
 
 

Delft University of Technology

Recent advances to accelerate purification process development
A review with a focus on vaccines
Keulen, Daphne; Geldhof, Geoffroy; Bussy, Olivier Le; Pabst, Martin; Ottens, Marcel

DOI
10.1016/j.chroma.2022.463195
Publication date
2022
Document Version
Final published version
Published in
Journal of Chromatography A

Citation (APA)
Keulen, D., Geldhof, G., Bussy, O. L., Pabst, M., & Ottens, M. (2022). Recent advances to accelerate
purification process development: A review with a focus on vaccines. Journal of Chromatography A, 1676,
Article 463195. https://doi.org/10.1016/j.chroma.2022.463195

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.chroma.2022.463195
https://doi.org/10.1016/j.chroma.2022.463195


Journal of Chromatography A 1676 (2022) 463195 

Contents lists available at ScienceDirect 

Journal of Chromatography A 

journal homepage: www.elsevier.com/locate/chroma 

Recent advances to accelerate purification process development: A 

review with a focus on vaccines 

Daphne Keulen 

a , Geoffroy Geldhof b , Olivier Le Bussy 

b , Martin Pabst a , Marcel Ottens a , ∗

a Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629, the Netherlands 
b GSK Vaccines, Technical Research and Development – Microbial Drug Substance, Rue de l’Institut 89, Rixensart 1330, Belgium 

a r t i c l e i n f o 

Article history: 

Received 7 April 2022 

Revised 24 May 2022 

Accepted 1 June 2022 

Available online 2 June 2022 

Keywords: 

Downstream processing 

Vaccine purification processes 

Chromatography 

Model-based high throughput process 

development 

Artificial intelligence 

a b s t r a c t 

The safety requirements for vaccines are extremely high since they are administered to healthy people. 

For that reason, vaccine development is time-consuming and very expensive. Reducing time-to-market is 

key for pharmaceutical companies, saving lives and money. Therefore the need is raised for systematic, 

general and efficient process development strategies to shorten development times and enhance process 

understanding. High throughput technologies tremendously increased the volume of process-related data 

available and, combined with statistical and mechanistic modeling, new high throughput process devel- 

opment (HTPD) approaches evolved. The introduction of model-based HTPD enabled faster and broader 

screening of conditions, and furthermore increased knowledge. Model-based HTPD has particularly been 

important for chromatography, which is a crucial separation technique to attain high purities. This re- 

view provides an overview of downstream process development strategies and tools used within the 

(bio)pharmaceutical industry, focusing attention on (protein subunit) vaccine purification processes. Sub- 

sequently high throughput process development and other combinatorial approaches are discussed and 

compared according to their experimental effort and understanding. Within a growing sea of information, 

novel modeling tools and artificial intelligence (AI) gain importance for finding patterns behind the data 

and thereby acquiring a deeper process understanding. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The COVID-19 pandemic has engulfed the world, which has al- 

eady cost over millions of lives and is still infecting hundreds of 

housands of people every day, one and a half year after the first 

utbreak in December 2019. More than ever the world is aware of 

he value of vaccination, contributing to improved public health, 

educed healthcare costs, economic growth, travel safety and pro- 

onged life expectancy [ 1 , 2 ]. In general, vaccination is estimated to

revent 2–3 million childhood and almost 6 million adult deaths 

nnually [ 1 , 3 ]. Recently, the WHO published an action plan mak- 

ng vaccination available to everyone in the world and promoting 

nnovation within the vaccine industry [4] . 

The downstream process plays a key role in reducing contam- 

nant concentrations in vaccines to very low values. This prevents 

or example high reactogenicity and unwanted immune responses, 

nd guarantees the safety and efficacy of the vaccine. Designing a 
∗ Corresponding author. 
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accine purification process is accompanied with many decisions, 

uch as type and sequential order of purification techniques, con- 

itions, costs, and other performance measurements [5] . Addition- 

lly, optimization of a single unit operation and overall purifica- 

ion sequence is important, whereas small variations of conditions 

n one step may affect the subsequent unit operation performance. 

igh safety and purity demands lead to increased complexity of 

he vaccine purification process. This, often along with a low pro- 

uctivity and process capability, makes the downstream process 

ery expensive in both costs and time [ 6 , 7 ]. One of the main chal-

enges in developing vaccine purification processes is the separa- 

ion of critical impurities closely related to the product, such as 

ost cell proteins (HCPs) to a protein-antigen vaccine or genomic 

NA or RNA to a DNA or RNA-based vaccine, respectively. An- 

ther challenge is the preservation of the antigen structure during 

he purification process, as well as the antigen stability, as most 

ntigens are vulnerable to temperature, pH or salt concentration 

hanges. 

Fast vaccine process development is of utmost importance in 

ight of infectious outbreaks and pushing competitive market, 

hich highly depends on its design strategy for the purification 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Types of vaccines classified in whole pathogen, antigenic components of pathogen and nucleic acid vaccines [ 6 , 129–131 ]. 
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rocess [6] . Traditionally, vaccines are developed within 10 – 15 

ears, hence pharmaceutical companies desire to reduce the pro- 

ess development time drastically in every aspect. One of the rea- 

ons the first SARS-CoV-2 vaccines could be developed within 12 

ears, is the employment of an accelerated development timeline 

ue to parallelization of phases instead of sequential development 

8] . Additional reasons for such a quick development are the ap- 

lication of previous knowledge and production processes from re- 

ated viruses and existing vaccines (i.e. platform knowledge), and 

idely available government funding enabling parallelization, risk- 

aking and fast regulatory reviewing [9] . 

