

ARTIFICIAL LIFT IN GEOTHERMAL WELLS:
A STUDY TO BINARY CYCLE GEOTHERMAL POWER

PLANTS WITH GAS LIFT IN THE PRODUCTION WELL

F.W.J. Niewold

M
as

te
r

o
f

S
ci

en
ce

 T
h

es
is

R

ep
or

t N
um

be
r

P
&

E
-2

73
8

ARTIFICIAL LIFT IN GEOTHERMAL WELLS

A STUDY TO BINARY CYCLE GEOTHERMAL POWER

PLANTS WITH GAS LIFT IN THE PRODUCTION WELL

by

F.W.J. Niewold

in partial fulfillment of the requirements for the degree of

Master of Science
in Mechanical Engineering

at the Delft University of Technology,
to be defended on Monday February 27, 2017 at 10:00 AM

Thesis committee: Prof.dr.ir. T.J.H. Vlugt, TU Delft
 Dr.ir. C.A. Infante Ferreira, TU Delft, supervisor
 Dr.ir. S.C. Jansen, TU Delft
 J.H. Kleinlugtenbelt, MSc IF Technology, supervisor

This thesis is confidential and cannot be made public until February 27, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

iii

ABSTRACT
An alternative method for generating electric power from hot geothermal reservoirs (200 – 250 ºC) has been
proposed. This study was specifically concerned with the effect of artificial lift in geothermal wells on the
thermodynamic performance of geothermal power plants. The idea is to prevent flashing of geothermal
fluid and consequently replace conventional single-flash power plants with binary cycle power plants.
Three positive effects are to be expected. Previous studies have shown that thermal efficiencies of binary
cycle power plants are generally higher than single-flash power plants. Secondly, non-condensable gases
(NCG) can stay in the solution and subsequently they can be reinjected in the geothermal reservoir. At the
present in common geothermal power plants almost all NCG are vented to the atmosphere. Finally, calcite
scaling in the wellbore is reduced. The major objective of this study was to investigate the technical
feasibility of artificial lift in a geothermal well connected to a binary cycle power plant and to compare its
thermodynamic performance to a self-flowing flashing geothermal well connected to a single-flash power
plant. Additionally, the CO2 emission of these two power plants were calculated and compared.

In this work different methods to pressurize wells and lift geothermal fluids, used in geothermal- and
petroleum applications, were examined. Gas lift was considered the most appropriate application for
geothermal fluids in the range of 200 – 250 ºC. A comprehensive steady-state mathematical model was
developed in MATLAB for the single-flash power plant and the binary cycle power plant, covering the
system of a reservoir, a production well, a geothermal power plant and an injection well. Additionally, a
geothermal fluid property (GFP) model found in literature was implemented. In this work modifications to
this GFP model were carried out to simulate the liquid phase and two-phase flow. It was assumed that
geothermal fluid is a ternary system consisting of H2O – NaCl – CO2. Thermo-hydraulic numerical models
were developed for the wells. The drift-flux approach was used to simulate two-phase flow within the
wellbore. The geothermal power plant models included all equipment generating or demanding power and
all equipment causing a phase change. The different systems of the mathematical model were quantitatively
validated with data from literature. The simulated pressure and temperature profiles as a function of well
depth of the production well without gas lift (self-flowing) were validated with experimental data of six
randomly chosen existing production wells. The production well model with gas lift was validated
qualitatively in the results section, because of the novelty of this technology in geothermal production wells
and the absence of experimental data.

To compare the two power plant facilities a hypothetical well was designed of 2000 m in depth. The
reservoir pressure and temperature were 159 bar and 250 ˚C. The mass flow rate was 30 kg s-1. Multiple
simulations were performed for geothermal fluids with various NaCl (2.5 – 5 wt%) and CO2 (0 – 3.4 wt%)
mass fractions. Also, two gas lift mass flow rates (0.5 – 1.0 kg s-1) were simulated for every case. The
injected gas to accommodate gas lift was pure CO2. Additionally, variations in injected gas mass flow rate
(0 – 4.5 kg s-1) and variations in geothermal fluid injection temperature (43 – 150 ˚C) were examined to
optimize the binary cycle power plant. This was performed for a fluid containing 5 wt% NaCl and 1 wt%
CO2, because this composition shows the highest potential related to net power, utilization efficiency and
CO2 emission differences in favor of the binary cycle power plant system. This binary plant was compared
to two single-flash power plant setups, when it comes to the non-condensable gas extraction system, one
with a steam ejector/condenser and one with a centrifugal compressor.

The results of this hypothetical case show, for geothermal fluids with a CO2 content > 0.5 wt% and a binary
cycle injection temperature of 70 ˚C, the net power and utilization efficiency of a binary cycle power plant
connected to a production well equipped with a gas lift system is higher compared to a single-flash power
plant with a self-flowing well. Also, the mass fraction of CO2 emitted per produced MWh is generally
lower for the binary cycle system compared to the single-flash system. The optimized binary cycle power
plant shows maximum performance (for the 5 wt% NaCl and 1 wt% CO2 case) for a gas lift mass flow rate
of 1.1 kg s-1 and an injection temperature of 43 ˚C. The net power, utilization efficiency and CO2 emission
is 3.0 MW, 47% and 306 kg MWh-1 for the binary system compared to 1.5 MW, 24% and 697 kg MWh-1
for the single-flash power plant with a steam ejector/condenser gas extraction system and compared to 2.1
MW, 32% and 505 kg MWh-1 for the single-flash power plant with a centrifugal compressor gas extraction
system.

iv ABSTRACT

F.W.J. Niewold Master of Science Thesis

According to this study, it has been concluded that gas lift in geothermal wells is thermodynamic feasible
and combined with a binary cycle power plant has high potential on thermodynamic and environmental
grounds. The net power can be 1.5 – 2 times as high and the CO2 emission can be 1.6 – 2.3 times as low
compared to a basic single-flash power plant. Still, future research should be performed on the technical
feasibility of gas lift and the comparison with other systems, e.g. other gas extraction systems for CO2

removal in single-flash plants. Additionally, economic feasibility should be assessed and is highly
recommended to complete the comparison with a single-flash power plant. It is also recommended to study
scaling potential at the gas lift valve location in the production well and scaling potential due to low
injection temperatures for the binary cycle. Finally, real base cases have to be executed. Because every
geothermal system is unique and with optimization of the model parameters there is much to gain.

v

ACKNOWLEDGEMENT
First of all I would like to thank my supervisor Dr. Ir. C.A. Infante Ferreira of the Faculty of Mechanical,
Maritime and Materials Engineering at Delft University of Technology. His constructive criticism and eye
for detail during our regular meetings kept me sharp and focused. Advice on how to write and structure my
master thesis was very valuable. Secondly, I must express my sincere gratitude to my supervisor J.H.
Kleinlugtenbelt MSc of IF Technology at Arnhem. His guidance and comments has been an important
component in the realization of this thesis. It was a privilege to perform scientific research within a
commercial environment, but still having the freedom of defining my own path towards the goal of this
study. Additionally, warm thanks to all my colleagues in recent months at IF Technology for making me
feel welcome and part of the team or with helping to relax with a beer or a pingpong game every now and
then. A special mention to Drs. Guus Willemsen for the possibility to do my thesis work at IF Technology.
His enthusiasm and passion towards the subject was truly inspiring. A special thanks to my girlfriend,
Annemarie, for her infinite encouragements and faith in me. Finally, I must express my very profound
gratitude to my parents. This accomplishment would not have been possible without their unconditional
support in the paths I have chosen up to now. Thank you.

F.W.J. Niewold
 Arnhem, February 2017

vii

CONTENTS
ABSTRACT ... iii

ACKNOWLEDGEMENT ... v

1 INTRODUCTION ..1
1.1. Background and Motivation ... 1
1.2. Organic Rankine Cycle Technology ... 2
1.3. Artificial Lift in Geothermal Wells ... 3
1.4. Research Objectives .. 3
1.5. Thesis Outline ... 4

2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND ...5
2.1. Types of Geothermal Power Plants .. 5

2.1.1. Single-Flash Steam Power Plant .. 6
2.1.2. Binary Cycle Power Plant .. 7
2.1.3. Summary and Conclusion ... 7

2.2. Artificial Lift in Wells .. 8
2.2.1. Theory of Pressurizing the Production Well ... 8
2.2.2. Artificial Lift in Geothermal Wells ... 8

2.2.2.1. Line Shaft Pump .. 9
2.2.2.2. Electrical Submersible Pump .. 9
2.2.2.3. Hydraulic Turbine Pump ... 9

2.2.3. Artificial Lift in Petroleum Wells ... 10
2.2.3.1. Plunger Lift and Sucker Rod Pumps .. 10
2.2.3.2. Hydraulic Pump ... 10
2.2.3.3. Progressing Cavity Pump .. 10
2.2.3.4. Gas Lift .. 11

2.2.4. Overview and Selection .. 12
2.3. Geothermal Fluid Properties .. 13

2.3.1. Introduction .. 13
2.3.2. Chemical Composition .. 13
2.3.3. Binary System H2O – NaCl ... 14
2.3.4. Ternary System H2O – NaCl – CO2 ... 15

2.3.4.1. Thermodynamic Model Duan and Sun (2003) .. 15
2.3.4.2. Thermodynamic Model Francke et al. (2013) ... 16

2.3.5. Conclusions ... 17
2.4. Flow Characteristics & Thermodynamics ... 17

2.4.1. Reservoir Flow .. 17
2.4.2. Well Flow .. 20

2.4.2.1. Liquid-Only Flow ... 21
2.4.2.2. Two-Phase Flow .. 22
2.4.2.3. Gas Flow in Gas Lift Duct .. 23

2.4.3. State of the Art - Modeling Artificial Lift in Wells ... 23
2.4.3.1. Pump Model ... 24
2.4.3.2. Gas Lift Model ... 24
2.4.3.3. Drift-Flux Correlations... 26

2.4.4. Thermodynamics Geothermal Power Plants .. 29
2.4.4.1. Single-Flash Steam Power Plant .. 29
2.4.4.2. Binary Cycle Power Plant .. 30
2.4.4.3. Effect of NCG on Power Plant Performance & Gas Extraction Systems 32

viii CONTENTS

F.W.J. Niewold Master of Science Thesis

3 MODEL DESCRIPTION .. 35
3.1. General Model.. 35

3.1.1. Modeling Purpose ... 35
3.1.2. System Border and I/O Variables .. 35
3.1.3. Calculation Procedure ... 36

3.2. Geothermal Fluid Property Model ... 38
3.2.1. Purpose and System Border.. 38
3.2.2. Model Development and Assumptions .. 39

3.2.2.1. Shortcomings GFP Excel Model .. 39
3.2.2.2. Solutions and Assumptions ... 39

3.2.3. Calculation Procedure ... 41
3.3. Reservoir Model ... 42

3.3.1. Purpose and System Border.. 42
3.3.2. Phenomena and Assumptions .. 42
3.3.3. Calculation Procedure ... 43

3.4. Production Well Model – Self-Flowing ... 43
3.4.1. Purpose and System Border.. 43
3.4.2. Phenomena and Assumptions .. 44
3.4.3. Calculation Procedure ... 45

3.4.3.1. Numerical Model .. 45
3.4.3.2. Model Equations ... 45
3.4.3.3. Calculation Procedure ... 46

3.5. Drift-Flux Model ... 47
3.5.1. Phenomena and Assumptions .. 47
3.5.2. Calculation Procedure ... 47

3.6. Single-Flash Power Plant Model ... 48
3.6.1. Purpose and System Border.. 48
3.6.2. Phenomena and Assumptions .. 48
3.6.3. Calculation Procedure ... 49

3.7. Injection Well Model .. 51
3.7.1. Purpose and System Border.. 51
3.7.2. Phenomena and Assumptions .. 51
3.7.3. Calculation Procedure ... 51

3.7.3.1. Numerical Model .. 51
3.7.3.2. Model Equations ... 51
3.7.3.3. Calculation Procedure ... 51

3.8. Production Well Model – Gas Lift .. 52
3.8.1. Purpose and System Border.. 52
3.8.2. Phenomena and Assumptions .. 53
3.8.3. Calculation Procedure ... 53

3.8.3.1. Numerical Model .. 53
3.8.3.2. Model Equations ... 54
3.8.3.3. Calculation Procedure ... 55

3.9. Binary Cycle Power Plant Model .. 56
3.9.1. Purpose and System Border.. 56
3.9.2. Phenomena and Assumptions .. 56
3.9.3. Calculation Procedure ... 57

4 MODEL VALIDATION & SENSITIVITY ANALYSIS .. 59
4.1. Production Well Model Validation ... 59

4.1.1. Field Data and Model Input Parameters ... 59
4.1.2. Results of Simulations ... 60
4.1.3. Analysis and Conclusion .. 62

4.2. Geothermal Fluid Property Model Validation .. 64
4.3. Drift-Flux Model Validation .. 65
4.4. Production Well with Gas Lift Model Validation .. 66
4.5. Geothermal Power Plant Model Validation ... 66

CONTENTS ix

Master of Science Thesis F.W.J. Niewold

4.5.1. Single-Flash Power Plant ... 68
4.5.2. Binary Cycle Power Plant .. 69

4.6. Production Well Model Sensitivity Analysis ... 69
4.6.1. Sensitivity of Model Input Parameters and Phenomena .. 69
4.6.2. Sensitivity of Segment Length .. 70

4.7. Power Plant Model Sensitivity Analysis ... 70

5 RESULTS AND DISCUSSION OF A HYPOTHETICAL CASE.. 73
5.1. Model Input Parameters .. 73
5.2. Results & Discussion ... 74

5.2.1. Net Power ... 74
5.2.2. Utilization Efficiency ... 76
5.2.3. CO2 Emissions .. 77

5.3. Optimization of the Hypothetical Case .. 78
5.4. Electrical Submersible Pump Versus Gas Lift ... 80

6 CONCLUSIONS AND RECOMMENDATIONS ... 83
6.1. Conclusions .. 83
6.2. Recommendations ... 84

A SUPPLEMENTARY THEORIES .. 87
A.1. Types of Geothermal Power Plants.. 87

A.1.1. Double-Flash Steam Power Plant ... 87
A.1.2. Dry-Steam Power Plant .. 87
A.1.3. Hybrid Flash-Binary Cycle Power Plant ... 88

A.2. Binary System H2O – NaCl .. 89
A.2.1. Saturation Pressure .. 89
A.2.2. Density .. 89
A.2.3. Viscosity .. 90
A.2.4. Specific Enthalpy ... 90
A.2.5. Specific Entropy .. 92
A.2.6. Isobaric Heat Capacity .. 92
A.2.7. Thermal Conductivity ... 93
A.2.8. Solubility ... 93

A.3. Gas Flow in GL Duct – Overall Heat Transfer Coefficient ... 93
A.4. Thermodynamics Other Geothermal Power Plants ... 95

A.4.1. Double-Flash Steam Power Plant ... 95
A.4.2. Dry-Steam Power Plant .. 96

A.5. Steam Ejector/Condenser ... 97
A.5.1. Operation Principle ... 97
A.5.2. Calculation Method .. 97

B MATLAB CODE .. 101
B.1. Contents.... ... 101
B.2. Code.......... ... 102

C MODELING COMPONENTS .. 141
C.1. Model Input - MS Excel Interface ... 141
C.2. Interface GFP Excel Model ... 142
C.3. Degassing Pressures of Duan and Sun (2003) .. 143

D ADDITIONAL CALCULATIONS ... 145
D.1. Single-Flash Power Plant Model .. 145

E MODEL VALIDATION & SENSITIVITY ANALYSIS .. 149
E.1. Mean Error and Standard Deviation Mean Error ... 149
E.2. Drift-Flux Model Hasan et al. (2010) .. 149
E.3. Validation Single-Flash Power Plant ... 151

E.3.1. Validation of Thermal Efficiency ... 151
E.3.2. Validation of SE/C ... 153

x CONTENTS

F.W.J. Niewold Master of Science Thesis

E.4. Validation Binary Cycle Power Plant .. 154
E.5. Power Plant Model Sensitivity Analysis .. 154

F MODEL INPUT PARAMETERS SIMULATIONS .. 155
F.1. Model Input Parameters - Results .. 155

BIBLIOGRAPHY .. 157

NOMENCLATURE ... 165
List of Symbols ... 165
List of Abbreviations .. 167

1

1
INTRODUCTION

1.1. Background and Motivation
With increasing oil depletion and the demand for energy production with reduced negative environmental
impact worldwide, sustainable energy development is a popular theme. Binding targets for greenhouse gas
(GHG) emissions for industrialized countries are an important incentive, while for developing countries the
economic gain as a consequence of sustainable energy development stimulates the development. Renewable
energy use is more labor-intensive, for each unit of electricity generated more jobs are created compared to
electricity generated from fossil fuels. Renewable energy projects also keep money circulating in the local
economy and countries become less dependent on oil and natural gas import (Gomberg, 2016). One of
those renewable energy sources is geothermal energy, which has promising potential for generating heat
and electricity for certain specific locations. Geothermal energy is energy generated in the core of the earth.
Figure 1.1 presents a schematic of a geothermal power plant system. Hot (red) geothermal fluid is extracted
from the reservoir by a production well. In the geothermal power plant energy is transferred from the
geothermal fluid to generate electrical power. The cold (blue) geothermal fluid is reinjected into the
reservoir via an injection well. In 2015 the total installed geothermal power plant capacity was 12.7 GWe
worldwide. The expected geothermal targets for 2050 are 70 GWe, implying an exponential growth in the
upcoming decades and which is an estimated 8.3% of the total world electricity production. This includes
hydrothermal resources, enhanced geothermal systems (EGS) and other non-conventional resources
(Bertani, 2016; Olasolo et al., 2016).

Figure 1.1: Geothermal power plant schematic. The hot (red) geothermal fluid flows from the reservoir via the
production well to the geothermal power plant. In the power plant energy is transferred from the geothermal fluid to
generate electrical power. The cold (blue) geothermal fluid is reinjected via the injection well into the reservoir.

Indonesia benefits from sustainable energy development, because of its large amount of geothermal
sources. Indonesia is traversed by the world’s ring of fire; across the country 117 active volcanoes are
spread. Indonesia’s geothermal electricity potential is estimated about 28 GWe, which is 40% of world’s
geothermal energy potential in 2050. Currently, it utilizes only 4.5%, which is 1344 MWe. Since recently,
Indonesian government increases its installed geothermal power plant capacity. In 2025 it is targeted to
have an installed capacity of 9500 MWe (Nasruddin et al., 2016). In 2014 the Geothermal Capacity

2 1 INTRODUCTION

F.W.J. Niewold Master of Science Thesis

Building Programme – Indonesia-Netherlands (GEOCAP) started, which is a collaboration between
Indonesian and Dutch entities. The goal is to increase the capacity in developing, exploring and utilizing
geothermal energy sources, and to assess and monitor its impact on the economy and environment (Hecker,
2016).

IF Technology, a leading geothermal consulting/engineering company in the Netherlands, is involved in
GEOCAP. One of the objectives of this program is to study the technical and economic feasibility of
artificial lift in geothermal wells to prevent flashing and using organic Rankine cycle (ORC) technology in
the binary cycle geothermal power plant. The production well leads the geothermal fluid from the deep
reservoir to the geothermal power plant. The geothermal fluid is in liquid or two-phase state. Solid particles,
such as minerals or sand, can be entrained in the fluid flow. The reservoir contains the hot geothermal fluid.
Flashing is the process of a saturated liquid undergoing a reduction in pressure resulting in partial
evaporation. This is a phenomenon experienced in production wells and it is induced by pressure losses.
Three positive effects as a result of preventing flashing are:

1. For flashing geothermal power plants to maximize power output additional flashing of the geothermal

fluid is often necessary. This process reduces temperature and pressure of the stream. Consequently, it
decreases the maximum efficiency of the power plant. Preventing flashing in the well by keeping the
pressure above the boiling point increases the efficiency and maximizes power output (van der Hoorn
et al., 2012).

2. Flash-steam geothermal power plants produce gaseous emissions from the non-condensable gases

(NCG) that are dissolved in the geothermal fluid. Carbon dioxide (CO2) is the most common NCG,
furthermore gases such as methane (CH4), hydrogen (H2), hydrogen sulfide (H2S) or ammonia (NH3)
can also be present. Currently, in every commercial plant all NCG, with the exception of the toxic H2S,
are removed from the condenser by some means and wasted to the atmosphere. Typical NCG
concentrations range from 0.5-1.0 wt% of the total stream, from which approximately 95% consists of
CO2.. Although currently, there are no restrictions on the discharge of CO2 for geothermal power
plants, ideally gaseous emissions should be zero. With binary cycle power plants and artificial lift in
the wells, NCG could stay in the solution and reinjected into the geothermal reservoir (DiPippo, 2012).

3. Flashing increases scaling potential in the well casings and the geothermal power plant significantly.

The geothermal fluid is a solution of salts in water. Most minerals exhibit a higher solubility in water
with increasing temperature. One exception is calcium carbonite (CaCO3), which varies inversely with
temperature. However, it is not only dependent on temperature, but also on partial pressure of CO2, pH,
salinity and calcium ion concentration. The deposition of CaCO3 is often observed just above the flash
horizon in the well casing. Since CO2 is released during flashing, the pH of the liquid part increases
significantly. This results in supersaturated geothermal fluid with respect to CaCO3 and precipitation in
the well casing. Silica (SiO2) precipitation has greater probability in the flash vessel, piping, injection
wells and formation (reservoir), because the SiO2 concentration increases during flashing and the
temperature of the fluid decreases. The injection well is used for enhancing reservoir pressure and
geothermal fluid recirculation. SiO2 precipitation can affect functionality of plant equipment or even
decrease the permeability of the reservoir. With artificial lift in wells scaling potential can be
significantly reduced, because flashing is prevented in the well. Also SiO2 concentration in the
geothermal fluid stays constant, which decreases the potential for precipitation (DiPippo, 2012).

1.2. Organic Rankine Cycle Technology
The standard classical geothermal power plant classification comprises binary cycle, single-flash, double-
flash, dry-steam and back pressure power plants. Figure 1.2 presents two pie charts with the number of
units and the installed capacity for the classical power plant types. In 2014, the number of binary cycle
power plants in operation was almost half (46%) of the total number of units in operation worldwide. The
installed capacity on the other hand is only 14% of the total installed capacity worldwide. It has been shown
that the average power rating per unit for binary cycle power plants is relatively small, approximately 6.3
MWe/unit (Bertani, 2016).

The installed capacity of binary cycle power plants in Indonesia was only 8 MWe in 2014, against 460 MWe
of dry-steam plants and 873 MWe of single-flash plants (Bertani, 2016). The large amount of high
enthalpy/high temperature geothermal wells present in Indonesia, which produce dry steam or a
combination of liquid and steam, causes this distribution. Binary cycle power plants with ORC technology

1.3. Artificial Lift in Geothermal Wells 3

Master of Science Thesis F.W.J. Niewold

are mainly used for low-temperature resources, where it is unlikely that wells will flow spontaneously. For
geothermal fluid temperatures below 150oC, it becomes difficult to operate a flash plant efficiently and
economically (DiPippo, 2012). Since there are currently no restrictions on CO2 emissions for geothermal
power plants, flash plants for high enthalpy/high temperature sources are attractive for its relatively high
maturity of the technology, low investment costs, high safety and low complexity (van der Hoorn et al.,
2012).

Figure 1.2: Number of units and installed capacity in MWe for each typology worldwide (Bertani, 2016).

For high temperature geothermal fields, mixed-steam binary plants are powered with steam and liquid, but
these plants are scarce. In 2010, Te Huka geothermal power station in New-Zealand was opened consisting
of one unit and with an installed capacity of 24 MWe. The wellhead temperature is 250 ˚C and the mass
flow rate of the geothermal two-phase fluid is approximately 210 kg/s. Together with the Ribeira Grande
geothermal power plant in Portugal (The Azores), these are the only known binary cycle power plants in
literature with an outlet temperature at the wellhead above 250 ˚C (Zarrouk and Moon, 2014).

1.3. Artificial Lift in Geothermal Wells
It is common practice in binary cycle power plants working with low temperature geothermal fluids to
install a downhole pump in the production well that pressurizes the fluid below the flash depth to prevent
CaCO3 scaling. The flash depth represents the front where boiling starts. It depends among others on
reservoir properties and mass flow rate. Downhole pumps are also used in non-spontaneously flowing
wells, which have often low temperature geothermal fluid and insufficient reservoir pressure to stimulate
the fluid production. Consequently, pressurizing the well increases the mass flow rate (DiPippo, 2012).
In the petroleum industry, it is common practice to stimulate oil production by means of downhole pumps
or gas lifting techniques (Renpu, 2011).

1.4. Research Objectives
With the everlasting demand for more sustainable energy production and the high potential of binary cycle
geothermal power plants, the objective of this study is to analyze the possibility of artificially lifting high
temperature (< 250 ˚C) geothermal wells in order to prevent flashing of the geothermal fluid in the well. A
technology that has not been used in commercial geothermal power plants yet for temperatures > 200 ˚C
and which has not been explored according to available literature. This involves numerical modeling of
mass, heat and momentum transfer in the production well. In addition to this objective, a binary cycle
geothermal power plant is modeled and the thermodynamic performance is computed. It is aimed for to
couple the numerical model of the production well with mathematical models of the injection well, the
reservoir model and the geothermal power plant. The total mathematical model is able to calculate and
optimize the thermodynamic performance of the power plant for different reservoir conditions, geothermal
fluid properties, well dimensions and atmospheric conditions. A standard technology geothermal power
plant (single-flash power plant) is incorporated in the model as well in order to compare the thermodynamic
performance. The production well connected to the single-flash power plant is a self-flowing well, which
means it flows spontaneously without any form of artificial lift.

4 1 INTRODUCTION

F.W.J. Niewold Master of Science Thesis

Hence in this thesis, an attempt is made to answer the following main research question:

What is the technical and thermodynamic feasibility of artificial lift in geothermal wells connected to
binary cycle power plants compared to single-flash power plants connected to self-flowing flashing
geothermal wells?

1.5. Thesis Outline
In Chapter 2, a comprehensive literature survey is performed. The state of the art of standard geothermal
power plants is reviewed. A review of existing literature within geothermal industry on the topic of lifting
fluids from large depths in combination with binary cycle geothermal power plant technology is performed.
Additionally, literature within the petroleum industry on lifting fluids from large depths is looked into.
Available correlations and/or models describing the thermodynamic and transport properties of geothermal
fluids are sought. Finally, the fundamentals of reservoir flow, well flow and geothermal power plant
thermodynamics are discussed.

Chapter 3 describes the development and implementation of the mathematical model in MATLAB. It
includes the modeling approach, sub models, boundary conditions, relevant assumptions and phenomena,
conservation laws and constitutive equations. Then in Chapter 4, the validation of the mathematical model
with field data obtained from literature is treated. Additionally, a sensitivity analysis on the model input
parameters is presented.

Chapter 5 proposes a hypothetical case. Simulations of the binary cycle power plant system and the single-
flash power plant system are involved. The results of both power plants are compared and discussed.
Finally, in Chapter 6 conclusions are drawn and recommendations are proposed for future research.

5

2
DESCRIPTION OF SYSTEMS &

THEORETICAL BACKGROUND
In the present chapter, Section 2.1 discusses the history and thermodynamic cycles of the most common
geothermal power plants in Indonesia and worldwide. Section 2.2 provides an overview of lifting
techniques for fluids from large depths for both geothermal applications and petroleum applications. In
Section 2.3, relevant literature related to thermodynamic and transport properties of geothermal fluids are
presented. The theory behind flow characteristics and relevant phenomena in the reservoir and geothermal
wells is explained in Section 2.4. Also, thermodynamics of the relevant geothermal power plants are
discussed.

2.1. Types of Geothermal Power Plants
The first geothermal power plant built in Indonesia was a pilot project in Kamojang in 1978 with an
installed capacity of 0.25 MWe (DiPippo, 2012). In 2014, the total installed capacity of geothermal power
plants for electricity production was 1340 MWe, divided over ten plants and locations. Only 8 MWe was
generated by one binary cycle geothermal power plant. Furthermore, multiple dry-steam power plants
generated 460 MWe and multiple single-flash power plants generated the remaining 873 MWe (Bertani,
2016).

Until recently, the type of geothermal power plant corresponded to the type of geothermal system. The type
of geothermal system can be classified into five categories based on the thermodynamic state of the fluid in
the geothermal reservoir (Table 2.1). The thermodynamic state mainly depends on temperature, pressure
and composition of the fluid. Additionally, fluid flow through the reservoir and permeability of the
reservoir affects the thermodynamic state of the system, because it relates to the accompanying pressure
drop in the system.

Figure 2.1 presents the geothermal power plant operating enthalpy range based on published data from 89
geothermal power plants (Zarrouk and Moon, 2014). It shows that binary cycle plants are utilized mainly at
sites with hot-water and low-enthalpy two-phase liquid dominated reservoirs. On the other hand, single-
flash and dry-steam plants are generally built at sites with high-enthalpy liquid-dominated and vapor-
dominated systems. Besides these four standard geothermal power plants, there are also advanced
geothermal energy conversion systems in operation. Hybrid flash-binary geothermal power plants exploit
both the steam and the remaining liquid of the geothermal fluid to increase power output and efficiency. In
the remaining subsections of Section 2.1, the operation, schematic and main equipment of the basic single-
flash power plant and the basic binary cycle power plant are presented. The operation, schematic and main
equipment of the double-flash power plant, dry-steam power plant and hybrid flash-binary power plant can
be found in Section A.1.

Table 2.1: Types of geothermal systems based on thermodynamic state of the reservoir (Rivera Diaz et al., 2016).

Category Temperature (ܶ) Production enthalpy (ℎ)

Hot-water ܶ < 220 ˚C ℎ < 943 kJ/kg

Two-phase, liquid dominated Low-enthalpy 220 ˚C < ܶ < 250 ˚C 943 kJ/kg < ℎ < 1100 kJ/kg

 Medium-enthalpy 250 ˚C < ܶ < 300 ˚C 1100 kJ/kg < ℎ < 1500 kJ/kg

 High-enthalpy 250 ˚C < ܶ < 330 ˚C 1500 kJ/kg < ℎ < 2600 kJ/kg

Two-phase, vapor-dominated 250 ˚C < ܶ < 330 ˚C 2600 kJ/kg < ℎ < 2800 kJ/kg

6 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

Figure 2.1: Geothermal power plant operating enthalpy range based on published data from 89 geothermal power
plants (6 dry-steam, 34 single-flash, 18 double-flash and 31 binary cycle) (Zarrouk and Moon, 2014). Red presents the
operating range of the dry-steam power plants.

2.1.1. Single-Flash Steam Power Plant

The largest share of power production worldwide with 41% of the total generated power is attributed to
single-flash power plants (Bertani, 2016). It is often the first power plant built at a new site with a liquid-
dominated system. This is due to its relatively simple cycle, much operational experience and relatively low
investment costs. Single-flash indicates that the geothermal fluid undergoes a process of partial phase
change, which means a transition from pressurized liquid to a liquid-vapor mixture. The transitioning is
induced by a pressure drop below the saturation pressure for the corresponding temperature. The flash
process itself can generally take place at three different locations (DiPippo, 2012):

1. Reservoir: the geothermal fluid flows to the bottom and inlet of the production well through the

permeable formation with an accompanying pressure drop.
2. Production well: the pressure decreases due to frictional, hydrostatic and accelerational pressure losses.
3. Power plant: a throttling valve produces steam by decreasing the pressure.

Figure 2.2 presents a simplified single-flash power plant schematic (DiPippo, 2012). The liquid geothermal
fluid or liquid-vapor mixture is typically controlled and monitored by a silencer (S), valves (WV) and
pressure/temperature gauges once it leaves the production well (PW) and before it reaches the cyclone
separator (CS). At the inlet of the cyclone separator, the liquid or liquid-vapor mixture is throttled to an
optimum pressure by a throttling valve. In the cyclone separator the steam is separated from the liquid. The
steam travels through a moisture remover (MR) before it is supplied to the steam turbine, in order to reduce
scaling and erosion potential in the piping and turbine components. After the turbine, the low-pressure
steam is condensed with cooling water from the cooling tower (CT) in the condenser (C). Finally, the
condensed steam in the cooling tower can be added to the remaining liquid geothermal fluid that is
separated from the steam in the cyclone separator or injected separately. The steam ejector/condenser
(SE/C) extracts non-condensable gases (NCG) present in the geothermal fluid from the condenser.

Figure 2.2: Simplified single-flash power plant schematic (DiPippo, 2012).

The liquid is reinjected in the reservoir mainly for two purposes (Rivera Diaz et al., 2016):

1. Recirculation of geothermal fluid improves the resource recovery by keeping the water level content in

the reservoir sufficient. Additionally, the pressure in the reservoir is boosted to compensate the
pressure drop in the permeable formation. Consequently, the geothermal fluid production is maintained
or even increased compared to geothermal power plants without reinjection.

2.1. Types of Geothermal Power Plants 7

Master of Science Thesis F.W.J. Niewold

2. Waste water disposal is limited to the reservoir, where the geothermal fluid originally came from,
instead of wasting it to the environment. The geothermal fluid contains a fairly amount of minerals and
NCG.

Negative aspects of the single-flash steam power plant are the risk of scaling in the production well,
cyclone separator and the moisture remover and the relatively low efficiency. Typical utilization
efficiencies are in the range of 30 – 35% (DiPippo, 2012).

2.1.2. Binary Cycle Power Plant

The binary cycle power plant is characterized by a working fluid undergoing a closed cycle. At the birth of
geothermal power plants, binary cycles were utilized for steam fields, because the steam was too
contaminated with minerals and dissolved gases. In that case, clean water was used as working fluid.
Currently, binary cycle power plants are mainly employed at hot water or liquid-dominated low-enthalpy
sources. Organic fluids are chosen as working fluid due to their favorable thermodynamic properties at
lower temperatures. Typical utilization efficiencies are in the range of 25 – 45% (DiPippo, 2012).

Positive aspects of binary cycle power plants are its broad operational experience (Figure 1.2), low
maintenance cost, reliability and high availability. As long as there is geothermal fluid in liquid phase,
binary cycles are suitable for operation. As the geothermal fluid remains in the liquid phase, higher
efficiencies can be achieved compared to flash plants. On the negative side, the investment costs are
generally higher than for single-flash power plants. The power cycle needs additional precautionary
measures if the working fluid is toxic or flammable (Van der Hoorn et al, 2012).

Figure 2.3 presents a simplified schematic of a basic binary cycle geothermal power plant (DiPippo, 2012).
The binary cycle power plant can basically be divided into three subsystems: the power conversion cycle,
the geothermal fluid cycle and the cooling system for the removal of heat. Binary cycle plants are often
utilized at sites with non-spontaneous flowing wells. Therefore, a downhole pump (P) is mounted in the
production well. The geothermal fluid flows from the production well to the sand remover (SR) to prevent
scouring and erosion of the piping and heat exchanger tubes. Heat is transferred to the working fluid in a
preheater (PH) and evaporator (E) typically, before the geothermal fluid is injected with an injection pump
(IP) in the injection well (IW). The geothermal fluid is kept above the boiling pressure to prevent CaCO3
scaling and above the temperature at which SiO2 scaling becomes an issue. The working fluid undergoes a
closed cycle, in which it receives heat from the geothermal fluid, evaporates, expands in the turbine (T) and
condensates before it returns to the preheater by means of a condensate pump (CP). During condensation of
the working fluid heat is transferred to the cooling system. The turbine drives a generator (G) to generate
electricity.

Figure 2.3: Simplified schematic of a basic binary geothermal power plant (DiPippo, 2012).

2.1.3. Summary and Conclusion

The power plant type data is summarized in Table 2.2. It shows the number of binary cycle units is largest,
but the total capacity is only ranked 4th due to its low average capacity. This in turn is caused by the low-
temperature fields where binary cycle power plants are mostly deployed. The objective of the present work

8 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

is to examine if binary cycle power plants can be deployed for high temperature reservoirs by artificially
lifting the geothermal fluid in the production well.

Table 2.2: Summary of power plant characteristics according to published data (Ref. a. Bertani, 2016; Ref. b. Zarrouk
and Moon, 2014; Ref. c. DiPippo, 2012).

Power plant type Number of units Total capacity, Average capacity, Enthalpy range,

 MWe MWe/unit kJ/kg

Single-flash 170 (28%)a 5216 (41%)a 30.4a 780-2783b

Double-flash 67 (11%)a 2435 (19%)a 37.4a 697-1910b

Dry-steam 63 (10%)a 2863 (23%)a 45.4a 2650-2797b

Binary cycle 279 (46%)a 1762 (14%)a 6.3a 306-1100b

Hybrid flash-binary 47c 368.6c 7.8c 306-2789b

Currently, in Indonesia no commercial geothermal binary plant is in operation. However, a demonstration
plant will be installed at the Lahendong geothermal field (Frick et al., 2015). Furthermore, there have been
situated only single-flash and dry-steam power plants. It is practically impossible to replace dry-steam
power plants by a full-binary power plant, because the steam is already present in the geothermal reservoir.
Therefore, the present work focusses on the comparison of a binary cycle power plant and a single-flash
power plant.

2.2. Artificial Lift in Wells
The current section discusses artificial lift for geothermal applications. Additionally, relevant artificial
lifting techniques from the petroleum industry are presented. In the oil and gas industry, downhole pumps
are a proven technology for the pumping of fluids. However, geothermal applications differ from these
established applications due to the higher temperatures and larger volumetric flow rates (Frick et al., 2011).
Finally, on the basis of certain selection criteria the most suitable lifting technique is selected.

2.2.1. Theory of Pressurizing the Production Well
Downhole pumps for geothermal application could serve a number of purposes, three relevant purposes are:

1. The pumping of geothermal fluid from non-spontaneously flowing production wells, which is relevant
for hot-water systems.

2. The pressurizing of the fluid in the production well to prevent flashing and the accompanied non-
favorable phenomena, e.g. scaling and/or release of NCG. This is relevant for liquid-dominated
systems, where flashing occurs in the production well.

3. Stimulation of the fluid flow and increasing the production of geothermal fluid. Consequently, the
power output of the plant can be increased.

The basic idea is to install a pump below the dynamic fluid level (Figure 2.4). On the right, the pressure of
the geothermal fluid is increased by the downhole pump. The pressure decline is mainly caused by the
pressure loss due to friction and gravitation. The objective is to keep the pressure at least above the
saturated liquid pressure at the wellhead. The static fluid level indicates the head for a non-spontaneously
producing well. The dynamic fluid level differs from the static fluid level due to the additional frictional
pressure losses in the reservoir and production well owing to the flowing geothermal fluid during
production. Besides the drawdown of the fluid level during operation, the installation depth also depends on
the necessary intake pressure to avoid cavitation and the release of NGC (Frick et al., 2011).

2.2.2. Artificial Lift in Geothermal Wells
Downhole pumps for geothermal applications are distinguished by the mode of power transmission.
Currently, it is done by the use of line shaft pumps (LSP) or electrical submersible pumps (ESP) (Xie et al.,
2005; SANDIA, 2008; Frick et al., 2011; DiPippo, 2012). While a hydraulic turbine pump (HTP) could be a
valuable candidate for these particular environments (Harrison et al., 1990; EGEC, 2012).

2.2. Artificial Lift in Wells 9

Master of Science Thesis F.W.J. Niewold

Figure 2.4: Schematic representation of a downhole pump in a production well (left) and the pressure curve as a
function of depth (right) (Frick et al., 2011).

2.2.2.1. Line Shaft Pump

Line shaft pumps are powered by an electrical motor above ground and driven by a straight shaft down the
production well (Figure 2.5). The shaft is equipped with vanes or impellers, which are mounted inside the
well. The geothermal fluid is carried by the tubing that surrounds the shaft (Harrison et al., 1990). The
major drawback of this system is the installation depth, which is limited to vertical wells (Frick et al.,
2011). Additional cons of this type of pump are the delicate handling during installation and removal,
coating materials for enclosing tubing, make-up lubricating fluid for bearings and relatively large
production well casing diameter. Pros are attributed to the absence of electric parts in the well, high
efficiency, long lifetime, attractive cost and withstanding relatively high temperatures (< 200 ˚C) (EGEC,
2012).

2.2.2.2. Electrical Submersible Pump

Figure 2.6 shows the schematic of an electrical submersible pump (ESP). An ESP is driven by an electrical
motor installed in the production well. The motor is powered by an electric cable connected to the grid
above the surface. The seal section protects the shaft and rotating parts from the geothermal fluid. The
turbine pump is mounted inside the tubing that carries the geothermal fluid to the surface (Harrison et al.,
1990). The major drawback of this system is the problem of cooling the motor, which must be done with
the hot geothermal fluid (Frick et al., 2011). More disadvantages are related to relatively high cost, electric
insulation shortcomings and lower efficiencies in practice. The advantages are large installation depths,
long lifetime, high flow rates in limited casings, solution gas handling and much operational experience
(EGEC, 2012). Flowserve (2011), one of the world’s largest manufacturers of pumps, builds ESP’s that can
withstand 160 ˚C. Whereas EGEC (2012) published that the maximum operating temperature is
approximately 180-200 ˚C.

2.2.2.3. Hydraulic Turbine Pump

A hydraulic turbine pump (HTP) system is presented in Figure 2.7. The pump is driven by a turbine, which
is also installed in the production well. Above the ground, part of the geothermal fluid is recirculated and
filtered, where after the geothermal fluid is sent through a turbine by using a booster pump. The turbine,
which is powered by the high pressure fluid, drives the downhole pump (Harrison et al., 1990). For
geothermal applications, there is no literature reporting the use of HTP’s. Although there are companies that
offer HTP’s for geothermal application currently. HTP’s gain in interest, because of the ability to operate at
high temperature (> 200 ˚C) and high salinities. Additionally, there are no electric parts in the production
well and long lifetimes are ascribed. On the other hand, an HTP has relatively low efficiency, it is bounded
to the vertical section of the production well, it needs large diameter wells, there is limited operational
experience and the costs are high. Furthermore, packer anchoring problems are reported (EGEC, 2012).

10 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

Figure 2.5: Line shaft pump (LSP)
(Harrison et al., 1990).

Figure 2.6: Electrical submersible
pump (ESP) (Harrison et al., 1990).

Figure 2.7: Hydraulic turbine pump
(HTP) (Harrison et al., 1990).

2.2.3. Artificial Lift in Petroleum Wells
In the oil and gas industry artificial lift is deployed when the pressure in the reservoir is not sufficient to
produce at its most economical rate. Basically, five artificial lifting techniques can be distinguished: 1.
plunger lift and sucker rod pump (SRP), 2. hydraulic pump, 3. electrical submersible pump (ESP), 4.
progressing cavity pump (PCP) and 5. gas lift (Cholet, 2008). These methods are discussed below, except
the ESP, which is identical to the geothermal ESP’s.

2.2.3.1. Plunger Lift and Sucker Rod Pumps

There are many different types of beam pumping systems. Figure 2.8 gives the schematic of a basic plunger
lift and sucker rod pump (SRP). The prime mover is the motor of the system. It provides power to the
system by transferring rotating motion to the surface pumping equipment. This equipment converts rotation
into an oscillating linear motion. The sucker rod is attached to the plunger in the production well. Fluids are
lifted up the tubing by the reciprocation strokes of the plunger. SRP’s are simple to operate and maintain.
However, capital costs are high and it is not suited for deep deviated wells, because of the sucker rod string
(Baldwin et al., 2000; Cholet, 2008).

2.2.3.2. Hydraulic Pump

In the oil and gas industry, there are generally three types of hydraulic pumps deployed: the piston type
(Figure 2.9), the jet pump (Figure 2.10) and the turbine pump. The principle of the latter one has already
been discussed in Section 2.2.2.3. The hydraulic piston pump is installed below the fluid level. High
pressure power fluid (oil or water) is forced through the engine causing it to reciprocate. The engine drives
the pump, which pumps the mixture of spent power fluid and well production fluid to the surface. With the
jet pump the power fluid enters the pump from the top. The total pressure is converted almost completely in
dynamic pressure in the nozzle. After the nozzle the power fluid mixes with the production fluid and passes
momentum and energy to the production fluid. In the diffuser the velocity head is converted to static
pressure head to lift the fluid to the surface. Advantages of these systems are the ability of working at deep
depths, in deviated wells; it can handle heavy viscous fluids. Disadvantage are related to fire hazards if oil
is used as a power fluid and the difficulty of handling fluids with high solid content or gas content
(Baldwin et al., 2000; Cholet, 2008).

2.2.3.3. Progressing Cavity Pump

Figure 2.11 shows a progressing cavity pump (PCP). It consists of a rotor which rotates in an elastomeric
stator to let cavities, filled with the production fluid, move upward. The pump is connected to an engine
above the surface by a rotating sucker rod. These PCP’s cannot be handled in deviated wells and the stator
is sensitive to high temperatures. On the other hand, PCP’s can handle crude oils excellently (Cholet, 2008).

2.2. Artificial Lift in Wells 11

Master of Science Thesis F.W.J. Niewold

Figure 2.8: Sucker rod pump (SRP)
(Conaway et al., 2000).

Figure 2.9: Hydraulic pump piston
type (Cholet, 2008).

Figure 2.10: Jet pump (Cholet, 2008).

Figure 2.11: Typical configuration of a progressing cavity pump (Cholet, 2008).

2.2.3.4. Gas Lift

Gas lift systems are an alternative to lifting techniques with pumps and can be divided into two types of
injection: continuously or intermittently. Only continuous injection is discussed, since 95% of the
production wells use continuous gas injection and the volume flow rate in continuous injection is much
higher, which is necessary in geothermal applications. Figure 2.12 presents a schematic of the working
principle of a gas lift system. Instead of increasing the pressure with a pump, the pressure loss rate is
decreased from a certain level. This is done by the injection of a gas, e.g. co-produced natural gas, down the
casing annulus into the tubing string at a certain pressure, flow rate and depth in the production well.

The density of the fluid decreases, which decreases the hydrostatic pressure loss above the injection point,
causing the production well to flow. A negative aspect of this system is the requirement of a compressor at
the surface to compress the gas, which is an inefficient process in comparison to pumps. On the other hand,
besides the compressor other large size equipment is not necessary making it a suitable application for
offshore industry. It works also well in sand-producing wells, which can cause significant erosion to pump
type systems. Additionally, very deep deviated wells are generally equipped with gas lift for its flexibility
and low operating costs (Baldwin et al., 2000; Cholet, 2008).

12 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

Figure 2.12: Schematic of gas lift principle (left) and pressure vs. depth (right)

2.2.4. Overview and Selection
Table 2.3 and Table 2.4 present an overview of characteristics of different lifting techniques for geothermal
applications and oil & gas applications, respectively. The properties are ranked according to importance.
According to temperature, it looks like none of the pumps for geothermal applications is suitable to operate
at temperatures in the range of 200 – 250 ˚C. In oil & gas industry SRP, hydraulic piston, hydraulic jet and
gas lift systems have good opportunities for operating at temperatures up to 250 ˚C. From these four lifting
techniques, only gas lift shows high volumetric flow rates, which is an important feature for geothermal
applications in order to make the geothermal power plant economically feasible.

Table 2.3: Comparison of different lifting techniques from published data in literature and by manufacturers for
geothermal applications. (Ref. 1. EGEC, 2012; Ref. 2. Flowserve, 2011; Ref. 3. Lienau et al., 1991; Ref. 4. Clyde
Pumps Ltd., 2008; Ref. 5. Harrison et al., 1990; Ref. 6. Frick et al., 2011).

LSP ESP HTP Ref.

Operating temperature, ˚C 120-204 < 200 < 218 1, 2, 3

Flow rates, l/s 138 70-250 8-166 1, 2, 4

Head, m 700 750 300-1500 2, 4

Installation depth, m 350-600 1000-3600 1500-3000 2, 3, 5

Efficiency, % 50-65 50-65 40 1, 3

Costs + + −⁄ + −⁄ 1, 3

Lifetime and maintenance + + −⁄ + 1, 3, 6

Maturity of technology ++ ++ −− 1, 5

Table 2.4: Comparison of different lifting techniques for oil and gas applications. (Ref 1. Baldwin, 2000; Ref 2. Cholet,
2008; Ref. 3. New Mexico Tech, 2005; Ref. 4. Clegg et al., 1993).

SRP ESP

Hydraulic

Piston

Hydraulic

Jet PCP Gas lift Ref.

Operating temperature, ˚C < 288 < 205 < 260 < 260 < 120 No limit 2, 3

Flow rates, l/s 1-11 74-93 7-9 < 28 8-9 55-93 2, 3

Installation depth, m < 4800 < 4500 < 5200 < 4500 < 1800 < 4500 3

Efficiency, % 30-60 35-60 30-55 10-30 40-80 10-32 2, 3

Costs ++ − + −⁄ + −⁄ + + + 4

Lifetime and maintenance ++ + −⁄ + + ++ ++ 4

Maturity of technology ++ + + + + + 4

2.3. Geothermal Fluid Properties 13

Master of Science Thesis F.W.J. Niewold

There is not one lifting technique that can be selected unanimously. It depends on the characteristics of the
reservoir (e.g. porosity, depth) and the properties of the geothermal fluid (e.g. temperature, pressure,
composition). From Table 2.3 and Table 2.4, only gas lift matches the requirements of high temperature and
high flow rates. For lower temperatures, ESP’s are the better solution compared to LSP and HTP for its
high installation depth, high maturity and low costs. Therefore, in the continuation of this study gas lift is
modeled for geothermal fluid temperatures in the range of 200 – 250 ˚C.

2.3. Geothermal Fluid Properties
In this section literature on geothermal fluid properties are discussed. The relevant properties to be
examined are: saturation pressure, density, viscosity, enthalpy, entropy, heat capacity, thermal conductivity
and solubility. It has been aimed for to create a geothermal fluid property (GFP) model for both liquid and
two-phase state for temperatures up to 250 ˚C, pressures up to 1000 bar and salinities up to 350 g l-1. The
published GFP models over the years have not been unambiguous, which makes it more difficult to model
the system accurately (Adams and Bachu, 2002; Duan and Sun, 2003; Champel, 2006; Francke and
Thorade, 2010).

2.3.1. Introduction
For simplicity, water properties are often used for the flow characteristics in reservoirs and wells, for the
evaluation of artificial lift methods in geothermal production wells and for power plant performance (Xie et
al., 2005; IF Technology, 2012). However, in order to model the behavior of the production well, injection
well, reservoir and power plant more accurately, implementation of the thermodynamic and transport
properties of geothermal fluids in the model is necessary. Relevant properties of geothermal fluids, like
density and viscosity, are controlled by pressure, temperature and composition. Temperature and pressure
can vary from atmospheric conditions to temperatures and pressures > 300 ˚C and > 100 MPa, respectively.
The composition varies depending on the type and amount of dissolved solids and NCG. The total dissolved
solids (TDS), often referred as the salinity, can reach in excess 350 g l-1 (Adams and Bachu, 2002). The
TDS decreases the boiling point of the geothermal fluid, whereas the dissolved NCG increases the boiling
point. The determination of the boiling point is crucial for e.g. determining pump setting depths or gas lift
valves in the production well (Aksoy, 2007). The properties of geothermal fluids containing dissolved
solids can vary by more than 25% for density and by one order of magnitude for viscosity in comparison to
fresh water properties. Therefore, neglecting the effect of dissolved components on the fluid properties
introduces significant errors on flow behavior in the injection well, production well and reservoir (Adams
and Bachu, 2002).

2.3.2. Chemical Composition
Glassley (2014) reviewed the chemical composition of various geothermal systems, mostly volcanic areas,
in New Zealand, Mexico, Philippines, Iceland and the USA. The chemical composition of geothermal fluids
consists of the dissolved solids Na, K, Ca, Mg, Cl, B, SO4, HCO3 and SIO2, and (dissolved) gases CO2,
H2S, CH4, H2 and NH3. All systems show > 80 wt% Na and Cl TDS, and > 80 wt% CO2 of total gases.

The most common ions in low to moderate saline geothermal fluids are Cl- and Na+; therefore, geothermal
fluids are frequently modeled as an aqueous sodium chloride (NaCl) solution. Adams and Bachu (2002)
reviewed several published algorithms to calculate density and viscosity as a function of temperature,
pressure and salinity. In these publications the differences between the density reached up to 20% and for
the viscosity the maximum difference was even 50%, which indicates a significant discrepancy between the
available algorithms. Francke and Thorade (2010) studied the sensitivity of the volumetric flow rate of a
downhole pump in a geothermal production well for different density and viscosity algorithms, with a
maximum deviation of 3% and 2.5%, respectively. The different density algorithms caused a deviation in
pressure heads from the average pressure head at the pump of 7.3% in steady state operation, which
consequently caused a deviation in the volumetric flow rate of 14.5%. During start-up conditions the
deviation for volumetric flow rate was even 52% at its maximum. However, the influence of the viscosity
function was negligible. It was concluded that viscosity related frictional pressure loss was small compared
to density related gravitational pressure loss. Champel (2006) studied the influence of geothermal fluid
density from five different functions on pumping requirements. The maximum deviation was more than
20%. It was stated that the discrepancy between density functions leads to inaccuracy in the buoyancy

14 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

effect, which could result in under- or over-dimensioning of the downhole pump. It has been recommended
to conduct new measurements on geothermal fluid densities, particularly for temperatures up to 250 ˚C,
pressures up to 50 MPa and molalities in the range of 1 – 5 mol kg-1. Figure 2.13 (left) shows the depth
distribution of the main elements Na, Cl and Ca found in sedimentary basins and (right) TDS found in
sedimentary basins and crystalline rocks across the world. In general, the salinity increases with depth and
can vary from a few g l-1 to 200 g l-1 in most geothermal systems, with extremes to 643 g l-1 (Huenges and
Ledru, 2010). Mahon et al. (2000) reviewed the chemistry of geothermal fluids in Indonesia. It was found
that the highest published TDS has been found at Wayang Windu, with approximately 40 g kg-1, which is
equivalent to a molality less than 0.75 mol kg-1.

Concerning the dissolved gases, CO2 is the most abundant gas encountered in geothermal systems. In
Indonesian geothermal systems 95 – 98 wt% of gases constitutes of CO2, 2 – 3 wt% of H2S and other gas
constituents are even less abundant (Mahon et al., 2010; Yuniarto et al., 2015). Hosgor et al. (2015) studied
the effects of dissolved CO2 on reservoir production performance. In liquid dominated reservoirs mass
fractions of CO2 can reach up to 5 wt%. Khalifa and Michaelides (1978) studied the effect of NCG on the
power plant performance, where NCG have been replaced by CO2 equivalent mass fraction, because NCG
consisted of ~80 wt% CO2. According to Gokcen and Yildirim (2008), who studied power plant
performance affected by CO2 presence as well, CO2 mass fractions encountered are even 25 wt%. Figure
2.14 shows the pressure-enthalpy diagram of a binary H2O – CO2 system having a mass fraction ݓ஼ைଶ =0.015. It is clearly visible that the bubble point pressure shifts upwards compared to pure water systems.
Once degassing starts in the production well, initially the gas phase contains mainly CO2. While pressure
declines further, initially the fluid behaves almost isothermally. Once most of the CO2 is released from the
liquid phase, H2O starts dominating the gas phase. Then geothermal fluid starts behaving like pure water,
because almost all CO2 is present in the gas phase. This phenomenon can be seen by the isobar and isotherm
coinciding more or less near gas saturation (Hosgor et al., 2015).

Following the findings in the present section, it is assumed in this work that H2O, NaCl and CO2 are the
only components present in the geothermal fluid.

Figure 2.13: (Left) Depth distribution of Na, Cl and Ca of sedimentary basins fluids. (Right) Depth distribution of TDS
of 76 samples (Huenges and Ledru, 2010).

2.3.3. Binary System H2O – NaCl
During the literature survey of the present work, an extensive study on a binary system H2O – NaCl was
conducted. The examined fluid properties are elaborated in Section A.2. When this thesis progressed, it
became clear that a ternary system discussed in Section 2.3.4 is essential to model the thermo-hydraulic
behavior of the geothermal fluid inside the wellbore accurately. Nevertheless, it is believed that the
completeness of the consulted literature on binary system H2O – NaCl contributes to this thesis and to
possible future research. Therefore, it has been appended as supplementary theory.

2.3. Geothermal Fluid Properties 15

Master of Science Thesis F.W.J. Niewold

Figure 2.14: Pressure-enthalpy diagram of H2O-CO2 system,	࢝ࡻ࡯૛ = ૙. ૙૚૞ kg kg-1 (Hosgor et al., 2015).

2.3.4. Ternary System H2O – NaCl – CO2
In case of a significant amount of CO2 dissolved in the geothermal fluid, there is the possibility of degassing
in the production well during operation. This phenomenon has a major influence on the behavior of the
geothermal fluid above the flashing point and in the geothermal power plant, e.g. decreasing density of two-
phase flow induces less pressure loss, geothermal power plant performance, scaling potential (Khalifa and
Michaelides, 1978; Duan and Sun, 2003; Kelessidis et al., 2007; Gokcen and Yildirim, 2008; DiPippo,
2012; Francke, 2014; Hosgor et al., 2015).

Many experimental studies on the solubility of CO2 in pure water and NaCl(aq) have been conducted. Also,
extensive effort has been done in modeling this phenomenon. Several models have been published, but few
can accurately predict CO2 solubility in a wide ܶ − ܲ −݉ range. Li and Nghiem (1986) presented a model
based on the Peng-Robinson equation of state (EOS), Henry’s Law and the scaled-particle theory for
temperatures up to 200 ˚C and molalities up to 4 mol kg-1. But it is not accurate for NaCl(aq). Harvey and
Prausnitz (1989) developed an EOS for the CO2 solubility in NaCl(aq) at elevated pressures. However, it
overestimates CO2 solubility by 10 – 20% compared to experimental data. The EOS developed by Zuo and
Guo (1991) underestimates CO2 solubility significantly for a NaCl mass fraction of 20 wt% and high
pressures and overestimates solubility at 6 wt% NaCl mass fractions and moderate pressures by more than
12% (Duan and Sun, 2003).

Duan and Sun (2003) presented an improved thermodynamic model for the solubility of CO2 in water and
NaCl(aq). Francke (2014) studied the thermo-hydraulic behavior of geothermal fluids at the research site in
Gross Schoenebeck, Germany. A GFP model has been developed to calculate geothermal fluid properties
(Francke et al., 2013). These two models are discussed in Sections 2.3.4.1 and 2.3.4.2, respectively.

2.3.4.1. Thermodynamic Model Duan and Sun (2003)

Duan and Sun (2003) developed an improved model calculating CO2 solubility in pure water and NaCl(aq)
valid for temperatures in the range of 273 – 533 K, pressures in the range of 0 – 2000 bar and molalities in
the range of 0 – 4.3 mol kg-1. The EOS was developed by applying a specific interaction theory for the
liquid phase and an accurate EOS for the vapor phase, based on the EOS of Duan et al. (1992) and the
theory of Pitzer (1973). The model is able to predict CO2 solubility close to experimental uncertainty,
which is approximately 7% in CO2 solubility.

Additionally, a model for the phase equilibrium for ܶ − ܲ −݉ range of 273 – 523 K, 0 – 2000 bar and 0 –
4.3 mol kg-1

 and the density for ܶ − ܲ −݉ range of 273 – 573 K, 0 – 1000 bar and 0 – 4.3 mol kg-1 has
been published (Duan and Sun, 2003; Duan et al., 2006; Duan et al., 2007; Duan et al., 2008). The models
are publically available on the internet (Zhenhao Duan Research Group, 2006).

16 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

2.3.4.2. Thermodynamic Model Francke et al. (2013)

Francke et al. (2013) developed a geothermal fluid property (GFP) model, called BrineProp, which has
been used in the dissertation Francke (2014). The model has been developed specifically for the research
site Gross Schoenebeck, Germany. BrineProp is free software available as a Modelica package. A VBA MS
Excel version is available as well. The VBA MS Excel model is in the present work referred to as the “GFP
Excel model”. The model version, BrineProp_0.5.xlsm, has been made available by Heineken (2016).

The geothermal fluid has been modeled as a mixture of H2O, salts (NaCl, KCl and CaCl2) and NCG (CO2,
N2 and CH4), which are the main components at the Gross Schoenebeck site. The GFP Excel model
calculates, for a given ܲ − ܶ state, the gas mass fraction ߯. Subsequently, the state variables ℎ and ߩ are
calculated for separated phases and an effective homogeneous value is calculated according to ߯. The
relevant assumptions that were made for the model are outlined below.

Assumptions:

1. The geothermal fluid is a mixture of H2O, NaCl, KCl, CaCl2, CO2, N2 and CH4 and the composition is
set with mass fractions.

2. There are two possible phase states: liquid or two-phase with liquid and gas. The gas phase is an ideal
mixture of water vapor and gases.

3. If the two-phase state is satisfied, thermodynamic equilibrium is instantly reached. H2O and gases
exchange between liquid and gas phase by degassing/dissolution or evaporation/condensation.

4. Salts are dissolved in the liquid phase and do not precipitate or evaporate.
5. Dissolution of gases in water is modeled according to their solubility as if that particular gas is present

in its own. Interaction between gases is neglected. In two-phase state partial pressures equal degassing
pressures according to Raoult’s Law. The water vapor pressure is calculated with Raoult’s Law.
Degassing pressure of the gases is calculated with correlations depending on Henry’s coefficient
describing the non-ideal solution behavior at high pressures.

6. Evaporation enthalpy is considered. Boundary surface enthalpies, gas solution enthalpies and dilution
enthalpies are neglected.

7. Dalton’s Law is applied to calculate the total pressure of the gas phase.

For the exact calculation procedure, considering equations, correlations and algorithms is referred to
Francke (2014). Relevant for the present work, CO2 solubilities in the GFP Excel model were obtained from
Duan et al. (2006). Effective specific volume (and subsequently density), enthalpy and specific heat
capacity of a two-phase mixture were calculated as a mass-weighted average according to the mass fraction.
Effective viscosity has not been considered.

The GFP Excel model was validated against literature data and field measurements. The density model
predicts the density with a calculation error of less than 1.4%. The calculated viscosity has a relative error
of approximately 6% according to the measured field data. This has been accepted, because of the minor
importance of frictional pressure losses in comparison to hydrostatic pressure losses. Gas solubility and gas
volume fraction have matched experimental data rather good for low salinities and low pressures. At high
salinity nitrogen solubility has been overestimated and methane solubility has been underestimated
significantly. The production well has been hydraulically and thermally validated as well. The boundary
conditions of the GFP Excel model are presented in Table 2.5. Validity range of gas mass fractions have not
been specifically given, because dissolved gas mass fractions are significantly low at the Gross
Schoenebeck site, where N2 is the most abundant NCG, but with only 0.744 g kg-1.

Table 2.5: Boundary conditions GFP Excel model Francke (2014).

Quantity Boundary conditions ܲ 1 – 1000 bar ܶ 0 – 260 ˚C ݓே௔஼௟ 0 – 6 mol kg-1 ݓ௄஼௟ 0 – 4.5 mol kg-1 ݓ஼௔஼௟ଶ 0 – 3 mol kg-1

2.4. Flow Characteristics & Thermodynamics 17

Master of Science Thesis F.W.J. Niewold

2.3.5. Conclusions
The GFP Excel model of Francke et al. (2013) is incorporated in the GFP model developed in this work,
because of the usefulness and high applicability. Duan and Sun (2003) is used to validate the GFP model of
this work.

2.4. Flow Characteristics & Thermodynamics
The present section discusses the theory of reservoir flow (Section 2.4.1) and well flow (Section 2.4.2) in
order to form a basis for the mathematical model of the geothermal power plant systems. Section 2.4.3
reviews the effect of artificial lift in geothermal wells on the flow characteristics from a theoretical
viewpoint. Finally, the thermodynamics of the conversion process of two geothermal power plants (single-
flash and binary cycle), presented in Section 2.1, are outlined in Section 2.4.4.

2.4.1. Reservoir Flow
Reservoir modeling is a complicated process, because the underground patterns of fractures and the
porosity in the rock formation are unknown and it can behave dynamically. In this study, it is aimed for to
develop a sub model for the reservoir that can interact with the fluid flow in the production well and
injection well. Fluid flow in reservoirs and wells has been thoroughly studied, especially for oil and gas
applications. It is far too complex to describe the flow in the reservoir analytically, because the flow path is
unknown. Therefore, a lumped parameter approach is used to model the reservoir. In that case, the behavior
of the flow is simplified and the values are averaged between the boundaries of the system. In order to
simplify the flow the following three assumptions are made (Dake, 1978).

Assumptions:

1. The permeability of the reservoir is considered isotropic and the rock properties are homogeneous
throughout the reservoir.

2. The production well is completed across the entire formation thickness and therefore assuming
fully radial flow.

3. The pores in the rock formation are completely saturated with a single phase fluid.

Figure 2.15 represents a simplified reservoir-well system. Fluid flows radially and horizontally from the
boundary of the reservoir towards the boundary of the well, from where it flows vertically inside the well
(DiPippo, 2012).

Figure 2.15: Schematic of a simplified reservoir-well system (DiPippo, 2012).

The basic differential equation for the radial flow of a fluid in a homogeneous porous medium, which is
also referred to as the pressure diffusion equation, is used to calculate the pressure in the reservoir at a
certain distance ݎ from the production well as a function of time. It can be derived from the principle of
mass conservation by substituting Darcy’s Law for radial, horizontal flow and the basic thermodynamic
definition of isothermal compressibility (Dake, 1978).

18 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

In order to derive the pressure diffusion equation a simplified model of the reservoir is presented in Figure
2.16, which corresponds to the reservoir model of Figure 2.15 with the associated assumptions. The
conservation of mass inside an arbitrary cylindrical shell of thickness ݀ݎ	around the production well is
defined by eq. (2.1).

Figure 2.16: Radial flow of a single phase fluid in the vicinity of a producing well (Dake, 1978).

௥ାௗ௥|(ߩݍ) − ௥|(ߩݍ) = ݎ݀ߔோܮݎߨ2 ݐ߲ߩ߲ (2.1)

Where ݍ is the volumetric flow rate [m3 s-1], ߩ is the density [kg m-3], ݎ is the radius [m], ܮோ is the vertical
length or thickness of the reservoir [m], ߔ is the porosity and ݐ is the time [s]. The volume of the fluid
inside the cylindrical shell is represented by 2ܮݎߨோݎ݀ߔ. The left hand side of eq. (2.1) can be expanded to
eq. (2.2), which simplifies to eq. (2.3).

௥|(ߩݍ) + ݎ߲(ߩݍ)߲ ݎ݀ − ௥|(ߩݍ) = ݎ݀ߔோܮݎߨ2 ݐ߲ߩ߲ ݎ߲(ߩݍ)߲ (2.2) = ߔோܮݎߨ2 ݐ߲ߩ߲ (2.3)

Darcy’s Law describes the flow of a fluid through a porous medium and relates the volumetric flow rate ݍ
across a surface to the pressure gradient ߲ܲ ⁄ݎ߲ across a section (Dake, 1978). The radial form is given by
eq. (2.4). ݍ = ோܮݎߨ2 ߤܭ ݎ߲߲ܲ (2.4)

Where ܭ is the permeability [m2], ߤ is the dynamic viscosity [Pa s], ܲ is the pressure [Pa]. Now by
substituting Darcy’s Law, eq. (2.4), into the simplified form of the principle of mass conservation, eq. (2.3),
eq. (2.5) is obtained. ߲߲ݎ ൬2ܮߨோߤܭݎ ߩ ൰ݎ߲߲ܲ = ߔோܮݎߨ2 ݐ߲ߩ߲ (2.5)

Where the reservoir thickness ܮோ is not a function of ݎ, this can be simplified to eq. (2.6). 1ݎ ݎ߲߲ ൬ߤߩܭ ݎ ൰ݎ߲߲ܲ = ߔ ݐ߲ߩ߲ (2.6)

The time derivative of density in eq. (2.6) can be expressed as a time derivative of pressure by
differentiating the basic thermodynamic definition of isothermal compressibility, given by eq. (2.7), with
respect to time resulting in eq. (2.8).

ܿ = − 1ܸ ൬߲ܸ߲ܲ൰் = ߩ1 ൬߲߲ܲߩ൰் (2.7)

2.4. Flow Characteristics & Thermodynamics 19

Master of Science Thesis F.W.J. Niewold

ߩܿ ݐ߲߲ܲ = ݐ߲ߩ߲ (2.8)

Where ܿ is the isothermal compressibility [Pa-1] and ܸ is the volume [m3]. Finally, by substituting eq. (2.8)
into eq. (2.6), eq. (2.9) is obtained. 1ݎ ݎ߲߲ ൬ߤߩܭ ݎ ൰ݎ߲߲ܲ = ߩܿߔ ݐ߲߲ܲ (2.9)

Eq. (2.9) is non-linear, because the coefficients on both sides are functions of pressure. In order to obtain an
analytical solution it must be linearized by assuming that the single fluid flowing through the formation is
liquid. Then by assuming ߤ and ܿ are independent of pressure and therefore constant, eq. (2.9) reduces to
eq. (2.10), which is referred to the basic equation for the radial flow of a fluid in a homogeneous porous
medium or pressure diffusion equation (Dake, 1978). 1ݎ ݎ߲߲ ൬ݎ ൰ݎ߲߲ܲ = ܭܿߤߔ ݐ߲߲ܲ (2.10)

Where ܿߤߔ ⁄ܭ is now a constant. Depending on the initial and boundary conditions an infinite number of
solutions can be obtained. The three most common solutions are transient, semi steady state and steady
state. For the present work, it is assumed that the steady state solution describes the reservoir properties
sufficiently. Figure 2.17 shows the radial flow of liquid fluid under steady state flow conditions. Steady
state implies that the well produces at a constant volumetric flow rate ݍ and that the pressure profile in the
reservoir remains constant over time, so that ߲ܲ ⁄ݐ߲ = 0. Additionally, this assumption is allowed if the
outer boundary pressure or reservoir pressure ோܲ remains constant, which can only be accomplished by
natural influx of water at the outer boundary or by the injection of fluid through an injection well. The latter
is the case in the present work, where it is assumed that the injection well is placed outside the boundary
indicated by Figure 2.17.

Figure 2.17: The radial flow pressure distribution of liquid geothermal fluid under steady state flow conditions (Dake,
1978).

The steady state condition of radial, horizontal flow in a reservoir is presented by eq. (2.11), which is the
radial form of the Laplace equation with pressure only as function of the radius of the reservoir. 1ݎ ݎ߲߲ ൬ݎ ൰ݎ߲߲ܲ = 0 (2.11)

The solution of this steady state diffusion equation is given by eq. (2.12), which can also be obtained by
integrating eq. (2.4), which is Darcy’s Law for radial, horizontal flow of a liquid through a porous medium.
It can be seen that the pressure loss in the reservoir is a logarithmic function, which can also be seen in
Figure 2.17.

∆ܲ = ݎ)ܲ = (ோݎ − ݎ)ܲ = (ௐݎ = ோܮܭߨ2ݍߤ ln ௐ (2.12)ݎோݎ

Where ∆ܲ is called the drawdown [Pa], which is the difference between the pressure at the far-field and at
the well face.	ݎோ is the radius of the reservoir [m] and ݎௐ is the radius of the well at reservoir depth [m].

Finally, the skin factor is introduced due to the fact that during drilling, depletion or production of the well
the pores can be partially plugged with drilling mud. It can lead to a reduction in permeability and therefore

20 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

an increased pressure drawdown in the vicinity of the wellbore. The additional pressure loss ∆ ௦ܲ௞௜௡ near the
wellbore, defined by Van Everdingen (1953), is considered to be caused by a skin and is given in eq. (2.13)

∆ ௦ܲ௞௜௡ = ோܮܭߨ2ݍߤ ܵ (2.13)

Where ܵ is the skin factor. Substituting eq. (2.13) into eq. (2.12) gives the total pressure drop in the
reservoir between the undisturbed flow in the far-field and the well.

∆ܲ = ݎ)ܲ = (ோݎ − ݎ)ܲ = (ௐݎ = ோܮܭߨ2ݍߤ ൬݈݊ ௐݎோݎ − ܵ൰ (2.14)

A geothermal reservoir will never be as ideal as described above and the non-uniform reservoir properties
are difficult to establish. It is common practice to merge the reservoir properties and the fluid properties
within the reservoir to a productivity index ܲܫ [kg s-1 Pa-1] and an injectivity index ܫܫ [kg s-1 Pa-1]. The ܲܫ
and the ܫܫ can be determined by well tests. Consequently, eq. (2.14) reduces to eqs. (2.15) and (2.16) for ܲܫ
and ܫܫ, respectively.

ܫܲ = ሶ݉∆ܲ (2.15)

ܫܫ = ሶ݉∆ܲ (2.16)

Where ∆ܲ in eq. (2.15) is the pressure drawdown from the far field to the inlet of the production well. In eq.
(2.16), ∆ܲ is the pressure drawdown from the outlet of the injection well to the far-field. It has been widely
accepted in reservoir engineering to calculate reservoir inflow and outflow conditions with the ܲܫ and ܫܫ
conditions (Dake, 1978; Cholet, 2008; Pruess, 2010; Grant and Bixley, 2011; Francke, 2014).

2.4.2. Well Flow
All equations in the current subsection can be used for both the production well as the injection well unless
stated otherwise. The First Law of Thermodynamics for an open system in steady state flow can be applied
to a well, given in eq. (2.17) (DiPippo, 2012).

ሶܳ − ሶܹ = ሶ݉ ൤(ℎଶ − ℎଵ) + 12 ଶଶݑ) − (ଵଶݑ + ଶݖ)݃ − ଵ)൨ (2.17)ݖ

Where ሶܳ is the rate of heat flow supplied to the system by its surroundings [W], ሶܹ is the rate of work done
by the system [W], ሶ݉ is the mass flow rate [kg s-1], ℎ is the enthalpy [J kg-1], ݑ is the velocity [m s-1], ݃ is
the gravitational acceleration [m s-2] and ݖ is the elevation [m]. States 1 and 2 represent the bottom and top
of the well, respectively. Garcia-Gutierrez et al. (2002) used an analytical solution for the heat flow rate ሶܳ ,
which has been found accurate for geothermal applications, given in eq. (2.18).

ሶܳ = ௥൫݇ߨ4 ௚ܶ௙ − ௚ܶ൯ln ൬4ߙ௥ݎߛݐௐଶ ൰ (2.18)

Where ݇௥ is the rock thermal conductivity [W m-1 K-1], ௚ܶ௙ is the temperature of the geothermal fluid [˚C], ௚ܶ is the geothermal temperature [˚C], ߙ௥ is the rock thermal diffusivity [m2 s-1], ݐ is the time [s], ߛ is
Euler’s constant (1.78) and ݎௐ	 is the inner radius of the well [m].

In order to know the pressure as a function of height the momentum equation of fluid mechanics (eq.
(2.19)) is applied, which is an application of Newton’s Second Law of Motion (DiPippo, 2012).

−݀ܲ − ܣܨ݀ − ݖ݀݃ߩ = (2.19) ݑ݀ݑߩ

2.4. Flow Characteristics & Thermodynamics 21

Master of Science Thesis F.W.J. Niewold

Where the left hand side represents the forces per unit area acting on an elemental fluid body of length ݀ݖ
and the right hand side gives the mass times acceleration per unit area. The elemental friction force ݀ܨ is
derived from the dimensionless expression for momentum transfer to a wall given in eq. (2.20) (Mills,
1998).

߬௪௔௟௟ = 12 ௙ (2.20)ܥଶݑߩ

Where ߬௪௔௟௟ is the wall shear stress [N m-2]. ܥ௙ is the skin friction factor, which is simply related to the
Darcy friction factor for fully developed flow according to eq. (2.21) (Mills, 1998). ݂ = ௙ (2.21)ܥ4

Now by substituting eq. (2.21) into eq. (2.20) and rewriting the wall shear stress to an elemental friction
force divided by the elemental wall surface, eq. (2.22) is obtained.

ܨ݀ = ଶݑߩ12 4݂ (2.22) ݖ݀ܥ

Where ܥ = ௜ܦߨ , is the circumference of the well interior [m].
By integrating eq. (2.19), after substituting eq. (2.22), from the bottom to the top of the well the pressure
difference can be expressed by eq. (2.23) (DiPippo, 2012).

ଵܲ − ଶܲ = න ݑ݀(ݖ)ݑ(ݖ)ߩ +௨మ
௨భ

௜ܦ12 න ௭మ(ݖ)ଶݑ(ݖ)ߩ݂
௭భ ݖ݀ + ݃ න ௭మ(ݖ)ߩ

௭భ (2.23) ݖ݀

2.4.2.1. Liquid-Only Flow

If the pressure of the hot geothermal fluid falls below the saturated liquid pressure flashing occurs inside the
well. The point in the wellbore where flashing starts is called the flash horizon or flash point. According to
Ryley (1980), it is convenient to integrate eq. (2.23) separately for liquid phase flow below the flash point
and the two-phase flow above the flash point. For liquid flow, the friction factor can be found from the
Swamee-Jain equation (eq. (2.24)) (Swamee and Jain, 1976).

݂ = 0.25൜logଵ଴ ൤ܦ/ߝ௜3.7 + 5.74Re଴.ଽ൨ൠଶ (2.24)

Where ߝ is the absolute pipe roughness [m] and Re is the Reynolds number given by eq. (2.25).

Re = ߤ௜ܦݑߩ (2.25)

Where the velocity ݑ is calculated by eq. (2.26).

ݑ = ሶ݉ܣߩ஼ௌ (2.26)

For liquid-only flow the acceleration term is assumed to be negligible due to negligible compressibility of
the liquid. Additionally, velocity and density can therefore be taken as constants. After integration eq.
(2.23) reduces to eq. (2.27).

ଵܲ − ிܲ௉ = ௜ܦଵିி௉2ܮଶݑߩ݂ + ଵିி௉ (2.27)ܮߩ݃

22 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

Where ଵܲ is the pressure at the bottom of the well [Pa], ிܲ௉ is the pressure at the flashpoint [Pa], ݂ is the
Darcy friction factor and ܮଵିி௉ is the distance from the bottom of the well to the flash point [m]. It must be
noted that the sign of the frictional pressure loss in eq. (2.27) depends on the direction of motion, giving it a
negative sign for the injection well.

2.4.2.2. Two-Phase Flow

DiPippo (2012) adopted the lumped-parameter approach suggested by Ryley (1980) for the two-phase flow
in the production well above the flash point. In that case, mean effective values were used for the two-phase ݑ ,݂ ,ߩ and eq. (2.23) is integrated to eq. (2.28).

ிܲ௉ − ଶܲ = ௠2ߩ̅	 ଶଶݑ) − ி௉ଶݑ) + ௜ܦ12 ݂௠̅̅ߩ௠ݑത௠ଶ ଶݖ) − (ி௉ݖ + ଶݖ)௠ߩ̅݃ − ி௉) (2.28)ݖ

Where ݉ stands for liquid-gas mixture. Ryley (1980) concluded that the calculation of ݑത௠	 led to difficulties
if there is a large velocity change in the pipe section from the flash point to the top of the well. The problem
eased progressively by subdivision in smaller segments. Figure 2.18 shows the analysis of a pipe segment
to solve the well flow numerically. Then eq. (2.28) is rewritten to eq. (2.29) for the pressure change in a
pipe segment.

ܲ − (ܲ + ∆ܲ) = ௠ݑ௠൫ݑ௠ߩ − ௠ݑ) + ௠)൯ݑ∆ + ௜ܦ12 ௠݂ߩ௠ݑ௠ଶ ൫ݖ − ݖ) + ൯(ݖ∆
ݖ௠൫ߩ݃+ − ݖ) + ൯ (2.29)(ݖ∆

Where ߩ௠ is calculated by eq. (2.30) and ݑ௠ is calculated by eq. (2.31). ߩ௠ = ௚ߝ௚ߩ + ௟൫1ߩ − ௚൯ (2.30)ߝ

௠ݑ = ሶ݉ߩ௠ܣ஼ௌ (2.31)

Where ߩ௚ and ߩ௟	are the densities of the gas phase and liquid phase [kg m-3], respectively, and ߝ௚ is the
cross-sectional void fraction [m2 m-2], ሶ݉ is the mass flow [kg s-1] and ܣ஼ௌ is the cross-sectional area of the
pipe [m2].

Figure 2.18: Analysis of a pipe segment (modified from Ryley (1980)).

The definition for the two-phase friction factor ௠݂ differs widely in published literature. DiPippo (2012)
states that the average friction factor for two-phase flow cannot be expressed in terms of other mean
effective quantities. Therefore, multipliers are used in the range of 2 – 3 applied to the liquid-only friction
factor. Wallis (1969) used constant values for the two-phase friction factor in wellbores of 0.025, which
was also adopted by Garcia-Gutierrez et al. (2002) for their study on flow production characteristics in deep
geothermal wells. Wisman (1975) developed a simple correlation consistent for all flow regimes for

2.4. Flow Characteristics & Thermodynamics 23

Master of Science Thesis F.W.J. Niewold

adiabatic two-phase vertical flow given in eq. (2.32) and (2.33), which was practical from an engineering
purpose and more favorable than the well-known Lockhart-Martinelli correlation.

௠݂ = 0.0056 + 0.5Re௠଴.ଷଶ (2.32)

Re௠ = ௟ߤ௜ܦ௟ݑ௟ߩ ൫1 − ௚൯൫1ߝ − ඥߝ௚൯ (2.33)

Where ߩ௟, ݑ௟ and ߤ௟ are the density, velocity and dynamic viscosity of the liquid phase respectively and ߝ௚
is the void fraction. Chadha et al. (1993) developed a more comprehensive model, but less practical, for
two-phase flow in a geothermal well, in which the friction factor depends on the flow regime of the two-
phase flow. Hasan et al. (2002) used a modification of the correlation from Chen (1979) to model two-phase
flow in wellbores given in eq. (2.34) and (2.35), which is an explicit equation.

௠݂ = 14logଵ଴ ൤ ௜ܦ3.7065ߝ − 5.0452Re௠ logଵ଴ ൬ 12.8257 ቀ ௜ቁଵ.ଵ଴ଽ଼ܦߝ + 5.8506Re௠଴.଼ଽ଼ଵ	൰൨ଶ
(2.34)

Re௠ = ௠ߤ௜ܦ௠ݑ௠ߩ (2.35)

Where ߝ is the pipe roughness [m], ߩ௠ is given by eq. (2.30), ݑ௠ by eq. (2.31) and ߤ௠ is the mass weighted
average of ݑ௟ and ݑ௚.

2.4.2.3. Gas Flow in Gas Lift Duct

Figure 2.19 is a schematic of a production well equipped with a gas lift system. It is assumed that the gas
lift duct is annular. The First Law of Thermodynamics (eq. (2.17)) also applies to the gas flow in the gas lift
duct. The heat flow rate ሶܳ ௚ between the surrounding rock formation and the gas in the gas lift duct is given
by eq. (2.18). The heat flow rate between the geothermal fluid flowing upwards in the production tubing
and the gas flowing downwards in the annular duct is given by eq. (2.36). ሶܳ ௚௙ = ൫ܶீܣܷ ௅ − ௚ܶ௙൯ (2.36)

The calculation procedure of the overall heat transfer coefficient ܷ is discussed in Section A.3. The
corresponding equations are given by eqs. (A.23) – (A.41). The First Law of Thermodynamics for an open
system in steady state flow for the gas lift duct changes to eq. (2.37).

ሶܳ ௚௙ + ሶܳ௚ − ሶܹ = ሶ݉ ீ௅ ൤(ℎଶ − ℎଵ) + 12 ଶଶݑ) − (ଵଶݑ + ଶݖ)݃ − ଵ)൨ (2.37)ݖ

State 1 represents now the top of the gas lift duct and state 2 represents the bottom of the gas lift duct. The
bottom of the gas lift duct corresponds to the depth of the gas lift valve. The First Law of Thermodynamics
for the production tubing in this particular case is still described by eq. (2.17), only ሶܳ is replaced by ሶܳ ௚௙,
where state 1 is the bottom of the production tubing and state 2 is the top of the production tubing according
to the flow direction.

The pressure loss in the gas lift duct is calculated according to eq. (2.23). Furthermore, eqs. (2.24), (2.25)
and (2.26) also apply to the gas in the gas lift duct for the friction factor, Reynolds number and velocity,
respectively.

2.4.3. State of the Art - Modeling Artificial Lift in Wells
Basically, the physics behind the lifting techniques can be divided in two different phenomena as has been
discussed in Section 2.2: 1. pressurizing the geothermal fluid with a pump or 2. decreasing the density by

24 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

mixing the geothermal with a gas or mixture of gases (gas lift). The effect of these phenomena on flow
characteristics inside the wellbore and the way it can be modeled are discussed in the present section.

Figure 2.19: Schematic of a production well equipped with a gas lift system.

