Proceedings of the 2018 International
Conference onManagement of Data, SIGMODConference 2018,
pp. 275–290

48. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J.,
Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S.,
Reiss, F., Shah, M.A.: TelegraphCQ: Continuous dataflow pro-
cessing. In Proceedings of the 2003 ACMSIGMOD International
Conference on Management of Data, p. 668

49. Chandy, K.M., Lamport, L.: Distributed snapshots: determining
global states of distributed systems. ACM Trans. Comput. Syst.
(TOCS) 3(1), 63–75 (1985)

50. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a
distributed storage system for structured data. ACM TOCS 26(2),
26 (2008)

51. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: a scalable
continuous query system for internet databases. pp. 379–390

52. Cherniack,M., Balakrishnan,H., Balazinska,M., Carney,D., Çet-
intemel, U., Xing, Y., Zdonik, S. B.: Scalable distributed stream
processing. In First Biennial Conference on Innovative Data Sys-
tems Research, CIDR (2003)

53. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Fur-
man, J.J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild,
P., et al.: Spanner: Google’s globally distributed database. ACM
TOCS 31(3), 22 (2013)

54. Cranor, C. D., Johnson, T., Spatscheck, O., Shkapenyuk, V.:
Gigascope: A stream database for network applications. In Pro-
ceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, pp. 647–651

55. Cugola, G., Margara, A.: Processing flows of information: from
data stream to complex event processing. ACM Comput. Surv.
44(3), 61 (2012)

56. da Silva, G.J., Zheng, F., Debrunner, D., Wu, K., Dogaru, V.,
Johnson, E., Spicer, M., Sariyüce, A.E.: Consistent regions: guar-
anteed tuple processing in IBM streams. Proc. VLDB. Endow.
9(13), 1341–1352 (2016)

57. Das, A., Gehrke, J., Riedewald, M.: Approximate join processing
over data streams. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pp. 40–51

58. Dayarathna, M., Perera, S.: Recent advancements in event pro-
cessing. ACM Comput. Surv. 51(2), 35 (2018)

59. de Assuncao, M.D., da Silva Veith, A., Buyya, R.: Distributed
data stream processing and edge computing: a survey on resource
elasticity and future directions. J. Netw. Comput. Appl. 103, 1–17
(2018)

60. de Heus, M., Psarakis, K., Fragkoulis, M., Katsifodimos, A.: Dis-
tributed transactions on serverless stateful functions. In Proceed-
ings of the 15th ACM International Conference on Distributed
and Event-based Systems, pp. 31–42 (2021)

61. Dean, J., Ghemawat, S.: MapReduce: simplified data processing
on large clusters. In 6th Symposium on Operating System Design
and Implementation (OSDI 2004), pp. 137–150. USENIX Asso-
ciation

62. Elnozahy, E.N.M., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A sur-
vey of rollback-recovery protocols in message-passing systems.
ACM Comput. Surv. 34(3), 34 (2002)

63. Farhat, O., Daudjee, K., Querzoni, L.: Klink: Progress-aware
scheduling for streaming data systems. In Proceedings of the
2021 ACM SIGMOD International Conference on Management
of Data, pp. 485–498

64. Fernandez, R.C., Migliavacca, M., Kalyvianaki, E., Pietzuch,
P.R.: Integrating scale out and fault tolerance in stream process-
ing using operator state management. In Proceedings of the ACM
SIGMODInternationalConference onManagement ofData, SIG-
MOD (2013), pp. 725–736

65. Fernandez, R.C., Migliavacca, M., Kalyvianaki, E., Pietzuch,
P.R.: Making state explicit for imperative big data processing.
In 2014 USENIX Annual Technical Conference, USENIX ATC
’14, pp. 49–60

66. Floratou, A., Agrawal, A., Graham, B., Rao, S., Ramasamy, K.:
Dhalion: self-regulating stream processing in heron. Proc. VLDB
Endow. 10(12), 1825–1836 (2017)

67. Fu, T.Z.J., Ding, J., Ma, R.T.B., Winslett, M., Yang, Y., Zhang,
Z.: DRS: auto-scaling for real-time stream analytics. IEEE/ACM
Trans. Netw. 25(6), 15 (2017)

