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Abstract

In inspection and display scenarios, reconstructing and rendering the entire surface of
a building is a critical step in presenting the overall condition of the building. In build-
ing reconstruction, most works are based on point clouds because of their enhanced
availability. In recent years, neural radiance fields (NeRF) have become a common
function for implementing novel view synthesis. Compared to other traditional 3D
graphic methods, NeRF-based models have a solid ability to produce photorealistic
images with rich details that point clouds based methods cannot offer. As a result,
we decided to investigate the performance of this technique in architectural scenes and
look for ways to improve it for more significant scenes.

This thesis explores the ability to reconstruct large-field scenes with NeRF-based
models. NeRF introduced a fully-connected network to predict the volume density and
view-dependent emitted radiance at the special location, which will be projected into
an image through classic volume rendering techniques. Due to the limitation of near-
field ambiguity and parameterization of unbounded scenes, the original NeRF does not
perform well on 360° input view, especially when the inputs are sparse. An inverted
sphere parameterization that facilitates free view synthesis is introduced to address
this limitation so that the foreground and background views can be trained separately.
Besides that, we also compare the performance of tracing different light geometries,
ray and cone, respectively. Meanwhile, to generate the reconstructed scene precisely,
raw RGB images should be pre-processed to estimate the corresponding camera pa-
rameters. Finally, customized camera paths should be prepared to generate the final
rendered video.

According to our experiments, training foreground and background separately is a
promising method to solve practical large-scale scene reconstruction problems. A com-
plete wrap-around view of the target building can be obtained using adjusted camera
path parameters. Furthermore, introducing conical frustum casting into the original
model also provides an alternative method to implement reconstruction. We named
this method mip-NeRF++, which can contribute to the final results to some extent.
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Introduction 1
1.1 Background and motivation

Large-scale buildings play a crucial role in our modern world. They provide a variety
of vital tasks in our everyday lives and the city’s operations. In addition to all the
practical usages, the artistic property of buildings also attracts people from all over the
world to visit and study. People wish to look at some typical structures and investigate
the specifics for a variety of reasons. Building safety inspectors, for example, require a
vast amount of details to evaluate the building’s state; rebuilding old structures may
also provide historians with a thorough picture.

Many models have been constructed using modern graphics techniques to create
photo-realistic visuals from hand-crafted scene representations. However, viewing a
building remotely on another side of the planet and producing shapes, materials, light-
ing, and other characteristics of scenes remains a challenging task for people. In such
a task, the first difficulty to be solved is the limitation of reconstructing a large-scale
scene. Compared to small-scale processing scenes, many details of large-scale scenes
may usually be lost because of the limitations of camera resolution and the interference
between camera views. Besides that, reconstructing a building in an outdoor environ-
ment also increases the difficulty. This is most noticeable in the impact of changing
lighting and a more intricate background. Furthermore, in order to broaden the scope
of our project, we decided to explore a method that can reconstruct the object with
purely using RGB images. As a result, some essential parameters must be estimated
in advance to support the reconstruction.

As a result, this thesis will mainly focus on solving the aforementioned problems
and developing a method to implement 3D reconstruction and rendering using neural
radiance fields (NeRF) based techniques.

1.2 Problem statement

In this project, a batch of multi-view RGB images, which were captured by a drone,
was given, and all of these images were shot at the target building, a modern office
building in Singapore. The task is first to reconstruct a digital model containing sur-
face information about the building. Then using the representation to render some
continuous images to generate videos, which show the observation from a 360-degree
angle of view towards the building.

To achieve this function, we aim to use the current state-of-the-art model, neural
radiance fields (NeRF), as the core algorithm. NeRF provides the entire pipeline from
generating graphical representation to rendering video results. The visualized presen-
tation of this process is shown in figure 1.1. However, there are two critical restrictions:
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large-scale scenes and lack of camera parameters. Researchers usually use standard
and small-scale objects as experimental targets for academic purposes. These datasets
usually contain only the object that needs to be rebuilt with high resolution to maintain
detailed textures and clean backgrounds. However, in practical projects, the object we
need to reconstruct is hundreds of times larger than the experimental subject. For this
reason, more crucial details may be lost, and more inference noise will be included,
making recreating the whole and clear object surface much more challenging. Mean-
while, because of the lack of camera parameters necessary for building’s neural radiance
field, pre-processing is also inevitable to estimate accurate camera information. This
thesis will provide further information on how to solve these two challenges as well as
a comparison of alternative solutions.

Figure 1.1: The whole pipeline.

1.3 Commonly-used neural rendering approaches

In this section, several of the most popular methods of neural rendering will be pre-
sented and compared. Finally, we will explain why we choose the NeRF-based method
to complete this project and its application prospects.

By using traditional computer graphics, we can generate high-quality controllable
imagery of a scene with all physical parameters provided. In recent years, with the
rapid development of deep learning, using neural rendering methods to generate photo-
realistic results in a controllable way has generally become the preferred method. The
powerful learning ability of neural networks can overcome the difficulty of collecting
physical parameters by estimating them. In general, the target of neural rendering is
finding the mapping I = M(c) between observations of real-world scenes and the cor-
responding output image I ∈ RH×W×3, where H and W are the height and width of im-
ages. However, the network cannot produce RGB results directly; several physics-based
scene synthesis approaches disentangle the projection and other physical processes from
the 3D scene representation. This procedure aims to utilize the interaction of the light
and texture of the object as well as the camera to estimate the exterior of the target
under observation from different views. Specifically, there are two main steps.

The first stage is scene representation which transfers visual sensory data into con-
cise descriptions, including point clouds, implicit and parametric surfaces, meshes, and
volumes methods. In general, all these approaches can be classified into two groups.
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The first group only focuses on surface representation by calculating the properties of
the surface of the object implicitly or explicitly. Another group does not estimate the
appearance directly but stores volumetric properties such as densities, opacities, or oc-
cupancies and multidimensional features such as colours or radiance. These techniques
will be elaborated in Section 1.2.1 and 1.2.2.

Afterwards, as the 3D geometry and the scene’s appearance have been generated,
these models need to be converted into images as the final result through rendering. In
general, there are two main methods: ray casting and rasterization. More explanations
of these two terms will be detailed in Section 1.2.3.

1.3.1 Surface representation

1.3.1.1 Point cloud

A point cloud consists of a collection of data points in Euclidean space. By arranging
the specific position of a significant amount points in the XYZ coordinates, the object’s
surface can be viewed from some distance away. Meanwhile, more details such as RGB
values or surface normals are also generated as additional attributes to obtain more
photorealistic results. An example from the famous ”Building Rome in a Day” [1] is
shown in figure 1.2.