2.4.3.1. Pump Model

Downhole pumps have been installed in many low-enthalpy geothermal systems to prevent the fluid from
boiling and to increase energy production. The installation depth of the pump is crucial to avoid cavitation,
which is the boiling of liquid, forming vapor cavities in the liquid. This is caused by local static pressure
decrease due to the increase of flow velocity around propeller blades. Cavitation causes reduction in flow
rate and efficiency and it can heavily damage pump components. According to Aksoy (2007), parameters
having an effect on installation depth are the characteristics of the geothermal fluid (ܶ, ܲ, ݓ஼ைଶ and ݓே௔஼௟)
in the reservoir, reservoir permeability, the production flow rate and wellbore characteristics. The pressure
drop induced by friction in the pump itself is 1-10 kPa, which is a negligible amount compared to other
pressure losses (Lienau et al., 1991).

The required power for the pump depends partly on the required ∆ ௣ܲ, which is on its turn depending on the
characteristics of the geothermal fluid, the production flow rate and the wellbore characteristics above the
pump installation depth. The required ∆ ௣ܲ must be higher than the pressure loss from the pump to the
wellhead in order to avoid flashing above the downhole pump. The pumping power is determined by eq.
(2.38).

ሶܹ௣ = ௣ߟܲ∆ݒ 	 ሶ݉ 	 (2.38)

Subsequently, it is entered as the ሶܹ term in the First Law of Thermodynamics, which is given in eq. (2.17),
to calculate the energy increase of the fluid. Francke (2014) modeled the pump as non-isentropic, adiabatic,
with no physical height or length. In Table 2.3, it has been shown that the efficiency of an ESP is 50 – 65
%.

2.4.3.2. Gas Lift Model

As it has been discussed in Section 2.2.3.4, in gas lift systems a certain gas(mixture) is injected to decrease
the density of the fluids. Subsequently, the gravitational pressure loss above the point of injection is
reduced. From the injection point to the wellhead a gas-liquid mixture flows in the wellbore, where the two-
phase mixture may flow in a variety of patterns. The flow pattern developed in the conduit depends on the
flow rates, the fluid properties and the tube size (Taitel et al., 1980). Generally, four flow patterns for

2.4. Flow Characteristics & Thermodynamics 25

Master of Science Thesis F.W.J. Niewold

upward cocurrent flow are commonly distinguished, which can be seen in Figure 2.20 (Guet, 2004;
Kelessidis et al., 2007).

1. Bubble flow: this pattern is characterized by a uniformly distributed gas phase in the form of discrete
bubbles in a continuous liquid phase. It corresponds to low void fractions. Bubble flow can be
separated in two different turbulent subcases.

a. Bubble flow: low to moderate liquid flow, causes almost no bubble break-up. The bubble size is
affected by entrance conditions and devices.

b. Finely dispersed bubble flow: this regime corresponds to large liquid flow. The bubbles are broken
into small bubbles, due to turbulence. The maximum bubble diameter is affected by turbulence
conditions and surface tension properties (Guet, 2004)

2. Slug flow: large bullet shaped bubbles (Taylor bubbles) form containing most of the gas, which move
uniformly upward. Between Taylor bubbles slugs of continuous liquid containing small gas bubbles
arise. Between Taylor bubbles and pipe wall, a liquid film flows downward.

3. Churn flow: more chaotic and disordered form of slug flow. Taylor bubbles are narrower and distorted.
The continuity of the liquid between Taylor bubbles is repeatedly destroyed by a high local gas
concentration in the liquid slug. Typical is the oscillatory motion of the liquid.

4. Annular flow: a continuous gas phase exists in the core of the pipe. The liquid phase flows partially as
wavy liquid film along the pipe wall and the other part as liquid drops entrained in the gas phase.

Multiphase flow effects in wellbores can have an impact on overall system characteristics and performance,
e.g. of reservoirs and surface facilities. Therefore, accurate multiphase models describing well flow must be
incorporated into the numerical model to optimize the performance of the total system. Commonly, there
are three types of well flow models used, which are: empirical correlations, homogeneous models, and
mechanistic models. Empirical correlations are obtained from curve fitting of experimental data.
Disadvantage of this method is the limited applicability to the range of variables used in the experiments. In
homogeneous models the fluid properties are represented by mixture properties. Single-phase techniques
can be applied to this mixture. Additionally, slip between phases can be introduced, which requires a set of
empirical parameters. These models with slip are in literature referred to as the drift-flux model, which has
been proposed firstly by Zuber and Findlay (1965). Finally, mechanistic models are generally considered as
the most accurate, because detailed physical equations of different flow patterns describe the behavior of
the well flow (Shi et al., 2005).

Figure 2.20: Schematic depiction of flow patterns in vertical flow (Kelessidis et al., 2007).

According to Shi et al. (2005), mechanistic models can cause discontinuities in pressure drop and holdup at
flow-pattern transitions. From a modeling perspective, these discontinuities can induce convergence
problems in a numerical model. One solution to the convergence problems can be smoothing at transitions.
Alternatively, a homogeneous model can be applied, because it is relatively simple, continuous, and
differentiable. Drift-flux models are therefore a good choice for use in wellbore simulators. Woldesemayat
and Ghajar (2007) compared 68 void fraction correlations, and classified them into four categories: slip
ratio, ߝܭு, drift-flux and general void fraction, for different flow patterns in horizontal and vertical inclined
pipes with experimental data. Out of six best performing correlations, five were developed based on the

26 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

drift-flux model. Godbole et al. (2011) compared 52 void fraction correlations and concluded that drift-flux
correlations are among the most accurate for upward vertical two-phase flow, consistent with the findings
of Woldesemayat and Ghajar (2007). Thome (2010) reviewed multiple void fraction correlations and
concluded that the drift-flux model must be the preferred choice as well. Therefore, in the present work the
drift-flux method for two-phase flow has been adopted.

2.4.3.3. Drift-Flux Correlations

Zuber and Findlay (1965) have been the first to develop the drift-flux model, although Wallis (1969) and
Ishii (1977) added substantially to its development (Thome, 2010). Since the introduction of the drift-flux
model it has been refined and used many times. The present work focuses on modeling gas-liquid flow in
large diameter pipes. Most of the empirical parameters in literature are determined from experiments in
small diameter pipes, which are not by definition applicable to flow in wellbores. Shi et al. (2005)
conducted experiments in large diameter pipes comparable with wellbores. They have shown that their
optimized parameters provide better agreement to the experimental data than existing default parameters.
Kelessidis et al. (2007) used the void fraction correlations and flow pattern transitions proposed by Taitel et
al. (1980) for simulation of wells with geothermal water containing dissolved CO2. Their model has been
found suitable for bubble, dispersed bubble and slug flow, but less suitable for churn and annular flow.
According to Woldesemayat and Ghajar (2007), the best performing drift-flux correlations were Rouhani
and Axelsson (1970), Dix (1971) and Toshiba (Coddington and Macian, 2002). It must be noted that these
correlations were compared with experimental data for a pipe with an internal diameter of 45.5 mm.
Godbole et al. (2011) compared void fraction correlations to different sets of experimental data with various
internal diameters up to 76 mm. Dix (1971) and Toshiba (Coddington and Macian, 2002) were not
evaluated, Nicklin (1961) and again Rouhani and Axelsson (1970) have shown the smallest error. Hasan et
al. (2010) developed a simplified, yet comprehensive, two-phase flow model for wellbores using the drift-
flux approach. A comparative study with mechanistic and widely used empirical models was included and
they have shown that these models behave in a similar fashion as the proposed simplified model. In the
present study, the simplified drift-flux model of Hasan et al. (2010) is applied to incorporate two-phase gas-
liquid flow within the numerical model of the wellbore. Shen et al. (2010) and Schlegel et al. (2010)
evaluated the drift-flux correlations for large diameters pipes (Hills, 1976; Ishii, 1977; Clark and Flemmer,
1984; Kataoka and Ishii, 1987; Hibiki and Ishii, 2003). It has been concluded that none of the correlations
described all flow patterns succesfully. Akbar et al. (2016) developed a finite element model for two-phase
flow in geothermal wellbores. Three different drift-flux correlations were implemented. Rouhani and
Axelsson (1970) have shown the best fit with field data from the well NWS-1 Sabalan with an internal
diameter of 0.24 m, followed by the correlation of Shi et al. (2005).

Based on the literature survey in the present work, the drift-flux correlations of Nicklin (1961), Rouhani
and Axelsson (1970), Dix (1971), Toshiba (1989) and Hasan et al. (2010) are further discussed.

The drift-flux model basically applies two parameters: the flow distribution parameter ܥ଴ and the drift-flux
velocity ݑ௚௨. The distribution parameter takes non-uniform flow and concentration profiles into account.
Whereas the drift-flux velocity takes into account velocity differences between gas and liquid flow and
thereby slip. More specifically, drift-flux velocity is the velocity of the gas phase relative to the mixture
velocity. The gas phase velocity is higher than the liquid phase velocity, because of its buoyancy.
Furthermore, it has the tendency to flow near the channel center, where the velocity is higher than at the
pipe walls. The equations in the present section are based on a one-dimensional flow. The in-situ gas
velocity ݑ௚ is given by eq. (2.39). ݑ௚ = ௠ݑ଴ܥ + ௚௨ (2.39)ݑ

Where ݑ௠ is the average mixture velocity [m s-1]. For cocurrent flow, the mixture velocity ݑ௠ is calculated
by eq. (2.40). ݑ௠ = ௦௚ݑ + ௦௟ (2.40)ݑ

Where ݑ௦௚ and ݑ௦௟	are the gas and liquid superficial velocities [m s-1], respectively. The superficial velocity
is a hypothetical velocity calculated as if the phase was flowing alone in the particular cross sectional area.

2.4. Flow Characteristics & Thermodynamics 27

Master of Science Thesis F.W.J. Niewold

The in-situ gas velocity can also be expressed as the ratio of superficial gas velocity ݑ௦௚	and void fraction ߝ௚ ൫ݑ௚ = ௦௚ݑ ⁄௚ߝ ൯, which gives eq. (2.41) after substitution in eq. (2.39).

௚ߝ = ௠ݑ଴ܥ௦௚ݑ + ௚௨ (2.41)ݑ

The void fraction ߝ௚ can be used to calculate the mixture density, which is given earlier in eq. (2.30). The
mixture density is applied in the calculation of the total pressure gradient given by eq. (2.29). Eqs. (2.39) –
(2.41) form the basis of the drift-flux model. Table 2.6 gives an overview of the flow distribution parameter
and the drift-flux velocity for various correlations considered in the present study.

Table 2.6: Expressions for distribution parameter and drift-flux velocity of various correlations considered in the
present work.

Correlation Distribution parameter Drift-flux velocity

Nicklin (1961) ܥ଴ = ௚௨ݑ 1.2 = 0.35ඥ݃ܦ

Rouhani and Axelsson (1970) ܥ଴ = 1.1 for ܬ > 200 kg m-2 s-1 ܥ଴ = 1.54 for ܬ	 < 	200 kg m-2 s-1

or ܥ଴ = 1.0 + 0.2(1 − ߯)

௚௨ݑ = ߪ1.18ൣ݃ ൫ߩ௟ − ௚൯ߩ ⁄௟ଶߩ ൧ଵ ସ⁄

Dix (1971) ܥ଴ = ௠ݑ௦௚ݑ ൤1 + ൫ݑ௦௟/ݑ௦௚൯൫ఘ೒/ఘ೗൯బ.భ൨ ݑ௚௨ = ߪ2.9ൣ݃ ൫ߩ௟ − ௚൯ߩ ⁄௟ଶߩ ൧ଵ ସ⁄

Toshiba
(Coddington and Macian, 2002)

଴ܥ = ௚௨ݑ 1.08 = 0.45

Hasan et al. (2010) proposed a more comprehensive model for two-phase flow in wellbores. In that study,
the flow parameter ܥ଴ and the drift-flux velocity ݑ௚௨ depend on flow pattern, inclination angle, flow
direction and phases. Gas lift is restricted to vertical wells in the present study, so well deviation can be
neglected. In production wells the flow direction is assumed to be cocurrent. Table 2.7 presents the values
of ܥ଴ and ݑ௚௨ for cocurrent flow direction and different flow patterns according to Hasan et al. (2010). The
drift-flux velocity is expressed in different correlations for the bubble-rise velocity.

Table 2.7: Parameters for fully developed co-current flow and flow pattern (Hasan et al., 2010).

Flow pattern Distribution parameter
 ଴ܥ

Drift-flux velocity ݑ௚௨

Bubble ܥ଴௕ = 1.2 ஶ௕ݑ

Slug ܥ଴௦ = 1.2 ஶݑ

Churn ܥ଴௖ = 1.15 ஶݑ

Dispersed bubble ܥ଴௖ = 1.15 ஶ௕ݑ

Annular ܥ଴௔ = 1.0 0

The Harmathy correlation, given by eq. (2.42), represents the small bubble rise velocity independent of
flow direction, well deviation and annular geometry (Harmathy, 1960).

ஶ௕ݑ = 1.53ൣ݃൫ߩ௟ − ௚൯ߩ ߪ ⁄௟ଶߩ ൧ଵ ସ⁄
 (2.42)

Where ݃ is the gravitational acceleration [m2 s-1], ߩ௟ is the density of the liquid phase [kg m-3], ߩ௚ is the
density of the gas phase [kg m-3] and ߪ is the surface tension [kg m-2]. In slug flow Taylor bubbles are
formed and the associated rise velocity is influenced by inclination angle and annular geometry. The Taylor
bubble rise velocity is given in eq. (2.43).

ஶ்ݑ = 0.35ට݃ܦ௜൫ߩ௟ − ఏ (2.43)ܨ௟ߩ/௚൯ߩ

28 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

Where ܦ௜ is the diameter of the wellbore [m] and ܨఏ is the well-deviation factor given by eq. (2.44). ܨఏ = √cos1)ߠ + sinߠ)ଵ.ଶ (2.44)

In slug flow, the liquid slug between the Taylor bubbles also contain small bubbles, whose rise velocity can
be expressed by eq. (2.42). Consequently, the drift-flux velocity for slug flow, given in eq. (2.45) is
calculated as an average of small bubble rise velocity and Taylor bubble rise velocity. ݑ௚௨ = ஶݑ	 = ஶ௕ݑ ቀ1 − ݁ି଴.ଵ௨೒್/൫௨ೞ೒ି௨೒್൯ቁ + ஶ்ݑ ቀ݁ି଴.ଵ௨೒್/൫௨ೞ೒ି௨೒್൯ቁ (2.45)

Where ݑ௚௕ is the superficial gas velocity needed for transition from bubble to slug flow [m s-1] and ݑ௦௚ is
the superficial gas velocity [m s-1]. Eq. (2.45) is also used for churn flow. Finally, for annular flow eq.
(2.41) is applied with a bubble rise velocity of 0, since it has been shown that with annular flow the effects
of well orientation, geometry and flow direction are negligible (Hasan et al., 2010). In order to calculate the
void fraction ߝ௚, it is required to establish the transition criteria and subsequently the associated flow
pattern. Many researchers have shown that the transition from bubble to slug flow occurs at a void fraction ߝ௚ of 0.25 in vertical systems. The bubble rise velocity and the distribution parameter are modified to
account for smooth transition between different flow patterns. For cocurrent upward flow, the superficial
gas velocity needed for transition from bubble flow ݑ௚௕ is given by eq. (2.46).

௚௕ݑ = ௦௟ݑ଴ܥ + ௚௨4ݑ − ଴ܥ (2.46)

Where the flow parameter ܥ଴ associated with transition from bubble to slug flow is expressed by eq. (2.47).
The bubble rise velocity ݑ௚௨ is calculated by eq. (2.45).

଴ܥ = ଴௕ܥ ቀ1 − ݁ି଴.ଵ௨೒್/൫௨ೞ೒ି௨೒್൯ቁ + ଴௦ܥ ቀ1 − ݁ି଴.ଵ௨೒್/൫௨ೞ೒ି௨೒್൯ቁ (2.47)

Where the flow parameters ܥ଴௕ and ܥ଴௦ can be found in Table 2.7. Both eq. (2.45) and (2.47) depend on ݑ௚௕, which on its turn depend on ܥ଴ and ݑ௚௨, making an iterative procedure necessary to calculate the
values.

Bubble flow cannot exist, turning into dispersed bubble flow, when the mixture velocity ݑ௠ is higher than
the minimum mixture velocity for dispersed bubble flow ݑ௠௦, which can be checked by eq. (2.48).

௠௦ଵ.ଶݑ2 ൬2݂ܦ൰଴.ସ ቀߩ௟ߪ ቁ଴.଺ ඨ ௟ߩ൫݃ߪ0.4 − ௚൯ߩ = 0.725 + 4.15ඨݑ௦௚ݑ௠ (2.48)

Where ݂ is the Darcy friction factor for two-phase flow calculated by eq. (2.34). Transition from dispersed
bubble to churn flow occurs at high enough gas velocity according to eq. (2.49). ݑ௦௚ > ௦௟ (2.49)ݑ1.08

The transition from slug to churn flow occurs when both criteria stated for eq. (2.48) and eq. (2.49) are true.
Eq. (2.45) and eq. (2.46) are also valid for this transition, supplemented by eq. (2.50), where the flow
parameter for transition from slug to churn flow is calculated. ܥ଴ = ଴௦൫1ܥ − ݁ି଴.ଵ௨೘ೞ/(௨೘ି௨೘ೞ)൯ + ଴௖൫1ܥ − ݁ି଴.ଵ௨೘ೞ/(௨೘ି௨೘ೞ)൯ (2.50)

Where ܥ଴௖ is the fully developed flow parameter for churn flow. Finally, the transition from churn to
annular flow occurs when the superficial gas velocity ݑ௦௚ is higher than the superficial gas velocity needed
for transition from churn to annular flow ݑ௚௖, which is given by eq. (2.51).

2.4. Flow Characteristics & Thermodynamics 29

Master of Science Thesis F.W.J. Niewold

௚௖ݑ = ௟ߩ൫ߪ3.1ൣ݃ − ௚ଶ൧ଵߩ/௚൯ߩ ସ⁄
 (2.51)

In Table 2.7 it can be seen that the bubble rise velocity is 0. The flow parameter, given in eq. (2.52), is
derived from the fully developed flow parameters of annular flow and the adjoining churn flow. As an
additional requirement, annular flow exists if the void fraction ߝ௚ > ଴ܥ .0.7 = ଴௖൫1ܥ − ݁ି଴.ଵ௨೒೎/൫௨ೞ೒ି௨೒೎൯൯ + ଴௔൫1ܥ − ݁ି଴.ଵ௨೒೎/൫௨ೞ೒ି௨೒೎൯൯ (2.52)

Where ܥ଴௔ is the fully developed flow parameter for annular flow.

2.4.4. Thermodynamics Geothermal Power Plants
The analysis in this section is based on the principle of energy, mass and momentum conservation. First the
thermodynamic principles of the single-flash power plant are discussed. Subsequently, thermodynamics
related to the binary cycle power plant are presented. Thermodynamics related to other geothermal power
plants are discussed in Section A.4.

2.4.4.1. Single-Flash Steam Power Plant

Figure 2.21 shows the temperature-entropy diagram for a single-flash plant (DiPippo, 2012). The operation
of single-flash plants has already been discussed in section 2.1.1.

Figure 2.21: Temperature-entropy diagram for single-flash plants (DiPippo, 2012).

At state 1, the geothermal fluid starts flashing isenthalpically, because it happens spontaneously,
adiabatically and without work involvement. Additionally, changes in kinetic or potential energy are
neglected. This results in eq. (2.53). ℎଵ = ℎଶ (2.53)

Then the separation process in the cyclone separator occurs isobarically. The quality of the mixture at state
2 is given by eq. (2.54).

߯ଶ = ℎଶ − ℎଷℎସ − ℎଷ (2.54)

The steam mass fraction goes to the turbine. The power produced by the turbine is given by eq. (2.55). ሶܹ ௧ = ߯ଶ	 ሶ݉ ଶ(ℎସ − ℎହ) (2.55)

Where the enthalpy at state 5 is calculated by eq. (2.56). ℎହ = ℎସ − ௧(ℎସߟ − ℎହ௦) (2.56)

30 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

Where ߟ௧ is the isentropic turbine efficiency and ℎହ௦ is the enthalpy after isentropic expansion. The gross
electrical power is then given by eq. (2.57). ሶܹ ௘ = ௚ߟ ሶܹ ௧ (2.57)

The isentropic efficiency of a turbine is affected by the amount of moisture according to Baumann (1921).
The Baumann rule says that 1% moisture causes approximately a 1% drop in turbine efficiency. The
isentropic efficiency is then given by eq. (2.58).

௧ߟ = ௧௪ߟ = ௧ௗߟ ቂ߯ସ − ߯ହ2 ቃ (2.58)

Where ݓ and ݀ stand for wet and dry, respectively. The condensing process of the expanded steam after the
turbine is expressed by eq. (2.59). ሶ݉ ௖௪ܿ௣,௪∆ ௖ܶ௪ = ߯ଶ	 ሶ݉ ଶ(ℎହ − ℎ଺) (2.59)

Where ܿݓ stands for cooling water. The condenser pump, cooling water pump and injection pump consume
power according to eq. (2.60), where the liquid is assumed to be incompressible and thus ݒ is constant.

ሶܹ௣ = ௣ߟܲ∆ݒ 	 ሶ݉ 	 (2.60)

Where ݒ is the specific volume [m3 kg-1], ∆ܲ is the pressure difference induced by the pump and ߟ௣ is the
pump efficiency. The net power is then calculated by eq. (2.61). ሶܹ ௡௘௧ = ሶܹ௘ − ሶܹ ௜௣ − ሶܹ௖௣ − ሶܹ௖௪௣ (2.61)

In literature there are different definitions for thermal efficiencies and utilization efficiencies. According to
DiPippo (2012), for a closed cycle the thermal efficiency is often described by eq. (2.62).

௧௛ߟ = ሶܹ௘ሶܳ ௜௡ (2.62)

Where ሶܳ ௜௡ is the rate of heat flow transferred from the geothermal fluid. The utilization efficiency given in
eq. (2.63), also referred as the Second Law (exergetic) efficiency, compares the actual power output to the
available theoretical power.

௨ߟ = ሶܹ ௡௘௧ܧሶ (2.63)

Where the theoretical power ܧሶ is calculated by eq. (2.64) ܧሶ = 	 ሶ݉ ଶ݁ = 	 ሶ݉ ଶൣℎ(ܶ, ܲ) − ℎ(଴ܶ, ଴ܲ) − ଴ܶሾݏ(ܶ, ܲ) −)ݏ ଴ܶ, ଴ܲ)ሿ൧ (2.64)

Where ݁ is the specific exergy [J kg-1] and 0 stands for dead-state or ambient conditions. The comparison of
geothermal power plant performance is often done by their utilization efficiency. That is the thermal
efficiency of the single-flash plant is arbitrary, because it does not have a closed cycle and it is difficult to
determine the transferred heat.

2.4.4.2. Binary Cycle Power Plant

The temperature-entropy diagram for a binary cycle power plant is shown in Figure 2.22. Starting from
state 1, the expansion of saturated or superheated working fluid (wf) is given by eq. (2.65). ሶܹ ௧ = 	 ሶ݉ ௪௙(ℎଵ − ℎଶ) = 	 ሶ݉ ௪௙ߟ௧(ℎଵ − ℎଶ௦) (2.65)

2.4. Flow Characteristics & Thermodynamics 31

Master of Science Thesis F.W.J. Niewold

Where 	 ሶ݉ ௪௙ is the mass flow rate of the working fluid [kg s-1]. Subsequently, the working fluid is
condensed with cooling water giving the energy balance in eq. (2.66). 	 ሶ݉ ௖௪(ℎ௒ − ℎ௑) = 	 ሶ݉ ௪௙(ℎଶ − ℎଷ) (2.66)

Then the working fluid is pressurized by means of a feed pump requiring power expressed in eq. (2.67).

ሶܹ௣ = 	 ሶ݉ ௪௙(ℎସ௦ − ℎଷ)ߟ௣ (2.67)

The pressurized working fluid is then heated in a preheater with heat from the geothermal fluid according to
the energy balance given in eq. (2.68). Where after it evaporates (and possibly gets superheated) in an
evaporator according to the energy balance in eq. (2.69). 	 ሶ݉ ௚௙(ℎ࡮ − ℎ஼) = 	 ሶ݉ ௪௙(ℎହ − ℎସ) (2.68) 	 ሶ݉ ௚௙(ℎ࡭ − ℎ஻) = 	 ሶ݉ ௪௙(ℎଵ − ℎହ) (2.69)

The power required for the cooling water pump, injection pump, condenser pump and if needed a
production pump and make-up pump are calculated using eq. (2.60). The thermal and utilization
efficiencies are calculated by eqs. (2.62) and (2.63), respectively.

Figure 2.22: Temperature-entropy diagram for binary cycle power plants (modified from Wang et al. (2013)).

In Section 2.2.4, it has been decided to equip the binary cycle power plant with a gas lift system to lift
geothermal fluids with temperatures in the range of 200 – 250 ˚C. The basic binary geothermal power plant
depicted in Figure 2.3 is modified to Figure 2.23. The geothermal fluid in this study consists of H2O, NaCl
and CO2 (Section 2.3.2). The geothermal fluid at the wellhead with gas lift is a two-phase fluid. It is
assumed the gas mixture contains CO2 and H2O. The liquid and gas are separated in the CS. The liquid
stream flows to the evaporator. The gas stream flows to a certain CO2 production system. It is aimed for to
utilize the degassed CO2 from the production well as the lift gas by recycling it in the gas lift system. The
CO2 is then compressed (COMP) and reinjected through the gas lift valve (GLV). In that case, the gas
mixture from the wellhead the CO2 must be separated from the H2O prior to the compression process,
because H2O would condense in the gas lift duct. The gas lift duct surrounds the production well and
contains the lift gas and the GLV. This separation process has not been considered in the present study.
Therefore, two extreme scenarios have been proposed. Scenario 1 assumes that the (ܲ, ܶ) state of the CO2
prior to the compression process (state c1) is equal to the (ܲ, ܶ) state of the gas in the CS (state A). In that
case, it is assumed as well that there is no work involved in separating the CO2 from the H2O. Scenario 2
assumes atmospheric conditions for the CO2 fed to the compressor. In that case, the maximum amount of
compression work is considered. The compression work is given by eq. (2.70).

ሶܹ ௖௢௠௣ = 	 ሶ݉ ீ௅(ℎ௖ଶ௦ − ℎ௖ଵ)ߟ௖௢௠௣ (2.70)

32 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

Figure 2.23: Binary cycle power plant with a gas lift system in the production well. CO2 is separated, compressed and
reinjected via the gas lift valve (GLV) (modified from DiPippo (2012)).

The decision on the working fluid has great implications for the thermodynamic performance of geothermal
power plants. Candidate working fluids are propane, i-butane, n-butane, i-pentane, n-pentane and ammonia.
It is aimed to find the best match between the cooling curve of the geothermal fluid and the heating-boiling
curve of the working fluid to decrease the thermodynamic losses. For high temperature geothermal fluids in
the range of 200 < ܶ < 250 ˚C, i-pentane (௖ܶ = 187.8 ˚C) is a suitable working fluids of these candidates,
because of the relatively high critical temperature (DiPippo, 2012). In a previous study, i-pentane have
given maximum net power in binary cycle power plants for these operating conditions (IF Technology,
2012)

2.4.4.3. Effect of NCG on Power Plant Performance & Gas Extraction Systems

Geothermal fluids contain dissolved NCG in the range of 0 – 5 wt%. The major constituent of the NCG is
CO2, which typically constitutes more than 80 wt% of the total dissolved gases. The volatility of the NCG
is higher than the volatility of the steam, causing a high mass fraction of NCG at the beginning of the
flashing process. When a geothermal liquid is flashed and flows into the cyclone separator (CS) (Figure
2.24), practically all NCG degas from the liquid solution. The presence of NCG in the gas mixture
significantly affects the performance of the steam turbine, condenser and steam ejector/condenser. Firstly,
the specific expansion work in the turbine decreases, because the recoverable specific energy of NCG is
lower than that of steam. Secondly, the presence of NCG decreases the heat transfer coefficient in the
condenser and consequently it increases the required heat transfer area. Subsequently, it increases the
extraction and/or compression work in the gas extraction system. Additionally, higher costs due to lower
heat transfer efficiency, expensive gas extraction equipment and lower turbine power output are involved
with increasing NCG content. It is reported that a CO2 mass fraction of 10 wt% can cause a reduction in net
power output of 25% (Khalifa and Michaelides, 1978; Gokcen and Yildirim, 2006).

Figure 2.24: Simplified single-flash power plant schematic with state numbers (modified from DiPippo, 2012).

The geothermal gas mixture entering the gas turbine is assumed to be saturated, which is justified by the
presence of moisture removers in the steam power plant. Furthermore, the assumption of an ideal gas
mixture is adopted according to Dalton’s Law, which is allowed due to the relatively low pressures

2.4. Flow Characteristics & Thermodynamics 33

Master of Science Thesis F.W.J. Niewold

encountered in geothermal steam turbines and condensers. The enthalpy and entropy of the gas mixture at
the entrance of the steam turbine can be calculated by eq. (2.71) and eq. (2.72), respectively. The following
equations and state numbers all correspond to the single-flash steam power plant depicted in Figure 2.24.

ℎ௠௜௫,ସ =෍ݓ௜ℎ௜(௜ܲ, ܶ)௡
௜ୀଵ (2.71)

௠௜௫,ସݏ =෍ݓ௜ݏ௜(௜ܲ , ܶ)௡
௜ୀଵ (2.72)

Where ݅ and ݊ represent the number of a single component and the total number of components,
respectively. The partial pressures ௜ܲ are determined by the mass fraction ݓ௜ and molar mass ܯ௜ of the
constituents according to eq. (2.73).

௜ܲ = ௜ݓ ∑௜ൗܯ ௜ݓ ௜ൗ௡௜ୀଵܯ ܲ (2.73)

Since the gas mixture is separated from the liquid in the flash tank and equilibrium between liquid and gas
is assumed, the enthalpy and entropy of steam correspond to saturated conditions. In other words, the water
vapor present in the gas mixture which coexists with the liquid is in equilibrium with that liquid. The water
vapor exists in the gas phase at a partial pressure equal to the saturation pressure of water for the identical
temperature. The isentropic expansion process is presented by eq. (2.74). ݏ௠௜௫,ସ = ௠௜௫,ହ௦ (2.74)ݏ

Figure 2.21 shows that expansion occurs in the two-phase region, which indicates that moisture will be
present in the steam turbine due to partial condensation. It is assumed that this moisture is pure H2O. The
CO2 solubility in water can be neglected for low temperatures and low pressures. The solubility at 40 ˚C
and 0.5 bar is less than 0.5 g/kgH2O, where the temperature corresponds roughly to the condenser
temperature. The pressure at the exit of the steam turbine can even be lower, resulting in even lower
solubility (Carroll et al., 1991). The enthalpy ℎ௠௜௫,ହ௦ and entropy ݏ௠௜௫,ହ௦	are calculated by eq. (2.75) and eq.
(2.76).

ℎ௠௜௫,ହ௦ = (1 − ߯)ℎுమை,଺(ܶ) + ߯෍ݓ௜ℎ௜(௜ܲ , ܶ)௡
௜ୀଵ (2.75)

௠௜௫,ହ௦ݏ = (1 − (ܶ)ுమை,଺ݏ(߯ + ߯෍ݓ௜ݏ௜(௜ܲ , ܶ)௡
௜ୀଵ (2.76)

Where ߯ is the steam quality after isentropic expansion. The enthalpy ℎ௠௜௫,ହ is calculated by eq. (2.77). ℎ௠௜௫,ହ = ℎସ ௧൫ℎସߟ	− − ℎ௠௜௫,ହ௦൯ (2.77)

Where ߟ௧ and ሶܹ ௧ are again determined by eq. (2.58) and eq. (2.55).

The expanded gas-liquid mixture is fed to a condenser, which is connected to a gas extraction system. There
are basically three gas extraction systems used in geothermal power plant, namely the steam
ejector/condenser (SE/C), liquid ring vacuum pumps (LRVP) or centrifugal compressors. Sometimes hybrid
gas extraction systems are deployed. In this study, only SE/C and centrifugal compressors are considered.
SE/C is relatively cheap, reliable and easy to maintain, because it does not contain moving parts.
Centrifugal compressors are relatively expensive and prone to failure, because of its moving parts and the
potential aggressive nature of geothermal fluids. Centrifugal compressors are utilized in geothermal power
plant where high NCG concentrations are present. Centrifugal compressors are generally more efficient
than SE/C.

34 2 DESCRIPTION OF SYSTEMS & THEORETICAL BACKGROUND

F.W.J. Niewold Master of Science Thesis

Steam ejector/Condenser:

SE/C is a supersonic flow induction device. It sucks and compresses the NCG from the condenser by
creating a vacuum with an accelerated motive flow drained from the gas stream before the steam turbine.
The motive flow decreases the mass expanded in the turbine; therefore, it is not available for power
generation anymore. A more comprehensive explanation on the operation of a SE/C is presented in Section
A.5. The presence of NCG reduces the heat transfer efficiency of the condenser; therefore it requires an
increased heat transfer area. Furthermore, a decrease in turbine outlet pressure, which increases turbine
power output, decreases the temperature difference between the mixture and the available cooling medium
in the condenser. Additionally, the condensation of the mixture does not proceed isothermally, because of
the NCG presence. This results also in an increased required heat transfer area or an increased cooling
medium mass flow rate, which both increase the capital and/or operating cost. Moreover, a reduced
temperature difference in the condenser decreases the subcooling of the gas mixture, which on its turn
increases the necessary motive flow to the SE/C. The availability of the cooling medium depends mainly on
the setting of the power plant and can be assumed as a constant. In summary, it can be concluded that
decreasing the back pressure of the turbine will increase the mass flow rate of motive flow. There should be
found a balance for the optimum power output. The net power output given in eq. (2.61) must be
complemented with the power input of the make-up pump ሶܹ௠௣ as in eq. (2.78) to make up the extracted
fluids. ሶܹ ௡௘௧ = ሶܹ௘ − ሶܹ ௜௣ − ሶܹ௖௣ − ሶܹ௖௪௣ − ሶܹ௠௣ (2.78)

The thermodynamic performance may exhibit an optimum at an intermediate turbine back pressure.
Furthermore, the economic optimum depends also on the capital expenditure associated with the optimum
turbine back pressure, which can deviate from that for the thermodynamic optimum. The loss of turbine
power output depends on the mass flow fed to the SE/C, the compression ratio and the composition of the
mixture. The partial pressure of H2O at the inlet of the SE/C (state 11) can be determined by eq. (2.79).

ுܲమை,ଵଵ = ௩ܲ,ுమை(ଵܶଵ) (2.79)

The remaining partial pressures of the NCG and subsequently the mole fractions can be calculated with the
mass fractions entering the condenser, the molar masses and the assumption that NCG do not dissolve in
the liquid so that it satisfies eq. (2.80).

ܲ = ෍ ௜ݓ ∑௜ൗܯ ௜ݓ ௜ൗ௡,ே஼ீ௜ୀଵܯ ൫ܲ − ுܲమை,ଵଵ൯௡,ே஼ீ
௜ୀଵ + ுܲమை,ଵଵ (2.80)

Now according to the conservation of mass, the mass flow (suction flow) through the SE/C per unit mass of
mixture entering the condenser is calculated by eq. (2.81).

ሶ݉ ଵଵ = ௜,ଵଵݓ௜,ହݓ ሶ݉ ହ (2.81)

The enthalpy and entropy of the mixture at the inlet of the SE/C (state 11) is determined accordingly to eq.
(2.71) and eq. (2.72).

Centrifugal compressor:

In case of a centrifugal compressor, the NCG are extracted from the condenser and compressed to
atmospheric conditions in order to remove the NCG from the geothermal power plant. In Figure 2.24 the
SE/C is replaced by a centrifugal compressor in this case. The drained flow to the SE/C is not required with
a centrifugal compressor. The power demanded by the centrifugal compressor is given by eq. (2.82).

ሶܹ ௖௢௠௣ = ሶ݉ ଵଵ൫ℎ௠௜௫,ଵଵ − ℎ௠௜௫,௔௧௠൯ߟ௖௢௠௣ (2.82)

35

3
MODEL DESCRIPTION

The present chapter illustrates the model description. The system borders and the relevant input and output
parameters are determined for every sub model. Subsequently, relevant phenomena and assumptions are
outlined. Then the calculation procedure and implementation, based on the conservation laws and
constitutive equations treated in Chapter 2, is discussed. In Section 3.1 the general model is introduced.
Other sections comprise the following sub models: 3.2 geothermal fluid property model, 3.3 reservoir
model, 3.4 production well model – self-flowing, 3.5 drift-flux model, 3.6 single-flash power plant model,
3.7 injection well model, 3.8 production well model – gas lift and lastly in 3.9 the binary cycle power plant
model.

3.1. General Model

3.1.1. Modeling Purpose
The purpose of the model is to study and compare geothermal power plant performance for two power plant
designs. This is realized by simulating and studying the hydraulic and thermodynamic behavior of the
geothermal fluid in a geothermal power plant system during steady state operation with the ability for off-
design simulation. The single-flash power plant comprises a reservoir, a self-flowing production well, a
single-flash power plant and an injection well. The binary cycle power plant comprises a reservoir, a
production well with gas lift and an injection well.

3.1.2. System Border and I/O Variables
Figure 3.1 shows a schematic of the total mathematical model including the two geothermal power plants.
The total model can be divided basically into nine sub models: reservoir model, production well model –
self-flowing, production well model – gas lift, injection well model – single-flash, injection well model –
binary cycle, single-flash power plant model, binary cycle power plant model, geothermal fluid property
(GFP) model and drift-flux model. Even though, the real physical system consists of the reservoir, two
production wells, two power plants and two injection wells. The GFP model and the drift-flux model have
their own sub model, because of their complex nature. Black arrows within the sub models represent the
flow direction of the geothermal fluid. The green and red arrow(s) indicate the input and output variables of
the total system. Gray arrows connecting the sub models indicate the input and output variables between the
sub models. There are two sub models for the production well: self-flowing and gas lift. There are two sub
models for the geothermal power plant: single-flash and binary cycle. The production well model – self-
flowing is a part of the single-flash power plant model and production well model – gas lift is a part of the
binary cycle power plant model.

Model boundaries are the far-field reservoir for the reservoir, where reservoir properties are assumed
constant. Additionally, for the power plant model every device that consumes or produces power, e.g.
pumps and generator have a boundary between the device and the grid. Finally, equipment where mass
flows to the environment, e.g. the condenser/cooling tower and the (SE/C)/environment interface, is a
model boundary.

The well/rock interface for the production wells and injection wells, where heat flows across the boundary,
has not been defined as a system boundary. An explanation is given in Section 3.4.1.

36 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

The input parameters must be set prior to simulation in order to compute the output parameters at the end.
Additionally, a GFP model for the geothermal fluid was implemented that can communicate with the
surrounding sub models. The production well models interact with the drift-flux model in order to calculate
the void fraction of the fluid flow in the production wells if two-phase flow is present.

Figure 3.1. Schematic representation of the total mathematical model of the geothermal power plant systems. Black
arrows indicate flow direction. Green and red arrows indicate input and output model parameters of the total system,
respectively. Gray arrows show the interaction and calculation direction of the sub models. The production well model
– self-flowing is a part of the single-flash power plant model and the production well model – gas lift is a part of the
binary cycle power plant model.

3.1.3. Calculation Procedure
The reservoir model, production well models, injection well models, power plant models and drift-flux
model were developed within the MATLAB environment. The core of the GFP model is a VBA MS Excel
model (GFP Excel model) developed in Francke et al. (2013). In the present work, a MATLAB model was
developed around the GFP Excel model to calculate the fluid properties. The MATLAB model
communicates with the GFP Excel model by creating a component object model (COM) server in order to
give input and extract output from the GFP Excel model.

Figure 3.2 presents the calculation procedure of the general model. The MATLAB model is a function
based model. Every declared function accepts declared inputs from the previous function and returns
demanded outputs for the successive function. The main procedure is briefly described below in the order
of simulation.

Start: This is the main script to perform a simulation of a geothermal power plant
system containing a reservoir, production well, power plant and injection well.
This script contains twelve functions, which are completed in sequence.

 The white blocks correspond to auxiliary functions necessary for preparing the
simulation. These blocks have not been explained in the present chapter, because
it is not linked to the theory discussed in Chapter 2. For the MATLAB code of
all these function is referred to Section B.

The twelve yellow blocks correspond to the nine sub models, including four
functions for the GFP MATLAB model: reservoir-, two production well-, two
power plant-, injection well-, drift-flux- (fCalc_eps_g) and GFP MATLAB
model(s) (fCalc_geofprops1, fCalc_geofprops2, fCalc_geofprops3,
fCalc_geofprops4). These functions are explicitly described in the next sections.

3.1. General Model 37

Master of Science Thesis F.W.J. Niewold

Figure 3.2: Calculation procedure of the general model (MATLAB). Start (blue) is the main script. The yellow blocks
correspond to the nine sub models: reservoir, two production wells, two power plants, two injection wells, drift-flux
(fCalc_eps_g) and four GFP MATLAB models (fCalc_geofprops1, fCalc_geofprops2, fCalc_geofprops3,
fCalc_geofprops4). The Green block contains functions invoked by production well models. Purple block contains
functions invoked by single-flash power plant model. Red block contains function invoked by binary cycle power plant
model. Grey block contains functions invoked by injection well model.

38 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

fSettings: Variables necessary for computation are declared, e.g. data tables, constants and
auxiliary model parameters (iteration parameters).

fInitialize_Excel: The GFP Excel model is initialized. All other Excel workbooks are closed.

fModel_Input: MATLAB draws all user-defined input from an Excel workbook. The user-
defined input variables have been given in Figure 3.1. The Excel workbook
interface is shown in Section C.1.

fCalc_VLE: The fluid properties at the VLE curve are calculated. The importance of this
function is outlined in bullet point 2 in Section 3.2.2.2.

fCalc_reservoir: The geothermal fluid properties at inlet and outlet of the production well and
injection well are calculated, respectively (Section 3.3).

 GFP MATLAB model is invoked for the first time: fCalc_geofprops(1, 2, 3, 4):
these functions correspond to the GFP model. The numbers correspond to
different algorithms, which was necessary for different functions. Section 3.2
discusses the GFP model explicitly.

fCalc_prodwell: The fluid properties in the self-flowing production well are calculated (Section
3.4).

 fCalc_eps_g: this function corresponds to the drift-flux model and calculates the
void fraction (Section 3.5).

fCalc_prodwell_GL: The fluid properties in the production well with gas lift are calculated (Section
3.8).

fCalc_SF: The fluid properties in the single-flash power plant are calculated. Additionally,
power plant performance is calculated (Section 3.6).

fCalc_BC: The fluid properties in the binary cycle power plant are calculated. Additionally,
power plant performance is calculated (Section 3.9).

fCalc_injwell: The fluid properties in the injection well are calculated in case of a single-flash
power plant (Section 3.7).

fCalc_injwell_BC: The fluid properties in the injection well are calculated in case of a binary cycle
power plant (Section 3.7).

fCreate_figures: Relevant output is structured and relevant graphical figures are created.

3.2. Geothermal Fluid Property Model
The GFP model has been based on the “Geofluid Model” of Francke et al. (2013), referred to as the “GFP
Excel model”. For an exact description of the GFP Excel model is referred to Francke et al. (2013) or
Francke (2014). The GFP Excel model has been developed in VBA. The input and output is set and
obtained from MS Excel, respectively. Figure C.4 presents the interface of the two-phase sheet. Figure C.5
and Figure C.6 show the liquid phase and vapor phase sheet, respectively. In the present work a MATLAB
model, referred to as the “GFP MATLAB model”, has been developed around the GFP Excel model to
calculate the fluid properties. For the assumptions related to the GFP Excel model is referred to Section
2.3.4.2. Additional assumptions are discussed in Section 3.2.2. The GFP MATLAB model can be invoked
by four functions: fCalc_geofprops1, fCalc_geofprops2, fCalc_geofprops3 and fCalc_geofprops4.

3.2.1. Purpose and System Border
The purpose of the GFP MATLAB model is to calculate the liquid phase or two-phase properties of the
geothermal fluid.

The GFP MATLAB model is not a real physical system. Therefore, it does not contain a real physical
system border. The GFP MATLAB model can be invoked by the other surrounding sub models (see Figure
3.1). Input and output variables are exchanged with these sub models.

3.2. Geothermal Fluid Property Model 39

Master of Science Thesis F.W.J. Niewold

3.2.2. Model Development and Assumptions
The fluid properties obtained from the GFP Excel model have been found valid for the entire liquid phase.
Additionally, the GFP Excel model is valid from a pressure where a significant gas mass fraction starts to
develop until the saturation pressure of pure water, associated to the relevant state temperature.
Nevertheless, the GFP Excel model also has counted some discontinuities, which can be critical in the
current numerical models of the production wells. The shortcomings of the GFP Excel model are described
in Section 3.2.2.1. The solutions and assumptions following these shortcomings are explained in Section
3.2.2.2.

3.2.2.1. Shortcomings GFP Excel Model

1. It has been noted that there is a significant difference between the degassing pressures obtained from
the online model of Duan and Sun (2003) and GFP Excel model of Francke et al. (2013). In their study,
Duan and Sun (2003) validated the degassing pressures with experimental results. On the other hand,
the GFP Excel model has shown discontinuities between the degassing pressure of Duan and Sun
(2003) and their degassing pressure. It is assumed that the behavior of the geothermal fluid has not
been approximated accurately by the GFP Excel model for this particular region.

2. For pure water, the GFP Excel model has been unable to calculate fluid properties below saturation
pressures.

3. In addition to shortcoming 2, the GFP Excel model has not accurately approximated the fluid
properties for pressures between the saturation pressure of water and the saturation pressure of
NaCl(aq). As it is explained in Section A.2.1, the saturation pressure of a NaCl(aq) is lower than that of
pure water. The sections of the production well, which experience pressures between these two
saturation pressures have shown discontinuities.

4. For low CO2 mass fractions dissolved in the geothermal fluid, the quality jumps to 1 even before the
saturation pressure is reached. This has given large discontinuities in the GFP Excel model.

Consequently, these shortcomings gave rise to discontinuities and errors in the production well models. The
discontinuities encountered in the GFP Excel model have all been related to the quality/gas mass fraction.
The solutions and assumptions, described in Section 3.2.2.2, for these shortcomings are obtained by
manipulating the vapor quality. Subsequently, the associated fluid properties are calculated.

3.2.2.2. Solutions and Assumptions

The solutions and assumptions to the shortcomings (Section 3.2.2.1) of the GFP Excel model are discussed
in this section. The region close to the VLE curve for a pure substance is already quite delicate. Similarly,
in the numerical model of the production wells, this involves many iteration steps. The existence of NaCl
and CO2 makes it even more prone to errors and discontinuities. The described solutions are graphically
clarified in Figure 3.3 and Figure 3.4. The former shows a pressure-enthalpy diagram of a ternary H2O –
NaCl – CO2 solution with ݉ே௔஼௟ = 3 mol kg-1 and ݉஼ைଶ = 1.41 mol kg-1, which is approximately
equivalent to a NaCl mass fraction of 0.15 kg kg-1 and a CO2 mass fraction of 0.05 kg kg-1. The latter zooms
in on the northwest part of Figure 3.3, to the bubble curve. The solutions are explained on the basis of the
200 ˚C isotherm, depicted as the continuous red line. Generally, this description applies to all temperatures
and molalities within the validity ranges given in Table 2.5.

1. The vapor quality of the geothermal fluid in the sections of the wellbore, where the pressure is between
the degassing pressure of Duan and Sun (2003) and the degassing pressure calculated in the GFP Excel
model is computed by interpolation.

This particular situation has been enlarged in Figure 3.4. The dashed magenta line represents the
degassing pressures between 150 ˚C and 250 ˚C according to the GFP Excel model for the indicated
molalities. The dashed black dashed line represents the degassing pressures between 170 ˚C and 250 ˚C
according to Duan and Sun (2003). In the GFP Excel model degassing starts at 310 bar, while
according to Duan and Sun (2003) degassing starts at 635 bar. On the other hand, the GFP Excel model
has shown a sharp increase in quality from 0 to 0.016 at that particular degassing pressure. This is
reflected in the sudden enthalpy change on the 200 ˚C isotherm close to the degassing pressure of the
GFP Excel model. At that same pressure, Duan and Sun (2003) have shown a quality of 0.017, which is
equivalent to an absolute error of approximately 0.1%. Therefore, it is justified to interpolate the
quality between the degassing pressure of Duan and Sun (2003) and the GFP Excel model. This

40 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

interpolation of quality is represented by the dashed cyan line. The associated fluid properties are
calculated with the mass-weighted average of the quality and the single phase fluid properties.

The algorithm was coded in the function fCalc_geofprops3. It is invoked from the production well
model (fCalc_prodwell).

Figure 3.3: Pressure-enthalpy diagram of H2O – NaCl – CO2 solution with ݉ே௔஼௟ = 3 mol kg-1 and ݉஼ைଶ = 1.41 mol
kg-1 consisting of the VLE curve and the 200 ˚C isotherm of water (blue (dashed)), the 200 ˚C isotherm of NaCl(aq)
(green dashed), the 200 ˚C isotherm of the GFP Excel model (red), degassing pressure GFP Excel model (magenta
dashed), degassing pressure isotherm Duan and Sun (2003) (black dashed). Yellow line from bottom hole to 2 is a
hypothetical pressure-enhalpy profile in a production well.

Figure 3.4: Enlargement of the degassing region from Figure 3.3. The magenta dashed line shows the interpolation
between the degassing pressure according to Duan and Sun (2003) (black dashed) and Francke et al. (2013) (red
dashed).

3.2. Geothermal Fluid Property Model 41

Master of Science Thesis F.W.J. Niewold

2/3. The descriptions of the solutions to shortcomings 2 and 3 in Section 3.2.2.1 are joined here. The
dashed blue line in Figure 3.3 represents the 200 ˚C isotherm of pure H2O. The continuous blue line
represents the VLE curve of pure H2O. The dashed green line represents the 200 ˚C of the NaCl(aq)
solution for the indicated molality, without CO2. The continuous yellow line following the points from
the bottom hole to 1 and finally 2 represents arbitrary geothermal fluid behavior in a production well. It
catches the trend of decreasing pressure and enthalpy while flowing from bottom to top. It can happen,
at a certain location in the production well, the pressure falls below the saturation pressure of H2O for
the associated temperature. This is indicated by the step from 1 to 2. The iteration fails at that moment,
because the GFP Excel model cannot calculate fluid properties below H2O saturation. At this particular
moment, the properties of the geothermal fluid as a function of ܲ and ܶ coinciding with the VLE curve
come into play. These points are indicated by 3 and 4. Point 3 coincides with the isotherm of pure
water and the geothermal fluid isotherm for that particular pressure at point 2. The vapor quality at
point 2 in the two-phase region is then obtained by interpolation of enthalpies between the fluid
properties at points 3 and 4.

The algorithm was coded in the function fCalc_geofprops2. It is invoked from fCalc_prodwell,
fCalc_prodwell_GL, fCalc_SF, fCalc_BC, fCalc_injwell and fCalc_injwell_BC. The MATLAB code
can be found in Section B.

4. If 4 from Section 3.2.2.1 occurs, the GFP MATLAB model should be able to calculate the right
properties. Therefore, several data points for the quality as a function of pressure, temperature and
composition have been obtained from Duan and Sun (2003) in order to compute the quality close to
saturation pressures. The fluid properties at point 3 in Figure 3.3 are then first interpolated from these
data tables.

Additional assumption:

1. In case the pressure falls below the saturation pressure of water and there is CO2 present in the gas
phase, it has been assumed that 100% CO2 degasses from the liquid phase. It has been verified by
Francke et al. (2013) and Duan and Sun (2003) that > 99% of CO2 degasses at the H2O saturation
pressure, independent of NaCl molality.

2. It has been assumed that evaporation from the saturation pressure of water happens almost isobarically.
Therefore, it is linearly interpolated between a quality of 0.20 and 1. This is justified, because the
amount of CO2 degassed from the liquid solution at saturation pressure of water, corresponding to a
quality of 0.20, is 99.4% according to Francke et al. (2013). This shows almost all CO2 is located in the
gas phase. This phenomenon has been discussed already in Section 2.3.2.

3.2.3. Calculation Procedure
The present section relates to fCalc_geofprops2. It is the most complex function of the four GFP MATLAB
sub models, because two-phase geothermal fluid can be involved. The MATLAB code of the functions can
be found in Section B.

The flow diagram of the calculation procedure for the geothermal fluid properties is presented in Figure 3.5.
The GFP Excel model has been restricted to an input of pressure, temperature and composition. However,
the input of the GFP MATLAB model in the present work consists of ܲ(݅), ℎ(݅), ,ே௔஼௟ݓ	 ݅)ܶ ஼ைଶ andݓ	 − 1), where (݅) represents the segment number. The production well is divided in segments in the
production well model. This will be discussed in Section 3.4. Because the production well model in the
present work calculates the pressure and enthalpy at the inlet of a well segment, the corresponding
temperature in that segment must be iterated to find a solution. Iteration starts with the temperature of the
previous segment ܶ(݅ − 1).

The output of the GFP MATLAB model consists of ܶ, ߯, ,௚ߝ	 ,ݒ ,ߩ ܿ௣,	ߤ, ,ே௔஼௟,௟ݓ ,஼ைଶ,௟ݓ ,ுଶை,௟ݓ ுଶை,௚ for segment ݅. Basically, the GFP model can be divided into three parts, with three differentݓ,஼ைଶ,௚ݓ
algorithms. These parts correspond to three different regions. The regions are marked in gray in Figure 3.3.

1. This region and corresponding algorithm applies to all pressures in the range of 40-1000 bar and

temperatures below 250 ºC. This is the maximum temperature for which the model is still valid. The
lower limit of 40 bar corresponds to the saturation pressure at 250 ºC. The absolute enthalpy error of
0.01 kJ/kg is the default value. Increasing the absolute error will decrease the number of iterations and

42 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

computation time, but increases the error of calculated outputs and vice versa. Iteration is performed
with the MATLAB function fsolve. Safety measures have been incorporated in the model of the
present work if the iteration fails, which is a possible scenario, because the GFP Excel model can show
discontinuities. The temperature is then increased or decreased depending on the trend of the enthalpy.

2. A pressure below 40 bar and below ௦ܶ௔௧ , where the GFP Excel model is still valid. In this scenario
iteration is performed by adapting the temperature depending on the trend of the enthalpy. The fsolve
function is removed, because iteration fails close to the saturation pressure of water. The default
temperature step is 0.1 ˚C.

3. A pressure below 40 bar and above ௦ܶ௔௧, where the GFP Excel model has not been able to calculate the
fluid properties. Above ௦ܶ௔௧ , the fluid properties are calculated as described in point 2/3 in Section
3.2.2.2. If ܶ(݅ − 1) > ௦ܶ௔௧ − 0.05, then it is assumed that ܶ(݅) = ௦ܶ௔௧ − 0.05. The 0.05 is the default
safety margin to avoid scenario’s in which ܶ(݅) is above the saturation temperature and the GFP Excel
model shows large discontinuities.

Figure 3.5: Calculation procedure geothermal fluid properties fCalc_geofprops2 with input variables (green) and
output variables (red).

3.3. Reservoir Model

3.3.1. Purpose and System Border
The purpose of the reservoir model is to calculate the geothermal fluid properties at the inlet of the
production well and at the outlet of the injection well.

The system borders of the reservoir are the outflow to the production well model, the inflow from the
injection well model and the reservoir itself.

3.3.2. Phenomena and Assumptions
For more extensive description of phenomena and assumptions related to reservoir and reservoir flow
characteristics is referred to Section 2.4.1. The most relevant assumptions that have been made, are:
isotropic permeability, homogeneous rock properties, fully radial flow and saturated rock pores with a
single phase fluid. The pressure drawdown from the far-field reservoir can be described by ܲܫ	and ܫܫ.

3.4. Production Well Model – Self-Flowing 43

Master of Science Thesis F.W.J. Niewold

The geothermal fluid inside the reservoir is a ternary system containing H2O, NaCl and CO2. According to
Duan and Sun (2003), these species are the most common in geothermal fluids. For justification and
information on the chemical composition is referred to Section 2.3.2.

Additional assumptions:

1. The temperature of the far-field, referred to as ௥ܶ௘௦, is assumed to be the maximum existing
temperature in the reservoir. It means that ௥ܶ௘௦ is equivalent to the production well inlet temperature.

2. The pressure of the far-field referred to as ௥ܲ௘௦ is assumed to be the hydrostatic pressure of the reservoir
if flow is not induced.

3. The geothermal fluid is always present in liquid phase alone in the reservoir. Pressure drawdown
should not result in degassing of CO2 inside the reservoir.

4. The composition of the geothermal fluid is constant.

3.3.3. Calculation Procedure
The flow diagram of the calculation procedure for the reservoir model is presented in Figure 3.6. Inputs to
the sub model are defined by the user to the left. The sub model calculates pressure drawdown according to
eq. (2.15) and eq. (2.16). Subsequently, it exports output to and imports input from the GFP MATLAB
model. Finally, it is checked if the liquid-only state is satisfied. If this is true, output is sent to the
production well model and the injection well model. If not, the simulation will be terminated.

Figure 3.6: Calculation procedure for the reservoir model with system border (black dashed), input variables (green)
and output variables (red).

3.4. Production Well Model – Self-Flowing

3.4.1. Purpose and System Border
The purpose of the production well model – self-flowing is to study and simulate the hydraulic and thermal
behavior of the geothermal fluid within the well in steady-state conditions. Figure 3.7 presents a schematic
of the production well. It is a one-dimensional numerical model, where segments are distributed along the
length of the well.

At the bottom the system border is the inflow from the reservoir model. At the top the system border is the
outflow to the single-flash power plant model. Additionally, the GFP MATLAB model/production well
model interface and drift-flux model/production well model interface are system borders. As one would
perhaps expect, the well/rock interface is not defined as a system border. The heat flow rate ሶܳ is described

44 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

by an analytical equation given in eq. (2.18). The geothermal rock, surrounding the production well, is part
of the production well and discretized as such. The rock formation is radially assumed to be infinite. The
assumptions and the calculation procedure related to this model are discussed in Section 3.4.2 and 3.4.3,
respectively.

3.4.2. Phenomena and Assumptions
1. At the bottom of the production well, referred to as bottom hole, geothermal fluid in liquid state flows

in. At the top of the production well, referred to as wellhead, geothermal fluid flows out of the well in
liquid or two-phase state.

2. The geothermal fluid always flows in one direction, which is upward. Liquid and vapor flows co-
currently. Exception is there for slug flow, where liquid film flows downward between the Taylor
bubble and the pipe wall, this phenomenon is accounted for in the drift-flux model (see Section 3.5).

3. The flow is modeled one-dimensionally and stationary.
4. There is no mass, momentum and energy accumulation.
5. All fluid properties are being modeled homogeneous for liquid and two-phase flow. This means

uniform properties on a cross section. Exception is made for the velocity of the gas phase and liquid
phase in two-phase flow, where slip must be accounted for (see Section 3.5).

6. The flow is fully developed. The velocity profile is fully developed.
7. The flow is turbulent.
8. The production well is divided into segments. Every segment is radially symmetric, with a constant

geometry, constant cross-section, fixed volume and constant wall roughness.
9. Heat flows only radially and it is governed by conduction.
10. Along with the production well segments, the geothermal rock formation is divided in segments of

equivalent length (see Figure 3.7). The rock formation is also radially symmetric and has constant
properties for the length of the segment.

11. No work is exerted on the geothermal fluid.
12. Liquid flow is assumed to be incompressible.
13. No chemical reactions occur in the geothermal fluid.
14. Rock formation is radially infinite.

Figure 3.7: Schematic of the production well model. Wellbore and rock formation is divided into multiple segments
(݅ − 1, ݅, ݅ + 1).

3.4. Production Well Model – Self-Flowing 45

Master of Science Thesis F.W.J. Niewold

3.4.3. Calculation Procedure

3.4.3.1. Numerical Model

The analytical approach in wellbore modeling, as in eq. (2.27) and (2.28) for liquid flow and two-phase
flow respectively, can give rise to significant errors. With liquid flow this is caused by the temperature
dependent density. For two-phase flow, density is also dependent on void fraction, which makes it even
more sensitive to errors above the flash point. As stated in Section 3.4.2 the production well is axially
discretized. The length of the segments is user-defined, the default value is approximately in the range of 20
– 25 m adopted from Francke (2014). The calculation of the segment properties is performed by applying a
forward finite difference scheme. It means that segment properties are constant and equivalent to the inflow
conditions (ܲ, ℎ, ሶ݉ of the respective segment (݅) and the outflow conditions of the previous (ݓ	݀݊ܽ	
segment (݅ − 1) (see Figure 3.7). The inflow pressure, enthalpy and component mass fractions are known,
from which thermodynamic and transport properties of the geothermal fluid are being calculated with the
GFP MATLAB model discussed in Section 3.2. In addition, the incoming mass flow rate, segment
geometry and rock formation properties are known, from which the relevant variables are calculated to
solve the conservation laws and constitutive equations for the respective segment (݅) and calculate the
outflow conditions of that segment and inflow conditions of the next segment (݅ + 1).

3.4.3.2. Model Equations

The conservation laws discussed in Section 2.4.2 are applied to the segments of the production well.

Mass balance: ሶ݉ (݅) = ሶ݉ (݅ − 1) (3.1)

Momentum balance:

The momentum balance given by eq. (2.27) for liquid-only flow and eq. (2.29) for two-phase flow is
rewritten for a segment by eq. (3.2) and eq. (3.3) for liquid-only flow and two-phase flow. In eq. (3.2) the
kinetic part is neglected, because the liquid is assumed incompressible.

ܲ(݅) = ܲ(݅ − 1) − ቈ݂ݑߩଶܦ2ܮ௜ ቉ (݅ − 1) − ሾ݃ܮߩcosߠሿ(݅ − 1) (3.2)

In eq. (3.3), the kinetic contribution to the pressure loss, caused by the acceleration of the fluid due to
degassing/evaporation, is taken into account. It can be seen that eq. (3.3) is implicit. Therefore, iterations
are necessary to solve the momentum balance.

ܲ(݅) = ܲ(݅ − 1) − ݅)ߩ − 1)൫ݑଶ(݅) − ݅)ଶݑ − 1)൯ − ቈ݂ݑߩଶܦ2ܮ௜ ቉ (݅ − 1) − ሾ݃ܮߩcosߠሿ(݅ − 1) (3.3)

Energy balance:

For the energy balance, the same applies as for the momentum balance. The energy balance given by eq.
(2.17) is rewritten for a segment in eq. (3.4) for liquid-only flow and to eq. (3.5) for two-phase flow.

ℎ(݅) = ℎ(݅ − 1) + ቈ ሶ݉ܳሶ ቉ (݅ − 1) − ሾ݃ܮcosߠሿ(݅ − 1) (3.4)

Eq. (3.5) is implicit, which also makes an iterative procedure necessary to solve the equation.

ℎ(݅) = ℎ(݅ − 1) + ቈ ሶ݉ܳሶ ቉ (݅ − 1) − 12 ൫ݑଶ(݅) − ݅)ଶݑ − 1)൯ − ሾ݃ܮcosߠሿ(݅ − 1) (3.5)

The constitutive equations necessary to solve the conservation equations are based on the effective
properties derived from the single phase fluid properties and the quality. The friction factor ݂, the Reynolds

46 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

number Re and the velocity ݑ for liquid-only flow are calculated according to eq. (2.24), eq. (2.25) and eq.
(2.26), respectively. ௚ܶ depends on the geothermal gradient, which is a user-defined variable in the model
input. The velocity ݑ, the friction factor ݂ and the Reynolds number Re for two-phase flow are calculated
according to eqs. (2.31), (2.34) and (2.35), respectively. The heat flow rate ሶܳ for every single segment is
calculated by eq. (3.6) derived from eq. (2.18).

ሶܳ (݅) = ൦4݇ߨ௥൫ ௚ܶ − ௚ܶ௙൯ln ൬4ߙ௥ݎߛݐௐଶ ൰ ൪ (݅) (3.6)

3.4.3.3. Calculation Procedure

Figure 3.8 shows the calculation procedure for the production well model – self-flowing. The starting input
variables (left) are obtained from the output variables of the reservoir model at the production well side and
the user-defined variables from the model input. Then segment geothermal fluid properties are calculated
from the bottom to the top of the production well with fCalc_geofprops2, described in Section 3.2.
Subsequently, the quality of the fluid is checked. If the condition of ߯ = 0 is met, calculation proceeds with
the constitutive equations. If ߯ > 0, fCalc_eps_g is invoked to export output and import input (right top)
from the drift-flux model to calculate the flow pattern FP and the void fraction ߝ௚. Consequently, an
adapted density ߩ is calculated before the constitutive equations are solved. The model description of the
drift-flux model is discussed in Section 3.5. Then the heat flow rate ݀ ሶܳ , potential energy loss ݀ ሶܳ௣௢௧, kinetic
energy loss ݀ܧሶ௞, frictional pressure loss ݀ ௙ܲ, hydrostatic pressure loss ݀ ௛ܲ௦ and kinetic pressure loss ݀ ௞ܲ
are computed. Finally, the conservation equations are solved to obtain pressure ܲ and enthalpy ℎ at the
outflow of the respective segment and the inflow of the next segment. These simulations are looped until
the last segment and the output variables (right) are known, which are the input variables for the single-
flash power plant model.

Figure 3.8 shows an alternative loop, which has to do with the discrepancy between the degassing pressures
of the GFP Excel Model and Duan and Sun (2003), which has been discussed in Section 3.2. It basically
involves an interpolation of the quality between these two defined degassing pressures, discussed in Section
3.2.2. The degassing pressures of Duan and Sun (2003) were implemented in MATLAB as data tables.
Figure C.7 – Figure C.10 show the degassing pressures as a function of ܶ,݉ே௔஼௟ and ݉஼ைଶ. The quality is
interpolated for the segments between the different degassing pressures. Then, it involves step 1 to 5 (see
blocks in Figure 3.8) in order to recalculate the segment properties. Consequently, it affects also the
pressure and enthalpy in these certain segments. Therefore, this interpolation scheme is iterated while ܾܽݏ൫ܲ௢௟ௗ(݅ − 2) − ܲ௡௘௪(݅ − 2)൯ > 0.01, which means the pressure loss is not yet continuous over the
segments. The third condition states that iteration is performed until the maximum nr. of iterations is
reached, which is a user-defined parameter. If one of the conditions is not satisfied, calculation continues
with segment (݅ + 1). Within the alternative loop the GFP model is invoked by fCalc_geofprops3. In
contrast to fCalc_geofprops2, which calculates the fluid properties according to the two-phase model of the
GFP Excel model from Figure C.4, fCalc_geofprops3 calculates the temperature and effective properties
with the single phase fluid properties and the quality. As in fCalc_geofprops2, an iterative calculation
scheme is necessary to find the temperature ܶ, that satisfies ܲ and ℎ. Figure C.5 and Figure C.6 present the
liquid phase and vapor phase interface of the GFP Excel model, respectively.

3.5. Drift-Flux Model 47

Master of Science Thesis F.W.J. Niewold

Figure 3.8: Calculation procedure production well model – self-flowing with system border (black dashed), input
variables (green) and output variables (red).

3.5. Drift-Flux Model
The purpose of the drift-flux model is to calculate the void fraction in a segment of the production well. The
drift-flux model can be seen as a part of the production well, therefore the system borders of the production
well model apply also to the drift-flux model. However, the complexity and the importance of the drift-flux
model and the production well model made it desirable to split it into two sub models. The consideration to
model two-phase flow by the drift-flux model has been discussed in Section 2.4.3.2.

3.5.1. Phenomena and Assumptions
A more comprehensive discussion about the phenomena and assumption can be found in Section 2.4.3.3.
There is also overlap with the assumption for the production well discussed in Section 3.4.2. Briefly in
summary, there are five flow patterns that describe the two-phase flow: bubble, dispersed bubble, slug,
churn and annular. The flow is one-dimensional, cocurrent and vertical upwards. The flow is fully
developed and turbulent.

3.5.2. Calculation Procedure
Figure 3.9 presents the calculation procedure of the drift-flux model. The model contains five different
drift-flux correlations, namely Nicklin (1961), Rouhani and Axelsson (1970), Dix (1971), Toshiba
(Coddington and Macian, 2002) and Hasan et al. (2010), discussed in Section 2.4.3.3. The drift-flux
correlation is user-defined in the model input. The default correlation is Rouhani and Axelsson (1970).

48 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

Figure 3.9: Calculation procedure drift-flux model with system border (black dashed), input variables (green) and
output variables (red).

The model equations for the drift-flux correlations have been discussed as well in Section 2.4.3.3. The void
fraction ߝ௚ is calculated by eq. (2.41). The equations for the flow distribution parameter ܥ଴ and drift-flux
velocity ݑ௚௨ can be found in Table 2.6. Except for Hasan et al. (2010), eqs. (2.42) – (2.52) describe the
drift-flux correlation.

3.6. Single-Flash Power Plant Model

3.6.1. Purpose and System Border
The purpose of the single-flash power plant model is to study and simulate the energetic and environmental
performance of the geothermal power plant in steady-state operation.

The system borders are the inflow from the production well and outflow to the injection well. Additionally,
system borders are defined for the generator/grid, condenser pump/grid, injection pump/grid, make-up
pump/grid, cooling water pump/grid, condenser/cooling tower and depending on the gas extraction system,
the (SE/C)/environment or the centrifugal compressor/(grid/environment). The components can be found in
Figure 2.24.

The single-flash power plant components studied in this sub model are the cyclone separator, steam turbine.
generator, condenser, SE/C or centrifugal compressor, condenser pump, make-up pump, cooling water
pump and injection pump.

3.6.2. Phenomena and Assumptions
All components (Section 3.6.1):

1. The geothermal fluid flowing in the power plant is in liquid phase or two-phase.
2. Pressure losses in piping between components are negligible.
3. There are no chemical reactions between the components.

Cyclone separator:

4. Flash process is isenthalpic.

Steam turbine:

5. At the inlet, gas is saturated.
6. Components in the gas can be H2O and CO2.
7. Gas is an ideal mixture of gases.
8. CO2 dissolution in condensed H2O is neglected (see Section 2.4.4.3)

Condenser:

9. Component is perfectly insulated and adiabatic.

3.6. Single-Flash Power Plant Model 49

Master of Science Thesis F.W.J. Niewold

10. Pressure loss is neglected.
11. CO2 dissolution in condensed H2O is neglected (see Section 2.4.4.3)

Gas extraction system:

12. Gas extraction system is SE/C or centrifugal compressor.
13. CO2 is vented to the environment.
14. SE/C has two stages.

Pumps:

15. There is only liquid flow.
16. Injection pump is isothermal.
17. Liquid is incompressible.

3.6.3. Calculation Procedure
Figure 3.10 presents the calculation procedure of the single-flash power plant model. The state numbers
correspond to Figure 2.24. A comprehensive description of this calculation procedure has been discussed in
Section D.1.

50 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

Figure 3.10: Calculation procedure single-flash power plant model with system border (black dashed), component
borders (blue dashed), input variables (green) and output variables (red).

3.7. Injection Well Model 51

Master of Science Thesis F.W.J. Niewold

3.7. Injection Well Model
The injection well model can be invoked by two functions: fCalc_injwell and fCalc_injwell_BC.

3.7.1. Purpose and System Border
The purpose of the injection well model is to study and simulate the hydraulic and thermal behavior of the
geothermal fluid within the injection well in steady-state conditions. Additionally, it connects the single-
flash power plant model and the binary cycle power plant model with the reservoir model and closes the
geothermal fluid circuit.

The injection well model shows much resemblance with the production well model – self-flowing discussed
in Section 3.4. The system borders are at the top, the inflow from the power plant model, and at the bottom,
the outflow to the reservoir model. Additionally, the GFP MATLAB model/production well model interface
is a system border. The well/rock interface is not defined as a system border as has been explained in
Section 3.4.1.

3.7.2. Phenomena and Assumptions
The phenomena and assumptions 3, 4, 6, 7, 8, 9, 10, 11, 12, 13 and 14 outlined in Section 3.4.2 apply to the
injection well model as well. Assumptions 1, 2 and 5 are modified to:

1. Geothermal fluid is always in liquid phase.
2. The geothermal fluid always flows in one direction, which is downward flow.
3. All fluid properties are being modeled homogeneously. This means uniform properties on a cross

section.
4. Kinetic pressure losses are neglected.

3.7.3. Calculation Procedure

3.7.3.1. Numerical Model

The numerical model is based on Figure 3.7, only the direction of flow is downwards. The numerical
method is equivalent to the method discussed in Section 3.4.3.1 used for the production well model – self-
flowing.

3.7.3.2. Model Equations

The conservation laws discussed in Section 2.4.2, are applied to the segments of the injection well. Only-
liquid flow is assumed in the injection well. Therefore, the mass, momentum and energy balance of eqs.
(3.1), (3.2) and (3.4) are applied to the flow, respectively.

The constitutive equations necessary to solve the conservation equations are based on the effective
properties derived from the single phase fluid properties and the quality. The friction factor ݂, the Reynolds
number Re and the velocity ݑ for liquid-only flow are calculated according to eqs. (2.24), (2.25) and (2.26),
respectively. ௚ܶ depends on geothermal gradient, which is a user-defined variable in the model input. The
heat flow rate ሶܳ for every single segment is calculated by eq. (3.6) derived from eq. (2.18).

3.7.3.3. Calculation Procedure

Figure 3.11 shows the calculation procedure of the injection well model. Starting input variables (left) are
imported from the output variables of the reservoir model at the injection well side. The user-defined
variables are imported from the model input and the geothermal fluid properties at the top of the production
well are imported from the power plant model. Then segment geothermal fluid properties are calculated
from bottom to top of the injection well with fCalc_geofprops2, which is a function that exports output and
imports input (top left) from the GFP MATLAB model described in Section 3.2. Subsequently, the heat
flow rate ሶܳ , potential energy loss ܧሶ௣௢௧, frictional pressure loss ݀ ௙ܲ and hydrostatic pressure loss ݀ ௛ܲ௦ are

52 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

computed. Kinetic energy losses and kinetic pressure losses can be neglected, because the flow is assumed
incompressible. Finally, the conservation equations are solved to obtain pressure ܲ and enthalpy ℎ at the
outflow of the respective segment and the inflow of the next segment. These simulations are looped until
the last segment and the output variables (right) are known, which are the input variables for the single-
flash power plant model.

Figure 3.11 shows an alternative loop after the calculation of the last segment. While ܾܽݏ(௪ܶ௛ − ଽܶ) >1	˚C, the injection well is recalculated from bottom to top. Where ௪ܶ௛ is the fluid temperature of the last
segment and ଽܶ is the fluid temperature before the injection pump, which is equal to ଵܶ଴ assuming an
isothermal pump. The ௥ܶ௘௦,௜௡௡௘௪ is then calculated by eq. (3.7).

௥ܶ௘௦,௜௡௡௘௪ = ௥ܶ௘௦,௜௡௢௟ௗ − (௪ܶ௛ − ଽܶ) (3.7)

Figure 3.11: Calculation procedure injection well model with system border (black dashed), input variables (green) and
output variables (red).

3.8. Production Well Model – Gas Lift

3.8.1. Purpose and System Border
The purpose of the production well – gas lift model is to study and simulate the hydraulic and thermal
behavior of the geothermal fluid within a well with a gas lift system in steady-state conditions. Figure 3.12
presents a schematic of the production well with a gas lift system. It is a one-dimensional numerical model,
where segments are distributed along the length of the well. The gas is compressed at the earth’s surface
and it is injected at a segment boundary.

The system borders are at the bottom the inflow from the reservoir model and at the top the outflow to the
single-flash power plant model. Additionally, the GFP model/production well model – gas lift interface and
drift-flux model/production well model – gas lift interfaces are system borders. As one would perhaps
expect, the well/rock interface is not defined as a system border. The heat flow rate ሶܳ is described by an
analytical equation given in eq. (2.18). The geothermal rock surrounding the production well is part of the
production well and discretized as such. The rock formation is radially assumed to be infinite.

3.8. Production Well Model – Gas Lift 53

Master of Science Thesis F.W.J. Niewold

The assumptions and the calculation procedure related to this model are discussed in Sections 3.8.2 and
3.8.3, respectively.

Figure 3.12: Schematic of the production well model – gas lift. Wellbore and rock formation is divided into multiple
segments (݅ − 1, ݅, ݅ + 1). The compressed gas is injected at the segment boundary. Compressed gas flows through the
annulus duct to the gas lift valve, where it is injected into the production string.

3.8.2. Phenomena and Assumptions
The phenomena and assumptions that have been applied to the production well model – self-flowing in
Section 3.4.2, also apply to the production well – gas lift model. Only assumption 9 has been adapted for
the part of the production well surrounded by the gas lift duct.

9. Heat flows only radially. It is governed by conduction for the part of the production well surrounded by
the geothermal rock. It is governed by convection and conduction for the part of the production well
surrounded by the gas lift duct.

Additional assumptions:

1. The gas is injected at a segment boundary.
2. The pressure of the gas is equal to the pressure of the geothermal fluid at the corresponding segment

boundary.
3. The gas lift valve does not have a physical length. Additionally, the diameter of the production well is

not affected by the gas lift system.
4. The gas flowing downwards in the annulus is fully developed and turbulent.
5. The gas is pure CO2.
6. The hydraulic diameter of the gas lift duct is 0.05 m. This means that ݎ௔௢ − ௐ௢ = 0.025 m (see Figureݎ

3.13).

3.8.3. Calculation Procedure

3.8.3.1. Numerical Model

The description of the numerical model for the production well model – self-flowing applies also to the
production well model – gas lift. Therefore, it is referred to Section 3.4.3.1.

There is one exception for the segment containing the gas lift valve. In Section 3.4.3.1, it has been
mentioned that segment properties are constant and equivalent to the inflow conditions (ܲ, ℎ, ሶ݉ of (ݓ	݀݊ܽ	
the respective segment (݅) and the outflow conditions of the previous segment (݅ − 1). The segment

54 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

containing the gas lift valve has different inflow conditions compared to the outflow conditions of segment (݅ − 1). This is further explained in Sections 3.8.3.2 and 3.8.3.3.

3.8.3.2. Model Equations

The production well is basically divided in two parts. One part below gas injection and one part above gas
injection. The conservation laws, discussed in Section 3.4.3.2, are also applied to those particular segments
of the production well model – gas lift, before the segment with gas injection. This means that eqs. (3.1) –
(3.6) apply to those segments. Figure 3.13 shows the schematic of the part of the production well model –
gas lift containing the gas lift valve. This figure refers to eqs. (3.8) – (3.13).

Figure 3.13: Schematic of the part of the production well – gas lift model containing the gas lift valve (not to scale).
This figure shows the mass- and heat flow rates for the part of the production well surrounded by the gas lift (GL)
annulus. The segment containing the gas lift valve is ݅ − 1. The segments above the gas lift valve segment start from ݅.
Mass balance:

The mass balance for the segment (݅ − 1) containing the gas lift valve is given by eq. (3.8). The mass
balance for all segments above the gas lift segment is given by eq. (3.9). ሶ݉ ௚௙(݅) = ሶ݉ ௚௙(݅ − 1) + ሶ݉ ீ௅ (3.8) ሶ݉ ௚௙(݅ + 1) = ሶ݉ ௚௙(݅) (3.9)

Momentum balance:

The momentum balance given by eq. (3.3) for two-phase flow also applies to the segment with gas
injection. According to assumption 2 in Section 3.8.2, the pressure level is not affected by gas injection at
the height of the gas lift valve.

Energy balance:

The energy balance for the segment (݅ − 1) of the production string containing the gas lift valve is given by
eq. (3.10). The energy balance for all segments above the gas lift segment is given by eq. (3.11).

3.8. Production Well Model – Gas Lift 55

Master of Science Thesis F.W.J. Niewold

ℎ௚௙(݅) = ቈ(ሶ݉ ℎ)௚௙ + (ሶ݉ ℎ)ீ௅ሶ݉ ௚௙ + ሶ݉ ீ௅ ቉ (݅ − 1) + ቈ ሶܳ௚௙ሶ݉ ௚௙ + ሶ݉ ீ௅቉ (݅ − 1) − ሾ݃ܮcosߠሿ(݅ − 1) (3.10)

ℎ௚௙(݅ + 1) = ℎ௚௙(݅) + ቈ ሶܳ௚௙ሶ݉ ௚௙ + ሶ݉ ீ௅቉ (݅) − ሾ݃ܮcosߠሿ(݅) (3.11)

The heat flow rate ሶܳ ௚௙ in eqs. (3.10) and (3.11) is now given by eq. (3.12), where the variables are a
function of segment number logically. The overall heat transfer coefficient is then given by eq. (A.23). The
calculation procedure of the overall heat transfer coefficient is given in Section A.3 by solving eqs. (A.24)-
(A.41). ሶܳ ௚௙ = ൫ܶீܣܷ ௅ − ௚ܶ௙൯ (3.12)

The energy balance of the segments in the gas lift duct is equal for all the duct segments. It is given by eq.
(3.13). The heat flow rate to the surrounding rock is given by eq. (3.6), which was the analytical solution
for the heat flow rate from a geothermal well to the surrounding rock proposed by Garcia-Gutierrez et al.
(2002).

ℎீ௅(݅) = ℎீ௅(݅ + 1) + ቈ ሶܳ௚௙ + ሶܳ௚ሶ݉ ீ௅ ቉ (݅) − ሾ݃ܮcosߠሿ(݅) (3.13)

3.8.3.3. Calculation Procedure

Figure 3.14 shows the calculation procedure for the production well model – gas lift. The starting input
variables (left) are obtained from the output variables of the reservoir model at the production well side and
the user-defined variables from the model input. Until the segment of the gas lift valve is reached the
calculation procedure is exactly identical to the procedure of the production well model. From the point of
gas injection, two-phase properties and alternative heat transfer calculations are applied, discussed in
Section 3.8.3.2.

The discrepancy between the degassing pressures of the GFP Excel Model and Duan and Sun (2003), which
has been discussed in Section 3.2 does not apply in this case. It is assumed that gas injection takes place
before flashing occurs in the self-flowing production well. The comparison is performed between identical
production wells, so in the production well with gas lift there may be assumed that flashing has not
occurred at that point.

56 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

Figure 3.14: Calculation procedure production well – gas lift model with system border (black dashed), input variables
(green) and output variables (red).

3.9. Binary Cycle Power Plant Model

3.9.1. Purpose and System Border
The purpose of the binary cycle power plant model is to study and simulate the energetic and environmental
performance of the geothermal power plant in steady-state operation.

The system borders are the inflow from the production well and outflow to the injection well. Additionally,
system borders are defined for the gas lift compressor/grid, generator/grid, condenser pump/grid, cooling
water pump/grid, make-up pump/grid, injection pump/grid and the condenser/environment. The
components can be found in Figure 2.23.

The binary cycle power plant components studied in this sub model are the compressor, evaporator,
preheater, gas turbine, condenser, condenser pump, make-up pump, cooling water pump and injection
pump.

3.9.2. Phenomena and Assumptions
All components (Section 3.9.1):

1. The geothermal fluid flowing in the power plant is in liquid phase.
2. Pressure losses in piping between components are negligible.
3. There are no chemical reactions between the components.
4. The working fluid incorporated is i-pentane (isopentane)
5. Working fluid pressure is subcritical.

3.9. Binary Cycle Power Plant Model 57

Master of Science Thesis F.W.J. Niewold

Compressor:

6. Compressed gas is pure CO2.
7. Two conditions are assumed: compression from atmospheric conditions or compression from wellhead

conditions.

Preheater:

8. Working fluid is preheated until saturated liquid.
9. Pinch point is 5 K.
10. Pressure drop is neglected.
11. Only liquid part at the wellhead is sent to the preheater/evaporator.

Evaporator:

12. Working fluid is evaporated isothermally and isobarically.
13. Working fluid can be superheated.
14. Pinch point is 5 K.
15. Pressure drop is neglected.

Gas turbine:

16. At the inlet, gas is saturated or superheated.
17. At the outlet, working fluid is in gas phase.

Condenser:

18. Component is perfectly insulated and adiabatic.
19. Pressure drop is neglected.
20. At the outlet, working fluid is saturated liquid.

Pumps:

21. There is only liquid flow.
22. Injection pump is isothermal.
23. Liquid is incompressible.

3.9.3. Calculation Procedure
Figure 3.15 presents the calculation procedure of the binary cycle power plant model. The state numbers
correspond to Figure 2.23. Data tables with properties of working fluids isopentane have been incorporated
in the model.

Condenser pump:

The calculation starts with the condenser pump (CP) with input from the top of the production well model –
gas lift. It uses the outlet pressure of the turbine and the critical pressure of the working fluid as an initial
calculation. The required power is calculated according to eq. (2.67).

Preheater/evaporator:

An initial estimate of the working fluid mass flow rate is performed by solving the energy balance given in
eq. (2.69). The properties at state C are user-defined, this is the minimum allowed injection temperature.
The pinch point between B and 4 is 5 K. Now that ܲ and ܶ are known the enthalpies are calculated in
fCalc_geofprops4. Subsequently, the heat flow rates are calculated. Then an iterative procedure follows. If
the calculated ℎଵ is lower than the saturated vapor enthalpy, ௪ܶ௙,௘௩ = ହܶ is decreased. If ଵܶ is within ௣ܶ௜௡௖௛
of ஺ܶ, ଵܶ = ஺ܶ − ௣ܶ௜௡௖௛ . Then the working fluid mass flow rate must be adjusted. The energy balance is
solved over the entire preheater/evaporator.