123

http://arxiv.org/abs/1506.08603


A survey on the evolution of stream… 539

68. Fu, X., Ghaffar, T., Davis, J.C., Lee, D.: Edgewise: a better stream
processing engine for the edge. In 2019 USENIX Annual Tech-
nical Conference, USENIX ATC 2019, pp. 929–946 (2019)

69. Garofalakis, M., Gehrke, J., Rastogi, R.: Data stream manage-
ment: processing high-speed data streams. Springer, Berlin (2007)

70. Gedik, B.: Partitioning functions for stateful data parallelism in
stream processing. VLDBJ 23(4), 517–539 (2014)

71. Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for
data stream processing. IEEE Trans. Parallel Distrib. Syst. 25(6),
17 (2014)

72. Gencer, C., Topolnik, M., Durina, V., Demirci, E., Kahveci,
E.B., Gürbüz, A., Bartók, J., Gierlach, G., Hartman, F., Yilmaz,
U., Lukás, O., Dogan, M., Mandouh, M., Fragkoulis, M., Kat-
sifodimos, A.: Hazelcast jet Low-latency stream processing at
the 99.99th percentile. Proc. VLDB Endow. 14(12), 3110–3121
(2021)

73. Gray, J., Siewiorek, D.P.: High-availability computer systems.
Computer 24(9), 10 (1991)

74. Gu, R., Yin, H., Zhong, W., Yuan, C., Huang, Y.: Meces: latency-
efficient rescaling via prioritized state migration for stateful
distributed stream processing systems. In: USENIXAnnual Tech-
nical Conference. USENIX ATC, pp. 539–556 (2022)

75. Gu, Y., Zhang, Z., Ye, F., Yang, H., Kim, M., Lei, H., Liu, Z.:
An empirical study of high availability in stream processing sys-
tems. In Middleware 2008, ACM/IFIP/USENIX 9th International
Middleware Conference, p. 23

76. Gulisano, V., Jiménez-Peris, R., Patiño-Martínez, M., Soriente,
C., Valduriez, P.: StreamCloud: an elastic and scalable data
streaming system. IEEE Trans. Parallel Distrib. Syst. 23(12), 15
(2012)

77. Hammad, M.A., Franklin, M.J., Aref, W.G., Elmagarmid, A.K.:
Scheduling for shared window joins over data streams. In Pro-
ceedings of 29th International Conference on Very Large Data
Bases, VLDB (2003), pp. 297–308

78. Heinze, T., Aniello, L., Querzoni, L., Jerzak, Z.: Cloud-based data
stream processing. In The 8th ACM International Conference on
Distributed Event-Based Systems, DEBS ’14, pp. 238–245

79. Heinze, T., Jerzak, Z., Hackenbroich, G., Fetzer, C.: Latency-
aware elastic scaling for distributed data stream processing
systems. In The 8thACMInternational Conference onDistributed
Event-Based Systems, DEBS ’14, pp. 13–22

80. Heinze, T., Pappalardo, V., Jerzak, Z., Fetzer, C.: Auto-scaling
techniques for elastic data stream processing. In The 8th ACM
International Conference on Distributed Event-Based Systems,
DEBS ’14, pp. 318–321

81. Heinze, T., Zia, M., Krahn, R., Jerzak, Z., Fetzer, C.: An adaptive
replication scheme for elastic data stream processing systems. In
Proceedings of the 9th ACM International Conference on Dis-
tributed Event-Based Systems, DEBS ’15, pp. 150–161

82. Hirzel, M., Baudart, G., Bonifati, A., Della Valle, E., Sakr, S.,
Akrivi Vlachou, A.: Stream processing languages in the big data
era. SIGMOD Record, 47(2), (2018)

83. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A
catalog of stream processing optimizations. ACM Comput. Surv.
46(4), 34 (2014)

84. Hoffmann, M., Lattuada, A., McSherry, F., Kalavri, V., Liagouris,
J., Roscoe, T.: Megaphone: Latency-conscious state migration
for distributed streaming dataflows. Proc. VLDB Endow. 12(9),
1002–1015 (2019)

85. Hwang, J.,Balazinska,M.,Rasin,A.,Çetintemel,U., Stonebraker,
M., Zdonik, S.B.: High-availability algorithms for distributed
stream processing. In Proceedings of the 21st International Con-
ference on Data Engineering, ICDE 2005, pp. 779–790

86. Hwang, J., Xing, Y., Çetintemel, U., Zdonik, S.B.: A cooperative,
self-configuring high-availability solution for stream processing.