The ‘quality by design’ (QbD) paradigm [ 10 , 11 ] made the phar-

aceutical industry shift from a trial-and-error approach towards 

 more comprehensive, systematic, and efficient approach, with 

he purpose to increase process understanding and process control 

12–16] . The implementation of high-throughput process develop- 

ent (HTPD) approaches contributes to faster and more efficient 

rocess developments, additionally decreasing material consump- 

ion and improving cost-effectiveness [16] . HTPD is a combinato- 

ial approach of both high throughput experimentation (HTE) and 

odeling techniques. Recently Sao Pedro et al. [17] outlined the 

reas of major problems (e.g. cell culture, filtration and analyti- 

al tools) within HTPD, along with suggested solutions (microflu- 

dics, modeling and Process Analytical Technologies (PAT)) for the 

urpose of integrated and continuous bio manufacturing. Although 

his review is not focused on continuous biomanufacturing, the 

urrent limitations of HTPD are likewise applicable to the vaccine 

urification process development. 

Vaccine purification processes can differ enormously from each 

ther as they depend strongly on the type of vaccine and crude 

tarting material/host organism (e.g. fertilized eggs, bacterial-, 

ammalian-, and insect cells). Carvalho et al. [18] pointed out the 

nfluence of vaccine types on downstream process strategies and 

escribed into detail each vaccine purification step with a focus on 

nfluenza vaccines. A general overview of vaccine types is shown 

n Fig. 1 , being classified either as whole pathogen (inactivated or 

ttenuated), antigenic components (subunit) of pathogen or nu- 

leic acid vaccines, though slightly different classifications have 

lso been reported. 

In order to preserve the genetic stability of live and inacti- 

ated vaccines, the downstream process consist of only a few steps. 

he purification of protein recombinant or subunit vaccines in- 

olves a complex purification challenge because of the presence of 

CPs closely-related to the target protein [6] . Recently Jones et al. 

19] pointed out the concerns of high-risk HCPs and recommended 

 strategy for monitoring and eliminating the known impurities. 
2 
espite the great variance between different protein subunit vac- 

ine downstream processes, the generic order of purification steps 

s similar as shown in Fig. 2 . If the antigen (product of interest) is

roduced intracellular the purification process requires a cell lysis 

tep, while this step is not needed if the antigen is produced extra- 

ellular. Detailed purification schemes for certain vaccine types are 

utside the scope of this paper and can be found elsewhere. For 

xample, Josefsberg and Buckland [20] described the production 

rocess of several virus-based conjugate and DNA vaccines, while 

bdulrahman and Ghanem [21] summarized the most recent ad- 

ances in the purification of plasmid DNA vaccines. In the book of 

en et al. [6] , viral vaccines purification [22] and protein subunit 

accines purification [23] are described into more detail. 

Most of the current vaccine development approaches are based 

n design of experiments (DoE), in which multiple factors are 

hanged simultaneously to evaluate the underlying interactions, 

hereby obtaining a multidimensional model that correlates the 

ffects of various factors on the critical quality attributes (CQA), 

hich is an essential aspect within QbD guidelines [ 14 , 24 ]. How-

ver, the existing vaccine process development strategy requires 

igh experimental effort and little process understanding is gained 

hrough it. Moreover, the sequential determination of purification 

teps and individual process optimizations might lead to a subop- 

imal process design with respect to the objective, such as yield 

r costs [25–27] . A standardized approach, also known as platform 

rocess, as established for monoclonal antibodies (mAbs) [28] is 

et missing, mainly due to the large diversity between vaccine 

ypes. Even when considering only protein subunit vaccines, al- 

eady a very diverse range of proteins can be found due to a vari- 

ty of expression systems. 

A platform process for specific vaccine types would be highly 

eneficial in terms of process development time, knowledge, 

esources, costs and regulatory aspects [7] . Another often com- 

licated task is the precise quantitatively measurement and char- 

cterization of virus or bacterial particles, further complicated by 

he lack of rapid analytical technologies [ 7 , 22 ]. A trend within the

bD initiative is the use of PAT, allowing real-time measurements 

o ensure consistent product quality and performance, besides 

roviding a better understanding of the process [14] . Mechanistic 

odels rely on physical processes occurring during a certain 

eparation step and can therefore be of great merit to the process 

nderstanding, but also decrease experimental effort and allow to 

erform processes on different scales in silico . The use of AI tech- 

iques could eliminate shortcomings within the modeling area and 

ring modeling techniques to a higher level of applicability and 

sability. 
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Fig. 2. General process flowsheet for vaccines including the upstream and downstream part, from fermentation to the last formulating steps. The optional processing tech- 

niques for different types of vaccines are given below each unit operation. The solid line represent a purification process in which the antigen is produced intracellular, 

including the cell lysis. The dashed line shows a purification process for extracellular products excluding cell lysis. 

Fig. 3. Overview of two different process development approaches. Left: Design of Experiments (DoE) approach, which performs experiments based on statistical tools and 

evaluating the results by statistical analysis. This approach is commonly applied within biopharmaceutical industry. Right: Model-based process development approach, which 

employs targeted experiments to determine model input parameters such as isotherm parameters and column parameters. The model has to be validated before performing 

the optimization. 
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This review presents modern and future downstream process 

evelopment approaches and their application in (bio)pharmaceu- 

ical industry with a focus on chromatography, as this is the main 

urification technique for protein subunit vaccines. This paper aims 

o show the evolvement of model-based high throughput process 

evelopment approaches through the use of more advanced mod- 

ling techniques, such as empirical, mechanistic and hybrid mod- 

ling. The applicability and benefit using these methods are sup- 

orted by case studies from industry and academia. 