58 3 MODEL DESCRIPTION

F.W.J. Niewold Master of Science Thesis

Turbine:

The calculation of the turbine is rather straightforward, see eq. (2.65). This whole procedure is iterated until
the maximum ሶܹ ௡௘௧ + ሶܹ ௜௣ is obtained.

Cooling water pump and make-up pump:

The required power of the pumps is calculated by eq. (2.60).

Injection pump:

The calculation of ሶܹ ௜௣ and subsequently ሶܹ ௡௘௧happens after the injection well is computed.

Figure 3.15: Calculation procedure binary cycle power plant model with system border (black dashed), input variables
(green) and output variables (red).

59

4
MODEL VALIDATION &

SENSITIVITY ANALYSIS
The present chapter presents the validation of the mathematical model described in Chapter 3. Firstly in
Section 4.1, the production well model – self-flowing has been hydraulically and thermally validated with
field data from literature. Section 4.2 discusses the validation of the GFP MATLAB model by comparison
of the vapor quality of the geothermal fluid as a function of temperature, pressure and composition. Then
Section 4.3 treats the validation of the drift-flux model. Section 4.4 presents the qualitative validation of the
production well with gas lift. Section 4.5 discusses the validation of the single-flash power plant and the
binary cycle power plant model.

Besides the model validation, the sensitivity of certain input parameters and assumptions are discussed. The
level of detail of the mathematical model described in Chapter 3 is relatively high, especially of the two
production well models and the geothermal power plant models. Insight in how certain parameters affect
the simulation contributes to further model development. Also, the knowledge obtained from this sensitivity
analysis is used to determine the input parameters to examine in Chapter 5. Section 4.6 discusses the
sensitivity analysis of the production well model – self-flowing. In Section 4.7, the power plant model is
treated.

4.1. Self-Flowing Production Well Model Validation
The self-flowing production well model has been validated hydraulically and thermally with field data from
literature. In Section 4.1.1, field data of various geothermal wells are discussed. This field data was used as
input for the present model to calculate pressure and temperature profiles. Section 4.1.2 covers the analysis
of the results of the simulation. Finally, in Section 4.1.3 conclusions are drawn related to the validation of
the production well model.

4.1.1. Field Data and Model Input Parameters
Ambastha and Gudmundsson (1986a) and Ambastha and Gudmundsson (1986b) compared their model
calculations for two-phase flow in geothermal wells with pressure profiles from ten different geothermal
wells around the world. They assumed pure water in their comparison and model calculations as geothermal
fluid. Two wells have been found suitable for validation of the present model: East-Mesa 6-1 (Imperial
Valley, CA) and Ngawha 11 (New Zealand). These wells are the only ones out of these ten wells having
single-phase fluid (liquid) at the bottom hole of the well with temperatures up to 250 ˚C. Field data of East-
Mesa 6-1 was also used by Chadha et al. (1993) to validate their homogeneous two-phase model for the
prediction of two-phase flow in vertical wells. Additionally, the field data from the NWS-1 Sabalan well
(Iran) from Akbar et al. (2016), who proposed a finite element model for two-phase in wellbores, has been
used for validating the present model. They assumed pure water as well. Table 4.1 presents the field data of
the East-Mesa 6-1, Ngawha 11 and NWS-1 Sabalan geothermal wells. This is also the input for the present
model to calculate the pressure and temperature profiles.

Besides the pure water models, geothermal wells in which salts and NCG played a significant role were
evaluated. Barelli et al. (1982) compared four geothermal wells with their two-phase flow model for
geothermal wells in the presence of salts in the range of 1 – 10 wt% and NCG in the range of 0 – 15 wt%.
These salts and NCG were assumed consisting entirely of NaCl and CO2, respectively, just as in the present
model. Field data of three of these four wells have been found useful for validation of the present model. In

60 4 MODEL VALIDATION & SENSITIVITY ANALYSIS

F.W.J. Niewold Master of Science Thesis

the present work, in accordance with Barelli et al. (1982), these wells have been referred to as W2, W3 and
W4. The field data of these wells are presented in Table 4.2.

In Table 4.1 and Table 4.2, it can be seen that thermal conductivity and thermal diffusivity do not apply or a
value is assumed in the present study. The properties of the geothermal rock, including geothermal
temperature gradient, are difficult to establish. Ambastha and Gudmundsson (1986a) assumed no heat
transfer between fluid and rock. In this case, the properties do not apply to the simulation. Akbar et al.
(2016) and Barelli et al. (1982) did not report or they assumed average values for these properties. In the
present work, average values were obtained from Eppelbaum et al. (2014). Average thermal conductivity of
common rocks reported in literature are approximately in the range of 1.5 – 3 W m-1 K-1 at atmospheric
temperature and pressure. The thermal conductivity is also a function among others of temperature and
porosity, where thermal conductivity decreases with increasing temperature and porosity. The geothermal
gradient in Table 4.2 is a linear relation between bottom hole- and surface temperature. Segment lengths
were in the range of 20 – 25 m in all simulations.

Table 4.1: Field data of geothermal wells: East-Mesa 6-1, Ngawha 11 and NWS-1 Sabalan (Ambastha and
Gudmundsson, 1986a; Akbar et al., 2016). This field data was used as model input in the present model. For two wells,
extra simulations were performed (Ngawha 11-2 and NWS-1 Sabalan-2) with additional model input parameters, which
have not been considered by Ambastha and Gudmundsson (1986a) and Akbar et al. (2016). These additional model
input parameters are highlighted in blue between brackets.

Well East-Mesa 6-1 Ngawha 11-1

(Ngawha 11-2)

NWS-1 Sabalan-1

(NWS-1 Sabalan-2)

Mass flow rate, kg s-1 12.9 6.6 30

Bottom hole pressure, bar 93 86.3 60.09

Bottom hole temperature, ˚C 198.5 222.5 225

Production time, h N/A N/A (1 year) 100

CO2 concentration, wt% 0 0 (1.23)
 a 0 (0.4)

 c

NaCl concentration, wt% 0 0 (0.4)
 a

 0 (0.5)
 c

Bottom hole depth, m 2134 1002 (902)
 a

 1570

Pipe diameter, m 0.2215 0.1987 from 0 – 673.5 m,
0.1504 from 673.5 – 1002 m

0.2444

Inclination angle, deg 0 0 0

Absolute roughness pipe, m 0.00018 0.00018 0.0000015

Surface temperature rock, ˚C N/A N/A (20)
 b

 11

Geothermal gradient rock, K m-1 N/A N/A

 (0.41 from 0 – 500 m

0 from 500 – 902m)
 b

0.2863 from 0 – 800 m
-0.0195 from 800 – 1570 m

Thermal conductivity rock, W m-1 K-1 N/A N/A (1.5)
d
 N/A (1.5

 d
)

Thermal diffusivity rock, m2 s-1 N/A N/A (1.2 x 10-6)
d
 N/A (1.2 x 10-6

d
)

Reference Ambastha and
Gudmundsson (1986a)

Ambastha and
Gudmundsson (1986a)

Akbar et al. (2016)

a
 Sheppard (1987),

b
 Bromley and Bignall (2016),

c
 Moghaddam (2006)

d
 This value was assumed in the present work from values in Eppelbaum et al. (2014), because it has not been given in the field data of

the corresponding geothermal well.

4.1.2. Results of Simulations
The pressure and temperature profiles of the geothermal wells given in Table 4.1 and Table 4.2 are
presented in Figure 4.1 and Figure 4.2, respectively. The continuous and dashed lines represent the
calculated values by the present model and the markers represent the measured values obtained from
literature. The quality of the matches of the measured and calculated, pressure and temperature profiles
were calculated according to the method proposed by Ambastha and Gudmundsson (1986a). They

4.1. Self-Flowing Production Well Model Validation 61

Master of Science Thesis F.W.J. Niewold

estimated the mean error and standard deviation of the mean error, according to eqs. (E.1) – (E.4) described
in Section E.1. The results of the comparison of measured and calculated values are presented in Table 4.3
and Table 4.4.

Table 4.2: Field data of various geothermal wells. This field data was used as model input in the present model (Barelli
et al. 1982).

Well W2 W3 W4

Mass flow rate, kg s-1 32.78 50 18.05

Bottom hole pressure, bar 98 106 64.3

Bottom hole temperature, ˚C 225 223 285.5

Production time, h 11 10 20

CO2 concentration, wt% 3 12 0

NaCl concentration, wt% 1 6.3 10

Bottom hole depth, m 1355 2010 800

Pipe diameter, m 0.3397 0.2445 0.2445

Inclination angle, deg 0 0 0

Absolute roughness pipe, m 0.00018
a

0.00018
 a

 0.00018
 a

Surface temperature rock, ˚C 18
 b

 18
 b

 18
 b

Geothermal gradient rock, K m-1 0.1528 0.1020 0.2686

Thermal conductivity rock, W m-1 K-1 1.5
 c

 1.5
 c

 1.5
 c

Thermal diffusivity rock, m2 s-1 1.2 x 10-6 d 1.2 x 10-6 d 1.2 x 10-6 d

Reference Barelli et al. (1982) Barelli et al. (1982) Barelli et al. (1982)
a The absolute pipe roughness was not reported. Instead the absolute roughess of Ambastha and Gudmundsson (1986a) was used.
b The rock surface temperature was not reported explicitly. Barelli et al. (1982) used atmospheric temperature in their model.
c,d Thermal conductivity and thermal diffusivity were assumed from values in Eppelbaum et al. (2014).

Figure 4.1: Pressure profiles of geothermal wells given in Table 4.1 and Table 4.2. The continuous and dashed lines
represent the model calculations of the present model. The markers represent the measured values, which were obtained
from literature.

62 4 MODEL VALIDATION & SENSITIVITY ANALYSIS

F.W.J. Niewold Master of Science Thesis

Figure 4.2: Temperature profiles of geothermal wells given in Table 4.1 and Table 4.2. The continuous and dashed
lines represent the model calculations of the present model. The markers represent the measured values, which were
obtained from literature.

Table 4.3: Comparison of measured and calculated, pressure and temperature profiles of geothermal wells given in
Table 4.1.

Well East-Mesa 6-1 Ngawha 11-1

(Ngawha 11-2)

NWS-1 Sabalan-1

(NWS-1 Sabalan-2)

Mean error ܲ, bar 0.6428 1.9132 (0.9288) 0.4084 (1.0079)

Standard deviation mean error ܲ, bar 0.6602 2.0398 (0.7022) 0.5647 (0.6704)

Mean error ܶ, ˚C 1.2783 2.7212 (0.9802) 3.0686 (1.3112)

Standard deviation of mean error ܶ, ˚C 1.2627 3.2104 (0.8177) 3.2678 (1.1283)

Best fitting drift-flux model Hasan et al. (2010) Rouhani and Axelsson
(1970)

Rouhani and Axelsson
(1970)

Table 4.4: Comparison of measured and calculated, pressure and temperature profiles of geothermal wells given in
Table 4.2.

Well W2 W3 W4

Mean error ܲ, bar 0.7098 2.8677 0.4928

Standard deviation mean error ܲ, bar 0.6268 1.5818 0.3276

Mean error ܶ, ˚C 1.2701 0.2698 0.8828

Standard deviation of mean error ܶ, ˚C 1.0758 0.4267 0.3626

Best fitting drift-flux model Rouhani and Axelsson
(1970)

Rouhani and Axelsson
(1970)

Rouhani and Axelsson
(1970)

4.1.3. Analysis and Conclusion
The present mathematical model has been validated with measured data from literature. According to
literature, it can be concluded that it is difficult to accurately model wellbore flow for geothermal
applications. Ambastha and Gudmundsson (1986a) and Akbar et al. (2016) did not succeed to match their
models to the available measured data. One important cause is the consideration of salts and NCG. Another

4.1. Self-Flowing Production Well Model Validation 63

Master of Science Thesis F.W.J. Niewold

cause can be the neglect of heat loss to or heat gain from the formation. Additionally, uncertainties in
certain parameters can give rise to deviations. Exact information about geothermal rock thermal properties
are often lacking, while it becomes increasingly important with a relatively short production time as in well
W2, W3 and W4. Wellbore roughness is another difficult to measure parameter, but it can affect wellbore
diameter or frictional pressure losses significantly. Finally, the accuracy of the measured values must be
taken into account. In Barelli et al. (1982), errors of the order of 0.5% of the maximum pressure and 2 ˚C
for temperature were given. Table 4.3 and Table 4.4 show that simulated pressure and temperature profiles
by the present model were valid and reliable. Five of six simulations were performed using the drift-flux
model of Rouhani and Axelsson (1970). The drift-flux model of Hasan et al. (2010) was applied to East-
Mesa 6-1. A possible explanation can be the fact that the model of Hasan et al. (2010) predicts two-phase
flow of pure water more accurate, while Rouhani and Axelsson (1970) is more accurate for geothermal
fluids containing NCG and salts. The accuracy of the Rouhani and Axelsson (1970) drift-flux model in
comparison with the other drift-flux models confirmed the conclusion of literature survey in Section
2.4.3.3. Each geothermal well from Section 4.1.1 is briefly discussed in response to the results presented in
Section 4.1.2.

East-Mesa 6-1:

Ambastha and Gudmundsson (1986a) reported a mean error and mean percent error with respect to pressure
of 11 bar and 59.5 %. This means that their model calculated significant different values than the measured
data. They do not give a real legitimate cause for this deviation, except that the sensitivity of the enthalpy
used in their model is significant and therefore the depth of flashing is underestimated. From the knowledge
obtained in the present study, analysis of their pressure profile indicates that pressure drop in the two-phase
flow region is overestimated. A cause could be a wrong drift-flux model, that would mean an
underestimation of the void fraction. Then a larger density was calculated, which results in a larger pressure
drop. It can be seen from the sharp bend in the temperature and pressure profile that the geothermal fluid
did not contain NCG, where flashing happens in an instant. In the present study, all drift-flux models gave
rise to an overestimation of pressure loss for the East-Mesa 6-1 well, except the drift-flux model of Hasan et
al. (2010).

Ngawha 11:

Ambastha and Gudmundsson (1986a) reported a mean error and standard deviation of the mean error with
respect to pressure of 10.8 bar and 5.1 bar, respectively They have mentioned that Ngawha 11 had 1.4 % of
NCG in the total flow, which was not considered in their model. Also, heat loss from wellbore to
geothermal rock has not been considered. Therefore, for the present study additional literature was
consulted. In the second simulation NCG, salts and heat loss were taken into account as can be seen by the
values between brackets in Table 4.1. Also, the two deepest data points were neglected in this simulation,
because the cause of this sudden temperature rise has not been fully understood. Two possible explanations
can be heat gain from the formation or influx of warmer geothermal fluid at a shallower depth (± 900 m).
Sheppard (1987) has shown that geothermal temperature was between 225 – 240 ˚C at depths from 500 –
1500 m. Nevertheless, taking composition and heat transfer into account the present model accurately
predicts pressure and temperature profiles of the Ngawha 11 well. The drift-flux model of Rouhani and
Axelsson (1970) have shown the most accurate match. The first simulation, where pure water was assumed,
already gave a more accurate fit of the pressure profile than the model of Ambastha and Gudmundsson
(1986a). The second simulation has shown an even better fit for the pressure profile. However, the most
striking effect of taking NCG into account is the difference in temperature profile, which was omitted by
Ambastha and Gudmundsson (1986a).

NWS-1 Sabalan:

In Akbar et al. (2016), the calculated and measured, pressure and temperature profiles have been
graphically presented. They predicted the pressure profile quite accurately. On the other hand, the
calculated wellhead temperature of 139 ˚C significantly deviated from the measured wellhead temperature
of 150 ˚C. According to them, it was attributed to the changes in the surface temperature. In the present
study, this has not been found evident. According to Moghaddam (2006), the geothermal field near NWS-1
contains NCG and salts. The geothermal fluid contained 0.4 wt% CO2 and 0.5 wt% NaCl. This is a more
logical explanation of the deviation from the measured values. The pressure profile in the second simulation
(values between brackets) did not give a better fit than in the first simulation. The temperature profile
however improved quite drastically. From the Ngawha 11 well, the importance of NCG and salts has been
shown already. It seems that the NWS-1 Sabalan well confirms this observation. It must be said that the

64 4 MODEL VALIDATION & SENSITIVITY ANALYSIS

F.W.J. Niewold Master of Science Thesis

temperature profile in the first simulation approached the calculated values of Akbar et al. (2016) quite
accurately, in which both models assumed pure water as geothermal fluid.

W2, W3 and W4:

These wells were all described in Barelli et al. (1982), where besides the different characteristics given in
Table 4.2, equivalent assumptions have been applied to all other relevant parameters. Barelli et al. (1982)
used a different approach then the method in the present study. They varied the CO2 concentration until
their calculated pressure and temperature profiles matched the measured values. In the case of well W4,
where no CO2 was present, they varied enthalpy instead to find a match. In all three cases, two-phase flow
was already present at the bottom hole of the well. For wells W2 and W3, the quality was obtained from the
GFP MATLAB model described in Section 3.2. This value has not been explicitly given by Barelli et al.
(1982). However, the effect of quality and void fraction, described by the GFP model and the drift-flux
model respectively, has been understood to be significant on pressure loss in the wellbore. Therefore, it can
be concluded that the present model accurately predicted the pressure and temperature profiles of W2 and
W3. Well W4 had a quality of 17 % at the bottom hole according to Barelli et al. (1982). This value was
applied as an additional boundary condition in the GFP MATLAB model in order to calculate the enthalpy
at the bottom hole. Again, an excellent fit was obtained. All three wells were simulated with the drift-flux
model of Rouhani and Axelsson (1970).

4.2. Geothermal Fluid Property Model Validation
In response to the validation of the pressure and temperature profiles in Section 4.1, it can be carefully
concluded that the GFP MATLAB model works properly. In addition, the GFP MATLAB model (Section
3.2) has been validated by comparing the vapor quality as a function of pressure, temperature and
composition with the vapor quality according to Wagner and Pruss (2002) and Duan and Sun (2003) for
pure water and ternary solution, respectively.

Figure 4.3 shows the calculated vapor quality profiles (continuous lines) of the wells East-Mesa 6-1,
Ngawha 11-2, NWS-1 Sabalan-2, W2, W3 and W4, and validated vapor quality data from literature
(markers) (Wagner and Pruss, 2002; Duan and Sun 2003). Table 4.5 presents the mean error and standard
deviation of the mean error with respect to quality between the present model and validated data from
literature. It can be seen that the present GFP MATLAB model has been found valid and reliable.

Figure 4.3: Vapor quality profiles of geothermal wells given in Table 4.1 and Table 4.2. The continuous lines represent
the model calculations of the present model. The squares represent validated data from literature, which were obtained
from Wagner and Pruss (2002) and Duan and Sun (2003).

The well Ngawha 11-2 deviates most from verified vapor quality data, with 0.62% and 0.76% for mean
error and the standard deviation of the mean error with respect to vapor quality, respectively. This deviation

4.3. Drift-Flux Model Validation 65

Master of Science Thesis F.W.J. Niewold

can be explained by the relatively low CO2 concentration. The vapor quality data from Duan and Sun
(2003) were obtained by entering pressure, temperature and composition. The less CO2 a geothermal fluid
contains, the more it behaves like a pure fluid. The vapor quality of pure fluids is rather a function of
enthalpy accompanied by pressure or temperature than a function of pressure and temperature. The
consequence of using pressure and temperature is that minor deviation in pressure and/or temperature can
cause large deviations in quality close to the saturation pressure of pure water. For this exact same reason,
this method failed for wells NWS-1 Sabalan-2 and W4, because the CO2 concentration is 0.4 wt% and 0
wt%, respectively. Unfortunately, FluidProps does not have a library for salts. Therefore, Figure 4.3 and
Table 4.5 do not show validated data and mean errors for vapor quality, respectively. Nevertheless,
calculated vapor quality profiles of wells NWS-1 Sabalan-2 and W4 are presented to show that it was
validated qualitatively by comparing the trend of these curves with the other four curves.

Table 4.5: Comparison of vapor quality profiles of various geothermal wells given in Table 4.1 and Table 4.2.

Well East-Mesa 6-1 Ngawha 11-2 W2 W3

Mean error ߯ 5.70E-05 0.0062 7.71E-04 0.0014

Standard deviation of mean error ߯ 2.55E-05 0.0076 0.0011 0.0019

4.3. Drift-Flux Model Validation
In Section 4.1, it has been found obvious that the drift-flux model of Rouhani and Axelsson (1970)
described slip between liquid and gas phase, and thereby two-phase flow, for ternary solutions most
accurately. The drift-flux models, given in Table 2.6, are basically simple empirical correlations. The drift-
flux model of Hasan et al. (2010) is more comprehensive and it has been found desirable to validate the
flow patterns and flow pattern transitions. The East-Mesa 6-1 well was used to examine this drift-flux
model, since the best fit has been found by applying Hasan et al. (2010). Figure 4.4 presents the flow
pattern map according to the equations of the drift-flux model of Hasan et al. (2010). In order to validate the
flow pattern map, a comparison with the validated flow pattern map of Taitel et al. (1980), given in Figure
4.5, was made. The continuous blue lines represent the boundaries between the flow patterns used in the
present model. It must be explicitly said that this particular validation of flow pattern was performed with a
water-air mixture at atmospheric conditions for vertical tubes of 0.05 m diameter. The continuous red line
in Figure 4.4 represents the slug/annular transition according to Taitel et al. (1980). In Hasan et al. (2010),
this transition is shifted leftwards, because of the additional condition that annular flow exists at void
fractions above 0.7. At low liquid superficial velocities, this condition is met earlier than the minimum
superficial gas velocity for transition from slug to annular flow ݑ௚௖ given by eq. (2.51). The green line
represents the transition from slug to churn flow according to Hasan et al. (2010) as well. Nevertheless, this
transition and associated equations have not been adopted in the present model. Instead, the slug/churn
transition from Taitel et al. (1980) has been applied, represented by the dashed blue lines. In this case,
churn flow depends also on location in the wellbore, i.e. churn flow is a function of entrance length ܮா and
diameter ܦ as well. Eq. (4.1) gives the minimum mixture velocity for slug/churn transition.

௠௖ݑ = ඥ݃ܦ ൬ ܦா40.6ܮ − 0.22൰ (4.1)

It basically means that closer to the entrance length at a certain superficial liquid and superficial gas
velocity, churn flow is sooner expected. Hasan et al. (2010) assumed fully developed flow in their model,
and they neglected entrance effects. In the present model, however, the gas lift valve disturbs the flow.
Therefore, entrance length is calculated from the depth where gas is injected in the production well model –
gas lift.

In comparison with the relatively simple drift-flux correlations from Table 2.6, the comprehensive drift-flux
model of Hasan et al. (2010) applied different equations for different flow patterns. On one hand, the effect
of different flow patterns on two-phase flow has been taken into account. While on the other hand,
transitions between flow patterns can be sharp, although they are rarely abrupt. Therefore, Hasan et al.
(2010) proposed equations, in which the distribution parameter ܥ଴ has been calculated with an exponential-
weighted average for smoothening the transitions between flow patterns. The existence of certain flow
patterns in geothermal wells has not been directly validated. Chadha and Malin (1993) validated their two-
phase model with the same measured data found in Ambastha and Gudmundsson (1986a). They

66 4 MODEL VALIDATION & SENSITIVITY ANALYSIS

F.W.J. Niewold Master of Science Thesis

implemented different equations and used a different terminology for different flow patterns than Hasan et
al. (2010). Nevertheless, the trend for the pressure-, density- and quality profile matched reasonably well. In
their model, flow pattern transitions were even sharper than in the model of Hasan et al. (2010). They
overestimated pressure loss slightly, from which it can be concluded that smoothening the flow pattern
transition according to Hasan et al. (2010) paid off. Section E.2 presents the pressure-, density-, vapor
quality- and void fraction profiles calculated with the present model using the drift-flux model of Hasan et
al. (2010) and the pressure-, density- and vapor quality profiles of Chadha and Malin (1993).

Figure 4.4: Flow pattern map according to drift-flux model
of Hasan et al. (2010) for vertical tubes ܦ = 0.05	m, ܶ =25	°C, ܲ = 1	bar. Blue (continuous and dashed) have been
implemented in the present model.

Figure 4.5: Flow pattern map from Taitel et al. (1980)
for vertical tubes ܦ = 0.05	m, ܶ = 25	°C, ܲ = 1	bar.

4.4. Production Well with Gas Lift Model Validation
This section was written in anticipation of Chapter 5, from which the model input parameters for this
production well were adopted, given in Table F.1 and Table F.2. Furthermore, the mass fraction of NaCl
was 0.05 kg kg-1 and the mass fraction of CO2 was 0.015 kg kg-1. The flashing depth and consequently
depth of the gas lift valve was 1400 m. Three scenarios were compared: the self-flowing production well
was compared to two gas lifted production wells with 0.5 and 1.0 kg s-1 of lift gas. Because of the novelty
of this concept for geothermal applications with its characteristics, experimental data has not been found.
Therefore, the production well with gas lift has been validated on the basis of trend lines of pressure,
temperature, enthalpy, quality, void fraction and density.

Figure 4.6 shows six property profiles as a function of true vertical depth of these three production wells. It
can be seen that as expected in (a), the pressure loss decreases in the production wells with gas lift.
Consequently, temperature decrease in (b) is smaller, because flashing is associated to temperature
decrease. The enthalpy losses in (c) are relatively similar. A small enthalpy step can be seen on the point of
gas lift, because CO2 is injected at that point, which affects the enthalpy. The quality (gas mass fraction) in
(d) suddenly increases at the gas lift valve depth as a result of the injected CO2. Logically, the quality for
1.0 kg s-1 injected gas mass flow rate is higher than for 0.5 kg s-1 injected gas. Finally, an interesting trend
can be found in (e) and (f), which represent the void fraction and the density. At first, the density of the
geothermal fluid decreases after injection of lift gas. The result of less hydrostatic pressure can be seen in
(a). But consequently, the pressure near the top of the production well is higher for the production well with
gas lift than for the self-flowing production well. At a certain moment, density in the gas lifted production
wells becomes higher than of the self-flowing well. Since the void fraction is a function among others of
density, the void fraction shows a similar trend.

4.5. Geothermal Power Plant Model Validation
In this section, the power output and thermal efficiencies of existing geothermal power plants have been
compared to the output of the present mathematical model. In Section 4.5.1 and Section 4.5.2, the single-
flash power plant and the binary cycle power plant are discussed, respectively. Geothermal power plant data

4.5. Geothermal Power Plant Model Validation 67

Master of Science Thesis F.W.J. Niewold

was obtained from Zarrouk and Moon (2014). They have published a worldwide review of efficiencies of
geothermal power plants. Their work covers 94 geothermal power plants in total, of which 34 were single-
flash power plants and 31 were binary cycle power plants. It has been shown that there is a correlation
between thermal efficiency of geothermal power plants, reservoir enthalpy, mass flow rate of geothermal
fluid and net power produced. They calculated thermal efficiency according to eq. (4.2).

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Property profiles as a function of true vertical depth of (a) pressure (b) temperature (c) enthalpy (d) quality
(gas mass fraction) (e) void fraction (f) density.
௧௛ߟ	 = ሶܹ ௡௘௧ሶ݉ ௚௙ℎ௥௘௦ (4.2)

Where ℎ௥௘௦ is based on pure water and ሶܹ ௡௘௧is calculated taking NCG and auxiliary power supply into
account. It must be noted that this equation is different then the calculation of the thermal efficiency in the
present study, which is given in eq. (2.62). Also, it can be arbitrary to compare geothermal systems all over
the world on the basis of a reservoir enthalpy value, since enthalpy is relative to its reference state.

68 4 MODEL VALIDATION & SENSITIVITY ANALYSIS

F.W.J. Niewold Master of Science Thesis

Additionally, the enthalpy alone does not give sufficient information about the state of the reservoir.
Therefore generally, the most appropriate method to compare geothermal power plants is according to the
utilization efficiency, given in eq. (2.63). Nevertheless, the fact that the required reservoir data to calculate
the utilization efficiency has not been available for all geothermal fields makes eq. (4.2) and the results
from Zarrouk and Moon (2014) a valuable method to validate the geothermal power plant models.

4.5.1. Single-Flash Power Plant
Figure 4.7 shows the thermal efficiency according to eq. (4.2) as a function of reservoir enthalpy of the
single-flash power plants published in Zarrouk and Moon (2014). Only reservoir enthalpies in the range of
700 – 1100 kJ kg-1 have been presented, because two-phase reservoirs have not been studied in the present
work. The wellhead properties of five wells (East-Mesa 6-1, Ngawha-11, NWS-1 Sabalan, W2 and W3)
presented in Table 4.1 and Table 4.2 were used as input for the single-flash power plant model simulation.
Detailed overview of model input parameters and the technical specifications of the five single-flash power
plants are given in Table E.1 and Table E.2. It can be seen that the model simulations fall into the range of
the thermal efficiencies from literature. Small deviations can be related to e.g. NCG content, silica scaling
in equipment, turbine efficiencies, heat loss from equipment, power plant parasitic load (fans, pumps and
gas extraction systems). In the case of Zarrouk and Moon (2014), well characteristics were taken into
account as well, because thermal efficiency was calculated with the reservoir enthalpy. Then, also e.g. heat
loss from the well to the surrounding geothermal rock and calcite scaling in the well can affect thermal
efficiency.

Figure 4.7: Thermal efficiency as a function of reservoir enthalpy. Model simulations of single-flash power plant show
comparison with published thermal efficiencies according to Zarrouk and Moon (2014).

Additionally, a more specific validation of steam turbine and SE/C was performed. The mathematical
model was compared to technical specification of the Cerro Prieto I (units 1 – 4) geothermal power plant
(DiPippo, 2012). This power plant has much in common with the present model, because both power plants
include a two stage steam ejector NCG system. Table E.3 presents the technical data of the power plants.
The model input was adjusted to the known values of the Cerro Prieto plant. Unknown parameters (e.g.
turbine and pump efficiencies) were set to the default model values. The outlet temperature of the
condenser was varied to solve the energy balance for the condenser. The model simulation shows a great
similarity to the Cerro Prieto power plant. Simulated net power is 37.78 MW compared to Cerro Prieto net
power of 37.5 MW, simulated steam ejector motive fluid mass flow rate is 6.07 kg s-1 compared to 6.68 kg
s-1 for the Cerro Prieto plant. The deviation can be due to assumed equipment efficiencies. Also, the
assumed CO2 content could cause this deviation. The NCG content (0.01308 wt% in 2005) in the Cerro
Prieto I field was obtained from Ocampo-Diaz et al. (2005). The technical data however correspond to the
operation of the Cerro Prieto power plant in 1980. A CO2 content of 0.0161 wt% would exactly match the
technical data from DiPippo (2012). It is not unusual that CO2 content declines during the lifetime of a
single-flash geothermal power plant, because most NCG are vented to the atmosphere.

It has to be said that it is not intended to give a false impression of the efficiencies of geothermal power
plants. The calculation of thermal efficiency according to eq. (4.2) has only been done in this section, in
order to compare and validate the model. Therefore, Table E.2 also presents the utilization efficiencies

4.6. Production Well Model Sensitivity Analysis 69

Master of Science Thesis F.W.J. Niewold

based on pure water conditions, calculated with eq. (2.63). The utilization efficiencies of the model
simulations are in the range of 24 – 33%. DiPippo (2012) has reported utilization efficiencies in the range
of 28 – 40% for single-flash power plant. These are comparable taken into account that the efficiencies in
DiPippo (2012) are based on large and optimized single-flash power plants (> 30 MW). Larger equipment
is generally more efficient.

4.5.2. Binary Cycle Power Plant
The operation of the binary cycle power plant model in this work was validated with model calculations
from Parada (2013) based on the “Berlin” binary cycle power plant located in El-Salvador. Parada (2013)
have shown that isopentane is the most ideal working fluid for geothermal fluids of 180 ˚C and reinjection
temperatures in the range of 60 – 140 ˚C. Geothermal fluids with temperatures in the range of 180 – 250 ˚C
show even better performance. This is due to the relative high critical temperature (187.83 ˚C) of isopentane
compared with other candidate working fluids. With the assumption of a subcritical working fluid, the
exergy losses in the preheater and evaporator with isopentane are lower due to smaller temperature
differences. Figure 4.8 presents the turbine power output as a function of reinjection temperature for a
geothermal fluid entering the power plant at a temperature of 180 ˚C and mass flow rate of 221 kg s-1. The
condensing temperature of isopentane was 40 ˚C. The binary cycle power plant model in this study shows a
good resemblance with the data from Parada (2013). In the model simulation the optimum turbine inlet
pressure is calculated, based on an assumed pinch point temperature of 5 K and a saturated or superheated
gas at the inlet of the turbine. All model input parameters obtained and adopted from Parada (2013) are
presented in Table E.4.

Figure 4.8: Turbine power output as a function of reinjection temperature for a geothermal fluid entering the power
plant at a temperature of 180 ˚C and mass flow rate of 221 kg s-1. The binary cycle working fluid was isopentane with a
condensing temperature of 40 ˚C.

The binary cycle power plant has not been validated based on the thermal efficiencies, because the inlet
temperatures for binary cycle power plants reported in literature are generally below 180 ˚C. For those
temperatures isopentane is not necessarily the optimum working fluid. The present model does not contain
a library for other working fluids. Additionally, the working fluids used at different binary cycle power
plants is difficult to find. This would make the validation more arbitrary than the validation of the single-
flash power plants.

4.6. Production Well Model Sensitivity Analysis

4.6.1. Sensitivity of Model Input Parameters and Phenomena
In this section a sensitivity analysis on the two production well models is performed. Multiple simulations
were carried out to examine the sensitivity of certain model input parameters or certain phenomena
associated with fluid flow in a geothermal production well, in which the present model is simplified with a
single assumption in comparison to the full model. The full model refers to the results, given in Table 4.6,

70 4 MODEL VALIDATION & SENSITIVITY ANALYSIS

F.W.J. Niewold Master of Science Thesis

of the simulations of the well NWS-1 Sabalan-2 given in Section 4.1.2 without any simplifications. The
absolute differences between wellhead temperature and wellhead pressure of the simplified model
simulation and the full model are listed in Table 4.7.

By far the most important parameter in wellbore simulation is the hydrostatic pressure loss term, which can
be seen by the assumption of no hydrostatic pressure loss. Directly related to this term is the density of the
geothermal fluid, which is among others a function of composition of the geothermal fluid and whether it is
in two-phase or not. From the sensitivity analysis of the fluid composition it can be seen that good
knowledge of the geothermal fluid composition is crucial in designing production wells. Especially the CO2

mass fraction has a major influence on the wellhead temperature. Therefore, it is important to apply an
accurate GFP model to the production well model.

The mass flow rate and pipe roughness increase also affected the wellhead temperature and pressure
significantly. Especially the pipe roughness is difficult to establish. The wall roughness of the production
well can be heavily eroded, corroded and/or deposited with calcite. Another model parameter which can be
related to scaling is the inner diameter. Locally the inner diameter can be decreased affecting the increasing
the pressure drop at that point.

The energy loss related parameters did not seem to have much effect on the pressure or temperature at the
wellhead. It must be noted that the NWS-1 Sabalan-2 well flashes almost at the bottom hole depth. The fact
that the wellhead temperature or pressure do not differ much from the full model, does not necessarily mean
that the model parameters can be neglected. One important reason is the location of the flashing depth. If
heat transfer to the surroundings is neglected, the flash depth increases. On the other hand, pressure losses
are then decreasing. In the end, this can be balanced and no real deviation at the wellhead can be seen,
while the pressure and temperature profiles in the well are different.

4.6.2. Sensitivity of Segment Length
Additionally, the sensitivity of the segment length on wellhead temperature and pressure was examined.
Figure 4.9 and Figure 4.10 show the results for the East-Mesa 6-1 well and the W3 well, respectively.
These wells were specifically chosen, because the geothermal fluid composition shows extremes. The
geothermal fluid in the East-Mesa 6-1 well was modelled as pure water, while the geothermal fluid in the
W3 well has been containing high CO2 mass fractions. It can be seen in Figure 4.9 that the wellhead
temperature is very dependent on segment length. In this case pure water was boiling according to its vapor
pressure and temperature. Therefore, relatively small variations in pressure cause large variations in
temperature at these low pressures. Additionally, the flashing depth is less accurate with large segment
lengths, which causes an error on the pressure loss around those segments. Figure 4.10 shows much less
dependence of wellhead pressure and wellhead temperature on the segment length. In this particular case a
high CO2 mass fraction was present in the geothermal fluid. This behavior is best explained by Figure 2.14.
At the beginning of the flashing process, small enthalpy losses causes minor temperature variations, when
large CO2 mass fractions are present in the geothermal fluid. The order of magnitude of the pressure loss is
approximately equal to the pure water case in Figure 4.9.

Although smaller segment lengths show a higher accuracy, it is outweighed by the additional computational
time. Still, it is recommended to check the effect of segment length on the hydraulic and thermal behavior
of the geothermal fluid in the production well for every particular case, when high accuracy is required. A
default segment length of 20 m is recommended. This segment length was applied to the simulations
executed in the results (Chapter 5).

4.7. Power Plant Model Sensitivity Analysis
In this section a sensitivity analysis on the geothermal power plant model is discussed. Multiple simulations
were carried out to examine the sensitivity of certain model input parameters. The absolute differences
between power output of the modified model simulations and the initial model simulation are listed in
Table 4.8. The output of the simulations of production well NWS-1 Sabalan-2 functions as input for these
simulations. A complete overview of the model input parameters for the full model simulation of the single-
flash power plant and the binary cycle power plant has been given in Table E.5 and Table E.6, respectively.

4.7. Power Plant Model Sensitivity Analysis 71

Master of Science Thesis F.W.J. Niewold

Table 4.6: Wellhead pressure and wellhead temperature for the simulation of the full model for the production well
without gas lift and the production well with gas lift.

Assumption Self-flowing ௪ܲ௛, bar

Self-flowing ௪ܶ௛, ˚C

Gas lift ௪ܲ௛, bar

Gas lift ௪ܶ௛, ˚C

Full model 4.25 145.80 10.42 176.71

Table 4.7: Sensitivity of model input parameters and physical phenomena associated with fluid flow in a geothermal
production well. The pressure- and temperature differences are absolute compared to the full model simulation from
well NWS-1 Sabalan-2 given in Table 4.1.

Assumption Changed parameter

value

Self-flowing ∆ ௪ܲ௛, bar

Self-flowing ∆ ௪ܶ௛, ˚C

Gas lift ∆ ௪ܲ௛, bar

Gas lift ∆ ௪ܶ௛, ˚C

1. Full model 0 0 0 0

Geothermal fluid properties

2. No CO2 content 0.004  0, kg kg-1 −0.87 −8.08 −0.54 −1.70

3. No NaCl content 0.005  0, kg kg-1 0.04 0.17 0.11 0.30

4. No CO2 and NaCl content 2 and 3, kg kg-1 −0.91 −8.60 −0.44 −1.41

5. CO2 content + 100% 0.004  0.008, kg kg-1 1.82 13.43 −0.25 −1.74

6. NaCl content + 100% 0.005  0.01, kg kg-1 −0.67 −5.09 −0.10 −0.20

7. CO2 and NaCl content + 100% See assumption 5 and 6 1.69 12.76 −0.50 −2.67

8. Mass flow rate + 10% 30  33, kg s-1 −0.34 −3.00 −0.76 −2.46

Production well characteristics

9. Pipe roughness increase 1.5×10-6  1.8×10-4, m −0.91 −8.55 −0.34 −1.3

10. Inner diameter decrease 0.2244  0.2200, m 0.60 −5.47 −0.12 −0.40

11. Production time decrease 100  10, h 0.01 0.05 −0.03 −0.30

Pipe flow characteristics

12. No heat flow to surroundings ݀ ሶܳ = 0 −0.01 −0.04 0.03 0.30

13. No potential energy loss ݀ܧ௣ = 0 −0.13 −1.13 0.37 1.70

14. No frictional pressure loss ݀ ௙ܲ = 0 0.42 3.44 0.52 2.00

15. No kinetic pressure loss ݀ ௞ܲ = 0 0.04 0.35 0.06 0.15

16. No hydrostatic pressure loss ݀ ௛ܲ௦ = 0 55.72 73.04 N/A N/A

Rock characteristics

17. Thermal conductivity + 100% 1.5  3, W m-1K-1 0.00 0.04 0.00 0.10

18. Thermal diffusivity + 100% 1.2E-6  2.4E-6, W m-1K-1 0.00 -0.01 0.01 0.10

Drift-flux model

19. Rouhani and Axelsson (1980) 0.00 0.00 0.00 0.00

20. Hasan et al. (2010) 3.85 25.14 4.52 18.30

21. Dix (1971) −1.27 −12.50 −1.63 −8.90

22. Nicklin (1961) 1 > −4.25 > −36.60 −6.32 −54.39

23. Toshiba −0.58 −5.25 −0.71 −3.70

1 The pressure in the wellbore was already below atmospheric before it reached the wellhead, because the pressure loss in the wellbore
is too high.

72 4 MODEL VALIDATION & SENSITIVITY ANALYSIS

F.W.J. Niewold Master of Science Thesis

Figure 4.9: Sensitivity analysis on the segment length as
a function of wellhead pressure (left) and wellhead
temperature (right) for the East-Mesa 6-1 production well.
The characteristics of this well have been described in
Table 4.1.

Figure 4.10: Sensitivity analysis on the segment length as
a function of wellhead pressure (left) and wellhead
temperature (right) for the W3 production well. The
characteristics of this well have been described in Table
4.2.

Table 4.8: Sensitivity of model input parameters for the geothermal power plant. The net power output differences are
absolute, compared to the initial model input parameters for the geothermal power plant model, described in Table E.5
and Table E.6.

Assumption Changed parameter value Single-flash power plant ∆ ௡ܹ௘௧, MW

Binary cycle power plant ∆ ௡ܹ௘௧, MW

1. Full model 0 (௡ܹ௘௧ = 1.57) 0 (௡ܹ௘௧ = 1.63)

Power plant characteristics

2. Outlet pressure turbine increase 0.0738  0.1, bar 0.12 N/A
1

3. No turbine losses 0.25 0.36

4. No pump losses 0.01 0.02

5. No generator losses 0.05 0.06

6. Outlet temperature condenser decrease 37  35, ˚C 0.11 0.03

Geothermal fluid properties

7. No CO2 content 0.65 −0.05

8. No NaCl content 0.06 0.01

9. No CO2 and NaCl content 0.66 −0.03

1
 Outlet pressure turbine and outlet temperature condenser are functions of each other for the binary cycle power plant, because of the

pure working fluid.

The sensitivity analysis on the geothermal power plants shows some interesting results. The single-flash
plant net power increased with increasing outlet pressure of the turbine. Also, the power output increased
by decreasing the condenser outlet temperature. Both of these results are most likely caused by the CO2

content present in the stream and the demand for motive fluid to remove it from the condenser. This
requires optimization for every single power plant. For binary cycle power plants, this is not the case and
the power output is therefore less affected by these assumptions. The same trend can be seen with the
assumption of no CO2 content. The single-flash power plant power output increases significantly, because
there is no need of a steam consuming SE/C.

Summarizing, the outcome of the simulation is affected by many parameters and assumptions. The model
validation in Sections 4.1 and 4.5 shows that if enough details of the geothermal field and power plant are
known the predictive accuracy is good. In the next chapter, more research on geothermal fluid composition
and gas lift mass flow rate is discussed on the basis of a hypothetical case.

73

5
RESULTS AND DISCUSSION OF

A HYPOTHETICAL CASE
This chapter discusses the results of a hypothetical geothermal system. It is partly derived from existing
geothermal systems in order to stick to reality as much as possible. Section 5.1 gives an overview of the
assumed constant model input parameters and the variable model input parameters. In Section 5.2 the
results of the simulations are presented and discussed. Thereafter an optimization of a high potential
scenario, derived from the results of the hypothetical case, is discussed in Section 5.3. Finally, this chapter
is concluded with a comparison of a production well with an electrical submersible pump to a production
well with gas lift in Section 5.4.

5.1. Model Input Parameters
The number of input parameters that can be varied are numerous. Therefore, a selection was made on the
researched input parameters. The production well characteristics were expected to have minor influence on
the difference between net power output of the single-flash power plant and binary cycle power plant. In
this comparison production well dimensions were equivalent for both power plants, with the exception of
the gas lift duct. The injection well parameters were equal to the self-flowing production well parameters
for both power plants. The pressure and temperature of the geothermal fluid at reservoir conditions were
159 bar (hydrostatic pressure) and 250 ˚C (maximum temperature), respectively. The mass flow rate was 30
kg s-1. The true vertical depth of the production well and injection well was 2000 m. Table F.1 and Table
F.2 show a detailed overview of all the model input parameters of this hypothetical case.

Table 5.1 presents the examined model input parameters that were varied. The aim was to show the effect
of geothermal fluid composition and mass flow rate of lift gas on power plant performance for the binary
cycle power plant and compare this to a single-flash power plant for the exact same geothermal field. These
varied model input parameters were applied to six power plant scenarios presented in Table 5.2 and Table
5.3 for a single-flash power plant and a binary cycle power plant, respectively. The two single-flash power
plants were categorized on the gas extraction system outlined in Section 2.4.4.3. The four binary cycle
power plants were categorized on the injection temperature and on the inlet conditions of the gas lift
compressor. Two injection temperatures were assumed. One injection temperature was exactly equal to the
injection temperature of the SF-1 power plant with corresponding reservoir conditions. The other injection
temperature was assumed to be 70 ˚C, which has been based on the worldwide temperature range of
injectates for hot water systems of 50 – 100 ˚C (Rivera Diaz et al., 2015). The two scenarios for the inlet
conditions of the gas lift compressor have been discussed in Section 2.4.4.2. One scenario assumed an inlet
pressure and temperature equal to the wellhead pressure and temperature. The other scenario assumed
atmospheric conditions at the compressor inlet.

Finally, two other varied model input parameters should be mentioned, which were a function of a
particular simulation. One varied parameter was the back pressure at the outlet of the single-flash power
plant turbine, which was optimized for every simulation to obtain the optimum produced net power.
Decreasing the back pressure of the turbine is associated with a smaller temperature difference between the
cooling water and the gas mixture in the condenser, discussed in Section 2.4.4.3. For the SF-1 scenario,
with a steam ejector/condenser, this would involve an increase in required motive fluid to extract the NCG
from the condenser. For the SF-2 scenario, with a centrifugal compressor, this would involve a higher
power output of the turbine accompanied by a higher required power input for the compressor. The other
varied parameter was the depth of the gas lift valve. For every binary scenario (with a production well with

74 5 RESULTS AND DISCUSSION OF A HYPOTHETICAL CASE

F.W.J. Niewold Master of Science Thesis

gas lift) the depth of the gas lift valve was assumed to be equal to the depth of the flashing horizon of the
single-flash scenario (with a self-flowing production well) for the corresponding reservoir conditions.

Table 5.1: Varied model input parameters to examine the effect on power plant performance.

Input parameter Value

Mass fraction NaCl in reservoir, kg kg-1 0.025, 0.05

Mass fraction CO2 in reservoir, kg kg-1 0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.034

Mass flow rate injected gas, kg s-1 0.5, 1.0

Table 5.2: Single-flash power plant scenarios.

Scenario Type of power plant NCG extraction system

SF-1 Single-flash SE/C

SF-2 Single-flash Centrifugal compressor

Table 5.3: Binary cycle power plant scenarios.

Scenario Type of power plant Injection temperature Inlet conditions compressor

BC-1 Binary cycle ௜ܶ௡௝,஻஼ିଵ = ௜ܶ௡௝,ௌிିଵ (ܲ, ܶ)௖ଵ,஻஼ିଵ = (ܲ, ܶ)஺,஻஼ିଵ

BC-2 Binary cycle ௜ܶ௡௝,஻஼ିଶ = ௜ܶ௡௝,ௌிିଵ (ܲ, ܶ)௖ଵ,஻஼ିଵ = (ܲ, ܶ)௔௧௠

BC-3 Binary cycle ௜ܶ௡௝,஻஼ିଷ = 70 ˚C (ܲ, ܶ)௖ଵ,஻஼ିଵ = (ܲ, ܶ)஺,஻஼ିଷ

BC-4 Binary cycle ௜ܶ௡௝,஻஼ିସ = 70 ˚C (ܲ, ܶ)௖ଵ,஻஼ିଵ = (ܲ, ܶ)௔௧௠

5.2. Results & Discussion
Figure 5.1, Figure 5.2 and Figure 5.3 show the net power, utilization efficiency and CO2 mass emitted per
MWh produced as a function of CO2 mass fraction present in the geothermal fluid in the reservoir for every
scenario discussed in Section 5.1.

5.2.1. Net Power
As can be seen in Figure 5.1, the net power generally shows a recurring trend in the plots (a – d). The net
power for the single-flash power plant scenarios SF-1 and SF-2 decreases with increasing CO2 mass fraction
for all combination of mass flow rate of lift gas and NaCl mass fraction. For SF-1 this is caused by the
increasing demand of motive fluid by the SE/C necessary to extract increasing amounts of NCG from the
condenser. For SF-2 the degradation of net power is caused by the increasing auxiliary power demand to
drive the centrifugal compressor to extract increasing amounts of NCG from the condenser. It can be seen
that the auxiliary power demand of the centrifugal compressor for SF-2 is smaller than the equivalent net
power reduction caused by the drained motive fluid for SF-1. Equivalent has been used in this context,
because the SE/C itself does not consume power. The difference in net power between SF-1 and SF-2
increases with increasing CO2 mass fraction. It is important to mention that a centrifugal compressor is
more expensive to purchase and maintain than a SE/C. The difference between BC-1 and BC-2 and the
difference between BC-3 and BC-4 is in both cases caused by the assumption of two scenarios for the CO2
conditions at the inlet of the gas lift compressor. Logically, compression from atmospheric conditions
requires more power. Therefore, the net power of BC-1 is higher than that of BC-2 and the net power of
BC-3 is higher than that of BC-4. The difference between BC-1/BC-2 on one hand and BC-3/BC-4 on the
other hand is caused by the assumption of two scenarios for the injection temperature. A lower injection
temperature results in more heat transfer from the geothermal fluid to the working medium in the binary
cycle. Consequently, a higher net power output is obtained with a lower injection temperature in this
hypothetical case.

5.2. Results & Discussion 75

Master of Science Thesis F.W.J. Niewold

The difference in trends of the BC-1/BC-2 curves on one hand and the BC-3/BC-4 curves on the other hand
are mainly caused by two varied model input parameters: the gas lift valve depth and the injection
temperature. BC-3 and BC-4 show an increase in net power with increasing CO2 mass fraction and constant
injection temperature (70 ˚C). An increasing CO2 mass fraction requires deeper installation of the gas lift
valve, because flashing of geothermal fluid is induced at higher pressures. Generally, deeper in the
production well the pressure and temperature is higher. Consequently, deeper installation of the gas lift
valve results particularly in smaller hydrostatic pressure losses as a result of the decrease in density caused
by the injected lift gas. Therefore pressure, temperature and liquid mass fraction at the production well
wellhead is higher with deeper installation of the gas lift valve. Consequently, the net power increases for
BC-3 and BC-4 with increasing CO2 mass fraction. BC-1 and BC-2 show a rather constant net power for
the CO2 mass fraction range examined, with the exception of a CO2 free geothermal fluid. The explanation
related to the installation depth of the gas lift valve also applies to these two scenarios. Additionally, in
these cases it has been assumed that the injection temperature varied with increasing CO2 mass fraction in
accordance with the injection temperature of SF-1. The injection temperature of SF-1 increases with
increasing CO2 mass fraction. This phenomenon is explained by the increasing production temperature of
the self-flowing well associated with increasing CO2 mass fraction. The liquid part of the produced fluid is
sent to the injection well after being separated from the gas part in the cyclone separator and therefore the
injection temperature for the single-flash power plant increases with increasing CO2 mass fraction.
Summarizing for BC-1 and BC-2, the increasing injection temperature decreases net power and the
increasing gas lift valve depth increases net power, resulting in a rather constant net power as a function of
CO2 mass fraction. Also in these cases, it is important to mention that deeper installation of the gas lift
valve induces most likely higher investment costs.

(a) ሶ݉ ீ௅ = 0.5	kg	sିଵ, ே௔஼௟ݓ = 0.025 kg kgିଵ

(b) ሶ݉ ீ௅ = 0.5 kg sିଵ, ே௔஼௟ݓ = 0.05	kg	kgିଵ

(c) ሶ݉ ீ௅ = 1.0	kg	sିଵ, ே௔஼௟ݓ	 = 0.025 kg kgିଵ (d) ሶ݉ ீ௅ = 1.0 kg sିଵ, ே௔஼௟ݓ = 0.05	kg	kgିଵ

Figure 5.1: Net power as a function of CO2 mass fraction present in the geothermal fluid at reservoir conditions. Four
different situations were examined, in which the mass flow rate of lift gas and NaCl mass fraction at reservoir
conditions were varied. The different plots represent the single-flash power plant and binary cycle power plant
scenarios described in Table 5.2 and Table 5.3.

Generally, the net power produced by BC-3 and BC-4 becomes higher than that of SF-2 for a CO2 mass
fraction in the range of 0 – 0.005 kg kg-1. If BC-3 or BC-4 is compared to SF-1, net power becomes higher

76 5 RESULTS AND DISCUSSION OF A HYPOTHETICAL CASE

F.W.J. Niewold Master of Science Thesis

for a CO2 mass fraction in the range of 0 – 0.003 kg kg-1. It can be seen that the injection temperature of the
binary cycle has a major influence on the net power. If the injection temperature is equal to SF-1, as in BC-
1 and BC-2, a binary cycle is most likely unable to compete with a single-flash power plant. Also, it has to
be kept in mind that the investment costs for binary cycles are generally higher than for single-flash plants.

Finally, if (a – d) of Figure 5.1 are compared to each other it is striking that the conditions examined in (c)
results in the highest net power. It seems that a higher NaCl mass fraction decreases the net power. This is
most likely caused by the increase in density associated with increasing NaCl mass fraction. Consequently,
hydrostatic pressure loss in the production well increases and the potential extracted work by the turbine
decreases. Additionally, for this hypothetical case a gas lift mass flow rate of 1.0 kg s-1 is in favour of a
mass flow rate of 0.5 kg s-1.

5.2.2. Utilization Efficiency
The utilization efficiencies for the different scenarios, presented in Figure 5.2, show a similar trend as the
net power. This is rather straightforward, because utilization efficiency is among others a function of net
power as can be seen in eq. (2.63). Since the reservoir conditions are almost constant, the difference in net
power trends and utilization efficiency trends are negligible. The discussion in Section 5.2.1 can also be
applied to the utilization efficiency.

Generally, the utilization efficiency of BC-3 and BC-4 becomes higher than that of SF-2 for a CO2 mass
fraction in the range of 0 – 0.005 kg kg-1. If BC-3 or BC-4 is compared to SF-1, utilization efficiency
becomes higher for a CO2 mass fraction in the range of 0 – 0.003 kg kg-1. Utilization efficiencies for BC-3
and BC-4 are approximately in the range of 30 – 45 % for the entire CO2 range examined, while for SF-1
and SF-2 the utilization efficiency decreases for increasing CO2 mass fraction.

(a) ሶ݉ ீ௅ = 0.5	kg	sିଵ, ே௔஼௟ݓ = 0.025	kg	kgିଵ

(b) ሶ݉ ீ௅ = 0.5 kg sିଵ, ே௔஼௟ݓ = 0.05	kg	kgିଵ

(c) ሶ݉ ீ௅ = 1.0	kg	sିଵ, ே௔஼௟ݓ	 = 0.025	kg	kgିଵ (d) ሶ݉ ீ௅ = 1.0 kg sିଵ, ே௔஼௟ݓ = 0.05	kg	kgିଵ

Figure 5.2: Utilization efficiency as a function of CO2 mass fraction present in the geothermal fluid at reservoir
conditions. Four different situations were examined, in which the mass flow rate of lift gas and NaCl mass fraction at
reservoir conditions were varied. The different plots represent the single-flash power plant and binary cycle power plant
scenarios described in Table 5.2 and Table 5.3.

5.2. Results & Discussion 77

Master of Science Thesis F.W.J. Niewold

5.2.3. CO2 Emissions
Figure 5.3 shows the mass of CO2 emitted per MWh produced for every scenario assumed in Section 5.1. It
can be seen that with increasing CO2 mass fraction in the reservoir, the CO2 emissions increase. In
accordance with the net power and the utilization efficiency of BC-1 and BC-2 in comparison to the single-
flash power plants, BC-1 and BC-2 do not perform significantly better than SF-1 taking the CO2 emissions
into consideration. SF-2 even outperforms BC-1 and BC-2. On the other hand, if there is a possibility of
decreasing the injection temperature in the binary cycle power plant significantly, this scenario gains in
interest. BC-3 and BC-4 approximately decrease the CO2 emissions per MWh by 40 – 50% compared to
SF-1, and approximately 25% compared to SF-2. If there is a possibility to lower to injection temperature
from 70 ˚C, the binary cycle power plant with a production well with gas lift becomes even more
favourable compared to a single-flash power plant with a self-flowing production well.

Again it can be observed that with lower NaCl mass fraction in the reservoir power plant performance
related to CO2 emissions increases in all scenarios for the exact same conditions. This can be seen by
comparing (a) to (b) and (c) to (d). Furthermore, a gas lift mass flow rate of 1.0 kg s-1 induces less CO2
emissions than a gas lift mass flow rate of 0.5 kg s-1 for the exact same conditions in case of BC-3. This can
be seen by comparing (a) to (c) and (b) to (d).

(a) ሶ݉ ீ௅ = 0.5	kg	sିଵ, ே௔஼௟ݓ = 0.025kg kgିଵ

(b) ሶ݉ ீ௅ = 0.5 kg sିଵ, ே௔஼௟ݓ = 0.05	kg	kgିଵ

(c) ሶ݉ ீ௅ = 1.0	kg	sିଵ, ே௔஼௟ݓ	 = 0.025 kg kgିଵ (d) ሶ݉ ீ௅ = 1.0 kg sିଵ, ே௔஼௟ݓ = 0.05	kg	kgିଵ

Figure 5.3: Mass flow rate of CO2 emitted to the atmosphere as a function of CO2 mass fraction present in the
geothermal fluid at reservoir conditions. Four different situations were examined, in which the mass flow rate of lift gas
and NaCl mass fraction at reservoir conditions were varied. The different plots represent the single-flash power plant
and binary cycle power plant scenarios described in Table 5.2 and Table 5.3.

Finally, the comparison has been made with three conventional power plants, namely the coal-fired power
plant, the oil-fired power plant and the gas-fired power plant. The average values presented in Figure 5.3
have been adopted from DiPippo (2012). It can be seen that SF-2 emits more CO2 per MWh than a gas-
fired power plant for geothermal fluids with a CO2 mass fraction > 0.011 kg kg-1. For SF-1, BC-1 and BC-2
this is even the case for lower CO2 mass fraction. BC-3 and BC-4 outperforms every power plant evaluated
in this study for a CO2 mass fraction < 0.015 kg kg-1. It is interesting to observe that with higher CO2 mass

78 5 RESULTS AND DISCUSSION OF A HYPOTHETICAL CASE

F.W.J. Niewold Master of Science Thesis

fraction in the reservoir, geothermal power plants require somehow a CO2 reinjection system in order to
compete with conventional power plants.

5.3. Optimization of the Hypothetical Case
One particular high potential scenario with specific characteristics was selected to be optimized according
to mass flow rate of lift gas and binary cycle injection temperature. This was performed for a CO2 mass
fraction of 0.01 kg kg-1. This particular value has been chosen for a number of reasons. Studies have shown
that total costs related to centrifugal compressors become lower than setups with a SE/C for a CO2 mass
fraction > 0.1 kg kg-1 of the gas fraction of the gas stream after the CS (Geremew, 2012). In this
hypothetical case, this is equivalent to a CO2 mass fraction of 0.02 kg kg-1 in the reservoir. Additionally, in
Figure 5.3 it has been shown that a CO2 mass fraction < 0.015 kg kg-1 is preferred when it comes to CO2
emissions. Finally, it is aimed for to find the maximum performance difference between the single-flash
system and the binary system. This difference is higher for a CO2 mass fraction of 0.01 kg kg-1, than for
CO2 mass fraction of 0.005 kg kg-1. Table 5.4 shows the differences in net power, utilization efficiency and
CO2 emissions between BC-3 and SF-1. The maximum differences are highlighted in green. In this
hypothetical case a mass flow rate of lift gas of 1.0 kg -1 and a NaCl mass fraction of 0.05 kg kg-1 shows the
highest potential. The hypothetical case with these model input parameters were optimized based on binary
cycle injection temperature and mass flow rate of lift gas.

Figure 5.4 shows net power, utilization efficiency and CO2 emissions as a function of binary cycle injection
temperature in the range of 43 – 150 ˚C. In order to avoid confusion, Table 5.5 presents the two binary
cycle scenarios, which now only differ from each other by the gas lift compressor inlet conditions.
Therefore, BC-1 and BC-3 on one hand and BC-2 and BC-4 on the other hand have been joined. The
comparison with SF-1 and SF-2 is made for the exact same model input parameters. The minimum
theoretical injection temperature is 43 ˚C. This is based on the minimum pinch point temperature of 5 ˚C in
the preheater and evaporator of the binary cycle. The temperature of the working medium after the
condenser pump and at the inlet of the preheater is approximately 38 ˚C. It can be seen in (a) that the net
power increases with decreasing injection temperature. The net power and utilization efficiency of BC-
1/BC-3 are higher than the net power of SF-1 and SF-2 for injection temperatures < 121 ˚C and < 94 ˚C,
respectively. For BC-2/BC-4, the net power and utilization efficiency of SF-1 and SF-2 become higher for
injection temperatures < 104 ˚C and < 77 ˚C, respectively. It can be seen in (a) and (b) of Figure 5.4 that
with an injection temperature of 43 ˚C, the net power and utilization efficiency of BC-1/BC-3 increase
approximately by 95% and 45% compared to SF-1 and SF-2, respectively. And even for BC-2/BC-4, the
net power and utilization efficiency increase approximately by 75% and 30% compared to SF-1 and SF-2,
respectively.

Table 5.4: Differences in net power, utilization efficiency and CO2 emissions between BC-3 and SF-1.

Model input parameters ∆ ௡ܹ௘௧, MW ∆ߟ௨, % ∆ ሶ݉ ஼ைଶ→௔௧௠, kg MWh-1 ሶ݉ ீ௅ = 0.5 kg	sିଵ, ݓே௔஼௟ = 0.025 kg	kgିଵ 0.92 12.9 − 281 ሶ݉ ீ௅ = 0.5 kg	sିଵ, ݓே௔஼௟ = 0.05 kg	kgିଵ 0.90 14.0 − 291 ሶ݉ ீ௅ = 1.0 kg	sିଵ, ݓே௔஼௟ = 0.025 kg	kgିଵ 0.97 13.7 − 322 ሶ݉ ீ௅ = 1.0 kg	sିଵ, ݓே௔஼௟ = 0.05 kg	kgିଵ 0.96 14.9 − 331

The CO2 emissions of BC-1/BC-3 are lower than the CO2 emissions of SF-1 and SF-2 for injection
temperatures < 133 ˚C and < 110 ˚C, respectively. For BC-2/BC-4 the CO2 emissions are lower than that of
SF-1 and SF-2 for injection temperatures < 118 ˚C and < 92 ˚C, respectively. The CO2 emission for BC-
1/BC-3 and BC-2/BC-4 are more than twice as low as that for SF-1 and approximately 1.5 times as low as
that for SF-2.

5.3. Optimization of the Hypothetical Case 79

Master of Science Thesis F.W.J. Niewold

Table 5.5: Binary cycle power plant scenarios examined for binary cycle injection temperature optimization (see Figure
5.4).

Scenario Type of power plant Injection temperature Inlet conditions compressor

BC-1/BC-3 Binary cycle Variable (ܲ, ܶ)௖ଵ,஻஼ିଵ = (ܲ, ܶ)஺,஻஼ିଵ

BC-2/BC-4 Binary cycle Variable (ܲ, ܶ)௖ଵ,஻஼ିଵ = (ܲ, ܶ)௔௧௠

(a) Net power as a function of the injection temperature at
the wellhead of the binary cycle injection well.

(b) Utilization efficiency as a function of the injection
temperature at the wellhead of the binary cycle injection
well.

(c) CO2 emmissions per produced MWh as a function of
the injection temperature at the wellhead of the binary
cycle injection well.

Figure 5.4: These plots show the (a) net power (b) utilization efficiency (c) CO2 emissions of the binary cycle power
plant as a function of the injection temperature for ሶ݉ ீ௅ = 1.0	kg	sିଵ, ே௔஼௟ݓ	 = 0.05	kg	kgିଵ, ஼ைଶݓ = 0.01	kg	kgିଵ.
Additionally, the optimized SF-1 and SF-2 for these conditions are shown. The difference between BC-1/BC-3 and BC-
2/BC-4 is in this case only the conditions of the lift gas at the compressor inlet (see Table 5.5).

Figure 5.5 shows net power, utilization efficiency and CO2 emissions as a function of mass flow rate of lift
gas in the range of 0 – 4.5 kg s-1 for scenarios BC-3 and BC-4 (see Table 5.3). The optimization was
performed for an injection temperature of 70 ˚C. The comparison with SF-1 and SF-2 was made for the
exact same model input parameters. It can be seen in (a) and (b) that the optimum mass flow rate of lift gas
related to net power and utilization efficiency for BC-3 lies between 1 – 1.5 kg s-1. For BC-4, the optimum
lies between 0 – 0.5 kg s-1 for the net power and utilization efficiency. The difference between BC-3 and
BC-4 can be explained by the gas lift compressor inlet conditions. In case of BC-3, the wellhead pressure
increases with increasing mass flow rate of lift gas, because the hydrostatic pressure loss in the production
well decreases. Therefore, according to the assumption of compressor inlet conditions equal to wellhead
conditions, the compression ratio decreases. This is due to the fact that the injection pressure at the gas lift
valve does not change. Additional changes are related to the mass flow rate through the compressor, which
increases with increasing mass flow rates of lift gas. Finally, also pressure losses due to friction in the gas
lift duct are a function of mass flow rate of lift gas, because the dimensions of the duct in this study has not

80 5 RESULTS AND DISCUSSION OF A HYPOTHETICAL CASE

F.W.J. Niewold Master of Science Thesis

been optimized and has been assumed constant in all simulations. These properties cause an optimum for
BC-3 as it is. In case of BC-4, this optimum lies closer to 0 kg s-1. This is mainly caused by the assumption
of the atmospheric inlet conditions of the wellhead. Since, the compression ratio is in this case equal for all
examined mass flow rates of lift gas; the required gas lift compressor power is mainly caused by the mass
flow rate through the compressor.

The optimum mass flow rate of lift gas related to CO2 emissions is approximately 3.0 kg s-1 and 1.0 kg s-1
for BC-3 and BC-4, respectively. The reason that the optimum shifts to a higher mass flow rate of lift gas in
comparison to the net power and the utilization efficiency can be found in the increasing wellhead pressures
resulting from higher mass flow rates of lift gas. The dissolution of CO2 is among others a function of
pressure, with increasing pressures at the wellhead more CO2 stays in the liquid solution that is sent to the
evaporator and preheater. There the CO2 stays dissolved and it is eventually reinjected in the reservoir.
Since the CO2 emissions are also a function of net power, BC-4 in (c) shows a large increase for higher
mass flow rates of lift gas, because the net power reduces significantly as can be seen in (a).

(a) Net power as a function of the mass flow rate of lift
gas (CO2).

(b) Utilization efficiency as a function of the mass flow
rate of lift gas (CO2).

(c) CO2 emmissions per produced MWh as a function of
the mass flow rate of lift gas (CO2).

Figure 5.5: These plots show the (a) net power (b) utilization efficiency (c) CO2 emissions of the binary cycle power
plant (BC-3 and BC-4) as a function of the mass flow rate of lift gas for ௜ܶ௡௝ = 70	˚C, ே௔஼௟ݓ	 = 0.05	kg	kgିଵ, ஼ைଶݓ =0.01	kg	kgିଵ. Additionally, the optimized SF-1 and SF-2 for these conditions are shown. The difference between BC-3
and BC-4 is in this case only the conditions of the lift gas at the compressor inlet.

5.4. Electrical Submersible Pump Versus Gas Lift
From the literature survey on artificial lift in wells, discussed in Section 2.2, it has been concluded that gas
lift is the most suitable lifting technique for temperatures in the range of 200 < ܶ < 250 ˚C. Nevertheless, it
is interesting to compare gas lift in a geothermal well to the use of an electrical submersible pump (ESP) to
lift the geothermal fluids. Therefore at first, the hydraulic and thermal behavior of the self-flowing
production well and the production well with gas lift was compared to a production well that is pressurized
with an ESP. The relevant model input parameters for a production well with an ESP were exactly equal to

5.4. Electrical Submersible Pump Versus Gas Lift 81

Master of Science Thesis F.W.J. Niewold

the other two production wells for the optimized case in Section 5.3, which means a CO2 mass fraction of
0.01 kg kg-1 and a NaCl mass fraction of 0.05 kg kg-1. The mass flow rate of gas lift was 1.0 kg s-1 and the
gas lift valve depth was 1220 m. The ESP was installed at the same depth. In case of an ESP, two scenarios
were distinguished: ESP-1 and ESP-2. In scenario ESP-1, the geothermal fluid is pressurized to such an
extent that the wellhead pressure of ESP-1 is equal to the wellhead pressure of the production well with gas
lift. In scenario ESP-2, the geothermal fluid is pressurized to such an extent that the wellhead pressure is
just above the degassing pressure. This means that in ESP-2, the geothermal fluid does not flash. In case of
ESP-1 the geothermal fluid was pumped from 66.4 bar to 106 bar. While in case of ESP-2 the fluid was
pumped from 66.4 bar to 165 bar. The required pumping power was calculated by eq. (2.60), from which
the change in enthalpy was calculated. The isentropic efficiency of the ESP was assumed to be 65% (Table
2.3). The hydraulic and thermal behavior is presented in Figure 5.6 and Figure 5.7, respectively. It can be
seen that the temperature in case of ESP-2 degrades minimally, because flashing does not occur in the well.
It is also observed that pumping the geothermal fluid, causes a small temperature increase. In case of ESP-1
flashing still occurs, but at a depth of 580 m.

Additionally, the behavior of the production well with gas lift is qualitatively validated by the trend of the
plots in Figure 5.6 and Figure 5.7. At 1220 m, 1.0 kg s-1 CO2 was injection. From that point on, the gas
mass fraction and void fraction increases. Consequently, the associated density and therefore the hydrostatic
pressure loss is smaller than in case of the self-flowing production well. Eventually the wellhead pressure is
higher in the gas lifted well. Also, temperature degradation is smaller, because pressure loss is smaller.
Temperature degradation can be a function of pressure loss during flashing of the geothermal fluid.

Figure 5.6: Pressure profiles in the production well as a
function of true vertical depth for a self-flowing well, gas
lifted well and two pumped wells.

Figure 5.7: Temperature profiles in the production well
as a function of true vertical depth for a self-flowing well,
gas lifted well and two pumped wells.

Next, the performance of a binary cycle power plant connected to the production wells with an ESP was
computed for the high potential scenario found in Section 5.2. The relevant input and output data is
presented in Table 5.6.

It can be seen that the net power in case of ESP-1 and ESP-2 is significantly higher than the net power of
BC-3 and BC-4. One cause is the larger mass flow rate of geothermal fluid from which heat is transferred
in the binary cycle power plant. This can be seen by the gas mass fraction of 0.11 kg kg-1 for the gas lifted
production well, while the gas mass fraction at the production well wellhead for ESP-1 and ESP-2 is 0.06
kg kg-1 and 0 kg kg-1, respectively. In Figure 5.7, it can be seen that the temperature of ESP-1 and ESP-2 is
higher than the gas lifted production well. The CO2 emission in case of ESP-1 does not show a significant
difference with BC-3 or BC-4. But in case of ESP-2, the geothermal fluid does not flash and all CO2
remains dissolved in the geothermal fluid.

From these computed results, the ESP-2 scenario seems a really interesting case. At the current moment,
ESP’s that can deliver these powers (530 kW) at such depths (1220 m) and temperatures (250 ˚C) have not
been in production yet. Another problem of ESP’s is the short life expectancy for these harsh conditions.

82 5 RESULTS AND DISCUSSION OF A HYPOTHETICAL CASE

F.W.J. Niewold Master of Science Thesis

Table 5.6: Model input parameters (green) and performance parameters (red) of six geothermal power plant scenarios
for the model input parameters given in Table F.1 and Table F.2 for a reservoir system with ݓே௔஼௟ = 0.05 kg kg-1, ݓ஼ைଶ
= 0.01 kg kg-1.

Scenario SF-1 SF-2 BC-3 BC-4 ESP-1 ESP-2

Type of production well Self-flowing Self-flowing Gas lift Gas lift Pump (ESP) Pump (ESP)

Mass flow rate of lift gas, kg s-1 N/A N/A 1.0 1.0 N/A N/A

Depth gas lift valve or pump, m N/A N/A 1220 1220 1220 1220

Gas mass fraction wellhead, kg kg-1 0.10 0.10 0.11 0.11 0.06 0

Type of power plant Single-flash Single-flash Binary cycle Binary cycle Binary cycle Binary cycle

Pressure turbine outlet, bar 0.134 0.092 1.373 1.373 1.373 1.373

NCG extraction system SE/C Compressor N/A N/A N/A N/A

Injection temperature wellhead, ˚C 129 118.6 70 70 70 70

Net power, MW 1.54 2.06 2.50 2.18 2.65 2.92

Utilization efficiency, % 24.0 31.9 38.9 33.9 41.1 45.3

CO2 emission, kg MWh-1 697 523 366 420 381 0

Power ESP, MW N/A N/A N/A N/A 0.19 0.53

Power gas lift compressor, MW N/A N/A 0.12 0.44 N/A N/A

83

6
CONCLUSIONS AND

RECOMMENDATIONS
6.1. Conclusions
According to the present study, it can be concluded that binary cycle power plants with artificial lift (gas
lift) in geothermal wells are technical and thermodynamic feasible for reservoir temperatures up to 250 ˚C
when it is compared to single-flash power plants with self-flowing geothermal wells for the hypothetical
case proposed in this work.

In order to compare these two geothermal power plant systems it is vital to precisely model the thermal and
hydraulic behavior of the geothermal fluid in the production wells. One of the components affecting the
behavior of fluid in the artificially lifted geothermal well is the type of lift system, which has been studied
in this work. The literature on artificial lift in geothermal wells and petroleum wells have shown that based
on certain criteria the only possible lift method is gas lift. The two most important criteria are the maximum
allowed operating temperature and the highest possible volumetric flow rates. Furthermore, the behavior of
the fluid is greatly affected by its thermodynamic and transport properties. The fluid properties on its turn
depend on the thermodynamic state and composition of the geothermal fluid. According to this study, it is
allowed to assume that the geothermal fluid is a ternary solution containing H2O, NaCl and CO2. Generally,
the upward flowing geothermal fluid in the wellbore exhibits hydrostatic pressure loss, frictional pressure
loss, kinetic pressure loss, heat loss to the surroundings, frictional energy loss and kinetic energy loss.
Additionally, phase change and flow pattern change arise from these losses along the wellbore and this
affects thermal and hydraulic behavior of the fluid significantly. The one-dimensional, steady state
numerical models of the production wells developed in this work consider all these losses and phenomena
to solve the energy and momentum balances. Consequently, the fluid compositions and flow patterns along
the wellbore are simulated by this comprehensive mathematical model in order to calculate the pressure and
temperature profiles as a function of true vertical depth. The injection well has been modeled in accordance
with the production well taking into account the relevant phenomena associated with reinjection of liquids.

Another crucial part of the geothermal system is the geothermal power plants. The amount of non-
condensable gases (NCG) heavily influences the generated net power of single-flash power plants, because
the NCG need to be extracted from the condenser for optimum performance. This goes at the expense of
steam (steam ejector/condenser) or power (centrifugal compressor), depending on the type of extraction
system. The performance of the basic binary cycle is among others a function of the type of working fluid.
In literature, it has been shown that isopentane is the most suitable working medium for high temperature
geothermal sources (> 200 ˚C). In order to make a fair comparison between a single-flash power plant and a
binary cycle power plant, it is important to include all equipment demanding or generating power or
equipment inducing phase change and/or fluid separation. The modeled equipment for the single-flash
power plant are the cyclone separator, steam turbine, generator, condenser, condenser pump, steam
ejector/condenser or centrifugal compressor, cooling water pump, make-up pump and injection pump. The
binary cycle power plant model comprises the compressor, cyclone separator, evaporator, preheater,
turbine, generator, condenser, condenser pump, make-up pump, cooling water pump and injection pump.

The crucial components of the mathematical model have been explicitly validated, qualitatively and
quantitatively. It has been shown that the production well model is capable of predicting the thermal and
hydraulic behavior of the production well accurately for the following property ranges: bottom hole
pressures, 64 – 106 bar, bottom hole temperatures, 199 – 286 ˚C, mass flow rates, 7 – 50 kg s-1, NaCl mass
fraction, 0 – 10 wt%, CO2 mass fractions, 0 – 12 wt%. These property ranges correspond to the field data

84 6 CONCLUSIONS AND RECOMMENDATIONS

F.W.J. Niewold Master of Science Thesis

on which the production well model – self-flowing has been tested. From the sensitivity analysis of the
production well, it can be concluded that properties like geothermal fluid composition, mass flow rate, pipe
roughness, inner diameter, hydrostatic pressures loss and the choice of the drift-flux model can affect
hydraulic and thermal behavior significantly. It can be concluded that the drift-flux model of Rouhani and
Axelsson (1970) is the most accurate of drift-flux models based on the tested field data. The crucial part of
the single-flash power plant model is the operation and interaction of the steam turbine, condenser and
steam ejector/condenser. The computational results of the model have been validated by field data from a
single-flash power plant with a similar setup. Also the binary cycle power plant model operating with
isopentane as working medium has been validated with literature data of a binary cycle power plant with a
similar setup.

The computational results of the hypothetical case proposed in this study show that for certain model input
parameters the binary cycle power plant with gas lift in the geothermal well outperforms the single-flash
plant with a self-flowing geothermal when it comes to net power, utilization efficiency and CO2 emissions.
The hypothetical case included a production well with among others a true vertical depth of 2000 m and an
inner diameter of 0.245 m. The geothermal fluid had a mass flow rate of 30 kg s-1, bottom hole pressure of
159 bar and bottom hole temperature of 250 ˚C. The NaCl mass fraction, CO2 mass fraction and mass flow
rate of lift gas were varied. Additionally, different scenarios were simulated in which the gas extraction
system varied in the single-flash power plant model, and the injection temperature and inlet conditions of
the gas lift compressor varied in the binary cycle power plant model. From the results it can be concluded
that it is difficult for the binary cycle power plant with gas lift in the geothermal and an injection
temperature of 70 ˚C to compete with optimized single-flash power plants with self-flowing wells for a CO2
mass fraction < 0.005 kg kg-1 in the reservoir. Nevertheless, for a CO2 mass fraction > 0.005 kg kg-1 the
binary cycle power plant net power and utilization efficiency rises above those of the single-flash power
plant. Furthermore, the CO2 emissions of the binary cycle power plant are generally lower than the CO2
emissions of the single-flash power plant. Finally, a high potential scenario in favor of the binary cycle
power plant was optimized related to injection temperature and mass flow rate of lift gas for a CO2 mass
fraction of 0.01 kg kg-1 and NaCl mass fraction of 0.05 kg kg-1. It can be concluded that for this
hypothetical case an injection temperature of 43 ˚C and a mass flow rate of lift gas of 1.1 kg s-1 results in
maximum net power and utilization efficiencies. In this optimized case the binary cycle power plant
scenarios have shown approximately a 75 – 95% higher net power and utilization efficiency than those of
the single-flash power plant with a steam ejector/condenser extraction system and a 30 – 45% higher net
power and utilization efficiency than the single-flash power plant with a centrifugal compressor extraction
system. Finally, it can be concluded that the binary cycle power plant is more environmental friendly when
it comes to CO2 emissions. For the optimized case, the CO2 emission is approximately 100% and 33%
lower than those of the single-flash power plant with a steam ejector/condenser and with a centrifugal
compressor, respectively.

At the end of this study, the thermodynamic performance of a production well equipped with an ESP was
evaluated. The results have shown that net power, utilization efficiency and CO2 were all in favor of a
binary cycle power plant with an ESP in the production well compared to the binary cycle with a gas lift.
Although, ESP’s for these conditions have not been in production yet, it can be concluded that it is
important to develop such pumps.

6.2. Recommendations
This study has been initiated to explore the use of artificial lift in geothermal production wells. Although
this work has been extensive already there is still much to investigate, because of the novelty of gas lift in a
geothermal well. Future work should include a more comprehensive optimization of the complete
geothermal power plant. Besides a thermodynamic optimization, an economic optimization will be
necessary to examine the viability of gas lift in a geothermal well. In this section, critical commentary and
recommendations have been given in order to bring this technique to the next level if possible.

In this work, it has been assumed that pure CO2 is injected in the production well. CO2 is recycled from the
gas flow at the wellhead of the production well. This gas flow is a mixture of H2O and CO2. The consumed
energy to separate CO2 from H2O has not been taken into account. Furthermore, the dimensions of the gas
lift system have not been taken into account. Since it turned out according to the simulations that pressure
and enthalpy in the gas lift duct is influenced minimally with a hydraulic diameter above 0.05 m. On the
other hand, with an economic feasibility study dimensions of the production well/gas lift system and

6.2. Recommendations 85

Master of Science Thesis F.W.J. Niewold

additional equipment necessary above earth’s surface will become increasingly important. An increase in
drilling diameter entails an increase in investment costs.

Also the single-flash power plant should be economically optimized. As it has been discussed already in
Section 2.4.4.3, NCG in the steam does not only influence the thermodynamic performance. A gas
extraction system is needed to remove the NCG from the condenser. The degree of condensation depends
among other things on the assumed outlet temperature of the condenser. Optimization of this process
involves numerous parameters e.g. the amount of NCG, but also the available cooling medium, which is a
site specific parameter. Therefore, it is recommended to conduct this optimization for a case study of a
certain geothermal field where all details of the field are known. This optimization felt outside the scope of
the present work, this work has only been a first set-up of the feasibility of artificial lift in geothermal wells.

The properties of the geothermal fluid are obtained from an MS Excel model. This model needed some
adjustments to calculate two-phase flow properties. The error induced with geothermal systems with low
CO2 concentration was higher, because small deviations in temperature or pressure near the saturation
pressure of H2O can cause iterative problems. It has been shown in the model validation that this error was
relatively small with CO2 concentrations of 0.004 wt%. In future research with lower CO2 concentrations it
is recommended to evaluate the accuracy of the present model. Solutions to this potential flaw should be
sought in an accurate equation of state describing the properties of a geothermal fluid or the use of
commercial simulators.

In this work only one organic working medium for the binary cycle power plant has been evaluated. It may
be of value to examine other working fluids. According to DiPippo (2012), propane, i-butane, n-butane, n-
pentane and ammonia are other candidate working fluids for binary plants. There is the possibility that the
optimum working medium depends on the thermodynamic state of the geothermal fluid and thereby is again
a site specific optimization parameter. Also, environmental, safety and health properties are important to
consider in the choice of a working fluid. Lastly, supercritical cycles can be considered, because it allows a
better match between the cooling curve of the geothermal fluid and the working medium. This increases the
exergy efficiency of the heat exchanger.

The mathematical model has been partly validated quantitatively with experimental data in literature. It has
been aimed for to validate the model with random experimental data having significant different properties.
This has been achieved in the present study, even though detailed and complete field data of the power
plant were hard to find. Nevertheless, it is advised to collect more current experimental data in literature or
from running geothermal power plants.

This work has particularly been a feasibility study of the thermodynamics of the geothermal power plant. In
future work, the effect of injecting gas via a gas lift valve should be investigated. Calcite scaling can be a
serious problem in well casings and it is directly related to the degassing of CO2. The question after this
study remains related to the chemical consequences at the gas lift valve when CO2 is injected. Additionally,
alternatives gases for CO2 can be considered. Air is abundant, but it is potentially hazardous when methane
is present in the geothermal fluid. Nitrogen can be assumed inert, but it is not available in advance, making
it a more expensive alternative.

Finally, a recommendation towards the industry is made related to the development of electrical
submersible pumps for high temperature and high pressure conditions.