In Proceedings of the 23rd International Conference onDataEngi-
neering, ICDE 2007, pp. 176–185

87. Johnson, T., Muthukrishnan, S., Shkapenyuk, V., Spatscheck, O.:
A heartbeat mechanism and its application in gigascope. In Pro-
ceedings of the 31st International Conference on Very Large Data
Bases, pp. 1079–1088, (2005)

88. Kalavri, V., Liagouris, J.: In support of workload-aware streaming
state management. In 12th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 20), (2020)

89. Kalavri, V., Liagouris, J., Hoffmann, M., Dimitrova, D.C., For-
shaw, M., Roscoe, T.: Three steps is all you need: fast, accurate,
automatic scaling decisions for distributed streaming dataflows.
In 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2018, pp. 783–798

90. Kang, J., Naughton, J.F., Viglas, S.: Evaluating window joins over
unbounded streams. In Proceedings of the 19th International Con-
ference on Data Engineering, pp. 341–352

91. Katsifodimos, A., Fragkoulis, M.: Operational stream process-
ing: towards scalable and consistent event-driven applications.
In Advances in Database Technology - 22nd International Con-
ference on Extending Database Technology, EDBT 2019, pp.
682–685

92. Katsipoulakis, N.R., Labrinidis, A., Chrysanthis, P.K.: Concept-
driven load shedding: reducing size and error of voluminous and
variable data streams. In IEEE International Conference on Big
Data (IEEE BigData 2018), pp. 418–427

93. Khoshkbarforoushha, A., Khosravian, A., Ranjan, R.: Elasticity
management of streaming data analytics flows on clouds. J. Com-
put. Syst. Sci. 89, 24–40 (2017)

94. Killalea, T.: The hidden dividends of microservices. ACMQueue,
(2016)

95. Kirpichov, E., Denielou, M.: No shard left behind: dynamic work
rebalancing in Google Cloud Dataflow. https://cloud.google.
com/blog/big-data/2016/05/no-shard-left-behind-dynamic-
work-rebalancing-in-google-cloud-dataflow. Last access: July
(2023)

96. Kleppmann, M., Beresford, A.R., Svingen, B.: Online event
processing: achieving consistency where distributed transactions
have failed. ACM Queue, (2019)

97. Kotselidis, C., Diamantopoulos, S., Mylonas, G.: A big data soft-
ware paradigm for heterogeneous cloud deployments. Inf. Intell.
Syst. Appl. 1(1), 6–10 (2020)

98. Kreps, J., Narkhede, N., Rao, J. et al.: Kafka: a distributed mes-
saging system for log processing. NetDB, (2011)

99. Krishnamurthy, S., Franklin, M.J., Davis, J., Farina, D., Golovko,
P., Li, A., Thombre, N.: Continuous analytics over discontinuous
streams. In Proceedings of the ACMSIGMOD International Con-
ference on Management of Data, SIGMOD 2010, pp. 1081–1092

100. Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C.,
Mittal, S., Patel, J. M., Ramasamy, K., Taneja, S.: Twitter heron:
Stream processing at scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pp.
239–250

101. Kung, H. T., Blackwell, T., Chapman, A.: Credit-based flow con-
trol for ATM networks: Credit update protocol, adaptive credit
allocation and statisticalmultiplexing. In Proceedings of theACM
SIGCOMM1994 Conference on Communications Architectures,
Protocols and Applications, pp. 101–114

102. Kwon, Y., Balazinska,M., Greenberg, A.G.: Fault-tolerant stream
processing using a distributed, replicated file system. Proc. VLDB
Endow. 1(1), 574–585 (2008)

103. Laigner, R., Zhou, Y., Salles, M.A.V., Liu, Y., Kalinowski, M.:
Data management in microservices: State of the practice, chal-
lenges, and research directions. Proc. VLDB Endow. 14(13),
(2021)

123

https://cloud.google.com/blog/big-data/2016/05/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow
https://cloud.google.com/blog/big-data/2016/05/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow
https://cloud.google.com/blog/big-data/2016/05/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow


540 M. Fragkoulis et al.

104. Lamport, L.: Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM 21(7), 558–565 (1978)

105. Lee, G., Maeng, J., Park, J., Seo, J., Cho, H., Yang, Y., Um, T.,
Lee, J., Lee, J.W., Chun, B.-G.: Flowkv: a semantic-aware store
for large-scale state management of stream processing engines. In
Proceedings of the Eighteenth EuropeanConference onComputer
Systems, EuroSys ’23, pp. 768–783, NewYork, NY,USA, (2023).
Association for Computing Machinery

106. Leibiusky, J., Eisbruch, G., Simonassi, D.: Getting started with
Storm. O’Reilly Media, Inc., (2012)

107. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane,
no gain: efficient evaluation of sliding-window aggregates over
data streams. SIGMOD Rec. 34(1), 39–44 (2005)

108. Li, J., Tufte, K., Shkapenyuk, V., Papadimos, V., Johnson, T.,
Maier, D.: Out-of-order processing: a new architecture for high-
performance stream systems. Proc. VLDB Endow. 1(1), 274–288
(2008)

109. Lin, W., Fan, H., Qian, Z., Xu, J., Yang, S., Zhou, J., Zhou, L.:
Streamscope: continuous reliable distributed processing of big
data streams. In 13th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2016, pp. 439–453

110. Liu, X., Buyya, R.: Resource management and scheduling in
distributed stream processing systems: a taxonomy, review, and
future directions. ACM Comput. Surv. (CSUR) 53(3), 1–41
(2020)

111. Lohrmann, B., Janacik, P., Kao, O.: Elastic stream processing
with latency guarantees. In 35th IEEE International Conference
on Distributed Computing Systems, ICDCS 2015, pp. 399–410

112. Mai, L., Zeng, K., Potharaju, R., Xu, L., Suh, S., Venkatara-
man, S., Costa, P., Kim, T., Muthukrishnan, S., Kuppa, V., et al.:
Chi: a scalable and programmable control plane for distributed
stream processing systems. Proc. VLDB Endow. 11(10), 1303–
1316 (2018)

113. Maier, D., Li, J., Tucker, P.A., Tufte, K., Papadimos, V.: Semantics
of data streams and operators. In Database Theory - ICDT 2005,
10th International Conference, vol. 3363, pp. 37–52

114. Manku, G. S., Motwani, R.: Approximate frequency counts over
data streams. In Proceedings of 28th International Conference on
Very Large Data Bases, VLDB 2002, pp. 346–357

115. Matteis, T.D., Mencagli, G.: Elastic scaling for distributed
latency-sensitive data stream operators. In 25th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based
Processing, PDP 2017, pp. 61–68

116. Meehan, J., Tatbul, N., Zdonik, S., Aslantas, C., Çetintemel, U.,
Du, J., Kraska, T., Madden, S., Maier, D., Pavlo, A., Stonebraker,
M., Tufte, K., Wang, H.: S-Store: streaming meets transaction
processing. Proc. VLDB Endow. 8(13), 2134–2145 (2015)

117. Mei, Y., Cheng, L., Talwar, V., Levin, M.Y., Jacques-Silva, G.,
Simha, N., Banerjee, A., Smith, B., Williamson, T., Yilmaz, S.,
Chen, W., Chen, G.J.: Turbine: Facebook’s service management
platform for stream processing. In 36th IEEE International Con-
ference on Data Engineering, ICDE 2020, pp. 1591–1602

118. Migliavacca, M., Eyers, D., Bacon, J., Papagiannis, Y., Shand,
B., Pietzuch, P.: SEEP: scalable and elastic event processing. In
Middleware Posters and Demos, (2010)

119. Monte, B.D., Zeuch, S., Rabl, T., Markl, V.: Rhino: efficient
management of very large distributed state for stream process-
ing engines. In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference, pp. 2471–2486

120. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P.,
Abadi, M.: Naiad: a timely dataflow system. In ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP, pp.
439–455

121. Murray, D.G., McSherry, F., Isard, M., Isaacs, R., Barham, P.,
Abadi, M.: Incremental, iterative data processing with timely
dataflow. Commun. ACM 59(10), 75–83 (2016)

122. Mutschler, C., Philippsen, M.: Reliable speculative processing of
out-of-order event streams in generic publish/subscribe middle-
wares. In The 7th ACM International Conference on Distributed
Event-Based Systems, DEBS ’13, pp. 147–158

123. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed
stream computing platform. In ICDMW 2010, The 10th IEEE
International Conference on Data Mining Workshops, pp. 170–
177

124. Noghabi, S.A., Paramasivam,K., Pan,Y., Ramesh,N., Bringhurst,
J., Gupta, I., Campbell, R.H.: Stateful scalable stream processing
at LinkedIn. Proc. VLDB Endow. 10(12), 1634–1645 (2017)

125. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The log-structured
merge-tree (lsm-tree). Acta Inf. 33(4), 351–385 (1996)

126. Palyvos-Giannas, D., Havers, B., Papatriantafilou, M., Gulisano,
V.: Ananke: a streaming framework for live forward provenance.
Proc. VLDB Endow. 14(3), 391–403 (2020)

127. Palyvos-Giannas, D., Mencagli, G., Papatriantafilou, M.,
Gulisano, V.: Lachesis: a middleware for customizing os schedul-
ing of stream processing queries. In Proceedings of the 22nd
International Middleware Conference, pp. 365–378 (2021)

128. Psarakis, K., Zorgdrager, W., Fragkoulis, M., Salvaneschi, G.,
Katsifodimos, A.: Stateful entities: object-oriented cloud appli-
cations as distributed dataflows. In 27th International Conference
on Extending Database Technology, pp. 15–21, (2024)

129. Qian, Z., He, Y., Su, C., Wu, Z., Zhu, H., Zhang, T., Zhou, L.,
Yu, Y., Zhang, Z.: Timestream: reliable stream computation in
the cloud. In Eighth Eurosys Conference 2013, EuroSys ’13, pp.
1–14

130. Raman,V.,Raman,B.,Hellerstein, J.M.:Online dynamic reorder-
ing for interactive data processing. In VLDB’99, Proceedings of
25th International Conference onVeryLargeDataBases, pp. 709–
720, (1999)

131. Rameshan, N., Liu, Y., Navarro, L., Vlassov, V.: Hubbub-
scale: towards reliable elastic scaling under multi-tenancy. In
IEEE/ACM 16th International Symposium on Cluster, Cloud and
Grid Computing, CCGrid 2016, pp. 233–244 (2016)

132. Rivetti, N., Anceaume, E., Busnel, Y., Querzoni, L., Sericola,
B.: Online scheduling for shuffle grouping in distributed stream
processing systems. In Proceedings of the 17th InternationalMid-
dleware Conference, pp. 1–12, (2016)

133. Rivetti, N., Querzoni, L., Anceaume, E., Busnel, Y., Sericola,
B.: Efficient key grouping for near-optimal load balancing in
stream processing systems. In Proceedings of the 9th ACM Inter-
national Conference on Distributed Event-Based Systems, pp.
80–91, (2015)

134. Röger, H., Mayer, R.: A comprehensive survey on parallelization
and elasticity in stream processing. ACM Comput. Surv. 52(2),
1–37 (2019)

135. Ryvkina, E., Maskey, A., Cherniack, M., Zdonik, S. B.: Revision
processing in a stream processing engine: a high-level design. In
Proceedings of the 22nd International Conference on Data Engi-
neering, ICDE 2006, p. 141

136. Shah, M.A., Hellerstein, J.M., Brewer, E.A.: Highly-available,
fault-tolerant, parallel dataflows. In Weikum, G., König, A.C.
Deßloch, S. (eds.), Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 827–838

137. Shah,M.A.,Hellerstein, J.M., Chandrasekaran, S., Franklin,M.J.:
Flux: an adaptive partitioning operator for continuous query sys-
tems. In Proceedings of the 19th International Conference onData
Engineering, pp. 25–36

138. Silvestre, P.F., Fragkoulis, M., Spinellis, D., Katsifodimos, A.:
Clonos: consistent causal recovery for highly-available streaming
dataflows. In SIGMOD ’21: International Conference on Man-
agement of Data, pp. 1637–1650

139. Singh, G., Chelini, L., Corda, S., Javed Awan, A., Stuijk, S., Jor-
dans, R., Corporaal, H., Boonstra, A.-J.: A reviewof near-memory

123



A survey on the evolution of stream… 541

computing architectures: opportunities and challenges. In 2018
21st Euromicro Conference on Digital System Design (DSD),
pp. 608–617, Prague, August (2018). IEEE