. Downstream process development methods 

The overall goal of process development is to design the op- 

imal purification process, by means of achieving purity targets 

t minimum costs and time efforts, while at the same time 

dhering to all regulatory requirements. Currently, vaccine de- 

elopment employs mostly DoE-based methods, though it could 

enefit from more advanced model-based process development 

pproaches, which are already used in other biopharmaceutical 

ranches, such as for the purification of mAbs. Fig. 3 shows two 

ypes of process development approaches, the DoE-based method 

nd a modeling-based method. In the following section, process 

evelopment approaches are described briefly. More comprehen- 

ive reviews on this topic can be found elsewhere [ 16 , 29 ]. 
3

.1. Experimental driven downstream process development 

.1.1. One-factor-at-a-time and design of experiments 

One-factor-at-a-time (OFAT) is a more traditional approach in 

hich one factor is changed during a series of experiments while 

he other factors are kept constant. In this method dependencies 

etween factors are neglected and therefore discovery of the op- 

imum is rather difficult and quite inefficient [30] . For that rea- 

on, the biopharmaceutical industry shifted more than a decade 

go to the statistics-based DoE approach to design and analyze ex- 

eriments, thereby obtaining more valuable information by con- 

ucting less experiments. The classical DoE-method is factorial 

esign. Experiments are performed on all possible combinations 

f factors with the purpose to identify effects of each factor as 

ell as interactions between factors on the response. An improve- 

ent on the classical DoE-screenings is definitive screening de- 

ign, which estimates the curvature effects and enables separa- 

ion of factors having a significant impact on the response from 

he factors having negligible effects. Oher methods offering a three 

evel multifactorial design are for example Box-Behnken [31] or 

entral composite designs. Hibbert D.B. extensively described the 

ost commonly used DoE methods with a focus on chromatogra- 

hy [ 32 , 33 ]. Various DoE software are available nowadays, such as 

esign-Expert, Modde and JMP, though other statistical software, 
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ike R, SPSS and various Python packages, can also be used for DoE 

urposes. 

.1.2. Parameter acquisition for modeling purposes 

An alternative experimental strategy is to determine parame- 

ers that serve as input for mechanistic or physical models. The 

se of mechanistic models has been established decades ago and 

s nowadays widely adopted by chemical industry, where some 

rocesses are even designed entirely in silico [34] . Only recently, 

iopharmaceutical and vaccine industry initiated this strategy into 

heir process development, in which the major challenge is often 

he complex feed mixture containing the product of interest (e.g. 

ntigen) together with thousands of proteins and impurities [23] . 

his is probably why mechanistic modeling together with param- 

ter acquisition has not been widely adopted yet, as it is nearly 

mpossible to experimentally determine and model thousands of 

roteins and impurities. However, HTE made it worthwhile to de- 

ermine model parameters even for more complex mixtures [35–

7] . Noteworthy, a validated model increases process understand- 

ng and enables to optimize the process in silico , resulting in time, 

aterial and costs savings [38] . For chromatographic purposes, as 

his is the main purification technique in protein subunit vaccines, 

he adsorption isotherm parameters describing the binding behav- 

or of components to the solid phase, are of utmost importance. 

xperimental determination of adsorption equilibria is required to 

stablish the isotherm parameters and can be obtained by batch 

dsorption experiments [ 36 , 39–42 ], frontal analysis, isocratic elu- 

ion or linear gradient elution [ 41 , 43 , 44 ] or by making use of in-

erse techniques, which minimize the difference between experi- 

ental and simulated elution profiles by tuning certain parameters 

 36 , 44 , 45 ]. Besides isotherm determination, column and resin char- 

cteristics must also be obtained in order to acquire a validated 

odel, however these are more straightforwardly obtained [41] . 

.1.3. High throughput screening (HTS) 

The introduction of liquid handling stations (LHS), about two 

ecades ago, allowed the acceleration of conducting experiments, 

lso known as HTE or HTS. Due to automation, miniaturization and 

arallelization it became viable to create large data sets while us- 

ng a reduced amount of sample volume and resources within a 

horter time-frame [ 46 , 47 ]. Another benefit of automation is the 

owered variability and superior precision [48] . Nowadays, LHS is 

 widely applied technique in both academia and industry and re- 

uces the process development time significantly [49–51] . As LHS 

llows to screen more conditions, it is more feasible to find opti- 

al conditions for a purification process. Apart from the system’s 

enefits there are certainly also some disadvantages pointed in 

iterature [ 52 , 53 ]. For example, the LHS’s limitation in accurately 

imicking the flow distributions of process columns [49] . HTS re- 

uires high understanding of efficient experimental design in order 

o make optimal use of the system, therefore it is rather a tool to 

e used than an approach on its own. 

.2. Expert-knowledge driven downstream process development 

.2.1. Universal 

Rules of thumb, available knowledge and experience of previ- 

us processes are the basis for expert knowledge or heuristic ap- 

roaches to design new production processes [ 29 , 54 ]. Using expert 

nsights is easy to apply and can speed up the process design by 

liminating combinations of unit operations with less promising 

esults [55] . Lienqueo and Asenjo [ 54 , 56 ] developed an expert sys-

em focused on downstream protein processes; this software uses 

atabases consisting of expert knowledge on universal process de- 

igns (heuristics) to support and accelerate decision-making for the 

election of a sequence of unit operations. Several handbooks, like 
4 
agel et al. [57] and GE healthcare [58] , outline general design 

euristics extensively. Most vaccine purification processes are also 

ased upon heuristics, as for example the purification of hepatitis 

 virus from mammalian cell cultures, in which the first step in- 

olves a low-cost anion-exchange chromatography to capture the 

roduct and remove a substantial amount of impurities and the 

ast step of the downstream process a polishing and desalting step 

sing size-exclusion chromatography [ 22 , 57 , 59 ]. A general example 

hat is almost entirely based on knowledge are platform processes 

s explained into more detail in the next paragraph. 