87

A
SUPPLEMENTARY THEORIES

A.1. Types of Geothermal Power Plants

A.1.1. Double-Flash Steam Power Plant

The double-flash steam power plant can be seen as an upgrade of the previously described single-flash
plant. Generally, it increases the power output by 15-25% for the same geothermal reservoir in comparison
to a single-flash plant. However, the extra power output is at the expense of complexity, cost and
maintenance. Figure 2.1 shows that double-flash plants have not been utilized for liquid-dominated high-
enthalpy and vapor-dominated systems above 1850 kJ/kg. This is due to the fact that at sites with high
enthalpy systems single-flash plants often serve the electricity demand of the area and there is no need for a
double-flash plant. While on the contrary at sites with low- and medium-enthalpy systems single-flash
plants cannot always meet the electricity demand of the area, while double-flash plants can. Typical
utilization efficiencies are in the range of 35 – 45% (DiPippo, 2012; Zarrouk and Moon, 2014).

Figure A.1 shows a simplified double-flash steam power plant schematic. The double-flash plant lay-out
resembles the single-flash power plant at some point. The main difference is that the liquid geothermal fluid
coming from the cyclone separator is flashed for a second time to generate additional steam after a
throttling valve (TV), but with a lower pressure than the steam delivered by the cyclone separator. The
flasher (F) is a flash vessel, which separates the low-pressure steam from the liquid. The high-pressure
steam (primary steam) is fed to a high-pressure turbine. Additionally, the low-pressure steam joins the
primary steam before it expands in a low-pressure section of the turbine. In this way, more energy is
extracted from the produced geothermal fluid.

As with a single-flash steam power plant, the risk of scaling in the production well, cyclone separator and
moisture remover is present. The second flash reduces temperature and pressure even more, increasing the
scaling potential in the flasher, water piping (WP) and injection well (IW).

Figure A.1: Simplified double-flash power plant schematic (DiPippo, 2012).

A.1.2. Dry-Steam Power Plant

Dry-steam power plants were the first commercial geothermal power plants in operation. Although the
number of dry-steam power plants accounts for only 10% of the total number of geothermal power plants
(Figure 1.2), caused by the scarcity of high-enthalpy vapor dominated fields. There are only two major dry-

88 A SUPPLEMENTARY THEORIES

F.W.J. Niewold Master of Science Thesis

steam fields in the world, Lardarello (Italy) and The Geysers (U.S.). Nevertheless, the contribution to the
total installed capacity is 23%. The average capacity rating of a dry-steam geothermal plant in the world
was 45 MWe in 2016 (Bertani, 2016). Typical utilization efficiencies are in the range of 50 – 65% (DiPippo,
2012).

A dry-steam power plant has many similarities with a single-flash unit (Figure A.2). They are essentially
identical from the point where the steam enters the moisture remover (MR) to the point where the steam is
reinjected into the injection well (IW). The difference is the use of a particulate remover (PR) in case of the
dry-steam power plant in place of the cyclone separator in a single-flash plant. Dry steam at the wellhead
valve (WV) is a prerequisite for this power plant. Dry-steam plants are not necessarily built at sites with
dry-steam fields. Under the right conditions, the flashing process in the production well can ensure the
delivery of dry steam to the wellhead valve. This depends on pressure loss due to friction, gravity and
acceleration of the two-phase fluid. Geothermal reservoirs at relatively low depth and high
temperature/high enthalpy are often suitable for dry-steam power plants. In Indonesia 34% of electric power
is generated by dry-steam power plants, resulting from the volcanic environment (Bertani, 2016).

Dry-steam power plants are less complex and cheaper than the single-flash variant, since there is no
remaining liquid geothermal fluid to cope with. Additionally, there is no mineral-laden fluid to dispose of
which avoids the chance of fouling in equipment. The flashing in the production well can cause scaling.
Another negative aspect of a dry-steam plant is that the NCG are released in its entirety to the atmosphere
(DiPippo, 2012).

Figure A.2: Simplified dry-steam power plant schematic (DiPippo, 2012).

A.1.3. Hybrid Flash-Binary Cycle Power Plant

Flash-binary cycle power plants are an extension of the single-flash power plant and a variant to the double-
flash plant. Instead of flashing the low pressure geothermal fluid again, the remaining liquid is used to heat
a working fluid in a binary cycle. Generally, the binary cycle power plant is added to a single-flash power
plant after a few years, if the demand for electricity increases and the geothermal reservoir has proven its
consistency. In this way, the power output and conversion efficiency are increased. In Figure 1.2 flash-
binary power plants have not been included, because these are subdivided in single-flash and binary cycle
plants. There were 47 flash-binary units in operation in 2012, which was approximately 4% of the total
installed capacity worldwide (DiPippo, 2012).

Figure A.3 gives a simplified schematic of a combined flash-binary power plant. It shows that the left side
of the figure agrees with a single-flash plant (Figure 2.2). The right side agrees with a basic binary cycle
power plant (Figure 2.3). The two-phase fluid entering the cyclone separator (CS) flashes partially. The
steam is sent to the steam turbine, whereas the liquid geothermal fluid is transported to the binary cycle.
The final temperature and pressure after flashing can be optimized to achieve the highest power output or
efficiency.

A.2. Binary System H2O – NaCl 89

Master of Science Thesis F.W.J. Niewold

Figure A.3: Simplified combined flash-binary power plant schematic (DiPippo, 2012).

A positive aspect of flash-binary plants is the large operational experience of both single plants: single-flash
and binary cycle. Also, the risk reduces by investments in stages. Additionally, there is no need of extra
production or injection wells, which are a considerable part of the investment costs. On the other hand,
investment costs are higher compared to other power plants. Negative aspects of the single-flash power
plant and binary cycle power plant add up: scaling in the flash cycle and safety measures for the binary
cycle plant is an issue (Van der Hoorn et al., 2012).

A.2. Binary System H2O – NaCl

A.2.1. Saturation Pressure
In order to model the two-phase region the properties at saturated liquid condition as a function of P, T and ݓே௔஼௟ are necessary. Dittman (1977) calculated brine saturation pressures as a percentage of the pure water
saturation pressure at the same temperature with eq. (A.1) and incorporated it into various numerical codes.
Table A.1 shows the corresponding coefficients valid in the range of 0-25 wt%.

௦ܲ௔௧,௕(ܶ) = ܽଵ × ௦ܲ௔௧(ܶ) (A.1)

Where ௦ܲ௔௧.௕ is the liquid saturation pressure of brine [bar], ௦ܲ௔௧ is the saturation pressure of pure water
[bar] and ܶ is the temperature [˚C].

Table A.1: Brine saturated pressure coefficients as a function of NaCl mass fraction (Dittman, 1977) ݓே௔஼௟ ܽଵ

5 0.969

10 0.934

15 0.894

20 0.847

25 0.794

It is assumed that the salt content in the vapor is negligible (Dittman, 1977). The saturated water vapor
curve is provided by the IAPWS-IF97 equation of state from Wagner et al. (2002) available in FluidProp.

A.2.2. Density
Adams and Bachu (2002) reviewed seven different algorithms to calculate brine density. The Batzle and
Wang (1992) algorithm has been found the most versatile and more accurate over a wider range of
conditions compared to the others. It is valid for pressures up to100 MPa, temperatures in the range of 20-
350 ˚C and salinities up to 320 g l-1. Firstly, the freshwater density at different temperature and pressure
conditions is calculated according to eq. (A.2).

90 A SUPPLEMENTARY THEORIES

F.W.J. Niewold Master of Science Thesis

௪ߩ = ሾ1 + 1 × 10ି଺(−80 ܶ − 3.3	ܶଶ + 0.00175 ܶଷ + 489 ܲ − 2 ܶܲ + 0.016 ܶଶܲ −1.3 × 10ିହ	ܶଷܲ − 0.333	ܲଶ − 0.002 ܶܲଶ)ሿ × 10ଷ

(A.2)

And then the fresh water density is used in eq. (A.3) to calculate the brine density. ߩ௕ = ௪ߩ + ே௔஼௟ሼ0.668ݓ + ே௔஼௟ݓ	0.44 + 1	 × 10ି଺ሾ300 ܲ − 2400 ே௔஼௟ݓܲ +ܶ(80 + 3	ܶ − ே௔஼௟ݓ	3300 − 13	ܲ + 47 ே௔஼௟)ሿሽݓܲ

(A.3)

In eq. (A.2) and (A.3) ߩ௕ and ߩ௪ 	are the brine and water density [kg m-3], ݓே௔஼௟ is the mass fraction [kg
kg-1], P is the pressure [MPa] and T is the temperature [˚C]. These correlations are solely applicable to
liquid brine. In order to calculate the mixture density the volumetric-weighted average of the two phases is
applied in eq. (A.4) (Hasan et al., 2010). ߩ௠ = ௚ߝ௚ߩ + ௟൫1ߩ − ௚൯ߝ

(A.4)

Where ߩ௠ is the density in the two-phase region [kg m-3], ߩ௚ is the density of the vapor phase [kg m-3], ߝ௚
is the cross-sectional void fraction [m2 m-2] and ߩ௟ is the density of the liquid phase [kg m-3].

A.2.3. Viscosity
Adams and Bachu (2002) reviewed six different viscosity algorithms, from which the Kestin et al. (1981)
has been found the most versatile. It is unfortunately only valid up to 150 ˚C. Philips (1981) and Batzle and
Wang (1992) developed correlations without pressure terms. According to experimental results it has been
concluded that even at 500 bar, viscosity only increased a few percent. Brine viscosity decreases rapidly
with increasing temperature, but it is little affected by pressure. With increasing salinity, the viscosity
increases. Palliser and McKibbin (1998b) used the algorithm from Philips (1981) for their extrapolation for
higher temperatures up to 800 ˚C. The correlation to calculate the viscosity is a function of pressure,
temperature and mass fraction. For temperatures up to 200 ˚C the Batzle and Wang (1992) algorithm
deviates most from other algorithms. Philips (1981), which is identical to Palliser and McKibbin (1998b)
for temperatures up to 350 ˚C, claimed that their correlation reproduces data to an average better than ± 2%
for pressures in the range of 0.1 – 50 MPa, temperatures in the range of 10 – 350 ˚C and molalities in the
range of 0 – 5 mol kg-1. Therefore, the correlation from Philips (1981) is adopted in the present work (see
eq. (A.5)). ߤ௕ = ௪ߤ × 10ିଷሾ1 + 0.0816	݉ − 0.0122	݉ଶ + 0.000128 ݉ଷ + 0.000629 ܶ(1 −											݁ି଴.଻	௠)ሿ (A.5)

In eq. (A.5) ߤ௕ and ߤ௪ are the dynamic viscosities for brine and water [Pa s], ݉ is the molality [mol kg-1]
and ܶ is the temperature [˚C]. This expression has been used to correct for salinity effects in various models
that calculate flow in geothermal reservoirs (Adams and Bachu, 2002). Eq. (A.5) is only applicable to the
liquid brine. The viscosity in the two-phase region is calculated by the mass-weighted average of the two
phases (Hasan et al., 2010). ߤ௠ = ௚߯ߤ + ௟(1ߤ − ߯) (A.6)

Where ߤ௠ is the dynamic viscosity in the two-phase region [Pa s], ߤ௚ is the dynamic viscosity of the gas
phase in Pa s, ߯ is the quality [kg kg-1] and ߤ௟ is the dynamic viscosity of the liquid phase [Pa s].

A.2.4. Specific Enthalpy
The enthalpy correlations have not been studied as extensively as density and viscosity. Dittman (1977)
used a power curve fitted to experimental data to calculate the brine saturated liquid enthalpy as a function
of temperatures up to 204 ˚C and mass fractions up to 25 wt% for liquid saturated conditions. The
enthalpies for saturated liquid temperatures up to 316 ˚C were extrapolated using the power curve. Brine
vapor enthalpies were obtained from pure water equations. Philips (1981) collected worldwide published
experimental and calculated data for NaCl(aq). He published saturated liquid enthalpy values for

A.2. Binary System H2O – NaCl 91

Master of Science Thesis F.W.J. Niewold

temperatures in the range of 0 – 300 ˚C and NaCl mass fraction in the range of 0 – 25 wt%. Pitzer et al.
(1984) used experimental measurements of the enthalpy to derive a semi-empirical equation of the
NaCl(aq) at constant pressures. The equation is valid for pressures in the range of ௦ܲ௔௧ – 1000 bar,
temperatures in the range of 0 – 300 ˚C and molalities in the range of 0 – 6 mol kg-1. Enthalpy values within
this range were tabulated and published. Uncertainty estimation at 300 ˚C and 1000 bar is ± 20%, because
the developed equations did not perfectly fit the experimental data at high temperatures and high pressures.
At 200 ˚C, the uncertainty estimation is only ± 4% at its maximum. Palliser and McKibbin (1998b)
proposed correlations for the specific enthalpy of brine as a function of temperature, pressure and mass
fraction of NaCl based on various data sets. Their correlations cover the entire ܶ − ܲ − state-space and ݔ
were specially designed for subroutines in numerical simulation programs (Palliser and McKibbin, 1998a).
Correlations were developed at the boundaries of certain regions and linear interpolation was used to
calculate the enthalpy between the boundaries. They attempted to derive correlations based on the tabulated
values from Pitzer et al. (1984) in the subcritical liquid region. But since their reference state is significantly
different compared to the other evaluated data sets, the data remained inconsistent with those other data
sets. Therefore, in the region of temperatures of ܶ < ௖ܶ and pressures of ܲ > ௦ܲ௔௧ , Palliser and McKibbin
(1998b) decided that the enthalpies were independent of pressure and equal to the enthalpy at saturated
liquid conditions ℎ௟,௦௔௧ (eq. (A.7)).

ℎ௟,௦௔௧(ܶ, ܲ) = ℎ௪,௟,௦௔௧(ܶ) + ൣℎ௟,ௌ஺்(ܶ) − ℎ௪,௟,௦௔௧(ܶ)൧ ቈ ௪ܲ,௦௔௧(ܶ) − ܲ௪ܲ,௦௔௧(ܶ) − ௌܲ஺்(ܶ)቉ଵ/ଵ.ସ (A.7)

Where ℎ௪,௟,௦௔௧(ܶ) is the saturated liquid enthalpy of water [kJ kg-1], ℎ௟,ௌ஺்(ܶ) is the halite-saturated liquid
enthalpy on the three-phase surface [kJ kg-1] (eq. (A.8)), ௪ܲ,௦௔௧(ܶ) is the saturated liquid pressure [bar], ௌܲ஺்(ܶ) is the saturated pressure on the three-phase surface [bar] (eq. (A.9)). ℎ௟,ௌ஺்(ܶ) = ݉଴ + ݉ଵܶ + ݉ଶܶଶ + ݉ଷܶଷ (A.8)

ௌܲ஺்(ܶ) = ܽଵݐ + ܽଶݐଶ + ܽଷݐଷ + ܽସݐସ + ܽହݐହ (A.9)

Table A.2 gives the coefficients ݉ and ܽ, ܶ is the temperature [˚C] and ݐ is a coefficient for temperature
given by eq. (A.10).

ݐ = ൫ܶ 800ൗ ൯ଶ (A.10)

Table A.2: Coefficient values for the correlations in eq. (A.8) and eq. (A.9) (Palliser and McKibbin, 1998b) ݅ 0 1 2 3 4 5 ݉ 0.00000e0 3.57384e0 -3.79475e-3 1.59816e-6 ܽ 1.32729e1 3.18909e3 -7.24296e2 -8.15640e3 5.67834e3

Driesner (2007) developed a set of correlations for enthalpies of phases in the system H2O – NaCl as a
function of temperatures in the range of 0 – 1000 ˚C, pressures in the range of 1-5000 bar and compositions
in the range of 0 – 1 mol mol-1. The enthalpies agreed within 1 – 3% to other studies. He has shown that the
correlations for enthalpy of Palliser and McKibbin (1998b) were substantially too low, because of the lack
of pressure-dependence. The correlation of Driesner (2007) is given by eq. (A.11). ℎ௦௢௟(ܶ, ܲ, (୒ୟେ୪ݔ = ℎୌమ୓(௛ܶ∗, ܲ) (A.11)

Where ℎ௦௢௟ is the enthalpy of the solution [J kg-1], ܶ is the temperature [˚C], ܲ is the pressure [bar] and ݔே௔஼௟ is the mole fraction [mol mol-1]. The scaled temperature ௛ܶ∗ [˚C] is given by eq. (A.12).

௛ܶ∗ = ଵݍ + ଶܶ (A.12)ݍ

Where ݍଵ and ݍଶ are coefficients given by eq. (A.13) and eq. (A.14), respectively.

92 A SUPPLEMENTARY THEORIES

F.W.J. Niewold Master of Science Thesis

ଵݍ = ଵ଴ݍ + ଵଵ(1ݍ − (୒ୟେ୪ݔ + ଵଶ(1ݍ − ୒ୟେ୪)ଶ (A.13)ݔ

ଶݍ = ଶ଴ݍ + ୒ୟେ୪ݔଶଵඥݍ + ଶଶݍ + ୒ୟେ୪ (A.14)ݔଶଷݍ

Where ݍଵ଴ and ݍଶ଴ are eliminated by the conditions ݍଵ = 0 and ݍଶ = 1 at ݔ୒ୟେ୪ = 0, while ݍଵଶ and ݍଶଷ are
eliminated by the values of ݍଵ (eq. (A.15)) and ݍଶ (eq. (A.16)) at ݔ୒ୟେ୪ = ଵ,௑ొ౗ిౢୀଵݍ .1 = 47.9048 − 9.36994 × 10ିଷ	ܲ + 6.51059 × 10ି଺ ܲଶ (A.15)

ଶ,௑ొ౗ిౢୀଵݍ = 0.241022 + 3.45087 × 10ିହ	ܲ − 4.28356 × 10ିଽ ܲଶ (A.16)

The parameters ݍଵଵ, ݍଶଵ and ݍଶଶ are given in Table A.3 as a function of ܲ [bar].

Table A.3: Coefficients for eq. (A.13) and eq. (A.14) with ࡼ in bar. ݍଵଵ −32.1724 + ଶଵ −1.69513ݍ ܲ	0.0621255 − 4.52781 × 10ିସ	ܲ − 6.04279 × 10ି଼ ܲଶ ଶଶ 0.0612567ݍ + 1.88082 × 10ିହ	ܲ

The specific enthalpy for the two-phase region is calculated as the mass-weighted average of the two phases
by eq. (A.17). ℎ௠ = ℎ௚߯ + ℎ௟(1 − ߯) (A.17)

Where ℎ௠ is the specific enthalpy in the two-phase region [J kg-1], ℎ௚ is the specific enthalpy of the gas
phase [J kg-1], ߯ is the quality [kg kg-1] and ℎ௟ is the specific enthalpy of the liquid phase [J kg-1].

A.2.5. Specific Entropy
Publications of specific entropy values for NaCl(aq) are scarce. Dittman (1977) developed a correlation for
entropy change and tabulated specific entropy values as a function temperature up to 316 ˚C and mass
fraction up to 25 wt% for liquid saturated conditions. The difference between Dittman (1977) relationship
and the experimental data was less than 6%. The correlation has been found valid only for small
temperature changes and it is independent of pressure. Pitzer et al. (1984) tabulated entropy values for
pressures in the range of ௦ܲ௔௧ – 1000 bar, temperatures in the range of 0 – 300 ˚C and molalities in the range
of 0 – 6 mol kg-1, as a function of ܶ − ܲ −݉. The basis of these specific entropy values were experimental
measurements of the osmotic and activity coefficient, the enthalpy and heat capacity. The tables from Pitzer
et al. (1984) are more comprehensive than the tables from Dittman (1977). Therefore, Dittman (1977) is
preferred

A.2.6. Isobaric Heat Capacity
Philips (1981) tabulated heat capacity values as a function of temperatures in the range of 0 – 300 ˚C and
molalities in the range of 0 – 4.28 mol kg-1. The maximum error in comparison to the fitted experimental
data is only 0.003 kJ kg-1 K-1 at 300 ˚C and 4.28 mol kg-1

, showing an excellent fit. Heat capacity increases
with temperature and decreases with molality. Driesner (2007) developed a set of correlations for the heat
capacity as a function of temperatures in the range of 0 – 1000 ˚C, pressures in the range of 1 – 5000 bar
and mole fractions in the range of 0 – 1 mol mol-1. Good agreement to experimental data from Gates et al.
(1987) has been obtained. The experimental data falls within the range for molalities up to 3 mol kg-1 and
pressures up to 180 bar. However, at high temperatures (> 300 ˚C) and relatively high molalities (> 3 mol
kg-1) disagreement up to 10% is encountered. Eq. (A.18) gives the correlation from Driesner (2007).

A.3. Gas Flow in GL Duct – Overall Heat Transfer Coefficient 93

Master of Science Thesis F.W.J. Niewold

ܿ௣(ܶ, ܲ, (୒ୟେ୪ݔ =)ଶܿ௣,ୌమ୓ݍ ௛ܶ∗, ܲ) (A.18)

Where ܿ௣ is the heat capacity [J kg-1 K-1], ܶ is the temperature [˚C], ܲ is the pressure [bar], ݔே௔஼௟ is the
mole fraction [mol mol-1] and ݍଶ is a coefficient given by eq. (A.14). The scaled temperature ௛ܶ∗ [˚C] is
given by eq. (A.12). Furthermore, the identical calculation scheme as for the specific enthalpy is used. The
heat capacity in the two-phase region is calculated as the mass-weighted average of the two phases by eq.
(A.19). ܿ௣,௠ = ܿ௣,௚߯ + ܿ௣,௟(1 − ߯) (A.19)

Where ܿ௣,௠ is the heat capacity in the two-phase region [J kg-1
 K

-1], ܿ௣,௚ is the heat capacity of the gas
phase [J kg-1 K-1], ߯ is the quality [kg kg-1] and ܿ௣,௟ is the heat capacity of the liquid phase [J kg-1

 K
-1].

A.2.7. Thermal Conductivity
Data for NaCl(aq) for high temperatures have not been published extensively. Philips (1981) used
experimental data from Yusufova et al. (1975) to derive a correlation for thermal conductivity as a function
of temperatures in the range of 0 – 330 ˚C and molalities in the range of 0 – 4 mol kg-1 given in eq. (A.20). ݇ ݇௪ൗ = 1 − ே௔஼௟ሾ2.3434ݓ × 10ିଵ − ܶ (7.924 × 10ିସ) + ܶଶ (3.924 × 10ି଺)ሿ

ே௔஼௟ଶݓ+ 	ሾ1.06 × 10ିଵ − ܶ	(2 × 10ିସ) −	ܶଶ(1.2 × 10ି଺)ሿ	 (A.20)

Where ݇ is the thermal conductivity of the NaCl(aq) [W m-1 K-1], ݇௪ is the thermal conductivity of water
[W m-1 K-1] and calculated by eq. (A.21), ܶ is the temperature [˚C] and ݓே௔஼௟ is the mass fraction NaCl
given in eq. (A.22).

݇௪ = −0.92247 + 2.8395 ൬ܶ + 273.15273.15 ൰ − 1.8007 ൬ܶ + 273.15273.15 ൰ଶ											+	0.52577 ൬ܶ + 273.15273.15 ൰ଷ − 0.07344 ൬ܶ + 273.15273.15 ൰ସ
(A.21)

ே௔஼௟ݓ = 58.443	݉1000 + 58.443	݉ (A.22)

Where m is the molality [mol kg-1].

A.2.8. Solubility
The solubility of NaCl(aq) depends mainly on temperature and pH, where solubility increases with
increasing temperature and solubility decreases with increasing pH. Many publications refer to Potter et al.
(1977), who measured the solubility of NaCl(aq) for temperatures in the range of 0 – 400 ˚C (Philips, 1981;
Chou, 1987; Battistelli et al, 1997). Chou (1987) has shown that published NaCl solubility data below 400
˚C agreed reasonably well. Philips (1981) tabulated solubility values as a function of temperatures in the
range of 0-350 ˚C with a deviation of less than 1% from various experimental data. Battistelli et al. (1997)
published solubility data as a function of temperatures in the range of 0 – 382 ˚C and compared it to data
from Bischoff and Pitzer (1989). The deviation between the published solubility data is relatively small and
the different data are all suitable for implementation in a numerical model.

A.3. Gas Flow in GL Duct – Overall Heat Transfer Coefficient
In this section the heat transfer correlations are presented used to calculate heat transfer between the
production well and the gas lift duct (eq. (A.23)).

94 A SUPPLEMENTARY THEORIES

F.W.J. Niewold Master of Science Thesis

ܣ1ܷ = 1ℎ௖,ௐ௢2ݎߨௐ௢ܮ + ௐ௢ݎ)݈݊ ⁄ௐ௜ݎ ܮௐ௖݇ߨ2(+ 1ℎ௖,ௐ௜2ݎߨௐ௜ܮ (A.23)

The convective heat transfer coefficient at the outer well is calculated by eq. (A.24).

ℎ௖,ௐ௢ = Nuீ௅	݇ீ௅ܦ௛ (A.24)

The Nusselt number for outer well convective heat transfer for fully developed turbulent flow in annular
ducts according to Gnielinski (2009), given in VDI Heat Atlas (VDI, 2010), is calculated by eq. (A.25).
Where eqs. (A.26) – (A.31) give the annular friction factor, modified Reynolds number, correlation
constant for annular ducts, hydraulic diameter, correlation factor for annular ducts with heat transfer from
both sides, and diameter ratio, respectively.

Nuீ௅ = (௔݂ 8⁄)RePr݇ଵ + 12.7ඥ ௔݂ 8⁄ (Prଶ ଷ⁄ − 1) ቈ1 + ൬ܦ௛ܮா൰ଶ ଷ⁄ ቉ ௔ (A.25)ܨ

௔݂ = (1.8logଵ଴(Re∗) − 1.5)ିଶ (A.26)

Re∗ = Re ሾ1 + ܽଶሿlnܽ + ሾ1 − ܽଶሿሾ1 − ܽሿଶlnܽ (A.27)

݇ଵ = 1.07 + 900Re − 0.63(1 + 10Pr) (A.28)

௛ܦ = ௔௢ܦ − ௐ௢ (A.29)ܦ

௔ܨ = 0.75ܽି଴.ଵ଻ + (0.9 − 0.15ܽ଴.଺)1 + ܽ (A.30)

ܽ = ௐ௢ܦ ⁄௔௢ܦ (A.31)

Inside the production well, the mechanism of heat transfer in convective boiling is present. For the
convective heat transfer coefficient at the inner side of the well, the method proposed by Chen (1966),
given in Chemical Engineering Design (Sinnott and Towler, 2009), is adopted. The convective heat transfer
coefficient at the inner side of the well, given in eq. (A.32), is considered to be made up of convective and
nucleate boiling terms. ℎ௖,ௐ௜ = ℎ௙௖ᇱ + ℎ௡௕ᇱ (A.32)

The forced-convective heat transfer coefficient can be estimated with the single-phase forced-convective
heat transfer coefficient modified by an enhancement factor (two-phase correction factor) as in eq. (A.33).
This enhancement factor is obtained from Chen (1966). ℎ௙௖ᇱ = ℎ௙௖ܨ௖ (A.33)

The single-phase forced-convective heat transfer coefficient is calculated by Gnielinski (1976), given in
VDI Heat Atlas (VDI, 2010) (eq. (A.34)). Where the Nusselt number of the geothermal fluid is given by eq.
(A.35), and the friction factor is given by eq. (A.36).

A.4. Thermodynamics Other Geothermal Power Plants 95

Master of Science Thesis F.W.J. Niewold

ℎ௙௖ = Nu௚௙	݇௚௙ܦ௛ (A.34)

Nu௚௙ = (௔݂ 8⁄)RePr1 + 12.7ඥ ௔݂ 8⁄ (Prଶ ଷ⁄ − 1) ቈ1 + ൬ܦ௛ܮா൰ଶ ଷ⁄ ቉ (A.35)

௔݂ = (1.8logଵ଴Re − 1.5)ିଶ (A.36)

The enhancement factor is obtained empirically from experimental data by Chen (1966) and it is a function
of the Lockhart-Martinelli two-phase flow parameter (eq. (A.37)) with turbulent flow in both phases. 1ܺ௧௧ = ൤ ߯1 − ߯൨଴.ଽ ቈߩ௟ߩ௚቉଴.ହ ൤ߤ௚ߤ௟ ൨଴.ଵ (A.37)

The nucleate boiling heat transfer coefficient for convective boiling (eq. (A.38)) is modified by a
suppression factor to take into account that nucleate boiling is more difficult in a flowing fluid. The
suppression factor has been determined empirically by Chen (1966). It is a function of Re௟ܨ௖ଵ.ଶହ. Re௟
evaluates the Reynolds number if only the liquid phase would flow in the pipes. It is given by eq. (A.39). ℎ௡௕ᇱ = ℎ௡௕ܨ௦ (A.38)

Re௟ = (1 − ௟ߤ௛ܦܩ(߯ (A.39)

The nucleate pool boiling heat transfer coefficient in eq. (A.40) has been proposed by Forster and Zuber
(1955).

ℎ௡௕ = 0.00122 ቈ ݇௟଴.଻ଽܿ௣,௟଴.ସହߩ௟଴.ସଽߪ଴.ହߤ௟଴.ଶଽߣ଴.ଶସߩ௚଴.ଶସ቉ (௪ܶ − ௦ܶ)଴.ଶସ(௪ܲ − ௦ܲ)଴.଻ହ (A.40)

Eq. (A.40) is only valid for boiling single-component fluids or close boiling range mixtures (< 5 ˚C). In
mixtures the nucleate pool boiling heat transfer coefficient will generally be lower according to Sinnott and
Towler (2009). In the present work, CO2 and H2O have a wide boiling range. Additionally, it is observed
that ℎ௡௕ᇱ <<ℎ௙௖ᇱ . Therefore, nucleate boiling is neglected and eq. (A.32) evolves to eq. (A.41). ℎ௖,ௐ௜ = ℎ௙௖ᇱ (A.41)

A.4. Thermodynamics Other Geothermal Power Plants

A.4.1. Double-Flash Steam Power Plant
The double-flash steam power plant is almost similar to the single-flash power plant except for the second
flashing process to increase maximum power output. The temperature-entropy diagram for double-flash
power plants is shown in Figure A.4. The governing equations for the first flashing and separation process
are given in eqs. (2.53) and (2.54). The second flashing and separation process is defined by eqs. (A.42)
and (A.43). ℎଷ = ℎ଺ (A.42)

96 A SUPPLEMENTARY THEORIES

F.W.J. Niewold Master of Science Thesis

߯଺ = ℎଷ − ℎ଻ℎ଼ − ℎ଻
(A.43)

The power produced by the high-pressure (hp) turbine ሶܹ ௛௣,௧ is given by eq. (2.55) and the power produced
by the low-pressure (lp) turbine is given by eq. (A.44). ሶܹ ௟௣,௧ = ൫(1 − ߯ଶ)߯଺ + ߯ଶ൯ ሶ݉ ଶ(ℎଽ − ℎଵ଴) (A.44)

Where the enthalpy at state 9 is a mixture of the low-pressure saturated vapor at state 8 and the expanded
steam from the hp turbine. It is calculated by eq. (A.45).

ℎଽ = ߯ଶℎହ + (1 − ߯ଶ)߯଺ℎ଼߯ଶ + (1 − ߯ଶ)߯଺ (A.45)

And the enthalpy at stage 10 is given by eq. (A.46). ℎଵ଴ = ℎଽ − ௟௣,௧(ℎଽߟ − ℎଵ଴௦) (A.46)

Where according to the Baumann rule the isentropic efficiency of the lp turbine is given by eq. (A.47).

௟௣,௧ߟ = ௟௣,௧௪ߟ = ௟௣,௧ௗߟ ቂ߯ଽ − ߯ଵ଴2 ቃ (A.47)

The condensation process is then expressed by eq. (A.48). ሶ݉ ௖௪ܿ௣,௪∆ ௖ܶ௪ = (1 − ߯ଶ)߯଺	 ሶ݉ ଶ(ℎଵ଴ − ℎଵଵ) (A.48)

The electrical power is now calculated by eq. (A.49). ሶܹ ௘ = ௚൫ߟ ሶܹ ௛௣,௧ + ሶܹ ௟௣,௧൯ (A.49)

The equation for consumed power by the pumps is similar to that of the single-flash plant eq. (2.60), as well
as the equations for net power, thermal and utilization efficiency given by eq. (2.61), (2.62) and (2.63),
respectively.

Figure A.4: Temperature-entropy diagram for double-flash plants (DiPippo, 2012).

A.4.2. Dry-Steam Power Plant
The vapor entering the turbine can either be saturated as in Figure A.5 or superheated as in Figure A.6. In
case of saturated steam the governing equations, with rearrangement of the numbers, are similar to the
single-flash power plant equations for the expansion and condensation process. In case of superheated

A.5. Steam Ejector/Condenser 97

Master of Science Thesis F.W.J. Niewold

steam entering the turbine, the expansion process is imaginary divided in two parts. In the first part the
superheated steam is expanded until saturated steam. Whereas in the second part the moisture is involved in
the expansion process. The governing equations are again similar to single-flash technology, except for the
first part of expansion, in which the Baumann rule is not used to correct the isentropic efficiency.

Figure A.5: Temperature-entropy diagram for a dry-steam
plant with saturated steam at turbine inlet (DiPippo, 2012).

Figure A.6: Dry and wet turbine expansion processes
for superheated steam at turbine inlet (DiPippo, 2012).

A.5. Steam Ejector/Condenser

A.5.1. Operation Principle
Figure A.7 presents the schematic of a steam jet ejector. Motive steam enters the ejector at point ݌. The
velocity is subsonic. The velocity increases and the pressure decreases in the converging part of the nozzle.
At the throat of the nozzle, point 1, sonic velocity (Mach 1) is reached. The trend of the temperature and
pressure in the divergent section of the nozzle continues due to supersonic conditions. At the outlet of the
nozzle, point 2, the motive steam pressure is lower than the pressure of the entrained NCG stream, referred
to as the suction load. The suction load enters the ejector at point ݁. In the convergent section of the suction
chamber, the velocity increases and the pressure decreases until the suction load mixes with the motive
flow. Mixing occurs upward of point 2. In the constant cross sectional throat of the diffuser the mixture
experiences a shock wave at point 4. The pressure increases and the velocity reduces to a value below sonic
velocity. The shock is induced by the back pressure resistance of the condenser. In the divergent part of the
diffuser the pressure of the subsonic mixture is increased by converting the kinetic energy into pressure.
The emerging pressure at point ܿ is higher than the suction pressure of the condenser (El-Dessoucky et al.,
2002).

A.5.2. Calculation Method
In this section the calculation method is described to calculate the mass flow rate of motive steam required
to remove the NCG from the condenser. The numbers in the following equations correspond to Figure 2.24
in Section 2.4.4.3. The mass flow rate of the suction load is given by eq. (A.50). ሶ݉ ଵଵ = ሶ݉ ஼ைଶ,ଵଵ + ሶ݉ ுଶை,ଵଵ (A.50)

The ratio of the mass flow rate of H2O and CO2 is calculated by eq. (A.51). The partial pressures can be
calculated by eqs. (2.79) and (2.80).

ሶ݉ ுଶை,ଵଵ = ሶ݉ ஼ைଶ,ଵଵ ஼ைଶܯுଶைܯ ுܲଶை,ଵଵ஼ܲைଶ,ଵଵ (A.51)

The Heat Exchange Institute (HEI) empirically developed a standard to determine the required motive
steam graphically. In this study the HEI graphs were adopted and prepared for MATLAB (IPS, 1998;
Geremew, 2012). The method is based on determining a dry air equivalent mass flow rate for the NCG
mass flow rate. The temperature correction factor (ܶܨܥ) is determined from Figure A.8. The molecular

98 A SUPPLEMENTARY THEORIES

F.W.J. Niewold Master of Science Thesis

weight entrainment ratio (ܹܴܧ) for H2O and CO2 is determined from Figure A.9. Then the dry air
equivalent (ܧܣܦ) to steam and DAE to CO2 is calculated by eq. (A.52) and eq. (A.53), respectively.

Figure A.7: Schematic of a steam jet ejector with the pressure profile and velocity profile of the flows as a function of
the location in the ejector (El-Dessoucky et al., 2002).

ுଶைܧܣܦ = ሶ݉ ுଶைܶܨܥுଶைܹܴܧுଶை (A.52)

஼ைଶܧܣܦ = ሶ݉ ஼ைଶܶܨܥ஼ைଶܹܴܧ஼ைଶ (A.53)

The total ܣܧܦ is the sum of H2O to air equivalent and the CO2 to air equivalent. ܧܣܦ = ஼ைଶܧܣܦ	 + ுଶை (A.54)ܧܣܦ

In order to calculate the total steam consumption (motive flow), the air to steam ratio (ܴܵܣ) has to be
determined. The ܴܵܣ is obtained from Figure A.10 as a function of the compression ratio (ܴܥ) and the
expansion ratio (ܴܧ). ܴܥ and ܴܧ are calculated by eq. (A.55) and eq. (A.56), respectively. The subscripts
correspond to Figure A.7.

ܴܥ = 	 ௖ܲܲ௘ (A.55)

A.5. Steam Ejector/Condenser 99

Master of Science Thesis F.W.J. Niewold

ܴܧ = 	 ௣ܲܲ௘ (A.56)

Finally, the steam consumption (ܵܥ) is calculated by eq. (A.57). The ܴܵܣ can be obtained from Figure
A.10. These graphs have been implemented in MATLAB as data tables.

ܥܵ = ܴܵܣܧܣܦ	 (A.57)

Figure A.8: Temperature correction factor for air and
steam.

Figure A.9: Dry and wet turbine expansion processes for
superheated steam at turbine inlet (DiPippo, 2012).

Figure A.10: Air to steam ratio as a function of expansion ratio and compression ratio (Geremew, 2012)

101

B
MATLAB CODE

B.1. Contents

Main script:

Start.m 103

 fSettings 103
 fInitialize_Excel 104
 fModel_Input 105
 fCalc_VLE 107
 fCalc_reservoir (Reservoir model) 107
 fCalc_prodwell (Production well model) 107
 fCalc_prodwell_GL (Production well – gas lift model) 111
 fCalc_SF (Single-flash power plant model) 117
 fCalc_BC (Binary cycle power plant model) 124
 fCalc_injwell (Injection well model) 125
 fCalc_injwell_BC (Injection well model binary cycle power plant) 126
 fCreate_figures 127

Sub model functions (invoked by sub model):

 fCalc_u (fCalc_prodwell/fCalc_prodwell_GL/fCalc_injwell/ fCalc_injwell_BC) 127
 fCalc_Re (fCalc_prodwell/fCalc_prodwell_GL/fCalc_injwell/ fCalc_injwell_BC) 127
 fCalc_f (fCalc_prodwell/fCalc_prodwell_GL/fCalc_injwell/ fCalc_injwell_BC) 127
 fCalc_T_g (fCalc_prodwell/fCalc_prodwell_GL/fCalc_injwell/ fCalc_injwell_BC) 128
 fCalc_dQ (fCalc_prodwell/fCalc_prodwell_GL/fCalc_injwell/ fCalc_injwell_BC) 128
 fCalc_dE_pot (fCalc_prodwell/fCalc_prodwell_GL/fCalc_injwell/ fCalc_injwell_BC) 128
 fCalc_dP_f (fCalc_prodwell/fCalc_prodwell_GL/fCalc_injwell/ fCalc_injwell_BC) 128
 fCalc_dP_hs (fCalc_prodwell/fCalc_prodwell_GL/fCalc_injwell/ fCalc_injwell_BC) 128
 fCalc_dP_k (fCalc_prodwell/fCalc_prodwell_GL) 128
 fCalc_dE_k (fCalc_prodwell/fCalc_prodwell_GL) 128

 fCalc_prodwell_virtual (fCalc_prodwell) 128

 fCalc_dQgf (fCalc_prodwell_GL) 129
 fCalc_T_s_com (fCalc_prodwell_GL) 130

 fCalc_chi_5s (fCalc_SF) 130
 fCalc_chi_5 (fCalc_SF) 130
 fCalc_T_8 (fCalc_SF) 131
 fCalc_T_12s (fCalc_SF) 131
 fCalc_T_14 (fCalc_SF) 131

 fCalc_h_1 (fCalc_BC) 131
 fCalc_ h_2s (fCalc_BC) 131

102 B MATLAB CODE

F.W.J. Niewold Master of Science Thesis

Remaining sub models and functions (invoked by sub model):

Geothermal fluid property model:

 fCalc_geofprops1 (fCalc_reservoir) 131
 fCalc_geofprops2 (fCalc_prodwell/fCalc_prodwell_GL/fCalc_injwell/...

 fCalc_injwell_BC/fCalc_SF) 132
 fCalc_geofprops3 (fCalc_prodwell/fCalc_prodwell_GL) 135
 fCalc_geofprops4 (fCalc_BC) 137

Drift-flux model:

 fCalc_eps_g (fCalc_prodwell/fCalc_prodwell_GL) 137
 fCalc_u_gb (fCalc_eps_g) 138
 fCalc_u_ms (fCalc_eps_g) 139
 fCalc_u_mc (fCalc_eps_g) 139

B.2. Code
Continued on next page.

B
 M

A
T

L
A

B
 C

od
e

103

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

%% Start

% Frank Niewold
% Master of Science Thesis
% Commissioned by IF Technology
% Released version 1.0, February 2017
% Documented in "Artificial Lift in Geothermal Wells - A Study to Binary Cycle Geothermal Power Plants
% with Gas Lift in the Production Well"

% This is the main script to perform a simulation of a geothermal power
% plant system containing a reservoir, production well, power plant and
% injecion well.

% Before running the script Start.m
% Add to path selected folders and subfolders in the folder 'Matlab model'
% Define operating conditions and geometries in 'Model Input.xlsx'

% close all
% clear all

tic

%% Declaration of relevant data tables, constants and auxiliary model parameters
[status, input, data, stat] = fSettings();
if (stat == status.SUCCES); disp('Model settings succes'); end;
if (stat == status.FAILURE); return; end;

%% Excel initialization
[stat] = fInitialize_Excel(status);
if (stat == status.SUCCES); disp('Initialize Excel succes'); end;
if (stat == status.FAILURE); return; end;

%% Read and structure the model input
[input, stat] = fModel_Input(input, data, status);
if (stat == status.SUCCES); disp('Model Input succes'); end;
if (stat == status.FAILURE); return; end;

%% Vapor-liquid equilibrium calculation
[output, stat] = fCalc_VLE(input, status);
if (stat == status.SUCCES); disp('VLE calculation succes'); end;
if (stat == status.FAILURE); return; end;

%% Reservoir simulation
[input, output, stat, geofprops] = fCalc_reservoir(input, output, data, status);
if (stat == status.SUCCES); disp('Reservoir calculation succes'); end;
if (stat == status.FAILURE); return; end;

%% Production well single-flash power plant simulation
[input, output, stat, geofprops] = fCalc_prodwell(input, output, data, status);
if (stat == status.SUCCES); disp('Production well calculation succes'); end;
if (stat == status.FAILURE); return; end;

%% Production well with gas lift system simulation
[input, output, stat, geofprops] = fCalc_prodwell_GL(input, output, data, status);
if (stat == status.SUCCES); disp('Production well with gas lift calculation succes'); end;
if (stat == status.FAILURE); return; end;

%% Single-flash power plant simulation
[input, output, stat] = fCalc_SF(input, output, status, data, 1);
if (stat == status.SUCCES); disp('Single-flash power plant calculation succes'); end;
if (stat == status.FAILURE); return; end;

%% Binary cycle power plant simulation
[input, output, stat] = fCalc_BC(input, output, status, data, 1);
if (stat == status.SUCCES); disp('Binary cycle power plant calculation succes'); end;
if (stat == status.FAILURE); return; end;

%% Injection well simulation single-flash power plant
[input, output, stat, geofprops] = fCalc_injwell(input, output, data, status);
if (stat == status.SUCCES); disp('Injection well calculation succes'); end;
if (stat == status.FAILURE); return; end;

%% Injection well simulation binary cycle (BC) power plant
[input, output, stat, geofprops] = fCalc_injwell_BC(input, output, data, status);
if (stat == status.SUCCES); disp('Binary cycle injection well calculation succes'); end;
if (stat == status.FAILURE); return; end;

%% Create figures
fCreate_figures(input, output, status);

if (stat == status.SUCCES); disp('Creating figures succes'); end;
if (stat == status.FAILURE); return; end;

fClose_Excel();

toc

%% fSettings

% Declaration of relevant data tables, constants and auxiliary model parameters
% Frank Niewold
% Released version 1.0, February 2017

function [status, input, data, stat] = fSettings()

 % List of constants
 input.general.g = 9.81; % gravitational constant [m/s2]
 input.general.M_CO2 = 44.01; % molar mass CO2 [g/mol]
 input.general.M_H2O = 18.01528; % molar mass H2O [g/mol]
 input.general.M_NaCl = 58.4428; % molar mass NaCl [g/mol]
 input.general.gamma = 1.781072; % Euler's constant e^0.577215

 %% List of model parameters
 % Extensive explanation @ end of this function

 %% fSettings
 input.settings.dT_H2O_sat = 0.1; % Safety margin T_sat H2O (fSettings)

 %% fCalc_VLE
 input.settings.T_VLE_range = 100:1:260;% Necessary temperature range production well (fCalc_VLE)
 input.settings.dP_VLE_sat_v = 0.001; % Safety margin P_sat_v for VLE gas phase pr...(fCalc_VLE)

 %% fCalc_prodwell
 input.settings.nr_it_dp = 1:10; % Maximum number of iterations to recalculate production
 % well between degassing pressures (fCalc_prodwell)
 input.settings.dP_abs_pw = 0.01; % Minimum required absolute pressure [bar] difference
 % between two subsequent iterations for convergence
 % at degassing pressure (fCalc_prodwell)
 %% fCalc_geofprops3
 input.settings.error_h_gp3 = 1; % Error between calculated enthalpies [J/kg]
 % (fCalc_geofprops3)
 input.settings.n_it_gp3 = 10; % Maximum number of iterations before iteration switches
 % to fixed step iterations (fCalc_geofprops3)
 input.settings.n_dT_gp3 = 3; % Maximum number of iterations where dT_old < dT_new,
 % which means that T diverges (fCalc_geofprops3)
 input.settings.dT_gp3 = 0.1; % Fixed temperature step [K] to converge to solution
 % (fCalc_geofprops3)

 %% fCalc_geofprops2
 input.settings.error_h_gp2 = 10; % Error between calculated enthalpies [J/kg]
 % (fCalc_geofprops2)
 input.settings.n_it_gp2 = 10; % Maximum number of iterations before iteration switches
 % to fixed step iterations (fCalc_geofprops2)
 input.settings.n_dT_gp2 = 1; % Maximum number of iterations where dT_old < dT_new,
 % which means that T diverges (fCalc_geofprops2)
 input.settings.dT_gp2 = 0.1; % Fixed temperature step [K] to converge to solution
 % (fCalc_geofprops2)
 input.settings.dT_VLE_sat_v = 0.09; % Safety margin on T_sat_v for temperature check region
 % 2 (fCalc_geofprops2)

 %% fCalc_SF
 input.settings.dP_step_SF = 0.5; % Stepsize pressure [bar] to find maximum power
 % single-flash power plant (fCalc_SF)
 input.settings.chi_2_min = 0.1; % Minimum quantity for initial flash calculation if
 % quality is 0 in production well (fCalc_SF)
 input.settings.error_eta_t_SF = 0.0001;% Error between calculated new and old turbine efficiency
 % taking into account wet turbine efficiency (fCalc_SF)
 input.settings.T0_12 = 150; % Initial temperature for iteration of temperature @
 % state 12 (fCalc_SF)
 input.settings.error_T_9_10 = 1; % Error between T_10 and T_9 [K] (fCalc_SF)

 %% fCalc_BC
 input.settings.dT_evap = 0.5; % Temperature step calculation maximum power output BC

 %% Load data tables with relevant thermophysical properties for interpolation
 load H2O_sat;
 load m_CO2_degas; load m_NaCl_degas; load P_degas; load T_degas;
 load m_SC.mat; load T_SC.mat; load SC.mat;

104

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 load P_CO2; load T_CO2; load h_CO2; load s_CO2;
 load H2O_sat_props;
 load h_H2O_SH; load s_H2O_SH; load T_H2O_SH; load P_H2O_SH; load cp_H2O_SH;
 load T_H2O_SC; load P_H2O_SC; load cp_H2O_SC; load rho_H2O_SC; load s_H2O_SC
 load C5H12_sat_props;

 % Degassing tables Duan and Sun (2003)
 data.m_CO2_degas = m_CO2_degas; % molality CO2 0 - 1.5 [mol/kg]
 data.m_NaCl_degas = m_NaCl_degas; % molality NaCl 0 - 3 [mol/kg]
 data.T_degas = T_degas; % temperature 423 - 523 [K]
 data.P_degas = P_degas; % pressure [bar]

 % Separation coefficient tables
 data.m_SC = m_SC; % molality NaCl 0 - 3 [mol/kg]
 data.T_SC = T_SC; % temperature SC 100 - 260 [C]
 data.SC = SC; % separation coefficient

 % H2O properties
 data.H2O_sat_props = H2O_sat_props; % 7 columns (P_sat[bar],T_sat[C],h_sat_l[kJ/kg],
 % h_sat_v[kJ/kg],s_sat_l[kJ/kg/K],s_sat_v[kJ/kg/K],rho_l)
 data.P_H2O_SC = P_H2O_SC; % pressure subcooled H2O 0.01 - 15 [bar]
 data.T_H2O_SC = T_H2O_SC; % temperature subcooled H2O 6.9 - 198.3 [C]
 data.cp_H2O_SC = cp_H2O_SC; % specific heat capacity subcooled H2O [J/kg/K]
 data.rho_H2O_SC = rho_H2O_SC; % density subcooled H2O [kg/m3]
 data.s_H2O_SC = s_H2O_SC; % entropy subcooled H2O [kg/m3]
 data.P_H2O_SH = P_H2O_SH; % pressure superheated H2O 0.8 - 1.3 [bar]
 data.T_H2O_SH = T_H2O_SH; % temperature superheated H2O 100 - 373 [C]
 data.cp_H2O_SH = cp_H2O_SH; % specific heat capacity superheated H2O [J/kg/K]

 % CO2 properties
 data.P_CO2 = P_CO2; % pressure 0.005 - 40 [bar]
 data.T_CO2 = T_CO2; % temperature 20 - 400 [C]
 data.h_CO2 = h_CO2; % enthalpy [kJ/kg]
 data.s_CO2 = s_CO2; % entropy [kJ/kg/K]

 data.C5H12_sat_props = C5H12_sat_props; % 6 columns (T_sat[C],P_sat[bar],h_sat_l[kJ/kg],
 % h_sat_v[kJ/kg],s_sat_l[kJ/kg/K],s_sat_v[kJ/kg/K])

 % Adjustment of data tables
 data.H2O_sat(:,2) = H2O_sat(:,2) + input.settings.dT_H2O_sat;
 % Input saturated vapour temperature/pressure water
 data.H2O_sat = H2O_sat;

 %% Auxiliary parameters
 status.SUCCES = 1;
 status.FAILURE = 0;
 status.YES = 1;
 status.NO = 0;

 % Succesfull simulation
 stat = status.SUCCES;

end

% List of model parameters
% Extensive explanation with default values

% input.settings.dT_H2O_sat = 0.1;
% Safety margin T_sat H2O. The saturated temperature is interpolated from the data table H2O_sat.
% The safety margin prevents that the interpolated saturated temperature is below the saturated
% temperature from the Francke Model.

% input.settings.T_VLE_range = 100:1:250;
% Necessary temperature range production well. This is the temperature range for which the VLE
% properties are obtained.

% input.settings.dP_VLE_sat_v = 0.001;
% Safety margin P_sat_v for VLE gas phase properties. The P_sat_v is decreased with DP_VLE_sat_v
% to make sure that gas phase properties are obtained from Francke Model.

%input.settings.DF_model = 2;
% Drift-flux model choice. 1 == Hasan & Kabir (2010), 2 == Rouhani & Axelsson (1970),
% 3 == Dix (1971), 4 == Nicklin (1961), 5 == Toshiba (1989).

% input.settings.nr_it_dp = 1:5;
% Number of iterations to recalculate production well between degassing pressures of Duan(2003)
% Francke (2014).

% input.settings.error_h_gp3 = 1;

% Error between calculated enthalpies [J/kg] (fCalc_geofprops3). The calculated enthalpies are
% from the energy balance and from the Francke Model iteration.

% input.settings.n_it_gp3 = 10;
% Maximum number of iterations before iteration switches to fixed step iterations. At first
% iteration is performed by a manual programmed code with variable stepsizes. If iteration does
% not succeed after user-defined number of iterations, fixed step iteration is performed based
% on the trend of the temperature and enthalpy.

% input.settings.n_dT_gp3 = 2;
% Maximum number of iterations where dT_old < dT_new, which means that T diverges. The iteration
% procedure is based on a mutable T in order to solve the equations for P and h. If the dT between
% T_new and T_old increases in a subsequent iteration, the calculation diverges and no solution
% is found.

% input.settings.dT_gp3 = 0.5;
% Fixed temperature step [K] to converge to solution (fCalc_geofprops3). Lower dT decreases the
% calculation error, but increases the computational time.

% input.settings.dP_abs_pw = 0.1;
% Absolute pressure difference [bar] between two subsequent iterations taken into account P_degas
% from Duan and Sun (2003). This is applied on the first segment before degassing start according
% to Francke (2014).

% input.settings.error_h_gp2 = 10;
% Error between calculated enthalpies [J/kg] (fCalc_geofprops2). The calculated enthalpies are
% from the energy balance and from the Francke Model iteration.

% input.settings.n_it_gp2 = 10;
% Maximum number of iterations before iteration switches to fixed step iterations. At first
% iteration is performed by a manual programmed code with variable stepsizes. If iteration does
% not succeed after user-defined number of iterations, fixed step iteration is performed based
% on the trend of the temperature and enthalpy.

% input.settings.n_dT_gp2 = 3;
% Maximum number of iterations where dT_old < dT_new, which means that T diverges. The iteration
% procedure is based on a mutable T in order to solve the equations for P and h. If the dT between
% T_new and T_old increases in a subsequent iteration, the calculation diverges and no solution
% is found.

% input.settings.dT_gp2 = 0.1;
% Fixed temperature step [K] to converge to solution (fCalc_geofprops2). Lower dT decreases the
% calculation error, but increases the computational time.

% input.settings.dT_VLE_sat_v = 0.05;
% Safety margin on T_sat_v for temperature check region 2 (fCalc_geofprops2). (P < 40) &&
% (T < T_sat_v - dT_VLE_sat_v) applies to region 2.

% input.settings.dP_step_SF = 0.5;
% Stepsize pressure [bar] to find maximum power single-flash power plant (fCalc_SF). If the
% geothermal fluid have not flashed yet or enough in the production well, the fluid is flashed
% in the cyclone separator. dP_step_SF is the fixed stepsize to find maximum power.

% input.settings.chi_2_min = 0.1;
% Minimum quantity for initial flash calculation if quality is 0 in production well (fCalc_SF).

% input.settings.error_eta_t_SF = 0.0001;
% Error between calculated new and old turbine efficiency taking into account wet turbine
% efficiency. Wet turbine efficiency is a function of the quantity, therefore it needs an extra
% iteration (fCalc_SF)

% input.settings.T0_12 = 150;
% Initial temperature for iteration of temperature @ state 12 (fCalc_SF). T0_12 is the iteration
% variable in order to find the solution for isentropic compression s_mix_11 = s_mix_12s. This is
% carefully chosen to converge to a solution.

% input.settings.error_T_9_10 = 1;
% Error between T_10 from injection well calculation and T_9 from single-flash power plant calculation
% in [K].

%% f_Initialize_Excel

% Excel initialization
% Frank Niewold
% Released version 1.0, February 2017

B
 M

A
T

L
A

B
 C

od
e

105

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

function [stat] = fInitialize_Excel(status)

 % Check if Excel workbook(s) are open
 try
 % Check if an Excel server is running
 Excel = actxGetRunningServer('Excel.Application');
 catch
 % No instance of Excel is currently running.
 end

 % If Excel workbook(s) are open, open dialogue box
 if exist('Excel','var')
 formatSpec = 'All active Excel files will be saved and closed.\n\nIs this OK?';
 str = sprintf(formatSpec);
 choice = questdlg(str,'Warning','YES','NO','NO');
 switch choice
 % case 'YES'
 case 'NO'
 msgbox('Save or close Excel files before running Start.m');
 stat = status.FAILURE;
 return
 end

 wbs = Excel.Workbooks; % Get the names of all open Excel files

 % List the entire path of all Excel workbooks that are currently open
 for i = 1:wbs.Count
 wbs.Item(i).FullName;
 end
 for i = 1:wbs.Count
 [~,name,~] = fileparts(wbs.Item(i).FullName); % [pathstr,name,ext]
 wbs.Item(name).Save;
 end
 Excel.Quit
 end

 % Create an Excel server and open brine_prop.xlsm
 Excel = actxserver ('Excel.Application');
 set (Excel, 'Visible', 1);
 Excel.Workbooks.Open([pwd '\brine_prop.xlsm']);

 % Set right Excel sheet
 Excel = actxGetRunningServer('Excel.Application');

 % Activate sheet
 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 1);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;

 % KCl, CaCl, N2, CH4 mass fraction are 0
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);

 % Succesfull simulation
 stat = status.SUCCES;

end

%% fModel_Input

% Read and structure the model input
% Frank Niewold
% Released version 1.0, February

function [input, stat] = fModel_Input(input, data, status)

 % Succesfull simulation
 stat = status.SUCCES;

 % Read user-defined model input from Excel file 'Model Input'
 [num,txt,~] = xlsread('Model Input','Input general');
 input_general = num;

 %% Input parameters reservoir properties
 input.general.m_gf = input_general(1,1); % mass flow geothermal fluid [kg/s]

 input.general.P_res = input_general(2,1); % pressure reservoir [bar]
 input.general.T_res = input_general(3,1); % temperature reservoir [C]
 input.general.PI = input_general(4,1); % productivity index
 input.general.II = input_general(5,1); % injectivity index
 input.general.w_NaCl = input_general(6,1); % mass fraction NaCl
 input.general.w_CO2 = input_general(7,1); % mass fraction CO2

 % Check if reservoir is in liquid state single-flash power plant
 [geofprops] = fCalc_geofprops1(input.general.P_res, input.general.T_res, input.general.w_NaCl, ...
 input.general.w_CO2);
 if geofprops(1,1) > (input.general.P_res)
 disp('ERROR: Reservoir pressure below degassing pressure. ACTION: Increase reservoir pressure');
 msgbox('Reservoir pressure below degassing pressure. ACTION: Increase reservoir pressure',
'Error','error');
 stat = status.FAILURE;
 end

 %% Environmental properties
 input.general.P_atm = input_general(1,9); % atmospheric pressure [bar]
 input.general.T_surf_r = input_general(2,9); % temperature earth's surface rock [C]
 input.general.T_surf_w = input_general(3,9); % temperature surface water [C]

 %% Input parameters production well
 years = input_general(1,5); if isnan(years) == 1; years = 0; end;
 days = input_general(2,5); if isnan(days) == 1; days = 0; end;
 hours = input_general(3,5); if isnan(hours) == 1; hours = 0; end;
 seconds = input_general(4,5); if isnan(seconds) == 1; seconds = 0; end;
 input.general.t = (years * 365 * 24 * 3600) + (days * 24 * 3600) + (hours * 3600) + seconds; % [s]

 % Input drift-flux model
 s1 = {'Homogeneous','Rouhani & Axelsson','Hasan & Kabir','Dix','Nicklin','Toshiba'};
 s2 = txt(15,6);
 tf = strcmp(s1,s2);
 input.prodwell.DF_model = find(tf);
 input.prodwell_GL.DF_model = find(tf);

 %% Input parameters single-flash power plant
 input.SF.P_out_t = input_general(15,1); % pressure outlet steam turbine
 input.SF.eta_t = input_general(16,1); % turbine efficiency
 input.SF.eta_td = input_general(17,1); % dry steam turbine efficiency
 input.SF.eta_p = input_general(18,1); % pump efficiency
 input.SF.eta_g = input_general(19,1); % generator efficiency
 input.SF.eta_SEC = input_general(20,1); % efficiency centrifugal compressor
 input.SF.T_out_cd = input_general(21,1); % temperature outlet condenser
 input.SF.T_pinch_cd = input_general(22,1); % pinchpoint temperature condenser
 input.SF.dP_cwp = input_general(23,1); % pressure build-up cooling water pump

% % MATLAB simulation
% s1 = {'YES'};
% s2 = txt(34,2);
% sim.SF = strcmp(s1,s2); % 1 = YES, 0 = NO

 %% Input parameters binary cycle power plant
 input.B.T_inj = input_general(15,5); % Reinjection temperature geothermal fluid
 input.B.T_pinch_ev = input_general(16,5); % Pinchpoint temperature preheater/evaporator
 input.B.eta_td = input_general(17,5); % dry steam turbine efficiency
 input.B.eta_p = input_general(18,5); % pump efficiency
 input.B.eta_g = input_general(19,5); % generator efficiency
 input.B.eta_com = input_general(20,5); % gas lift compressor efficiency
 input.B.T_out_cd = input_general(21,5); % temperature outlet condenser
 input.B.T_pinch_cd = input_general(22,5); % Pinchpoint temperature condenser
 input.B.dP_cwp = input_general(23,5); % pressure build-up cooling water pump

% % MATLAB simulation
% s1 = {'YES'};
% s2 = txt(34,6);
% sim.B = strcmp(s1,s2); % 1 = YES, 0 = NO

 %% Input production well dimensions single-flash power plant
 dim_prodwell = xlsread('Model Input','dim_prodwell');
 [row,~] = size(dim_prodwell);
 dim_prodwell = dim_prodwell(2:row,:);
 dim_prodwell(isnan(dim_prodwell)) = 0;
 input.prodwell.segment(:,1) = 1:sum(dim_prodwell(:,11)); % create array of segment numbers
 input.prodwell.dl = []; % create array of segment lengths
 input.prodwell.D_i = []; % create array of segment diameters
 input.prodwell.dz = []; % create array of segment heights
 input.prodwell.tvd = []; % create array of segment true vertical depths
 tvd_pre = 0; % initial true vertical depth

106

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 input.prodwell.eps_pipe = []; % create array of segment absolute pipe roughness
 input.prodwell.grad_T_g = []; % create array of segment geothermal temperature gradients
 input.prodwell.k_r = []; % create array of segment rock thermal conductivities
 input.prodwell.alfa_r = []; % create array of segment rock thermal diffusivities

 % fill arrays with model input
 for i = 1:size(dim_prodwell,1)
 dl = dim_prodwell(i,3)/dim_prodwell(i,11);
 D_i = dim_prodwell(i,9);
 dz = dim_prodwell(i,5)/dim_prodwell(i,11);
 dz_tvd = dim_prodwell(i,5)/dim_prodwell(i,11);
 eps_pipe = dim_prodwell(i,12);
 grad_T_g = dim_prodwell(i,13);
 k_r = dim_prodwell(i,14);
 alfa_r = dim_prodwell(i,15);
 for j = 1:dim_prodwell(i,11)
 input.prodwell.dl(end+1,1) = dl;
 input.prodwell.D_i(end+1,1) = D_i;
 input.prodwell.dz(end+1,1) = dz;
 input.prodwell.tvd(end+1,1) = dz_tvd + tvd_pre;
 tvd_pre = input.prodwell.tvd(end,1);
 input.prodwell.eps_pipe(end+1,1) = eps_pipe;
 input.prodwell.grad_T_g(end+1,1) = grad_T_g;
 input.prodwell.k_r(end+1,1) = k_r;
 input.prodwell.alfa_r(end+1,1) = alfa_r;
 end
 end

 % Flip arrays. Bottom production well = top array
 input.prodwell.dl = flipud(input.prodwell.dl);
 input.prodwell.dz = flipud(input.prodwell.dz);
 input.prodwell.tvd = flipud(input.prodwell.tvd);
 input.prodwell.D_i = flipud(input.prodwell.D_i);
 input.prodwell.eps_pipe = flipud(input.prodwell.eps_pipe);
 input.prodwell.grad_T_g = flipud(input.prodwell.grad_T_g);
 input.prodwell.k_r = flipud(input.prodwell.k_r);
 input.prodwell.alfa_r = flipud(input.prodwell.alfa_r);

 %% Input injection well dimensions
 dim_injwell = xlsread('Model Input','dim_injwell');
 [row,~] = size(dim_injwell);
 dim_injwell = dim_injwell(2:row,:);
 input.injwell.segment(:,1) = 1:sum(dim_injwell(:,11));
 input.injwell.dl = []; % create array of segment lengths
 input.injwell.D_i = []; % create array of segment diameters
 input.injwell.dz = []; % create array of segment heights
 input.injwell.tvd = []; % create array of segment true vertical depths
 tvd_pre = 0;
 input.injwell.eps_pipe = []; % create array of segment absolute pipe roughness
 input.injwell.grad_T_g = []; % create array of segment geothermal temperature gradients
 input.injwell.k_r = []; % create array of segment rock thermal conductivities
 input.injwell.alfa_r = []; % create array of segment rock thermal diffusivities

 % fill arrays with model input
 for i = 1:size(dim_injwell,1)
 dl = dim_injwell(i,3)/dim_injwell(i,11);
 D_i = dim_injwell(i,9);
 dz = dim_injwell(i,5)/dim_injwell(i,11);
 dz_tvd = dim_injwell(i,5)/dim_injwell(i,11);
 eps_pipe = dim_injwell(i,12);
 grad_T_g = dim_injwell(i,13);
 k_r = dim_injwell(i,14);
 alfa_r = dim_injwell(i,15);
 for j = 1:dim_injwell(i,11)
 input.injwell.dl(end+1,1) = dl;
 input.injwell.D_i(end+1,1) = D_i;
 input.injwell.dz(end+1,1) = dz;
 input.injwell.tvd(end+1,1) = dz_tvd + tvd_pre;
 tvd_pre = input.injwell.tvd(end,1);
 input.injwell.eps_pipe(end+1,1) = eps_pipe;
 input.injwell.grad_T_g(end+1,1) = grad_T_g;
 input.injwell.k_r(end+1,1) = k_r;
 input.injwell.alfa_r(end+1,1) = alfa_r;
 end
 end

 % Flip arrays. Bottom injection well = top array
 input.injwell.dl = flipud(input.injwell.dl);
 input.injwell.dz = flipud(input.injwell.dz);

 input.injwell.tvd = flipud(input.injwell.tvd);
 input.injwell.D_i = flipud(input.injwell.D_i);
 input.injwell.eps_pipe = flipud(input.injwell.eps_pipe);
 input.injwell.grad_T_g = flipud(input.injwell.grad_T_g);
 input.injwell.k_r = flipud(input.injwell.k_r);
 input.injwell.alfa_r = flipud(input.injwell.alfa_r);

 %% Input production well dimensions with gas lift system
 dim_prodwell = xlsread('Model Input','dim_prodwell');
 [row,~] = size(dim_prodwell);
 dim_prodwell = dim_prodwell(2:row,:);
 dim_prodwell(isnan(dim_prodwell)) = 0;
 input.prodwell_GL.segment(:,1) = 1:sum(dim_prodwell(:,11)); % create array of segment numbers
 input.prodwell_GL.dl = []; % create array of segment lengths
 input.prodwell_GL.D_i = []; % create array of segment diameters
 input.prodwell_GL.dz = []; % create array of segment heights
 input.prodwell_GL.tvd = []; % create array of segment true vertical depths
 tvd_pre = 0; % initial true vertical depth
 input.prodwell_GL.eps_pipe = []; % create array of segment absolute pipe roughness
 input.prodwell_GL.grad_T_g = []; % create array of segment geothermal temperature gradients
 input.prodwell_GL.k_r = []; % create array of segment rock thermal conductivities
 input.prodwell_GL.alfa_r = []; % create array of segment rock thermal diffusivities

 input.prodwell_GL.z_GL = dim_prodwell(5,19); % depth gas lift valve
 input.prodwell_GL.m_GL = dim_prodwell(6,19); % initial mass flow rate gas lift
 [row_sn,~] = find(dim_prodwell(:,2) == input.prodwell_GL.z_GL);
 input.prodwell_GL.segnr_GL = sum(dim_prodwell(row_sn+1:row-1,11)) + 1;
 % segment number of gas lift valve

 % fill arrays with model input
 for i = 1:size(dim_prodwell,1)
 dl = dim_prodwell(i,3)/dim_prodwell(i,11);
 D_i = dim_prodwell(i,9);
 dz = dim_prodwell(i,5)/dim_prodwell(i,11);
 dz_tvd = dim_prodwell(i,5)/dim_prodwell(i,11);
 eps_pipe = dim_prodwell(i,12);
 grad_T_g = dim_prodwell(i,13);
 k_r = dim_prodwell(i,14);
 alfa_r = dim_prodwell(i,15);
 for j = 1:dim_prodwell(i,11)
 input.prodwell_GL.dl(end+1,1) = dl;
 input.prodwell_GL.D_i(end+1,1) = D_i;
 input.prodwell_GL.dz(end+1,1) = dz;
 input.prodwell_GL.tvd(end+1,1) = dz_tvd + tvd_pre;
 tvd_pre = input.prodwell_GL.tvd(end,1);
 input.prodwell_GL.eps_pipe(end+1,1) = eps_pipe;
 input.prodwell_GL.grad_T_g(end+1,1) = grad_T_g;
 input.prodwell_GL.k_r(end+1,1) = k_r;
 input.prodwell_GL.alfa_r(end+1,1) = alfa_r;
 end
 end

 % Flip arrays. Bottom production well = top array
 input.prodwell_GL.dl = flipud(input.prodwell_GL.dl);
 input.prodwell_GL.dz = flipud(input.prodwell_GL.dz);
 input.prodwell_GL.tvd = flipud(input.prodwell_GL.tvd);
 input.prodwell_GL.D_i = flipud(input.prodwell_GL.D_i);
 input.prodwell_GL.eps_pipe = flipud(input.prodwell_GL.eps_pipe);
 input.prodwell_GL.grad_T_g = flipud(input.prodwell_GL.grad_T_g);
 input.prodwell_GL.k_r = flipud(input.prodwell_GL.k_r);
 input.prodwell_GL.alfa_r = flipud(input.prodwell_GL.alfa_r);

 %% Obtain molalities from GFP Excel model
 Excel = actxGetRunningServer('Excel.Application');
 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 1);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C8', input.general.w_NaCl);
 sheet.set('Range', 'C11', input.general.w_CO2);
 range = sheet.get('Range', 'D8:D13');
 range.Value;
 data = range.Value;
 input.general.m_NaCl = cell2mat(data(1,1));
 input.general.m_CO2 = cell2mat(data(4,1));

end

B
 M

A
T

L
A

B
 C

od
e

107

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

%% fCalc_VLE

% Calculation of vapor-liquid equilibrium
% Frank Niewold
% Released version 1.0, February 2017

function [output, stat] = fCalc_VLE(input, status)

 %input.general.w_NaCl = 0;
 %input.general.w_CO2 = 0;
 T = input.settings.T_VLE_range;

 Excel = actxGetRunningServer('Excel.Application');

 h = waitbar(0,'VLE calculation. Please wait...');

 % Obtain saturated vapor properties for user-defined temperatures
 for i = 1:length(T)
 P = 0; % for obtaining P_sat_v from Francke Model
 waitbar(i/length(T))
 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 1); % two-phase
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;

 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T(i));
 sheet.set('Range', 'C8', 0);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', 0);
 %sheet.set('Range', 'C11', input.general.w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data = range.Value;
 B = regexp(strrep(char(data(16,1)), ',', '.'), '\d+', 'match'); % replace , with .
 output.VLE.P_sat_v(i,1) = str2num([char(B(1,4)) '.' char(B(1,5))]);
 output.VLE.T_sat_v(i,1) = T(i);

 % Obtain density, heat capacity and enthalpy for saturated vapor conditions
 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 2); % gas phase
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C2', output.VLE.P_sat_v(i,1) - input.settings.dP_VLE_sat_v);
 sheet.set('Range', 'C3', T(i));
 sheet.set('Range', 'C5', input.general.w_CO2);
 sheet.set('Range', 'C6', 0);
 sheet.set('Range', 'C7', 0);
 range = sheet.get('Range', 'C8');
 range.Value;
 w_H2O = range.Value;
 if w_H2O == 1
 range = sheet.get('Range', 'H3:H5');
 range.Value;
 datagas = cell2mat(range.Value(1:3,1));
 output.VLE.rho_sat_v(i,1) = datagas(1,1);
 output.VLE.cp_sat_v(i,1) = datagas(2,1);
 output.VLE.h_sat_v(i,1) = datagas(3,1);
 else
 range = sheet.get('Range', 'G3:G5');
 range.Value;
 datagas = cell2mat(range.Value(1:3,1));
 output.VLE.rho_sat_v(i,1) = datagas(1,1);
 output.VLE.cp_sat_v(i,1) = datagas(2,1);
 output.VLE.h_sat_v(i,1) = datagas(3,1);
 end

 % Obtain density, heat capacity and enthalpy for saturated liquid conditions
 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 3); % liquid phase
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', output.VLE.P_sat_v(i,1) + input.settings.dP_VLE_sat_v);
 sheet.set('Range', 'C4', T(i));
 sheet.set('Range', 'C6', input.general.w_NaCl);
 sheet.set('Range', 'C7', 0);

 sheet.set('Range', 'C8', 0);

 range = sheet.get('Range', 'G4:G6');
 range.Value;
 dataliq = cell2mat(range.Value(1:3,1));
 output.VLE.rho_sat_l(i,1) = dataliq(1,1);
 output.VLE.cp_sat_l(i,1) = dataliq(2,1);
 output.VLE.h_sat_l(i,1) = dataliq(3,1);

 end
 close(h)
 stat = status.SUCCES;

end

%% fCalc_reservoir

% Simulation of reservoir
% Frank Niewold
% Released version 1.0, February

function [input, output, stat, geofprops] = fCalc_reservoir(input, output, data, status)

 % Succesfull simulation
 stat = status.SUCCES;

 output.reservoir.geofprops = zeros(3,31); % Create matrix with zeros
 % Row 1 = inlet reservoir, row 2 = far field reservoir, row 3 is outlet reservoir

 %% Outlet injection well and inlet reservoir
 output.reservoir.geofprops(1,1) = input.general.P_res + (input.general.m_gf / input.general.II);
 % pressure [bar]
 %% far-field reservoir
 output.reservoir.geofprops(2,1) = input.general.P_res; % Pressure [bar] in reservoir
 output.reservoir.geofprops(2,2) = input.general.T_res; % Temperature [C] in reservoir
 output.reservoir.geofprops(2,3:5) = [input.general.w_NaCl input.general.w_CO2 (1 - ...
 input.general.w_NaCl - input.general.w_CO2)];
 % Overall composition mass fractions
 [geofprops] = fCalc_geofprops1 (output.reservoir.geofprops(2,1), input.general.T_res, ...
 input.general.w_NaCl, input.general.w_CO2, output);
 % Calculate geothermal fluid properties
 output.reservoir.geofprops(2,6:31) = geofprops(1,1:26);

 %% Inlet production well and outlet reservoir
 output.reservoir.geofprops(3,1) = output.reservoir.geofprops(2,1) - (input.general.m_gf/...
 input.general.PI); % pressure [bar]
 output.reservoir.geofprops(3,2) = input.general.T_res; % temperature [C]
 output.reservoir.geofprops(3,3:5) = [input.general.w_NaCl input.general.w_CO2 (1 - ...
 input.general.w_NaCl - input.general.w_CO2)];% composition
 [geofprops] = fCalc_geofprops1 (output.reservoir.geofprops(3,1), input.general.T_res, ...
 input.general.w_NaCl, input.general.w_CO2, output); % geothermal fluid properties
 output.reservoir.geofprops(3,6:31) = geofprops(1,1:26); % geothermal fluid properties

 % Check if geothermal fluid is liquid with degassing pressure Duan and Sun (2003)
 output.reservoir.P_degas_in = interp3(data.m_NaCl_degas, data.T_degas, data.m_CO2_degas, ...
 data.P_degas, input.general.m_NaCl, ...
 output.reservoir.geofprops(3,2) + 273.15, input.general.m_CO2);

 if output.reservoir.geofprops(3,1) < output.reservoir.P_degas_in
 disp('ERROR: Pressure at inlet production well below degassing pressure. ACTION: Decrease mass flow')
 msgbox('Pressure at inlet production well below degassing pressure. ACTION: Decrease mass flow',
'Error','error');
 stat = status.FAILURE;
 end
end

%% fCalc_prodwell

% Simulation of a production well – self flowing for a single-flash power plant
% Frank Niewold
% Released version 1.0, February 2017

function [input, output, stat, geofprops] = fCalc_prodwell(input, output, data, status)

 % Succesfull simulation
 stat = status.SUCCES;

108

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 % Create output from input production well dimensions
 for i = 1:max(input.prodwell.segment);
 output.prodwell.segnr(i,1) = input.prodwell.segment(i,1); % segment nr.
 output.prodwell.D_i(i,1) = input.prodwell.D_i(i,1); % inner diameter wellbore [m]
 output.prodwell.dl(i,1) = input.prodwell.dl(i,1); % length [m]
 output.prodwell.dz(i,1) = input.prodwell.dz(i,1); % dz [m]
 output.prodwell.tvd(i,1) = input.prodwell.tvd(i,1); % true vertical depth tvd [m]
 output.prodwell.grad_T_g(i,1) = input.prodwell.grad_T_g(i,1); % temperature gradient [m]
 output.prodwell.eps_pipe(i,1) = input.prodwell.eps_pipe(i,1); % absolute pipe roughness [m]
 output.prodwell.k_r(i,1) = input.prodwell.k_r(i,1); % rock thermal conductiv.[W/m/K]
 output.prodwell.alfa_r(i,1) = input.prodwell.alfa_r(i,1); % rock thermal diffusivity[m2/s]
 end
 output.prodwell.l(1,1) = 0; % length at begin segment [m]
 for i = 2:max(input.prodwell.segment);
 output.prodwell.l(i,1) = output.prodwell.l(i-1,1) + output.prodwell.dl(i-1,1);
 end

 % Get initial geothermal fluid properties from reservoir output
 output.prodwell.geofprops(1,:) = output.reservoir.geofprops(3,:); % geothermal fluid properties
 output.prodwell.P(1,1) = output.reservoir.geofprops(3,1); % pressure [bar]
 output.prodwell.T(1,1) = output.reservoir.geofprops(3,2); % temperature [C]
 output.prodwell.h(1,1) = output.reservoir.geofprops(3,11); % enthalpy [J/kg]
 output.prodwell.chi(1,1) = output.reservoir.geofprops(3,7); % gas mass fraction [-]
 output.prodwell.v_spec(1,1) = 1/output.reservoir.geofprops(3,9); % specific volume [m3/kg]
 output.prodwell.rho(1,1) = output.reservoir.geofprops(3,9); % density [kg/m3]
 output.prodwell.c_p(1,1) = output.reservoir.geofprops(3,10); % heat capacity [J/kg/K]
 output.prodwell.mu(1,1) = output.reservoir.geofprops(3,12); % viscosity [Pa*s]
 output.prodwell.eps_G(1,1) = output.reservoir.geofprops(3,8); % void fraction [-]

 % Initial geothermal fluid composition
 output.prodwell.w_NaCl_l(1,1) = output.reservoir.geofprops(3,13); % mass fraction NaCl in liquid
 output.prodwell.w_CO2_l(1,1) = output.reservoir.geofprops(3,16); % mass fraction CO2 in liquid
 output.prodwell.w_CO2_g(1,1) = output.reservoir.geofprops(3,24); % mass fraction CO2 in gas
 output.prodwell.w_H2O_l(1,1) = output.reservoir.geofprops(3,19); % mass fraction H2O in liquid
 output.prodwell.w_H2O_g(1,1) = output.reservoir.geofprops(3,27); % mass fraction H2O in gas

 % Calculate initial properties at inlet production well (first segment)
 output.prodwell.u(1,1) = fCalc_u(input.general.m_gf, output.prodwell.rho(1,1), ...
 output.prodwell.D_i(1,1)); % velocity [m/s]
 output.prodwell.Re(1,1) = fCalc_Re(output.prodwell.D_i(1,1), output.prodwell.rho(1,1), ...
 output.prodwell.u(1,1), output.prodwell.mu(1,1));
 % Reynolds number [-]
 output.prodwell.f(1,1) = fCalc_f(output.prodwell.chi(1,1), output.prodwell.eps_pipe(1,1), ...
 output.prodwell.D_i(1,1), output.prodwell.Re(1,1));
 % friction factor [-]
 output.prodwell.T_g = fCalc_T_g(output.prodwell.T(1,1), output.prodwell.grad_T_g, ...
 output.prodwell.tvd); % Geothermal temperature [C]
 output.prodwell.dQ(1,1) = fCalc_dQ(output.prodwell.T(1,1), output.prodwell.T_g(1,1), ...
 output.prodwell.D_i(1,1), output.prodwell.dl(1,1), ...
 input.general.m_gf, input.general.gamma, input.general.t, ...
 output.prodwell.k_r(1,1), output.prodwell.alfa_r(1,1));
 % Heat exchange with surroundings [J/kg]
 output.prodwell.dE_pot(1,1) = fCalc_dE_pot(input.general.g, output.prodwell.dz(1,1));
 % potential energy change [J/kg]
 output.prodwell.dP_f(1,1) = fCalc_dP_f(output.prodwell.D_i (1,1), output.prodwell.f(1,1), ...
 output.prodwell.rho(1,1), output.prodwell.u(1,1), ...
 output.prodwell.dl(1,1)); % frictional pressure change [J/kg]
 output.prodwell.dP_hs(1,1) = fCalc_dP_hs(input.general.g, output.prodwell.rho(1,1), ...
 output.prodwell.dz(1,1)); % hydrostatic pressure change [J/kg]
 output.prodwell.dE_k(1,1) = 0;
 output.prodwell.dP_k(1,1) = 0;
 %% Production well simulation from segment 2 to top
 j = 2; % 2nd segment number
 k = max(input.prodwell.segment); % last segment number

 formatSpec = 'Production well calculation.\nPlease wait...';
 str = sprintf(formatSpec);
 h = waitbar(0,str);

 % Calculate segments until two segments have a chi > 0 according to the Francke Model
 for l = 1:7 %input.settings.nr_it_dp % number of iterations
 for i = j:k

 waitbar(i/max(input.prodwell.segment))
 output.prodwell.P(i,1) = output.prodwell.P(i-1,1) - output.prodwell.dP_hs(i-1,1) - ...
 output.prodwell.dP_f(i-1,1) - output.prodwell.dP_k(i-1,1);
 % pressure pipe [bar]
 output.prodwell.h(i,1) = output.prodwell.h(i-1,1) - output.prodwell.dQ(i-1,1) - ...
 output.prodwell.dE_pot(i-1,1) - output.prodwell.dE_k(i-1,1);

 % enthalpy [J/kg]
 if output.prodwell.P(i,1) < 1
 disp('ERROR: Pressure loss in wellbore too high. ACTION: Decrease mass flow')
 close(h)
 msgbox('Pressure loss in wellbore too high. ACTION: Decrease mass flow', 'Error','error');
 stat = status.FAILURE; return;
 end;

 [geofprops, T_new, w_table] = fCalc_geofprops2 (output.prodwell.P(i,1), ...
 output.prodwell.T(i-1,1), input.general.w_NaCl, ...
 input.general.w_CO2, data.H2O_sat,output.prodwell.h(i,1),...
 output, output.prodwell.h(i-1,1), input, data);
 output.prodwell.T(i,1) = T_new; % temperature [C]
 output.prodwell.chi(i,1) = geofprops(1,2); % gas mass fraction [-]
 output.prodwell.v_spec(i,1) = 1/geofprops(1,4); % specific volume {m3/kg]
 output.prodwell.rho(i,1) = geofprops(1,4); % density [kg/m3]
 output.prodwell.c_p(i,1) = geofprops(1,5); % specific heat capacity [J/kg/K]
 output.prodwell.mu(i,1) = geofprops(1,7); % viscosity [Pa*s]
 output.prodwell.eps_G(i,1) = geofprops(1,3); % void fraction [-]

 % Drift flux model
 if output.prodwell.chi(i,1) > 0 && input.prodwell.DF_model > 1
 % quality larger than zero && DF_model = 1 --> homogeneous
 output.prodwell.rho_l(i,1) = geofprops(1,15); % density liquid phase [kg/m3]
 output.prodwell.rho_v(i,1) = geofprops(1,23); % density vapor phase [kg/m3]
 output.prodwell.mu_l(i,1) = geofprops(1,18); % viscosity liquid phase [Pa*s]
 output.prodwell.mu_v(i,1) = geofprops(1,26); % viscosity vapor phase [Pa*s]
 output.prodwell.l_E(i,1) = output.prodwell.l(i,1);
 % length from entrance [m]
 output.prodwell.u_sg(i,1) = ((output.prodwell.chi(i,1) * input.general.m_gf)/...
 geofprops(1,23))/(pi*(output.prodwell.D_i(i,1)/2)^2);
 % superficial gas velocity [m/s]
 output.prodwell.u_sl(i,1) = (((1-output.prodwell.chi(i,1)) * input.general.m_gf)/...
 geofprops(1,15))/(pi*(output.prodwell.D_i(i,1)/2)^2);
 % superficial liquid velocity [m/s]
 [eps_G, FP, u_gu, C_0] = fCalc_eps_G(output.prodwell.T(i,1), geofprops(1,15), ...
 geofprops(1,23), geofprops(1,18), geofprops(1,26), ...
 output.prodwell.l_E(i,1), output.prodwell.D_i(i,1), ...
 output.prodwell.eps_pipe(i,1), output.prodwell.u_sg(i,1), ...
 output.prodwell.u_sl(i,1), input.general.g, ...
 output.prodwell.chi(i,1), input.prodwell.DF_model);
 output.prodwell.eps_G(i,1) = eps_G; % void fraction
 output.prodwell.FP(i,1) = cellstr(FP); % flow pattern
 output.prodwell.rho(i,1) = output.prodwell.rho_v(i,1)*output.prodwell.eps_G(i,1)...
 + output.prodwell.rho_l(i,1)*...
 (1-output.prodwell.eps_G(i,1)); % density [kg/m3]
 output.prodwell.u_gu(i,1) = u_gu; % drift-flux velocity, u_gas relative to u_m
 output.prodwell.C_0(i,1) = C_0; % distribution parameter
 end