140. Spenger, J., Carbone, P., Haller, P.: Portals: an extension of
dataflow streaming for stateful serverless. In Proceedings of the
2022 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software,
pp. 153–171, (2022)

141. Spenger, J., Huang, C., Haller, P., Carbone, P.: Portals: a showcase
of multi-dataflow stateful serverless. Proc. VLDBEndow. 16(12),
4054–4057 (2023)

142. Srivastava, U., Widom, J.: Flexible time management in
data stream systems. In Proceedings of the Twenty-third
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pp. 263–274

143. Su, L., Zhou, Y.: Tolerating correlated failures in massively
parallel stream processing engines. In 32nd IEEE International
Conference on Data Engineering, ICDE 2016, pp. 517–528

144. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., Stone-
braker, M.: Load shedding in a data stream manager. In VLDB,
(2003)

145. Tatbul, N., Çetintemel, U., Zdonik, S. B.: Staying FIT: efficient
load shedding techniques for distributed stream processing. In
Proceedings of the 33rd International Conference on Very Large
Data Bases 2007, pp. 159–170

146. Tatbul, N., Zdonik, S.B.: Window-aware load shedding for aggre-
gation queries over data streams. In Proceedings of the 32nd
International Conference on Very Large Data Bases 2006, pp.
799–810

147. Tatbul, N., Zdonik, S.B., Meehan, J., Aslantas, C., Stonebraker,
M., Tufte, K., Giossi, C., Quach, H.: Handling shared, mutable
state in stream processing with correctness guarantees. IEEEData
Eng. Bull. 38, 94–104 (2015)

148. Terry, D.B., Goldberg, D., Nichols, D.A., Oki, B.M.: Continu-
ous queries over append-only databases. In Proceedings of the
1992 ACM SIGMOD International Conference on Management
of Data, pp. 321–330

149. Thomas, J., Hanrahan, P., Zaharia, M.: Fleet: a framework for
massively parallel streaming on FPGAs. In ASPLOS ’20: Archi-
tectural Support for Programming Languages and Operating
Systems, pp. 639–651

150. To, Q.-C., Soto, J., Markl, V.: A survey of state management in
big data processing systems. VLDBJ 27(6), 847–872 (2018)

151. Tolosana-Calasanz, R., Montes, J.D., Rana, O.F., Parashar, M.:
Feedback-control and queueing theory-based resource manage-
ment for streaming applications. IEEE Trans. Parallel Distrib.
Syst. 28, 1061–1075 (2017)

152. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M.,
Kulkarni, S., Jackson, J., Gade, K., Fu, M., Donham, J. et al.:
Storm @ Twitter. In SIGMOD, (2014)

153. Traub, J., Grulich, P.M., Cuellar, A.R., Breß, S., Katsifodimos,
A., Rabl, T.,Markl, V.: Efficient window aggregationwith general
stream slicing. In Advances in Database Technology - 22nd Inter-
national Conference on Extending Database Technology, EDBT
2019, pp. 97–108

154. Tu, Y., Liu, S., Prabhakar, S., Yao, B.: Load shedding in stream
databases: a control-based approach. In Proceedings of the 32nd
International Conference on Very Large Data Bases 2006, pp.
787–798

155. Tucker, P.A., Maier, D., Sheard, T., Fegaras, L.: Exploiting punc-
tuation semantics in continuous data streams. IEEETrans. Knowl.
Data Eng. 15(3), 555–568 (2003)

156. Urhan, T., Franklin, M.J.: Dynamic pipeline scheduling for
improving interactive query performance. In VLDB 2001, Pro-
ceedings of 27th International Conference on Very Large Data
Bases, pp. 501–510

157. Urhan, T., Franklin, M.J.: Xjoin: a reactively-scheduled pipelined
join operator. IEEE Data Eng. Bull., 23, (2000)

158. Venkataraman, S., Panda, A., Ousterhout, K., Armbrust, M.,
Ghodsi, A., Franklin, M.J., Recht, B., Stoica, I.: Drizzle: Fast and
adaptable stream processing at scale. In Proceedings of the 26th
Symposium on Operating Systems Principles 2017, pp. 374–389

159. Verheijde, J., Karakoidas, V., Fragkoulis, M., Katsifodimos, A.:
S-QUERY: opening the black box of internal stream processor
state. In 38th IEEE InternationalConference onDataEngineering,
ICDE 2022, pp. 1314–1327