.2.2. Platform process 

Platform processes are used as ‘templates’ for designing an en- 

ire purification sequence for a specific type of molecule, utiliz- 

ng a pre-established series of unit operations [29] . The platform 

nstructions provide details of the operating conditions for each 

nit operation, corresponding to the overall purification process. 

ne of the key advantages is a reduced process development time, 

egulatory aspect and resources for similar molecules and accord- 

ngly decreased time-to-market and validation effort [57] . More- 

ver, the platform documents can be shared and aligned among 

ot only different departments, but also across different manufac- 

uring sites, serving as a site-independent process [60] . The plat- 

orm process approach is most suited for biopharmaceuticals with 

imilar characteristics and thus purification steps [ 28 , 57 ]. For ex- 

mple, mAbs are relatively well defined and platform processes 

re used to establish similar purification processes for new mAbs 

ariants. Detailed information about process-related contaminants 

uch as persistent HCPs and other impurities for the correspond- 

ng cell culture, i.e. CHO and hybridoma are known [60] . The order 

f purification steps includes protein A chromatography, low pH vi- 

al inactivation, IEX chromatography polishing steps, viral filtration, 

nd ultrafiltration/diafiltration. Only small changes are required in 

he purification process conditions to determine a new mAb vari- 

nt purification process. Other potential candidates for platform 

pproaches could be pDNA vaccines and influenza vaccines, both 

aving similar properties and purification steps [ 21 , 57 ]. However, 

Abs are relatively similar to each other in their properties, while 

rotein subunit vaccines vary greatly in their appearance, making 

t more difficult to standardize the purification process. 

.3. Model-based downstream process development 

In process engineering models play an important role, they aim 

o represent a real system in an abstracted mathematical format 

 61 , 62 ]. Bézivin and Gerbé [63] defined a model as “a simplifica-

ion of a system built with an intended goal in mind. The model 

hould be able to answer questions in place of the actual sys- 

em”. The intended goal related to process engineering could be for 

xample, control, simulation, design, monitoring or optimization. 

epending on the goal, different models can be appropriate [64] . 

odels help to understand complex problems and could provide 

otential solutions if the model is an adequate representation of 

he modeled system’s features of interest [65] . Running the model 

ith a given set of parameters is a simulation and hence an in- 

xpensive and safe way to run a virtual experiment [66] . For that 

eason, the number of experiments in laboratory can be reduced 

nd/or designed more efficiently, thereby reducing time and ma- 

erial consumption. Although, using models sounds attractive and 

romising, it does cost time, effort and knowledge to develop de- 

ent models that are able to fulfill the desired purposes. Moreover, 

here is a lack of educated people in this area that can develop and 

aintain scientific-, and engineering software. Within the near fu- 

ure, it is expected that more process engineers or scientist are fa- 

iliar with modeling, because most technical related studies pro- 

ide programming and data-processing courses nowadays. In or- 
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Table 1 

Overview of the main advantages and disadvantageous of different modeling approaches. 

Advantages Shortcomings 

Data-driven models - Requires no or little process understanding in advance 

- Takes less effort/time to develop the model 

- Easy to use and understand 

- Only valid in a predefined measured region 

- Extrapolation generally not applicable 

- Parameters have often no physical meaning 

- Data-collection might be an issue for the application and 

generalization of data-driven models in biomanufacturing industry 

Mechanistic models - Allows extrapolation and exploration of conditions beyond 

measured results 

- Acquires process understanding- Parameters have a physical 

meaning 

- Requires process understanding in advance 

- Complex to develop and hence time and effort 

- Determination of model parameters can be difficult 

Hybrid models - Eliminate drawbacks of certain modeling approaches 

- Improved model accuracy and extrapolation properties- Less 

data is required compared to purely data-driven models 

- Requires additional effort, time and knowledge to develop hybrid 

models 

- Data-collection can be challenging 
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er to build a model two main resources are essential, knowledge 

f the process, translated into laws of nature, and the collection 

f data obtained from the real system [66] . In process engineer- 

ng, a distinction can be made between first-principles, mechanis- 

ic or knowledge-driven models and data-driven or empirical mod- 

ls, respectively known as transparent white-box and less transpar- 

nt black-box models [61] . A combination of both is named hybrid 

emi-parametric models. An overview of the main advantages and 

isadvantages is given in Table 1 . 

.3.1. Data-driven models 

Data-driven or empirical models attempt to describe the input- 

utput relation based upon observed experiments within a prede- 

ned design space, such as artificial neural networks (ANN), sta- 

istical and regression models [64] . The biopharmaceutical indus- 

ry often makes use of statistical models, either by executing a 

redefined set of experiments using DoE and an appropriate sta- 

istical data analysis method, such as response surface methodol- 

gy (RSM), or by employing a multivariate data analysis using an 

xisting dataset [67] . RSM is a well-known empirical model and 

escribes the relation of a response between different tested fac- 

ors within a DoE, and produces a model describing the mathe- 

atical relationship [32] . This statistical (black-box) model solely 

bserves the factor-to-response correlation without gaining fun- 

amental mechanistic (physiochemical) understanding of the es- 

imated parameters. By making use of DoE and regression analy- 

is through first- and second order polynomials the optimum in- 

ut combination can be estimated [68] . However, fitting data to 

econd order polynomials is a major drawback of RSM, as fre- 

uently not all curvatures within the systems can be described by 

he second order polynomial [69] . DoE in combination with em- 

irical modeling has been widely applied to design downstream 

urification processes in biopharmaceutical industry and academia 

70–72] . The effect of high-salt solution on RNA precipitation and 

DNA recovery was investigated using DoE and linear regression 

odels [71] . And more recently, Chiang et al. [73] evaluated the 

mpact of chromatographic parameters on virus clearance when 

witching from a single to multicolumn operation utilizing DoE. 

 major limitation of data-driven models is that they are merely 

alid in a defined region of measured variables and only able to 

redict variables within that region, making extrapolation gener- 

lly highly inaccurate. Moreover, little process knowledge can be 

xtracted, because the parameters are often just correlations [74] . 

n the other hand, data-driven modeling requires no process un- 

erstanding in advance and is less time consuming compared to 

echanistic modeling [74] . 