 % Output geothermal fluid composition - mass fractions
 output.prodwell.w_NaCl_l(i,1) = w_table(3,2);
 output.prodwell.w_CO2_l(i,1) = w_table(3,3);
 output.prodwell.w_CO2_g(i,1) = w_table(3,4);
 output.prodwell.w_H2O_l(i,1) = w_table(3,5);
 output.prodwell.w_H2O_g(i,1) = w_table(3,6);

 % Not used for now - mass fraction at transition
 output.prodwell.w_NaCl_l_t(i,1) = w_table(1,2);
 output.prodwell.w_CO2_l_t(i,1) = w_table(1,3);
 output.prodwell.w_CO2_g_t(i,1) = w_table(1,4);
 output.prodwell.w_H2O_l_t(i,1) = w_table(1,5);
 output.prodwell.w_H2O_g_t(i,1) = w_table(1,6);

 % Calculate segment properties
 output.prodwell.u(i,1) = fCalc_u(input.general.m_gf, output.prodwell.rho(i,1), ...
 output.prodwell.D_i(i,1)); % velocity [m/s]
 output.prodwell.Re(i,1) = fCalc_Re(output.prodwell.D_i(i,1), ...
 output.prodwell.rho(i,1), output.prodwell.u(i,1), ...
 output.prodwell.mu(i,1)); % Reynolds number [-]
 output.prodwell.f(i,1) = fCalc_f(output.prodwell.chi(i,1), ...
 output.prodwell.eps_pipe(i,1), output.prodwell.D_i(i,1),...
 output.prodwell.Re(i,1)); % friction factor [-]
 output.prodwell.dQ(i,1) = fCalc_dQ(output.prodwell.T(i,1), ...
 output.prodwell.T_g(i,1), output.prodwell.D_i(i,1), ...
 output.prodwell.dl(i,1), input.general.m_gf, ...
 input.general.gamma, input.general.t, ...
 output.prodwell.k_r(i,1), output.prodwell.alfa_r(i,1));
 % heat exchange with surroundings [J/kg]

B
 M

A
T

L
A

B
 C

od
e

109

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 output.prodwell.dE_pot(i,1) = fCalc_dE_pot(input.general.g, output.prodwell.dz(i,1));
 % potential energy [J/kg]

 output.prodwell.dP_f(i,1) = fCalc_dP_f(output.prodwell.D_i(i,1), ...
 output.prodwell.f(i,1), output.prodwell.rho(i,1), ...
 output.prodwell.u(i,1), output.prodwell.dl(i,1));
 % frictional pressure change [bar]
 output.prodwell.dP_hs(i,1) = fCalc_dP_hs(input.general.g, output.prodwell.rho(i,1), ...
 output.prodwell.dz(i,1));% hydrostatic pressure change [bar]
 output.prodwell.dE_k(i,1) = fCalc_dE_k(output.prodwell.u(i,1),output.prodwell.u(i-1,1));
 % kinetic energy [J/kg]
 output.prodwell.dP_k(i,1) = fCalc_dP_k(output.prodwell.rho(i,1), ...
 output.prodwell.u(i,1),output.prodwell.u(i-1,1));
 % kinetic pressure change [J/kg]
 % if i == size(input.prodwell.tvd,1)
 % output.prodwell.P(i+1,1) = output.prodwell.P(i,1) - output.prodwell.dP_hs(i,1) - ...
 % output.prodwell.dP_f(i,1); % pressure pipe [bar]
 % output.prodwell.h(i+1,1) = output.prodwell.h(i,1) - output.prodwell.Q(i,1) - ...
 % output.prodwell.E_pot(i,1); %enthalpy [J/kg]
 % end

 %% Check if two segments have a significant gas mass fraction
 if l == 1
 if output.prodwell.chi(i,1) > 0.0001 && output.prodwell.chi(i-1,1) > 0.0001
 output.prodwell.P_old = output.prodwell.P(i-2,1);
 break % start interpolation from P_degas Duan and Sun (2003)
 end
 elseif l > 1 && i >= (j+1)
 if output.prodwell.chi(i,1) > 0.0001 && output.prodwell.chi(i-1,1) > 0.0001
 output.prodwell.P_old = output.prodwell.P(i-2,1);
 break % start interpolation from P_degas Duan and Sun (2003)
 end
 end
 end

 % Find P_degas from Duan and Sun (2003)
 output.prodwell.P_degas = interp3(data.m_NaCl_degas, data.T_degas, data.m_CO2_degas, ...
 data.P_degas, input.general.m_NaCl, output.prodwell.T + 273.15,...
 input.general.m_CO2); % degassing pressure [bar]
 if i == k
 if output.prodwell.chi(k,1) < 0.0001 && output.prodwell.P(k,1) < ...
 output.prodwell.P_degas(k,1)
 [input, output, geofprops, i] = fCalc_prodwell_virtual(input, output, data, k);
 end
 if output.prodwell.chi(k,1) > 0.0001 && output.prodwell.P(k,1) < ...
 output.prodwell.P_degas(k,1) && output.prodwell.chi(k-1) == 0
 [input, output, geofprops, i] = fCalc_prodwell_virtual(input, output, data, k);
 end
 end

 % Find first segment number where degassing pressure Duan and Sun(2003) is above segment ...
 % pressure from Francke Model.
 m = find((output.prodwell.P_degas - output.prodwell.P) > 0,1);
 if isempty(m) == 1 % if P_degas Duan is not above P_degas Francke
 m = i;
 end
 n = i-1; % find(output.prodwell.chi(n:i-1,1) > 0.001,1) + (n - 1);

 if m < n % if P_degas Duan is above P_degas Francke
 % Create interpolation tables for interpolation between degassing pressures.
 P(1,1) = output.prodwell.P_degas(m,1); P(2,1) = output.prodwell.P(n,1); ...
 P(3,1) = output.prodwell.P(n+1,1); % pressure [bar]
 T_int (1,1) = output.prodwell.T(m-1,1); T_int (2,1) = output.prodwell.T(n,1);
 h_int (1,1) = output.prodwell.h(m-1,1); h_int (2,1) = output.prodwell.h(n,1);
 tvd(1,1) = output.prodwell.tvd(m-1,1); tvd(2,1) = output.prodwell.tvd(n,1);
 chi(1,1) = 0; chi(2,1) = output.prodwell.chi(n,1); ...
 chi(3,1) = output.prodwell.chi(n+1,1); % quality [-]
 w_CO2_l(1,1) = input.general.w_CO2; w_CO2_l(2,1) = output.prodwell.w_CO2_l(n,1); ...
 w_CO2_l(3,1) = output.prodwell.w_CO2_l(n+1,1); % CO2 liquid mass fraction
 w_NaCl_l(1,1) = input.general.w_NaCl; w_NaCl_l(2,1) = output.prodwell.w_NaCl_l(n,1); ...
 w_NaCl_l(3,1) = output.prodwell.w_NaCl_l(n+1,1); % NaCl liquid mass fraction
 w_H2O_l(1,1) = 1-input.general.w_NaCl-input.general.w_CO2; ...
 w_H2O_l(2,1) = output.prodwell.w_H2O_l(n,1); ...
 w_H2O_l(3,1) = output.prodwell.w_H2O_l(n+1,1); % H2O liquid mass fraction
 if input.general.w_CO2 > 0
 w_CO2_g(1,1) = 1; w_CO2_g(2,1) = output.prodwell.w_CO2_g(n,1) ;...
 w_CO2_g(3,1) = output.prodwell.w_CO2_g(n+1,1); % CO2 vapor mass fraction
 else

 w_CO2_g(1,1) = 0; w_CO2_g(2,1) = output.prodwell.w_CO2_g(n,1); ...
 w_CO2_g(3,1) = output.prodwell.w_CO2_g(n+1,1); % CO2 vapor mass fraction
 end

% % Create interpolation tables for interpolation between degassing pressures.
% P(1,1) = output.prodwell.P_degas(m,1); P(2,1) = output.prodwell.P(n-1,1); ...
% P(3,1) = output.prodwell.P(n,1); P(4,1) = output.prodwell.P(n+1,1);
% pressure [bar]
% chi(1,1) = 0; chi(2,1) = output.prodwell.chi(n-1,1); ...
% chi(3,1) = output.prodwell.chi(n,1); chi(4,1) = output.prodwell.chi(n+1,1);
% quality [-]
% w_CO2_l(1,1) = input.general.w_CO2; w_CO2_l(2,1) = output.prodwell.w_CO2_l(n-1,1); ...
% w_CO2_l(3,1) = output.prodwell.w_CO2_l(n,1); w_CO2_l(4,1) = output.prodwell.w_CO2_l(n+1,1);
% CO2 liquid mass fraction
% w_NaCl_l(1,1) = input.general.w_NaCl; w_NaCl_l(2,1) = output.prodwell.w_NaCl_l(n-1,1); ...
% w_NaCl_l(3,1) = output.prodwell.w_NaCl_l(n,1); w_NaCl_l(4,1) =
output.prodwell.w_NaCl_l(n+1,1); % NaCl liquid mass fraction
% w_H2O_l(1,1) = 1-input.general.w_NaCl-input.general.w_CO2; ...
% w_H2O_l(2,1) = output.prodwell.w_H2O_l(n-1,1); ...
% w_H2O_l(3,1) = output.prodwell.w_H2O_l(n,1); w_H2O_l(4,1) = output.prodwell.w_H2O_l(n+1,1);
% H2O liquid mass fraction
% if input.general.w_CO2 > 0
% w_CO2_g(1,1) = 1; w_CO2_g(2,1) = output.prodwell.w_CO2_g(n-1,1) ;...
% w_CO2_g(3,1) = output.prodwell.w_CO2_g(n,1); w_CO2_g(4,1) =
output.prodwell.w_CO2_g(n+1,1); % CO2 vapor mass fraction
% else
% w_CO2_g(1,1) = 0; w_CO2_g(2,1) = output.prodwell.w_CO2_g(n-1,1); ...
% w_CO2_g(3,1) = output.prodwell.w_CO2_g(n,1); w_CO2_g(4,1) =
output.prodwell.w_CO2_g(n+1,1); % CO2 vapor mass fraction
% end

 formatSpec = 'Production well calculation (iteration #%d).\nPlease wait...';
 A1 = l;
 str = sprintf(formatSpec,A1);
 g = waitbar(0,str);

 % interpolate properties between P_degas Duan and last segment before P_degas Francke
 for i = m:(n-1)

 waitbar((i-(m-1))/((n-1)-(m-1)))
 if i == 1
 output.prodwell.P(i,1) = output.prodwell.P(1,1);
 output.prodwell.h(i,1) = output.prodwell.h(1,1);
 else
 output.prodwell.P(i,1) = output.prodwell.P(i-1,1) - ...
 output.prodwell.dP_hs(i-1,1) - ...
 output.prodwell.dP_f(i-1,1)
 - output.prodwell.dP_k(i-1,1); % pressure wellbore [bar]
 output.prodwell.h(i,1) = output.prodwell.h(i-1,1) - ...
 output.prodwell.dQ(i-1,1) -...
 output.prodwell.dE_pot(i-1,1) - ...
 output.prodwell.dE_k(i-1,1); % enthalpy [J/kg]
 end
 T_int1 = interp1(h_int, T_int, output.prodwell.h(i,1));
 output.prodwell.chi(i,1) = interp1(P, chi, output.prodwell.P(i,1),'spline');
 % quantity [-]
 output.prodwell.w_CO2_l(i,1) = interp1(P, w_CO2_l, output.prodwell.P(i,1),'spline');
 % CO2 liquid mass fraction
 output.prodwell.w_NaCl_l(i,1) = interp1(P, w_NaCl_l, output.prodwell.P(i,1),'spline');
 % NaCl liquid mass fraction
 output.prodwell.w_H2O_l(i,1) = interp1(P, w_H2O_l, output.prodwell.P(i,1),'spline');
 % H2O liquid mass fraction
 output.prodwell.w_CO2_g(i,1) = interp1(P, w_CO2_g, output.prodwell.P(i,1),'spline');
 % CO2 vapor mass fraction
 output.prodwell.w_H2O_g(i,1) = 1 - output.prodwell.w_CO2_g(i,1);
 % H2O vapor mass fraction
 % if calculated quality < 0, than spline interpolation failed, do linear interpolation
% if i > 1
% if output.prodwell.chi(i,1) < 0 || output.prodwell.chi(i,1) < output.prodwell.chi(i-1,1)
 output.prodwell.chi(i,1) = interp1(tvd, chi, output.prodwell.tvd(i,1));
 %output.prodwell.chi(i,1) = interp1(P, chi, output.prodwell.P(i,1));
 output.prodwell.w_CO2_l(i,1) = interp1(P, w_CO2_l, output.prodwell.P(i,1));
 output.prodwell.w_NaCl_l(i,1) = interp1(P, w_NaCl_l, output.prodwell.P(i,1));
 output.prodwell.w_H2O_l(i,1) = interp1(P, w_H2O_l, output.prodwell.P(i,1));
 output.prodwell.w_CO2_g(i,1) = interp1(P, w_CO2_g, output.prodwell.P(i,1));
 output.prodwell.w_H2O_g(i,1) = 1 - output.prodwell.w_CO2_g(i,1);
% end
% end
 if output.prodwell.w_CO2_g(i,1) > 1

110

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 output.prodwell.w_CO2_g(i,1) = 1;
 end

 % Invoke fCalc_geofprops3 for single liquid and single vapor properties calculation...
 % and calculate total properties
 [T_new, rho_m, c_p_m, mu_m, eps_G, rho_v, rho_l, mu_v, mu_l] = fCalc_geofprops3 ...
 (output.prodwell.P(i,1), output.prodwell.T(i-1,1), ...
 output.prodwell.w_CO2_l(i,1), output.prodwell.w_NaCl_l(i,1), ...
 output.prodwell.w_CO2_g(i,1), output.prodwell.h(i,1), output.prodwell.chi(i,1),...
 output.prodwell.h(i-1,1), input, output.prodwell.T(i-2,1),l,T_int1);
 % geothermal fluid properties
 output.prodwell.T(i,1) = T_new; % temperature [C]
 output.prodwell.rho(i,1) = rho_m; % density [kg/m3]
 output.prodwell.c_p(i,1) = c_p_m; % specific heat capacity [J/kg/K]
 output.prodwell.mu(i,1) = mu_m; % viscosity [Pa*s]
 output.prodwell.eps_G(i,1) = eps_G; % void fraction [-]

 % Drift flux model
 if input.prodwell.DF_model > 1 % DF_model = 1 --> homogeneous
 output.prodwell.rho_l(i,1) = rho_l; % density liquid phase [kg/m3]
 output.prodwell.rho_v(i,1) = rho_v; % density gas phase [kg/m3]
 output.prodwell.mu_l(i,1) = mu_l; % viscosity liquid phase [Pa*s]
 output.prodwell.mu_v(i,1) = mu_v; % viscosity gas phase [Pa*s]
 p = find(output.prodwell.chi > 0,1); % segment number with flash horizon
 output.prodwell.l_E(i,1) = output.prodwell.l(i,1);
 % length from entrance [m]
 output.prodwell.u_sg(i,1) = ((output.prodwell.chi(i,1)* input.general.m_gf)/...
 rho_v)/(pi*(output.prodwell.D_i(i,1)/2)^2);
 % superficial gas velocity [m/s]
 output.prodwell.u_sl(i,1) = (((1-output.prodwell.chi(i,1)) * ...
 input.general.m_gf)/rho_l)/(pi*...
 (output.prodwell.D_i(i,1)/2)^2);
 % superficial liquid velocity [m/s]
 [eps_G,FP,u_gu,C_0] = fCalc_eps_G(output.prodwell.T(i,1), rho_l, rho_v, mu_l, ...
 mu_v, output.prodwell.l_E(i,1), output.prodwell.D_i(i,1),...
 output.prodwell.eps_pipe(i,1), output.prodwell.u_sg(i,1),...
 output.prodwell.u_sl(i,1), input.general.g, ...
 output.prodwell.chi(i,1), input.prodwell.DF_model);
 % void fraction [-]
 output.prodwell.eps_G(i,1) = eps_G; % void fraction [-]
 output.prodwell.FP(i,1) = cellstr(FP); % flow pattern
 output.prodwell.rho(i,1) = output.prodwell.rho_v(i,1)*...
 output.prodwell.eps_G(i,1) ...
 + output.prodwell.rho_l(i,1)*...
 (1-output.prodwell.eps_G(i,1)); % density [kg/m3]
 output.prodwell.u_gu(i,1) = u_gu; % drift-flux velocity, u_g relative to u_m[m/s]
 output.prodwell.C_0(i,1) = C_0; % distribution parameter
 end

 % Recalculate segment properties
 output.prodwell.u(i,1) = fCalc_u(input.general.m_gf, output.prodwell.rho(i,1),...
 output.prodwell.D_i(i,1)); % velocity [m/s]
 output.prodwell.Re(i,1) = fCalc_Re(output.prodwell.D_i(i,1), ...
 output.prodwell.rho(i,1), output.prodwell.u(i,1), ...
 output.prodwell.mu(i,1)); % Reynolds number [-]
 output.prodwell.f(i,1) = fCalc_f(output.prodwell.chi(i,1), ...
 output.prodwell.eps_pipe(i,1), ...
 output.prodwell.D_i(i,1), output.prodwell.Re(i,1));
 % friction factor [-]
 output.prodwell.dQ(i,1) = fCalc_dQ(output.prodwell.T(i,1), ...
 output.prodwell.T_g(i,1), output.prodwell.D_i(i,1), ...
 output.prodwell.dl(i,1), input.general.m_gf, ...
 input.general.gamma, input.general.t, ...
 output.prodwell.k_r(i,1), output.prodwell.alfa_r(i,1));
 % Heat exchange with surroundings [J/kg]
 output.prodwell.dE_pot(i,1) = fCalc_dE_pot(input.general.g, output.prodwell.dz(i,1));
 % potential energy change [J/kg]
 output.prodwell.dP_f(i,1) = fCalc_dP_f(output.prodwell.D_i(i,1), ...
 output.prodwell.f(i,1), output.prodwell.rho(i,1), ...
 output.prodwell.u(i,1), output.prodwell.dl(i,1));
 % frictional pressure change [bar]
 output.prodwell.dP_hs(i,1) = fCalc_dP_hs(input.general.g, ...
 output.prodwell.rho(i,1), output.prodwell.dz(i,1));
 % hydrostatic pressure change [bar]
 output.prodwell.dE_k(i,1) = fCalc_dE_k(output.prodwell.u(i,1),...
 output.prodwell.u(i-1,1)); % kinetic energy [J/kg]
 output.prodwell.dP_k(i,1) = fCalc_dP_k(output.prodwell.rho(i,1), ...
 output.prodwell.u(i,1),output.prodwell.u(i-1,1));
 % kinetic pressure change [J/kg]

 end
 close(g)
 i = n;
 j = n;
 k = max(output.prodwell.segnr);
 end

 if m >= n % If degassing according to Duan and Sun (2003) starts later than Francke (2014)
 break
 end
 if abs(output.prodwell.P(i-1,1) - output.prodwell.P_old) < input.settings.dP_abs_pw
 % If calculation has iterated to user-defined error
 break
 end

 end

 if max(input.prodwell.segment) < max(output.prodwell.segnr)
 output = fChange_prodwell(input, output);
 close(h)
 return
 end
 %n = 2; %validation of sodium chloride solution
 %% Proceed with segment of flash horizon of Francke (2014)
 for i = n+1:max(input.prodwell.segment) + 1

 if i == max(input.prodwell.segment) + 1
 output.prodwell.segnr(i,1) = output.prodwell.segnr(i-1,1)+1; % segment nr.
 output.prodwell.D_i(i,1) = input.prodwell.D_i(i-1,1); % inner diameter wellbore [m]
 output.prodwell.dl(i,1) = input.prodwell.dl(i-1,1); % length [m]
 output.prodwell.dz(i,1) = input.prodwell.dz(i-1,1); % dz [m]
 output.prodwell.tvd(i,1) = 0; % true vertical depth tvd [m]
 output.prodwell.grad_T_g(i,1) = input.prodwell.grad_T_g(i-1,1); % temperature gradient [m]
 output.prodwell.eps_pipe(i,1) = input.prodwell.eps_pipe(i-1,1); % abs. pipe roughness [m]
 output.prodwell.k_r(i,1) = input.prodwell.k_r(i-1,1);% rock thermal conductiv.[W/m/K]
 output.prodwell.alfa_r(i,1)= input.prodwell.alfa_r(i-1,1);% rock thermal diffusivity[m2/s]
 output.prodwell.l(i,1) = output.prodwell.l(i-1,1) + output.prodwell.dl(i-1,1);
 output.prodwell.T_g(i,1) = output.prodwell.T_g(i-1,1);
 end
 waitbar(i/max(input.prodwell.segment))

% if i == n || output.prodwell.chi(i-1,1) < output.prodwell.chi(n-1,1)
% output.prodwell.P(i,1) = output.prodwell.P(i-1,1) - (output.prodwell.P(i-2,1) -
output.prodwell.P(i-1,1));
% output.prodwell.h(i,1) = output.prodwell.h(i-1,1) - (output.prodwell.h(i-2,1) -
output.prodwell.h(i-1,1));
% else
 output.prodwell.P(i,1) = output.prodwell.P(i-1,1) - output.prodwell.dP_hs(i-1,1) - ...
 output.prodwell.dP_f(i-1,1) - output.prodwell.dP_k(i-1,1);
 % pressure wellbore [bar]
 output.prodwell.h(i,1) = output.prodwell.h(i-1,1) - output.prodwell.dQ(i-1,1) - ...
 output.prodwell.dE_pot(i-1,1) - output.prodwell.dE_k(i-1,1);
 % enthalpy [J/kg]
% end

 if output.prodwell.P(i,1) < input.general.P_atm % minimum pressure of wellbore
 disp('ERROR: Pressure loss in wellbore too high. ACTION: Decrease mass flow')
 close(h)
 msgbox('Pressure loss in wellbore too high. ACTION: Decrease mass flow', 'Error','error');
 stat = status.FAILURE; return;
 end;

 [geofprops, T_new, w_table] = fCalc_geofprops2(output.prodwell.P(i,1), ...
 output.prodwell.T(i-1,1), input.general.w_NaCl, ...
 input.general.w_CO2, data.H2O_sat, output.prodwell.h(i,1), ...
 output, output.prodwell.h(i-1,1), input, data);
 output.prodwell.T(i,1) = T_new; % temperature [C]
 output.prodwell.chi(i,1) = geofprops(1,2); % gas mass fraction [-]
 output.prodwell.v_spec(i,1) = 1/geofprops(1,4); % specific volume [m3/kg]
 output.prodwell.rho(i,1) = geofprops(1,4); % density [kg/m3]
 output.prodwell.c_p(i,1) = geofprops(1,5); % specific heat capacity [J/kg/K]
 output.prodwell.mu(i,1) = geofprops(1,7); % viscosity [Pa*s]
 output.prodwell.eps_G(i,1) = geofprops(1,3); % void fraction [-]

 % Drift flux model
 if input.prodwell.DF_model > 1 && output.prodwell.chi(i,1) > 0 % DF_model = 1 --> homogeneous
 output.prodwell.rho_l(i,1) = geofprops(1,15); % density liquid phase [kg/m3]
 output.prodwell.rho_v(i,1) = geofprops(1,23); % density gas phase [kg/m3]
 output.prodwell.mu_l(i,1) = geofprops(1,18); % viscosity liquid phase [Pa*s]

B
 M

A
T

L
A

B
 C

od
e

111

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 output.prodwell.mu_v(i,1) = geofprops(1,26); % viscosity gas phase [Pa*s]
 p = find(output.prodwell.chi > 0,1); % segment number with flash horizon
 output.prodwell.l_E(i,1) = output.prodwell.l(i,1);
 % length from entrance [m]
 output.prodwell.u_sg(i,1) = ((output.prodwell.chi(i,1) * input.general.m_gf)/...
 geofprops(1,23))/(pi*(output.prodwell.D_i(i,1)/2)^2);
 % superficial gas velocity [m/s]
 output.prodwell.u_sl(i,1) = (((1-output.prodwell.chi(i,1)) * input.general.m_gf)/...
 geofprops(1,15))/(pi*(output.prodwell.D_i(i,1)/2)^2);
 % superficial liquid velocity [m/s]
 [eps_G,FP,u_gu,C_0] = fCalc_eps_G(output.prodwell.T(i,1), geofprops(1,15), ...
 geofprops(1,23), geofprops(1,18), geofprops(1,26), ...
 output.prodwell.l_E(i,1), output.prodwell.D_i(i,1), ...
 output.prodwell.eps_pipe(i,1), output.prodwell.u_sg(i,1), ...
 output.prodwell.u_sl(i,1), input.general.g, ...
 output.prodwell.chi(i,1), input.prodwell.DF_model);
 % void fraction [-]
 output.prodwell.eps_G(i,1) = eps_G; % void fraction [-]
 output.prodwell.FP(i,1) = cellstr(FP); % flow pattern
 output.prodwell.rho(i,1) = output.prodwell.rho_v(i,1)*output.prodwell.eps_G(i,1) + ...
 output.prodwell.rho_l(i,1)*(1-output.prodwell.eps_G(i,1));
 % density [kg/m3]
 output.prodwell.u_gu(i,1) = u_gu; % drift-flux velocity, u_g relative to u_m [m/s] [m/s]
 output.prodwell.C_0(i,1) = C_0; % distribution parameter
 end
 % Output geofluid composition
 output.prodwell.w_NaCl_l(i,1) = w_table(3,2);
 output.prodwell.w_CO2_l(i,1) = w_table(3,3);
 output.prodwell.w_CO2_g(i,1) = w_table(3,4);
 output.prodwell.w_H2O_l(i,1) = w_table(3,5);
 output.prodwell.w_H2O_g(i,1) = w_table(3,6);

 output.prodwell.u(i,1) = fCalc_u(input.general.m_gf, output.prodwell.rho(i,1), ...
 output.prodwell.D_i(i,1)); % velocity [m/s]
 output.prodwell.Re(i,1) = fCalc_Re(output.prodwell.D_i(i,1), output.prodwell.rho(i,1),...
 output.prodwell.u(i,1), output.prodwell.mu(i,1));
 % Reynolds number [-]
 output.prodwell.f(i,1) = fCalc_f(output.prodwell.chi(i,1), ...
 output.prodwell.eps_pipe(i,1), output.prodwell.D_i(i,1), ...
 output.prodwell.Re(i,1)); % friction factor [-]
 output.prodwell.dQ(i,1) = fCalc_dQ(output.prodwell.T(i,1), output.prodwell.T_g(i,1), ...
 output.prodwell.D_i (i,1), output.prodwell.dl(i,1), ...
 input.general.m_gf, input.general.gamma, input.general.t, ...
 output.prodwell.k_r(i,1), output.prodwell.alfa_r(i,1));
 % Heat exchange with surroundings [J/kg]
 output.prodwell.dE_pot(i,1) = fCalc_dE_pot(input.general.g, output.prodwell.dz(i,1));
 % potential energy change [J/kg]
 output.prodwell.dP_f(i,1) = fCalc_dP_f(output.prodwell.D_i(i,1), output.prodwell.f(i,1),...
 output.prodwell.rho(i,1), output.prodwell.u(i,1), ...
 output.prodwell.dl(i,1)); % frictional pressure change [bar]
 output.prodwell.dP_hs(i,1) = fCalc_dP_hs(input.general.g, output.prodwell.rho(i,1), ...
 output.prodwell.dz(i,1)); % hydrostatic pressure change [bar]
 output.prodwell.dE_k(i,1) = fCalc_dE_k(output.prodwell.u(i,1),...
 output.prodwell.u(i-1,1)); % kinetic energy [J/kg]
 output.prodwell.dP_k(i,1) = fCalc_dP_k(output.prodwell.rho(i,1), ...
 output.prodwell.u(i,1),output.prodwell.u(i-1,1));
 % kinetic pressure change [J/kg]
 end
 close(h)
end

%% fCalc_prodwell_GL

% Simulation of a production well with a gas lift system
% Frank Niewold
% Released version 1.0, February 2017

function [input, output, stat, geofprops] = fCalc_prodwell_GL(input, output, data, status)

 % Succesfull simulation
 stat = status.SUCCES;

 % Create output from input production well dimensions
 for i = 1:max(input.prodwell_GL.segment);
 output.prodwell_GL.segnr(i,1) = input.prodwell_GL.segment(i,1); % segment nr.
 output.prodwell_GL.D_i(i,1) = input.prodwell_GL.D_i(i,1); % in diameter wellbore [m]
 output.prodwell_GL.dl(i,1) = input.prodwell_GL.dl(i,1); % length [m]
 output.prodwell_GL.dz(i,1) = input.prodwell_GL.dz(i,1); % dz [m]

 output.prodwell_GL.tvd(i,1) = input.prodwell_GL.tvd(i,1); % tvd [m]
 output.prodwell_GL.grad_T_g(i,1) = input.prodwell_GL.grad_T_g(i,1); % temperature gradient [m]
 output.prodwell_GL.eps_pipe(i,1) = input.prodwell_GL.eps_pipe(i,1); % abs. pipe roughness [m]
 output.prodwell_GL.k_r(i,1) = input.prodwell_GL.k_r(i,1); % rock thermal cond.[W/m/K]
 output.prodwell_GL.alfa_r(i,1) = input.prodwell_GL.alfa_r(i,1); % rock thermal diff.[m2/s]
 output.prodwell_GL.m_gf(i,1) = input.general.m_gf; % mass flow rate [kg/s]
 output.prodwell_GL.m_GL = input.prodwell_GL.m_GL; % mass flow rate GL [kg/s]
 output.prodwell_GL.w_NaCl(i,1) = input.general.w_NaCl;
 output.prodwell_GL.w_CO2(i,1) = input.general.w_CO2;
 output.prodwell_GL.w_H2O(i,1) = 1 - input.general.w_NaCl - input.general.w_CO2;
 output.prodwell_GL.m_NaCl(i,1) = input.general.m_NaCl;
 output.prodwell_GL.m_CO2(i,1) = input.general.m_CO2;
 end
 output.prodwell_GL.l(1,1) = 0; % length at begin segment [m]
 for i = 2:max(input.prodwell_GL.segment);
 output.prodwell_GL.l(i,1) = output.prodwell_GL.l(i-1,1) + output.prodwell_GL.dl(i-1,1);
 end

 % Get initial geothermal fluid properties from reservoir output
 output.prodwell_GL.geofprops(1,:) = output.reservoir.geofprops(3,:); % geothermal fluid props
 output.prodwell_GL.P(1,1) = output.reservoir.geofprops(3,1); % pressure [bar]
 output.prodwell_GL.T(1,1) = output.reservoir.geofprops(3,2); % temperature [C]
 output.prodwell_GL.h(1,1) = output.reservoir.geofprops(3,11); % enthalpy [J/kg]
 output.prodwell_GL.chi(1,1) = output.reservoir.geofprops(3,7); % gas mass fraction [-]
 output.prodwell_GL.v_spec(1,1) = 1/output.reservoir.geofprops(3,9); % specific volume [m3/kg]
 output.prodwell_GL.rho(1,1) = output.reservoir.geofprops(3,9); % density [kg/m3]
 output.prodwell_GL.c_p(1,1) = output.reservoir.geofprops(3,10); % heat capacity [J/kg/K]
 output.prodwell_GL.mu(1,1) = output.reservoir.geofprops(3,12); % viscosity [Pa*s]
 output.prodwell_GL.eps_G(1,1) = output.reservoir.geofprops(3,8); % void fraction [-]

 % Initial geothermal fluid composition
 output.prodwell_GL.w_NaCl_l(1,1) = output.reservoir.geofprops(3,13); % mass fraction NaCl in liquid
 output.prodwell_GL.w_CO2_l(1,1) = output.reservoir.geofprops(3,16); % mass fraction CO2 in liquid
 output.prodwell_GL.w_CO2_g(1,1) = output.reservoir.geofprops(3,24); % mass fraction CO2 in gas
 output.prodwell_GL.w_H2O_l(1,1) = output.reservoir.geofprops(3,19); % mass fraction H2O in liquid
 output.prodwell_GL.w_H2O_v(1,1) = output.reservoir.geofprops(3,27); % mass fraction H2O in gas

 % Calculate initial properties at inlet production well (first segment)
 output.prodwell_GL.u(1,1) = fCalc_u(output.prodwell_GL.m_gf(1,1), ...
 output.prodwell_GL.rho(1,1), output.prodwell_GL.D_i(1,1));
 % velocity [m/s]
 output.prodwell_GL.Re(1,1) = fCalc_Re(output.prodwell_GL.D_i(1,1), ...
 output.prodwell_GL.rho(1,1), output.prodwell_GL.u(1,1), ...
 output.prodwell_GL.mu(1,1)); % Reynolds number [-]
 output.prodwell_GL.f(1,1) = fCalc_f(output.prodwell_GL.chi(1,1), ...
 output.prodwell_GL.eps_pipe(1,1), output.prodwell_GL.D_i(1,1),...
 output.prodwell_GL.Re(1,1)); % friction factor [-]
 output.prodwell_GL.T_g = fCalc_T_g(output.prodwell_GL.T(1,1), output.prodwell_GL.grad_T_g, ...
 output.prodwell_GL.tvd); % Geothermal temperature [C]
 output.prodwell_GL.dQ(1,1) = fCalc_dQ(output.prodwell_GL.T(1,1), output.prodwell_GL.T_g(1,1), ...
 output.prodwell_GL.D_i(1,1), output.prodwell_GL.dl(1,1), ...
 output.prodwell_GL.m_gf(1,1), input.general.gamma, ...
 input.general.t, output.prodwell_GL.k_r(1,1),...
 output.prodwell_GL.alfa_r(1,1)); % Heat exchange with surround.[J/kg]
 output.prodwell_GL.dE_pot(1,1) = fCalc_dE_pot(input.general.g, output.prodwell_GL.dz(1,1));
 % potential energy change [J/kg]
 output.prodwell_GL.dP_f(1,1) = fCalc_dP_f(output.prodwell_GL.D_i (1,1), ...
 output.prodwell_GL.f(1,1), output.prodwell_GL.rho(1,1), ...
 output.prodwell_GL.u(1,1), output.prodwell_GL.dl(1,1));
 % frictional pressure change [J/kg]
 output.prodwell_GL.dP_hs(1,1) = fCalc_dP_hs(input.general.g, output.prodwell_GL.rho(1,1), ...
 output.prodwell_GL.dz(1,1)); % hydrostatic pressure change [J/kg]

 %% Production well simulation from segment 2 to top
 j = 2; % 2nd segment number
 k = max(input.prodwell_GL.segment); % last segment number

 formatSpec = 'Calculation production well with gas lift.\nPlease wait...';
 str = sprintf(formatSpec);
 h = waitbar(0,str);

 for a = 1:1
 % Calculate segments until two segments have a chi > 0 according to the Francke Model
 for l = 1:10 %input.settings.nr_it_dp % number of iterations
 for i = j:k

 waitbar(i/max(input.prodwell_GL.segment))

 output.prodwell_GL.P(i,1) = output.prodwell_GL.P(i-1,1) - ...

112

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 output.prodwell_GL.dP_hs(i-1,1) - ...
 output.prodwell_GL.dP_f(i-1,1); % pressure pipe [bar]
 output.prodwell_GL.h(i,1) = output.prodwell_GL.h(i-1,1) - output.prodwell_GL.dQ(i-1,1) ...
 - output.prodwell_GL.dE_pot(i-1,1); % enthalpy [J/kg]

 if i == input.prodwell_GL.segnr_GL
 output.prodwell_GL.m_gf(i:k,1) = output.prodwell_GL.m_gf(i,1) + ...
 output.prodwell_GL.m_GL;
 % m_GL = mass flow rate lift gas
 output.prodwell_GL.w_NaCl(i:k,1) = output.prodwell_GL.w_NaCl(i,1) * ...
 output.prodwell_GL.m_gf(i-1,1)/...
 output.prodwell_GL.m_gf(i,1);
 output.prodwell_GL.w_CO2(i:k,1) = (output.prodwell_GL.w_CO2(i,1) * ...
 output.prodwell_GL.m_gf(i-1,1) + ...
 output.prodwell_GL.m_GL)/...
 output.prodwell_GL.m_gf(i,1);
 output.prodwell_GL.w_H2O(i:k,1) = 1 - output.prodwell_GL.w_NaCl(i,1) - ...
 output.prodwell_GL.w_CO2(i,1);
 output.prodwell_GL.w_CO2_GL = 1;

 %% obtain new molalities from Excel
 Excel = actxGetRunningServer('Excel.Application');
 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 1);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', output.prodwell.P(i,1));
 sheet.set('Range', 'C4', output.prodwell.T(i,1));
 sheet.set('Range', 'C8', output.prodwell_GL.w_NaCl(i,1));
 sheet.set('Range', 'C11', output.prodwell_GL.w_CO2(i,1));
 range = sheet.get('Range', 'D8:D13');
 range2 = sheet.get('Range', 'I9');
 range.Value;
 range2.Value;
 data_FM = range.Value;
 data1_FM = range2.Value;
 output.prodwell_GL.m_NaCl(i:k,1) = cell2mat(data_FM(1,1));
 output.prodwell_GL.m_CO2(i:k,1) = cell2mat(data_FM(4,1));
 output.prodwell_GL.h(i,1) = data1_FM;

 sheet2 = get(Sheets, 'Item', 2);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C2', output.prodwell.P(i,1));
 sheet.set('Range', 'C3', output.prodwell.T(i,1));
 sheet.set('Range', 'C5', output.prodwell_GL.w_CO2_GL);
 range = sheet.get('Range', 'G5');
 range.Value;
 output.prodwell_GL.h_GL = range.Value;

 sheet2 = get(Sheets, 'Item', 3);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', output.prodwell.P(i,1));
 sheet.set('Range', 'C4', output.prodwell.T(i,1));
 sheet.set('Range', 'C6', output.prodwell_GL.w_NaCl(i,1));
 range = sheet.get('Range', 'G6');
 range.Value;
 output.prodwell_GL.h_GL_l = range.Value;

% output.prodwell_GL.h(i,1) = output.prodwell_GL.h(i-1,1) - output.prodwell_GL.dQ(i-1,1) - ...
% output.prodwell_GL.dE_pot(i-1,1); % enthalpy [J/kg]
% output.prodwell_GL.h(i,1) = (output.prodwell_GL.h(i,1) * output.prodwell_GL.m_gf(i-1,1) +
...
% output.prodwell_GL.h_GL *
output.prodwell_GL.m_GL)/output.prodwell_GL.m_gf(i,1);
 end

 if output.prodwell_GL.P(i,1) < 1
 disp('ERROR: Pressure loss in wellbore too high. ACTION: Decrease mass flow')
 close(h)
 msgbox('Pressure loss in wellbore too high. ACTION: Decrease mass flow', 'Error','error');
 stat = status.FAILURE; return;
 end
% if i == input.prodwell_GL.segnr_GL
% return
% end

 [geofprops, T_new, w_table] = fCalc_geofprops2(output.prodwell_GL.P(i,1), ...
 output.prodwell_GL.T(i-1,1), output.prodwell_GL.w_NaCl(i,1), ...
 output.prodwell_GL.w_CO2(i,1), data.H2O_sat, ...
 output.prodwell_GL.h(i,1), output,...
 output.prodwell_GL.h(i-1,1), input, data);
 output.prodwell_GL.T(i,1) = T_new; % temperature [C}
 output.prodwell_GL.P_dFM(i,1) = geofprops(1,1); % degassing pressure Francke Model[bar]
 output.prodwell_GL.chi(i,1) = geofprops(1,2); % gas mass fraction [-}
 output.prodwell_GL.v_spec(i,1) = 1/geofprops(1,4); % specific volume {m3/kg]
 output.prodwell_GL.rho(i,1) = geofprops(1,4); % density [kg/m3]
 output.prodwell_GL.c_p(i,1) = geofprops(1,5); % specific heat capacity [J/kg/K]
 output.prodwell_GL.mu(i,1) = geofprops(1,7); % viscosity [Pa*s]
 output.prodwell_GL.eps_G(i,1) = geofprops(1,3); % void fraction [-]

 % Drift flux model
 if output.prodwell_GL.chi(i,1) > 0 && input.prodwell_GL.DF_model > 1
 % quality larger than zero && DF_model = 1 --> homogeneous
 output.prodwell_GL.rho_l(i,1) = geofprops(1,15); % density liquid phase [kg/m3]
 output.prodwell_GL.rho_v(i,1) = geofprops(1,23); % density vapor phase [kg/m3]
 output.prodwell_GL.mu_l(i,1) = geofprops(1,18); % viscosity liquid phase [Pa*s]
 output.prodwell_GL.mu_v(i,1) = geofprops(1,26); % viscosity vapor phase [Pa*s]
 output.prodwell_GL.l_E(i,1) = output.prodwell_GL.l(i,1) - output.prodwell_GL.l(i,1);
 % length from entrance or flash horizon [m]
 output.prodwell_GL.u_sg(i,1) = ((output.prodwell_GL.chi(i,1) * ...
 output.prodwell_GL.m_gf(i,1))/...
 geofprops(1,23))/...
 (pi*(output.prodwell_GL.D_i(i,1)/2)^2);
 % superficial gas velocity [m/s]
 output.prodwell_GL.u_sl(i,1) = (((1-output.prodwell_GL.chi(i,1)) * ...
 output.prodwell_GL.m_gf(i,1))/...
 geofprops(1,15))/...
 (pi*(output.prodwell_GL.D_i(i,1)/2)^2);
 % superficial liquid velocity [m/s]
 [eps_G, FP, u_gu, C_0] = fCalc_eps_G(output.prodwell_GL.T(i,1), geofprops(1,15), ...
 geofprops(1,23), geofprops(1,18), geofprops(1,26), ...
 output.prodwell_GL.l_E(i,1), output.prodwell_GL.D_i(i,1), ...
 output.prodwell_GL.eps_pipe(i,1), ...
 output.prodwell_GL.u_sg(i,1), ...
 output.prodwell_GL.u_sl(i,1), input.general.g, ...
 output.prodwell_GL.chi(i,1), input.prodwell_GL.DF_model);
 output.prodwell_GL.eps_G(i,1) = eps_G; % void fraction
 output.prodwell_GL.FP(i,1) = cellstr(FP); % flow pattern
 output.prodwell_GL.rho(i,1) = output.prodwell_GL.rho_v(i,1) * ...
 output.prodwell_GL.eps_G(i,1)...
 + output.prodwell_GL.rho_l(i,1)*...
 (1-output.prodwell_GL.eps_G(i,1)); % density [kg/m3]
 output.prodwell_GL.u_gu(i,1) = u_gu; % drift-flux velocity, u_gas relative to u_m
 output.prodwell_GL.C_0(i,1) = C_0; % distribution parameter
 end

 % Output geothermal fluid composition - mass fractions
 output.prodwell_GL.w_NaCl_l(i,1) = w_table(3,2);
 output.prodwell_GL.w_CO2_l(i,1) = w_table(3,3);
 output.prodwell_GL.w_CO2_g(i,1) = w_table(3,4);
 output.prodwell_GL.w_H2O_l(i,1) = w_table(3,5);
 output.prodwell_GL.w_H2O_v(i,1) = w_table(3,6);

 % Not used for now - mass fraction at transition
 output.prodwell_GL.w_NaCl_l_t(i,1) = w_table(1,2);
 output.prodwell_GL.w_CO2_l_t(i,1) = w_table(1,3);
 output.prodwell_GL.w_CO2_g_t(i,1) = w_table(1,4);
 output.prodwell_GL.w_H2O_l_t(i,1) = w_table(1,5);
 output.prodwell_GL.w_H2O_v_t(i,1) = w_table(1,6);

 % Calculate segment properties
 output.prodwell_GL.u(i,1) = fCalc_u(output.prodwell_GL.m_gf(i,1), ...
 output.prodwell_GL.rho(i,1), ...
 output.prodwell_GL.D_i(i,1)); % velocity [m/s]
 output.prodwell_GL.Re(i,1) = fCalc_Re(output.prodwell_GL.D_i(i,1), ...
 output.prodwell_GL.rho(i,1), output.prodwell_GL.u(i,1), ...
 output.prodwell_GL.mu(i,1)); % Reynolds number [-]
 output.prodwell_GL.f(i,1) = fCalc_f(output.prodwell_GL.chi(i,1), ...
 output.prodwell_GL.eps_pipe(i,1), output.prodwell_GL.D_i(i,1),...
 output.prodwell_GL.Re(i,1)); % friction factor [-]
 output.prodwell_GL.dQ(i,1) = fCalc_dQ(output.prodwell_GL.T(i,1), ...
 output.prodwell_GL.T_g(i,1), output.prodwell_GL.D_i(i,1),...
 output.prodwell_GL.dl(i,1), output.prodwell_GL.m_gf(i,1),...
 input.general.gamma, input.general.t, ...
 output.prodwell_GL.k_r(i,1), output.prodwell_GL.alfa_r(i,1));

B
 M

A
T

L
A

B
 C

od
e

113

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 % heat exchange with surroundings [J/kg]
 output.prodwell_GL.dE_pot(i,1) = fCalc_dE_pot(input.general.g, output.prodwell_GL.dz(i,1));
 % potential energy [J/kg]
 output.prodwell_GL.dP_f(i,1) = fCalc_dP_f(output.prodwell_GL.D_i(i,1), ...
 output.prodwell_GL.f(i,1), output.prodwell_GL.rho(i,1), ...
 output.prodwell_GL.u(i,1), output.prodwell_GL.dl(i,1));
 % frictional pressure change [bar]
 output.prodwell_GL.dP_hs(i,1) = fCalc_dP_hs(input.general.g, ...
 output.prodwell_GL.rho(i,1), output.prodwell_GL.dz(i,1));
 % hydrostatic pressure change [bar]

 % if i == size(input.prodwell_GL.tvd,1)
 % output.prodwell_GL.P(i+1,1) = output.prodwell_GL.P(i,1) - output.prodwell_GL.dP_hs(i,1) - ...
 % output.prodwell_GL.dP_f(i,1); % pressure pipe [bar]
 % output.prodwell_GL.h(i+1,1) = output.prodwell_GL.h(i,1) - output.prodwell_GL.Q(i,1) - ...
 % output.prodwell_GL.E_pot(i,1); % enthalpy [J/kg]
 % end

 %% Check if two segments have a significant gas mass fraction
 if l == 1
 if output.prodwell_GL.chi(i,1) > 0.0001 && output.prodwell_GL.chi(i-1,1) > 0.0001
 output.prodwell_GL.P_old = output.prodwell_GL.P(i-2,1);
 break % start interpolation from P_degas Duan and Sun (2003)
 end
 elseif l > 1 && i >= (j+1)
 if output.prodwell_GL.chi(i,1) > 0.0001 && output.prodwell_GL.chi(i-1,1) > 0.0001
 output.prodwell_GL.P_old = output.prodwell_GL.P(i-2,1);
 break % start interpolation from P_degas Duan and Sun (2003)
 end
 end

 end

 % Find P_degas from Duan and Sun (2003)
 output.prodwell_GL.P_degas = interp3(data.m_NaCl_degas, data.T_degas, data.m_CO2_degas, ...
 data.P_degas, output.prodwell_GL.m_NaCl(1:i,1), ...
 output.prodwell_GL.T + 273.15,...
 output.prodwell_GL.m_CO2(1:i,1)); % degassing pressure [bar]

 % Check if degassing pressure Francke Model is above and Duan Model is below wellhead
 if i == k
 if output.prodwell_GL.chi(k,1) < 0.0001 && output.prodwell_GL.P(k,1) < ...
 output.prodwell_GL.P_degas(k,1)
 [input, output, geofprops, i] = fCalc_prodwell_GL_virtual(input, output, data, k);
 end
 % Alternative to previous if-loop, for 2nd or higher iteration
 if output.prodwell_GL.chi(k,1) > 0.0001 && output.prodwell_GL.P(k,1) < ...
 output.prodwell_GL.P_degas(k,1) && output.prodwell_GL.chi(k-1) == 0
 [input, output, geofprops, i] = fCalc_prodwell_GL_virtual(input, output, data, k);
 end
 end

 % Find first segment number where degassing pressure Duan and Sun(2003) is above segment ...
 % pressure from Francke Model.
 m = find((output.prodwell_GL.P_degas - output.prodwell_GL.P) > 0,1);
 if isempty(m) == 1 % if P_degas Duan is not above P_degas Francke
 m = i;
 end
 % Check if valve is located equal or above segment degassing pressure Duan
 if input.prodwell_GL.segnr_GL >= m
 m = input.prodwell_GL.segnr_GL;
 output = fCalc_Duan2valve(output,m);
 end

 n = i-1; % find(output.prodwell_GL.chi(n:i-1,1) > 0.001,1) + (n - 1);

 if m < n % if P_degas Duan is above P_degas Francke
 if m > input.prodwell_GL.segnr_GL
 % Create interpolation tables for interpolation between degassing pressures.
 P(1,1) = output.prodwell_GL.P_degas(m,1); P(2,1) = output.prodwell_GL.P(n,1); ...
 P(3,1) = output.prodwell_GL.P(n+1,1); % pressure [bar]
 T_int (1,1) = output.prodwell_GL.T(m-1,1); T_int (2,1) = output.prodwell_GL.T(n,1);
 h_int (1,1) = output.prodwell_GL.h(m-1,1); h_int (2,1) = output.prodwell_GL.h(n,1);
 chi(1,1) = output.prodwell_GL.chi(m-1,1); chi(2,1) = output.prodwell_GL.chi(n,1); ...
 chi(3,1) = output.prodwell_GL.chi(n+1,1); % quality [-]
 w_CO2_l(1,1) = output.prodwell_GL.w_CO2_l(m-1,1);
 w_CO2_l(2,1) = output.prodwell_GL.w_CO2_l(n,1);
 w_CO2_l(3,1) = output.prodwell_GL.w_CO2_l(n+1,1); % CO2 liquid mass fraction
 w_NaCl_l(1,1) = output.prodwell_GL.w_NaCl(m-1,1);

 w_NaCl_l(2,1) = output.prodwell_GL.w_NaCl_l(n,1);
 w_NaCl_l(3,1) = output.prodwell_GL.w_NaCl_l(n+1,1); % NaCl liquid mass fraction
 w_H2O_l(1,1) = 1-output.prodwell_GL.w_NaCl(m-1,1)-output.prodwell_GL.w_CO2(m-1,1);
 w_H2O_l(2,1) = output.prodwell_GL.w_H2O_l(n,1);
 w_H2O_l(3,1) = output.prodwell_GL.w_H2O_l(n+1,1); % H2O liquid mass fraction
 if output.prodwell_GL.w_CO2(m-1,1) > 0
 w_CO2_g(1,1) = 1; w_CO2_g(2,1) = output.prodwell_GL.w_CO2_g(n,1) ;...
 w_CO2_g(3,1) = output.prodwell_GL.w_CO2_g(n+1,1); % CO2 vapor mass fraction
 else
 w_CO2_g(1,1) = 0; w_CO2_g(2,1) = output.prodwell_GL.w_CO2_g(n,1); ...
 w_CO2_g(3,1) = output.prodwell_GL.w_CO2_g(n+1,1); % CO2 vapor mass fraction
 end
 else
 % Create interpolation tables for interpolation between degassing pressures.
 P(1,1) = output.prodwell_GL.P_degas(m,1); P(2,1) = output.prodwell_GL.P(n,1); ...
 P(3,1) = output.prodwell_GL.P(n+1,1); % pressure [bar]
 T_int (1,1) = output.prodwell_GL.T(m-1,1); T_int (2,1) = output.prodwell_GL.T(n,1);
 h_int (1,1) = output.prodwell_GL.h(m-1,1); h_int (2,1) = output.prodwell_GL.h(n,1);
 chi(1,1) = output.prodwell_GL.chi(m-1,1); chi(2,1) = output.prodwell_GL.chi(n,1); ...
 chi(3,1) = output.prodwell_GL.chi(n+1,1); % quality [-]
 w_CO2_l(1,1) = output.prodwell_GL.w_CO2_l(m-1,1);
 w_CO2_l(2,1) = output.prodwell_GL.w_CO2_l(n,1); ...
 w_CO2_l(3,1) = output.prodwell_GL.w_CO2_l(n+1,1); % CO2 liquid mass fraction
 w_NaCl_l(1,1) = output.prodwell_GL.w_NaCl(m-1,1);
 w_NaCl_l(2,1) = output.prodwell_GL.w_NaCl_l(n,1);
 w_NaCl_l(3,1) = output.prodwell_GL.w_NaCl_l(n+1,1); % NaCl liquid mass fraction
 w_H2O_l(1,1) = 1-output.prodwell_GL.w_NaCl(m-1,1)-output.prodwell_GL.w_CO2(i,1); ...
 w_H2O_l(2,1) = output.prodwell_GL.w_H2O_l(n,1);
 w_H2O_l(3,1) = output.prodwell_GL.w_H2O_l(n+1,1); % H2O liquid mass fraction
 if output.prodwell_GL.w_CO2(m-1,1) > 0
 w_CO2_g(1,1) = output.prodwell_GL.w_CO2_g(m-1,1);
 w_CO2_g(2,1) = output.prodwell_GL.w_CO2_g(n,1);
 w_CO2_g(3,1) = output.prodwell_GL.w_CO2_g(n+1,1); % CO2 vapor mass fraction
 else
 w_CO2_g(1,1) = 0; w_CO2_g(2,1) = output.prodwell_GL.w_CO2_g(n,1);
 w_CO2_g(3,1) = output.prodwell_GL.w_CO2_g(n+1,1); % CO2 vapor mass fraction
 end
 end

 formatSpec = 'Calculation production well with gas lift(iteration #%d).\nPlease wait...';
 A1 = l;
 str = sprintf(formatSpec,A1);
 g = waitbar(0,str);

 % interpolate properties between P_degas Duan and last segment before P_degas Francke
 for i = m:(n-1)
 waitbar((i-(m-1))/((n-1)-(m-1)))
 output.prodwell_GL.P(i,1) = output.prodwell_GL.P(i-1,1) - ...
 output.prodwell_GL.dP_hs(i-1,1)...
 - output.prodwell_GL.dP_f(i-1,1);% pressure wellbore [bar]
 T_int1 = interp1(h_int, T_int, output.prodwell_GL.h(i,1));
 output.prodwell_GL.chi(i,1) = interp1(P, chi, output.prodwell_GL.P(i,1),'spline');
 % quantity [-]
 output.prodwell_GL.w_CO2_l(i,1) = interp1(P, w_CO2_l, output.prodwell_GL.P(i,1),...
 'spline'); % CO2 liquid mass fraction
 output.prodwell_GL.w_NaCl_l(i,1) = interp1(P, w_NaCl_l, output.prodwell_GL.P(i,1),...
 'spline'); % NaCl liquid mass fraction
 output.prodwell_GL.w_H2O_l(i,1) = interp1(P, w_H2O_l, output.prodwell_GL.P(i,1),...
 'spline'); % H2O liquid mass fraction
 output.prodwell_GL.w_CO2_g(i,1) = interp1(P, w_CO2_g, output.prodwell_GL.P(i,1),...
 'spline'); % CO2 vapor mass fraction
 output.prodwell_GL.w_H2O_v(i,1) = 1 - output.prodwell_GL.w_CO2_g(i,1);
 % H2O vapor mass fraction
 % if calculated quality < 0, than spline interpolation failed, do linear interpolation
 if output.prodwell_GL.chi(i,1) < 0 || output.prodwell.chi(i,1) < ...
 output.prodwell.chi(i-1,1)
 output.prodwell_GL.chi(i,1) = interp1(P, chi, output.prodwell_GL.P(i,1));
 output.prodwell_GL.w_CO2_l(i,1) = interp1(P, w_CO2_l, output.prodwell_GL.P(i,1));
 output.prodwell_GL.w_NaCl_l(i,1) = interp1(P, w_NaCl_l, output.prodwell_GL.P(i,1));
 output.prodwell_GL.w_H2O_l(i,1) = interp1(P, w_H2O_l, output.prodwell_GL.P(i,1));
 output.prodwell_GL.w_CO2_g(i,1) = interp1(P, w_CO2_g, output.prodwell_GL.P(i,1));
 output.prodwell_GL.w_H2O_v(i,1) = 1 - output.prodwell_GL.w_CO2_g(i,1);
 end
 if output.prodwell_GL.w_CO2_g(i,1) > 1
 output.prodwell_GL.w_CO2_g(i,1) = 1;
 end

 if i == input.prodwell_GL.segnr_GL

114

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

% output.prodwell_GL.h(i,1) = output.prodwell_GL.h(i-1,1) - output.prodwell_GL.dQ(i-1,1) -
...
% output.prodwell_GL.dE_pot(i-1,1); % enthalpy [J/kg]
% %output.prodwell_GL.h(i,1) = (output.prodwell_GL.h(i,1) * output.prodwell_GL.m_gf(i-1,1)
+ ...
% % output.prodwell_GL.h_GL *
output.prodwell_GL.m_GL)/output.prodwell_GL.m_gf(i,1);
% output.prodwell_GL.h(i,1) = (output.prodwell_GL.h_GL_l * output.prodwell_GL.m_gf(i,1) *
(1 - output.prodwell_GL.chi(i,1)) + ...
% output.prodwell_GL.h_GL * output.prodwell_GL.m_gf(i,1) *
output.prodwell_GL.chi(i,1))/output.prodwell_GL.m_gf(i,1);

 sheet2 = get(Sheets, 'Item', 2);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C2', output.prodwell.P(i,1));
 sheet.set('Range', 'C3', output.prodwell.T(i,1));
 sheet.set('Range', 'C5', output.prodwell_GL.w_CO2_g(i,1));
 range = sheet.get('Range', 'G5');
 range.Value;
 output.prodwell_GL.h_GL = range.Value;

 sheet2 = get(Sheets, 'Item', 3);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', output.prodwell.P(i,1));
 sheet.set('Range', 'C4', output.prodwell.T(i,1));
 sheet.set('Range', 'C6', output.prodwell_GL.w_NaCl_l(i,1));
 range = sheet.get('Range', 'G6');
 range.Value;
 output.prodwell_GL.h_GL_l = range.Value;

 output.prodwell_GL.h(i,1) = (output.prodwell_GL.h_GL_l * ...
 output.prodwell_GL.m_gf(i,1) * (1 - ...
 output.prodwell_GL.chi(i,1)) + ...
 output.prodwell_GL.h_GL * ...
 output.prodwell_GL.m_gf(i,1) * ...
 output.prodwell_GL.chi(i,1))/...
 output.prodwell_GL.m_gf(i,1);
 else
 output.prodwell_GL.h(i,1) = output.prodwell_GL.h(i-1,1) - ...
 output.prodwell_GL.dQ(i-1,1) - ...
 output.prodwell_GL.dE_pot(i-1,1); % enthalpy [J/kg]
 end

 % Invoke fCalc_geofprops3 for single liquid and single vapor properties calculation...
 % and calculate total properties
 [T_new, rho_m, c_p_m, mu_m, eps_G, rho_v, rho_l, mu_v, mu_l] = fCalc_geofprops3 ...
 (output.prodwell_GL.P(i,1), output.prodwell_GL.T(i-1,1), ...
 output.prodwell_GL.w_CO2_l(i,1), output.prodwell_GL.w_NaCl_l(i,1), ...
 output.prodwell_GL.w_CO2_g(i,1), output.prodwell_GL.h(i,1), ...
 output.prodwell_GL.chi(i,1), output.prodwell_GL.h(i-1,1),...
 input, output.prodwell.T(i-2,1),l,T_int1); % geothermal fluid properties
 output.prodwell_GL.T(i,1) = T_new; % temperature [C]
 output.prodwell_GL.rho(i,1) = rho_m; % density [kg/m3]
 output.prodwell_GL.c_p(i,1) = c_p_m; % specific heat capacity [J/kg/K]
 output.prodwell_GL.mu(i,1) = mu_m; % viscosity [Pa*s]
 output.prodwell_GL.eps_G(i,1) = eps_G; % void fraction [-]

 % Drift flux model
 if input.prodwell_GL.DF_model > 1 % DF_model = 1 --> homogeneous
 output.prodwell_GL.rho_l(i,1) = rho_l; % density liquid phase [kg/m3]
 output.prodwell_GL.rho_v(i,1) = rho_v; % density gas phase [kg/m3]
 output.prodwell_GL.mu_l(i,1) = mu_l; % viscosity liquid phase [Pa*s]
 output.prodwell_GL.mu_v(i,1) = mu_v; % viscosity gas phase [Pa*s]
 p = find(output.prodwell_GL.chi > 0,1); % segment number with flash horizon
 output.prodwell_GL.l_E(i,1) = output.prodwell_GL.l(i,1) - ...
 output.prodwell_GL.l(p,1);
 % length from entrance or flash horizon [m]
 output.prodwell_GL.u_sg(i,1) = ((output.prodwell_GL.chi(i,1)* ...
 output.prodwell_GL.m_gf(i,1))/...
 rho_v)/(pi*(output.prodwell_GL.D_i(i,1)/2)^2);
 % superficial gas velocity [m/s]
 output.prodwell_GL.u_sl(i,1) = (((1-output.prodwell_GL.chi(i,1)) * ...
 output.prodwell_GL.m_gf(i,1))/rho_l)/(pi*...
 (output.prodwell_GL.D_i(i,1)/2)^2);
 % superficial liquid velocity [m/s]
 [eps_G,FP,u_gu,C_0] = fCalc_eps_G(output.prodwell_GL.T(i,1), rho_l, rho_v, ...
 mu_l, mu_v, output.prodwell_GL.l_E(i,1),...

 output.prodwell_GL.D_i(i,1),...
 output.prodwell_GL.eps_pipe(i,1), ...
 output.prodwell_GL.u_sg(i,1),...
 output.prodwell_GL.u_sl(i,1), input.general.g, ...
 output.prodwell_GL.chi(i,1), input.prodwell_GL.DF_model);
 % void fraction [-]
 output.prodwell_GL.eps_G(i,1) = eps_G; % void fraction [-]
 output.prodwell_GL.FP(i,1) = cellstr(FP); % flow pattern
 output.prodwell_GL.rho(i,1) = output.prodwell_GL.rho_v(i,1)*...
 output.prodwell_GL.eps_G(i,1) ...
 + output.prodwell_GL.rho_l(i,1)*...
 (1-output.prodwell_GL.eps_G(i,1)); % density [kg/m3]
 output.prodwell_GL.u_gu(i,1) = u_gu; % drift-flux velocity, u_g relative to u_m
 output.prodwell_GL.C_0(i,1) = C_0; % distribution parameter
 end

 % Recalculate segment properties
 output.prodwell_GL.u(i,1) = fCalc_u(output.prodwell_GL.m_gf(i,1), ...
 output.prodwell_GL.rho(i,1),...
 output.prodwell_GL.D_i(i,1)); % velocity [m/s]
 output.prodwell_GL.Re(i,1) = fCalc_Re(output.prodwell_GL.D_i(i,1), ...
 output.prodwell_GL.rho(i,1), ...
 output.prodwell_GL.u(i,1), ...
 output.prodwell_GL.mu(i,1)); % Reynolds number [-]
 output.prodwell_GL.f(i,1) = fCalc_f(output.prodwell_GL.chi(i,1), ...
 output.prodwell_GL.eps_pipe(i,1), ...
 output.prodwell_GL.D_i(i,1), ...
 output.prodwell_GL.Re(i,1));
 % friction factor [-]
 output.prodwell_GL.dQ(i,1) = fCalc_dQ(output.prodwell_GL.T(i,1), ...
 output.prodwell_GL.T_g(i,1), ...
 output.prodwell_GL.D_i(i,1), ...
 output.prodwell_GL.dl(i,1), ...
 output.prodwell_GL.m_gf(i,1), ...
 input.general.gamma, input.general.t, ...
 output.prodwell_GL.k_r(i,1), ...
 output.prodwell_GL.alfa_r(i,1));
 % Heat exchange with surroundings [J/kg]
 output.prodwell_GL.dE_pot(i,1) = fCalc_dE_pot(input.general.g, ...
 output.prodwell_GL.dz(i,1));
 % potential energy change [J/kg]
 output.prodwell_GL.dP_f(i,1) = fCalc_dP_f(output.prodwell_GL.D_i(i,1), ...
 output.prodwell_GL.f(i,1), ...
 output.prodwell_GL.rho(i,1), ...
 output.prodwell_GL.u(i,1), ...
 output.prodwell_GL.dl(i,1));
 % frictional pressure change [bar]
 output.prodwell_GL.dP_hs(i,1) = fCalc_dP_hs(input.general.g, ...
 output.prodwell_GL.rho(i,1), ...
 output.prodwell_GL.dz(i,1));
 % hydrostatic pressure change [bar]
 end
 close(g)
 i = n;
 j = n;
 k = max(output.prodwell_GL.segnr);
 end

 if m >= n % If degassing according to Duan and Sun (2003) starts later than Francke (2014)
 break
 end
 if abs(output.prodwell_GL.P(i-1,1) - output.prodwell_GL.P_old) < input.settings.dP_abs_pw
 % If calculation has iterated to user-defined error
 break
 end

 end

 %% Proceed with segment of flash horizon of Francke (2014)
 if max(input.prodwell_GL.segment) >= max(output.prodwell_GL.segnr)
 for i = n:max(input.prodwell_GL.segment) + 1

 if i == max(input.prodwell.segment) + 1
 output.prodwell_GL.segnr(i,1) = output.prodwell_GL.segnr(i-1,1)+1; % segment nr.
 output.prodwell_GL.D_i(i,1) = input.prodwell.D_i(i-1,1); % diameter wellbore [m]
 output.prodwell_GL.dl(i,1) = input.prodwell.dl(i-1,1); % length [m]
 output.prodwell_GL.dz(i,1) = input.prodwell.dz(i-1,1); % dz [m]
 output.prodwell_GL.tvd(i,1) = 0; % tvd [m]

B
 M

A
T

L
A

B
 C

od
e

115

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 output.prodwell_GL.grad_T_g(i,1) = input.prodwell.grad_T_g(i-1,1); % temperature grad [m]
 output.prodwell_GL.eps_pipe(i,1) = input.prodwell.eps_pipe(i-1,1); % abs pipe roughness[m]
 output.prodwell_GL.k_r(i,1) = input.prodwell.k_r(i-1,1); % rock therm cond.[W/m/K]
 output.prodwell_GL.alfa_r(i,1) = input.prodwell.alfa_r(i-1,1); % rock therm diff[m2/s]
 output.prodwell_GL.l(i,1) = output.prodwell_GL.l(i-1,1) + output.prodwell_GL.dl(i-1,1);
 output.prodwell_GL.T_g(i,1) = output.prodwell_GL.T_g(i-1,1);
 output.prodwell_GL.m_gf(i,1) = output.prodwell_GL.m_gf(i-1,1);
 output.prodwell_GL.w_NaCl(i,1) = output.prodwell_GL.w_NaCl(i-1,1);
 output.prodwell_GL.w_CO2(i,1) = output.prodwell_GL.w_CO2(i-1,1);
 output.prodwell_GL.w_H2O(i,1) = output.prodwell_GL.w_H2O(i-1,1);
 output.prodwell_GL.m_NaCl(i,1) = output.prodwell_GL.m_NaCl(i-1,1);
 output.prodwell_GL.m_CO2(i,1) = output.prodwell_GL.m_CO2(i-1,1);
 end

 waitbar(i/max(input.prodwell_GL.segment))
 output.prodwell_GL.P(i,1) = output.prodwell_GL.P(i-1,1) - ...
 output.prodwell_GL.dP_hs(i-1,1) - ...
 output.prodwell_GL.dP_f(i-1,1); % pressure wellbore [bar]
 output.prodwell_GL.h(i,1) = output.prodwell_GL.h(i-1,1) - ...
 output.prodwell_GL.dQ(i-1,1) - ...
 output.prodwell_GL.dE_pot(i-1,1); % enthalpy [J/kg]
 if output.prodwell_GL.P(i,1) < input.general.P_atm % minimum pressure of wellbore
 disp('ERROR: Pressure loss in wellbore too high. ACTION: Decrease mass flow')
 close(h)
 msgbox('Pressure loss in wellbore too high. ACTION: Decrease mass flow', 'Error','error');
 stat = status.FAILURE; return;
 end

 if i == input.prodwell_GL.segnr_GL
 sheet2 = get(Sheets, 'Item', 1);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', output.prodwell.P(i,1));
 sheet.set('Range', 'C4', output.prodwell.T(i,1));
 sheet.set('Range', 'C8', output.prodwell_GL.w_NaCl(i,1));
 sheet.set('Range', 'C11', output.prodwell_GL.w_CO2(i,1));
 range = sheet.get('Range', 'D8:D13');
 range2 = sheet.get('Range', 'I9');
 range.Value;
 range2.Value;
 data_FM = range.Value;
 data1_FM = range2.Value;
 output.prodwell_GL.m_NaCl(i:max(input.prodwell_GL.segment),1)= cell2mat(data_FM(1,1));
 output.prodwell_GL.m_CO2(i:max(input.prodwell_GL.segment),1) = cell2mat(data_FM(4,1));
 output.prodwell_GL.h(i,1) = data1_FM;
 end

 [geofprops, T_new, w_table] = fCalc_geofprops2(output.prodwell_GL.P(i,1), ...
 output.prodwell_GL.T(i-1,1), output.prodwell_GL.w_NaCl(i,1), ...
 output.prodwell_GL.w_CO2(i,1), data.H2O_sat, output.prodwell_GL.h(i,1), ...
 output, output.prodwell_GL.h(i-1,1), input, data);
 output.prodwell_GL.T(i,1) = T_new; % temperature [C]
 output.prodwell_GL.chi(i,1) = geofprops(1,2); % gas mass fraction [-]
 output.prodwell_GL.v_spec(i,1) = 1/geofprops(1,4); % specific volume [m3/kg]
 output.prodwell_GL.rho(i,1) = geofprops(1,4); % density [kg/m3]
 output.prodwell_GL.c_p(i,1) = geofprops(1,5); % specific heat capacity [J/kg/K]
 output.prodwell_GL.mu(i,1) = geofprops(1,7); % viscosity [Pa*s]
 output.prodwell_GL.eps_G(i,1) = geofprops(1,3); % void fraction [-]

 % Drift-flux model
 if input.prodwell_GL.DF_model > 1 % DF_model = 1 --> homogeneous
 output.prodwell_GL.rho_l(i,1) = geofprops(1,15); % density liquid phase [kg/m3]
 output.prodwell_GL.rho_v(i,1) = geofprops(1,23); % density gas phase [kg/m3]
 output.prodwell_GL.mu_l(i,1) = geofprops(1,18); % viscosity liquid phase [Pa*s]
 output.prodwell_GL.mu_v(i,1) = geofprops(1,26); % viscosity gas phase [Pa*s]
 p = find(output.prodwell_GL.chi > 0,1); % segment number with flash horizon
 output.prodwell_GL.l_E(i,1) = output.prodwell_GL.l(i,1) - output.prodwell_GL.l(p,1);
 % length from entrance or flash horizon [m]
 output.prodwell_GL.u_sg(i,1) = ((output.prodwell_GL.chi(i,1) * ...
 output.prodwell_GL.m_gf(i,1))/...
 geofprops(1,23))/(pi*(output.prodwell_GL.D_i(i,1)/2)^2);
 % superficial gas velocity [m/s]
 output.prodwell_GL.u_sl(i,1) = (((1-output.prodwell_GL.chi(i,1)) * ...
 output.prodwell_GL.m_gf(i,1))/...
 geofprops(1,15))/(pi*(output.prodwell_GL.D_i(i,1)/2)^2);
 % superficial liquid velocity [m/s]
 [eps_G,FP,u_gu,C_0] = fCalc_eps_G(output.prodwell_GL.T(i,1), geofprops(1,15), ...
 geofprops(1,23), geofprops(1,18), geofprops(1,26), ...
 output.prodwell_GL.l_E(i,1), output.prodwell_GL.D_i(i,1), ...

 output.prodwell_GL.eps_pipe(i,1), output.prodwell_GL.u_sg(i,1), ...
 output.prodwell_GL.u_sl(i,1), input.general.g, ...
 output.prodwell_GL.chi(i,1), input.prodwell_GL.DF_model);
 % void fraction [-]
 output.prodwell_GL.eps_G(i,1) = eps_G; % void fraction [-]
 output.prodwell_GL.FP(i,1) = cellstr(FP); % flow pattern
 output.prodwell_GL.rho(i,1) = output.prodwell_GL.rho_v(i,1) * ...\
 output.prodwell_GL.eps_G(i,1) + ...
 output.prodwell_GL.rho_l(i,1) * ...
 (1-output.prodwell_GL.eps_G(i,1)); % density [kg/m3]
 output.prodwell_GL.u_gu(i,1) = u_gu; % drift-flux velocity, u_g relative to u_m [m/s]
 output.prodwell_GL.C_0(i,1) = C_0; % distribution parameter
 end
 % Output geofluid composition
 output.prodwell_GL.w_NaCl_l(i,1) = w_table(3,2);
 output.prodwell_GL.w_CO2_l(i,1) = w_table(3,3);
 output.prodwell_GL.w_CO2_g(i,1) = w_table(3,4);
 output.prodwell_GL.w_H2O_l(i,1) = w_table(3,5);
 output.prodwell_GL.w_H2O_v(i,1) = w_table(3,6);

 output.prodwell_GL.u(i,1) = fCalc_u(output.prodwell_GL.m_gf(i,1), ...
 output.prodwell_GL.rho(i,1), ...
 output.prodwell_GL.D_i(i,1)); % velocity [m/s]
 output.prodwell_GL.Re(i,1) = fCalc_Re(output.prodwell_GL.D_i(i,1), ...
 output.prodwell_GL.rho(i,1),...
 output.prodwell_GL.u(i,1), output.prodwell_GL.mu(i,1));
 % Reynolds number [-]
 output.prodwell_GL.f(i,1) = fCalc_f(output.prodwell_GL.chi(i,1), ...
 output.prodwell_GL.eps_pipe(i,1), output.prodwell_GL.D_i(i,1), ...
 output.prodwell_GL.Re(i,1)); % friction factor [-]
 output.prodwell_GL.dQ(i,1) = fCalc_dQ(output.prodwell_GL.T(i,1), output.prodwell_GL.T_g(i,1),
...
 output.prodwell_GL.D_i (i,1), output.prodwell_GL.dl(i,1), ...
 output.prodwell_GL.m_gf(i,1), input.general.gamma, input.general.t, ...
 output.prodwell_GL.k_r(i,1), output.prodwell_GL.alfa_r(i,1));
 % Heat exchange with surroundings [J/kg]
 output.prodwell_GL.dE_pot(i,1) = fCalc_dE_pot(input.general.g, output.prodwell_GL.dz(i,1));
 % potential energy change [J/kg]
 output.prodwell_GL.dP_f(i,1) = fCalc_dP_f(output.prodwell_GL.D_i(i,1), ...
 output.prodwell_GL.f(i,1),...
 output.prodwell_GL.rho(i,1),output.prodwell_GL.u(i,1),...
 output.prodwell_GL.dl(i,1));
 % frictional pressure change [bar]
 output.prodwell_GL.dP_hs(i,1) = fCalc_dP_hs(input.general.g, ...
 output.prodwell_GL.rho(i,1), ...
 output.prodwell_GL.dz(i,1)); % hydros. P change [bar]
 end
 end
 end
 close(h)

 %output = fChange_prodwell_GL(input, output);
 output.prodwell_GL.P(:,a) = output.prodwell_GL.P;
 output.prodwell_GL.T(:,a) = output.prodwell_GL.T;
 output.prodwell_GL.chi(:,a) = output.prodwell_GL.chi;
 output.prodwell_GL.h(:,a) = output.prodwell_GL.h;
 output.prodwell_GL.eps_G(:,a) = output.prodwell_GL.eps_G;

%% Calculation of the gas lift annulus properties

 load P_CO2; load T_CO2; load cp_CO2; load h_CO2; load k_CO2; load mu_CO2; load rho_CO2; load s_CO2;
 load H2O_sat_props;

 output.prodwell_GL.T_GL(input.prodwell_GL.segnr_GL,1) = ...
 output.prodwell_GL.T(input.prodwell_GL.segnr_GL,1);
 output.prodwell_GL.P_GL(input.prodwell_GL.segnr_GL,1) = ...
 output.prodwell_GL.P(input.prodwell_GL.segnr_GL,1);
 output.prodwell_GL.h_GL(input.prodwell_GL.segnr_GL,1) = ...
 interp2(P_CO2,T_CO2,h_CO2,output.prodwell_GL.P_GL(input.prodwell_GL.segnr_GL,1),...
 output.prodwell_GL.T_GL(input.prodwell_GL.segnr_GL,1));
 options = optimset('Display','off');

 for j = 1:1
 for i = input.prodwell_GL.segnr_GL:max(input.prodwell_GL.segment)

 output.prodwell_GL.dQ_g(i,j) = 102;
 output.prodwell_GL.dQ_gf_GL(i,j) = 1;

 output.prodwell_GL.T_GL(i+1,j) = output.prodwell_GL.T_GL(i,j);

116

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 while abs(output.prodwell_GL.dQ_g(i,j) - output.prodwell_GL.dQ_gf_GL(i,j)) >= 100
 if output.prodwell_GL.dQ_g(i,j) > output.prodwell_GL.dQ_gf_GL(i,j)
 output.prodwell_GL.T_GL(i+1,j) = output.prodwell_GL.T_GL(i+1,j) - 0.01;
 else
 output.prodwell_GL.T_GL(i+1,j) = output.prodwell_GL.T_GL(i+1,j) + 0.01;
 end
 output.prodwell_GL.dQ_g(i,j) = fCalc_dQ(output.prodwell_GL.T_GL(i+1,j), ...
 output.prodwell_GL.T_g(i,1), output.prodwell_GL.D_i(i,1) + ...
 0.05, output.prodwell_GL.dl(i,1), output.prodwell_GL.m_GL, ...
 input.general.gamma, input.general.t, ...
 output.prodwell_GL.k_r(i,1), output.prodwell_GL.alfa_r(i,1));
 % Heat exchange with surroundings [J/kg]
 output.prodwell_GL.dE_pot_GL(i,j) = fCalc_dE_pot(input.general.g, output.prodwell_GL.dz(i,1));
 % potential energy change [J/kg]
 output.prodwell_GL.dE_pot(i,1) = fCalc_dE_pot(input.general.g, output.prodwell_GL.dz(i,1));
 %output.prodwell_GL.dQ_gf(i,j)

 [output] = fCalc_dQgf(output,input,i,j);
 output.prodwell_GL.dP_hs_GL(i,j) = fCalc_dP_hs(input.general.g, ...
 output.prodwell_GL.rho_GL(i,j), ...
 output.prodwell_GL.dz(i,1)); % hydrostatic p change [bar]
 output.prodwell_GL.c_p_GL(i,j) = interp2(P_CO2,T_CO2,cp_CO2,output.prodwell_GL.P_GL(i,j),...
 output.prodwell_GL.T_GL(i,j));
 %output.prodwell_GL.T_GL(i+1,j) = output.prodwell_GL.T_GL(i,j) + (output.prodwell_GL.dQ_gf_GL(i,j) -
output.prodwell_GL.dQ_g(i,j) - output.prodwell_GL.dE_pot_GL(i,j))/output.prodwell_GL.c_p_GL(i,j);
 output.prodwell_GL.u_GL(i,j) = fCalc_u(output.prodwell_GL.m_GL, ...
 output.prodwell_GL.rho_GL(i,j), 0.05); % velocity [m/s]
 output.prodwell_GL.f(i,j) = fCalc_f(0, output.prodwell_GL.eps_pipe(1,1), ...
 0.05, output.prodwell_GL.Re_GL(i,j)); % friction factor [-]
 output.prodwell_GL.dP_f_GL(i,j) = fCalc_dP_f(0.05, output.prodwell_GL.f(i,j), ...
 output.prodwell_GL.rho_GL(i,j), ...
 output.prodwell_GL.u_GL(i,j), output.prodwell_GL.dl(i,j));
 % frictional pressure change [J/kg]
 if i >= 4
 output.prodwell_GL.dP_k_GL(i,j) = output.prodwell_GL.rho_GL(i,j) *...
 (output.prodwell_GL.u_GL(i,j)^2-output.prodwell_GL.u_GL(i-1,j)^2);
 end
 output.prodwell_GL.P_GL(i+1,j) = output.prodwell_GL.P_GL(i,j) - ...
 output.prodwell_GL.dP_hs_GL(i,j) + output.prodwell_GL.dP_f_GL(i,j);

 end

 if i == input.prodwell_GL.segnr_GL
 Excel = actxGetRunningServer('Excel.Application');
 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 1);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', output.prodwell.P(i,1));
 sheet.set('Range', 'C4', output.prodwell.T(i,1));
 sheet.set('Range', 'C8', output.prodwell_GL.w_NaCl(i,1));
 sheet.set('Range', 'C11', output.prodwell_GL.w_CO2(i,1));
 range = sheet.get('Range', 'D8:D13');
 range2 = sheet.get('Range', 'I9');
 range.Value;
 range2.Value;
 data_FM = range.Value;
 data1_FM = range2.Value;
 output.prodwell_GL.m_NaCl(i:max(input.prodwell_GL.segment),1) = cell2mat(data_FM(1,1));
 output.prodwell_GL.m_CO2(i:max(input.prodwell_GL.segment),1) = cell2mat(data_FM(4,1));
 output.prodwell_GL.h(i,1) = data1_FM;
 end

 waitbar(i/max(input.prodwell_GL.segment))
 output.prodwell_GL.P(i+1,1) = output.prodwell_GL.P(i,1) - output.prodwell_GL.dP_hs(i,1)...
 - output.prodwell_GL.dP_f(i,1); % pressure wellbore [bar]
 output.prodwell_GL.h(i+1,1) = output.prodwell_GL.h(i,1) + ...
 output.prodwell_GL.dQ_gf_gf(i,1) - ...
 output.prodwell_GL.dE_pot(i,1); % enthalpy [J/kg]
 [geofprops, T_new, w_table] = fCalc_geofprops2(output.prodwell_GL.P(i+1,1), ...
 output.prodwell_GL.T(i,1), output.prodwell_GL.w_NaCl(i+1,1), ...
 output.prodwell_GL.w_CO2(i+1,1), data.H2O_sat, output.prodwell_GL.h(i+1,1), ...
 output, output.prodwell_GL.h(i,1), input, data);
 output.prodwell_GL.T(i+1,1) = T_new; % temperature [C]
 output.prodwell_GL.chi(i+1,1) = geofprops(1,2); % gas mass fraction [-]
 output.prodwell_GL.v_spec(i+1,1) = 1/geofprops(1,4); % specific volume [m3/kg]

 output.prodwell_GL.rho(i+1,1) = geofprops(1,4); % density [kg/m3]
 output.prodwell_GL.c_p(i+1,1) = geofprops(1,5); % specific heat capacity [J/kg/K]
 output.prodwell_GL.mu(i+1,1) = geofprops(1,7); % viscosity [Pa*s]
 output.prodwell_GL.eps_G(i+1,1) = geofprops(1,3); % void fraction [-]

 % Drift-flux model
 if input.prodwell_GL.DF_model > 1 % DF_model = 1 --> homogeneous
 output.prodwell_GL.rho_l(i+1,1) = geofprops(1,15); % density liquid phase [kg/m3]
 output.prodwell_GL.rho_v(i+1,1) = geofprops(1,23); % density gas phase [kg/m3]
 output.prodwell_GL.mu_l(i+1,1) = geofprops(1,18); % viscosity liquid phase [Pa*s]
 output.prodwell_GL.mu_v(i+1,1) = geofprops(1,26); % viscosity gas phase [Pa*s]
 p = find(output.prodwell_GL.chi > 0,1); % segment number with flash horizon
 output.prodwell_GL.l_E(i+1,1) = output.prodwell_GL.l(i+1,1)-output.prodwell_GL.l(p,1);
 % length from entrance or flash horizon [m]
 output.prodwell_GL.u_sg(i+1,1) = ((output.prodwell_GL.chi(i+1,1) * ...
 output.prodwell_GL.m_gf(i+1,1))/...
 geofprops(1,23))/(pi*...
 (output.prodwell_GL.D_i(i+1,1)/2)^2);
 % superficial gas velocity [m/s]
 output.prodwell_GL.u_sl(i+1,1) = (((1-output.prodwell_GL.chi(i+1,1)) * ...
 output.prodwell_GL.m_gf(i+1,1))/...
 geofprops(1,15))/(pi*...
 (output.prodwell_GL.D_i(i+1,1)/2)^2);
 % superficial liquid velocity [m/s]
 [eps_G,FP,u_gu,C_0] = fCalc_eps_G(output.prodwell_GL.T(i+1,1), geofprops(1,15), ...
 geofprops(1,23), geofprops(1,18), geofprops(1,26), ...
 output.prodwell_GL.l_E(i+1,1), output.prodwell_GL.D_i(i+1,1), ...
 output.prodwell_GL.eps_pipe(i+1,1), output.prodwell_GL.u_sg(i+1,1), ...
 output.prodwell_GL.u_sl(i+1,1), input.general.g, ...
 output.prodwell_GL.chi(i+1,1), input.prodwell_GL.DF_model);
 % void fraction [-]
 output.prodwell_GL.eps_G(i+1,1) = eps_G; % void fraction [-]
 output.prodwell_GL.FP(i+1,1) = cellstr(FP); % flow pattern
 output.prodwell_GL.rho(i+1,1) = output.prodwell_GL.rho_v(i+1,1) * ...
 output.prodwell_GL.eps_G(i+1,1) + ...
 output.prodwell_GL.rho_l(i+1,1) * ...
 (1-output.prodwell_GL.eps_G(i+1,1));
 % density [kg/m3]
 output.prodwell_GL.u_gu(i+1,1) = u_gu; % drift-flux velocity, u_g rel. to u_m [m/s]
 output.prodwell_GL.C_0(i+1,1) = C_0; % distribution parameter
 end
 % Output geofluid composition
 output.prodwell_GL.w_NaCl_l(i+1,1) = w_table(3,2);
 output.prodwell_GL.w_CO2_l(i+1,1) = w_table(3,3);
 output.prodwell_GL.w_CO2_g(i+1,1) = w_table(3,4);
 output.prodwell_GL.w_H2O_l(i+1,1) = w_table(3,5);
 output.prodwell_GL.w_H2O_v(i+1,1) = w_table(3,6);

 output.prodwell_GL.u(i+1,1) = fCalc_u(output.prodwell_GL.m_gf(i+1,1), ...
 output.prodwell_GL.rho(i+1,1), ...
 output.prodwell_GL.D_i(i+1,1)); % velocity [m/s]
 output.prodwell_GL.Re(i+1,1) = fCalc_Re(output.prodwell_GL.D_i(i+1,1), ...
 output.prodwell_GL.rho(i+1,1),...
 output.prodwell_GL.u(i+1,1), ...
 output.prodwell_GL.mu(i+1,1));
 % Reynolds number [-]
 output.prodwell_GL.f(i+1,1) = fCalc_f(output.prodwell_GL.chi(i+1,1), ...
 output.prodwell_GL.eps_pipe(i+1,1), ...
 output.prodwell_GL.D_i(i+1,1), ...
 output.prodwell_GL.Re(i+1,1)); % friction factor [-]
 output.prodwell_GL.dQ(i+1,1) = fCalc_dQ(output.prodwell_GL.T(i+1,1), ...
 output.prodwell_GL.T_g(i+1,1), ...
 output.prodwell_GL.D_i (i+1,1), ...
 output.prodwell_GL.dl(i+1,1), ...
 output.prodwell_GL.m_gf(i+1,1), input.general.gamma, ...
 input.general.t, output.prodwell_GL.k_r(i+1,1), ...
 output.prodwell_GL.alfa_r(i+1,1));
 % Heat exchange with surroundings [J/kg]
 output.prodwell_GL.dE_pot(i+1,1) = fCalc_dE_pot(input.general.g, ...
 output.prodwell_GL.dz(i+1,1));
 % potential energy change [J/kg]
 output.prodwell_GL.dP_f(i+1,1) = fCalc_dP_f(output.prodwell_GL.D_i(i+1,1), ...
 output.prodwell_GL.f(i+1,1),...
 output.prodwell_GL.rho(i+1,1), ...
 output.prodwell_GL.u(i+1,1), ...
 output.prodwell_GL.dl(i+1,1));
 % frictional pressure change [bar]
 output.prodwell_GL.dP_hs(i+1,1) = fCalc_dP_hs(input.general.g, ...
 output.prodwell_GL.rho(i+1,1), ...