Figure 1.2: Effect of representing the target surface with point clouds [1].

Over the past decades, point-based rendering has been one of the most frequently
used methods in computer graphics. In 1985 [36], M. Levoy and T. Whitted proposed
a points-based display primitive model that first converts geometry into points and
renders those points. After that, point-based representations introduced elliptical sur-
face splats [82] to provide better approximation results. Since point-based models are
usually acquired by range scanning or image-based reconstruction methods, which may
cause problems of noise and artefacts, some techniques [52] [72] [10] are proposed from
point-sampled geometries. Furthermore, more rendering strategies [21] [4] were also
proposed to generate continues images and improve rendering efficiency.
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In recent years, the development of deep learning has boosted the progress of point
cloud-based rendering dramatically. For instance, [7] can generate high-quality point
rendering images very efficiently, and [53] developed approaches that replace traditional
hole-filling techniques to reduce blurriness. In ADOP [57], a stochastic point discarding
technique was designed for efficient multi-layer rendering of large point clouds.

1.3.1.2 Polygonal meshes

Mesh-based representation approaches aim to collect vertices, edges, and faces that
make up a 3D object. Triangles, quadrilaterals, or other simple convex polygons are
combined to represent a piece-wise linear approximation of a surface. Figure 1.3 shows
an example of using polygonal meshes to represent the surface of a dolphin. Because
representing a surface with polygonal meshes needs to calculate linear equations, which
is simple and fast, it is the most commonly-used boundary representation for a 3D
graphics object.

In practice, the vertex’s location needs to be predicted using trained neural net-
works. Since renderers are usually differentiable, the vertex positions and the vertex
attributes can be optimized to reproduce an image. Besides using vertex attributes,
texture map is another commonly-used strategy to store surface attributes with a neu-
ral network, e.g., to predict dynamically changing surfaces [8]. Then the next step is to
determine the specific coordinate of each 2D texture attached to the mesh’s vertices.
Using barycentric interpolation, discrete texture coordinates can be computed for any
point in a triangle, and the attribute can be retrieved from the texture using bilinear
interpolation. Meanwhile, continuous textures can be generated by parameterizing the
function through an MLP to predict colour values for each surface point [50]. Com-
pared to discrete representation, continuous methods overcome the limitation of low
resolution and the heavy dependence on task-specific shape parameterization.

1.3.1.3 Implicit surfaces

A continuous zero-level-set equation defines implicit surfaces in Euclidean space, which
allows intuitive handling of complex topology. For instance, a unit sphere can be ex-
pressed using the implicit function f(x) = 1 − |x| for points x ∈ R3, points on the
sphere are coordinates when f(x) = 0. If the function equals a positive value, the point
is inside the surface and vice versa. Figure 1.4 illustrates an example of this technique.

For classical surface representation methods, there are two main branches: blobby
surface and algebraic surface [67]. The implicit functions of a blobby surface are the
sum of radially symmetric functions with a Gaussian with a particular centre and stan-
dard deviation. The two blobby spheres will melt together when they are close enough
to each other. The blobby function is usually expressed as an exponential function.
Sometimes, authors [49] may also use a piecewise polynomial function to simplify the
arithmetic process. Meanwhile, various shapes can be created with the blobby approach
by using ellipsoidal rather than spherical functions. On the other hand, algebraic sur-
faces are described by one or more polynomial expressions in x, y and z depending
on their complexity. Much of the work on this method has been devoted to fitting an
algebraic surface to a given collection of points. At the same time, an entire surface can
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also be generated easily by piecing together many separate algebraic surface patches.
Nevertheless, the drawback of this approach requires much machinery to smooth joins
across patch boundaries.

Most recent studies have focused on model implicit functions with multi-layer per-
ceptron (MLP) because of its powerful expressive representation and low memory con-
sumption. There are two main application scenarios. The first is implementing geome-
try and appearance scene representation [18] [50] and another one is rendering free-view
scenes [63] [58].

Figure 1.3: Polygonal meshes example. Figure 1.4: Implicit surfaces example [75].

1.3.2 Volume representation

1.3.2.1 Voxel grids

A voxel block grid is a globally sparse and locally dense data structure to represent 3D
scenes by storing values on a regular grid in a 3D space. In traditional methods that
represent a voxel-based structure, the entire 3D space must first be divided into block
grids. Then blocks containing surfaces are organized in a hash map by 3D coordinates
and are further divided into dense voxels that array indices can access. Additionally,
sometimes people need to generate voxels from 3D discrete points to obtain a higher-
level representation [74]. In this case, voxels may be compared to pixels in a picture.
They are abstracted three-dimensional units with predefined volumes, locations, and
properties that may be used to structurally represent discrete points in a topologically
explicit and information-rich way.

In 2019, Sitzmann et al. proposed DeepVoxels [64], which is a learned representation
that encodes the view-dependent surface of a 3D scene by storing features in the voxel
grid. These DeepVoxels can be seen as volumetric neural textures, which can be directly
optimized using backpropagation. Because of the feature of the learned soft visibility,
higher-quality results and better generalization can be obtained by explicit occlusion
reasoning. However, the memory usage efficiency of 3D CNN is relatively low due to the
heavy computational complexity. To resolve this problem, octree data structure [34]
is widely used to represent the volume sparsely. As a hierarchical data structure,
octrees do not need to be explored to their full depth. This means that a system can
extract a small subset of voxels as needed. In addition, octrees permit smoothing of the
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underlying data to help with anti-aliasing. Furthermore, several studies represent the
voxel grid with a sparse approximation. For example, [29] used parameterized shape
templates to represent a deformable model, [71] used an enhancement of multiplane
image (MPI) to reproduce the view-dependent model, [5] introduced a collection of
spherical images which represents panoramic light field content.

1.3.2.2 Neural volumetric representations

Besides using a voxel grid to store features of the object, these quantities can also
be produced by a neural network similar to implicit surfaces. In this field, the most
commonly-used framework used to parameterize volumes is a multilayer perceptron
(MLP) network. And the majority of the approaches can be classified into using
global [76] or local [19] networks. More specifically, local methods represent an implicit
function as a mixture of local deep implicit functions. In contrast, the global methods
use the global implicit function, which is decomposed into the sum of N local implicit
functions. If we use grids and neural networks together as a hybrid representation, a
trade-off can be made between computational and memory efficiency [26].