.3.2. Mechanistic models 

Mechanistic, first-principle, or knowledge-driven models at- 

empt to describe the inner mechanisms and phenomena occurring 
5 
n a process or system based upon knowledge about the process. 

hese models consist of material and/or energy balances together 

ith transport and thermodynamic phenomena and have a fixed 

tructure, meaning the parameters might have a physical interpre- 

ation [74] . The model parameters are estimated by experimental 

ata or physical correlations. The physical processes occurring dur- 

ng a purification process can be translated into mathematical sim- 

lation models. A validated mechanistic model allows to explore 

arious conditions in silico and therefore enables to acquire opti- 

um operating conditions efficiently [75] . The phenomena taking 

lace inside a chromatographic column are well described in lit- 

rature, Ruthven [76] extensively outlined the dynamics and ad- 

orption processes. Kinetic or rate models are most common in 

ractice, including dispersive factors, like mass transfer and disper- 

ion effects, and equilibrium factors, such as adsorption isotherms, 

onic dissociation and intermolecular association [41] . The three 

ost prominent kinetic models are lumped kinetic model, lumped 

ore model, and general rate model, which are listed in order of 

omplexity. The main difference between these models is the de- 

ree of covering pore diffusion effects [77] . However, it applies 

or all mechanistic models that isotherm parameters are crucial as 

xplained previously in Section 2.1.2 , for which numerous bind- 

ng models exist, such as linear, Langmuir [78] , steric mass ac- 

ion [43] and mixed-mode [39] . The utilization of chromatographic 

odels varies from process synthesis, optimization and control 

79–85] to scale-up, resin selection and robustness checks [86–89] . 

ne step further is the simulation of a combination of integrated 

hromatography and other conditioning steps to find the over- 

ll optimum purification process [ 5 , 25 , 90–93 ]. Nowadays, various 

ommercial software of chromatographic mechanistic models are 

vailable, e.g. GoSilico (now part of Cytivia, and formally known as 

hromX) [94] , Aspen Chromatography, DelftChrom, CADET [95] and 

hromaTech [96] . 

Alternative in silico methods for adsorption experiments have 

een investigated for several years. Molecular dynamics simula- 

ions attempt to describe the interaction between resin-proteins 

n a detailed atomic level [97–99] . Quantitative structure-activity 

elationships (QSAR) combine molecular properties with empirical 

odeling to find correlations among retention behavior and pro- 

ein surface properties [100–102] . This kind of molecular model- 

ng can be used to predict the retention behavior of proteins on 

esins to reduce process development times [103] . However, often 

etailed information is required about each component, such as 

mino acid sequence or crystal structure and also a large amount 

f experiments [75] . 

Mechanistic models can explore conditions over a wide range 

nd even beyond the observed measured results, possessing an 

ncreased extrapolation capability compared to data-driven mod- 

ls [74] . This contributes to process understanding, which is line 

ith the QbD initiative, although mechanistic modeling also re- 



D. Keulen, G. Geldhof, O.L. Bussy et al. Journal of Chromatography A 1676 (2022) 463195 

Fig. 4. Hybrid modeling configurations, white-boxes represent mechanistic/first- 

principle models and black-boxes represent data-driven models [61] . Serial ap- 

proach (A, B) and parallel mode (C). 
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uires physical understanding. The major drawback of knowledge- 

ased models is their complexity, hence requiring more develop- 

ent time compared to data-driven models. 

.3.3. Hybrid (semi-parametric) models 

Hybrid (semi-parametric) modeling combines parametric (i.e. 

rst principle-, mechanistic-, and knowledge-based models) with 

onparametric (i.e. data-driven models) in order to eliminate draw- 

acks of individual approaches and get the best out of both 

61] . Von Stosch et al. [ 61 ] extensively reviewed the hybrid semi-

arametric modeling framework and the various applications in 

bio)chemical engineering concerning process monitoring, control, 

ptimization, model-reduction and scale-up . The parametric and 

onparametric models can be configured in series or parallel, 

epending on the scope of the model. Usually a parallel mode 

s recommended when the mechanistic (white-box) model per- 

ormance is limited or insufficiently accurate and the addition 

f a nonparametric (black-box) model may improve the estima- 

ions, Fig. 4 c. A serial approach is often utilized for reducing 

omplexity of mechanistic models by determining parameters us- 

ng nonparametric models, Fig. 4 a, or when the results of mech- 

nistic models function as an input for nonparametric models, 

ig. 4 b [61] . 

The usefulness of hybrid modeling lies within its capability to 

ost-effectively and efficiently solve a complex problem and de- 

elop a model. Other advantages are an improved model accu- 

acy, transparency and extrapolation properties, besides gaining 

 broader process understanding [74] . However, the challenge is 

nowing in what manner different type of models can be com- 

ined to develop a hybrid model. Therefore, thorough understand- 

ng on both data-driven and mechanistic models is desired, as well 

s knowledge to acquire the correct data. Hybrid modeling is gain- 

ng more interest in both industry and academia, and seems to be 

 promising approach to overcome deficiencies in data-driven-, and 

echanistic models. 