160. Wu, Y., Tan, K.-L.: ChronoStream: Elastic stateful stream com-
putation in the cloud. In ICDE, (2015)

161. Xu, L., Peng, B., Gupta, I.: Stela: enabling stream processing
systems to scale-in and scale-out on-demand. In 2016 IEEE Inter-
national Conference onCloudEngineering, IC2E 2016, pp. 22–31

162. Xu, L., Venkataraman, S., Gupta, I., Mai, L., Potharaju, R.: Move
fast and meet deadlines: fine-grained real-time stream processing
with cameo. In 18thUSENIXSymposium onNetworked Systems
Design and Implementation (NSDI 21), pp. 389–405, (2021)

163. Zaharia,M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Dis-
cretized streams: fault-tolerant streaming computation at scale. In
ACM SIGOPS 24th Symposium on Operating Systems Princi-
ples, SOSP’13, pp. 423–438

164. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized
streams: an efficient and fault-tolerant model for stream process-
ing on large clusters. In USENIX HotCloud, (2012)

165. Zhang, F., Yang, L., Zhang, S., He, B., Lu,W., Du, X.: Finestream:
Fine-grained window-based stream processing on cpu-gpu inte-
grated architectures. In: USENIX Annual Technical Conference.
USENIX ATC, pp. 633–647 (2020)

166. Zhang, S., He, J., Zhou, A.C., He, B.: Briskstream: scaling data
stream processing on shared-memory multicore architectures. In
Proceedings of the 2019 International Conference on Manage-
ment of Data, SIGMOD Conference 2019, pp. 705–722

167. Zhang, S., Zhang, F., Wu, Y., He, B., Johns, P.: Hardware-
conscious stream processing: a survey. SIGMOD Rec. 48(4),
18–29 (2019)

168. Zhang, Z., Gu, Y., Ye, F., Yang, H., Kim, M., Lei, H., Liu, Z.:
A hybrid approach to high availability in stream processing sys-
tems. In 2010 International Conference onDistributedComputing
Systems, ICDCS 2010, pp. 138–148

169. Zhu, X., Serafini, M., Ma, X., Aboulnaga, A., Chen, W., Feng,
G.: LiveGraph: a transactional graph storage system with purely
sequential adjacency list scans. Proc. VLDBEndow. 13(7), 1020–
1034 (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	A survey on the evolution of stream processing systems
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related surveys and research collections
	1.3 Survey organization

	2 Preliminaries
	2.1 Requirements of streaming systems
	2.2 Streaming data models
	2.2.1 Relational streaming model
	2.2.2 Dataflow streaming model


	3 Managing event order and timeliness
	3.1 Causes of disorder
	3.2 Disorder and processing progress
	3.3 System architectures for managing disorder
	3.4 Effects of disorder
	3.5 Mechanisms for managing disorder
	3.5.1 Progress tracking mechanisms
	3.5.2 Tracking progress of out-of-order data in cyclic queries
	3.5.3 Revision processing

	3.6 First generation versus second generation
	3.7 Open problems

	4 State management
	4.1 Managing stream processing state
	4.2 Programmability and responsibility
	4.2.1 Discussion

	4.3 State management architecture
	4.3.1 Storage medium
	4.3.2 Discussion

	4.4 Scalability and state management
	4.4.1 Parallel versus global stateful operations

	4.5 First versus second generation
	4.6 Open problems

	5 Fault tolerance
	5.1 Processing semantics
	5.1.1 State consistency
	5.1.2 Properties of consistency mechanisms

	5.2 Fault tolerance and state snapshots
	5.2.1 State durability at record granularity
	5.2.2 State durability at epoch granularity

	5.3 The output-commit problem
	5.4 High availability
	5.5 First generation versus second generation
	5.6 Open problems

	6 Load management, elasticity, and reconfiguration
	6.1 Load shedding
	6.2 Scheduling and flow control
	6.3 Elasticity
	6.3.1 Elasticity policies
	6.3.2 Elasticity mechanisms

	6.4 First generation versus second generation
	6.5 Open problems

	7 Lessons learned and the road ahead
	7.1 Discussion of design considerations
	7.2 Evolution take-aways
	7.3 A future outlook

	Acknowledgements
	References