1.3.3 Differentiable image formation

Because the 3D scene model was created using prior methods, transforming the 3D
model to a 2D picture is critical. There are two basic ways in graphics techniques:
rasterization and ray casting. By differentiating the rendering, the gap between 2D and
3D processing methods is merged because the neural network is allowed to optimize
3D entities while operating on 2D projections. Therefore, 3D scene representations can
be obtained by backpropagating the gradients concerning the rendering features. In
practice, the generated image can be seen as a photo taken from a specific angle of
view toward the object. Most systems employ the pinhole camera paradigm, with all
camera rays traveling through a single point in space. By casting each camera ray, the
rendered image can be achieved.

1.3.3.1 Rasterization

In computer graphics, rasterization has long been considered the dominant technique
that displays a 3D object on a 2D plane because of its fast speed and outstanding per-
formance. Briefly, rasterization reproduces the scene from a mesh of virtual triangles
or polygons. The corner of each different triangle, so-called vertices, are intersected
together and stores information, including its position in space, colour, and texture.
For the next step, the information at the corner will be projected to corresponding
pixels on the 2D screen with perspective projection. Then loop over all pixels in the
image to check if all of them lie within the object region. Finally, if they are correct,
the object’s colour will be filled in.

Even though scaling with the number of visible vertices in a scene makes rasteri-
zation processing fast, it also has limitation in capturing specific effects, such as light-
ing, shadows, and reflections. In recent years, soft rasterization [39] was proposed to
solve this problem using differentiable rendering. Specifically, it learns to render mesh
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silhouettes with an accurate soft approximation of the rasterized triangles. Then a
differentiable pipeline is established so that the connection between the derivatives of
pixel intensities and the attributes of the anticipated object will be established, and
a gradient-based optimization will be available to formulate the 3D inference problem
without supervised learning.

1.3.3.2 Ray casting

Although the ray casting technique was proposed roughly the same as the rasteriza-
tion technique, ray casting used to be a relatively uncommon choice due to its high
computational requirements. Compared to rasterization, which projects 3D models to
2D planes, ray casting works directly in 3D world space requiring floating point oper-
ations throughout rendering. Therefore, it is difficult to accomplish ray tracing just
through software, such that the application of ray tracing was assumed to be non-
competitive during the 1990s [11]. However, the development of hardware-enhanced
the performance of ray casting dramatically. Furthermore, the benefits of ray tracing
and realistic detail display draw people’s attention.

Ray casting is mainly based on the pinhole model. The pinhole model uses an in-
trinsic matrix for the projection from a 3D object to a 2D image plane. To generalize
the projection for arbitrary camera positions, an extrinsic matrix which consists of a ro-
tation matrix and translation vector, can be used. Because of the depth ambiguity, the
equations are non-injective. As a result, the models can do automatic differentiation
and end-to-end optimization easily. To obtain camera matrices correctly, camera cali-
bration algorithms are necessary to estimate camera parameters. In 2020, B. Mildenhall
et al. introduced an advanced 3D representation method, named neural radiance field
(NeRF), using ray casting to render an image. The usage of ray casting made it have
an outstanding performance in terms of rendering photorealistic views.

1.4 Structure of this thesis

The rest of the report is organized as below

• Chapter 2 introduces some popular neural rendering methods and their features,
and we also discuss the problem that we faced during this project and which
approaches are potential solutions.

• Chapter 3 contains theories of the methods that we focus on in this project,
including NeRF, mip-NeRF and NeRF++.

• Chapter 4 illustrates implementation details during our experiments. It includes
data preparation, network adjustment and development of the new model.

• Chapter 5 describes three metrics firstly, then evaluate our experiment in visual-
ized and numerical aspects respectively.

• Chapter 6 concludes the whole project and gives our outlook on the future of
work.
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Related work 2
In this section, we will first discuss the general approaches to rendering the target scene
when the camera observes from an unobserved viewpoint. Then we will concentrate
on the most often utilized solutions to our project’s two major challenges: large-scale
scenes and lack of camera parameters.

2.1 View synthesis and rendering

In practice, the quality of collected raw images is not always at a high standard, some
of them are captured from terrible angles, and some even contain only a part of the
target. When we try to use these images to generate a complete representation, this
process can be seen as a synthesis operation by combining images from different views.

Light field sample interpolation techniques [35] can be easily used to reconstruct
photorealistic inward and outward views with sampled representation for light fields.
In addition, point cloud and triangle meshes are the two most frequently used repre-
sentation methods in traditional 3D reconstruction. Then the geometric representation
can be projected from input images into pixels on the photo, which is shot from the
camera path via heuristic [6] or learning-based [23] methods. These algorithms have
been refined and applied in a variety of actual settings including lengthy trajectories
and large-scale sceneries. In 2010, Kopf et al. [32] proposed the Street Slide system.
It combines the immersive 360° panoramas with the general multi-perspective strip
panoramas so that it virtually improves the effect of visiting roads in a city, such as
Google Street View. In 2011, Agarwal et al. [1] introduced the awesome project, Build-
ing Rome in a Day. In this system, the authors can reconstruct 3D city space using
hundred thousand images from the internet within less than a day. They employed en-
tire picture similarity and query expansion to match features in the distribution, then
applied the Structure from Motion (SfM) approach to construct point cloud representa-
tion. Their excellent work demonstrates that it is feasible to create city-scale sceneries.

In recent years, introducing deep learning to traditional methods became a trend,
such as Deepstereo [13] Deepview [14] and Stereo magnification [80]. End-to-end train-
ing can avoid the potential for failure in each complex stage of processing which often
happens in traditional methods. This enhancement increased model adaptability and
enabled high-quality outcomes on typically tough scenarios.

Another method is the volumetric-based representation method which attracted
more attention in recent years. In these methods, feed-forward networks are usually
used to learn a mapping from input images to an output volume, and global optimiza-
tion is used to improve every generated scene. Among all these approaches, NeRF [46]
is the most popular view synthesis scheme. NeRF pioneered the introduction of multi-
layer perceptrons (MLP) to differentiable volumetric rendering to construct a neural
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representation of the target and output more photorealistic results. Based on the orig-
inal NeRF, more works are proposed to extend the performance of NeRF in several
aspects. [41] applies NeRF on real-world unstructured images, [37] performed both
view and time synthesis of dynamic scenes, and [47] introduces compact neural rep-
resentations to implement real-time applications. Besides NeRF, Neural Sparse Voxel
Fields (NSVF) [38] is another approach that defines a set of voxel-bounded implicit
fields in a sparse voxel octree for free-viewpoint rendering.