B
 M

A
T

L
A

B
 C

od
e

117

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 output.prodwell_GL.dz(i+1,1));
 % hydrostatic pressure change [bar]

 if output.prodwell_GL.P(i+1,1) < input.general.P_atm % minimum pressure of wellbore
 disp('ERROR: Pressure loss in wellbore too high. ACTION: Decrease mass flow')
 close(h)
 msgbox('Pressure loss in wellbore too high. ACTION: Decrease mass flow', 'Error','error');
 stat = status.FAILURE; return;
 end
 end
 end

 %% Compressor calculation from wellhead conditions (pressure, temperature)
 output.prodwell_GL.s_CO2 = interp2(P_CO2,T_CO2,s_CO2,output.prodwell_GL.P(end,1),...
 output.prodwell_GL.T(end,1));

 % iterative procedure compressor
 x0 = [output.prodwell_GL.T(end,1)]; % iteration variable
 y0 = [output.prodwell_GL.P_GL(end,1), output.prodwell_GL.s_CO2,1]; % iteration constants
 f = @(x0)fCalc_T_s_com(x0,y0);
 output.prodwell_GL.T_CO2_2s = fsolve(f,x0,options);
 output.prodwell_GL.h_CO2_2s = interp2(P_CO2,T_CO2,h_CO2,output.prodwell_GL.P_GL(end,1),...
 output.prodwell_GL.T_CO2_2s);
 output.prodwell_GL.h_CO2_1 = interp2(P_CO2,T_CO2,h_CO2,output.prodwell_GL.P(end,1),...
 output.prodwell_GL.T(end,1));
 output.prodwell_GL.h_CO2_2 = ((output.prodwell_GL.h_CO2_2s - output.prodwell_GL.h_CO2_1)/...
 input.B.eta_com) + output.prodwell_GL.h_CO2_1;
 x0 = [output.prodwell_GL.T_CO2_2s]; % iteration variable
 y0 = [output.prodwell_GL.P_GL(end,1), output.prodwell_GL.h_CO2_2,2]; % iteration constants
 f = @(x0)fCalc_T_s_com(x0,y0);
 output.prodwell_GL.T_CO2_2 = fsolve(f,x0,options);

 %% Compressor calculation from ambient conditions (pressure, temperature)
 output.prodwell_GL.s_CO2_atm = interp2(P_CO2,T_CO2,s_CO2,input.general.P_atm,...
 input.general.T_surf_w);
 output.prodwell_GL.h_CO2_1_atm = interp2(P_CO2,T_CO2,h_CO2,input.general.P_atm,...
 input.general.T_surf_w);

 % iterative procedure compressor
 x0 = [output.prodwell_GL.T(end,1)]; % iteration variable
 y0 = [output.prodwell_GL.P_GL(end,1), output.prodwell_GL.s_CO2_atm,1]; % iteration constants
 f = @(x0)fCalc_T_s_com(x0,y0);
 output.prodwell_GL.T_CO2_2s_atm = fsolve(f,x0,options);
 output.prodwell_GL.h_CO2_2s_atm = interp2(P_CO2,T_CO2,h_CO2,output.prodwell_GL.P_GL(end,1),...
 output.prodwell_GL.T_CO2_2s_atm);
 output.prodwell_GL.h_CO2_2_atm = ((output.prodwell_GL.h_CO2_2s_atm - ...
 output.prodwell_GL.h_CO2_1_atm)/ input.B.eta_com) + ...
 output.prodwell_GL.h_CO2_1_atm;
 x0 = [output.prodwell_GL.T_CO2_2s_atm]; % iteration variable
 y0 = [output.prodwell_GL.P_GL(end,1), output.prodwell_GL.h_CO2_2_atm,2]; % iteration constants
 f = @(x0)fCalc_T_s_com(x0,y0);
 output.prodwell_GL.T_CO2_2_atm = fsolve(f,x0,options);
end

%% fCalc_SF

% Simulation of single-flash power plant
% Frank Niewold
% Released version 1.0, February 2017

function [input, output, stat] = fCalc_SF(input, output, status, data, algorithm)
 % numbers in output parameters correspond to single-flash power plant figure in report

 % Succesfull simulation
 stat = status.SUCCES;
 %input.SF.P_out_t = 0.1;
 %input.SF.T_out_cd = 35;
 if algorithm == 1 % first part of single-flash power plant calculation until injection pump
 % dummy parameters and constants input settings
 out = zeros(1,1);
 Newoutput = zeros(1,1);
 error_eta_t_SF = input.settings.error_eta_t_SF; % accepted error iteration
 T0_12 = input.settings.T0_12; % initial temperature @ state 12
 dP = input.settings.dP_step_SF; % stepsize pressure [bar]
 options = optimset('Display','off');
 output.SF.T_11 = input.SF.T_out_cd;

 compressor = 0;

 %%%
 % Begin check for gas mass fraction AND determining initial flash properties %

 if output.prodwell.chi(end) == 0 % geothermal fluid is in liquid phase at top of production
 % well
 output.SF.T_2 = output.prodwell.T(end); % [C]
 output.SF.P_2 = output.prodwell.P(end); % [bar]
 output.SF.h_mix_2 = output.prodwell.h(end); % [J/kg]
 output.SF.chi_2 = output.prodwell.chi(end); % [-]

 while output.SF.chi_2 < input.settings.chi_2_min % Do until significant quality is present
 output.SF.P_2 = output.SF.P_2 - dP; % pressure [bar]
 [geofprops, T_new, w_table, ~] = fCalc_geofprops2(output.SF.P_2, output.SF.T_2, ...
 input.general.w_NaCl, input.general.w_CO2, ...
 input.general.H2O_sat, output.SF.h_mix_2, output, ...
 output.SF.h_mix_2, input, data);
 % geothermal fluid properties
 output.SF.T_2 = T_new; % temperature [C]
 output.SF.chi_2 = geofprops(1,2); % quality [-]
 end

 output.SF.w_H2O_g_2(1,1) = w_table(3,6); % gas mass fraction H2O state 2
 output.SF.w_CO2_g_2(1,1) = w_table(3,4); % gas mass fraction CO2 state 2
 output.SF.T_2(1,1) = output.SF.T_2; % [C]
 output.SF.P_2(1,1) = output.SF.P_2; % [bar]
 else
 % initial conditions
 output.SF.T_2(1,1) = output.prodwell.T(end); % [C]
 output.SF.P_2(1,1) = output.prodwell.P(end); % [bar]
 output.SF.h_mix_2 = output.prodwell.h(end); % [J/kg]
 output.SF.chi_2 = output.prodwell.chi(end); % quality [-]
 output.SF.w_H2O_g_2(1,1) = output.prodwell.w_H2O_g(end); % gas mass fraction H2O state 2
 output.SF.w_CO2_g_2(1,1) = output.prodwell.w_CO2_g(end); % gas mass fraction CO2 state 2
 end

 % End check for gas mass fraction AND determining of initial flash properties %
 %%%

 %% user-defined input parameters single-flash power plant
 output.SF.P_out_t = input.SF.P_out_t; % pressure outlet turbine [bar]
 output.SF.eta_t = input.SF.eta_t; % turbine efficiency
 output.SF.eta_td = input.SF.eta_td; % dry turbine efficiency
 output.SF.eta_p = input.SF.eta_p; % pump efficiency
 output.SF.eta_g = input.SF.eta_g; % generator efficiency
 output.SF.T_out_cd = input.SF.T_out_cd; % outlet temperature condenser

 %% Geothermal fluid properties @ state 4
 output.SF.chi_4 = 1; % saturated gas at inlet turbine
 output.SF.n_H2O_v_4(1,1) = (output.SF.w_H2O_g_2/input.general.M_H2O) / (output.SF.w_H2O_g_2...
 /input.general.M_H2O + output.SF.w_CO2_g_2/input.general.M_CO2);
 % mole fraction H2O in gas phase state 4
 output.SF.n_CO2_v_4(1,1) = (output.SF.w_CO2_g_2/input.general.M_CO2) / (output.SF.w_H2O_g_2...
 /input.general.M_H2O + output.SF.w_CO2_g_2/input.general.M_CO2);
 % mole fraction CO2 in gas phase state 4
 output.SF.P_H2O_4(1,1) = output.SF.n_H2O_v_4(1,1) * output.SF.P_2(1,1);
 % partial pressure H2O at state 4 [bar]
 output.SF.P_CO2_4(1,1) = output.SF.n_CO2_v_4(1,1) * output.SF.P_2(1,1);
 % partial pressure CO2 at state 4 [bar]
 output.SF.h_H2O_v_4(1,1) = interp1(data.H2O_sat_props(:,1), data.H2O_sat_props(:,4), ...
 output.SF.P_H2O_4(1,1),'spline');
 % enthalpy H2O in gas phase state 4 [J/kg]
 output.SF.h_CO2_v_4(1,1) = interp2(data.P_CO2, data.T_CO2, data.h_CO2, ...
 output.SF.P_CO2_4(1,1), output.SF.T_2(1,1),'spline');
 % enthalpy CO2 in gas phase state 4 [J/kg]
 output.SF.h_mix_v_4(1,1) = output.SF.h_H2O_v_4(1,1) * output.SF.w_H2O_g_2 + ...
 output.SF.h_CO2_v_4(1,1) * output.SF.w_CO2_g_2;
 % enthalpy vapor mixture at state 4 [J/kg]
 output.SF.s_H2O_v_4(1,1) = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,6), ...
 output.SF.T_2(1,1),'spline');
 % entropy H2O in gas phase state 4 [J/kg/K]
 output.SF.s_CO2_v_4(1,1) = interp2(data.P_CO2, data.T_CO2, data.s_CO2, ...
 output.SF.P_CO2_4(1,1), output.SF.T_2(1,1),'spline');
 % entropy CO2 in gas phase state 4 [J/kg/K]
 output.SF.s_mix_v_4(1,1) = output.SF.s_H2O_v_4(1,1) * output.SF.w_H2O_g_2 + ...
 output.SF.s_CO2_v_4(1,1) * output.SF.w_CO2_g_2;
 % entropy vapor mixture at state 4 [J/kg/K]

 %% Turbine expansion calculation state 5s
 output.SF.P_5 = output.SF.P_out_t; % outlet pressure turbine (model input)

118

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 % initial variables for fCalc_chi5s iteration
 output.SF.P0_H2O_7 = output.SF.P_5 * output.SF.n_H2O_v_4(1,1);
 % initial partial pressure H2O @ outlet turbine (5s)
 output.SF.T0_5 = interp1(data.H2O_sat_props(:,1), data.H2O_sat_props(:,2), ...
 output.SF.P0_H2O_7,'spline');
 % initial temperature @ outlet turbine (5s)
 output.SF.chi_5s = 1; % initial quantity @ outlet turbine (5s)

 % Iterative procedure fCalc_chi5s
 x0 = [output.SF.chi_5s, output.SF.T0_5]; % iteration variables
 y0 = [output.SF.w_CO2_g_2, output.SF.P_5, output.SF.s_mix_v_4(1,1), input.general.M_CO2,...
 input.general.M_H2O]; % constant variables
 f = @(x0)fCalc_chi_5s(x0,y0); % function
 [out] = fsolve(f,x0,options);
 save('output.mat','output'); % save all output so far

 % Repeat calculation with output from solution to obtain all other relevant output.
 x0 = [out(1),out(2)];
 y0 = [output.SF.w_CO2_g_2, output.SF.P_5, output.SF.s_mix_v_4(1,1), ...
 input.general.M_CO2, input.general.M_H2O];
 [~,output] = fCalc_chi_5s(x0,y0);
 Newoutput = output;
 load('output.mat'); % load all output so far

 % Write Newoutput from fCalc_chi5s to output file
 output.SF.chi_5s = Newoutput.SF.chi_5s; output.SF.T_5s = Newoutput.SF.T_5s;
 output.SF.w_CO2_g_2 = Newoutput.SF.w_CO2_g_2; output.SF.P_5 = Newoutput.SF.P_5;
 output.SF.s_mix_v_4 = Newoutput.SF.s_mix_v_4; output.SF.w_CO2_7 = Newoutput.SF.w_CO2_7;
 output.SF.w_H2O_7 = Newoutput.SF.w_H2O_7; output.SF.n_H2O_7 = Newoutput.SF.n_H2O_7;
 output.SF.P_H2O_7 = Newoutput.SF.P_H2O_7; output.SF.P_CO2_7 = Newoutput.SF.P_CO2_7;
 output.SF.T_5s_check = Newoutput.SF.T_5s_check; output.SF.h_H2O_6 = Newoutput.SF.h_H2O_6;
 output.SF.s_H2O_6 = Newoutput.SF.s_H2O_6; output.SF.h_H2O_7 = Newoutput.SF.h_H2O_7;
 output.SF.s_H2O_7 = Newoutput.SF.s_H2O_7; output.SF.h_CO2_7 = Newoutput.SF.h_CO2_7;
 output.SF.s_CO2_7 = Newoutput.SF.s_CO2_7; output.SF.h_mix_7 = Newoutput.SF.h_mix_7;
 output.SF.s_mix_7 = Newoutput.SF.s_mix_7; output.SF.h_mix_5s = Newoutput.SF.h_mix_5s;
 output.SF.s_mix_5s = Newoutput.SF.s_mix_5s;

 %% Turbine expansion calculation state 5
 output.SF.h_mix_5 = output.SF.h_mix_v_4 - output.SF.eta_t * (output.SF.h_mix_v_4 - ...
 output.SF.h_mix_5s); % initial enthalpy @ outlet turbine (5)
 output.SF.chi_5 = (output.SF.h_mix_5 - output.SF.h_H2O_6) / (output.SF.h_mix_7 - ...
 output.SF.h_H2O_6); % initial quality @ outlet turbine (5)
 output.SF.eta_t_old = 0; % initial old turbine efficiency
 output.SF.eta_t_new = output.SF.eta_t; % initial new turbine efficiency

 while abs(output.SF.eta_t_new - output.SF.eta_t_old) > error_eta_t_SF
 x0 = [output.SF.chi_5, output.SF.T_5s]; % Iteration variables
 y0 = [output.SF.w_CO2_g_2, output.SF.P_5, output.SF.h_mix_5(1,1), ...
 input.general.M_CO2, input.general.M_H2O]; % Constant variables
 f = @(x0)fCalc_chi_5(x0,y0);
 [out] = fsolve(f,x0,options);
 save('output.mat','output'); % save all output so far

 % Repeat calculation with output from solution to obtain all other relevant output.
 x0 = [out(1), out(2)];
 y0 = [output.SF.w_CO2_g_2, output.SF.P_5, output.SF.h_mix_5(1,1), ...
 input.general.M_CO2, input.general.M_H2O];
 [~,output] = fCalc_chi_5(x0,y0);
 Newoutput = output;
 load('output.mat'); % load all output so far

 % Write Newoutput from fCalc_chi5s to output file
 output.SF.chi_5 = Newoutput.SF.chi_5; output.SF.T_5 = Newoutput.SF.T_5;
 output.SF.w_CO2_g_2 = Newoutput.SF.w_CO2_g_2;output.SF.P_5 = Newoutput.SF.P_5;
 output.SF.w_CO2_7 = Newoutput.SF.w_CO2_7; output.SF.w_H2O_7 = Newoutput.SF.w_H2O_7;
 output.SF.n_H2O_7 = Newoutput.SF.n_H2O_7; output.SF.P_H2O_7 = Newoutput.SF.P_H2O_7;
 output.SF.P_CO2_7 = Newoutput.SF.P_CO2_7; output.SF.T_5_check = Newoutput.SF.T_5_check;
 output.SF.h_H2O_6 = Newoutput.SF.h_H2O_6; output.SF.s_H2O_6 = Newoutput.SF.s_H2O_6;
 output.SF.h_H2O_7 = Newoutput.SF.h_H2O_7; output.SF.s_H2O_7 = Newoutput.SF.s_H2O_7;
 output.SF.h_CO2_7 = Newoutput.SF.h_CO2_7; output.SF.s_CO2_7 = Newoutput.SF.s_CO2_7;
 output.SF.h_mix_7 = Newoutput.SF.h_mix_7; output.SF.s_mix_7 = Newoutput.SF.s_mix_7;
 output.SF.h_mix_5 = Newoutput.SF.h_mix_5; output.SF.s_mix_5 = Newoutput.SF.s_mix_5;

 % Calculate new wet turbine efficiency and mixture enthalpy @ state 5
 output.SF.eta_t_old = output.SF.eta_t_new;
 output.SF.eta_t_new = output.SF.eta_td * (output.SF.chi_4 + output.SF.chi_5)/2;
 % wet turbine efficiency
 output.SF.h_mix_5 = output.SF.h_mix_v_4 - output.SF.eta_t_new * (output.SF.h_mix_v_4 ...

 - output.SF.h_mix_5s); % mixture enthalpy [J/kg] state 5
 end

 output.SF.eta_t(1,1) = output.SF.eta_t_new; % final turbine efficiency

 %% Calculate state 11 - condenser outlet gas
 % Extra check to make sure condensation is isobaric and isothermal for pure water
 if output.SF.w_CO2_g_2 == 0
 output.SF.T_11 = output.SF.T_5;
 end

 output.SF.P_H2O_11 = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,1), ...
 output.SF.T_11,'spline'); % partial pressure H2O @ state 11
 output.SF.P_CO2_11 = output.SF.P_5 - output.SF.P_H2O_11; % partial pressure CO2 @ state 11
 output.SF.P_mix_11 = output.SF.P_H2O_11 + output.SF.P_CO2_11;
 % total pressure ideal gas mixture @ state 11
 output.SF.n_CO2_v_11 = output.SF.P_CO2_11/output.SF.P_5; % mole fraction CO2 in gas @ state 11
 output.SF.n_H2O_v_11 = 1 - output.SF.n_CO2_v_11; % mole fraction H2O in gas @ state 11
 output.SF.w_CO2_g_11 = output.SF.n_CO2_v_11/((input.general.M_H2O/input.general.M_CO2)...
 -((input.general.M_H2O/input.general.M_CO2) - 1)*output.SF.n_CO2_v_11);
 % mass fraction CO2 in gas @ state 11
 output.SF.w_H2O_g_11 = 1 - output.SF.w_CO2_g_11; % mass fraction H2O in gas @ state 11

 output.SF.h_H2O_v_11 = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,4), ...
 output.SF.T_11,'spline'); % enthalpy H2O in gas @ state 11
 output.SF.s_H2O_v_11 = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,6), ...
 output.SF.T_11,'spline'); % entropy H2O in gas @ state 11
 output.SF.h_CO2_v_11 = interp2(data.P_CO2, data.T_CO2, data.h_CO2, output.SF.P_CO2_11, ...
 output.SF.T_11,'spline'); % enthalpy CO2 in gas @ state 11
 output.SF.s_CO2_v_11 = interp2(data.P_CO2, data.T_CO2, data.s_CO2, output.SF.P_CO2_11, ...
 output.SF.T_11,'spline'); % entropy CO2 in gas @ state 11
 output.SF.h_mix_v_11 = output.SF.h_H2O_v_11 * output.SF.w_H2O_g_11 + output.SF.h_CO2_v_11...
 * output.SF.w_CO2_g_11; % enthalpy gas mix @ state 11
 output.SF.s_mix_v_11 = output.SF.s_H2O_v_11 * output.SF.w_H2O_g_11 + output.SF.s_CO2_v_11...
 * output.SF.w_CO2_g_11; % entropy gas mix @ state 11

 %% Calculate state 12 steam ejector/condenser
 output.SF.m_4(1,1) = input.general.m_gf * output.SF.chi_2(1,1);
 output.SF.m_5(1,1) = output.SF.m_4(1,1); % initial value
 output.SF.m_mf(1,1) = 0; % initial value
 output.SF.m_mix_v_11(1,1) = (output.SF.w_CO2_g_2/output.SF.w_CO2_g_11) * output.SF.m_5(1,1);
 if output.SF.w_CO2_g_11 > 0 && compressor == 0
 load ASR_curves; load CR_data; load f_TCF_air; load f_TCF_steam; load f_WER;
 output.SF.m_4(1,1) = input.general.m_gf * output.SF.chi_2(1,1);
 output.SF.m_mix_v_11(1,1) = (output.SF.w_CO2_g_2/output.SF.w_CO2_g_11) * output.SF.m_5(1,1);
 % massflow CO2 + H2O mixture through @ state 11

 output.SF.m_mix_v_11_old = output.SF.m_mix_v_11(1,1) + 0.2;
 output.SF.m_mix_v_11_new = output.SF.m_mix_v_11(1,1);

 output.SF.TCF_CO2(1,1) = f_TCF_air(output.SF.T_11); % temperature correction factor
 output.SF.TCF_H2O(1,1) = f_TCF_steam(output.SF.T_11); % temperature correction factor
 output.SF.WER_CO2(1,1) = f_WER(input.general.M_CO2); % weigth entrainment ratio
 output.SF.WER_H2O(1,1) = f_WER(input.general.M_H2O); % weigth entrainment ratio

 while abs(output.SF.m_mix_v_11_old - output.SF.m_mix_v_11_new) > 0.001;
 output.SF.m_mix_v_11(1,1) = output.SF.m_mix_v_11_new;
 output.SF.DAE_H2O_11(1,1) = output.SF.m_mix_v_11(1,1) * output.SF.w_H2O_g_11(1,1)/...
 (output.SF.TCF_H2O(1,1) * output.SF.WER_H2O(1,1));
 % Dry air equivalent water
 output.SF.DAE_CO2_11(1,1) = output.SF.m_mix_v_11(1,1) * output.SF.w_CO2_g_11/...
 (output.SF.TCF_CO2(1,1) * output.SF.WER_CO2(1,1));
 % Dry air equivalent CO2
 output.SF.DAE_11(1,1) = output.SF.DAE_CO2_11(1,1) + output.SF.DAE_H2O_11(1,1);
 % Dry air equivalent mix
 output.SF.P_mix_d11(1,1) = sqrt(output.SF.P_mix_11(1,1) * input.general.P_atm);
 % pressure 2nd stage SE/C
 output.SF.CR(1,1) = output.SF.P_mix_d11(1,1)/output.SF.P_mix_11(1,1); % compression ratio
 output.SF.ER_11(1,1) = output.SF.P_2(1,1)/output.SF.P_mix_11(1,1); % expansion ratio

 % determination of the air to steam ratio (ASR)
 A1 = CR_data(find(CR_data < output.SF.CR(1,1),1));
 A2 = CR_data(find(CR_data > output.SF.CR(1,1)));
 A2 = A2(end);
 B1 = '_';
 B2 = 'f';
 if A1(mod(A1,1) == 0)
 formatSpec = 'f_ASR%s%d';

B
 M

A
T

L
A

B
 C

od
e

119

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 str1 = sprintf(formatSpec,B1,A1);
 else
 A11 = round(A1,1);
 A11 = round(10*rem(A11,1));
 formatSpec = 'f_ASR%s%d%s%d';
 str1 = sprintf(formatSpec,B1,floor(A1),B2,A11);
 end
 if A2(mod(A2,1) == 0)
 formatSpec = 'f_ASR%s%d';
 str2 = sprintf(formatSpec,B1,A2(end));
 else
 A22 = round(A2,1);
 A22 = round(10*rem(A22,1));
 formatSpec = 'f_ASR%s%d%s%d';
 str2 = sprintf(formatSpec,B1,floor(A2),B2,A22);
 end
 C1 = eval(str1);
 C2 = eval(str2);
 D1 = C1(output.SF.ER_11(1,1));
 D2 = C2(output.SF.ER_11(1,1));
 output.SF.ASR_11(1,1) = interp1([A1 A2(end)],[D1 D2], output.SF.CR(1,1));
 % Air to steam ratio
 output.SF.m_mf11(1,1) = output.SF.DAE_11(1,1)/output.SF.ASR_11(1,1);
 % mass flow rate motive flow
% output.SF.m_mix_v_11_old = output.SF.m_mix_v_11_new;
% output.SF.m_5(1,1) = output.SF.m_4(1,1) - output.SF.m_mf_11(1,1); % mass flow outlet turbine
% output.SF.m_mix_v_11_new = (output.SF.w_CO2_g_2/output.SF.w_CO2_g_11)* output.SF.m_5(1,1);

 output.SF.P_H2O_s12(1,1) = output.SF.P_H2O_11(1,1);
 % outlet temperature SE/C equal to condenser
 output.SF.P_CO2_s12(1,1) = output.SF.P_mix_d11(1,1) - output.SF.P_H2O_s12(1,1);
 output.SF.P_mix_s12(1,1) = output.SF.P_mix_d11(1,1);
 output.SF.n_CO2_v_s12(1,1) = output.SF.P_CO2_s12(1,1)/output.SF.P_mix_s12(1,1);
 % mole fraction CO2 in gas @ state 12
 output.SF.n_H2O_v_s12(1,1) = 1 - output.SF.n_CO2_v_s12(1,1);% mole fraction H2O in gas @ st 12
 output.SF.w_CO2_g_s12(1,1) = output.SF.n_CO2_v_s12(1,1)/((input.general.M_H2O/...
 input.general.M_CO2)-((input.general.M_H2O/input.general.M_CO2)...
 - 1)*output.SF.n_CO2_v_s12(1,1));
 % mass fraction CO2 in gas @ state 11
 output.SF.w_H2O_g_s12(1,1) = 1 - output.SF.w_CO2_g_s12(1,1);
 % mass fraction H2O in gas @ state 11
 output.SF.m_d11(1,1) = output.SF.m_mf11(1,1) + output.SF.m_mix_v_11_new;
 output.SF.w_CO2_d11(1,1) = (output.SF.m_mf11(1,1) * output.SF.w_CO2_g_2(1,1) + ...
 output.SF.w_CO2_g_11 * output.SF.m_mix_v_11_new)/...
 output.SF.m_d11(1,1);
 output.SF.w_H2O_d11(1,1) = 1 - output.SF.w_CO2_d11(1,1);
 output.SF.m_mix_v_s12(1,1) = (output.SF.w_CO2_d11(1,1)/output.SF.w_CO2_g_s12) * ...
 output.SF.m_d11(1,1);

 output.SF.DAE_H2O_12(1,1) = output.SF.m_mix_v_s12(1,1) * output.SF.w_H2O_g_s12(1,1)/...
 (output.SF.TCF_H2O(1,1) * output.SF.WER_H2O(1,1));
 % Dry air equivalent water
 output.SF.DAE_CO2_12(1,1) = output.SF.m_mix_v_s12(1,1) * output.SF.w_CO2_g_s12/...
 (output.SF.TCF_CO2(1,1) * output.SF.WER_CO2(1,1));
 % Dry air equivalent CO2
 output.SF.DAE_12(1,1) = output.SF.DAE_CO2_12(1,1) + output.SF.DAE_H2O_12(1,1);
 % Dry air equivalent mix
 output.SF.P_mix_d12(1,1) = input.general.P_atm; % pressure outlet SE/C
 output.SF.ER_12(1,1) = output.SF.P_2(1,1)/output.SF.P_mix_s12(1,1); % expansion ratio

 % determination of the air to steam ratio (ASR)
 A1 = CR_data(find(CR_data < output.SF.CR(1,1),1));
 A2 = CR_data(find(CR_data > output.SF.CR(1,1)));
 A2 = A2(end);
 B1 = '_';
 B2 = 'f';
 if A1(mod(A1,1) == 0)
 formatSpec = 'f_ASR%s%d';
 str1 = sprintf(formatSpec,B1,A1);
 else
 A11 = round(A1,1);
 A11 = round(10*rem(A11,1));
 formatSpec = 'f_ASR%s%d%s%d';
 str1 = sprintf(formatSpec,B1,floor(A1),B2,A11);
 end
 if A2(mod(A2,1) == 0)
 formatSpec = 'f_ASR%s%d';
 str2 = sprintf(formatSpec,B1,A2(end));
 else

 A22 = round(A2,1);
 A22 = round(10*rem(A22,1));
 formatSpec = 'f_ASR%s%d%s%d';
 str2 = sprintf(formatSpec,B1,floor(A2),B2,A22);
 end
 C1 = eval(str1);
 C2 = eval(str2);
 D1 = C1(output.SF.ER_12(1,1));
 D2 = C2(output.SF.ER_12(1,1));
 output.SF.ASR_12(1,1) = interp1([A1 A2(end)],[D1 D2], output.SF.CR(1,1));
 % Air to steam ratio
 output.SF.m_mf12(1,1) = output.SF.DAE_12(1,1)/output.SF.ASR_12(1,1);
 % mass flow rate motive flow
 output.SF.m_mix_v_11_old = output.SF.m_mix_v_11_new;
 output.SF.m_mf = output.SF.m_mf11(1,1) + output.SF.m_mf12(1,1);
 output.SF.m_5(1,1) = output.SF.m_4(1,1) - output.SF.m_mf; % mass flow outlet turbine
 output.SF.m_mix_v_11_new = (output.SF.w_CO2_g_2/output.SF.w_CO2_g_11)* output.SF.m_5(1,1);
 output.SF.m_mix_v_11_new = output.SF.m_mix_v_11_old + ((output.SF.m_mix_v_11_new - ...
 output.SF.m_mix_v_11_old)/2);
 end
 end
%% old
 if compressor == 1
 output.SF.P_H2O_12_com = input.general.P_atm * output.SF.n_H2O_v_11(1,1); % partial p @ 12
 output.SF.P_CO2_12_com = input.general.P_atm * output.SF.n_CO2_v_11(1,1); % partial p @ 12
 output.SF.T0_12 = T0_12; % initial temperature [C] @ state 12

 % iterative procedure centrifugal compressor
 x0 = [output.SF.T0_12]; % iteration variable
 y0 = [output.SF.P_H2O_12_com, output.SF.P_CO2_12_com, output.SF.s_mix_v_11, ...
 output.SF.w_CO2_g_11, output.SF.w_H2O_g_11]; % iteration constants
 f = @(x0)fCalc_T_12s(x0,y0);
 [out] = fsolve(f,x0,options);
 save('output.mat','output'); % save all output so far

 x0 = out(1);
 y0 = [output.SF.P_H2O_12_com, output.SF.P_CO2_12_com, output.SF.s_mix_v_11, ...
 output.SF.w_CO2_g_11, output.SF.w_H2O_g_11];
 [~,output] = fCalc_T_12s(x0,y0);
 Newoutput = output;
 load('output.mat'); % load all output so far

 % Write Newoutput from fCalc_T_12s to output file
 output.SF.T_12s = Newoutput.SF.T_12s;
 output.SF.h_H2O_v_12s_com = Newoutput.SF.h_H2O_v_12s;
 output.SF.s_H2O_v_12s_com = Newoutput.SF.s_H2O_v_12s;
 output.SF.h_CO2_v_12s_com = Newoutput.SF.h_CO2_v_12s;
 output.SF.s_CO2_v_12s_com = Newoutput.SF.s_CO2_v_12s;
 output.SF.h_mix_v_12s_com = Newoutput.SF.h_mix_v_12s;
 output.SF.s_mix_v_12s_com = Newoutput.SF.s_mix_v_12s;

 output.SF.h_mix_v_12_com = output.SF.h_mix_v_11 + (output.SF.h_mix_v_12s_com - ...
 output.SF.h_mix_v_11)/input.SF.eta_SEC; % enthalpy gas mixture @ 12

 % Calculate power machinery
 output.SF.W_SEC = (output.SF.h_mix_v_12_com - output.SF.h_mix_v_11) * ...
 output.SF.m_mix_v_11/1000; % Required power SE/C [MW]

 end
 output.SF.W_t = (output.SF.h_mix_v_4 - output.SF.h_mix_5) * output.SF.m_5(1,1)/1000;
 % gross turbine power [MW]
 output.SF.W_g = output.SF.W_t * output.SF.eta_g; % generated power [MW]
 output.SF.h_H2O_6 = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,3), ...
 output.SF.T_11,'spline');
 output.SF.rho_6 = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,7), ...
 output.SF.T_11,'spline'); % density saturated liquid [kg/m3]
 output.SF.h_out_cd = (output.SF.h_H2O_6 * (output.SF.m_5 - output.SF.m_mix_v_11) + ...
 output.SF.h_mix_v_11 * output.SF.m_mix_v_11)/output.SF.m_5;
 output.SF.W_cp = ((1/output.SF.rho_6) * (output.SF.P_2 - output.SF.P_5) * 100000 * ...
 (input.general.m_gf * output.SF.chi_2 - output.SF.m_mix_v_11))/...
 output.SF.eta_p/1000000; % Power condenser pump [MW]
 output.SF.dQ_cd = (output.SF.h_mix_5 - output.SF.h_out_cd) * output.SF.m_5;
 output.SF.T_cw_out = output.SF.T_11 - input.SF.T_pinch_cd;
 output.SF.T_cw_avg = (output.SF.T_cw_out + input.general.T_surf_w) / 2;
 output.SF.c_p_cw = interp2(data.P_H2O_SC, data.T_H2O_SC, data.cp_H2O_SC, input.SF.dP_cwp ...
 + input.general.P_atm, output.SF.T_cw_avg);
 output.SF.m_cw = output.SF.dQ_cd*1000 / (output.SF.c_p_cw *(output.SF.T_cw_out - ...
 input.general.T_surf_w));
 output.SF.rho_cw = interp2(data.P_H2O_SC, data.T_H2O_SC, data.rho_H2O_SC, input.SF.dP_cwp...

120

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 + input.general.P_atm, output.SF.T_cw_avg);
 output.SF.W_cwp = ((1/output.SF.rho_cw) * input.SF.dP_cwp * 100000 * output.SF.m_cw / ...
 input.SF.eta_p)/1000000; %[MW]
 if compressor == 0
 output.SF.W_net = output.SF.W_g - output.SF.W_cp-output.SF.W_cwp; % Provisional W_net [MW]
 elseif compressor == 1
 output.SF.W_net = output.SF.W_g - output.SF.W_cp - output.SF.W_cwp - output.SF.W_SEC;
 % Provisional W_net [MW]
 end

 %% %%%
 % Calculation of the highest power output %
 %%%

 n_steps = ceil((output.SF.P_2(1,1)-1) / 0.1); % maximum number of steps
 n = 2; % repeat calculation procedure with 2nd iteration

 formatSpec = 'Single flash power plant calculation.\nPlease wait...';
 str = sprintf(formatSpec);
 h = waitbar(0,str);

 for i = 2:n_steps
 waitbar(n/n_steps)

 if i >= 3 && output.SF.P_2(i-1,1) > 10
 output.SF.P_2(i,1) = 10; %output.SF.P_2(i-1,1) - (dP * 5);
 elseif i >= 3 && (output.SF.W_net(i-1,1) - output.SF.W_net(i-2,1)) < 0.03
 output.SF.P_2(i,1) = output.SF.P_2(i-1,1) - (dP/5);
 else
 output.SF.P_2(i,1) = output.SF.P_2(i-1,1) - dP;
 % pressure after flashing @ state 2 [bar]
 end

 output.SF.h_mix_2(i,1) = output.prodwell.h(end);
 % enthalpy of mixture @ state 2 - isenthalpic flashing
 output.SF.T_flash_old = output.SF.T_2(i-1,1);
 % set initial flash temperature as old flash temperature

 [geofprops, T_new, w_table, ~] = fCalc_geofprops2(output.SF.P_2(i,1), ...
 output.SF.T_flash_old, input.general.w_NaCl, ...
 input.general.w_CO2, data.H2O_sat, ...
 output.SF.h_mix_2(i,1), output, output.SF.h_mix_2(i,1)...
 , input, data); % geothermal fluid properties

 output.SF.T_2(i,1) = T_new; % temperature @ state 2
 output.SF.chi_2(i,1) = geofprops(1,2); % gas mass fraction @ state 2

 % Output geothermal fluid composition
 output.SF.w_CO2_g_2(i,1) = w_table(3,4); % mass fraction CO2 in gas @ state 2
 output.SF.w_H2O_g_2(i,1) = w_table(3,6); % mass fraction H2O in gas @ state 2

 %% Geothermal fluid properties @ state 4
 output.SF.chi_4 = 1; % saturated vapor quality @ state 4
 output.SF.n_H2O_v_4(i,1) = (output.SF.w_H2O_g_2(i,1)/input.general.M_H2O) / ...
 (output.SF.w_H2O_g_2(i,1)/input.general.M_H2O + ...
 output.SF.w_CO2_g_2(i,1)/input.general.M_CO2);
 % mole fraction H2O in gas phase state 4
 output.SF.n_CO2_v_4(i,1) = (output.SF.w_CO2_g_2(i,1)/input.general.M_CO2) / ...
 (output.SF.w_H2O_g_2(i,1)/input.general.M_H2O + ...
 output.SF.w_CO2_g_2(i,1)/input.general.M_CO2);
 % mole fraction CO2 in gas phase state 4
 output.SF.P_H2O_4(i,1) = output.SF.n_H2O_v_4(i,1) * output.SF.P_2(i,1);
 % partial pressure H2O @ state 4 [bar]
 output.SF.P_CO2_4(i,1) = output.SF.n_CO2_v_4(i,1) * output.SF.P_2(i,1);
 % partial pressure CO2 @ state 4 [bar]
 output.SF.h_H2O_v_4(i,1) = interp1(data.H2O_sat_props(:,1), data.H2O_sat_props(:,4), ...
 output.SF.P_H2O_4(i,1),'spline');
 % enthalpy H2O in gas phase state 4 [J/kg]
 output.SF.h_CO2_v_4(i,1) = interp2(data.P_CO2, data.T_CO2,data.h_CO2, ...
 output.SF.P_CO2_4(i,1), output.SF.T_2(i,1),'spline');
 % enthalpy CO2 in gas phase state 4 [J/kg]
 output.SF.h_mix_v_4(i,1) = output.SF.h_H2O_v_4(i,1) * output.SF.w_H2O_g_2(i,1) + ...
 output.SF.h_CO2_v_4(i,1) * output.SF.w_CO2_g_2(i,1);
 % enthalpy gas mixture at state 4 [J/kg]
 output.SF.s_H2O_v_4(i,1) = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,6), ...
 output.SF.T_2(i,1),'spline');
 % entropy H2O in gas phase state 4 [J/kg]
 output.SF.s_CO2_v_4(i,1) = interp2(data.P_CO2, data.T_CO2, data.s_CO2, ...
 output.SF.P_CO2_4(i,1),output.SF.T_2(i,1),'spline');

 % entropy CO2 in gas phase state 4 [J/kg]
 output.SF.s_mix_v_4(i,1) = output.SF.s_H2O_v_4(i,1) * output.SF.w_H2O_g_2(i,1) + ...
 output.SF.s_CO2_v_4(i,1) * output.SF.w_CO2_g_2(i,1);
 % entropy gas mixture at state 4 [J/kg]

 %% Turbine expansion calculation state 5s
 output.SF.P_5(i,1) = output.SF.P_out_t; % outlet pressure turbine (model input)
 output.SF.P0_H2O_7(i,1) = output.SF.P_5(i,1) * output.SF.n_H2O_v_4(i,1);
 % initial partial pressure H2O @ outlet turbine (5s)
 output.SF.T0_5(i,1) = interp1(data.H2O_sat_props(:,1), data.H2O_sat_props(:,2), ...
 output.SF.P0_H2O_7(i,1),'spline');
 % initial temperature @ outlet turbine (5s)
 output.SF.chi_5s(i,1) = 1;
 % initial quantity after isentropic expansion @ outlet turbine (5s)

 % Iterative procedure fCalc_chi5s
 x0 = [output.SF.chi_5s(i,1),output.SF.T0_5(i,1)]; % iteration variables
 y0 = [output.SF.w_CO2_g_2(i,1),output.SF.P_5(i,1),output.SF.s_mix_v_4(i,1), ...
 input.general.M_CO2, input.general.M_H2O]; % iteration constants
 f = @(x0)fCalc_chi_5s(x0,y0);
 [out] = fsolve(f,x0,options);
 save('output.mat','output'); % save all output so far

 x0 = [out(1),out(2)];
 y0 = [output.SF.w_CO2_g_2(i,1),output.SF.P_5(i,1),output.SF.s_mix_v_4(i,1), ...
 input.general.M_CO2, input.general.M_H2O];
 [~,output] = fCalc_chi_5s(x0,y0);
 Newoutput = output;
 load('output.mat'); % load all output so far

 output.SF.chi_5s(i,1) = Newoutput.SF.chi_5s;
 output.SF.T_5s(i,1) = Newoutput.SF.T_5s;
 output.SF.P_5(i,1) = Newoutput.SF.P_5;
 output.SF.w_CO2_7(i,1) = Newoutput.SF.w_CO2_7;
 output.SF.w_H2O_7(i,1) = Newoutput.SF.w_H2O_7;
 output.SF.n_H2O_7(i,1) = Newoutput.SF.n_H2O_7;
 output.SF.P_H2O_7(i,1) = Newoutput.SF.P_H2O_7;
 output.SF.P_CO2_7(i,1) = Newoutput.SF.P_CO2_7;
 output.SF.h_H2O_6(i,1) = Newoutput.SF.h_H2O_6;
 output.SF.s_H2O_6(i,1) = Newoutput.SF.s_H2O_6;
 output.SF.h_H2O_7(i,1) = Newoutput.SF.h_H2O_7;
 output.SF.s_H2O_7(i,1) = Newoutput.SF.s_H2O_7;
 output.SF.h_CO2_7(i,1) = Newoutput.SF.h_CO2_7;
 output.SF.s_CO2_7(i,1) = Newoutput.SF.s_CO2_7;
 output.SF.h_mix_7(i,1) = Newoutput.SF.h_mix_7;
 output.SF.s_mix_7(i,1) = Newoutput.SF.s_mix_7;
 output.SF.h_mix_5s(i,1) = Newoutput.SF.h_mix_5s;
 output.SF.s_mix_5s(i,1) = Newoutput.SF.s_mix_5s;
 output.SF.T_5s_check(i,1) = Newoutput.SF.T_5s_check;
 output.SF.s_mix_v_4(i,1) = Newoutput.SF.s_mix_v_4;
 output.SF.w_CO2_g_2(i,1) = Newoutput.SF.w_CO2_g_2;

 %% Turbine expansion calculation state 5
 output.SF.h_mix_5(i,1) = output.SF.h_mix_v_4(i,1) - output.SF.eta_t(1,1) * ...
 (output.SF.h_mix_v_4(i,1) - output.SF.h_mix_5s(i,1));
 % initial enthalpy @ outlet turbine (5)
 output.SF.chi_5(i,1) = (output.SF.h_mix_5(i,1) - output.SF.h_H2O_6(i,1)) / ...
 (output.SF.h_mix_7(i,1) - output.SF.h_H2O_6(i,1));
 % initial quality @ outlet turbine (5)
 output.SF.eta_t_old = 0;
 output.SF.eta_t_new = output.SF.eta_t;

 while abs(output.SF.eta_t_new - output.SF.eta_t_old) > error_eta_t_SF
 x0 = [output.SF.chi_5(i,1), output.SF.T_5s(i,1)]; % iteration variables
 y0 = [output.SF.w_CO2_g_2(i,1), output.SF.P_5(i,1), output.SF.h_mix_5(i,1), ...
 input.general.M_CO2, input.general.M_H2O]; % iteration constants
 f = @(x0)fCalc_chi_5(x0,y0);
 [out] = fsolve(f,x0,options);
 save('output.mat','output'); % save all output so far

 x0 = [out(1),out(2)];
 y0 = [output.SF.w_CO2_g_2(i,1), output.SF.P_5(i,1), output.SF.h_mix_5(i,1),...
 input.general.M_CO2, input.general.M_H2O];
 [~,output] = fCalc_chi_5(x0,y0);
 Newoutput = output;
 load('output.mat'); % load all output so far

 output.SF.chi_5(i,1) = Newoutput.SF.chi_5;
 output.SF.T_5(i,1) = Newoutput.SF.T_5;

B
 M

A
T

L
A

B
 C

od
e

121

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 output.SF.w_CO2_g_2(i,1) = Newoutput.SF.w_CO2_g_2;
 output.SF.P_5(i,1) = Newoutput.SF.P_5;
 output.SF.w_CO2_7(i,1) = Newoutput.SF.w_CO2_7;
 output.SF.w_H2O_7(i,1) = Newoutput.SF.w_H2O_7;
 output.SF.n_H2O_7(i,1) = Newoutput.SF.n_H2O_7;
 output.SF.P_H2O_7(i,1) = Newoutput.SF.P_H2O_7;
 output.SF.P_CO2_7(i,1) = Newoutput.SF.P_CO2_7;
 output.SF.T_5_check(i,1) = Newoutput.SF.T_5_check;
 output.SF.h_H2O_6(i,1) = Newoutput.SF.h_H2O_6;
 output.SF.s_H2O_6(i,1) = Newoutput.SF.s_H2O_6;
 output.SF.h_H2O_7(i,1) = Newoutput.SF.h_H2O_7;
 output.SF.s_H2O_7(i,1) = Newoutput.SF.s_H2O_7;
 output.SF.h_CO2_7(i,1) = Newoutput.SF.h_CO2_7;
 output.SF.s_CO2_7(i,1) = Newoutput.SF.s_CO2_7;
 output.SF.h_mix_7(i,1) = Newoutput.SF.h_mix_7;
 output.SF.s_mix_7(i,1) = Newoutput.SF.s_mix_7;
 output.SF.h_mix_5(i,1) = Newoutput.SF.h_mix_5;
 output.SF.s_mix_5(i,1) = Newoutput.SF.s_mix_5;
 output.SF.h_mix_5(i,1) = Newoutput.SF.h_mix_5;

 output.SF.eta_t_old = output.SF.eta_t_new;
 output.SF.eta_t_new = output.SF.eta_td * (output.SF.chi_4 + output.SF.chi_5(i,1))/2;
 output.SF.h_mix_5(i,1) = output.SF.h_mix_v_4(i,1) - output.SF.eta_t_new * ...
 (output.SF.h_mix_v_4(i,1) - output.SF.h_mix_5s(i,1));
 end

 output.SF.eta_t(i,1) = output.SF.eta_t_new; % final turbine efficiency

 %% Calculate state 11 - condenser outlet gas
 % Extra check to make sure condensation is isobaric and isothermal for pure water
 if output.SF.w_CO2_g_2 == 0
 output.SF.T_11 = output.SF.T_5(i,1);
 end

 output.SF.P_H2O_11(i,1) = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,1), ...
 output.SF.T_11,'spline'); % partial pressure H2O @ state 11
 output.SF.P_CO2_11(i,1) = output.SF.P_out_t - output.SF.P_H2O_11(i,1);
 % partial pressure CO2 @ state 11
 output.SF.P_mix_11(i,1) = output.SF.P_H2O_11(i,1) + output.SF.P_CO2_11(i,1);
 % total pressure ideal gas mixture @ state 11
 output.SF.n_CO2_v_11(i,1) = output.SF.P_CO2_11(i,1)/output.SF.P_out_t;
 % mole fraction CO2 in gas @ state 11
 output.SF.n_H2O_v_11(i,1) = 1 - output.SF.n_CO2_v_11(i,1);
 % mole fraction H2O in gas @ state 11
 output.SF.w_CO2_g_11(i,1) = output.SF.n_CO2_v_11(i,1)/((input.general.M_H2O/...
 input.general.M_CO2)-((input.general.M_H2O/...
 input.general.M_CO2) - 1)*output.SF.n_CO2_v_11(i,1));
 % mass fraction CO2 in gas @ state 11
 output.SF.w_H2O_g_11(i,1) = 1 - output.SF.w_CO2_g_11(i,1);
 % mass fraction H2O in gas @ state 11
 output.SF.m_mix_v_11(i,1) = (output.SF.w_CO2_g_2(i,1)/output.SF.w_CO2_g_11(i,1)) * ...
 output.SF.chi_2(i,1) * input.general.m_gf;
 % massflow CO2 + H2O mixture through @ state 11

 output.SF.h_H2O_v_11(i,1) = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,4), ...
 output.SF.T_11,'spline'); % enthalpy H2O in gas @ state 11
 output.SF.s_H2O_v_11(i,1) = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,6), ...
 output.SF.T_11,'spline'); % entropy H2O in gas @ state 11
 output.SF.h_CO2_v_11(i,1) = interp2(data.P_CO2, data.T_CO2, data.h_CO2, ...
 output.SF.P_CO2_11(i,1), output.SF.T_11,'spline');
 % enthalpy CO2 in gas @ state 11
 output.SF.s_CO2_v_11(i,1) = interp2(data.P_CO2, data.T_CO2, data.s_CO2, ...
 output.SF.P_CO2_11(i,1), output.SF.T_11,'spline');
 % entropy CO2 in gas @ state 11
 output.SF.h_mix_v_11(i,1) = output.SF.h_H2O_v_11(i,1) * output.SF.w_H2O_g_11(i,1) + ...
 output.SF.h_CO2_v_11(i,1) * output.SF.w_CO2_g_11(i,1);
 % enthalpy gas mix @ state 11
 output.SF.s_mix_v_11(i,1) = output.SF.s_H2O_v_11(i,1) * output.SF.w_H2O_g_11(i,1) + ...
 output.SF.s_CO2_v_11(i,1) * output.SF.w_CO2_g_11(i,1);
 % entropy gas mix @ state 11

 %% Calculate state 12
 output.SF.m_4(i,1) = input.general.m_gf * output.SF.chi_2(i,1);
 output.SF.m_5(i,1) = output.SF.m_4(i,1); % initial value
 output.SF.m_mf(i,1) = 0; % initial value
 output.SF.m_mix_v_11(i,1) = (output.SF.w_CO2_g_2(i,1)/output.SF.w_CO2_g_11(i,1)) * output.SF.m_5(i,1);
 if output.SF.w_CO2_g_11(i,1) > 0 && compressor == 0
 load ASR_curves; load CR_data; load f_TCF_air; load f_TCF_steam; load f_WER;
 output.SF.m_mix_v_11(i,1) = (output.SF.w_CO2_g_2(i,1)/output.SF.w_CO2_g_11(i,1)) * output.SF.m_5(i,1);

 % massflow CO2 + H2O mixture through @ state 11
 output.SF.m_mix_v_11_old(i,1) = output.SF.m_mix_v_11(i,1) + 0.2;
 output.SF.m_mix_v_11_new(i,1) = output.SF.m_mix_v_11(i,1);

 output.SF.TCF_CO2(i,1) = f_TCF_air(output.SF.T_11); % temperature correction factor
 output.SF.TCF_H2O(i,1) = f_TCF_steam(output.SF.T_11); % temperature correction factor
 output.SF.WER_CO2(i,1) = f_WER(input.general.M_CO2); % weigth entrainment ratio
 output.SF.WER_H2O(i,1) = f_WER(input.general.M_H2O); % weigth entrainment ratio

 while abs(output.SF.m_mix_v_11_old(i,1) - output.SF.m_mix_v_11_new(i,1)) > 0.001;
 output.SF.m_mix_v_11(i,1) = output.SF.m_mix_v_11_new(i,1);
 output.SF.DAE_H2O_11(i,1) = output.SF.m_mix_v_11(i,1) * output.SF.w_H2O_g_11(i,1)/...
 (output.SF.TCF_H2O(i,1) * output.SF.WER_H2O(i,1));
 % Dry air equivalent water
 output.SF.DAE_CO2_11(i,1) = output.SF.m_mix_v_11(i,1) * output.SF.w_CO2_g_11(i,1)/...
 (output.SF.TCF_CO2(i,1) * output.SF.WER_CO2(i,1));
 % Dry air equivalent CO2
 output.SF.DAE_11(i,1) = output.SF.DAE_CO2_11(i,1) + output.SF.DAE_H2O_11(i,1);
 % Dry air equivalent mix
 output.SF.P_mix_d11(i,1) = sqrt(output.SF.P_mix_11(i,1) * input.general.P_atm);
 % pressure 2nd stage SE/C
 output.SF.CR(i,1) = output.SF.P_mix_d11(i,1)/output.SF.P_mix_11(i,1); % compression ratio
 output.SF.ER_11(i,1) = output.SF.P_2(i,1)/output.SF.P_mix_11(i,1); % expansion ratio

 % determination of the air to steam ratio (ASR)
 A1 = CR_data(find(CR_data < output.SF.CR(i,1),1));
 A2 = CR_data(find(CR_data > output.SF.CR(i,1)));
 A2 = A2(end);
 B1 = '_';
 B2 = 'f';
 if A1(mod(A1,1) == 0)
 formatSpec = 'f_ASR%s%d';
 str1 = sprintf(formatSpec,B1,A1);
 else
 A11 = round(A1,1);
 A11 = round(10*rem(A11,1));
 formatSpec = 'f_ASR%s%d%s%d';
 str1 = sprintf(formatSpec,B1,floor(A1),B2,A11);
 end
 if A2(mod(A2,1) == 0)
 formatSpec = 'f_ASR%s%d';
 str2 = sprintf(formatSpec,B1,A2(end));
 else
 A22 = round(A2,1);
 A22 = round(10*rem(A22,1));
 formatSpec = 'f_ASR%s%d%s%d';
 str2 = sprintf(formatSpec,B1,floor(A2),B2,A22);
 end
 C1 = eval(str1);
 C2 = eval(str2);
 D1 = C1(output.SF.ER_11(i,1));
 D2 = C2(output.SF.ER_11(i,1));
 output.SF.ASR_11(i,1) = interp1([A1 A2(end)],[D1 D2], output.SF.CR(i,1));
 % Air to steam ratio
 output.SF.m_mf11(i,1) = output.SF.DAE_11(i,1)/output.SF.ASR_11(i,1);
 % mass flow rate motive flow
% output.SF.m_mix_v_11_old = output.SF.m_mix_v_11_new;
% output.SF.m_5(1,1) = output.SF.m_4(1,1) - output.SF.m_mf_11(1,1); % mass flow outlet turbine
% output.SF.m_mix_v_11_new = (output.SF.w_CO2_g_2/output.SF.w_CO2_g_11)* output.SF.m_5(1,1);

 output.SF.P_H2O_s12(i,1) = output.SF.P_H2O_11(i,1);
 % outlet temperature SE/C equal to condenser
 output.SF.P_CO2_s12(i,1) = output.SF.P_mix_d11(i,1) - output.SF.P_H2O_s12(i,1);
 output.SF.P_mix_s12(i,1) = output.SF.P_mix_d11(i,1);
 output.SF.n_CO2_v_s12(i,1) = output.SF.P_CO2_s12(i,1)/output.SF.P_mix_s12(i,1);
 % mole fraction CO2 in gas @ state 12
 output.SF.n_H2O_v_s12(i,1) = 1 - output.SF.n_CO2_v_s12(i,1);% mole fraction H2O in gas @ st 12
 output.SF.w_CO2_g_s12(i,1) = output.SF.n_CO2_v_s12(i,1)/((input.general.M_H2O/...
 input.general.M_CO2)-((input.general.M_H2O/input.general.M_CO2)...
 - 1)*output.SF.n_CO2_v_s12(i,1));
 % mass fraction CO2 in gas @ state 11
 output.SF.w_H2O_g_s12(i,1) = 1 - output.SF.w_CO2_g_s12(i,1);
 % mass fraction H2O in gas @ state 11
 output.SF.m_d11(i,1) = output.SF.m_mf11(i,1) + output.SF.m_mix_v_11_new(i,1);
 output.SF.w_CO2_d11(i,1) = (output.SF.m_mf11(i,1) * output.SF.w_CO2_g_2(i,1) + ...
 output.SF.w_CO2_g_11(i,1) * output.SF.m_mix_v_11_new(i,1))/...
 output.SF.m_d11(i,1);
 output.SF.w_H2O_d11(i,1) = 1 - output.SF.w_CO2_d11(i,1);
 output.SF.m_mix_v_s12(i,1) = (output.SF.w_CO2_d11(i,1)/output.SF.w_CO2_g_s12(i,1)) * ...

122

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 output.SF.m_d11(i,1);

 output.SF.DAE_H2O_12(i,1) = output.SF.m_mix_v_s12(i,1) * output.SF.w_H2O_g_s12(i,1)/...
 (output.SF.TCF_H2O(i,1) * output.SF.WER_H2O(i,1));
 % Dry air equivalent water
 output.SF.DAE_CO2_12(i,1) = output.SF.m_mix_v_s12(i,1) * output.SF.w_CO2_g_s12(i,1)/...
 (output.SF.TCF_CO2(i,1) * output.SF.WER_CO2(i,1));
 % Dry air equivalent CO2
 output.SF.DAE_12(i,1) = output.SF.DAE_CO2_12(i,1) + output.SF.DAE_H2O_12(i,1);
 % Dry air equivalent mix
 output.SF.P_mix_d12(i,1) = input.general.P_atm; % pressure outlet SE/C
 output.SF.ER_12(i,1) = output.SF.P_2(i,1)/output.SF.P_mix_s12(i,1); % expansion ratio

 % determination of the air to steam ratio (ASR)
 A1 = CR_data(find(CR_data < output.SF.CR(i,1),1));
 A2 = CR_data(find(CR_data > output.SF.CR(i,1)));
 A2 = A2(end);
 B1 = '_';
 B2 = 'f';
 if A1(mod(A1,1) == 0)
 formatSpec = 'f_ASR%s%d';
 str1 = sprintf(formatSpec,B1,A1);
 else
 A11 = round(A1,1);
 A11 = round(10*rem(A11,1));
 formatSpec = 'f_ASR%s%d%s%d';
 str1 = sprintf(formatSpec,B1,floor(A1),B2,A11);
 end
 if A2(mod(A2,1) == 0)
 formatSpec = 'f_ASR%s%d';
 str2 = sprintf(formatSpec,B1,A2(end));
 else
 A22 = round(A2,1);
 A22 = round(10*rem(A22,1));
 formatSpec = 'f_ASR%s%d%s%d';
 str2 = sprintf(formatSpec,B1,floor(A2),B2,A22);
 end
 C1 = eval(str1);
 C2 = eval(str2);
 D1 = C1(output.SF.ER_12(i,1));
 D2 = C2(output.SF.ER_12(i,1));
 output.SF.ASR_12(i,1) = interp1([A1 A2(end)],[D1 D2], output.SF.CR(i,1));
 % Air to steam ratio
 output.SF.m_mf12(i,1) = output.SF.DAE_12(i,1)/output.SF.ASR_12(i,1); % mass flow rate motive flow
 output.SF.m_mix_v_11_old(i,1) = output.SF.m_mix_v_11_new(i,1);
 output.SF.m_mf(i,1) = output.SF.m_mf11(i,1) + output.SF.m_mf12(i,1);
 output.SF.m_5(i,1) = output.SF.m_4(i,1) - output.SF.m_mf(i,1); % mass flow outlet turbine
 output.SF.m_mix_v_11_new(i,1) = (output.SF.w_CO2_g_2(i,1)/output.SF.w_CO2_g_11(i,1))*
output.SF.m_5(i,1);
 output.SF.m_mix_v_11_new(i,1) = output.SF.m_mix_v_11_old(i,1) + ...
 ((output.SF.m_mix_v_11_new(i,1) - ...
 output.SF.m_mix_v_11_old(i,1))/2);
 end
 end

%% old
 if compressor == 1
 output.SF.P_H2O_12_com(i,1) = input.general.P_atm * output.SF.n_H2O_v_11(i,1);% partial p @ 12
 output.SF.P_CO2_12_com(i,1) = input.general.P_atm * output.SF.n_CO2_v_11(i,1);% partial p @ 12
 output.SF.T0_12 = T0_12; % initial temperature [C] @ state 12

 % iterative procedure centrifugal compressor
 x0 = [output.SF.T0_12]; % iteration variable
 y0 = [output.SF.P_H2O_12_com(i,1), output.SF.P_CO2_12_com(i,1), ...
 output.SF.s_mix_v_11(i,1), output.SF.w_CO2_g_11(i,1), output.SF.w_H2O_g_11(i,1)];
 % iteration constants
 f = @(x0)fCalc_T_12s(x0,y0);
 [out] = fsolve(f,x0,options);
 save('output.mat','output'); % save all output so far

 x0 = out(1);
 y0 = [output.SF.P_H2O_12_com(i,1), output.SF.P_CO2_12_com(i,1), output.SF.s_mix_v_11(i,1), ...
 output.SF.w_CO2_g_11(i,1), output.SF.w_H2O_g_11(i,1)];
 [~,output] = fCalc_T_12s(x0,y0);
 Newoutput = output;
 load('output.mat'); % load all output so far

 % Write Newoutput from fCalc_T_12s to output file
 output.SF.T_12s(i,1) = Newoutput.SF.T_12s;

 output.SF.h_H2O_v_12s_com(i,1) = Newoutput.SF.h_H2O_v_12s;
 output.SF.s_H2O_v_12s_com(i,1) = Newoutput.SF.s_H2O_v_12s;
 output.SF.h_CO2_v_12s_com(i,1) = Newoutput.SF.h_CO2_v_12s;
 output.SF.s_CO2_v_12s_com(i,1) = Newoutput.SF.s_CO2_v_12s;
 output.SF.h_mix_v_12s_com(i,1) = Newoutput.SF.h_mix_v_12s;
 output.SF.s_mix_v_12s_com(i,1) = Newoutput.SF.s_mix_v_12s;

 output.SF.h_mix_v_12_com(i,1) = output.SF.h_mix_v_11(i,1) + ...
 (output.SF.h_mix_v_12s_com(i,1) - ...
 output.SF.h_mix_v_11(i,1))/input.SF.eta_SEC;
 % enthalpy gas mix @ 12
 % Calculate power machinery
 output.SF.W_SEC(i,1) = (output.SF.h_mix_v_12_com(i,1) - output.SF.h_mix_v_11(i,1)) * ...
 output.SF.m_mix_v_11(i,1)/1000; % Required power SE/C [MW]
 end
 output.SF.W_t(i,1) = (output.SF.h_mix_v_4(i,1) - output.SF.h_mix_5(i,1)) * ...
 output.SF.m_5(i,1)/1000;
 % gross turbine power [MW]
 output.SF.W_g(i,1) = output.SF.W_t(i,1) * output.SF.eta_g; % generated power [MW]
 output.SF.h_H2O_6 = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,3), ...
 output.SF.T_11,'spline');
 output.SF.rho_6 = interp1(data.H2O_sat_props(:,2), data.H2O_sat_props(:,7), ...
 output.SF.T_11,'spline'); % density saturated liquid [kg/m3]
 output.SF.h_out_cd(i,1) = (output.SF.h_H2O_6 * (output.SF.m_5(i,1) - ...
 output.SF.m_mix_v_11(i,1)) + output.SF.h_mix_v_11(i,1) * ...
 output.SF.m_mix_v_11(i,1))/output.SF.m_5(i,1);
 output.SF.W_cp(i,1) = ((1/output.SF.rho_6) * (output.SF.P_2(i,1) - output.SF.P_5(i,1))...
 * 100000 * (output.SF.m_5(i,1) - ...
 output.SF.m_mix_v_11(i,1)))/output.SF.eta_p/1000000;
 % Power condenser pump [MW]
 output.SF.dQ_cd(i,1) = (output.SF.h_mix_5(i,1) - output.SF.h_out_cd(i,1)) * ...
 output.SF.m_5(i,1);
 output.SF.T_cw_out(i,1) = output.SF.T_11 - input.SF.T_pinch_cd;
 output.SF.T_cw_avg(i,1) = (output.SF.T_cw_out(i,1) + input.general.T_surf_w) / 2;
 output.SF.c_p_cw(i,1) = interp2(data.P_H2O_SC, data.T_H2O_SC, data.cp_H2O_SC, ...
 input.SF.dP_cwp + input.general.P_atm, output.SF.T_cw_avg(i,1));
 output.SF.m_cw(i,1) = output.SF.dQ_cd(i,1)*1000 / (output.SF.c_p_cw(i,1) *...
 (output.SF.T_cw_out(i,1) - input.general.T_surf_w));
 output.SF.rho_cw(i,1) = interp2(data.P_H2O_SC, data.T_H2O_SC, data.rho_H2O_SC, ...
 input.SF.dP_cwp + input.general.P_atm, output.SF.T_cw_avg(i,1));
 output.SF.W_cwp(i,1) = ((1/output.SF.rho_cw(i,1)) * input.SF.dP_cwp* 100000 * ...
 output.SF.m_cw(i,1) / input.SF.eta_p)/1000000; % [MW]
 if compressor == 0
 output.SF.W_net(i,1) = output.SF.W_g(i,1) - output.SF.W_cp(i,1) - output.SF.W_cwp(i,1);
 % Provisional W_net [MW]
 elseif compressor == 1
 output.SF.W_net(i,1) = output.SF.W_g(i,1) - output.SF.W_cp(i,1) - output.SF.W_cwp(i,1)...
 - output.SF.W_SEC(i,1); % Provisional W_net [MW]
 end
 %% If netto power of previous iteration is larger quit the iteration loop
 if i == n_steps || output.SF.P_2(i,1) < 1.5 % output.SF.W_net(i,1) < output.SF.W_net(i-1,1)
 break
 end
 if i >= 4
 if output.SF.W_net(i,1) < output.SF.W_net(i-1,1) && output.SF.W_net(i-1,1) < ...
 output.SF.W_net(i-2,1) && output.SF.W_net(i-2,1) < output.SF.W_net(i-3,1) ...
 && output.SF.W_net(i-3,1) < output.SF.W_net(i-4,1)
 % output.SF.W_net(i,1) < output.SF.W_net(i-1,1)
 break
 end
 end

 % waitbar progress calculation
 n = (n_steps - 2) * ((output.SF.W_net(i,1) - output.SF.W_net(1,1)) - ...
 (output.SF.W_net(i,1) - output.SF.W_net(i-1,1))) / (output.SF.W_net(i,1) - ...
 output.SF.W_net(1,1)) + 2;
 end
 close(h)

 %% %%
 %%%%%%%%%% Begin calculation of injection well input %%%%%%%%%%

 % properties @ state 3 and 4
 output.SF.m_mix_l_3(:,1) = input.general.m_gf * (1 - output.SF.chi_2(:,1));
 % mass flow liquid mixture @ state 3
 output.SF.w_NaCl_l_3(:,1) = input.general.w_NaCl * (input.general.m_gf / ...
 output.SF.m_mix_l_3(:,1));% mass fraction NaCl in liquid @ state 3
 output.SF.m_mix_v_4(:,1) = input.general.m_gf * output.SF.chi_2(:,1);
 % mass flowmixture @ state 4

B
 M

A
T

L
A

B
 C

od
e

123

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 output.SF.m_CO2_v_4(:,1) = output.SF.m_mix_v_4(:,1).* output.SF.w_CO2_g_2(:,1);
 % mass flow CO2 in gas @ state 4
 output.SF.m_CO2_mix_1 = input.general.m_gf * input.general.w_CO2;
 % mass flow CO2 in mixture @ state 1
 output.SF.m_CO2_l_3(:,1) = output.SF.m_CO2_mix_1 - output.SF.m_CO2_v_4(:,1);
 % mass flow CO2 in liquid @ state 3
 output.SF.w_CO2_l_3(:,1) = output.SF.m_CO2_l_3(:,1)./output.SF.m_mix_l_3(:,1);
 % mass fraction CO2 in liquid @ state 3
 output.SF.w_H2O_l_3(:,1) = 1 - output.SF.w_NaCl_l_3(:,1) - output.SF.w_CO2_l_3(:,1);
 % mass fraction H2O in liquid @ state 3

 % properties @ other relavant states
 output.SF.w_CO2_l_9(:,1) = output.SF.w_CO2_l_3(:,1).* (output.SF.m_mix_l_3(:,1)/...
 input.general.m_gf); % mass fraction CO2 in liquid @ state 9
 output.SF.w_NaCl_l_9(:,1) = output.SF.w_NaCl_l_3(:,1).* (output.SF.m_mix_l_3(:,1)/...
 input.general.m_gf); % mass fraction NaCl in liquid @ state 9
 output.SF.w_H2O_l_9(:,1) = 1 - output.SF.w_CO2_l_9(:,1) - output.SF.w_NaCl_l_9(:,1);
 % mass fraction H2O in liquid @ state 9
 output.SF.m_mix_l_8(:,1) = output.SF.m_5(:,1) - output.SF.m_mix_v_11(:,1);
 % mass flow liquid mixture @ state 8
 output.SF.m_H2O_l_13(:,1) = input.general.m_gf - output.SF.m_mix_l_8(:,1) - ...
 output.SF.m_mix_l_3(:,1);
 % mass flow liquid H2O @ state 13 (make-up water)
 output.SF.m_H2O_l_14(:,1) = output.SF.m_H2O_l_13(:,1);
 % mass flow liquid H2O @ state 14 (make-up water)
 output.SF.rho_H2O_l_13 = interp2(data.P_H2O_SC, data.T_H2O_SC, data.rho_H2O_SC, ...
 input.general.P_atm, input.general.T_surf_w,'spline');
 % density liquid H2O @ state 13

 % Calculation of netto power (W_ip inclusive)
 output.SF.W_mp(:,1) = ((1/output.SF.rho_H2O_l_13) * (output.SF.P_2(:,1) - ...
 input.general.P_atm) * 100000.* output.SF.m_H2O_l_13(:,1)) / ...
 output.SF.eta_p /1000000; % Required power make-up pump in MW
 output.SF.W_net(:,1) = output.SF.W_net(:,1) - output.SF.W_mp(:,1);
 % netto power (W_ip inclusive) [MW]

 formatSpec = 'Condenser pump and make-up pump calculation.\nPlease wait...';
 str = sprintf(formatSpec);
 h = waitbar(0,str);

 %% Iterative procedure for determining T_8 and T_14
 for i = 1:size(output.SF.P_2,1)
 waitbar(i/size(output.SF.P_2,1))
 output.SF.T_14(i,1) = input.general.T_surf_w; % initial temperature [C] @ state 14

 % iterative procedure make-up pump
 x0 = [output.SF.T_14(i,1)]; % iteration variable
 y0 = [output.SF.rho_H2O_l_13, output.SF.P_2(i,1)]; % iteration constants
 f = @(x0)fCalc_T_14(x0,y0);
 [out] = fsolve(f,x0,options);
 save('output.mat','output'); % save all output so far

 x0 = out(1);
 y0 = [output.SF.rho_H2O_l_13, output.SF.P_2(i,1)];
 [~,output] = fCalc_T_14(x0,y0);
 Newoutput = output;
 load('output.mat'); % load all output so far

 output.SF.T_14(i,1) = Newoutput.SF.T_14;
 output.SF.rho_H2O_l_14(i,1) = Newoutput.SF.rho_H2O_l_14;

 output.SF.T_8(i,1) = output.SF.T_11; % initial temperature [C] @ state 14
 % iterative procedure condenser pump
 x0 = [output.SF.T_8(i,1)]; % iteration variable
 y0 = [output.SF.rho_6, output.SF.P_2(i,1)]; % iteration constants
 f = @(x0)fCalc_T_8(x0,y0);
 [out] = fsolve(f,x0,options);
 save('output.mat','output'); % save all output so far

 x0 = out(1);
 y0 = [output.SF.rho_6, output.SF.P_2(i,1)];
 [~,output] = fCalc_T_8(x0,y0);
 Newoutput = output;
 load('output.mat'); % load all output so far

 output.SF.T_8(i,1) = Newoutput.SF.T_8;
 output.SF.rho_H2O_l_8(i,1) = Newoutput.SF.rho_H2O_l_8;

 output.SF.P_14(i,1) = output.SF.P_2(i,1);

 output.SF.P_8(i,1) = output.SF.P_2(i,1);
 end

 close(h)

 formatSpec = 'Calculation heat capacity mixture @ state 3.\nPlease wait...';
 str = sprintf(formatSpec);
 h = waitbar(0,str);

 % Obtain heat capacity c_p_3 @ state 3 from Francke Model
 for i = 1:size(output.SF.P_2,1)
 waitbar(i/size(output.SF.P_2,1))
 Excel = actxGetRunningServer('Excel.Application');
 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 3); % liquid phase
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 P = output.SF.P_2(i,1);
 T = output.SF.T_2(i,1);
 w_NaCl_l_3 = output.SF.w_NaCl_l_3(i,1);
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C6', w_NaCl_l_3);
 sheet.set('Range', 'C7', 0);
 sheet.set('Range', 'C8', 0);
 range = sheet.get('Range', 'G4:G7');
 range.Value;
 data_FM = range.Value;
 output.SF.cp_mix_3(i,1) = cell2mat(data_FM(2,1));
 end
 close(h)

 output.SF.cp_H2O_l_8 = interp2(data.P_H2O_SC, data.T_H2O_SC, data.cp_H2O_SC, ...
 output.SF.P_8(:,1), output.SF.T_8(:,1),'spline');
 % heat capacity liquid H2O @ state 8
 output.SF.cp_H2O_l_14 = interp2(data.P_H2O_SC, data.T_H2O_SC, data.cp_H2O_SC, ...
 output.SF.P_14(:,1), output.SF.T_14(:,1),'spline');
 % heat capacity liquid H2O @ state 14

 % Calculation temperature @ state 9 by combining streams 3,8 and 14.
 output.SF.T_9(:,1) = ((output.SF.m_mix_l_3(:,1).* output.SF.cp_mix_3(:,1).* ...
 output.SF.T_2(:,1)) + (output.SF.m_mix_l_8(:,1).* ...
 output.SF.cp_H2O_l_8(:,1).* output.SF.T_8(:,1)) + ...
 (output.SF.m_H2O_l_14(:,1).* output.SF.cp_H2O_l_14(:,1).* ...
 output.SF.T_14(:,1)))./ ((output.SF.m_mix_l_3(:,1).* ...
 output.SF.cp_mix_3(:,1)) + (output.SF.m_mix_l_8(:,1).* ...
 output.SF.cp_H2O_l_8(:,1)) + (output.SF.m_H2O_l_14(:,1).* ...
 output.SF.cp_H2O_l_14(:,1))); % temperature mixture @ state 9

 xx = min(output.SF.P_2):0.001:max(output.SF.P_2);
 yy = interp1(output.SF.P_2,output.SF.W_net,xx);
 z = find(yy == max(yy(:)));
 output.SF.P_2_max = xx(1,401);
 output.SF.T_9_max = interp1(output.SF.P_2, output.SF.T_9, output.SF.P_2_max,'spline');
 figure
 plot(output.SF.P_2,output.SF.W_net,xx,yy)
 figure
 plot(output.SF.P_2,output.SF.T_9)

 %% Calculation of power consumption injection pump
 elseif algorithm == 2
 output.SF.W_ip = ((1/output.injwell.rho(end)) * (output.injwell.P(end) - ...
 output.SF.P_2(output.injwell.index,1)) * 100000 * input.general.m_gf)...
 /output.SF.eta_p/1000000; % Required power injection pump [MW]

 output.SF.W_net_max = output.SF.W_net(output.injwell.index,1) - output.SF.W_ip;
 % Maximum netto power [MW]
 % exergy analysis
 [geofprops] = fCalc_geofprops4(input.general.P_atm, input.general.T_surf_w, ...
 input.general.w_NaCl, input.general.w_CO2);
 output.SF.h_0 = geofprops(10,2); %[J]
 output.SF.s_0 = interp2(data.P_H2O_SC,data.T_H2O_SC,data.s_H2O_SC,input.general.P_atm, ...
 input.general.T_surf_w); %[kJ/kg/K]
 output.SF.h_res_out = output.prodwell.h(1,1); % [J]
 output.SF.s_res_out = interp2(data.P_H2O_SC,data.T_H2O_SC,data.s_H2O_SC,...
 output.prodwell.P(1,1), output.prodwell.T(1,1)); %[kJ/kg/K]
 output.SF.e = ((output.SF.h_res_out - output.SF.h_0)/1000) - (input.general.T_surf_w + ...
 273.15) * (output.SF.s_res_out - output.SF.s_0); %[kJ/kg]
 output.SF.E = (output.SF.e * input.general.m_gf)/1000; %[MW]

124

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 output.SF.eta_u = output.SF.W_net_max/output.SF.E;

 end
end

%% fCalc_BC

% Simulation of binary cycle power plant
% Frank Niewold
% Released version 1.0, February 2017

function [input, output, stat] = fCalc_BC(input, output, status, data, algorithm)
 % numbers in output parameters correspond to single-flash power plant figure in report

 options = optimset('Display','off');
 load C5H12_sat_props; load P_C5H12_SC; load s_C5H12_SC; load h_C5H12_SC;
 load h_C5H12_SH; load P_C5H12_SH; load T_C5H12_SH; load s_C5H12_SH;
 load P_H2O_SC; load T_H2O_SC; load rho_H2O_SC; load s_H2O_SC;

 %dT_it = input.settings.dT_it_BC;
 % Succesfull simulation
 stat = status.SUCCES;
 if algorithm == 1 % first part of single-flash power plant calculation until injection pump

 output.BC.T_c_C5H12 = 187.83; % [C] critical temperature isopentane
 %output.BC.T_c_C5H12 = 151.96;

 output.BC.T_pinch_ev = input.B.T_pinch_ev; % [C] pinch point temperature
 output.BC.m_gf = output.prodwell_GL.m_gf(end) * (1 - output.prodwell_GL.chi(end));

 output.BC.P_A(1,1) = output.prodwell_GL.P(end); % [bar]
 output.BC.T_A(1,1) = output.prodwell_GL.T(end); % [C]
 output.BC.w_NaCl_A(1,1) = output.prodwell_GL.w_NaCl_l(end); % [kg/kg]
 output.BC.w_CO2_A(1,1) = output.prodwell_GL.w_CO2_l(end); % [kg/kg]

 output.BC.T_wf_ev(1,1) = min(output.BC.T_c_C5H12-0.1,output.BC.T_A-input.B.T_pinch_ev);
 % initial evaporation T[C]
 output.BC.P_out_t = interp1(C5H12_sat_props(:,1),C5H12_sat_props(:,2),...
 input.B.T_out_cd);

 %% %%%
 % Calculation of the highest power output %
 %%%

 n = round((output.BC.T_A - input.B.T_pinch_ev - input.B.T_out_cd)/input.settings.dT_evap);
 for i = 1:n-1
 %output.BC.Q_BC(i,1) = 1; output.BC.Q_45(i,1) = 0.12;
 %while abs(output.BC.Q_BC(i,1) - output.BC.Q_45(i,1)) > 0.1
 output.BC.T_B(i,1) = output.BC.T_wf_ev(i,1) + input.B.T_pinch_ev;
 % T geofluid outlet evaporator [C]
 [geofprops] = fCalc_geofprops4(output.BC.P_A(1,1), output.BC.T_A(1,1), ...
 output.BC.w_NaCl_A(1,1), output.BC.w_CO2_A(1,1));
 output.BC.h_A(i,1) = geofprops(10,2);
 [geofprops] = fCalc_geofprops4(output.BC.P_A(1,1), output.BC.T_B(i,1), ...
 output.BC.w_NaCl_A(1,1), output.BC.w_CO2_A(1,1));
 output.BC.h_B(i,1) = geofprops(10,2);

 output.BC.T_C(1,1) = input.B.T_inj; % temperature outlet evaporator
 [geofprops] = fCalc_geofprops4(output.BC.P_A(1,1), output.BC.T_C(1,1), ...
 output.BC.w_NaCl_A(1,1), output.BC.w_CO2_A(1,1));
 output.BC.h_C(i,1) = geofprops(10,2); %[J]

 output.BC.Q_AB(i,1) = (output.BC.h_A(i,1) - output.BC.h_B(i,1)) * output.BC.m_gf/10^6; % [MW]
 output.BC.Q_BC(i,1) = (output.BC.h_B(i,1) - output.BC.h_C(i,1)) * output.BC.m_gf/10^6; % [MW]
 output.BC.Q_AC(i,1) = (output.BC.h_A(i,1) - output.BC.h_C(i,1)) * output.BC.m_gf/10^6;

 output.BC.P_3(i,1) = output.BC.P_out_t; % [bar] condenser pressure is outlet pressure turbine
 output.BC.h_3(i,1) = interp1(C5H12_sat_props(:,2),C5H12_sat_props(:,3),output.BC.P_3(i,1));
 output.BC.s_3(i,1) = interp1(C5H12_sat_props(:,2),C5H12_sat_props(:,5),output.BC.P_3(i,1));
 output.BC.s_4s(i,1) = output.BC.s_3(i,1);
 output.BC.P_4(i,1) = interp1(C5H12_sat_props(:,1),C5H12_sat_props(:,2),...
 output.BC.T_wf_ev(i,1));
 output.BC.h_4s(i,1) = interp2(s_C5H12_SC,P_C5H12_SC,h_C5H12_SC,output.BC.s_4s(i,1),...
 output.BC.P_4(i,1));
 output.BC.h_4(i,1) = output.BC.h_3(i,1) + (output.BC.h_4s(i,1) - output.BC.h_3(i,1))/...
 input.B.eta_p;
 output.BC.T_5(i,1) = output.BC.T_wf_ev(i,1);
 output.BC.h_5(i,1) = interp1(C5H12_sat_props(:,1),C5H12_sat_props(:,3),output.BC.T_5(i,1));

 output.BC.h_6(i,1) = interp1(C5H12_sat_props(:,1),C5H12_sat_props(:,4),output.BC.T_5(i,1));
 output.BC.s_6(i,1) = interp1(C5H12_sat_props(:,1),C5H12_sat_props(:,6),output.BC.T_5(i,1));

 output.BC.m_wf_BC(i,1) = output.BC.Q_BC(i,1)*1000/(output.BC.h_5(i,1) - output.BC.h_4(i,1));
 if output.BC.m_wf_BC(i,1) <= 0;
 output.BC.m_wf_BC(i,1) = 1;
 end
 output.BC.h_1(i,1) = (output.BC.h_5(i,1)*output.BC.m_wf_BC(i,1) + output.BC.Q_AB(i,1)*1000)/...
 output.BC.m_wf_BC(i,1);
 if output.BC.h_1(i,1) > 980
 output.BC.h_1(i,1) = 980;
 end
 if output.BC.h_1(i,1) <= output.BC.h_6(i,1)
 output.BC.h_1(i,1) = output.BC.h_1(i,1);
 output.BC.T_1(i,1) = output.BC.T_5(i,1);
 elseif output.BC.h_1(i,1) >= output.BC.h_6(i,1)
 output.BC.T_1(i,1) = interp2(h_C5H12_SH,P_C5H12_SH,T_C5H12_SH,output.BC.h_1(i,1),...
 output.BC.P_4(i,1));
 if output.BC.T_1(i,1) >= output.BC.T_A(1,1) - input.B.T_pinch_ev;
 output.BC.T_1(i,1) = output.BC.T_A(1,1) - input.B.T_pinch_ev;
 x0 = output.BC.h_1(i,1); % iteration variable
 y0 = [output.BC.P_4(i,1), output.BC.T_1(i,1)]; % iteration constants
 f = @(x0)fCalc_h_1(x0,y0);
 output.BC.h_1(i,1) = fsolve(f,x0,options);
 output.BC.m_wf_BC(i,1) = output.BC.Q_AC(i,1)*1000/...
 (output.BC.h_1(i,1) - output.BC.h_4(i,1));
 else
 output.BC.h_1(i,1) = output.BC.h_1(i,1);
 end
 end

 output.BC.s_1(i,1) = interp2(h_C5H12_SH,P_C5H12_SH,s_C5H12_SH,output.BC.h_1(i,1),...
 output.BC.P_4(i,1));
 output.BC.s_2s(i,1) = output.BC.s_1(i,1);

 output.BC.P_2(i,1) = output.BC.P_3(i,1);
 x0 = output.BC.h_1(i,1); % iteration variable
 y0 = [output.BC.P_2(i,1), output.BC.s_2s(i,1)]; % iteration constants
 f = @(x0)fCalc_h_2s(x0,y0);
 output.BC.h_2s(i,1) = fsolve(f,x0,options);

 output.BC.h_2(i,1) = output.BC.h_1(i,1) - (output.BC.h_1(i,1) - output.BC.h_2s(i,1))*...
 input.B.eta_td;
 output.BC.T_2(i,1) = interp2(h_C5H12_SH,P_C5H12_SH,T_C5H12_SH,output.BC.h_2(i,1),...
 output.BC.P_2(i,1));
 output.BC.W_t(i,1) = ((output.BC.h_1(i,1) - output.BC.h_2(i,1)) * output.BC.m_wf_BC(i,1)/1000);
 output.BC.W_g(i,1) = output.BC.W_t(i,1) * input.B.eta_g;
 output.BC.W_p(i,1) = (output.BC.h_4(i,1) - output.BC.h_3(i,1)) * output.BC.m_wf_BC(i,1)/1000;
 output.BC.W_com(i,1) = (output.prodwell_GL.h_CO2_2 - output.prodwell_GL.h_CO2_1) * ...
 input.prodwell_GL.m_GL/1000;
 output.BC.W_com_atm(i,1) = (output.prodwell_GL.h_CO2_2_atm - output.prodwell_GL.h_CO2_1_atm)...
 * input.prodwell_GL.m_GL/1000;
 output.BC.rho_A = interp2(P_H2O_SC,T_H2O_SC,rho_H2O_SC,input.general.P_atm,...
 input.general.T_surf_w);
 output.BC.W_mp(i,1) = (1/output.BC.rho_A) * (output.BC.P_A - ...
 input.general.P_atm) * 100000.* (input.general.m_gf-output.BC.m_gf) /...
 input.B.eta_p /1000000; % Required power make-up pump in MW

 output.BC.T_cw_out = input.B.T_out_cd - input.B.T_pinch_cd;
 output.BC.T_cw_avg = (output.BC.T_cw_out + input.general.T_surf_w) / 2;
 output.BC.c_p_cw = interp2(data.P_H2O_SC, data.T_H2O_SC, data.cp_H2O_SC, input.B.dP_cwp +...
 input.general.P_atm, output.BC.T_cw_avg);
 output.BC.dQ_cd(i,1) = (output.BC.h_2(i,1) - output.BC.h_3(i,1)) * output.BC.m_wf_BC(i,1);
 output.BC.m_cw(i,1) = output.BC.dQ_cd(i,1)*1000 / (output.BC.c_p_cw *(output.BC.T_cw_out ...
 - input.general.T_surf_w));
 output.BC.rho_cw(i,1) = interp2(data.P_H2O_SC, data.T_H2O_SC, data.rho_H2O_SC, ...
 input.B.dP_cwp + input.general.P_atm, output.BC.T_cw_avg);
 output.BC.W_cwp(i,1) = ((1/output.BC.rho_cw(i,1)) * input.B.dP_cwp* 100000 * ...
 output.BC.m_cw(i,1) / input.B.eta_p)/1000000; % [MW]
 output.BC.W_net(i,1) = output.BC.W_g(i,1) - output.BC.W_p(i,1) - output.BC.W_com(i,1) ...
 - output.BC.W_mp(i,1) - output.BC.W_cwp(i,1);
 output.BC.W_net_atm(i,1) = output.BC.W_g(i,1) - output.BC.W_p(i,1) - ...
 output.BC.W_com_atm(i,1) - output.BC.W_mp(i,1) - ...
 output.BC.W_cwp(i,1);
 output.BC.Q_45(i,1) = (output.BC.h_5(i,1) - output.BC.h_4(i,1)) * output.BC.m_wf_BC(i,1)/1000;
 output.BC.h_B(i,1) = output.BC.h_C(i,1) + (output.BC.Q_45(i,1)/output.BC.m_gf);

 if i >= 2
 if output.BC.W_net(i,1) < output.BC.W_net(i-1,1) ...