. High throughput process development 

.1. Single or double purification steps 

Hybrid process development approaches combine experimen- 

al and modeling tools to design a process. After the introduc- 

ion of the LHS, hybrid approaches gained a special interest as 

HS enabled experimentation in high throughput manner. Utiliz- 

ng HTE in relation to process design is known as HTPD, com- 

ining HTS/HTE with empirical or mechanistic modeling is named 

odel-based HTPD [ 16 , 38 ]. The implementation of HTPD pursues 

he QbD paradigm in terms of process and product understand- 

ng, hence contributing to high and stable product quality as well 

s process robustness [47] . The establishment of HTPD arose about 

5 years ago [ 51 , 55 , 104 , 105 ] and evolved ever since as an efficient

nd cost-effective method broadly acknowledgement by industry 

15] . (Model-based) HTPD can be applied in various development 

tages and for different purposes, like resin and solubility screen- 

ngs, design-space definition, risk-assessment, process robustness 
6 
nd control. In the review of Baumann and Hubbuch [29] , sev- 

ral commercial miniaturized HT-suitable systems in both up and 

ownstream process development are described. The technical re- 

iew of Lacki [52] outlined the most frequently used chromatogra- 

hy HT equipment, such as microtiter filter plates, prefilled pipette 

ips and robocolumns, nowadays ranging from 50 to 600 μL. Here, 

TPD research from academic and industrial researchers are dis- 

ussed. One can find more details on these and other HTPD ap- 

roaches in Table 2 . Depending on the purpose of the research 

 different HTDP approach is suitable, for example resin selec- 

ion usually goes together with the use of empirical models while 

echanistic modeling is preferred for an overall process design in- 

luding multiple purification steps. 

Bhambure and Rathore [50] proved a tremendous increase in 

roductivity (170x higher) utilizing a HTPD platform (2 and 6 

L resin volume) against the traditional laboratory scale (0.5 mL 

esin volume) for defining the characterization space of an ion 

xchange chromatography step using DoE. A more practical and 

eneral HTPD workflow was developed by Welsh et al. [106] in- 

olving a multistep approach of HT chromatography techniques as 

 guidance for defining the operating space. No detailed model- 

ng tools were implemented as accurate performance predictions 

ere not the aim, only isotherm models to regress the partition- 

ng coefficient and maximum binding capacity were used. Weigel 

t al. [107] applied a similar method as Welsh et al. to investigate 

he effectiveness of hydrophobic interaction chromatography (HIC) 

s a final purification step for a cell culture-derived influenza A 

nd B virus. 96-well filter plate experiments were used for screen- 

ng various resins and salt concentrations, followed by conven- 

ional lab-scale columns for dynamic binding capacity character- 

zation. However, the major reason for choosing a rational step- 

ise method over mathematical modeling was the lack of avail- 

ble virus purification data by HIC to be able to determine model 

arameters. As vaccine platform processes are barely available yet, 

add Effio et al. [108] initiated a capture step as first part of a 

eneric purification platform process for virus-like particles (VLP). 

add Effio et al. [108] established a one-step removal of HCPs and 

NA from a complex VLP feedstock with an anion-exchange mem- 

rane capture step by making use of HTE and mechanistic mod- 

ling for in silico optimization purposes. Although equilibrium and 

inding capacities of membrane chromatography are often limited, 

t high flowrates membrane chromatography outperforms conven- 

ional packed bed chromatography in terms of productivity and for 

hort residence times also in bed utilization [109] . It is expected 

hat in the near future membrane materials with higher binding 

apacities will become available and therefore could overcome the 

estriction on surface area per unit volume of resin. The advance- 

ent in membrane chromatography technology is definitely inter- 

sting to the biopharmaceutical industry. 

Even though chromatography is one of the main purification 

echniques for biopharmaceuticals and vaccines, other downstream 

rocess techniques are also HT-suited. Precipitation is a well- 

nown technique to isolate a desired component such as a pro- 

ein, DNA or virus and proven to be HT-suited [ 110 , 22 ]. This sep-

ration technique depends on the physical and/or chemical inter- 

ction between the precipitating agent (e.g. calcium chloride, am- 

onium sulfate or PEG) with one or several of the components in 

hich solubility is the most critical thermodynamic property [111] . 

queous two-phase systems (ATPs) could also be an alternative to 

hromatography as it is based on liquid-liquid extraction employ- 

ng two immiscible phases to separate components from mixtures. 

T techniques in combination with statistical [ 112 , 113 ] or mathe- 

atical/thermodynamic [114] models are a convenient method for 

haracterizing these systems. 

Analytics to monitor the process are just as important as the 

urification techniques itself. Analytics, however, remain a bottle- 
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Table 2 

Overview of HTPD approaches which have been applied in industry and/or academia using HT and/or modeling techniques. 

Purpose of research 

Experimental Method Modeling method Application, unit 

operation and stage of 

development 
Refs. 

HT DoE Lab-scale Empirical or Mechanistic 

Defining characteriza- 

tion/operating 

space 

Robocolumns for condition 

screening 

Full factorial DoE, 

varying two process 

variables, pH and buffer 

molarity. 

None Empirical: Regression analysis by Least square 

fitting and optimization using contour profiler. 

- GCSF 

- IEX 

- Early 

[50] 

Batch adsorption experiments 

for isotherms and 

Robocolumns breakthrough 

experiments (DBC) 

None Lab-scale columns, validation 

experiments 

Mechanistic: Regression of partitioning 

coefficient and maximum binding capacity, 

Langmuir isotherm model. 

- mAb 

- IEX, MMC 

- Early 

[106] 

Resin selection and 

operating conditions 

Batch binding and condition 

screening for resin-protein 

interactions 

None Lab-scale columns, 

comparison of results 

between lab-scale columns 

and HTS filter plate results 

Calculation of partition coefficient and the 

separation factor 

- mAb IgG1 from CHO 

- HIC 

- Early 

[125] 

Batch binding and conditions 

screening for resin-protein 

interactions 

None None Empirical: Partition coefficient of the product 

fitted to a response surface model (ANOVA) of 

pH and total chloride concentration 

- mAb IgG1 from CHO 

- CEX, AEX 

- Early 

[126] 

Resin selection and salt 

concentration 

Batch adsorption experiments 

for condition screening 

None Lab-scale column, 

breakthrough experiments 

(DBC – 10%) 

None - Virus, influenza A, B 

- HIC 

- Early 

[107] 

Design bind-and-elute 

membrane process 

Batch binding and buffer 

screenings 

Buffer screenings Lab-scale column, membrane 

characterization, breakthrough 

experiments 

Mechanistic: General rate model for radial flow 

chromatography 

Regression and chromatogram fitting for 

estimating isotherm and model parameters 

- Virus Like Particles 

- AEX, membrane 

chromatography 

- Early and late 

[108] 

Resin selection, 

optimization and defining 

operation window 

Robocolumns for resin 

screening and optimization 

screenings 

Definitive screening 

designs for resin 

screening 

Central composite 

designs for 

optimization screenings 

Lab-scale column for model 

verification 

Empirical: Multivariate data analysis and usage 

of multi-criteria decision-making techniques. 