This thesis will use NeRF as the benchmark method to achieve the building re-
construction effect. More information will be provided in Chapter 3. Although NeRF-
based methods produced outstanding results on standard datasets, implementing NeRF
in real-world situations remains difficult due to the high requirement for dense scene
sampling, especially in large-scale scenes. Meanwhile, the lack of camera specifications
is another disadvantage of using NeRF and producing reliable view synthesis results.
The following two sections will briefly introduce current solutions for these two issues.

2.2 Neural radiance with unknown camera parameters

In most practical activities, we cannot get exact camera settings throughout the data
gathering procedure. However, these required camera matrices can help us clarify the
relationship between the world coordinate and the camera coordinate. For this reason,
finding an appropriate strategy to overcome this limitation is the first problem we have
to study. In general, there are three main approaches: (1) jointly optimize camera
parameters during the training process [70], (2) using randomly initialized poses with
the combination of Generative Adversarial Networks (GAN) [20] with NeRF [60], (3)
using camera calibration software like COLMAP [59].

2.2.1 Trainable camera parameters

In 2021, the introduction of NeRF– [70] inspired us to create the camera parameters
learnable to train networks with RGB images only. Assuming all photos are taken in a
forward-facing setup with limited rotation and translation, all images should have the
same intrinsic parameters. Therefore, the framework of NeRF– can be expressed as:

Θ∗,Π∗ = argmin
Θ,Π

L(Î , Π̂|I ), (2.1)

where Π represents camera parameters, t represents input RGB images and Θ is the
NeRF model.

2.2.2 NeRF with GAN

Generative Adversarial Networks (GAN) [20] has been used broadly for several years
and have been proved to be excellent for generating photorealistic image synthesis
with relatively high resolution [30]. However, for most prior GAN-based synthesis ap-
proaches, the generation process is always uncontrolled and does not explicitly model
scenes’ compositional nature. If we can manage the model at the object level, we can
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utilize the GAN concept to produce whatever object representation we require.
Generative Radiance Fields (GRAF) were trained with an unlabeled image dataset

by bringing a multi-scale patch-based discriminator. Based on GRAF, GIRAFFE [48]
was proposed to make the synthesis results editable so that the shape and appearance
of the objects can be disentangled. However, these methods can only be used to gener-
ate simple scenes with a large amount of data input. To generate photorealistic images
as done by NeRF, GNeRF [44] was proposed. GNeRF uses randomly initialized poses
for complex scenes. Then feeds these photos and data into a two-stage end-to-end net-
work. The first phase is a GAN network that can jointly optimize camera parameters
and radiance field. Another stage refines them with additional photometric loss.

Considering the purpose of this project, GAN-based methods are not preferred
choices because it has not been evaluated on large-scale scenes like enormous construc-
tion. Meanwhile, GAN was always famous for its difficulties in training stably and
parameter adjustment. To make our experiments work efficiently and make the model
more generic, the other two approaches seem more reasonable.

2.2.3 Camera calibration

The camera is a common instrument in both everyday life and scientific data collect-
ing. A camera’s primary function is to convert the 3D environment into a 2D picture.
Camera calibration is the process that estimates the parameters of a lens and image
sensor of an image or video camera. Then the geometric characteristics of the image
process will be identified. As a result, when we just have RGB images without giving
any camera details, camera calibration is essential for us to understand the link between
the world where the object is located and the captured photo.

COLMAP [59] is the most popular open-source tool in the domain of camera cal-
ibration. Additionally, NSVF [38] labelled masked images from Tanks and Temples
dataset [31] using a commercial software named Altizure. Besides that, Jeong et al. pro-
posed Self-Calibrating Neural Radiance Fields (SCNeRF) [25]. This technique jointly
learns geometry and constructs a geometry consistency for self-calibration using a uni-
fied end-to-end differentiable framework.

In this project, like most NeRF-based approaches, we will use the open-source imple-
mentation of COLMAP to generate the required dataset. More details will be discussed
in Chapter 4.

2.3 Large-scale scene representation

For a long time, many academics’ primary goal has been to produce a large-scale re-
construction. In 2004, Früh et al. [15] used 2D laser scanners to collect city streets
views and matched laser scans with an aerial photograph or a Digital Surface Model
to estimate global pose. Finally, an autonomous technique is used to generate sev-
eral large-scale ground-based 3D city models. Then in 2006, a method named photo
tourism [65] was proposed to help people browse large unstructured photos of a scene
in 3D view. In 2008, a real-time 3D reconstruction method was developed for urban
scenes. This method can generate representation with video and geo-registered coordi-
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nates input compared to previous methods. Recently, COLMAP [59] is another stable
and robust 3D reconstruction software based on the Structure from Motion (SfM) algo-
rithm. Two years later, the work from Zhu et al. [81] enabled SfM to process millions
of images by distributed motion averaging. As for all of their methods, they share a
similar pipeline: extract features from input images with methods like SIFT [40], then
match these features between different images, and finally, jointly optimize 3D points
and camera poses. However, all of these approaches generate 3D point cloud results.
To get a complete 3D scene representation, an extra process is necessary to produce a
dense point cloud or triangle mesh through a dense multi-view stereo algorithm [16].
These methods share a standard limitation: there are often many artifacts or holes
with insufficient image elements.

The development of NeRF provided a new way to explore large-scale scene recon-
struction. NeRF in the wild [42] took image appearance variations into account and
jointly estimated transient objects. It made generating real-world models with NeRF
possible. Afterwards, BungeeNeRF [73] developed a progressive learning paradigm
to render city-scale scenes with images from Google Earth Studio. Block-NeRF [66]
trained several NeRFs with different architecture separately to render the San Fran-
cisco streetscape. Urban Radiance Fields [56] used lidar to address exposure variation
and leveraged predicted image segmentation to supervise densities on rays pointing at
the sky. Recently, Chen et al. proposed a novel approach named TensoRF [9] that
factorizes the scene tensor into multiple compact low-rank tensor components instead
of representing the field using MLP only.

2.4 Summarization of NeRF-based approaches

Due to the remarkable performance of Neural Radiance Fields, we ultimately decided
to investigate the performance of NeRF in our target building. As we discussed, the
two most problematic issues are lack of camera parameters and restriction of large-scale
scene reconstruction.

For camera parameters, because NeRF renders objects using the ray tracing ap-
proach, defining the ray function of each ray is an essential step. In order to determine
the direction and origin of each ray precisely, positioning every camera in the world
coordinate system is inevitable. However, camera calibration is necessary because these
positions need to be represented by camera intrinsic and extrinsic matrices. For train-
able methods, including NeRF– [70], the camera calibrations are not accurate enough,
so these methods still cannot compete in solving real-world problems. Similarly, also
with GAN [20], it is difficult to obtain reliable camera parameters. As a result, we
choose to pre-process our raw images with COLMAP [59] as is commonly done, since
it is easy to implement and the obtained camera parameters are sufficiently reliable.

