
 
 

Delft University of Technology

Complete genome sequence of “candidatus syntrophocurvum alkaliphilum” strain B(2M),
obtained from the metagenome of a salt-tolerant alkaliphilic anaerobic syntrophic
butyrate-degrading consortium

Mardanov, Andrey V.; Sorokin, Dmitry Y.; Beletsky, Alexey V.; Ravin, Nikolai V.

DOI
10.1128/MRA.01511-19
Publication date
2020
Document Version
Final published version
Published in
Microbiology Resource Announcements

Citation (APA)
Mardanov, A. V., Sorokin, D. Y., Beletsky, A. V., & Ravin, N. V. (2020). Complete genome sequence of
“candidatus syntrophocurvum alkaliphilum” strain B(2M), obtained from the metagenome of a salt-tolerant
alkaliphilic anaerobic syntrophic butyrate-degrading consortium. Microbiology Resource Announcements,
9(6), Article e01511-19. https://doi.org/10.1128/MRA.01511-19
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1128/MRA.01511-19
https://doi.org/10.1128/MRA.01511-19


Complete Genome Sequence of “Candidatus Syntrophocurvum
alkaliphilum” Strain B(2M), Obtained from the Metagenome of
a Salt-Tolerant Alkaliphilic Anaerobic Syntrophic Butyrate-
Degrading Consortium

Andrey V. Mardanov,a Dmitry Y. Sorokin,b,c Alexey V. Beletsky,a Nikolai V. Ravina

aInstitute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
bWinogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
cDepartment of Biotechnology, Delft University of Technology, Delft, The Netherlands

ABSTRACT A highly salt-tolerant and alkaliphilic syntrophic consortium that de-
grades butyrate under sulfate-reducing conditions was purified from a hypersaline
soda lake in southwest Siberia. Here, we present the complete genome sequence of
the syntrophic primary butyrate degrader in order to understand the molecular
mechanisms of interaction between consortium members.

Syntrophy is a tightly coupled mutualistic cooperation between different organ-
isms (1). Syntrophic communities functioning under haloalkaliphilic conditions

and capable of degrading nonfermentable organic compounds under anaerobic
conditions have been discovered only recently and are currently poorly character-
ized, although syntrophic processes in ecosystems such as soda lakes can be one of
the most important mechanisms in the mineralization of organics (2, 3). Evidence of
a significant presence of Clostridia (Syntrophomonadales) and Deltaproteobacteria
(Syntrophobacterales) species known to be involved in syntrophic conversions of
volatile fatty acids was also recently obtained in metagenomics studies of anaerobic
sediments of hypersaline soda lakes (4, 5). The object of our research is a syntrophic
consortium isolated from sediments from a hypersaline soda lake in southwest
Siberia that is capable of growth on butyrate under sulfate-reducing conditions at
extreme salinity and pH (3). To study the molecular mechanisms of anaerobic
butyrate oxidation and syntrophic interactions, we sequenced the metagenome of
this consortium and obtained the complete genome sequence of the primary
syntrophic partner.

The syntrophic culture consisting mainly of a primary butyrate degrader, “Can-
didatus Syntrophocurvum alkaliphilum” strain B(2M), and its hydrogenotrophic
sulfate-reducing partner, Desulfonatronovibrio magnus, (3) was grown in a sodium
carbonate-based medium (2 M total Na�, pH 9.5) in the presence of 20 mM each
sodium butyrate and sulfate. The total DNA was isolated using the PowerSoil DNA
isolation kit (MoBio) according to the manufacturer’s protocols. Metagenomic DNA
was sequenced using the Illumina platform. The shotgun genome library was
prepared using the NEBNext Ultra II DNA library prep kit (New England BioLabs,
USA). The sequencing of this library on an Illumina HiSeq 2500 instrument using
HiSeq rapid SBS run v2 sequencing reagents generated 16,217,272 single-end
250-nucleotide (nt) reads. In addition, metagenomic DNA was sequenced on a
MinION device (Oxford Nanopore, UK) using the ligation sequencing kit 1D and
FLO-MIN106 cells. Nanopore sequencing generated 223,808 reads with an average
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length of 16,036 bp. Nanopore reads were de novo assembled using miniasm v.0.3
(6). The consensus sequence was corrected using Racon v.1.4.3 (7), Medaka v.0.10.0
(https://nanoporetech.github.io/medaka/), and two iterations of Pilon v.1.22 (8). Illu-
mina reads were assembled using SPAdes v.3.13 (9); the corrected miniasm assembly
was passed to SPAdes to order the assembly graph (– untrusted-contigs option). As a
result, the complete circular genome of “Ca. Syntrophocurvum alkaliphilum” strain
B(2M) was assembled; no plasmids were detected. Gene search and annotation were
performed using the RAST server (10). The default settings were used for all software.

The length of the genome was 2,360,781 bp, with a G�C content of 32.5%. A
total of 2,311 protein-coding genes were predicted. The completeness of this
genome was estimated with CheckM v.1.05 (11) as 97.22%, with 1.06% possible
redundancy. “Ca. Syntrophocurvum alkaliphilum” strain B(2M) was described as a
member of a new genus-level lineage in the family Syntrophomonadaceae (Firmic-
utes) based on the 16S rRNA gene sequence (3). Taxonomic assignment of this
genome to the Genome Taxonomy Database using the GTDB-Tk v.0.3.2 tool (12)
confirmed that it belongs to this family. Genome analysis revealed genes for
anaerobic butyrate oxidation (13, 14).

In summary, the complete genome sequence of “Ca. Syntrophocurvum alkaliphi-
lum” strain B(2M), representing a novel candidate genus of Syntrophomonadaceae, was
obtained. These genomic data will allow us to describe this lineage at the genomic
level, as well as to understand syntrophic interactions in a butyrate-degrading consor-
tium under haloalkalophilic conditions.

Data availability. The complete genome sequences of “Ca. Syntrophocurvum
alkaliphilum” strain B(2M) were deposited in GenBank under the accession number
CP046457. The raw sequences have been deposited in the Sequence Read Archive
under the accession numbers SRR10662766 and SRR10673244. The version described in
this paper is the first version (CP046457.1).
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