Process parameter optimization and 

Robustness analysis 

- Highly aggregate 

antibody solution. 

- CEX 

- Early 

[127] 

Resin selection, multiple 

unit optimization 

Robocolumns, bind-elute mode, 

resin and operating condition 

screening 

None None Empirical: Multi-objective mixed integer 

nonlinear programming model. Adopted 

ε-constraint method solved by Dinkelbach’s 

algorithm 

- Recombinant Fc 

Fusion protein 

- CEX - MMC 

- Early 

[86] 

Flowsheet optimization, 

resin selection, design of 

process 

Batch adsorption experiments 

(HT) for isotherm determination 

and resin selection. 

None Lab-scale column experiments 

for validation and acquisition 

of molecular properties 

Mechanistic: Flowsheet optimization 

top-to-bottom approach using chromatographic 

mechanistic models including adsorption 

isotherm models 

- mAb from hybridoma 

cell culture 

- CEX, AEX, HIC, SEC 

- 4-steps 

- Early and late 

[ 87 , 90 , 128 ] 

Robocolumns to determine 

isotherm parameters 

Batch-uptake experiments for 

determining maximum binding 

capacities 

None Lab-scale column experiments 

for validation 

Mechanistic: Flowsheet optimization, global 

optimization along with ANN and Local 

optimization along with Mechanistic models, 

including isotherm models 

- mAb IgG1 from CHO 

- CEX, MMC, HIC, 

UF/DF 

- 4-steps 

- Early and late 

[ 5 , 36 ] 

None None Lab-scale breakthrough 

column experiments. 

Mechanistic: Flowsheet optimization using 

mechanistic models, including isotherm models. 

- applied to three 

model proteins 

- CEX, AEX 

- 2-steps 

- Early and late 

[25] 

7
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eck during HTE, and consequently slow down experimentation 

onsiderably. Konstantinidis et al. [115] provided a strategic assay 

eployment that helps selecting appropriate analytical methods, 

hile preserving data quality. Nonetheless, finding innovative ways 

o accelerate the analytical throughput would be of great merit. 

.2. Overall purification process 

The studies described in the previous paragraph focused mainly 

n applying HTPD to one or two sequential purification steps, but 

hereby do not consider the overall purification workflow. Design- 

ng a downstream process by optimizing each unit operation indi- 

idually could lead to a suboptimal process design, as small vari- 

tions in one-unit operation may affect the performance of sub- 

equent following purification steps. The combination of HT and 

odel-based optimization approaches for a sequence of unit op- 

rations has seldom been studied. Nfor et al. [90] established a 

ystematic approach to rationally define the protein purification 

rocess utilizing a top-to-bottom approach. The least promising 

owsheets were eliminated at each tree-diagram level by means 

f flow-sheet selection with the aim of keeping a minimum num- 

er of purification units. Instead of sequential optimization, which 

ight generate a suboptimal process [ 25 , 26 ], Huuk et al. [25] pre-

ented a simultaneous two-step ion exchange chromatography pro- 

ess flowsheet optimization, including salt-gradient shapes and 

ut-points for fraction collection. Pirrung et al. [5] even proved the 

easibility of simultaneous optimization of an integrated process 

onsisting of three chromatographic steps (e.g. cation exchange, 

ydrophobic interaction and mixed-mode), including buffer ex- 

hange steps in between (e.g. ultra- and diafiltration) applied to 

 complex biological feedstock purification. First the isotherm pa- 

ameters were acquired utilizing HT techniques as illustrated in 

ore detail in previous work [36] , hence other parameters were 

btained by conventional lab-scale experiments. The use of ANN 

or finding suitable starting conditions for the local optimiza- 

ion using mechanistic models enabled circumvention of speed- 

imitations [ 5 , 27 ]. These examples to optimize an overall down- 

tream process require a comprehensive combination of modeling 

nd experimental methods. If more HTPD approaches are estab- 

ished that combine efficiently all available technologies (e.g. LHS, 

odeling-, analytical-, and data-processing tools), this optimiza- 

ion strategy could become more interesting. 

. Artificial intelligence in process development 

The interest in HTPD raised after the introduction of HT tech- 

ologies, having the major benefit to generate more data while 

onsuming less material. Nevertheless, these arising technologies 

till face a number of hurdles. Experimentally transferring every 

tem into HT mode, including analytics, remains a burden and 

lthough more data is being produced, processing and handling 

hese data efficiently is still challenging. Modeling is a promising 

ool to close this gap. Further advancements of modeling are dis- 

ussed in the following paragraph. 