For large-scale scene representation, NeRF-based methods are still not mature
enough. The reconstruction pipeline with NeRF is much more complicated than other
traditional methods. However, recent developments, such as Block-NeRF [66], Urban
Radiance Fields [56] and BungeeNeRF [73] gave us confidence to reconstruct our target
building with NeRF-like methods. Meanwhile, NeRF can output photorealistic im-
ages, therefore, we were and still are convinced that using NeRF to generate realistic
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landscapes will be a trend in the next years. Taking all of these factors into consid-
eration, we decided to embark on developing NeRF-based methods for building scene
reconstruction.
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Methodology 3
As we discussed in Chapter 2, we will concentrate on neural radiance fields in this chap-
ter. In general, the original NeRF is an experimental endeavor with perfect data and
an experimental context. In addition, only a few of them investigated the performance
of large-scale scene reconstruction. As a result, immediately processing our raw RGB
images and building a 3D model is difficult. We have to separate our pipeline into
several parts, and we concentrated on finding solutions to problems that we faced in
each stage. The following problems are required to be overcome during our project:

1) The drone we used to take pictures of the target building cannot generate camera
parameters automatically. So finding a method to generate parameters needed for
NeRF is the first task we need to consider.

2) The background of raw images is exceptionally complex; this can lead to much
noise in the rendering results.

3) In less contrived scenarios, there are many artifacts which may influence the final
image quality.

4) Unbounded 360-degree panoramas always need an arbitrarily wide region of Eu-
clidean space, but NeRF tends to confine 3D scene coordinates to a restricted
domain. At the same time, the distance between the lens and the building’s sur-
face is relatively far, but models usually allocate more capacity to near content,
so the details of the building may miss.

The following methods may overcome some of those issues:

1) Basic camera parameters and camera calibration techniques are beneficial for un-
derstanding the relationship between 3D models and 2D images. They are also
necessary for calculating the correct ray function.

2) Mip-NeRF [3] traces cones instead of a ray so that objectionable aliasing artifacts
are reduced, and mip-NeRF can also enhance the ability to reconstruct details.

3) NeRF++ [77] has two networks to train foreground and background scenes sep-
arately, so background influence may be eased. Because the view is near and far
positions are not trained together, the fourth restriction can also get relief at the
same time.

3.1 Camera model

As the foundation of the 3D graphic technique, camera parameters are the first
thing that needs to be illustrated. The camera model can be seen as the pin-
hole perspective camera [22]. Figure 3.1 shows a simple working pinhole camera
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model. In this system, a barrier with a small aperture is located in the middle,
with a 3D object and a photographic sensor on both sides. Each point on the 3D
object emits several rays of light outwards. Because of the small holes, only one
or a few can pass through the aperture and hit the image plane. Then the most
straightforward one-to-one mapping between a 3D object and a 2D plane is established.

Figure 3.1: Pinhole camera model.

A more formal diagram of the pinhole camera is shown in figure 3.2. This schematic
shows that the image plane is usually represented by Π, and O represents the pinhole.
The distance between the image plane and the pinhole plane is the focal length f . To
express the relationship between a point in the real world and a pixel on the image
plane, we can first assume a point P on the object is [x y z]T , and the corresponding
point P ′ on the image plane Π′ is [x′ y′]T . Similarly, the pinhole can also be projected
onto the image plane, giving a new point C ′.

Then, we must define coordinate systems on different planes to represent the

Figure 3.2: A formal construction of the pinhole camera model.

points. There are two 3D coordinate systems and two 2D coordinate systems in total.

16



The first is the world coordinate system, a 3D basic Cartesian coordinate system with
arbitrary origins. It can represent the position of the object in the real world. Another
3D coordinate system is the camera coordinate system which is described with [i j k]
in figure 3.2 centred at the pinhole O so that the axis k is perpendicular to the image
plane and points toward it. Understanding the theory of the camera coordinate system
is crucial for figuring out mapping relations. The first 2D coordinate system is the image
coordinate system that contains the projected points from the 3D camera coordinate
system. Finally, the points in the image coordinate system will be discretized to integer
values in the pixel coordinate.

Afterward, we need to figure out the complete transformation in this process. As
shown in figure 3.3, this process can be divided into extrinsic and intrinsic components.
The extrinsic parameters of a camera depend on its location and orientation without
using internal parameters such as focal length, the field of view, etc. As for the intrinsic
parameters, they reflect how the images are captured with focal length, aperture, field-
of-view, resolution, etc.

Figure 3.3: General transformation between each coordinate.

3.1.1 Extrinsic and intrinsic matrix decomposition

This section will detail why we decompose the process into two parts and how these
matrices work together.

First of all, we assumed that the camera matrix is 3×4, which transforms 3D world
coordinates into 2D image coordinates. We can denote the matrix as P , which can be
expressed with the block form:

P = [M | −MC], (3.1)

where M is an invertible 3 × 3 matrix, C is a column-vector that stores the camera’s
position in world coordinates. In practical projects, we tend to add an extra row to the
bottom to preserve the z -coordinate so that the camera matrix will be a 4× 4 matrix.
If necessary, the third row can be dropped to get a 3× 4 matrix. However, using only
this camera matrix to transform has some vital drawbacks: it does not contain the
camera’s pose and internal geometry, and it also cannot help to get surface normals in
camera coordinates to implement specular lighting.

As a result, decomposing the camera matrix into the product of two matrices became
the most commonly-used solution. They are intrinsic matrix K and extrinsic matrix
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[R| −RC], respectively. So the camera matrix can be expressed as:

P = K[R| −RC], (3.2)

the 3× 3 intrinsic matrix K is an upper-triangular matrix that describes the camera’s
internal parameters like focal length. R is a 3 × 3 rotation matrix whose columns are
the directions of the world axes in the camera’s reference frame. And the vector C
is the camera centre in the world coordinates, and the production of R and C gives
the position of the world origin in camera coordinates. The following two sections will
detail these matrices and explain the graphical significance.