B
 M

A
T

L
A

B
 C

od
e

125

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 && output.BC.h_1(i,1) >= output.BC.h_6(i,1)
 break
 end
 end
 output.BC.T_wf_ev(i+1,1) = output.BC.T_wf_ev(i,1) - input.settings.dT_evap;
 end

 elseif algorithm == 2
 output.BC.W_ip = ((1/output.injwell_BC.rho(end)) * (output.injwell_BC.P(end) - ...
 output.BC.P_A) * 100000 * input.general.m_gf)...
 /input.B.eta_p/1000000; % Required power injection pump [MW]

 output.BC.W_net_max = output.BC.W_net(output.injwell_BC.index,1) - output.BC.W_ip;
 output.BC.W_net_max_atm = output.BC.W_net_atm(output.injwell_BC.index,1) - output.BC.W_ip;
 % Maximum netto power [MW]
 % exergy analysis
 [geofprops] = fCalc_geofprops4(input.general.P_atm, input.general.T_surf_w, ...
 input.general.w_NaCl, input.general.w_CO2);
 output.BC.h_0 = geofprops(10,2); %[J]
 output.BC.s_0 = interp2(P_H2O_SC,T_H2O_SC,s_H2O_SC,input.general.P_atm, ...
 input.general.T_surf_w); %[kJ/kg/K]
 output.BC.h_res_out = output.prodwell_GL.h(1,1); % [J]
 output.BC.s_res_out = interp2(P_H2O_SC,T_H2O_SC,s_H2O_SC,output.prodwell_GL.P(1,1), ...
 output.prodwell_GL.T(1,1)); %[kJ/kg/K]
 output.BC.e = ((output.BC.h_res_out - output.BC.h_0)/1000) - (input.general.T_surf_w + ...
 273.15) * (output.BC.s_res_out - output.BC.s_0); %[kJ/kg]
 output.BC.E = (output.BC.e * input.general.m_gf)/1000; %[MW]
 output.BC.eta_u = output.BC.W_net_max/output.BC.E;
 output.BC.eta_u_atm = output.BC.W_net_max_atm/output.BC.E;
 end
end

%% fCalc_injwell

% Simulation of the injection well of the single-flash power plant
% Frank Niewold
% Released version 1.0, February 2017

function [input, output, stat, geofprops] = fCalc_injwell(input, output, data, status)

 stat = status.SUCCES;

 % settings
 error_T_9_10 = input.settings.error_T_9_10;

 %% Write injection well dimensions to output file
 for i = 1:max(input.injwell.segment);
 output.injwell.segnr (i,1) = input.injwell.segment(i,1); % segment nr.
 output.injwell.D_i (i,1) = input.injwell.D_i(i,1); % inner diameter [m]
 output.injwell.dl (i,1) = input.injwell.dl(i,1); % length [m]
 output.injwell.dz(i,1) = input.injwell.dz(i,1); % height [m]
 output.injwell.tvd(i,1) = input.injwell.tvd(i,1); % true vertical depth tvd [m]
 output.injwell.grad_T_g(i,1) = input.injwell.grad_T_g(i,1); % geothermal temperature grad [K]
 output.injwell.eps_pipe(i,1) = input.injwell.eps_pipe(i,1); % absolute pipe roughness [m]
 output.injwell.k_r(i,1) = input.injwell.k_r(i,1); % rock thermal conductivity[W/m/K]
 output.injwell.alfa_r(i,1) = input.injwell.alfa_r(i,1); % rock thermal diffusivity[m2/s]
 end

 %% Import initial brine properties at bottom injection well from reservoir
 % Import composition from power plant
 output.injwell.P(1,1) = output.reservoir.geofprops(1,1); % pressure [bar]
 [~,index] = max(output.SF.W_net); % row number with maximum W_net
 output.injwell.T(1,1) = output.SF.T_9(index,1); % temperature [C]
 output.injwell.T(2,1) = output.injwell.T(1,1) + 2; % Initial value for while loop
 output.injwell.w_NaCl = output.SF.w_NaCl_l_9(index,1); % mass fraction NaCl injection well
 output.injwell.w_CO2 = output.SF.w_CO2_l_9(index,1); % mass fraction CO2 injection well

 l = 1; % iteration number

 %% Iterative procedure for calculation of injection well properties
 while abs(output.injwell.T(end) - output.SF.T_9(index,1)) > error_T_9_10;
 % geothermal fluid properties @ bottom of injection well
 [geofprops] = fCalc_geofprops1(output.injwell.P(1,1), output.injwell.T(1,1), ...
 output.injwell.w_NaCl, output.injwell.w_CO2, output);
 output.injwell.geofprops(1,1:5) = [output.injwell.P(1,1) output.injwell.T(1,1) ...
 output.injwell.w_NaCl output.injwell.w_CO2 (1 - output.injwell.w_NaCl - ...
 output.injwell.w_CO2)];

 output.injwell.geofprops(1,6:31) = geofprops(1,1:26);

 output.injwell.h(1,1) = output.injwell.geofprops(1,11); % enthalpy [J/kg]
 output.injwell.chi(1,1) = output.injwell.geofprops(1,7); % gas mass fraction [-]
 output.injwell.v_spec(1,1) = 1/output.injwell.geofprops(1,9); % specific volume [m3/kg]
 output.injwell.rho(1,1) = output.injwell.geofprops(1,9); % density [kg/m3]
 output.injwell.c_p(1,1) = output.injwell.geofprops(1,10); % heat capacity [J/kg/K]
 output.injwell.mu(1,1) = output.injwell.geofprops(1,12); % viscosity [Pa*s]
 output.injwell.eps_G(1,1) = output.injwell.geofprops(1,8); % void fraction [-]

 % Calculate initial properties at bottom injection well
 output.injwell.u(1,1) = fCalc_u(input.general.m_gf, output.injwell.rho(1,1), ...
 output.injwell.D_i(1,1)); % velocity [m/s]
 output.injwell.Re(1,1) = fCalc_Re(output.injwell.D_i(1,1), output.injwell.rho(1,1), ...
 output.injwell.u(1,1), output.injwell.mu(1,1)); % Reynolds number
 output.injwell.f(1,1) = fCalc_f(output.injwell.chi(1,1), output.injwell.eps_pipe(1,1), ...
 output.injwell.D_i(1,1), output.injwell.Re(1,1)); % friction factor
 output.injwell.T_g = fCalc_T_g(input.general.T_surf_r, output.injwell.grad_T_g, ...
 output.injwell.tvd); % Geothermal temperature [C}
 output.injwell.dQ(1,1) = fCalc_dQ(output.injwell.T(1,1), output.injwell.T_g(1,1), ...
 output.injwell.D_i(1,1), output.injwell.dl(1,1), input.general.m_gf...
 , input.general.gamma, input.general.t, output.injwell.k_r(1,1), ...
 output.injwell.alfa_r(1,1));
 % heat exchange with surroundings[J/kg]
 output.injwell.dE_pot(1,1) = fCalc_dE_pot(input.general.g, output.injwell.dz(1,1));
 % potential energy change [J/kg]
 output.injwell.dP_f(1,1) = fCalc_dP_f(output.injwell.D_i (1,1), output.injwell.f(1,1), ...
 output.injwell.rho(1,1), output.injwell.u(1,1), ...
 output.injwell.dl(1,1)); % frictional pressure change [bar]
 output.injwell.dP_hs(1,1) = fCalc_dP_hs(input.general.g, output.injwell.rho(1,1), ...
 output.injwell.dz(1,1)); % hydrostatic pressure change [bar]

 formatSpec = ...
 'Injection well calculation (iteration #%d).\ndT > %d. Iterate until dT < 1.\nPlease wait...';
 A1 = l;
 A2 = floor(output.injwell.T(end) - output.SF.T_9(index,1));
 str = sprintf(formatSpec,A1,A2);
 h = waitbar(0,str);

 %% Calculation of segment nr.2 to top of the injection well
 for i=2:max(output.injwell.segnr);
 waitbar(i/max(input.injwell.segment))
 output.injwell.P(i,1) = output.injwell.P(i-1,1) - output.injwell.dP_hs(i-1,1) + ...
 output.injwell.dP_f(i-1,1); % pressure pipe [bar]
 output.injwell.h(i,1) = output.injwell.h(i-1,1) - output.injwell.dQ(i-1,1) - ...
 output.injwell.dE_pot(i-1,1); % enthalpy [J/kg]
 if output.injwell.P(i,1) < 1 % [bar]
 disp('ERROR: Pressure loss in injection well too high. ACTION: Increase mass flow, redesign
injection well or decrease II')
 close(h)
 msgbox('Pressure loss in injection well too high. ACTION: Increase mass flow, redesign
injection well or decrease II', 'Error','error');
 stat = status.FAILURE; return;
 end;

 % Import Geothermal fluid properties
 [geofprops,T_new] = fCalc_geofprops2 (output.injwell.P(i,1), output.injwell.T(i-1,1), ...
 output.injwell.w_NaCl, output.injwell.w_CO2, data.H2O_sat, ...
 output.injwell.h(i,1), output, output.injwell.h(i-1,1), input, data);

 output.injwell.T(i,1) = T_new; % temperature [C}
 output.injwell.chi(i,1) = geofprops(1,2); % gas mass fraction [-]
 output.injwell.v_spec(i,1) = 1/geofprops(1,4); % specific volume [m3/kg]
 output.injwell.rho(i,1) = geofprops(1,4); % density [kg/m3]
 output.injwell.c_p(i,1) = geofprops(1,5); % heat capacity [J/kg/K]
 output.injwell.mu(i,1) = geofprops(1,7); % viscosity [Pa*s]
 output.injwell.eps_G(i,1) = geofprops(1,3); % void fraction [-]

 output.injwell.u(i,1) = fCalc_u(input.general.m_gf, output.injwell.rho(i,1), ...
 output.injwell.D_i(i,1)); % velocity [m/s]
 output.injwell.Re(i,1) = fCalc_Re(output.injwell.D_i(i,1), output.injwell.rho(i,1), ...
 output.injwell.u(i,1), output.injwell.mu(i,1)); % Reynolds number
 output.injwell.f(i,1) = fCalc_f(output.injwell.chi(i,1), output.injwell.eps_pipe(i,1),...
 output.injwell.D_i(i,1), output.injwell.Re(i,1));
 % friction factor
 output.injwell.T_g = fCalc_T_g(input.general.T_surf_r, output.injwell.grad_T_g, ...
 output.injwell.tvd); % Geothermal temperature [C]
 output.injwell.dQ(i,1) = fCalc_dQ(output.injwell.T(i,1), output.injwell.T_g(i,1), ...
 output.injwell.D_i(i,1), output.injwell.dl(i,1), ...

126

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 input.general.m_gf, input.general.gamma, input.general.t, ...
 output.injwell.k_r(i,1), output.injwell.alfa_r(i,1));
 % Heat exchange with surroundings[J/kg]
 output.injwell.dE_pot(i,1) = fCalc_dE_pot(input.general.g, output.injwell.dz(i,1));
 % potential energy change [J/kg]
 output.injwell.dP_f(i,1) = fCalc_dP_f(output.injwell.D_i(i,1), output.injwell.f(i,1),...
 output.injwell.rho(i,1), output.injwell.u(i,1), ...
 output.injwell.dl(i,1)); % frictional pressure change [bar]
 output.injwell.dP_hs(i,1) = fCalc_dP_hs(input.general.g, output.injwell.rho(i,1), ...
 output.injwell.dz(i,1)); % hydrostatic pressure change [bar]
 end
 close(h)

 if abs(output.injwell.T(end) - output.SF.T_9(index,1)) < error_T_9_10
 break
 end

 l = l + 1; % iteration number

 output.injwell.T(1,1) = output.injwell.T(1,1) - (output.injwell.T(end) - ...
 output.SF.T_9(index,1));
 % recalculate bottomhole temperature injection well
 end

 %% Single-flash power plant simulation
 output.injwell.index = index; % row number with maximum W_net
 [input, output, stat] = fCalc_SF(input, output, status, data, 2); % 2 is algorithm number

 figure
 plot(output.injwell.T,-input.injwell.tvd)
 title('Temperature Injection well')
 xlabel('T[Celsius]') % x-axis label
 ylabel('Tvd[m]') % y-axis label

 % Succesfull simulation --> This is output from fCalc_SF [input, output, stat]
 % stat = status.SUCCES;
end

%% fCalc_injwell_BC

% Simulation of the injection well of the binary cycle power plant
% Frank Niewold
% Released version 1.0, February 2017

function [input, output, stat, geofprops] = fCalc_injwell_BC(input, output, data, status)

 stat = status.SUCCES;

 % settings
 error_T_9_10 = input.settings.error_T_9_10; % Same value as in single-flash plant

 %% Write injection well dimensions to output file
 for i = 1:max(input.injwell.segment);
 output.injwell_BC.segnr (i,1) = input.injwell.segment(i,1); % segment nr.
 output.injwell_BC.D_i (i,1) = input.injwell.D_i(i,1); % inner diameter [m]
 output.injwell_BC.dl (i,1) = input.injwell.dl(i,1); % length [m]
 output.injwell_BC.dz(i,1) = input.injwell.dz(i,1); % height [m]
 output.injwell_BC.tvd(i,1) = input.injwell.tvd(i,1); % true vertical depth tvd [m]
 output.injwell_BC.grad_T_g(i,1) = input.injwell.grad_T_g(i,1); % geothermal temp grad [K]
 output.injwell_BC.eps_pipe(i,1) = input.injwell.eps_pipe(i,1); % absolute pipe roughness [m]
 output.injwell_BC.k_r(i,1) = input.injwell.k_r(i,1); % rock thermal cond.[W/m/K]
 output.injwell_BC.alfa_r(i,1) = input.injwell.alfa_r(i,1); % rock thermal diff.[m2/s]
 end

 %% Import initial brine properties at bottom injection well from reservoir
 % Import composition from power plant
 output.injwell_BC.P(1,1) = output.reservoir.geofprops(1,1); % pressure [bar]
 [~,index] = max(output.BC.W_net); % row number with maximum W_net
 output.injwell_BC.T(1,1) = output.BC.T_C; % temperature [C]
 output.injwell_BC.T(2,1) = output.injwell_BC.T(1,1) + 2; % Initial value for while loop
 output.injwell_BC.w_NaCl = output.BC.w_NaCl_A; % mass fraction NaCl injection well
 output.injwell_BC.w_CO2 = output.BC.w_CO2_A; % mass fraction CO2 injection well

 l = 1; % iteration number

 %% Iterative procedure for calculation of injection well properties
 while abs(output.injwell_BC.T(end) - output.BC.T_A) > error_T_9_10;
 % geothermal fluid properties @ bottom of injection well

 [geofprops] = fCalc_geofprops1(output.injwell_BC.P(1,1), output.injwell_BC.T(1,1), ...
 output.injwell_BC.w_NaCl, output.injwell_BC.w_CO2, output);
 output.injwell_BC.geofprops(1,1:5) = [output.injwell_BC.P(1,1) output.injwell_BC.T(1,1) ...
 output.injwell_BC.w_NaCl output.injwell_BC.w_CO2 ...
 (1 - output.injwell_BC.w_NaCl -output.injwell_BC.w_CO2)];
 output.injwell_BC.geofprops(1,6:31) = geofprops(1,1:26);

 output.injwell_BC.h(1,1) = output.injwell_BC.geofprops(1,11); % enthalpy [J/kg]
 output.injwell_BC.chi(1,1) = output.injwell_BC.geofprops(1,7); % gas mass fraction [-]
 output.injwell_BC.v_spec(1,1) = 1/output.injwell_BC.geofprops(1,9); % specific volume [m3/kg]
 output.injwell_BC.rho(1,1) = output.injwell_BC.geofprops(1,9); % density [kg/m3]
 output.injwell_BC.c_p(1,1) = output.injwell_BC.geofprops(1,10); % heat capacity [J/kg/K]
 output.injwell_BC.mu(1,1) = output.injwell_BC.geofprops(1,12); % viscosity [Pa*s]
 output.injwell_BC.eps_G(1,1) = output.injwell_BC.geofprops(1,8); % void fraction [-]

 % Calculate initial properties at bottom injection well
 output.injwell_BC.u(1,1) = fCalc_u(input.general.m_gf, output.injwell_BC.rho(1,1), ...
 output.injwell_BC.D_i(1,1)); % velocity [m/s]
 output.injwell_BC.Re(1,1) = fCalc_Re(output.injwell_BC.D_i(1,1),output.injwell_BC.rho(1,1),...
 output.injwell_BC.u(1,1), output.injwell_BC.mu(1,1));
 % Reynolds number
 output.injwell_BC.f(1,1) = fCalc_f(output.injwell_BC.chi(1,1), ...
 output.injwell_BC.eps_pipe(1,1), output.injwell_BC.D_i(1,1), ...
 output.injwell_BC.Re(1,1)); % friction factor
 output.injwell_BC.T_g = fCalc_T_g(input.general.T_surf_r, output.injwell_BC.grad_T_g, ...
 output.injwell_BC.tvd); % Geothermal temperature [C]
 output.injwell_BC.dQ(1,1) = fCalc_dQ(output.injwell_BC.T(1,1), output.injwell_BC.T_g(1,1), ...
 output.injwell_BC.D_i(1,1), output.injwell_BC.dl(1,1), ...
 input.general.m_gf, input.general.gamma, input.general.t, ...
 output.injwell_BC.k_r(1,1), output.injwell_BC.alfa_r(1,1));
 % heat exchange with surroundings[J/kg]
 output.injwell_BC.dE_pot(1,1) = fCalc_dE_pot(input.general.g, output.injwell_BC.dz(1,1));
 % potential energy change [J/kg]
 output.injwell_BC.dP_f(1,1) = fCalc_dP_f(output.injwell_BC.D_i (1,1), ...
 output.injwell_BC.f(1,1), ...
 output.injwell_BC.rho(1,1), output.injwell_BC.u(1,1), ...
 output.injwell_BC.dl(1,1)); % frictional pressure change [bar]
 output.injwell_BC.dP_hs(1,1) = fCalc_dP_hs(input.general.g, output.injwell_BC.rho(1,1), ...
 output.injwell_BC.dz(1,1)); % hydrostatic pressure change [bar]

 formatSpec = ...
 'BC injection well calculation (iteration #%d).\ndT > %d. Iterate until dT < 1.\nPlease wait...';
 A1 = l;
 A2 = floor(output.injwell_BC.T(end) - output.BC.T_C);
 str = sprintf(formatSpec,A1,A2);
 h = waitbar(0,str);

 %% Calculation of segment nr.2 to top of the injection well
 for i = 2:max(output.injwell_BC.segnr);
 waitbar(i/max(input.injwell.segment))
 output.injwell_BC.P(i,1) = output.injwell_BC.P(i-1,1) - output.injwell_BC.dP_hs(i-1,1) + ...
 output.injwell_BC.dP_f(i-1,1); % pressure pipe [bar]
 output.injwell_BC.h(i,1) = output.injwell_BC.h(i-1,1) - output.injwell_BC.dQ(i-1,1) - ...
 output.injwell_BC.dE_pot(i-1,1); % enthalpy [J/kg]
 if output.injwell_BC.P(i,1) < 1 % [bar]
 disp('ERROR: Pressure loss in BC injection well too high. ACTION: Increase mass flow, redesign
injection well or decrease II')
 close(h)
 msgbox('Pressure loss in BC injection well too high. ACTION: Increase mass flow, redesign
injection well or decrease II', 'Error','error');
 stat = status.FAILURE; return;
 end;

 % Import Geothermal fluid properties
 [geofprops,T_new] = fCalc_geofprops2 (output.injwell_BC.P(i,1), ...
 output.injwell_BC.T(i-1,1), output.injwell_BC.w_NaCl, ...
 output.injwell_BC.w_CO2, data.H2O_sat, ...
 output.injwell_BC.h(i,1), output, output.injwell_BC.h(i-1,1), ...
 input, data);

 output.injwell_BC.T(i,1) = T_new; % temperature [C}
 output.injwell_BC.chi(i,1) = geofprops(1,2); % gas mass fraction [-]
 output.injwell_BC.v_spec(i,1) = 1/geofprops(1,4); % specific volume [m3/kg]
 output.injwell_BC.rho(i,1) = geofprops(1,4); % density [kg/m3]
 output.injwell_BC.c_p(i,1) = geofprops(1,5); % heat capacity [J/kg/K]
 output.injwell_BC.mu(i,1) = geofprops(1,7); % viscosity [Pa*s]
 output.injwell_BC.eps_G(i,1) = geofprops(1,3); % void fraction [-]

 output.injwell_BC.u(i,1) = fCalc_u(input.general.m_gf, output.injwell_BC.rho(i,1), ...

B
 M

A
T

L
A

B
 C

od
e

127

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 output.injwell_BC.D_i(i,1)); % velocity [m/s]
 output.injwell_BC.Re(i,1) = fCalc_Re(output.injwell_BC.D_i(i,1), ...
 output.injwell_BC.rho(i,1), output.injwell_BC.u(i,1),...
 output.injwell_BC.mu(i,1)); % Reynolds number
 output.injwell_BC.f(i,1) = fCalc_f(output.injwell_BC.chi(i,1), ...
 output.injwell_BC.eps_pipe(i,1),...
 output.injwell_BC.D_i(i,1), output.injwell_BC.Re(i,1));
 % friction factor
 output.injwell_BC.T_g = fCalc_T_g(input.general.T_surf_r, ...
 output.injwell_BC.grad_T_g, ...
 output.injwell_BC.tvd); % Geothermal temperature [C]
 output.injwell_BC.dQ(i,1) = fCalc_dQ(output.injwell_BC.T(i,1), ...
 output.injwell_BC.T_g(i,1), ...
 output.injwell_BC.D_i(i,1), output.injwell_BC.dl(i,1), ...
 input.general.m_gf, input.general.gamma, input.general.t, ...
 output.injwell_BC.k_r(i,1), output.injwell_BC.alfa_r(i,1));
 % Heat exchange with surroundings[J/kg]
 output.injwell_BC.dE_pot(i,1) = fCalc_dE_pot(input.general.g, output.injwell_BC.dz(i,1));
 % potential energy change [J/kg]
 output.injwell_BC.dP_f(i,1) = fCalc_dP_f(output.injwell_BC.D_i(i,1), ...
 output.injwell_BC.f(i,1),...
 output.injwell_BC.rho(i,1), output.injwell_BC.u(i,1), ...
 output.injwell_BC.dl(i,1)); % frictional P change [bar]
 output.injwell_BC.dP_hs(i,1) = fCalc_dP_hs(input.general.g,output.injwell_BC.rho(i,1),...
 output.injwell_BC.dz(i,1)); % hydrostatic P change [bar]
 end
 close(h)

 if abs(output.injwell_BC.T(end) - output.BC.T_C) < error_T_9_10
 break
 end

 l = l + 1; % iteration number

 output.injwell_BC.T(1,1) = output.injwell_BC.T(1,1) - (output.injwell_BC.T(end) - ...
 output.BC.T_C);
 % recalculate bottomhole temperature injection well
 end

 %% Single-flash power plant simulation
 output.injwell_BC.index = index; % row number with maximum W_net
 [input, output, stat] = fCalc_BC(input, output, status, data, 2); % 2 is algorithm number

 figure
 plot(output.injwell_BC.T,-input.injwell.tvd)
 title('Temperature BC Injection well')
 xlabel('T[Celsius]') % x-axis label
 ylabel('Tvd[m]') % y-axis label

 % Succesfull simulation --> This is output from fCalc_BC [input, output, stat]
 % stat = status.SUCCES;
end

%% fCreate_figures

% Plotting relevant property profiles as a function of true vertical depth
% Frank Niewold
% Released version 1.0, February 2017

function [] = fCreate_figures(input, output, status)
figure
plot(output.prodwell.P,-output.prodwell.tvd)
xlabel('P [bar]') % x-axis label
ylabel('Tvd [m]') % y-axis label

hold on
plot(output.prodwell_GL.P,-output.prodwell_GL.tvd)
xlabel('P[bar]') % x-axis label
ylabel('Tvd[m]') % y-axis label

figure
plot(output.prodwell.T,-output.prodwell.tvd)
xlabel('T[Celsius]') % x-axis label
ylabel('Tvd[m]') % y-axis label

hold on
plot(output.prodwell_GL.T,-output.prodwell_GL.tvd)
xlabel('P[bar]') % x-axis label

ylabel('Tvd[m]') % y-axis label

figure
plot(output.prodwell.chi,-output.prodwell.tvd)
xlabel('\chi[-]') % x-axis label
ylabel('Tvd[m]') % y-axis label

hold on
plot(output.prodwell_GL.chi,-output.prodwell_GL.tvd)
xlabel('\chi[-]') % x-axis label
ylabel('Tvd[m]') % y-axis label

figure
plot(output.prodwell.h,-output.prodwell.tvd)
xlabel('h[J/kg]') % x-axis label
ylabel('Tvd[m]') % y-axis label

hold on
plot(output.prodwell_GL.h,-output.prodwell_GL.tvd)
xlabel('h[J/kg]') % x-axis label
ylabel('Tvd[m]') % y-axis label

figure
plot(output.prodwell.eps_G(:,1),-output.prodwell.tvd)
xlabel('\epsilon_G[-]') % x-axis label
ylabel('Tvd[m]') % y-axis label

hold on
plot(output.prodwell_GL.eps_G(:,1),-output.prodwell_GL.tvd)
xlabel('\epsilon_G[-]') % x-axis label
ylabel('Tvd[m]') % y-axis label

end

%% fCalc_u

% Calculate velocity [m/s]
% Frank Niewold
% Released version 1.0, February 2017

function [output] = fCalc_u(m_gf, rho, D_i)

output = (m_gf/rho)/((pi()/4)*D_i^2);

end

%% fCalc_Re

% Calculation of Reynolds number
% Frank Niewold
% Released version 1.0, February 2017

function [output] = fCalc_Re(D_i, rho, u, mu)

output = D_i*rho*u/mu;

end

%% fCalc_f

% Calculation of friction factor
% Frank Niewold
% Released version 1.0, February 2017

function [output] = fCalc_f(chi, eps_pipe, D_i, Re)

if chi == 0
 %Swamee-Jain equation for liquid flow only
 output = 0.25/((log10(eps_pipe/D_i/3.7)+(5.74/Re^0.9))^2);
else
 %Hasan et al.(2002) two phase flow from Chen (1979) correlation
 output = 0.25/(log10((eps_pipe/D_i/3.7065)-
((5.0452/Re)*log10(((1/2.8257)*(eps_pipe/D_i)^1.1098)+(5.8506/Re^0.8981))))^2);
end
end

128

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

%% fCalc_T_g

% Calculation of geothermal temperature [C]
% Frank Niewold
% Released version 1.0, February 2017

function [output] = fCalc_T_g(T_bh, geo_grad, tvd)

j = size(geo_grad,1);
output = zeros(j,1);
T = T_bh;
output(1,1) = T_bh;
for i = 2:j
 output(i,1) = T + geo_grad(i,1) * (tvd(i,1) - tvd(i-1,1));
 T = output(i,1);
end

%% fCalc_dQ

% Calculation of heat flow to surrounding rocks [J/kg]
% Frank Niewold
% Released version 1.0, February 2017

function [output] = fCalc_dQ(T_gf, T_g, D_i, dl, m_gf, gamma, t, k_r, alfa_r)

output = ((4*k_r*pi()*(T_gf-T_g))/log((4*alfa_r*t)/(gamma*(D_i/2)^2)))*dl/m_gf; % [J/kg]

end

%% fCalc_dE_pot

% Calculation of potential energy change [J/kg]
% Frank Niewold
% Released version 1.0, February 2017

function [output] = fCalc_dE_pot(g, dz)

output = g * dz; % [J/kg]

end

%% fCalc_dP_f

% Calculation of frictional pressure change [bar]
% Frank Niewold
% Released version 1.0, February 2017

function [output] = fCalc_dP_f(D_i, f, rho, u, dl)

output = ((1/2) * f * rho * u^2 * dl / D_i)/100000; % [bar]

end

%% fCalc_dP_hs

% Calculation of hydrostatic pressure change [bar]
% Frank Niewold
% Released version 1.0, February 2017

function [output] = fCalc_dP_hs(g, rho, dz)

output = g * rho * dz / 100000; % [bar]

end

%% fCalc_dP_k

% Calculation of kinetic pressure change [bar]
% Frank Niewold
% Released version 1.0, February 2017

function [output] = fCalc_dP_k(rho, u_2, u_1)

output = (rho*(u_2^2-u_1^2))/100000; % [bar]

end

%% fCalc_dE_k

% Calculation of potential energy change [J/kg]
% Frank Niewold
% Released version 1.0, February 2017

function [output] = fCalc_dE_k(u_2, u_1)

output = 0.5 * (u_2^2 - u_1^2); % [J/kg]

end

%% fCalc_prodwell_virtual

% Simulation of a virtual production well
% If the Francke Model did not experience flashing, while according to Duan and Sun (2003) the
% pressure is below the degassing pressure. The production well is virtually extended above the
% earth's surface in order to obtain the quality in the real production well.
% Frank Niewold
% Released version 1.0, February 2017

function [input, output, geofprops, i] = fCalc_prodwell_virtual(input, output, data, k)

 %% Production well simulation from segment 2 to top
 j = k + 1; % count further
 k = 1000; % last segment number

 formatSpec = 'Production well virtual calculation.\nPlease wait...';
 str = sprintf(formatSpec);
 h1 = waitbar(0,str);

 % Calculate segments until two segments have a chi > 0 according to the Francke Model

 for i = j:k

 % Create extra output for virtual production well
 output.prodwell.segnr(i,1) = output.prodwell.segnr(i-1,1) + 1; % segment nr.
 output.prodwell.D_i(i,1) = output.prodwell.D_i(i-1,1); % inner diameter wellbore[m]
 output.prodwell.dl(i,1) = output.prodwell.dl(i-1,1); % length [m]
 output.prodwell.dz(i,1) = output.prodwell.dz(i-1,1); % dz [m]
 output.prodwell.tvd(i,1) = output.prodwell.tvd(i-1,1) - output.prodwell.dz(i,1);
 % true vertical depth tvd[m]
 output.prodwell.grad_T_g(i,1) = output.prodwell.grad_T_g(i-1,1); % temperature gradient [m]
 output.prodwell.eps_pipe(i,1) = output.prodwell.eps_pipe(i-1,1); % absolute pipe roughness[m]
 output.prodwell.k_r(i,1) = output.prodwell.k_r(i-1,1); % rock thermal condu.[W/m/K]
 output.prodwell.alfa_r(i,1) = output.prodwell.alfa_r(i-1,1); % rock thermal diffus.[m2/s]
 output.prodwell.l(i,1) = output.prodwell.l(i-1,1) + output.prodwell.dl(i-1,1);

 output.prodwell.T_g(i,1) = fCalc_T_g(input.general.T_surf_r, output.prodwell.grad_T_g(i,1),...
 output.prodwell.tvd(i,1)); % Geothermal temperature [C]

 output.prodwell.P(i,1) = output.prodwell.P(i-1,1) - output.prodwell.dP_hs(i-1,1) - ...
 output.prodwell.dP_f(i-1,1); % pressure pipe [bar]
 output.prodwell.h(i,1) = output.prodwell.h(i-1,1) - output.prodwell.dQ(i-1,1) - ...
 output.prodwell.dE_pot(i-1,1); % enthalpy [J/kg]
 if output.prodwell.P(i,1) < 1
 disp('ERROR: Pressure loss in wellbore too high. ACTION: Decrease mass flow')
 close(h)
 msgbox('Pressure loss in wellbore too high. ACTION: Decrease mass flow', 'Error','error');
 stat = status.FAILURE; return;
 end;

 [geofprops, T_new, w_table] = fCalc_geofprops2 (output.prodwell.P(i,1), ...
 output.prodwell.T(i-1,1), input.general.w_NaCl, ...
 input.general.w_CO2, data.H2O_sat,output.prodwell.h(i,1),...
 output, output.prodwell.h(i-1,1), input, data);
 output.prodwell.T(i,1) = T_new; % temperature [C}
 output.prodwell.chi(i,1) = geofprops(1,2); % gas mass fraction [-}
 output.prodwell.v_spec(i,1) = 1/geofprops(1,4); % specific volume {m3/kg]
 output.prodwell.rho(i,1) = geofprops(1,4); % density [kg/m3]
 output.prodwell.c_p(i,1) = geofprops(1,5); % specific heat capacity [J/kg/K]

B
 M

A
T

L
A

B
 C

od
e

129

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 output.prodwell.mu(i,1) = geofprops(1,7); % viscosity [Pa*s]
 output.prodwell.eps_G(i,1) = geofprops(1,3); % void fraction [-]

 % Drift flux model
 if output.prodwell.chi(i,1) > 0 && input.prodwell.DF_model > 1
 % quality larger than zero && DF_model = 1 --> homogeneous
 output.prodwell.rho_l(i,1) = geofprops(1,15); % density liquid phase [kg/m3]
 output.prodwell.rho_v(i,1) = geofprops(1,23); % density vapor phase [kg/m3]
 output.prodwell.mu_l(i,1) = geofprops(1,18); % viscosity liquid phase [Pa*s]
 output.prodwell.mu_v(i,1) = geofprops(1,26); % viscosity vapor phase [Pa*s]
 output.prodwell.l_E(i,1) = output.prodwell.l(i,1) - output.prodwell.l(i,1);
 % length from entrance or flash horizon [m]
 output.prodwell.u_sg(i,1) = ((output.prodwell.chi(i,1) * input.general.m_gf)/...
 geofprops(1,23))/(pi*(output.prodwell.D_i(i,1)/2)^2);
 % superficial gas velocity [m/s]
 output.prodwell.u_sl(i,1) = (((1-output.prodwell.chi(i,1)) * input.general.m_gf)/...
 geofprops(1,15))/(pi*(output.prodwell.D_i(i,1)/2)^2);
 % superficial liquid velocity [m/s]
 [eps_G, FP, u_gu, C_0] = fCalc_eps_G(output.prodwell.T(i,1), geofprops(1,15), ...
 geofprops(1,23), geofprops(1,18), geofprops(1,26), ...
 output.prodwell.l_E(i,1), output.prodwell.D_i(i,1), ...
 output.prodwell.eps_pipe(i,1), output.prodwell.u_sg(i,1), ...
 output.prodwell.u_sl(i,1), input.general.g, ...
 output.prodwell.chi(i,1), input.prodwell.DF_model);
 output.prodwell.eps_G(i,1) = eps_G; % void fraction
 output.prodwell.FP(i,1) = cellstr(FP); % flow pattern
 output.prodwell.rho(i,1) = output.prodwell.rho_v(i,1)*output.prodwell.eps_G(i,1)...
 + output.prodwell.rho_l(i,1)*...
 (1-output.prodwell.eps_G(i,1)); % density [kg/m3]
 output.prodwell.u_gu(i,1) = u_gu; % drift-flux velocity, u_gas relative to u_m
 output.prodwell.C_0(i,1) = C_0; % distribution parameter
 end

 % Output geothermal fluid composition - mass fractions
 output.prodwell.w_NaCl_l(i,1) = w_table(3,2);
 output.prodwell.w_CO2_l(i,1) = w_table(3,3);
 output.prodwell.w_CO2_v(i,1) = w_table(3,4);
 output.prodwell.w_H2O_l(i,1) = w_table(3,5);
 output.prodwell.w_H2O_v(i,1) = w_table(3,6);

 % Not used for now - mass fraction at transition
 output.prodwell.w_NaCl_l_t(i,1) = w_table(1,2);
 output.prodwell.w_CO2_l_t(i,1) = w_table(1,3);
 output.prodwell.w_CO2_v_t(i,1) = w_table(1,4);
 output.prodwell.w_H2O_l_t(i,1) = w_table(1,5);
 output.prodwell.w_H2O_v_t(i,1) = w_table(1,6);

 % Calculate segment properties
 output.prodwell.u(i,1) = fCalc_u(input.general.m_gf, output.prodwell.rho(i,1), ...
 output.prodwell.D_i(i,1)); % velocity [m/s]
 output.prodwell.Re(i,1) = fCalc_Re(output.prodwell.D_i(i,1), ...
 output.prodwell.rho(i,1), output.prodwell.u(i,1), ...
 output.prodwell.mu(i,1)); % Reynolds number [-]
 output.prodwell.f(i,1) = fCalc_f(output.prodwell.chi(i,1), ...
 output.prodwell.eps_pipe(i,1), output.prodwell.D_i(i,1),...
 output.prodwell.Re(i,1)); % friction factor [-]
 output.prodwell.dQ(i,1) = fCalc_dQ(output.prodwell.T(i,1), ...
 output.prodwell.T_g(i,1), output.prodwell.D_i(i,1), ...
 output.prodwell.dl(i,1), input.general.m_gf, ...
 input.general.gamma, input.general.t, ...
 output.prodwell.k_r(i,1), output.prodwell.alfa_r(i,1));
 % heat exchange with surroundings [J/kg]
 output.prodwell.dE_pot(i,1) = fCalc_dE_pot(input.general.g, output.prodwell.dz(i,1));
 % potential energy [J/kg]
 output.prodwell.dP_f(i,1) = fCalc_dP_f(output.prodwell.D_i(i,1), ...
 output.prodwell.f(i,1), output.prodwell.rho(i,1), ...
 output.prodwell.u(i,1), output.prodwell.dl(i,1));
 % frictional pressure change [bar]
 output.prodwell.dP_hs(i,1) = fCalc_dP_hs(input.general.g, output.prodwell.rho(i,1), ...
 output.prodwell.dz(i,1));% hydrostatic pressure change [bar]

 % if i == size(input.prodwell.tvd,1)
 % output.prodwell.P(i+1,1) = output.prodwell.P(i,1) - output.prodwell.dP_hs(i,1) - ...
 % output.prodwell.dP_f(i,1); % pressure pipe [bar]
 % output.prodwell.h(i+1,1) = output.prodwell.h(i,1) - output.prodwell.Q(i,1) - ...
 % output.prodwell.E_pot(i,1); %enthalpy [J/kg]
 % end

 output.prodwell.P_degas(i,1) = interp3(data.m_NaCl_degas, data.T_degas, data.m_CO2_degas, ...

 data.P_degas, input.general.m_NaCl, output.prodwell.T(i,1) +...
 273.15, input.general.m_CO2); % degassing pressure [bar]

 waitbar(geofprops(1,1)/output.prodwell.P(i,1))

 %% Check if two segments have a significant gas mass fraction
 if output.prodwell.chi(i,1) > 0.0001 && output.prodwell.chi(i-1,1) > 0.0001
 output.prodwell.P_old = output.prodwell.P(i-2,1);
 break % start interpolation from P_degas Duan and Sun (2003)
 end

 end

 output.prodwell.P_degas = interp3(data.m_NaCl_degas, data.T_degas, data.m_CO2_degas, ...
 data.P_degas, input.general.m_NaCl, output.prodwell.T + 273.15,...
 input.general.m_CO2); % degassing pressure [bar]
 close(h1)
end

%% fCalc_dQgf

% Calculation of heat flow to surrounding rocks [J/kg]
% Frank Niewold
% Released version 1.0, February 2017

function [output] = fCalc_dQgf(output,input,i,j)

load P_CO2; load T_CO2; load cp_CO2; load h_CO2; load k_CO2; load mu_CO2; load rho_CO2; load s_CO2;
load H2O_sat_props;

%% heat transfer coefficient annulus side
D_Wo = output.prodwell_GL.D_i(i,1) + 0.02;
D_ao = D_Wo + 0.05;
L_E = 1000;
k_Wc = 50;
a = D_Wo/D_ao;
F_a = 0.75*a^-0.17 + (0.9 - 0.15 *a^0.6)/(1+a);
D_h = D_ao - D_Wo;
A = pi * (D_ao^2 - D_Wo^2)/4;

output.prodwell_GL.rho_GL(i,j) = interp2(P_CO2,T_CO2,rho_CO2,output.prodwell_GL.P_GL(i,1),...
 output.prodwell_GL.T_GL(i,1));
output.prodwell_GL.mu_GL(i,j) = interp2(P_CO2,T_CO2,mu_CO2,output.prodwell_GL.P_GL(i,1),...
 output.prodwell_GL.T_GL(i,1));
output.prodwell_GL.cp_GL(i,j) = interp2(P_CO2,T_CO2,cp_CO2,output.prodwell_GL.P_GL(i,1),...
 output.prodwell_GL.T_GL(i,1));
output.prodwell_GL.k_GL(i,j) = interp2(P_CO2,T_CO2,k_CO2,output.prodwell_GL.P_GL(i,1),...
 output.prodwell_GL.T_GL(i,1));

output.prodwell_GL.Re_GL(i,j) = output.prodwell_GL.m_GL * D_h/(A * output.prodwell_GL.mu_GL(i,j));
output.prodwell_GL.Pr_GL(i,j) = output.prodwell_GL.cp_GL(i,j) * output.prodwell_GL.mu_GL(i,j)...
 /output.prodwell_GL.k_GL(i,j);

k_1 = 1.07 +(900/output.prodwell_GL.Re_GL(i,j)) - (0.63/(1+10*output.prodwell_GL.Pr_GL(i,j)));
Re_star = output.prodwell_GL.Re_GL(i,j) * (((1 + a^2) * log(a) + (1 - a^2))/((1-a)^2 *log(a)));
f_a = (1.8 * log10(Re_star) - 1.5)^-2;
output.prodwell_GL.Nu_GL(i,j) = (((f_a/8)*output.prodwell_GL.Re_GL(i,j)*...
 output.prodwell_GL.Pr_GL(i,j))/(k_1 + 12.7 * (f_a/8)^0.5 *...
 (output.prodwell_GL.Pr_GL(i,j)^(2/3)-1)))...
 * (1 + (D_h/L_E)^(2/3)) * F_a;
output.prodwell_GL.h_c_Wo(i,j) = output.prodwell_GL.Nu_GL(i,j) * output.prodwell_GL.k_GL(i,j)/D_h;
term_1 = 1/(output.prodwell_GL.h_c_Wo(i,j)*2*pi*(D_Wo/2)*output.prodwell_GL.dl(i,1));
%% heat transfer casing
term_2 = log(D_Wo/output.prodwell_GL.D_i(i,1))/(2*pi*k_Wc*output.prodwell_GL.dl(i,1));

%% heat transfer geothermal fluid side
output.prodwell_GL.X_tt(i,j) = (output.prodwell_GL.chi(i,1)/(1-output.prodwell_GL.chi(i,1)))^0.9...
 *(output.prodwell_GL.rho_l(i,1)/output.prodwell_GL.rho_v(i,1))^...
 0.5*(output.prodwell_GL.mu_v(i,1)/output.prodwell_GL.mu_l(i,1))^0.1;
output.prodwell_GL.F_c(i,j) = 8E-05*output.prodwell_GL.X_tt(i,j)^3 - ...
 0.0133*output.prodwell_GL.X_tt(i,j)^2 + ...
 1.2623*output.prodwell_GL.X_tt(i,j) + 1.4214;

output.prodwell_GL.k_gf_l(i,j) = interp1(H2O_sat_props(:,2),H2O_sat_props(:,8),...
 output.prodwell_GL.T(i,1));
output.prodwell_GL.k_gf_g(i,j) = interp1(H2O_sat_props(:,2),H2O_sat_props(:,9),...
 output.prodwell_GL.T(i,1));
output.prodwell_GL.k_gf(i,j) = output.prodwell_GL.chi(i,1) * output.prodwell_GL.k_gf_g(i,j) + ...

130

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 (1 - output.prodwell_GL.chi(i,1)) * output.prodwell_GL.k_gf_l(i,j);
output.prodwell_GL.Pr_gf(i,j) = output.prodwell_GL.c_p(i,1) * output.prodwell_GL.mu(i,1)/ ...
 output.prodwell_GL.k_gf(i,j);
f_a = (1.8 * log10(output.prodwell_GL.Re(i,1) - 1.5))^-2;
output.prodwell_GL.Nu_gf(i,j) = (((f_a/8)*output.prodwell_GL.Re(i,1)*...
 output.prodwell_GL.Pr_gf(i,j))/(1 + 12.7 * (f_a/8)^0.5 *...
 (output.prodwell_GL.Pr_gf(i,j)^(2/3)-1)))...
 * (1 + (output.prodwell_GL.D_i(i,1)/L_E)^(2/3)) * F_a;
output.prodwell_GL.h_fc(i,j) = output.prodwell_GL.Nu_gf(i,j)*output.prodwell_GL.k_gf(i,j)/...
 output.prodwell_GL.D_i(i,1);
output.prodwell_GL.h_c_Wi(i,j) = output.prodwell_GL.h_fc(i,j)*output.prodwell_GL.F_c(i,j);
term_3 = 1/(output.prodwell_GL.h_c_Wi(i,j)*2*pi*(output.prodwell_GL.D_i(i,1)/2)*...
 output.prodwell_GL.dl(i,1));

output.prodwell_GL.UA(i,j) = 1/(term_1+term_2+term_3);

output.prodwell_GL.dQ_gf_gf(i,j) = output.prodwell_GL.UA(i,j) * (output.prodwell_GL.T_GL(i+1,j) - ...
 output.prodwell_GL.T(i,1))/output.prodwell_GL.m_gf(i,1);
output.prodwell_GL.dQ_gf_GL(i,j) = output.prodwell_GL.UA(i,j) * (output.prodwell_GL.T(i,1) - ...
 output.prodwell_GL.T_GL(i+1,j))/output.prodwell_GL.m_GL;

end

%% fCalc_T_s_com

% Iteration of temperature to calculate inlet properties compressor of production well with gas-lift.
% Frank Niewold
% Released version 1.0, February 2017

function [F] = fCalc_T_s_com(x,y)

load h_CO2; load P_CO2; load s_CO2; load T_CO2;

if y(3) == 1
 T = x(1); % temperature @ state 2s
 P_GL = y(1); % partial pressure H2O @ state 2
 s_GL = y(2); % partial pressure CO2 @ state 2

 s_CO2_check = interp2(P_CO2,T_CO2,s_CO2,P_GL,T);

 F = s_GL - s_CO2_check;
else
 T = x(1); % temperature @ state 2s
 P_GL = y(1); % partial pressure H2O @ state 2
 h_GL = y(2); % partial pressure CO2 @ state 2

 h_CO2_check = interp2(P_CO2,T_CO2,h_CO2,P_GL,T);

 F = h_GL - h_CO2_check;
end

%% fCalc_chi_5s

% Iteration of quantity and temperature to calculate outlet properties turbine @ state 5s
% Frank Niewold
% Released version 1.0, February 2017

function [F,output] = fCalc_chi_5s(x,y)

 load h_CO2; load P_CO2;load s_CO2;load T_CO2;load H2O_sat_props;

 output.SF.chi_5s = x(1);
 output.SF.T_5s = x(2);
 output.SF.w_CO2_g_2 = y(1);
 output.SF.P_5 = y(2);
 output.SF.s_mix_v_4 = y(3);
 M_CO2 = y(4);
 M_H2O = y(5);

 output.SF.w_CO2_7 = output.SF.w_CO2_g_2/output.SF.chi_5s; % mass fraction CO2 saturated gas
 output.SF.w_H2O_7 = 1 - output.SF.w_CO2_7; % mass fraction H2O saturated gas
 output.SF.n_CO2_7 = (output.SF.w_CO2_7/M_CO2) / (output.SF.w_H2O_7/M_H2O + ...
 output.SF.w_CO2_7/M_CO2); % mole fraction CO2 saturated gas
 output.SF.n_H2O_7 = (output.SF.w_H2O_7/M_H2O) / (output.SF.w_H2O_7/M_H2O + ...
 output.SF.w_CO2_7/M_CO2); % mole fraction H2O saturated gas
 output.SF.P_H2O_7 = output.SF.P_5 * output.SF.n_H2O_7; % partial pressure H2O saturated gas
 output.SF.P_CO2_7 = output.SF.P_5 * output.SF.n_CO2_7; % partial pressure CO2 saturated gas

 output.SF.T_5s_check = interp1(H2O_sat_props(:,1), H2O_sat_props(:,2), output.SF.P_H2O_7,'spline');
 % temperature expanded mixture @ state 5s

 output.SF.h_H2O_6 = interp1(H2O_sat_props(:,2), H2O_sat_props(:,3), output.SF.T_5s,'spline');
 % enthalpy H2O saturated liquid
 output.SF.s_H2O_6 = interp1(H2O_sat_props(:,2), H2O_sat_props(:,5), output.SF.T_5s,'spline');
 % entropy H2O saturated liquid
 output.SF.h_H2O_7 = interp1(H2O_sat_props(:,2), H2O_sat_props(:,4), output.SF.T_5s,'spline');
 % enthalpy H2O saturated gas
 output.SF.s_H2O_7 = interp1(H2O_sat_props(:,2), H2O_sat_props(:,6), output.SF.T_5s,'spline');
 % entropy H2O saturated gas
 output.SF.h_CO2_7 = interp2(P_CO2, T_CO2, h_CO2, output.SF.P_CO2_7, output.SF.T_5s,'spline');
 % enthalpy CO2 saturated gas
 output.SF.s_CO2_7 = interp2(P_CO2, T_CO2, s_CO2, output.SF.P_CO2_7, output.SF.T_5s,'spline');
 % entropy CO2 saturated gas
 output.SF.h_mix_7 = output.SF.h_H2O_7
* output.SF.w_H2O_7 + output.SF.h_CO2_7 * output.SF.w_CO2_7;
 % enthalpy mix saturated gas
 output.SF.s_mix_7 = output.SF.s_H2O_7 * output.SF.w_H2O_7 + output.SF.s_CO2_7 * output.SF.w_CO2_7;
 % entropy mix saturated gas
 output.SF.h_mix_5s = output.SF.h_H2O_6 * (1 - output.SF.chi_5s) + output.SF.h_mix_7 * ...
 output.SF.chi_5s; % enthalpy mix @ state 5s
 output.SF.s_mix_5s = output.SF.s_H2O_6 * (1 - output.SF.chi_5s) + output.SF.s_mix_7 * ...
 output.SF.chi_5s; % entropy mix @ state 5s

 % Check if condition isentropic expansion is fulfilled
 F(1) = output.SF.s_mix_v_4 - output.SF.s_mix_5s;
 % Check if temperature as function of partial pressure H2O equals temperature for conditions state 5s
 F(2) = output.SF.T_5s_check - output.SF.T_5s;

end

%% fCalc_chi_5

% Iteration of quantity and temperature to calculate outlet properties turbine @ state 5
% Frank Niewold
% Released version 1.0, February 2017

function [F,output] = fCalc_chi_5(x,y)

load h_CO2; load P_CO2;load s_CO2;load T_CO2;load H2O_sat_props;

output.SF.chi_5 = x(1);
output.SF.T_5 = x(2);
output.SF.w_CO2_g_2 = y(1);
output.SF.P_5 = y(2);
output.SF.h_mix_5 = y(3);
M_CO2 = y(4);
M_H2O = y(5);

output.SF.w_CO2_7 = output.SF.w_CO2_g_2/output.SF.chi_5; % mass fraction CO2 saturated gas
output.SF.w_H2O_7 = 1 - output.SF.w_CO2_7; % mass fraction H2O saturated gas
output.SF.n_CO2_7 = (output.SF.w_CO2_7/M_CO2) / (output.SF.w_H2O_7/M_H2O + output.SF.w_CO2_7/M_CO2);
 % mole fraction CO2 saturated gas
output.SF.n_H2O_7 = (output.SF.w_H2O_7/M_H2O) / (output.SF.w_H2O_7/M_H2O + output.SF.w_CO2_7/M_CO2);
 % mole fraction H2O saturated gas
output.SF.P_H2O_7 = output.SF.P_5 * output.SF.n_H2O_7; % partial pressure H2O saturated gas
output.SF.P_CO2_7 = output.SF.P_5 * output.SF.n_CO2_7; % partial pressure CO2 saturated gas
output.SF.T_5_check = interp1(H2O_sat_props(:,1), H2O_sat_props(:,2), output.SF.P_H2O_7,'spline');
 % temperature expanded mixture @ state 5s

output.SF.h_H2O_6 = interp1(H2O_sat_props(:,2), H2O_sat_props(:,3), output.SF.T_5,'spline');
 % enthalpy H2O saturated liquid
output.SF.s_H2O_6 = interp1(H2O_sat_props(:,2), H2O_sat_props(:,5), output.SF.T_5,'spline');
 % entropy H2O saturated liquid
output.SF.h_H2O_7 = interp1(H2O_sat_props(:,2), H2O_sat_props(:,4), output.SF.T_5,'spline');
 % enthalpy H2O saturated gas
output.SF.s_H2O_7 = interp1(H2O_sat_props(:,2), H2O_sat_props(:,6), output.SF.T_5,'spline');
 % entropy H2O saturated gas
output.SF.h_CO2_7 = interp2(P_CO2, T_CO2, h_CO2, output.SF.P_CO2_7, output.SF.T_5,'spline');
 % enthalpy CO2 saturated gas
output.SF.s_CO2_7 = interp2(P_CO2, T_CO2, s_CO2, output.SF.P_CO2_7, output.SF.T_5,'spline');
 % entropy CO2 saturated gas
output.SF.h_mix_7 = output.SF.h_H2O_7 * output.SF.w_H2O_7 + output.SF.h_CO2_7 * output.SF.w_CO2_7;
 % enthalpy mix saturated gas
output.SF.s_mix_7 = output.SF.s_H2O_7 * output.SF.w_H2O_7 + output.SF.s_CO2_7 * output.SF.w_CO2_7;
 % entropy mix saturated gas
output.SF.h_mix_5_calc = output.SF.h_H2O_6 * (1 - output.SF.chi_5) + output.SF.h_mix_7 * ...

B
 M

A
T

L
A

B
 C

od
e

131

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 output.SF.chi_5; % enthalpy mix @ state 5
output.SF.s_mix_5 = output.SF.s_H2O_6 * (1 - output.SF.chi_5) + output.SF.s_mix_7 * output.SF.chi_5;
 % entropy mix @ state 5

% Check h_mix_5 (from eta_t) equals h_mix_5_calc (from mixture enthalpy)
F(1) = output.SF.h_mix_5 - output.SF.h_mix_5_calc;
% Check if temperature as function of partial pressure H2O equals temperature for conditions state 5s
F(2) = output.SF.T_5_check - output.SF.T_5;

end

%% fCalc_T_5

% Iteration of temperature to calculate outlet temperature condenser pump (8)
% Frank Niewold
% Released version 1.0, February 2017

function [F,output] = fCalc_T_8(x,y)

load T_H2O_SC; load P_H2O_SC; load rho_H2O_SC;

output.SF.T_8 = x(1); % temperature @ state 8
output.SF.rho_H2O_l_6 = y(1); % density liquid H2O @ state 6
output.SF.P_2 = y(2); % pressure @ state 2 = equal to states(3,4,8,9,14)

output.SF.rho_H2O_l_8 = interp2(P_H2O_SC, T_H2O_SC, rho_H2O_SC, output.SF.P_2, output.SF.T_8,'spline');

F = output.SF.rho_H2O_l_6 - output.SF.rho_H2O_l_8; % Check if incompressible assumption is satisfied

end

%% fCalc_T_12s

% Iteration of temperature to calculate outlet properties steam ejector/condenser.
% Frank Niewold
% Released version 1.0, February 2017

function [F,output] = fCalc_T_12s(x,y)

load h_CO2; load P_CO2; load s_CO2; load T_CO2; load H2O_sat_prop;
load h_H2O_SH;load s_H2O_SH; load T_H2O_SH; load P_H2O_SH;

output.SF.T_12s = x(1); % temperature @ state 12s
output.SF.P_H2O_12 = y(1); % partial pressure H2O @ state 12
output.SF.P_CO2_12 = y(2); % partial pressure CO2 @ state 12
output.SF.s_mix_v_11 = y(3); % entropy gas mixture @ state 11
output.SF.w_CO2_v_11 = y(4); % mass fraction CO2 in gas @ state 11
output.SF.w_H2O_v_11 = y(5); % mass fraction H2O in gas @ state 11

 output.SF.h_H2O_v_12s = interp2(P_H2O_SH, T_H2O_SH, h_H2O_SH, output.SF.P_H2O_12, ...
 output.SF.T_12s,'spline'); % enthalpy H2O in gas @ state 12s
 output.SF.s_H2O_v_12s = interp2(P_H2O_SH, T_H2O_SH, s_H2O_SH, output.SF.P_H2O_12, ...
 output.SF.T_12s,'spline'); % entropy H2O in gas @ state 12s
 output.SF.h_CO2_v_12s = interp2(P_CO2, T_CO2, h_CO2, output.SF.P_CO2_12, ...
 output.SF.T_12s,'spline'); % enthalpy CO2 in gas @ state 12s
 output.SF.s_CO2_v_12s = interp2(P_CO2, T_CO2, s_CO2, output.SF.P_CO2_12, ...
 output.SF.T_12s,'spline'); % entropy CO2 in gas @ state 12s

 output.SF.h_mix_v_12s = output.SF.h_H2O_v_12s * output.SF.w_H2O_v_11 + output.SF.h_CO2_v_12s...
 * output.SF.w_CO2_v_11; % enthalpy gas mixture @ state 12s
 output.SF.s_mix_v_12s = output.SF.s_H2O_v_12s * output.SF.w_H2O_v_11 + output.SF.s_CO2_v_12s...
 * output.SF.w_CO2_v_11; % entropy gas mixture @ state 12s

F = output.SF.s_mix_v_12s - output.SF.s_mix_v_11; % Check if isentropic compression is fulfilled.

end

%% fCalc_T_14

% Iteration of temperature to calculate outlet temperature make-up pump (14)
% Frank Niewold
% Released version 1.0, February 2017

function [F,output] = fCalc_T_14(x,y)

load T_H2O_SC; load P_H2O_SC; load rho_H2O_SC;

output.SF.T_14 = x(1); % temperature @ state 14
output.SF.rho_H2O_l_13 = y(1); % density liquid H2O @ state 13
output.SF.P_2 = y(2); % pressure @ state 2 = equal to states(3,4,8,9,14)

output.SF.rho_H2O_l_14 = interp2(P_H2O_SC, T_H2O_SC, rho_H2O_SC, output.SF.P_2, output.SF.T_14,'spline');

F = output.SF.rho_H2O_l_14 - output.SF.rho_H2O_l_13; % Check if incompressible assumption is satisfied

end

%% fCalc_h_1

% Calculation of outlet temperature evaporator/superheater
% Frank Niewold
% Released version 1.0, February 2017

function [h_1] = fCalc_h_1(x,y)

load h_C5H12_SH; load P_C5H12_SH; load T_C5H12_SH;

h_1 = x(1);
P_1 = y(1);
T_1 = y(2);

T_1_calc = interp2(h_C5H12_SH, P_C5H12_SH, T_C5H12_SH, h_1, P_1);

h_1 = T_1_calc - T_1;

end

%% fCalc_h_2s

% Calculation of enthalpy at outlet of isentropic expansion
% Frank Niewold
% Released version 1.0, February

function [h_2s] = fCalc_h_2s(x,y)

load h_C5H12_SH; load P_C5H12_SH; load s_C5H12_SH;

h_2s = x(1);
P_2 = y(1);
s_2s = y(2);

s_2s_calc = interp2(h_C5H12_SH, P_C5H12_SH, s_C5H12_SH, h_2s, P_2);

h_2s = s_2s_calc - s_2s;

end

%% fCalc_geofprops1

% Calculation of geothermal fluid properties
% Frank Niewold
% Released version 1.0, February 2017

function [geofprops] = fCalc_geofprops1(P, T, w_NaCl, w_CO2, output)

 Excel = actxGetRunningServer('Excel.Application');
 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 1);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;

 % Calculate saturated vapor temperature T_sat_v at particular pressure
 if P < 40
 T_sat_v = interp1(output.VLE.P_sat_v, output.VLE.T_sat_v, P, 'spline');
 else
 T_sat_v = 0;
 end

 if P > 40
 sheet.set('Range', 'C3', P);

132

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C11', w_CO2);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;
 elseif (P < 40) && (T < T_sat_v)
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C11', w_CO2);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;
 else
 T = T_sat_v;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C11', w_CO2);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;

 sheet2 = get(Sheets, 'Item', 2);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C2', P);
 sheet.set('Range', 'C3', T);
 sheet.set('Range', 'C5', w_CO2);
 range = sheet.get('Range', 'G3:G5');
 range.Value;
 datagas_FM = range.Value;

 end

 Conversion.comma_to_dot (1,1) = strrep(data_FM(7,1), ',', '.');
 Conversion.to_character_liq = char(Conversion.comma_to_dot(1,1));
 pattern = '\{|}';
 Conversion.to_character_liq = regexprep(Conversion.to_character_liq, pattern, '');
 Conversion.char_to_value_liq = str2num(Conversion.to_character_liq);
 Conversion.comma_to_dot (1,2) = strrep(data_FM(12,1), ',', '.');
 Conversion.to_character_gas = char(Conversion.comma_to_dot(1,2));
 pattern = '\{|}';
 Conversion.to_character_gas = regexprep(Conversion.to_character_gas, pattern, '');
 Conversion.char_to_value_gas = str2num(Conversion.to_character_gas);

 geofprops = zeros(26,1);
 geofprops(1:6,1) = cell2mat(data_FM(1:6,1));
 if isempty(Conversion.char_to_value_liq) == 1;
 geofprops(8:18,1) = zeros;
 else geofprops(8:14,1) = Conversion.char_to_value_liq;
 geofprops(15:18,1) = cell2mat(data_FM(8:11,1));
 end

 if isempty(Conversion.char_to_value_gas) == 1;
 geofprops(19:26,1) = zeros;
 else geofprops(19:22,1) = Conversion.char_to_value_gas;
 geofprops(23:25,1) = cell2mat(data_FM(13:15,1));
 geofprops(26,1) = (0.0042 * T + 1.7621)*10^-5;
 end
 % Calculate and store effective viscosity
 geofprops(7,1) = (geofprops(2,1) * geofprops(26,1)) + ((1 - geofprops(2,1)) * geofprops(18,1));
 geofprops = geofprops.';
 geofprops(1,1) = geofprops(1,1)/10^5;

 if T == T_sat_v
 geofprops_gas = cell2mat(datagas_FM(1:3,1));
 geofprops(2,1:3) = geofprops_gas.';
 end

end

%% fCalc_geofprops2

% Calculation of geothermal fluid properties
% Frank Niewold
% Released version 1.0, February 2017

function [geofprops, T_new, w_table, chi_transition] = fCalc_geofprops2(P, T, w_NaCl, w_CO2, ...
 H2O_sat, h, output, h_old, input, data)

 load T_SC; load m_SC; load SC;
 load chi_duan; load m_CO2_duan; load m_NaCl_duan; load P_sat_duan; load TP_duan
 data.T_SC = T_SC;
 data.m_SC = m_SC;
 data.SC = SC;

 % Declaration of initial variables, errors and number of iterations
 chi_transition = 1;
 dh_new = h_old - h;
 T_new = T - 0.1;
 dT_new = T - T_new;
 h_check = h + 11000;
 n_it = 1;
 n_dT = 0;

 % user-defined settings
 error_h_gp2 = input.settings.error_h_gp2;
 n_it_gp2 = input.settings.n_it_gp2;
 n_dT_gp2 = input.settings.n_dT_gp2;
 dT_gp2 = input.settings.dT_gp2;
 dT_VLE_sat_v = input.settings.dT_VLE_sat_v;

 % Set right Excel sheet
 Excel = actxGetRunningServer('Excel.Application');
 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 1);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;

 % Calculate saturated vapor temperature T_sat_v at particular pressure
 if P < 40
 T_sat_v = interp1(output.VLE.P_sat_v, output.VLE.T_sat_v, P, 'spline');
 else
 T_sat_v = 0;
 end

 % Find properties P > 40 bar (Region 1, see report documentation)
 if P > 40
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T_new);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;

 while (abs(h_check - h) > error_h_gp2) && (n_it < n_it_gp2) && (n_dT < n_dT_gp2)
 % manual programmed iterative procedure
 T = T_new;
 dh_old = dh_new;
 dT_old = dT_new;

 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;

 h_check = cell2mat(data_FM(6,1));
 dh_new = h_check - h;
 dh_step = dh_old - dh_new;
 dT_new = (dh_new/dh_step)*dT_old;
 T_new = T - dT_new;
 chi_data(n_it,1) = cell2mat(data_FM(2,1));
 n_it = n_it + 1;

B
 M

A
T

L
A

B
 C

od
e

133

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 if (abs(dT_new) > abs(dT_old)) % Check if calculation converges to a solution.
 n_dT = n_dT + 1;
 end

 if n_dT == n_dT_gp2 % If calculation did not converge to a solution.
 if h_check > h % If iterated h > energy balance h, temperature is decreased.
 while h_check > h
 T = T - dT_gp2;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;
 h_check = cell2mat(data_FM(6,1));
 end
 else
 while h_check < h % If iterated h < energy balance h, temperature is increased.
 T = T + dT_gp2;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;
 h_check = cell2mat(data_FM(6,1));
 end
 end
 end

 if n_it == n_it_gp2 % If no convergence to a solution after n_it_gp2 iterations
 chi_data_min = min(chi_data(:,1));
 chi_data_max = max(chi_data(:,1));
 chi_check = cell2mat(data_FM(2,1));
 % Check if T/P iterates between P_degas discontinuity of Francke Model
 if chi_data_min < 0.0001 && chi_data_max > 0.001
 while chi_check > 0.001
 T = T + dT_gp2;

 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;

 chi_check = cell2mat(data_FM(2,1));
 end
 elseif chi_data_min > 0.0001 && chi_data_max > 0.001
 if h_check > h
 while h_check > h
 T = T - dT_gp2;

 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;

 data_FM = range.Value;

 h_check = cell2mat(data_FM(6,1));
 end
 else
 while h_check < h
 T = T + dT_gp2;

 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;

 h_check = cell2mat(data_FM(6,1));
 end
 end
 else
 T = T; % If none of the above iterations procedures worked.

 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;
 end
 end
 end

 % Find properties (P < 40) && (T < T_sat_v - dT_VLE_sat_v) (Region 2, see report documentation)
 elseif (P < 40) && (T < T_sat_v - dT_VLE_sat_v)

 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;

 h_check = cell2mat(data_FM(6,1));

 while (h < h_check) && (T < T_sat_v - dT_VLE_sat_v)
 T = T - dT_gp2;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;

 h_check = cell2mat(data_FM(6,1));
 chi_check = cell2mat(data_FM(2,1));

 if iscellstr(data_FM(1,1)) == 1
 h_check = h + 1;
 end
 end

134

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 % Find properties (P < 40) && (T > T_sat_v - dT_VLE_sat_v) (Region 3, see report documentation)
 else
 T = T_sat_v - dT_VLE_sat_v; % T is decreased with dT to make sure Francke Model does not crash

 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 1);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;

 chi_check = cell2mat(data_FM(2,1));
 h_check = cell2mat(data_FM(6,1));

 if iscellstr(data_FM(1,1)) == 1 % Francke Model is below saturated vapor pressure
 T = T_sat_v - dT_VLE_sat_v; % T is decreased with dT, that Francke Model does not crash
 end

 if chi_check == 1 % Francke Model shows discontinuity close to saturated vapor properties.
 dT_old = dT_VLE_sat_v;
 while chi_check == 1 % Change T, until quality chi is below 1 again.
 T_old = T;

 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 1);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T_old);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C9', 0);
 sheet.set('Range', 'C10', 0);
 sheet.set('Range', 'C11', w_CO2);
 sheet.set('Range', 'C12', 0);
 sheet.set('Range', 'C13', 0);
 range = sheet.get('Range', 'I4:I19');
 range.Value;
 data_FM = range.Value;

 chi_check = cell2mat(data_FM(2,1));

 if chi_check < 1
 break
 end

 dT_VLE_sat_v = dT_old + dT_VLE_sat_v;
 T = T_sat_v - dT_VLE_sat_v;
 end
 end

 % interpolate geothermal fluid properties as saturated vapor curve
 geofprops_gas(1,1) = interp1(output.VLE.P_sat_v, output.VLE.rho_sat_v, P, 'spline');
 geofprops_gas(2,1) = interp1(output.VLE.P_sat_v, output.VLE.cp_sat_v, P, 'spline');
 geofprops_gas(3,1) = interp1(output.VLE.P_sat_v, output.VLE.h_sat_v, P, 'spline');
 geofprops_gas(4,1) = interp1(output.VLE.P_sat_v, output.VLE.T_sat_v, P, 'spline');

 geofprops_liq(1,1) = interp1(output.VLE.P_sat_v, output.VLE.rho_sat_l, P, 'spline');
 geofprops_liq(2,1) = interp1(output.VLE.P_sat_v, output.VLE.cp_sat_l, P, 'spline');
 geofprops_liq(3,1) = interp1(output.VLE.P_sat_v, output.VLE.h_sat_l, P, 'spline');
 geofprops_liq(4,1) = interp1(output.VLE.P_sat_v, output.VLE.T_sat_v, P, 'spline');
 end

 % Make input from Francke Model interpretable for MATLAB
 T_new = T;
 Conversion.comma_to_dot (1,1) = strrep(data_FM(7,1), ',', '.');
 Conversion.to_character_liq = char(Conversion.comma_to_dot(1,1));
 pattern = '\{|}';
 Conversion.to_character_liq = regexprep(Conversion.to_character_liq, pattern, '');
 Conversion.char_to_value_liq = str2num(Conversion.to_character_liq);

 Conversion.comma_to_dot (1,2) = strrep(data_FM(12,1), ',', '.');
 Conversion.to_character_gas = char(Conversion.comma_to_dot(1,2));
 pattern = '\{|}';
 Conversion.to_character_gas = regexprep(Conversion.to_character_gas, pattern, '');
 Conversion.char_to_value_gas = str2num(Conversion.to_character_gas);

 % Obtain properties from Francke Model
 geofprops = zeros(26,1);
 geofprops(1:6,1) = cell2mat(data_FM(1:6,1));
 if isempty(Conversion.char_to_value_liq) == 1;
 geofprops(8:18,1) = zeros;
 else geofprops(8:14,1) = Conversion.char_to_value_liq;
 geofprops(15:18,1) = cell2mat(data_FM(8:11,1));
 end

 if isempty(Conversion.char_to_value_gas) == 1;
 geofprops(19:26,1) = zeros;
 else geofprops(19:22,1) = Conversion.char_to_value_gas;
 geofprops(23:25,1) = cell2mat(data_FM(13:15,1));
 geofprops(26,1) = (0.0042 * T + 1.7621)*10^-5;
 end

 % Calculate and store effective viscosity
 geofprops(7,1) = (geofprops(2,1) * geofprops(26,1)) + ((1 - geofprops(2,1)) * geofprops(18,1));
 geofprops = geofprops.'; % Transpose matrix
 geofprops(1,1) = geofprops(1,1)/10^5; % Pascal to bar

 % Calculation of composition
 % x_NaCl_liq
 w_table(3,2) = geofprops(1,8);
 % x_CO2_liq
 w_table(3,3) = geofprops(1,11);
 % x_CO2_vap
 w_table(3,4) = geofprops(1,19);
 % x_H2O_liq
 w_table(3,5) = geofprops(1,14);
 % x_H2O_vap
 w_table(3,6) = geofprops(1,22);

 % geofprops
 % (1,1) degassing pressure mixture - P_degas
 % (1,2) quality - chi
 % (1,3) void fraction mixture - eps_G
 % (1,4) density mixture - rho
 % (1,5) specific heat capacity mixture - c_p
 % (1,6) specific enthalpy mixture - h
 % (1,7) viscosity mixture - mu
 % (1,8) mass fraction NaCl liquid phase - w_NaCl_l
 % (1,9) mass fraction KCl liquid phase - N.A.
 % (1,10) mass fraction CaCl2 liquid phase - N.A.
 % (1,11) mass fraction CO2 liquid phase - w_CO2_l
 % (1,12) mass fraction N2 liquid phase - N.A.
 % (1,13) mass fraction CH4 liquid phase - N.A.
 % (1,14) mass fraction H2O liquid phase - w_H2O_l
 % (1,15) density liquid phase - rho_l
 % (1,16) specific heat capacity liquid phase - c_p_l
 % (1,17) specific enthalpy liquid phase - h_l
 % (1,18) viscosity liquid phase - mu_l
 % (1,19) mass fraction CO2 gas phase - w_CO2_v
 % (1,20) mass fraction N2 gas phase - N.A.
 % (1,21) mass fraction CH4 gas phase - N.A.
 % (1,22) mass fraction H2O gas phase - w_CO2_g
 % (1,23) density gas phase - rho_v
 % (1,24) specific heat capacity gas phase - c_p_v
 % (1,25) specific enthalpy gas phase - h_v
 % (1,26) viscosity gas phase - mu_v

 if T == T_sat_v - dT_VLE_sat_v
% if geofprops(1,2) == 0;
 geofprops(1,17) = geofprops_liq(3,1);
 geofprops(1,15) = geofprops_liq(1,1);
 geofprops(1,16) = geofprops_liq(2,1);
% end
 chi_relative = (h - geofprops(1,6))/(geofprops_gas(3,1)- geofprops(1,6));
 T_sat_v = interp1(output.VLE.P_sat_v, output.VLE.T_sat_v, P, 'spline');
 T_new = T * (1-chi_relative) + (geofprops_gas(4,1) * chi_relative);
 rho_sat_l = geofprops(1,4);
 chi_transition = geofprops(1,2);

B
 M

A
T

L
A

B
 C

od
e

135

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 geofprops(1,2) = ((h - geofprops(1,6))/(geofprops_gas(3,1) - geofprops(1,6)))*(1 - ...
 geofprops(1,2)) + geofprops(1,2);
 v_spec = (1/geofprops(1,4)) * (1-chi_relative) + ((1/geofprops_gas(1,1)) * ...
 chi_relative);
 geofprops(1,4) = 1/v_spec;
 geofprops(1,5) = (geofprops(1,5)) * (1 - chi_relative) + ((geofprops_gas(2,1)) * ...
 chi_relative);
 geofprops(1,7) = (geofprops(1,7)) * (1 - chi_relative) + ((geofprops(1,26)) * chi_relative);
 geofprops(1,3) = (rho_sat_l - geofprops(1,4))/(rho_sat_l - geofprops_gas(1,1))*...
 (1-geofprops(1,3)) + geofprops(1,3);
 geofprops(2,1:4) = geofprops_gas.';
 geofprops(1,23) = geofprops(2,1); %rho_vap
 geofprops(1,26) = (0.0042 * T + 1.7621)*10^-5; %mu_vap

 % load m_SC.mat; load T_SC.mat; load SC.mat;
 % Calculate mass fraction in liquid and vapor phase with separation coefficient
 w_table = zeros(1);
 % w_CO2_v
 SC = interp2(data.T_SC, data.m_SC, data.SC, T_new, input.general.m_NaCl);
 SC = 10^SC;
 w_CO2_rel = SC / (((1/geofprops(1,2)) - 1) + SC);
 w_CO2_v = (w_CO2_rel * w_CO2)/geofprops(1,2);
 w_table(3,4) = w_CO2_v;
 % w_H2O_v
 w_H2O_v = 1 - w_CO2_v;
 w_table(3,6) = w_H2O_v;
 % w_NaCl_l
 w_NaCl_l = w_NaCl / (1 - (geofprops(1,2) * (1 - w_NaCl)));
 w_table(3,2) = w_NaCl_l;
 % w_CO2_l
 w_CO2_l = (w_CO2 - (w_CO2_v * geofprops(1,2)))/(1-geofprops(1,2));
 w_table(3,3) = w_CO2_l;
 % w_H2O_l
 w_H2O_l = 1 - w_CO2_l - w_NaCl_l;
 w_table(3,5) = w_H2O_l;

 end

end

%% fCalc_geofprops3

% Calculation of geothermal fluid properties between P_degas of Duan and
% Sun (2003) and Francke (2014)
% Frank Niewold
% Released version 1.0, February 2017

function [T_new, rho_m, c_p_m, mu_m, eps_G, rho_g, rho_l, mu_g, mu_l] = fCalc_geofprops3(P, T, ~, ...
 w_NaCl_l, w_CO2_g, h, chi, h_old, input, T_old,l,T_int)

 Excel = actxGetRunningServer('Excel.Application');
 Sheets = Excel.ActiveWorkBook.Sheets;

 % Declaration of initial variables, errors and number of iterations
 T_initial = T;
 dh_new = h_old - h;
 T_new = T - 0.2;
 dT_new = T - T_new;
 h_m = h + 2;
 n_it = 1;
 n_dT = 0;

 error_h_gp3 = input.settings.error_h_gp3;
 n_it_gp3 = input.settings.n_it_gp3;
 n_dT_gp3 = input.settings.n_dT_gp3;
 dT_gp3 = input.settings.dT_gp3;

 % Start iterative procedure
 while (abs(h_m - h) > error_h_gp3) && (n_it < n_it_gp3) && (n_dT < n_dT_gp3)
 T = T_new;
 dh_old = dh_new;
 dT_old = dT_new;

 % gas phase properties
 sheet2 = get(Sheets, 'Item', 2);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C2', P);

 sheet.set('Range', 'C3', T);
 sheet.set('Range', 'C5', w_CO2_g);
 sheet.set('Range', 'C6', 0);
 sheet.set('Range', 'C7', 0);
 range = sheet.get('Range', 'G3:G5');
 range.Value;
 datagas_FM = range.Value;
 h_g = cell2mat(datagas_FM(3,1));

 % liquid phase properties
 sheet2 = get(Sheets, 'Item', 3);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C6', w_NaCl_l);
 sheet.set('Range', 'C7', 0);
 sheet.set('Range', 'C8', 0);
 range = sheet.get('Range', 'G4:G7');
 range.Value;
 data_FM = range.Value;
 h_l = cell2mat(data_FM(3,1));

 % mixture properties
 h_m = h_g * chi + h_l * (1 - chi);
 dh_new = h_m - h;
 dh_step = dh_old - dh_new;
 dT_new = (dh_new/dh_step)*dT_old;
 T_new = T - dT_new;
 chi_data(n_it,1) = cell2mat(data_FM(2,1));
 n_it = n_it + 1;

 if (abs(dT_new) > abs(dT_old)) % Check if calculation converges to a solution
 n_dT = n_dT + 1;
 end

 if n_dT == 2 % If calculation did not converge to a solution
 if h_m > h % If iterated mixture h > h from energy balance, temperature is decreased.
 while h_m > h
 T = T - dT_gp3;

 % gas phase properties
 sheet2 = get(Sheets, 'Item', 2);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C2', P);
 sheet.set('Range', 'C3', T);
 sheet.set('Range', 'C5', w_CO2_g);
 sheet.set('Range', 'C6', 0);
 sheet.set('Range', 'C7', 0);
 range = sheet.get('Range', 'G3:G5');
 range.Value;
 datagas_FM = range.Value;
 h_g = cell2mat(datagas_FM(3,1));

 % liquid phase properties
 sheet2 = get(Sheets, 'Item', 3);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C6', w_NaCl_l);
 sheet.set('Range', 'C7', 0);
 sheet.set('Range', 'C8', 0);
 range = sheet.get('Range', 'G4:G7');
 range.Value;
 data_FM = range.Value;
 h_l = cell2mat(data_FM(3,1));

 % mixture properties
 h_m = h_g * chi + h_l * (1-chi);
 end
 else
 while h_m < h % If iterated mixture h < energy balance h, temperature is increased.
 T = T + dT_gp3;

 % gas phase properties
 sheet2 = get(Sheets, 'Item', 2);
 invoke(sheet2, 'Activate');

136

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 sheet = Excel.Activesheet;
 sheet.set('Range', 'C2', P);
 sheet.set('Range', 'C3', T);
 sheet.set('Range', 'C5', w_CO2_g);
 sheet.set('Range', 'C6', 0);
 sheet.set('Range', 'C7', 0);
 range = sheet.get('Range', 'G3:G5');
 range.Value;
 datagas_FM = range.Value;
 h_g = cell2mat(datagas_FM(3,1));

 % liquid phase properties
 sheet2 = get(Sheets, 'Item', 3);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C6', w_NaCl_l);
 sheet.set('Range', 'C7', 0);
 sheet.set('Range', 'C8', 0);
 range = sheet.get('Range', 'G4:G7');
 range.Value;
 data_FM = range.Value;
 h_l = cell2mat(data_FM(3,1));

 % mixture properties
 h_m = h_g * chi + h_l * (1-chi);
 end
 end
 end
 if n_it == n_it_gp3 % If calculation did not converge to a solution after n_it_gp3 iterations
 if h_m > h % If iterated mixture h > h from energy balance, temperature is decreased.
 while h_m > h
 T = T - dT_gp3;
 sheet2 = get(Sheets, 'Item', 2);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C2', P);
 sheet.set('Range', 'C3', T);
 sheet.set('Range', 'C5', w_CO2_g);
 sheet.set('Range', 'C6', 0);
 sheet.set('Range', 'C7', 0);
 range = sheet.get('Range', 'G3:G5');
 range.Value;
 datagas_FM = range.Value;
 h_g = cell2mat(datagas_FM(3,1));

 sheet2 = get(Sheets, 'Item', 3);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C6', w_NaCl_l);
 sheet.set('Range', 'C7', 0);
 sheet.set('Range', 'C8', 0);
 range = sheet.get('Range', 'G4:G7');
 range.Value;
 data_FM = range.Value;
 h_l = cell2mat(data_FM(3,1));

 h_m = h_g * chi + h_l * (1-chi);
 end
 else
 while h_m < h % If iterated mixture h < energy balance h, temperature is increased.
 T = T + dT_gp3;
 sheet2 = get(Sheets, 'Item', 2);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C2', P);
 sheet.set('Range', 'C3', T);
 sheet.set('Range', 'C5', w_CO2_g);
 sheet.set('Range', 'C6', 0);
 sheet.set('Range', 'C7', 0);
 range = sheet.get('Range', 'G3:G5');
 range.Value;
 datagas_FM = range.Value;
 h_g = cell2mat(datagas_FM(3,1));

 sheet2 = get(Sheets, 'Item', 3);

 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C6', w_NaCl_l);
 sheet.set('Range', 'C7', 0);
 sheet.set('Range', 'C8', 0);
 range = sheet.get('Range', 'G4:G7');
 range.Value;
 data_FM = range.Value;
 h_l = cell2mat(data_FM(3,1));

 h_m = h_g * chi + h_l * (1-chi);
 end
 end
 else
 T = T; % If none of the above iterations procedures worked.