While complex mechanistic models attempt to describe the 

echanisms and thermodynamic phenomena, determining certain 

arameters is rather difficult. Simplifying models could avoid cer- 

ain difficulties, however, oversimplifications may cause inaccurate 

redictions and meaningless results. The optimal model should be 

s simple as possible while still gaining high or sufficient under- 

tanding. Moreover, a trade-off between accuracy versus speed has 

o be made especially when running optimizations. This led to the 

uestion; how to reduce the computational time effort or simplify 

omplex models while retaining a similar level of accuracy and/or 

etail. 
8 
Although ANNs were already used in the late 90 s to predict 

etention times in chemical chromatography [ 116 , 117 ]. Due to the 

eneration of larger data-sets and better computer systems in re- 

ent years, the use of AI gained popularity in various technol- 

gy fields, likewise within the biotechnology area. In 1992 Psicho- 

ios and Ungar [118] presented the first hybrid neural network- 

rst principles approach applied to model a fed-batch bioreactor. 

his hybrid model used a neural network model to estimate un- 

nown process parameters serving as an input to a first principle 

odel, resulting in an improved inter- and extrapolating capability, 

nd understanding over merely “black-box” neural networks. Von 

tosch et al. [61] extensively reviewed the hybrid semi-parametric 

odeling framework, as explained in 2.3.3., and the various ap- 

lications in (bio)chemical engineering concerning process mon- 

toring, control, optimization, model-reduction and scale-up. Na- 

rath et al. [119] established an optimization framework using a 

erial white- and black-box configuration ( Fig. 4 ) to find the op- 

imal design for a chromatographic process applied to a binary 

nd tertiary mixtures. After obtaining the physical model param- 

ters experimentally, numerous simulations were performed un- 

er various conditions using the physical model (i.e. white-box) 

or training the neural network. Finally, the optimal operating con- 

itions for several purity levels were identified by using the neu- 

al network to accelerate the computation. Likewise, Pirrung et al. 

 5 , 27 ] used an ANN to accelerate a flowsheet optimization con- 

isting of three chromatography and UF/DF units. However, here 

he ANN was used to find adequate starting conditions during the 

lobal optimization to be used for the local optimization, which 

as performed together with a mechanistic model in order to as- 

ure realistic and accurate results. A speed improvement of 70% 

as found, including training of the networks, compared to using 

olely mechanistic models for the optimization. Reducing the com- 

utational cost was the main objective for these latter two exam- 

les (Nagrath et al. and Pirrung et al.), and therefore using ANNs 

as advantageous. However, the data-driven model, here ANNs, 

epends on the accuracy of the mechanistic model and so limits 

he predictive power of ANNs. Recently, Nikita et al. [120] showed 

 novel approach making use of reinforcement learning (RL) to in- 

rease computational efficiency during a continuous chromatogra- 

hy process optimization. Each mechanistic model simulation is 

ewarded according to a RL-method and consequently the opti- 

ization criteria (design space) are adjusted to accelerate the con- 

ergence of optimization. The optimal flowrate, directly related 

o yield and purity demands, was found three times faster us- 

ng the RL based optimization method compared to conventional 

rial and error methods. However, thorough understanding of the 

L-principle and mechanistic modeling is required to develop this 

L-method. Apart from using hybrid semi-parametric modeling for 

ptimization intentions, other research showed the usefulness of 

lack-box modeling to estimate certain white-box model parame- 

ers that are hard to determine. Wang et al. [121] used neural net- 

orks to directly derive mass transfer, isotherm and characteristic 

harge parameters from experimental chromatograms, after which 

hese parameters served as input for the mechanistic model. In 

his way, time-consuming experimental methods for determining 

hese parameters were circumvented. However, this approach re- 

uires still a considerable number of experiments. In mechanis- 

ic filtration models the flux is a key parameter, but predicting 

his parameter accurately might be quite complex. Therefore Krippl 

t al. [122] used an ANN to determine the flux using transmem- 

rane pressure, cross-flow velocity and concentration as input pa- 

ameters. Placing the hybrid model in series enabled to perform 

 multistep ahead prediction of the concentration over time. In 

eneral, data-driven models combined with white-box models can 

e advantageous in terms of prediction accuracy, computing and 
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odel development efficiency and enhanced extrapolation proper- 

ies [61] . 

With an eye on the future more applications of hybrid modeling 

pproaches are expected, in both industry and academia. In order 

o realize this prospective, more experts in modeling are needed to 

evelop and maintain these software applications. Moreover, the 

odeling techniques utilized in the HTPD can also be used for 

rocess control and optimization in later development stages and 

anufacturing processes. One step ahead is industry 4.0, known as 

he latest revolution and aiming to digitalize the whole manufac- 

uring process. From process control to decision-making, all moni- 

ored data is efficiently collected, which in turn is also valuable for 

rocess development [123] . In order to realize Industry 4.0, digital 

wins are highly essential, defined as a virtual counterpart of the 

hysical process and their interconnection [124] . 

. Summary and conclusion 

Vaccination protects millions of people from infectious dis- 

ases and, because a high product quality is pivotal, the down- 

tream processing is likewise as important. Downstream process 

perations in manufacturing have a direct influence on time-to- 

arket, product quality and cost of goods. Therefore, modernizing 

he strategies for developing processes could be of great merit. The 

rge to decrease the process development timeline of vaccines has 

aised, as well as the need for deeper process understanding as 

tated by the QbD guideline. 

The introduction of HT technology accelerated experimental 

ata generation and allowed to investigate the influence of pa- 

ameters more thoroughly and systematically. However, HT also 

equired to enhance data-processing and modeling techniques. 

echanistic models provide insights on the inner working mech- 

nism of unit operations and are being increasingly adopted by 

ndustry in recent years, proving they add deeper process under- 

tanding and greater application possibilities. The combination of 

T and modeling techniques led to HTPD approaches, acquiring 

nd using data in a more efficient and purposeful way, thereby 

lso enabling standardized process development approaches. The 

uture direction in process development is to design and optimize 

he overall downstream process in silico , for which only a lim- 

ted number of model calibration and validation experiments are 

eeded. Hybrid (semi-parametric) modeling can help to ease the 

odel development or improve the accuracy by making optimal 

se of both mechanistic and data-driven models. Recent research 

as shown the potential of artificial neural networks in addition 

o mechanistic models for circumvention of computational speed 

imitation or estimation of parameters. 

With these emerging new technologies, it will now be possi- 

le to standardize process development workflows, provided that a 

roficient combination of experimenting and modeling techniques 

s utilized. Creating a generic process development workflow will 

nhance process development time and shared knowledge among 

ifferent departments and manufacturing sites. 
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