3.1.2 The extrinsic matrix

The camera’s location and heading direction in the world can be described with the
extrinsic matrix. It consists of two components: a rotation matrix R, and a translation
vector t. By rotation and translation operations, we can convert from the world coor-
dinate system to the camera coordinate system (and vice-versa). We can use a rigid
transformation matrix: a 3× 3 rotation matrix in the left block and a 3× 1 translation
column-vector in the right:

[R|t] =

 r1,1 r1,2 r1,3 t1
r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3

 . (3.3)

As we mentioned before, adding an extra row to the bottom is a common operation.
So that the matrix will be square and we can decompose the matrix into a rotation
followed by a translation:[

R t
0 1

]
=

[
I t
0 1

]
×
[
R 0
0 1

]

=


1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

×


r1,1 r1,2 r1,3 0
r2,1 r2,2 r2,3 0
r3,1 r3,2 r3,3 0
0 0 0 1

 ,

(3.4)

the vector t can be interpreted as the position of the world origin in camera coordinates,
and the columns of R represent the directions of the world axes in camera coordinates.
The extrinsic matrix records the translation process from world to camera (w2c). How-
ever, as for most datasets that we explored, they commonly require a pose matrix to
generate ray information. So we need to find out how to build the camera pose matrix,
or camera to world matrix (c2w), from the extrinsic matrix.

For the pose matrix, we use a column vector C to represent the location of the
camera centre in world coordinates and let RC be the rotation matrix describing the
camera’s orientation for the world coordinate system. The pose matrix can be expressed
with [RC |C]. Similar to the extrinsic matrix, another row of (0, 0, 0, 1) is also added
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to the bottom. And the relationship between extrinsic matrix and pose matrix can be
represented as:[
R t
0 1

]
=

[
RC C
0 1

]−1

=

[[
I C
0 1

] [
RC 0
0 1

]]−1

composing rigid transform

=

[
Rc 0
0 1

]−1 [
I C
0 1

]−1

distributing the inverse

=

[
RT

C 0
0 1

] [
I −C
0 1

]
applying the inverse

=

[
RT

C −RT
CC

0 1

]
. matrix multiplication

(3.5)
We use the inverse because the inverse of a rotation matrix is its transpose, but

inverting a translation matrix eliminates the translation vector. As a result, we can
see that the link between the extrinsic matrix parameters and the camera’s posture is
simple:

R = RT
C ,

t = −RC.

(3.6)

3.1.3 The intrinsic matrix

As the camera coordinate has been determined, the transformation matrix that es-
tablishes the connection between 3D camera coordinates and 2D homogeneous image
coordinates needs to be discussed. This matrix is the intrinsic matrix that can be
parameterized as:

K =

 fx s x0

0 fy y0
0 0 1

 , (3.7)

where fx and fy are focal lengths, x0 and y0 are principal point offsets, and s is the
axis skew.

The focal length is the distance between the pinhole and the image plane. In a real
pinhole camera, both fx and fy have the same value.

For the principal point offset, it is the location of the principal point relative to the
film’s origin. The principal point is the intersection of the camera’s principal axis with
the film plane, as shown in figure 3.4.
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Figure 3.4: Principal axis [61].

The exact definition of principal point offset depends on which convention is used
for the location of the origin; the illustration below assumes it is at the bottom-left
of the film. If we increase x0, it will reflect a rightward pinhole movement, which is
equivalent to the leftward movement of the film. Figure 3.5 shows the coordinate of
this system. As for the axis skew s, it leads to shear distortion in the projected image.

Figure 3.5: Principal point offset [61].

Occasionally, the 2D image plane is skewed instead of a rectangle. In this case, another
transformation needs to be carried out to go from the rectangular plane to the skewed
plane.

3.2 Neural radiance fields

In this section, we would like to introduce the neural radiance fields algorithm. In
general, we will illustrate the NeRF in the following aspects: (1) how to predict volume
density and radiance field with an MLP, (2) how to render photorealistic results using
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the traditional method, (3) the optimization of NeRF with positional encoding and
hierarchical volume sampling. The general pipeline of neural radiance fields scene
representation and rendering procedure can be found in figure 3.6.

Figure 3.6: An overview of the NeRF’s pipeline. The 5D input coordinates along camera rays,
including position and view direction, are shown in (a). This information will be fed into a
fully-connected deep network Fθ to generate the colour and volume density (b). Then volume
rendering techniques will be used to composite these values into an image (c). Finally, because
the rendering function is differentiable, the mean square error between the output picture and
the ground truth is calculated as the loss value to improve the scene representation (d) [46].
The background of raw images is exceptionally complex; this can lead to much noise in the
rendering results.

3.2.1 Neural radiance fields construction

As for the neural representation part, NeRF uses a fully-connected (non-convolutional)
deep network, which requires a single continuous 5D coordinate including spatial lo-
cation x = (x, y, z) and 2D viewing direction (θ, ϕ)), and output the volume density
σ and view-dependent emitted radiance color c = (r, g, b) at that spatial location.
The continuous 5D scene representation will be approximated by an MLP network
Fθ : (x,d) → (c, σ) and the mapping from input values to their related density and
colour output is set as weights θ which will be optimized.

As for the MLP, the whole framework of the network used for neural representa-
tion is based on the architecture from DeepSDF [51], which is shown in figure 3.7. This
diagram shows that the MLP receives the positional encoded 3D coordinate r(x) as the
input value. The core component of the MLP is constructed with eight fully-connected
layers, the ReLU function is used as an activation function and there are 256 channels
on each layer. Similar to the network of DeepSDF, NeRF’s MLP also introduces a
skip connection that concatenates the input to the fifth layer’s activation. Afterwards,
the MLP will output the density σ and a 256-dimensional feature vector. Finally, the
feature vector is concatenated with the camera ray’s viewing direction and passed to
one more fully-connected layer with the Sigmoid activation and 128 channels as the
RGB layer. The output of the RGB layer is the view-dependent RGB colour.

Because free space and occluded regions that cannot reflect on the final results are
also sampled repeatedly, and this causes much waste. To improve rendering efficiency,
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Figure 3.7: The fully-connected network architecture of NeRF. Green rectangles show input
vectors, blue rectangles show intermediate hidden layers, and red rectangles show output
vectors. All layers are fully-connected, black arrows represent ReLU activations, orange
arrows indicate layers without activation, and dashed black arrows represent using the Sigmoid
activation [46].

NeRF uses a hierarchical representation strategy. Compared to using a single network
only to build the representation mode, NeRF optimizes two networks simultaneously:
a ”coarse” network and a ”fine” network. For the training process, the ”coarse” net-
work is trained firstly with stratified sampled input. Then the output of the ”coarse”
network will be considered to create a more informed sampling of points along each
ray. By introducing this process, more visible content will be trained.