 % gas phase properties
 sheet2 = get(Sheets, 'Item', 2);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C2', P);
 sheet.set('Range', 'C3', T);
 sheet.set('Range', 'C5', w_CO2_g);
 sheet.set('Range', 'C6', 0);
 sheet.set('Range', 'C7', 0);
 range = sheet.get('Range', 'G3:G5');
 range.Value;
 datagas_FM = range.Value;
 h_g = cell2mat(datagas_FM(3,1));

 % liquid phase properties
 sheet2 = get(Sheets, 'Item', 3);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C6', w_NaCl_l);
 sheet.set('Range', 'C7', 0);
 sheet.set('Range', 'C8', 0);
 range = sheet.get('Range', 'G4:G7');
 range.Value;
 data_FM = range.Value;
 h_l = cell2mat(data_FM(3,1));

 % mixture properties
 h_m = h_g * chi + h_l * (1-chi);
 end
 end

 rho_g = cell2mat(datagas_FM(1,1)); % density gas phase [kg/m3]
 c_p_g = cell2mat(datagas_FM(2,1)); % heat capacity gas phase [J/kg/K]
 mu_g = (0.0042 * T + 1.7621)*10^-5; % viscosity gas phase [Pa*s]

 rho_l = cell2mat(data_FM(1,1)); % density liquid phase [kg/m3]
 c_p_l = cell2mat(data_FM(2,1)); % heat capacity liquid phase [J/kg/K]
 mu_l = cell2mat(data_FM(4,1)); % viscosity liquid phase [Pa*s]

 T_new = T; % Calculated temperature [C]
 rho_m = 1/((1/rho_g) * chi + (1/rho_l) * (1-chi)); % density mixture [kg/m3]
 c_p_m = c_p_g * chi + c_p_l * (1-chi); % heat capacity mixture [J/kg/K]
 mu_m = mu_g * chi + mu_l * (1-chi); % viscosity mixture [Pa*s]
 eps_G = (chi/rho_g)/((chi/rho_g)+((1-chi)/rho_l)); % void fraction homogeneous flow [-]

 if T_initial - T_new < T_old - T_initial
 if l < 10
 T_new = T_initial - (T_old - T_initial);
 else
 T_new = T_int;
 end
 % gas phase properties
 sheet2 = get(Sheets, 'Item', 2);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C2', P);
 sheet.set('Range', 'C3', T_new);
 sheet.set('Range', 'C5', w_CO2_g);
 sheet.set('Range', 'C6', 0);

B
 M

A
T

L
A

B
 C

od
e

137

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 sheet.set('Range', 'C7', 0);
 range = sheet.get('Range', 'G3:G5');
 range.Value;
 datagas_FM = range.Value;
 h_g = cell2mat(datagas_FM(3,1));

 % liquid phase properties
 sheet2 = get(Sheets, 'Item', 3);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T_new);
 sheet.set('Range', 'C6', w_NaCl_l);
 sheet.set('Range', 'C7', 0);
 sheet.set('Range', 'C8', 0);
 range = sheet.get('Range', 'G4:G7');
 range.Value;
 data_FM = range.Value;
 h_l = cell2mat(data_FM(3,1));

 % mixture properties
 h_m = h_g * chi + h_l * (1-chi);

 rho_g = cell2mat(datagas_FM(1,1)); % density gas phase [kg/m3]
 c_p_g = cell2mat(datagas_FM(2,1)); % heat capacity gas phase [J/kg/K]
 mu_g = (0.0042 * T + 1.7621)*10^-5; % viscosity gas phase [Pa*s]

 rho_l = cell2mat(data_FM(1,1)); % density liquid phase [kg/m3]
 c_p_l = cell2mat(data_FM(2,1)); % heat capacity liquid phase [J/kg/K]
 mu_l = cell2mat(data_FM(4,1)); % viscosity liquid phase [Pa*s]

 rho_m = 1/((1/rho_g) * chi + (1/rho_l) * (1-chi)); % density mixture [kg/m3]
 c_p_m = c_p_g * chi + c_p_l * (1-chi); % heat capacity mixture [J/kg/K]
 mu_m = mu_g * chi + mu_l * (1-chi); % viscosity mixture [Pa*s]
 eps_G = (chi/rho_g)/((chi/rho_g)+((1-chi)/rho_l)); % void fraction homogeneous flow [-]
 end
end

%% fCalc_geofprops4

% Calculation of geothermal fluid properties
% Frank Niewold
% Released version 1.0, February 2017

function [geofprops] = fCalc_geofprops4(P, T, w_NaCl, w_CO2)

 Excel = actxGetRunningServer('Excel.Application');
 Sheets = Excel.ActiveWorkBook.Sheets;
 sheet2 = get(Sheets, 'Item', 1);
 invoke(sheet2, 'Activate');
 sheet = Excel.Activesheet;
 sheet.set('Range', 'C3', P);
 sheet.set('Range', 'C4', T);
 sheet.set('Range', 'C8', w_NaCl);
 sheet.set('Range', 'C11', w_CO2);
 range = sheet.get('Range', 'D8:D13');
 range2 = sheet.get('Range', 'I4:I18');
 range.Value;
 range2.Value;
 data_FM = range.Value;
 data2_FM = range2.Value;

 geofprops(1,1) = cell2mat(data_FM(1,1));
 geofprops(2,1) = cell2mat(data_FM(4,1));
 geofprops(1:6,2) = cell2mat(data2_FM(1:6,1));
 geofprops(8:11,2) = cell2mat(data2_FM(8:11,1));

end

%% fCalc_eps_G

% Calculation of the void fraction in the wellbore
% Frank Niewold
% Released version 1.0, February 2017

function [eps_G, FP, u_gu, C_0] = fCalc_eps_G(T, rho_l, rho_g, mu_l, mu_g, l_E, D_i, eps_pipe, ...
 u_sg, u_sl, g, chi, DF_model)

 options = optimset('Display','off');

 % General variables
 T = T + 273.15; % temperature [K]
 sigma = 0.2358 * ((1 - (T/647.096))^1.256) * (1 - 0.625 * (1 - (T/647.096)));
 % surface tension water [kg/m2]
 mu_kin = mu_l/rho_l; % kinematic viscosity [m2/s]
 mu_m = chi * mu_g + (1-chi) * mu_l; % viscosity of mixture [Pa*s]
 u_m = u_sl + u_sg; % mixture velocity [m/s]

 if DF_model == 1; % Homogeneous model
 % None of the drift-flux models are applied

 %% Rouhani & Axelsson (1970)
 elseif DF_model == 2;

 C_0 = 1.1; % Distribution parameter
 %C_0 = 1.0 + 0.2*(1-chi); % Distribution parameter
 u_gu = 1.18 *(g *sigma*(rho_l-rho_g)/(rho_l^2))^0.25; % drift-flux velocity [m/s]
 eps_G = u_sg / (C_0 * u_m + u_gu); % void fraction [-]
 %% Hasan & Kabir (2010)
 elseif DF_model == 3;

 % Distribution parameters
 C_0b = 1.2;
 C_0s = 1.2;
 C_0c = 1.15;
 C_0cdb = 1.15;
 C_0a = 1.0;

 u_b = 1.53 * (g*(rho_l-rho_g)*sigma/(rho_l^2))^0.25; % small bubble rise velocity [m/s]
 u_T = 0.35 * (g*D_i*(rho_l-rho_g)/rho_l)^0.5; % Taylor bubble rise velocity [m/s]
 u_m = u_sl + u_sg; % mixture velocity [m/s]

 % Check bubble pattern
 C_0 = C_0b; % distribution parameter [-]
 u_gu = u_b; % drift-flux velocity [m/s]
 eps_G = u_sg / (C_0*u_m + u_gu); % void fraction [-]

 rho_m = eps_G * rho_g + (1-eps_G)* rho_l; % density mixture [kg/m3]
 Re_m = rho_m * u_m * D_i / mu_m; % Reynolds number mixture [-]
 f_DW = 0.25/(log10((eps_pipe/D_i/3.7065)-((5.0452/Re_m)*log10(((1/2.8257)*...
 (eps_pipe/D_i)^1.1098)+(5.8506/Re_m^0.8981))))^2);
 % friction factor [-] (Hasan and Kabir, 2010)
 %f_DW = 0.046*Re_m^-0.2; % friction factor (Taitel et al., 1980)
 u_ms = ((0.725 + 4.15*(u_sl/u_m)^0.5)/((((f_DW/2/D_i)^0.4)*((rho_l/sigma)^0.6)*...
 (((0.4*sigma)/(g*(rho_l-rho_g)))^0.5)*2)))^(1/1.2);
 % minimum mixture velocity for dispersed bubble flow (Hasan and Kabir, 2010)
 u_ms_taitel = 4 *(D_i^0.429*(sigma/rho_l)^0.089/mu_kin^0.072)*((g*(rho_l-rho_g)/rho_l)^0.446);
 % minimum mixture velocity for dispersed bubble flow (Taitel et al., 1980)
 u_gc = 3.1 * (g*sigma*(rho_l-rho_g)/(rho_g)^2)^0.25;
 % superficial gas velocity for transition to annular flow
 if eps_G < 0.25 && (u_sg < u_gc) % bubble or dispersed bubble flow
 if (u_m > u_ms) && (u_sg < u_gc) % dispersed bubble flow
 C_0 = C_0cdb; % distribution parameter
 %C_0 = 1 + 0.2*(1-chi); % Rouhani & Axelsson (1970)
 eps_G = u_sg / (C_0 * (u_m) + u_gu); % void fraction [-]
 FP = 'dispersed bubble';
 elseif (u_sg < u_gc) % bubble flow
 FP = 'bubble';
 end
 else % dispersed bubble, slug, churn or annular flow
 % iterative procedure
 u_gb = u_sg - 0.1; % initial value
 x0 = u_gb; % iteration variable
 y0 = [u_b, u_sg, u_T, C_0b, C_0s, u_sl]; % iteration constants
 f = @(x0)fCalc_u_gb(x0,y0);
 u_gb = fsolve(f,x0,options); % transition from bubble to slug flow
 C_0 = C_0b*(1-exp(-0.1*u_gb/(u_sg-u_gb))) + C_0s*(exp(-0.1*u_gb/(u_sg-u_gb)));
 % distribution parameter transtion from bubble to slug flow
 u_gu = u_b * (1-exp(-0.1*u_gb/(u_sg-u_gb))) + u_T *(exp(-0.1*u_gb/(u_sg-u_gb)));
 % drift-flux velocity transition from bubble to slug flow
 %C_0_B = 1 + 0.2*(1-chi); % Rouhani & Axelsson (1970)
 %C_0 = min(C_0_A,C_0_B);
 %C_0 = 1.1;
 eps_G = u_sg / (C_0 * u_m + u_gu); % void fraction slug flow [-]
 rho_m = eps_G * rho_g + (1-eps_G)* rho_l; % density mixture [kg/m3]
 Re_m = rho_m * u_m * D_i / mu_m; % Reynolds number mixture [-]

138

B
 M

A
T

L
A

B
 C

O
D

E

F
.W

.J. N
iew

o
ld

M

aster of S
cience T

h
esis

 f_DW = 0.25/(log10((eps_pipe/D_i/3.7065)-((5.0452/Re_m)*log10(((1/2.8257)*...
 (eps_pipe/D_i)^1.1098)+(5.8506/Re_m^0.8981))))^2);
 % friction factor [-] (Hasan and Kabir, 2010)
 % f_DW = 0.046*Re_m^-0.2; % friction factor (Taitel et al., 1980)
 u_ms = ((0.725 + 4.15*(u_sl/u_m)^0.5)/((((f_DW/2/D_i)^0.4)*((rho_l/sigma)^0.6)*...
 (((0.4*sigma)/(g*(rho_l-rho_g)))^0.5)*2)))^(1/1.2);
 % minimum mixture velocity for dispersed bubble flow (Hasan and Kabir, 2010)
 u_ms_taitel = 4 * (D_i^0.429*(sigma/rho_l)^0.089/mu_kin^0.072)*((g*...
 (rho_l-rho_g)/rho_l)^0.446);
 % minimum mixture velocity for dispersed bubble flow (Taitel et al., 1980)

 %u_gc = 3.1 * (g*sigma*(rho_l-rho_g)/(rho_g)^2)^0.25;
 u_gc = 2.0 * (g*sigma*(rho_l-rho_g)/(rho_g)^2)^0.25;
 % superficial gas velocity for transition to annular flow
 % u_mc = ((0.725 + 4.15*(u_sl/u_m)^0.5)/((((f_DW/2/D_i)^0.4)*...
 % ((rho_l/sigma)^0.6)*(((0.4*sigma)/(g*(rho_l-rho_g)))^0.5)*2)))^(1/1.2);
 % mixture velocity for transition from slug to churn flow (Hasan and Kabir, 2010)
 u_mc = (l_E/D_i/40.6 - 0.22) * (g*D_i)^0.5;
 % mixture velocity for transition from slug to churn flow (Taitel et al, 1980)
 if (u_m > u_mc) && (u_sg > 1.08*u_sl) && (u_sg < u_gc)% churn flow
 C_0 = C_0s*(1-exp(-0.1*u_mc/(u_m-u_mc))) + C_0c*(exp(-0.1*u_mc/(u_m-u_mc)));
 % distribution parameter for transition from slug to churn flow
 % iterative procedure
 u_gb = u_sg - 0.1; % intial value
 x0 = u_gb; % iteration variable
 y0 = [u_b, u_sg, u_T, C_0, u_sl, 1]; % iteration constants
 f = @(x0)fCalc_u_gb(x0,y0);
 u_gb = fsolve(f,x0,options);
 u_gu = u_b * (1-exp(-0.1*u_gb/(u_sg-u_gb))) + u_T *(exp(-0.1*u_gb/(u_sg-u_gb)));
 % drift-flux velocity for transition from slug to churn
 eps_G = u_sg / (C_0*u_m+u_gu); % void fraction for transition from slug to churn
 FP = 'churn';
 elseif (u_m > u_mc) && (u_m < u_ms) && (u_sg < u_gc) % churn flow
 C_0 = C_0s*(1-exp(-0.1*u_mc/(u_m-u_mc))) + C_0c*(exp(-0.1*u_mc/(u_m-u_mc)));
 % distribution parameter for transition from slug to churn flow
 % iterative procedure
 u_gb = u_sg - 0.1; % intial value
 x0 = u_gb; % iteration variable
 y0 = [u_b, u_sg, u_T, C_0, u_sl, 1]; % iteration constants
 f = @(x0)fCalc_u_gb(x0,y0);
 u_g = fsolve(f,x0,options);
 u_gu = u_b * (1-exp(-0.1*u_gb/(u_sg-u_gb))) + u_T *(exp(-0.1*u_gb/(u_sg-u_gb)));
 % drift-flux velocity for transition from slug to churn
 eps_G = u_sg / (C_0*u_m+u_gu); % void fraction for transition from slug to churn
 FP = 'churn';
 elseif (u_m > u_ms) && (u_sg < 1.08*u_sl) && (u_sg < u_gc)% dispersed bubble flow
 C_0 = C_0cdb;
 % C_0 = 1 + 0.2*(1-chi);
 % C_0 = 1.1;
 u_gu = u_b;
 eps_G = u_sg / (C_0 * u_m + u_gu);
 FP = 'dispersed bubble';
 elseif (u_sg < u_gc) % slug flow
 FP = 'slug';
 elseif (u_sg > u_gc) || eps_G >= 0.7
 C_0 = C_0c*(1-exp(-0.1*u_gc/(u_sg-u_gc))) + C_0a*(exp(-0.1*u_gc/(u_sg-u_gc)));
 % distribution parameter for transition from churn to annular flow (Hasan & Kabir, 2010)
 %C_0_B = 1 + 0.2*(1-chi); % Rouhani & Axelsson (1970)
 %C_0 = C_0_B;
 %C_0 = 1.1;
 %u_gu = u_T * (1-exp(-1*(u_gc)/(u_sg-(u_gc))));
 eps_G = u_sg / (C_0 * u_m); % void fraction annular flow
 FP = 'annular';
 end
% if eps_G >= 0.7
% C_0 = C_0c*(1-exp(-0.1*u_gc/(u_sg-u_gc))) + C_0a*(exp(-0.1*u_gc/(u_sg-u_gc)));
% eps_G = u_sg / (C_0 * u_m); % void fraction annular flow
% FP = 'annular';
% end
 end
 %% Dix (1971)
 elseif DF_model == 4;

 C_0 = (u_sg/u_m) * (1 + ((u_sl/u_sg)^((rho_g/rho_l)^0.1))); % Distribution parameter
 u_gu = 2.9 *(g *sigma*(rho_l-rho_g)/(rho_l^2))^0.25; % drift-flux velocity [m/s]
 eps_G = u_sg / (C_0 * u_m + u_gu); % void fraction [-]

 %% Nicklin (1965)
 elseif DF_model == 5

 C_0 = 1.2; % Distribution parameter
 u_gu = 0.35 * (g * D_i)^0.5; % drift-flux velocity [m/s]
 eps_G = u_sg / (C_0 * u_m + u_gu); % void fraction [-]

 %% Toshiba (1989)
 elseif DF_model == 6

 C_0 = 1.08; % Distribution parameter
 u_gu = 0.45; % drift-flux velocity [m/s]
 eps_G = u_sg / (C_0 * u_m + u_gu); % void fraction [-]

 end

 %% check flow pattern for drift-flux models other than Hasan and Kabir (2010)
 if DF_model == 2 || DF_model > 3

 % Check bubble pattern
 rho_m = eps_G * rho_g + (1-eps_G) * rho_l; % density mixture [kg/m3]
 Re_m = rho_m * u_m * D_i / mu_m; % Reynolds number mixture [-]
 f_DW = 0.25/(log10((eps_pipe/D_i/3.7065)-((5.0452/Re_m)*log10(((1/2.8257)*...
 (eps_pipe/D_i)^1.1098)+(5.8506/Re_m^0.8981))))^2);
 % friction factor [-] (Hasan and Kabir, 2010)
 % f_DW = 0.046*Re_m^-0.2; % friction factor (Taitel et al., 1980)
 u_ms = ((0.725 + 4.15*(u_sl/u_m)^0.5)/((((f_DW/2/D_i)^0.4)*((rho_l/sigma)^0.6)*...
 (((0.4*sigma)/(g*(rho_l-rho_g)))^0.5)*2)))^(1/1.2);
 % minimum mixture velocity for dispersed bubble flow (Hasan and Kabir, 2010)
 % u_ms = 4 * (D_i^0.429*(sigma/rho_l)^0.089/mu_kin^0.072)*((g*(rho_l-rho_g)/rho_l)^0.446);
 % minimum mixture velocity for dispersed bubble flow (Taitel et al., 1980)
 u_gc = 3.1 * (g*sigma*(rho_l-rho_g)/(rho_g)^2)^0.25;
 % superficial gas velocity for transition to annular flow
 if eps_G < 0.25 && (u_sg < u_gc) % bubble or dispersed flow
 if (u_m > u_ms) && (u_sg < u_gc)
 FP = 'dispersed bubble';
 elseif (u_sg < u_gc)
 FP = 'bubble';
 end
 else % dispersed bubble, slug, churn or annular flow
 % u_mc = ((0.725 + 4.15*(u_sl/u_m)^0.5)/((((f_DW/2/D_i)^0.4)*((rho_l/sigma)^0.6)*...
 % (((0.4*sigma)/(g*(rho_l-rho_g)))^0.5)*2)))^(1/1.2);
 % mixture velocity for transition from slug to churn flow (Hasan and Kabir, 2010)
 u_mc = (l_E/D_i/40.6 - 0.22) * (g * D_i)^0.5;
 % mixture velocity for transition from slug to churn flow (Taitel et al, 1980)
 if (u_m > u_mc) && (u_sg > 1.08*u_sl) && (u_sg < u_gc)
 FP = 'churn';
 elseif (u_m > u_mc) && (u_m < u_ms) && (u_sg < u_gc) % churn
 FP = 'churn';
 elseif (u_m > u_ms) && (u_sg < 1.08*u_sl) && (u_sg < u_gc) % dispersed bubble
 FP = 'dispersed bubble';
 elseif (u_sg < u_gc)
 FP = 'slug';
 elseif (u_sg > u_gc)
 FP = 'annular';
 else
 FP = 'annular';
 end
 end
 end

end

%% fCalc_u_gb

% Calculation of velocity neededd for transition from bubbly to slug flow
% Frank Niewold
% Released version 1.0, February 2017

function [F] = fCalc_u_gb(x,y)

 %% transition from slug to churn flow
 if y(6) == 1

 u_gb_it = x(1);
 u_b = y(1);
 u_sg = y(2);
 u_T = y(3);
 C_0 = y(4);
 u_sl = y(5);

B
 M

A
T

L
A

B
 C

od
e

139

M
aster of S

cience T
h

esis
F

.W
.J. N

iew
o

ld

 u_gu = u_b * (1-exp(-0.1*u_gb_it/(u_sg-u_gb_it))) + u_T *(exp(-0.1*u_gb_it/(u_sg-u_gb_it)));
 u_gb = (C_0*u_sl+u_gu) / (4-C_0);
 F = u_gb - u_gb_it;

 %% transition from bubble to slug flow
 else

 u_gb_it = x(1);
 u_b = y(1);
 u_sg = y(2);
 u_T = y(3);
 C_0b = y(4);
 C_0s = y(5);
 u_sl = y(6);

 u_gu = u_b * (1-exp(-0.1*u_gb_it/(u_sg-u_gb_it))) + u_T *(exp(-0.1*u_gb_it/(u_sg-u_gb_it)));
 C_0 = C_0b*(1-exp(-0.1*u_gb_it/(u_sg-u_gb_it))) + C_0s*(exp(-0.1*u_gb_it/(u_sg-u_gb_it)));
 u_gb = (C_0*u_sl+u_gu) / (4-C_0);
 F = u_gb - u_gb_it;
 end
end

%% fCalc_u_ms

% Calculation of the minimum mixture velocity
% Frank Niewold
% Released version 1.0, February 2017

function [F] = fCalc_u_ms(x,y)
 %% script drift-flux_model
 if y(13) == 1

 u_sl = x(1);
 f_DW = y(1);
 D_i = y(2);
 rho_l = y(3);
 sigma = y(4);
 g = y(5);
 rho_g = y(6);
 u_sg = y(7);
 mu_g = y(8);
 mu_l = y(9);
 C_0b = y(10);
 u_b = y(11);
 eps_pipe = y(12);

 u_m = u_sl + u_sg;
 eps_G = u_sg / (C_0b*u_m + u_b);
 chi = (u_sg*pi*(D_i/2)^2*rho_g) / ((u_sg*pi*(D_i/2)^2*rho_g) + (u_sl*pi*(D_i/2)^2*rho_l));
 mu_m = chi * mu_g + (1-chi) * mu_l;
 rho_m = eps_G * rho_g + (1-eps_G)* rho_l;
 Re_m = rho_m * u_m * D_i / mu_l;

 % Hasan & Kabir (2010)
 f_DW = 0.25/(log10((eps_pipe/D_i/3.7065)-((5.0452/Re_m)*log10(((1/2.8257)*(eps_pipe/D_i)...
 ^1.1098)+(5.8506/Re_m^0.8981))))^2);
 u_ms = ((0.725 + 4.15*(u_sl/u_m)^0.5)/((((f_DW/2/D_i)^0.4)*((rho_l/sigma)^0.6)*...
 (((0.4*sigma)/(g*(rho_l-rho_g)))^0.5)*2)))^(1/1.2);
 F = u_m - u_ms;

 %% function fCalc_eps_G
 else

 u_ms_it = x(1);
 u_sl = y(1);
 f_DW = y(2);
 D_i = y(3);
 rho_l = y(4);
 sigma = y(5);
 g = y(6);
 rho_g = y(7);

 u_ms = ((0.725 + 4.15*(u_sl/u_ms_it)^0.5)/((((f_DW/2/D_i)^0.4)*((rho_l/sigma)^0.6)*...
 (((0.4*sigma)/(g*(rho_l-rho_g)))^0.5)*2)))^(1/1.2);
 F = u_ms - u_ms_it;

 end

end

%% fCalc_u_mc

% Calculation of superficial gas velocity corresponding to eps_G = 0.25
% Frank Niewold
% Released version 1.0, December 2016

function [F] = fCalc_u_mc(x,y)
 if y(5) == 1
 u_sg = x(1);
 l = y(1);
 g = y(2);
 D_i = y(3);
 u_sl = y(4);

 u_m = u_sg + u_sl;
 u_mc = (l/40.6 - 0.22) * (g*D_i)^0.5; % Taitel et al. (1980)
 F = u_m - u_mc;

 else

 u_gb_it = x(1);
 u_sg = x(2);
 u_b = y(1);
 u_T = y(2);
 C_0b = y(3);
 C_0s = y(4);
 u_sl = y(5);
 D_i = y(6);
 rho_g = y(7);
 rho_l = y(8);
 mu_l = y(9);
 eps_pipe= y(10);
 g = y(11);
 sigma = y(12);
 mu_g = y(13);

 u_gu = u_b * (1-exp(-0.1*u_gb_it/(u_sg-u_gb_it))) + u_T *(exp(-0.1*u_gb_it/(u_sg-u_gb_it)));
 C_0 = C_0b*(1-exp(-0.1*u_gb_it/(u_sg-u_gb_it))) + C_0s*(exp(-0.1*u_gb_it/(u_sg-u_gb_it)));
 u_gb = (C_0*u_sl+u_gu) / (4-C_0);
 u_m = u_sg + u_sl;
 % C_0_B = 1 + 0.2*(1-x); % Rouhani & Axelsson (1970)
 % C_0(i,j) = min(C_0_A,C_0_B);
 eps_G = u_sg / (C_0*(u_m) + u_gu);
 rho_m = eps_G * rho_g + (1-eps_G)* rho_l;
 chi = (u_sg*pi*(D_i/2)^2*rho_g) / ((u_sg*pi*(D_i/2)^2*rho_g) + (u_sl*pi*(D_i/2)^2*rho_l));
 mu_m = chi * mu_g + (1-chi) * mu_l;
 Re_m = rho_m * u_m * D_i / mu_m;
 f_DW = 0.25/(log10((eps_pipe/D_i/3.7065)-((5.0452/Re_m)*log10(((1/2.8257)*...
 (eps_pipe/D_i)^1.1098)+(5.8506/Re_m^0.8981))))^2);
 u_mc = ((0.725 + 4.15*(u_sl/u_m)^0.5)/((((f_DW/2/D_i)^0.4)*((rho_l/sigma)^...
 0.6)*(((0.4*sigma)/(g*(rho_l-rho_g)))^0.5)*2)))^(1/1.2); % Hasan and Kabir (2010)

 F(1) = u_gb_it - u_gb;
 F(2) = u_m - u_mc;

 end
end

141

C
MODELING COMPONENTS

C.1. Model Input - MS Excel Interface

Figure C.1: MS Excel interface for user-defined model input. Sheet Input_general. In this sheet the general input
variables for the sub models are entered.

Figure C.2: MS Excel interface for user-defined model input. Sheet dim_prodwell_SF. In this sheet the dimensions for
the production well for a single-flash power plant are entered.

142 C MODELING COMPONENTS

F.W.J. Niewold Master of Science Thesis

Figure C.3: MS Excel interface for user-defined model input. Sheet dim_injwell. In this sheet the dimension for the
injection well are entered.

C.2. Interface GFP Excel Model

Figure C.4. MS Excel interface of the thermodynamic model for two-phase flow from Heineken (2016).

Figure C.5: MS Excel interface of the thermodynamic model for the gas phase from Heineken (2016).

C.3. DEGASSING PRESSURES OF DUAN AND SUN (2003) 143

Master of Science Thesis F.W.J. Niewold

Figure C.6: MS Excel interface of the thermodynamic model for the liquid phase from Heineken (2016).

C.3. Degassing Pressures of Duan and Sun (2003)

Figure C.7: Degassing pressures as a function of
temperature for various NaCl molalities and ݉஼ைଶ = 0
mol kg-1 (Duan and Sun, 2003).

Figure C.8: Degassing pressures as a function of
temperature for various NaCl molalities and ݉஼ைଶ = 0.5
mol kg-1 (Duan and Sun, 2003).

Figure C.9: Degassing pressures as function of
temperature for various NaCl molalities and ݉஼ைଶ = 1.0
mol kg-1 (Duan and Sun, 2003).

Figure C.10: Degassing pressures as function of
temperature for various NaCl molalities and ݉஼ைଶ = 1.5
mol kg-1 (Duan and Sun, 2003).

145

D
ADDITIONAL CALCULATIONS

D.1. Single-Flash Power Plant Model
The numbers in the equations in the present section correspond to the numbers in Figure 2.21 and Figure
2.24.

Cyclone separator:

The calculation starts with the cyclone separator (CS) with input from the top of the production well model.
It invokes fCalc_geofprops2 to calculate the relevant gas and liquid properties of state 3 and 4. Isenthalpic
flashing is assumed (eq. (2.53)).

The GFP Excel model is not able to calculate geothermal fluid properties below a pressure of 1 bar. The
pressure at the outlet of the steam turbine can be below 1 bar. Therefore, after the CS the single-flash power
plant model calculates the geothermal fluid properties from implemented data tables, covering (ܲ, ܶ, ℎ, ,ܲ) ஼ைଶ and(ݏ ܶ, ℎ, ,ுଶை,௦௔௧ obtained from FluidProp (Span and Wagner, 1996; Wagner and Pruss(ݏ
2002). At the inlet of the steam turbine (state 4) the enthalpy ℎ௠௜௫,ସ and entropy ݏ௠௜௫,ସ of the H2O – CO2

gas mixture is calculated. This involves determining the mole fractions ݔ௜,ସ, eqs. (A.58) and (A.59), and
partial pressures ௜ܲ,ସ, eq. (2.73), of the components, where ݅ indicates the component (CO2, H2O). Then ℎ
and ݏ of the single components are interpolated from the data tables. Finally, ℎ௠௜௫,ସ and ݏ௠௜௫,ସ are
calculated by eqs. (2.71) and (2.72), respectively.

ுଶை,ସݔ = ுଶை,ସݓ ுଶை,ସݓ⁄ுଶைܯ ⁄ுଶைܯ + ஼ைଶ,ସݓ ⁄஼ைଶܯ (A.58)

஼ைଶ,ସݔ = ஼ைଶ,ସݓ ுଶை,ସݓ⁄஼ைଶܯ ⁄ுଶைܯ + ஼ைଶ,ସݓ ⁄஼ைଶܯ (A.59)

Steam turbine:

Next, in order to calculate the outlet properties of the steam turbine, isentropic expansion is assumed
initially. User-defined model input is required, given in Figure 3.1 . A function fCalc_chi_5s is developed,
which calculates ߯ହ௦ and thereby the other fluid properties which are a function of ܲ, ܶ and ߯. This involves
an iterative procedure in which ߯ହ௦ and ହܶ௦ are iterated until eq. (2.74) for isentropic expansion and eq.
(A.60), in which the temperature as a function of the partial pressure of H2O equals the iterated ହܶ௦, are
solved. The ݏ௠௜௫,ହ௦ in eq. (2.74) is calculated by eq. (2.76). The (ℎ, ଺,଻ for CO2 and H2O, necessary for(ݏ
this iteration, are interpolated from the implemented data tables. States 6 and 7 correspond to the liquid and
vapor saturation of H2O, respectively. ܶ(ுܲଶை,଻) = ହܶ௦,௖௔௟௖ (A.60)

The procedure of calculating ߯ହ shows much resemblance with the calculation of ߯ହ௦. Again an iterative
procedure is involved in which now ߯ହ and ହܶ are iterated, until ℎ௠௜௫,ହ from eq. (2.77) equals ℎ௠௜௫,ହ from
eq. (A.61) and ହܶ,௖௔௟௖ equals the temperature belonging to ுܲଶை,଻ at state 5 (eq. (A.62)). However, a nested
loop is implemented in this case. Because eq. (2.77) contains ߟ௧, which is a function of ߯ହ itself. Finally, ሶܹ ௧
and ሶܹ ௘ are calculated by eq. (2.55) and eq. (2.57), respectively.

146 D ADDITIONAL CALCULATIONS

F.W.J. Niewold Master of Science Thesis

ℎ௠௜௫,ହ = (1 − ߯)ℎுଶை(ܶ) + ߯෍ݓ௜ℎ௜(௜ܲ , ܶ)௡
௜ୀଵ (A.61)

ܶ(ுܲଶை,଻) = ହܶ,௖௔௟௖ (A.62)

Condenser and SE/C:

The temperature at which the gas is extracted from the condenser is user-defined in the model input as ଵܶଵ.
Then the partial pressure ுܲଶை,ଵଵ is calculated by eq. (2.79) and the partial pressure ஼ܲைଶ,ଵଵ is calculated by
eq. (A.63), which is derived from eq. (2.80). These partial pressures can be related to the mole fractions
according to Dalton’s Law. Subsequently, the mass fractions are calculated with the molar masses and ሶ݉ ଵଵ
is calculated by solving the mass balance for CO2 given by eq. (2.81). The ℎ௠௜௫,ଵଵ and ݏ௠௜௫,ଵଵ is then
obtained from eq. (2.71) and eq. (2.72) respectively, but then adjusted to state 11, where the single
component properties are interpolated from the data tables.

ଵܲଵ,஼ைଶ = ହܲ + ଵܲଵ,ுଶை (A.63)

The SE/C has been modeled as two SE/C in series. According to the HEI the normal range of suction
pressures for a two stage SE/C operating at atmospheric discharge pressures is between 0.002 – 0.135 bar
(Coker and Coker, 2010). The outlet pressure of the steam turbine in this study is approximately 0.74 bar.
The calculation procedure of the SE/C has been outlined in Section 2.4.4.3. The pressure ratio of both
stages is equal.

Condenser pump:

The ߩ଺ is interpolated from data tables. Then the power required by the pump is calculated by eq. (A.64)
derived from eq. (2.60) and (A.65).

ሶܹ ௖௣ = (1 ⁄଺ߩ)ሾ଼ܲ − ଺ܲሿߟ௣ ሶ݉ ଺ (A.64)

଼ܲ = ଷܲ (A.65)

Next, a provisional power is calculated, which is the ሶܹ ௜௣ added to the ሶܹ ௡௘௧. The ሶܹ ௜௣ cannot be calculated
at this stage of the simulation, because it needs the input from the injection well model. Therefore, at first it
is checked if the provisional power of the current iteration is higher than the provisional power of the
previous iteration. If so, the flash pressure ଶܲ is reduced with Δܲ and the procedure proceeds with the next
iteration. Δܲ is a user-defined variable, the default value is 0.1 bar.

Injection pump:

Before the injection pump the streams 3, 8 and 14 are joined. Using the composition and the mass flow of
the fluid at state 3, the composition of the fluid at state 9 can be calculated. The mass flow pumped by the
make-up pump equals ሶ݉ ଵଵ. Data tables (ܲ, ܶ, ,ߩ ܿ௣)ுଶை,ௌ஼ for subcooled H2O are implemented to
interpolate ߩଵଷ൫ ௔ܲ௧௠, ௦ܶ௨௥௙_௪൯ at state 13 and ܿ௣ at state 8 and state 14. The ଼ܶ and ଵܶସ are iterated until the
assumption of incompressible liquid is met. The ܿ௣,ଷ is calculated by invoking the GFP Excel model.
Finally, the ଽܶ is given by eq. (A.66). At this stage, the single-flash power plant model simulation
terminates. The output (ܶ, ଽ is exported to the injection well model. For the calculation procedure of the(ݓ
injection well model is referred to Section 3.7. To finalize the simulation the single-flash power plant model
imports output (ܲ, ଵ଴ from the injection well model. The ሶܹ(ߩ ௜௣ is calculated by eq. (A.67). In this particular
case, the injection pump is assumed to operate isothermally. This has been chosen, because that iteration
would involve the total injection well model. The calculation of the injection well model is a time-

D.1. SINGLE-FLASH POWER PLANT MODEL 147

Master of Science Thesis F.W.J. Niewold

consuming process, so iteration is rather avoided. In case of the hypothetical case (Chapter 5), the
temperature increase was in the range of 1 – 2 ˚C. The error induced is negligible, which justifies the
assumption. The ሶܹ ௡௘௧, .௨ are obtained by using eqs. (2.61) – (2.64)ߟ ௧௛ andߟ

ଽܶ = ሶ݉ ଷܿ௣,ଷ ଷܶ + ሶ݉ ଼ܿ௣,଼଼ܶ + ሶ݉ ଵସܿ௣,ଵସ ଵܶସሶ݉ ଷܿ௣,ଷ + ሶ݉ ଼ܿ௣,଼ + ሶ݉ ଵସܿ௣,ଵସ (A.66)

ሶܹ ௜௣ = (1 ⁄ଵ଴ߩ)ሾ ଵܲ଴ − ଽܲሿߟ௣ ሶ݉ ଽ (A.67)

149

E
MODEL VALIDATION &

SENSITIVITY ANALYSIS
E.1. Mean Error and Standard Deviation Mean Error
The equations in the present section were obtained from Ambastha and Gudmundsson (1986a). The error of
a calculated single data point has been defined as the difference between the calculated value and the
measured value, given in eqs. (E.1) and (E.2) for pressure and temperature, respectively. The ݅ represents
the number of a specific data point. ݁ݎ௜,௉ = | ௖ܲ௔௟௖ − ௠ܲ௘௔௦| (E.1)

்,௜ݎ݁ = | ௖ܶ௔௟௖ − ௠ܶ௘௔௦| (E.2)

Then the mean error of the calculated pressure and temperature profiles is calculated by eq. (E.3). The ݊
represents the number of evaluated data points.

തതതݎ݁ = ∑ ௜௡௜ୀଵ݊ݎ݁ (E.3)

The standard deviation of the mean error is calculated by eq. (E.4).

௘௥ߪ = ቆ∑ ௜ݎ݁) − തതത)ଶ௡௜ୀଵݎ݁ ݊ − 1 ቇଵ ଶ⁄
 (E.4)

E.2. Drift-Flux Model Hasan et al. (2010)
Figure E.1 and Figure E.2 show the pressure-, density-, vapor quality- and void fraction profiles, and the
flow patterns of the East-Mesa 6-1 well calculated with the present model using the drift-flux model of
Hasan et al. (2010). Subsequently, Figure E.3, Figure E.4 and Figure E.5 present the pressure-, density- and
vapor quality profiles, and the flow patterns of the East-Mesa 6-1 well according to Chadha and Malin
(1993). It can be seen that flash depth and bubble flow region in the present model and in Chadha and
Malin (1993) show a resemblance. However, shallower in the well totally different flow patterns have been
observed. This does not necessarily means that one of two models is wrong. The density in Figure E.4
shows a sharp decrease at the slug 1/slug 2 transition. This particular concept of different slug patterns has
not been encountered in other literature. Additionally, the characteristics of slug 2- and transition flow
pattern in Chadha and Malin (1993) lies closer to annular flow than slug flow in Hasan et al. (2010), which
shows it is more a difference in terminology. Figure E.4 also shows by the sharp transitions in Chadha and
Malin (1993) smoothening between flow patterns has not been taken into account. Also, the pressure profile
(Figure E.3) and vapor quality profile (Figure E.5) show a sharp transition especially between slug 1/slug 2
transition, most likely caused by the density change. In the present model these transitions are relatively
smoother, resulting in a smooth pressure profile (Figure E.1) and smooth quality profile (Figure E.2).

150 E MODEL VALIDATION & SENSITIVITY ANALYSIS

F.W.J. Niewold Master of Science Thesis

Figure E.1: Pressure profile (left y-axis) and density profile (right y-axis) of the East-Mesa 6-1 well, described in
Section 4.1. Three flow patterns were observed: bubble, slug and annular.

Figure E.2: Vapor quality (left y-axis) and void fraction (right y-axis) of the East-Mesa 6-1 well, described in Section
4.1. Three flow patterns were observed: bubble, slug and annular.

E.3. Validation Single-Flash Power Plant 151

Master of Science Thesis F.W.J. Niewold

Figure E.3: Pressure profile of the East-Mesa 6-1 well
(Chadha and Malin, 1993).

Figure E.4: Density profile of the East-Mesa 6-1 well
(Chadha and Malin, 1993).

Figure E.5: Vapor quality profile of the East-Mesa 6-1 well (Chadha and Malin, 1993).

E.3. Validation Single-Flash Power Plant

E.3.1. Validation of Thermal Efficiency
Table E.1: Model input parameters for the validation of the single-flash power plant model.

Quantity Value

Turbine outlet pressure, bar Variable

Initial wet turbine efficiency 0.8

Dry turbine efficiency 0.85

Pump efficiency 0.85

Generator efficiency 0.97

Condenser outlet temperature, ˚C 37

Compressor efficiency 0.85

Pressure build-up cooling water pump, bar 2

Pinchpoint temperature condenser, K 5

152 E MODEL VALIDATION & SENSITIVITY ANALYSIS

F.W.J. Niewold Master of Science Thesis

Table E.2: Technical specifications of five single-flash power plants used for the single-flash power plant model
validation. The fluid properties at the inlet of the power plant correspond to the wellhead fluid properties obtained from
the production well model validation performed in Section 4.1.

Power plant/production well East-Mesa 6-1 Ngawha 11 NWS-1 Sabalan-2 W2 W3

Power plant type Single-flash Single-flash Single-flash Single-flash Single-flash

Mass flow rate steam, kg s-1 12.9 6.60 30 32.8 50

NCG mass fraction steam, wt% 0 6.53 2.47 15.8 51.2

Turbine:

Inlet pressure, bar 1.52 3.08 4.31 3.01 6.30

Inlet temperature, ˚C 111.8 134.2 146.4 133.4 160.6

Steam mass flow rate, kg s-1 2.07 1.24 3.92 6.22 11.7

Exhaust pressure, bar 0.063 0.100 0.090 0.130 0.300

Condenser

Cooling water (CW) flow, kg s-1 214.6 112.8 377.8 498.7 499.9

Inlet temperature CW, ˚C 27.0 27.0 27.0 27.0 27.0

Outlet temperature CW, ˚C 32.0 32.0 32.0 32.0 32.0

Steam flow, kg s-1 2.07 1.24 3.92 6.22 11.7

Steam enthalpy inlet condenser, kJ kg-1 2318.9 2187.8 2234.0 2032.6 1369.0

Steam enthalpy outlet condenser, kJ kg-1 155.0 287.7 220.8 357.8 474.5

Heat flow, MW 4.49 2.36 7.89 10.4 10.4

NCG system

Steam ejector no no yes no no

Stages N/A N/A 2 N/A N/A

Motive steam flow, kg s-1 N/A N/A 0.92 N/A N/A

Centrifugal compressor no yes no yes yes

Plant performance

Gross power, MW 0.78 0.49 1.78 2.21 3.39

Condenser pump power, MW 3.6E-4 3.9E-4 2.3E-3 1.7E-3 3.6E-3

CW pump power, MW 0.05 0.03 0.09 0.12 0.12

Centrifugal compressor power, MW N/A 0.05 N/A 0.34 0.66

Production pump, MW
1 N/A N/A N/A N/A N/A

Injection pump, MW
2 N/A N/A N/A N/A N/A

Net power, MW 0.70 0.39 1.64 1.68 2.50

Thermal efficiency 6.42 6.18 5.64 5.30 5.21

Utilization efficiency
3
 32.8 28.9 26.1 24.6 25.9

SSC, kg s-1/MW 2.94 3.18 2.39 3.70 4.68

1 It is assumed that single-flash power plant do not require a production pump in the production well.
2

The injection pump was neglected in this calculation, because it is a function of reservoir characteristics (ܲܫ, This is not .(ܫܫ
particularly related to power plant performance.
3 Based on a dead-state at 1.01 bar and 25 ˚C.

E.3. Validation Single-Flash Power Plant 153

Master of Science Thesis F.W.J. Niewold

E.3.2. Validation of SE/C
Table E.3: Technical specifications of the Cerro Prieto I geothermal power plant (units 1 – 4) (Ocampo-Díaz et al.,
2005; DiPippo, 2012). Data are averaged per unit. Technical specifications of the present model simulation. Green
values were input, red values were output.

Technical data Cerro Prieto I Model simulation

Rating, MW 37.5 37.78

Mass flow rate steam, kg s-1 85.93 85.93

NCG mass fraction steam, wt% ? 1.308

Turbine:

Inlet pressure, bar 6.2 6.2

Inlet temperature, ˚C 160 (sat.) 160

Steam mass flow rate, kg s-1 79.25 79.86

Exhaust pressure, bar 0.1185 0.1185

Condenser

Cooling water (CW) flow, kg s-1 2974 2974

Inlet temperature CW, ˚C 32.0 32.0

Outlet temperature CW, ˚C 45.3 45.3

Steam flow, kg s-1 79.86

Steam enthalpy inlet condenser, kJ kg-1 2256.5

Steam enthalpy outlet condenser, kJ kg-1 185.33

Heat flow, MW 165.4 165.4

NCG extraction system

Steam ejector yes yes

Stages 2 2

Steam flow, kg s-1 6.68 6.07

Plant performance

SSC, kg s-1/MW 2.11 2.11

154 E MODEL VALIDATION & SENSITIVITY ANALYSIS

F.W.J. Niewold Master of Science Thesis

E.4. Validation Binary Cycle Power Plant
Table E.4: Model input parameters for the validation of the binary cycle power plant model. The injection temperature
at the wellhead of the injection well was varied to validate the binary cycle power output as a function of injection
temperature (Section 4.5.2).

Quantity Value

Geothermal fluid

Mass flow rate, kg s-1 221

Pressure, bar 10.03 (sat.)

Temperature, ˚C 180 (sat.)

NaCl concentration, wt% 0

CO2 concentration, wt% 0

Binary cycle power plant

Injection temperature wellhead, ˚C Variable

Pinchpoint temperature preheater/evaporator, K 5

Efficiency turbine dry 1

Efficiency pump 1

Efficiency generator 1

Temperature condenser, ˚C 40

Working fluid Isopentane

E.5. Power Plant Model Sensitivity Analysis

Table E.5: Model input parameters for the full model of the single-flash power plant model. Geothermal fluid
properties were adopted from the output of the simulation of the NWS-1 Sabalan-2 production well, described in
Chapter 4.

Quantity Value

Pressure turbine outlet, bar 0.0738

Initial efficiency turbine wet 0.8

Efficiency turbine dry 0.85

Efficiency pump 0.85

Efficiency generator 0.97

Temperature condenser outlet, ˚C 37

Pinchpoint temperature condenser, K 5

Table E.6: Model input parameters for the full model of the binary cycle power plant model. Geothermal fluid
properties were adopted from the output of the simulation of the NWS-1 Sabalan-2 production well, described in
Chapter 4.

Quantity Value

Injection temperature wellhead, ˚C 70

Pinchpoint temperature evaporator/preheater, K 5

Efficiency turbine dry 0.85

Efficiency pump 0.8

Efficiency generator 0.97

Temperature condenser, ˚C 37

Working fluid Isopentane

155

F
MODEL INPUT PARAMETERS

SIMULATIONS
F.1. Model Input Parameters - Results
Table F.1: General model input parameters for the simulations performed in Chapter 5. The values in dark green were
varied. The pressure at the turbine outlet was optimized to obtain the maximum power output for the single-flash power
plant. In one scenario the injection temperature of the binary cycle power plant is equal to the injection temperature of
the single-flash power plant with a SE/C (SF-1).

Quantity Value

Reservoir

Mass flow rate, kg s-1 30

Pressure, bar 159

Temperature, ˚C 250

NaCl mass fraction, kg kg-1 0.025, 0.050

CO2 mass fraction, kg kg-1 0, 0.005, 0.01, 0.015, 0.020, 0.025, 0.034

Production well

Start-up time, h 100

Drift-flux model Rouhani and Axelsson

Environment

Pressure atmosphere, bar 1.01325

Temperature surface water, ˚C 27

Temperature rock earth’s surface, ˚C 27

Single-flash power plant

Pressure turbine outlet, bar ௢ܲ௨௧,௧,ை௉்

Initial efficiency turbine wet 0.80

Efficiency turbine dry 0.85

Efficiency pump 0.85

Efficiency generator 0.97

Efficiency compressor 0.85

Temperature condenser outlet, ˚C 37

Pinchpoint temperature condenser, K 5

Pressure change cooling water pump, bar 2

NCG extraction system SE/C, centrifugal compressor

Binary cycle power plant

Injection temperature wellhead, ˚C ௜ܶ௡௝,஻஼ = ௜ܶ௡௝,ௌிିଵ , 70

Pinchpoint temperature evaporator/preheater, K 5

Efficiency turbine dry 0.85

156 F MODEL INPUT PARAMETERS SIMULATIONS

F.W.J. Niewold Master of Science Thesis

Table F.1 (Continued)

Quantity Value

Efficiency pump 0.85

Efficiency generator 0.97

Efficiency compressor 0.85

Temperature condenser, ˚C 37

Pinchpoint temperature condenser, K 5

Pressure change cooling water pump, bar 2

Working fluid Isopentane

Table F.2: Self-flowing production well, production well with gas lift and injection well model input parameters for the
simulations performed in Chapter 5. The values in dark green were varied. The depth of the gas lift valve is equal to the
flash depth of the self-flowing production well with corresponding model input parameters.

Quantity Value

Production well / Injection well

Length, m 2000

Inclination angle 0

Inner diameter, m 0.245

Number of segments 100

Segment length, m 20

Pipe roughness, m 1.8E-04

Geothermal gradient, K m-1 0.1115

Thermal conductivity rock, W m-1 K-1 1.5

Thermal diffusivity, m2 s-1 1.2E-06

Production well – gas lift

Depth gas lift valve, m ீݖ௅ = ௙௟௔௦௛,ௌிିଵݖ

Mass flow rate gas, kg s-1 0.5, 1.0

157

BIBLIOGRAPHY
Adams, J.J. and Bachu, S. (2002) ‘Equations of state for basin geofluids: Algorithm review and
intercomparison for brines’, Geofluids, 2(4), pp. 257–271.

Akbar, S., Fathianpour, N. and Al Khoury, R. (2016) ‘A finite element model for high enthalpy two-phase
flow in geothermal wellbores’, Renewable Energy, 94, pp. 223–236.

Aksoy, N. (2007) ‘Optimization of downhole pump setting depths in liquid-dominated geothermal systems:
A case study on the Balcova-Narlidere field, Turkey’, Geothermics, 36(5), pp. 436–458.

Ambastha, A. K., & Gudmundsson, J. S. (1986a) Collection and Evaluation of Flowing Pressure and
Temperature Data fkom Geothermal Wells, (SGP-TR-100), Stanford Univ., Stanford, CA (USA), August
1986.

Ambastha, A. K., & Gudmundsson, J. S. (1986b) ‘Pressure profiles in two-phase geothermal wells:
comparison of field data and model calculations’, Proceedings 11th workshop on geothermal engineering,
Stanford, CA (USA), 21-23 January 1986.

Baldwin, J., Slatter, A., Jespersen, R. and Conaway, C.F. (2000) Computer-assisted reservoir -
Management. United States: PennWell Books.

Barelli, A., Corsi, R., Del Pizzo, G. and Scali, C. (1982) ‘A two-phase flow model for geothermal wells in
the presence of non-condensable gas’, Geothermics, 11(3), pp. 175–191.

Battistelli, A., Calore, C. and Pruess, K. (1997) ‘The simulator TOUGH2/EWASG for modelling
geothermal reservoirs with brines and non-condensible gas’, Geothermics, 26(4), pp. 437–464.

Batzle, M. and Wang, Z. (1992) ‘Seismic properties of pore fluids’, GEOPHYSICS, 57(11), pp. 1396–1408.

Baumann, K. (1921) ‘Some recent developments in large steam turbine practice’, Journal of the Institution
of Electrical Engineers, 59(302), pp. 565–623.

Bertani, R. (2016) ‘Geothermal power generation in the world 2010–2014 update report’, Geothermics, 60,
pp. 31–43.

Bischoff, J.L. and Pitzer, K.S. (1989) ‘Liquid-vapor relations for the system NaCl-H 2 O; summary of the
p-t-x surface from 300 degrees to 500 degrees C’, American Journal of Science, 289(3), pp. 217–248.

Bromley, C. and Bignall, G. (2016) Ngawha geothermal field: geology, geophysics, conceptual model,
geochemical monitoring trends and environmental issues. JOGMEC-GNS Workshop, Tokyo, 2 June 2016.
Available at: http://geothermal.jogmec.go.jp/ (Accessed: 9 December 2016).

Carroll, J.J., Slupsky, J.D. and Mather, A.E. (1991) ‘The Solubility of carbon dioxide in water at low
pressure’, Journal of Physical and Chemical Reference Data, 20(6), p. 1201.

Chadha, P.K., Malin, M.R. and Palacio-Perez, A. (1993) ‘Modelling of two-phase flow inside geothermal
wells’, Applied Mathematical Modelling, 17(5), pp. 236–245.

Champel, B. (2006) ‘Discrepancies in brine density databases at geothermal conditions’, Geothermics,
35(5-6), pp. 600–606.

158 BIBLIOGRAPHY

F.W.J. Niewold Master of Science Thesis

Chen, J.C. (1966) ‘Correlation for boiling heat transfer to saturated fluids in Convective flow’, Industrial &
Engineering Chemistry Process Design and Development, 5(3), pp. 322–329.

Chen, N.H. (1979) ‘An explicit equation for friction factor in pipe’, Industrial & Engineering Chemistry
Fundamentals, 18(3), pp. 296–297.

Cholet, H. (2008) Well production practical handbook. Paris, France: Technip.

Chou, I.M. (1987) ‘Phase relations in the system NaCl-KCl-H2O. III: Solubilities of halite in vapor-
saturated liquids above 445°C and redetermination of phase equilibrium properties in the system NaCl-H2O
to 1000°C and 1500 bars’, Geochimica et Cosmochimica Acta, 51(7), pp. 1965–1975.

Clark, N. and Flemmer, R. (1986) ‘The effect of varying gas voidage distributions on average holdup in
vertical bubble flow’, International Journal of Multiphase Flow, 12(2), pp. 299–302.

Clegg, J.D., Bucaram, S.M. and Hein, N.W. (1993) ‘Recommendations and comparisons for selecting
artificial-lift methods’, Journal of Petroleum Technology, 45(12), pp. 1128–1167.

Clyde Pumps Ltd (2008) Hydraulic submersible pump system [Brochure]. Available at:
http://www.clydepumps.com (Accessed: 26 May 2016).

Coddington, P. and Macian, R. (2002) ‘A study of the performance of void fraction correlations used in the
context of drift-flux two-phase flow models’, Nuclear Engineering and Design, 215(3), pp. 199–216.

Coker, K.A. and Coker, P.K.A. (2010) Ludwig’s applied process design for chemical and petrochemical
plants: Volume 2: Distillation, packed towers, petroleum fractionation, gas processing and dehydration.
4th edn. Oxford, UK: Gulf Professional Publishing.

Conaway, C.F., Baldwin, J., Slatter, A. and Jespersen, R. (2000) The petroleum industry: A nontechnical
guide. Tulsa, OK: PennWell Pub. Co.

Dake, L.P. (1978) Fundamentals of reservoir engineering. Amsterdam: Elsevier Scientific Pub. Co.

DiPippo, R. (2012) Geothermal power plants: Principles, applications, case studies and environmental
impact, Third edition. 3rd edn. Amsterdam: Butterworth-Heinemann.

Dittman, G. L. (1977) Calculation of brine properties. Lawrence Livermore Laboratory. Available at:
http://www.osti.gov/ (Accessed: 3 June 2016).

Dix, G. E. (1971) ‘Vapor void fractions for forced convection with subcooled boiling at low flow rates’,
University of California, Berkeley.

Driesner, T. (2007) ‘The system H2O–NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric
heat capacity from 0 to 1000°C, 1 to 5000bar, and 0 to 1 XNaCl’, Geochimica et Cosmochimica Acta,
71(20), pp. 4902–4919.

Duan, Z. and Sun, R. (2003) ‘An improved model calculating CO2 solubility in pure water and aqueous
NaCl solutions from 273 to 533 K and from 0 to 2000 bar’, Chemical Geology, 193(3-4), pp. 257–271.

Duan, Z., Hu, J., Li, D. and Mao, S. (2008) ‘Densities of the CO 2 –H 2 O and CO 2 –H 2 O–NaCl systems
up to 647 K and 100 MPa’, Energy & Fuels, 22(3), pp. 1666–1674.

Duan, Z., Hu, J., Zhu, C. and Chou, I.-M. (2007) ‘PVTx properties of the CO2–H2O and CO2–H2O–NaCl
systems below 647 K: Assessment of experimental data and thermodynamic models’, Chemical Geology,
238(3-4), pp. 249–267.

BIBLIOGRAPHY 159

Master of Science Thesis F.W.J. Niewold

Duan, Z., Møller, N. and Weare, J.H. (1992) ‘An equation of state for the CH4-CO2-H2O system: I. Pure
systems from 0 to 1000°C and 0 to 8000 bar’, Geochimica et Cosmochimica Acta, 56(7), pp. 2605–2617.

Duan, Z., Sun, R., Zhu, C. and Chou, I.-M. (2006) ‘An improved model for the calculation of CO2
solubility in aqueous solutions containing Na+, K+, ca2+, mg2+, Cl−, and SO42−’, Marine Chemistry,
98(2-4), pp. 131–139.

El-Dessouky, H., Ettouney, H., Alatiqi, I. and Al-Nuwaibit, G. (2002) ‘Evaluation of steam jet
ejectors’, Chemical Engineering and Processing: Process Intensification, 41(6), pp. 551–561.

Eppelbaum, L., Kutasov, I. and Pilchin, A. (2014) Applied geothermics. Berlin, Heidelberg: Springer Berlin
Heidelberg.

European Geothermal Energy Council (EGEC) (2012) Strategic research priorities for geothermal
electricity - Technology platform on geothermal electricity (TP-Geoelec). Available at:
http://www.egec.org/ (Accessed: 25 May 2016).

Flowserve (2011) Pumps for geothermal power generation - Production well - Heat transfer fluid -
Condensate extraction - Circulating water - Re-injection well [Brochure]. Available at:
https://www.flowserve.com/ (Accessed: 25 May 2016).

Forster, H.K. and Zuber, N. (1955) ‘Dynamics of vapor bubbles and boiling heat transfer’, AIChE Journal,
1(4), pp. 531–535.

Francke, H. (2014) Thermo-hydraulic model of the two-phase flow in the brine circuit of a geothermal
power plant. Berlin, Technische Universität Berlin, PhD thesis.

Francke, H. and Thorade, M. (2010) ‘Density and viscosity of brine: An overview from a process engineers
perspective’, Chemie der Erde - Geochemistry, 70, pp. 23–32.

Francke, H., Kraume, M. and Saadat, A. (2013) ‘Thermal–hydraulic measurements and modelling of the
brine circuit in a geothermal well’, Environmental Earth Sciences, 70(8), pp. 3481–3495.

Frick, S., Regenspurg, S., Kranz, S., Milsch, H., Saadat, A., Francke, H., Brandt, W. and Huenges, E.
(2011) ‘Geochemical and process engineering challenges for geothermal power generation’, Chemie
Ingenieur Technik, 83(12), pp. 2093–2104.

Frick, S., Saadat, A., Surana, T., Ezer Siahaan, E., Kupfermann, G.A., Erbas, K., Huenges, E. and Gani,
M.A. (2015) ‘Geothermal binary power plant for Lahendong, Indonesia: A German-Indonesian
collaboration project’, Proceedings World Geothermal Congress 2015, Melbourne, 19-25 April 2015.

Garcia-Gutierrez, A., Espinosa-Paredes, G. and Hernandez-Ramirez, I. (2002) ‘Study on the flow
production characteristics of deep geothermal wells’, Geothermics, 31(2), pp. 141–167.

Gates, J.A., Tillett, D.M., White, D.E. and Wood, R.H. (1987) ‘Apparent molar heat capacities of aqueous
NaCl solutions from 0.05 to 3.0 mol·kg−1, 350 to 600 K, and 2 to 18 MPa’, The Journal of Chemical
Thermodynamics, 19(2), pp. 131–146.

Geremew, H. (2012) A study of thermodynamic modelling and gas extraction system design for Aluto
Langano geothermal power plant II in Ethiopia. UNU-GTP, Iceland, Report 10, pp. 99-136.

Glassley, W. E. (2014) Geothermal energy: renewable energy and the environment. CRC Press.

Godbole, P.V., Tang, C.C. and Ghajar, A.J. (2011) ‘Comparison of void fraction correlations for different
flow patterns in upward vertical Two-Phase flow’, Heat Transfer Engineering, 32(10), pp. 843–860.

160 BIBLIOGRAPHY

F.W.J. Niewold Master of Science Thesis

Gokcen, G. and Yildirim, N. (2008) ‘Effect of Non-Condensable gases on geothermal power plant
performance. Case study: Kizildere geothermal power plant-turkey’, International Journal of Exergy,
5(5/6), p. 684.

Gomberg, S. (2016) Benefits of renewable energy use. Available at: http://www.ucsusa.org/ (Accessed: 9
May 2016).

Gnielinski, V. (2009) ‘Heat transfer coefficients for turbulent flow in concentric Annular ducts’, Heat
Transfer Engineering, 30(6), pp. 431–436.

Gnielinski, V. (1976) ‘New equations for heat and mass-transfer in turbulent pipe and channel flow’,
International chemical engineering, 16(2), pp. 359-368.

Grant, M.A. and Bixley, P.F. (2011) Geothermal reservoir engineering. 2nd edn. United States: Elsevier
Science Publishing Co.

Guet, S. C. L. (2004) Bubble size effect on the gas-lift technique. Delft, Delft University of Technology,
PhD thesis.

Harmathy, T.Z. (1960) ‘Velocity of large drops and bubbles in media of infinite or restricted extent’,AIChE
Journal, 6(2), pp. 281–288.

Harrison, R., Mortimer, N. and Smarason, O. (1990) Geothermal heating: Handbook of engineering
economics. 1st edition edn. Exeter: Pergamon Press.

Harvey, A.H. and Prausnitz, J.M. (1989) ‘Thermodynamics of high-pressure aqueous systems containing
gases and salts’, AIChE Journal, 35(4), pp. 635–644.

Hasan, A.R., Kabir, C.S. and Sayarpour, M. (2010) ‘Simplified two-phase flow modeling in wellbores’,
Journal of Petroleum Science and Engineering, 72(1-2), pp. 42–49.

Hecker, C. (2016) GEOCAP project - what is GEOCAP? Available at: https://www.geocap.nl/ (Accessed:
10 May 2016).

Heineken (2016) Heineken/BrineProp. Available at: https://github.com/Heineken/BrineProp/releases
(Accessed: 20 October 2016).

Hibiki, T. and Ishii, M. (2003) ‘One-dimensional drift–flux model for two-phase flow in a large diameter
pipe’, International Journal of Heat and Mass Transfer, 46(10), pp. 1773–1790.

Hills, J.H. (1976) ‘The operation of a bubble column at high throughputs’, The Chemical Engineering
Journal, 12(2), pp. 89–99.

Hosgor, F. B., Tureyen, O. I., Satman, A., & Cinar, M. (2015) ‘Effects of Carbon Dioxide Dissolved in
Geothermal Water on Reservoir Production Performance’, Proceedings World Geothermal Congress 2015,
Melbourne, Australia.

Huenges, E. and Ledru, P. (eds.) (2010) Geothermal energy systems: Exploration, development, and
utilization. Germany: Wiley-VCH Verlag GmbH.

IF Technology (2012) Electricity production from deep geothermal wells in the Netherlands. IF
Technology, Arnhem.

IPS (1998) IPS-E-PR-745 Engineering standard for process design of vacuum equipment (vacuum pumps
and steam jet ejectors).

BIBLIOGRAPHY 161

Master of Science Thesis F.W.J. Niewold

Ishii, M. (1977) One-dimensional drift-flux model and constitutive equations for relative motion between
phases in various two-phase flow regimes (No. ANL-77-47). Argonne National Lab., Ill.(USA).

Kataoka, I. and Ishii, M. (1987) ‘Drift flux model for large diameter pipe and new correlation for pool void
fraction’, International Journal of Heat and Mass Transfer, 30(9), pp. 1927–1939.

Kelessidis, V.C., Karydakis, G.I. and Andritsos, N. (2007) ‘Method for selecting casing diameters in wells
producing low-enthalpy geothermal waters containing dissolved carbon dioxide’, Geothermics, 36(3), pp.
243–264.

Kestin, J., Khalifa, H.E. and Correia, R.J. (1981) ‘Tables of the dynamic and kinematic viscosity of aqueous
KCl solutions in the temperature range 25–150 °C and the pressure range 0.1–35 MPa’, Journal of Physical
and Chemical Reference Data, 10(1), p. 57.

Khalifa, H. E. and Michaelides, E. (1978) Effect of non-condensable gases on the performance of
geothermal steam power systems, (No. COO-4051-36). Brown Univ., Providence, RI (USA), Dept. of
Engineering.

Li, Y.-K. and Nghiem, L.X. (1986) ‘Phase equilibria of oil, gas and water/brine mixtures from a cubic
equation of state and henry’s law’, The Canadian Journal of Chemical Engineering, 64(3), pp. 486–496.

Lienau, P.J., Lunis, B.C. and Lund, J.W. (1991) Geothermal direct use engineering and design guidebook.
United States: Oregon Institute of Technology, Geo-Heat Center.

Mahon, T., Harvey, C., & Crosby, D. (2000) ‘The chemistry of geothermal fluids in Indonesia and their
relationship to water and vapour dominated systems’, Proceedings of the World Geothermal Congress
2000, Kyushu–Tohoku, Japan, pp. 1389-1394.

Mills, A.F. (1998) Basic heat and mass transfer. 2nd edn. New York, NY, United States: Prentice Hall.

Moghaddam, A. R. (2006) ‘A conceptual design of a geothermal combined cycle and comparison with a
single-flash power plant for well NWS-4, Sabalan, Iran’. Report 18 in: Geothermal Training in Iceland
2006, UNU-GTP, Iceland, pp. 391-428.

Nasruddin, Idrus Alhamid, M., Daud, Y., Surachman, A., Sugiyono, A., Aditya, H.B. and Mahlia, T.M.I.
(2016) ‘Potential of geothermal energy for electricity generation in Indonesia: A review’, Renewable and
Sustainable Energy Reviews, 53, pp. 733–740.

New Mexico Tech (2005) Introduction to artificial lift. Available at: http://www.nmt.edu/ (Accessed: 27
May 2016).

Nicklin, D. J. (1961) Two phase flow in vertical tubes. PhD Thesis.

Ocampo-Díaz, J. D. D., Valdez-Salaz, B., Shorr, M., Sauceda, M., & Rosas-González, N. (2005) ‘Review
of corrosion and scaling problems in Cerro Prieto geothermal field over 31 years of commercial
operations’, Proceedings of World Geothermal Congress, Antalya, Turkey, 24 – 29 April 2005.

Olasolo, P., Juárez, M. C., Morales, M. P., & Liarte, I. A. (2016) ‘Enhanced geothermal systems (EGS): A
review’, Renewable and Sustainable Energy Reviews, 56, pp. 133-144.

Palliser, C. and McKibbin, R. (1998a) ‘A model for deep geothermal brines, I: TpX state-space
description’, Transport in porous media, 33(1-2), pp. 65-80.

Palliser, C. and McKibbin, R. (1998b) ‘A model for deep geothermal brines, III: Thermodynamic
properties–enthalpy and viscosity’, Transport in Porous Media, 33(1-2), pp. 155-171.

162 BIBLIOGRAPHY

F.W.J. Niewold Master of Science Thesis

Parada, A. F. M. (2013) ‘Geothermal binary cycle power plant principles, operation and’. Report 20 in:
Geothermal Training in Iceland 2013, UNU-GTP, Iceland, pp. 443-476.

Phillips, S. L. (1981) A technical databook for geothermal energy utilization. Lawrence Berkeley National
Laboratory. Available at: http://escholarship.org/uc/item/5wg167jq Accessed: 3 June 2016).

Pitzer, K.S. (1973) ‘Thermodynamics of electrolytes. I. Theoretical basis and general equations’, The
Journal of Physical Chemistry, 77(2), pp. 268–277.

Pitzer, K.S., Peiper, J.C. and Busey, R.H. (1984) ‘Thermodynamic properties of aqueous sodium chloride
solutions’, Journal of Physical and Chemical Reference Data, 13(1), p. 1.

Potter, R. W., Babcock, R. S., & Brown, D. L. (1977) ‘New method for determining the solubility of salts
in aqueous solutions at elevated temperatures’, Journal of Research of the U.S. Geological Survey, 5(3).

Pruess, K. (2002). Mathematical modeling of fluid flow and heat transfer in geothermal systems: an
introduction in five lectures. Orkustofnun.

Renpu, W. (2011) Advanced well completion engineering. 3rd edn. United States: Gulf Professional
Publishing.

Rivera Diaz, A., Kaya, E. and Zarrouk, S.J. (2016) ‘Reinjection in geothermal fields − A worldwide review
update’, Renewable and Sustainable Energy Reviews, 53, pp. 105–162.

Rouhani, S.Z. and Axelsson, E. (1970) ‘Calculation of void volume fraction in the subcooled and quality
boiling regions’, International Journal of Heat and Mass Transfer, 13(2), pp. 383–393.

Ryley, D.J. (1980) ‘The mass discharge of a geofluid from a geothermal reservoir — well system with
flashing flow in the bore’, Geothermics, 9(3-4), pp. 221–235.

SANDIA (2008) Enhanced geothermal systems (EGS) well construction technology evaluation report.
Available at: https://www1.eere.energy.gov/ (Accessed: 27 May 2016).

Schlegel, J., Hibiki, T. and Ishii, M. (2010) ‘Development of a comprehensive set of drift-flux constitutive
models for pipes of various hydraulic diameters’, Progress in Nuclear Energy, 52(7), pp. 666–677.

Shen, X., Matsui, R., Mishima, K. and Nakamura, H. (2010) ‘Distribution parameter and drift velocity for
two-phase flow in a large diameter pipe’, Nuclear Engineering and Design, 240(12), pp. 3991–4000.

Sheppard, D. S. (1987) ‘Geochemistry and the Exploration of the Ngawha Geothermal System, New
Zealand’, Proceedings 12th workshop on geothermal engineering, Stanford, CA (USA), 20-22 January
1987.

Shi, H., Holmes, J.A., Durlofsky, L.J., Aziz, K., Diaz, L., Alkaya, B. and Oddie, G. (2005) ‘Drift-flux
modeling of Two-Phase flow in Wellbores’, SPE Journal, 10(01), pp. 24–33.

Sinnott, R.K. and Towler, G. (2009) Chemical engineering design: SI edition. 5th edn. Oxford, United
Kingdom: Butterworth-Heinemann.

Span, R. and Wagner, W. (1996) ‘A new equation of state for carbon dioxide covering the fluid region from
the triple-point temperature to 1100 K at pressures up to 800 MPa’, Journal of Physical and Chemical
Reference Data, 25(6), pp. 1509–1596.

Swamee, P.K., Jain, A.K. (1976) ‘Explicit equations for pipe-flow problems’, Journal of the Hydraulics
Division, 102(5), pp. 657–664.

BIBLIOGRAPHY 163

Master of Science Thesis F.W.J. Niewold

Thome, J.R. (2010) Engineering data book 3. Elvetia: Wolverine Tube Inc.

Taitel, Y., Bornea, D. and Dukler, A.E. (1980) ‘Modelling flow pattern transitions for steady upward gas-
liquid flow in vertical tubes’, AIChE Journal, 26(3), pp. 345–354.

Van der Hoorn, K., Rombaut, B., Maaijwee, C., Gankema, M. and Smeets, J. (2012) Geothermal energy at
Hoogeveen - Feasibility study. Available at: http://soilpedia.nl/ (Accessed: 10 May 2016).

Van Everdingen, A.F. (1953) ‘The skin effect and its influence on the productive capacity of a well’,
Journal of Petroleum Technology, 5(6), pp. 171–176.

VDI (2010) VDI Heat Atlas. Edited by VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen.
2nd edn. Germany: Springer-Verlag Berlin and Heidelberg GmbH & Co. K.

Wagner, W. and Pruß, A. (2002) ‘The IAPWS formulation 1995 for the thermodynamic properties of
ordinary water substance for general and scientific use’, Journal of Physical and Chemical Reference
Data, 31(2), pp. 387-535.

Wang, X., Liu, X. and Zhang, C. (2013) ‘Performance analysis of organic Rankine cycle with preliminary
design of radial turbo Expander for binary-cycle geothermal plants’, Journal of Engineering for Gas
Turbines and Power, 135(11), p. 111402.

Wallis, G.B. (1969) One-Dimensional Two-Phase flow: The First complete account of John Paul Jones’
greatest battle. United States: McGraw Hill Higher Education.

Wisman, R. (1975) ‘Analytical pressure drop correlation for adiabatic vertical two-phase flow’, Applied
Scientific Research, 30(5), pp. 367–380.

Woldesemayat, M.A. and Ghajar, A.J. (2007) ‘Comparison of void fraction correlations for different flow
patterns in horizontal and upward inclined pipes’, International Journal of Multiphase Flow, 33(4), pp.
347–370.

Xie, X., Bloomfield, K.K., Mines, G.L. and Shook, G.M. (2005) Design considerations for artificial lifting
of enhanced geothermal system fluids. Report No. INL/EXT-05-00533, Idaho, USA: Idaho National
Laboratory.

Yuniarto, Soesilo, T. E. B. and Heviati, E. (2015) ‘Geothermal Power Plant Emissions in Indonesia’,
Proceedings World Geothermal Congress 2015, Melbourne, Australia.

Yusufova, V.D., Pepinov, R.I., Nikolaev, V.A. and Guseinov, G.M. (1975) ‘Thermal conductivity of
aqueous solutions of NaCl’, Journal of Engineering Physics, 29(4), pp. 1225–1229.

Zarrouk, S.J. and Moon, H. (2014) ‘Efficiency of geothermal power plants: A worldwide
review’,Geothermics, 51, pp. 142–153.

Zhenhao Duan Research Group (2006) The Duan group - models - H2O-CO2-NaCl. Available at:
http://models.kl-edi.ac.cn/models/h2o_co2_nacl/ (Accessed: 20 October 2016).

Zuber, N. and Findlay, J.A. (1965) ‘Average volumetric concentration in two-phase flow systems’, Journal
of Heat Transfer, 87(4), p. 453.

Zuo, Y.-X. and Guo, T.-M. (1991) ‘Extension of the Patel—Teja equation of state to the prediction of the
solubility of natural gas in formation water’, Chemical Engineering Science, 46(12), pp. 3251–3258.

165

NOMENCLATURE
List of Symbols
Roman symbol Description Unit ܽ diameter ratio - ܣ area m2 ܿ isothermal compressibility Pa-1 ܿ௣ isobaric heat capacity J kg-1 K-1ܥ circumference well interior m ܥ଴ flow distribution parameter - ܥ௙ skin friction coefficient - ܦ diameter m ݁ specific exergy J kg-1 ݁ݎ error - ݁ݎ% percentage error - ܧሶ maximum theoretical power W ܧ energy J kg-1 ݂ Darcy friction factor - ܨ friction force N ܨ௔ correlation factor for annular ducts in Gnielinski (2009) - ܨఏ well-deviation factor - ݃ gravitational acceleration (9.81) m s-2 ܩ mass flux kg m-2 s-1ℎ specific enthalpy J kg-1 ℎ௖ convective heat transfer coefficient W m-2 K-1ܫܫ injectivity index kg s-1 Pa-1ܬ mass flux kg m-2 s-1݇ thermal conductivity W m-1 K-1݇ଵ correlation constant for annular ducts in Gnielinski (2009) - ܭ permeability m2 ܮ length m ሶ݉ mass flow rate kg s-1 ݉ molality mol kg-1ܯ molar mass kg mol-1ܲ pressure MPa ௜ܲ partial pressure of gas ݅ Pa ܲܫ productivity index kg s-1 Pa-1Pr Prandtl number - ݍ volumetric flow rate m3 s-1 ሶܳ heat flow rate W ݎ radius m Re Reynolds number - ݏ specific entropy J kg-1 K-1ܵ skin factor - ݐ time s ܶ temperature oC ௛ܶ∗ scaled temperature for enthalpy correlation oC ݀ݒݐ true vertical depth m ݑ velocity m s-1 ܷ overall heat transfer coefficient W m-2 K-1ݒ specific volume m3 kg-1ܸ volume m3 ݓ mass fraction kg kg-1

, wt%

166 NOMENCLATURE

F.W.J. Niewold Master of Science Thesis

ሶܹ rate of work, power W ݔ mole fraction mol mol-1 ܺ௧௧ Lockhart-Martinelli parameter - ݖ elevation m

Greek symbol Description Unit ߙ thermal diffusivity m2 s-1 ߛ	 Euler’s constant (1.78) - ߝ absolute pipe roughness m ߝ௚ cross-sectional void fraction m2 m-2 ߟ efficiency - ߠ inclination angle well - ߤ dynamic viscosity Pa s ߩ density kg m-3 ߪ	 surface tension kg m-2 ߬	 shear stress N m-2 ߔ porosity m3 m-3 ߯ quality, gas mass fraction kg kg-1

Subscript Description ∞ bubble-rise ∞ܾ small bubble-rise ∞ܶ Taylor bubble-rise 0 dead-state, ambient 0ܽ fully developed annular flow 0ܾ fully developed bubble flow 0ܿ fully developed churn flow 0ݏ fully developed slug flow ܽ annular ܽ݋ annulus outer ܾ brine ܥܤ binary cycle ܾℎ bottom hole ܿ critical ܿ݀ condenser ܿ݌݉݋ compressor ܿ݌ condenser pump ܵܥ cross-sectional ܿݓ cooling water ܿ݌ݓ cooling water pump ݁ electrical ݁ݒ evaporator ܧ entrance ݂ frictional ݂ܿ forced-convective ܲܨ flash point ݃ gas, geothermal, generator ܾ݃ superficial gas (transition from bubble to slug flow) ݃ܿ superficial gas (transition from churn to annular flow) ݂݃ geothermal fluid ܮܩ gas lift ݃ݑ drift-flux (gas velocity relative to mixture velocity) ℎ hydraulic ℎ݌ high-pressure ℎݏ hydrostatic ݅ inner, component, segment number

List of Abbreviations 167

Master of Science Thesis F.W.J. Niewold

݅݊ input ݆݅݊ injection ݅݌ injection pump ݇ kinetic ݈ liquid ݈݌ low-pressure ݉ mixture ݉ܿ slug to churn transition ݉݅ݔ mixture ݉݌ make-up pump ݉ݏ minimum mixture ܾ݊ nucleate boiling ݊݁ݐ net ݋ outer ܱܲܶ optimized ݌ pump ܿ݊݅݌ℎ pinchpoint ݐ݋݌ potential ݎ rock ܴ reservoir ݏ݁ݎ reservoir ݏ isentropic ݐܽݏ two-phase saturated ܵܶܣ three-phase saturated ܵܥ/ܧ steam ejector/condenser ܵܨ single-flash ݃ݏ superficial gas ݊݅݇ݏ skin at the well-face ݈ݏ superficial liquid ݈݋ݏ solution ݐݎܽݐݏ − ℎ wellheadݓ working fluid ݂ݓ wall ݈݈ܽݓ well outer ݋ܹ water ܹ well ܹܿ well casing ܹ݅ well inner ݓ vapor ݒ utilization ݑ turbine wet ݓݐ ℎ thermalݐ turbine dry ݀ݐ turbine ݐ surface ݂ݎݑݏ start-up ݌ݑ

List of Abbreviations
ASR air to steam ratio
BC binary cycle
BCV ball check valve
BT binary turbine
C condenser
CaCO3 calcium carbonate/calcite
CO2 carbon dioxide
COM component object model

168 NOMENCLATURE

F.W.J. Niewold Master of Science Thesis

COMP compressor
CP condensate pump
CR compression ratio
CS cyclone separator
CSV control and stop valves
CT cooling tower
CWP cooling water pump
DAE dry air equivalent
DFM drift-flux model
E evaporator
EGS enhanced geothermal systems
EOS equation of state
ESP electrical submersible pump
ER expansion ratio
F flasher
FF final filter
FP flow pattern
G generator
GEOCAP Geothermal Capacity Building Programme – Indonesia-Netherlands
GFP Visual Basic Excel model developed by Francke et al. (2013)
GFP Excel Model geothermal fluid property model developed in MS Excel (Heineken, 2016)
GFP MATLAB Model geothermal fluid property model developed in MATLAB for this study
GHG greenhouse gas
GL gas lift
GLV gas lift valve
hp high-pressure
H2O water
HEI Heat Exchange Institute
HTP hydraulic turbine pump
I/O input/output
IP injection pump
IW injection well
lp low-pressure
LRVP liquid ring vacuum pumps
LSP line shaft pump
M make up water
MR moisture remover
NaCl sodium chloride
NCG non-condensable gases
ORC organic Rankine cycle
P pump
PCP progressing cavity pump
PH pre-heater
PR particulate remover
PW production well
S silencer
SC steam consumption
SE/C steam ejector/condenser
SF single-flash
SiO2 silica
SP steam piping
SR sand remover
SRP sucker rod pump
ST steam turbine
T/G turbine/generator
TCF temperature correction factor
TDS total dissolved solids
TV throttling valve
VBA Visual Basic for Applications
VLE vapor-liquid equilibrium

List of Abbreviations 169

Master of Science Thesis F.W.J. Niewold

WER weight entrainment ratio
wf working fluid
WP water (brine) piping
WV wellhead valve