Then calculates the total squared error between the RGB output and the ground
truth images with:

L =
∑
r∈R

[∥ ĈC(r)− C(r) ∥22 + ∥ Ĉf (r)− C(r) ∥22], (3.8)

where R is the ray in each batch, C(r) is the ground truth image, and Ĉ(r) and ˆCf (r)
are the output RGB values from coarse and fine network respectively.

In order to improve the photorealistic of the output images, NeRF makes good
use of the input viewing direction to represent non-Lambertian effects. Lambertian
reflectance defines an ideal diffusely reflecting surface. A Lambertian surface does
not absorb incident light and has the same brightness in all directions of view when
illuminated uniformly. However, in most situations in the real world, the surfaces of
the objects are non-Lambertian. For this reason, representing non-Lambertian effects
is critical for generating high-quality results. NeRF implements non-Lambertian effects
by inputting view direction. As shown in figure 3.8, two visualized results are viewed
from two different spatial locations. Furthermore, two viewing frames also captured
details of the ship and water in both images. We can see the difference between the
two views. And (c) demonstrates that NeRF is capable of predicting the changing
specular appearance of these two 3D spots as well as generalization throughout the
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whole hemisphere of viewing directions.

Figure 3.8: A visualization of view-dependent emitted radiance [46].

3.2.2 Volume rendering

When the neural radiance fields representation has been built successfully, we must find
a solution to convert the volume density and directional emitted radiance to visualized
images. As for NeRF-based methods, the classical ray tracing-based volume rendering
method [27] [43] is used.

To get the rendering equation, we need to consider the ray absorption model first.
We can assume that the participating medium has perfectly black particles that absorb
all the light they intercept and do not scatter or emit any. In NeRF coordinate, the
camera is located at the origin. The equation of this model is:

dI

dt
= ρ(t)AI(t) = τ(t)I(t), (3.9)

where t indicates the location of the particle, I(t) is the light intensity at t, ρ is the
number of particles per unit volume, A = πr2 is the projected area whose radius is r
and τ(t) is called the extinction coefficient and represents the rate that light is occluded.
Divide both sides of the equal sign by I(t), we can get:

1

I(t)

dI

dt
= τ(t), (3.10)

then calculate integration on both side:∫ s

0

1

I(t)
dI =

∫ s

0

τ(t)dt, (3.11)

where s is the distance variant along the direction of a ray. Then we can easily calculate:

ln
I(s)

I(0)
=

∫ s

o

τ(t)dt (3.12)

I(s) = I(0)e
∫ s
0 τ(t)dt. (3.13)

As for the result, we define the e
∫ s
0 −τ(t)dt as the accumulated transmittance of the

medium within the distance s, which indicates the attenuation ratio of light intensity.
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We use T ′(o, s) to represent this value.
After figuring out the absorption model, we will turn to discuss the emission model.

The medium can add extra light to the ray by emission or reflection of external illu-
mination. In this part, we will assume that the particles in the absorption model are
transparent and we will add them together in the next part. The differentiable equation
of this model is:

dI

dt
= −c(t)ρ(t)A = −c(t)τ(t) = −g(t), (3.14)

where the intensity C represents the diffuse reflection per projected region. This func-
tion is equivalent to:

dI = −c(t)ρ(t)Adt = −c(t)τ(t)dt = −g(t)dt. (3.15)

After the integration, we will get:∫ s

o

dI =

∫ s

0

−g(t)dt, (3.16)

I(s) = I(0)−
∫ s

0

g(t)dt, (3.17)

the term g(t) is called the source term.
For the next step, we need to compute the summation of the previous two models:

dI

dt
= τ(t)I(t)− g(t), (3.18)

dI

dt
− τ(t)I(t) = −g(t), (3.19)(

dI

dt
− τ(t)I(t)

)
e
∫ 0
t τ(t)dt = −g(t)e

∫ 0
t τ(t)dt, (3.20)

d

dt

(
I(t)e

∫ 0
t τ(t)dt

)
= −g(t)e

∫ 0
t τ(t)dt, (3.21)

d
(
I(t)e

∫ 0
t τ(t)dt

)
= −g(t)e

∫ 0
t τ(t)dtdt, (3.22)∫ 0

∞
d
(
I(t)e

∫ 0
t τ(t)dt

)
=

∫ 0

∞
−g(t)e

∫ o
t τ(t)dtdt, (3.23)

I(0)e
∫ 0
0 τ(t)dt − I(∞)e

∫ 0
∞ τ(t)dt =

∫ 0

∞
−g(t)e

∫ 0
t τ(t)dtdt, (3.24)

I(0) = I(∞)e
∫ 0
∞ τ(t)dt +

∫ ∞

0

g(t)e
∫ 0
t τ(t)dtdt, (3.25)

I(0) = I(∞)e
∫∞
o −τ(t)dt +

∫ ∞

0

g(t)e
∫ t
0 −τ(t)dtdt, (3.26)

I(0) = I(∞)T ′(0,∞) +

∫ ∞

0

g(t)T ′(0, t)dt. (3.27)
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On the right side of the equation, the first term represents the light intensity from the
coordinate origin to infinity, which can be called background light which is considered
0 in NeRF. As a result, this function can be simplified as follows:

I(0) =

∫ ∞

0

g(t)T ′(0, t)dt =

∫ ∞

0

T ′(0, t)τ(t)c(t)dt. (3.28)

In practice, not all positions between 0 and ∞ have media on them, the object
always has a boundary, so we can use near bound tn and far bound tf to define the
region. So we can get:

I(0) =

∫ tf

tn

T ′(tn, t)τ(t)c(t)dt, (3.29)

then we introduce another term σ(t) = τ(t) which we named volume density, and let

T (t) = e
∫ t
tn

−σ(t)dt, then the previous function can be expressed as:

I(0) =

∫ tf

tn

T (t)σ(t)c(t)dt. (3.30)

In NeRF algorithm, we usually use r(t) = o+ td to represent rays, then the σ(r(t))
refers to the volume density at position t on this ray of r, c(r(t),d) is the Light intensity
of camera ray within the near and far bounds. Finally, because we mainly focus on the
ray along each typical light, for a fixed view, we can ignore the position of the camera
location and add parameter r to represent the ray variant. So the final expression of
getting the expected colour C is:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, where T (t) = exp(−
∫ t

tn

σ(r(s))ds). (3.31)

The process of estimating the continuous integration is quadrature. However, the
MLP can only be queried at a fixed discrete set of locations, and deterministic quadra-
ture may influence the representation’s resolution. As a result, a stratified sampling
approach is used to partition [tn, tf ] into N evenly-spaced bins and then draw one
sample uniformly at random from within each bin:

ti ∼ U
[
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

]
. (3.32)

The expression of using these sampled results to estimate C(r) with the quadrature
rule is shown as:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp(−
i−1∑
j=1

σjδj), (3.33)

where δi = ti+1 − ti is the distance between adjacent samples. The final function is
differentiable and can use alpha values αi = 1 − exp(−σiδi) to implement traditional
alpha compositing, which is the procedure of combining an image with a background
to generate a novel view.
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Considering the usage of hierarchical volume sampling, the colour from the ”coarse”
network will change into a weighted sum of all sampled colours ci along the ray:

Ĉc(r) =
Nc∑
i=1

wici, where wi = Ti(1− exp(−σiδi)), (3.34)

where Nc represents a set of sampled locations.

3.2.3 Positional encoding

To generate images with higher resolution, two required optimization methods need to
be used. One is hierarchical volume sampling, and another is a positional encoding
(PE) of the input coordinates, which helps the network to represent high-frequency
functions.

Even though neural networks Fθ are universal function approximators, NeRF still
cannot achieve good performance when the model needs to reconstruct high-frequency
variation in colour and geometry. According to Rahaman et al. [54], deep neural net-
works are biased towards learning lower frequency functions. Their research also shows
that mapping the inputs to a higher dimensional space with high-frequency functions
can improve the ability to fit data with a high-frequency variation.

To solve this problem, NeRF reformulates the network as a composition of two func-
tions Fθ = F ′

θ◦γ, where γ is a mapping from R into a higher dimensional space R2L. The
encoding function is similar to the positional encoding in the popular Transformer [68],
as shown as:

γ(p) = (sin(20πp), cos(20πp), ... , sin(sL−1πp), cos(2L−1πp)). (3.35)

3.3 Mip-NeRF

In this section, we will give a brief introduction to a popular NeRF-based method that
we have studied in this project, the name of the method is mip-NeRF [3]. Compared to
the original NeRF, the most significant change of mip-NeRF is tracing conical frustums
instead of rays. Figure 3.9 shows the difference between these two methods clearly. To
achieve this goal, mip-NeRF developed new algorithms to implement cone tracing and
integrated positional encoding (IPE) to handle the conical frustum situation. In the
following sections, we will detail these improvements and explain why these operations
can benefit the rendering results.

3.3.1 Cone tracing

This section will illustrate the mathematical explanation of casting cones and featuring
conical frustums along the cone. Similar to NeRF, which renders one pixel each time,
mip-NeRF also processes an individual pixel of interest at a time. The camera’s centre
of projection is the starting point o of the ray, which is also the cone’s apex, and the
cone’s direction d passes through the centre and is vertical to the circular surface. Then
we define the radius of the cross-section of the cone at o + td as ṙ. The value of ṙ is

26



Figure 3.9: A comparison of NeRF and mip-NeRF. NeRF (a) traces points x along rays, and
mip-NeRF (b) traces conical frustums defined by each camera pixel [3].

assigned as the width of the pixel in world coordinates scaled by 2/
√
12. As in NeRF,

we also need to calculate the position x within the region [t0, t1]:

F(x,o,d, ṙ, t0, t1) = 1

{(
t0 <

dT(x− o)

∥d∥22
< t1

)
∧

(
dT(x− o)

∥d∥2∥x− o∥2
>

1√
1 + (ṙ/∥d∥2)2

)}
,

(3.36)
where 1 is an indicator function: F(x, ·) = 1 iff x is inside the conical frustum defined
by (o, d, ṙ, t0, t1).

3.3.2 Integrated positional encoding

As we have discussed in the NeRF section, featured representation can enhance the
training results by representing high-frequency coefficients better. Similarly, mip-NeRF
also requires positional encoding for each conical frustum so that the size and form of
the conical frustums will also be considered instead of just their centroids. Considering
the complexity and efficiency of the implementation, mip-NeRF shows the expected
positional encoding of all coordinates inside the conical frustum:

γ∗(o,d, ṙ, t0, t1) =

∫
γ(x)F(x,o,d, ṙ, t0, t1)dx∫
F(x,o,d, ṙ, t0, t1)dx

. (3.37)

Nonetheless, the numerator does not have a closed-form solution. In order to ef-
ficiently approximate the required feature, which we shall refer to as an ”integrated
positional encoding”, mip-NeRF consequently approximates the conical frustum with
a multivariate Gaussian (IPE).

The first step of characterizing a Gaussian model is to find the expression of the
mean and covariance of F(x, ·). Because the section of the cone is circular and conical
frustums are symmetric around the axis of the cone, a Gaussian can be characterized
by three parameters: the mean distance along the ray µt, the variance along the ray
σ2
t , and the variance perpendicular to the ray σ2

r :

µt = tµ +
2tµt

2
δ

3t2µ + t2δ
, (3.38)
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σ2
t =

t2δ
3
−

4t4δ(12t
2
µ − t2δ)

15(3t2µ + t2δ)
2
, (3.39)

σ2
r = ṙ2

(
t2µ
4
+

5t2δ
12

− 4t4σ
15(3t2µ + t2δ)

)
, (3.40)

these quantities are parameterized with respect to a midpoint tµ = (t0 + t1)/2 and a
half-width tδ = (t1 − t0)/2. Then convert the coordinate of the conical frustum into
the world coordinate system:

µ = o+ µtd, Σ = σ2
t (dd

T) + σ2
r

(
I− ddT

∥d∥22

)
, (3.41)

which is the final multivariate Gaussian.
The next step is to calculate the expectation of a positional encoded coordinate dis-

tributed according to the aforementioned Gaussian as the IPE. The positional encoding
equation 3.35 can be rewritten as a Fourier feature [55]:

P =

 1 0 0 2 0 0 2L−1 0 0
0 1 0 0 2 0 ... 0 2L−1 0
0 0 1 0 0 2 0 0 2L−1

T

, γ(X) =

[
sin(Px)
cos(Px)

]
. (3.42)

Because of this reparameterization, we can then identify an IPE closed-form expres-
sion. Using the notion that a linear transformation of a variable’s covariance is a linear
transformation of the variable’s covariance (Cov[Ax,By] = ACov[x,y]BT), We can
determine the conical frustum Gaussian’s mean and covariance as:

µγ = Pµ, Σγ = PΣPT (3.43)

Finally, the expectation of the lifted multivariate Gaussian can be obtained as the
IPE feature, modulated by the sine and the cosine of position. These expectations
have simple closed-form expressions which are attenuated by a Gaussian function of
the variance:

Ex∼N (µ,σ2)[sin(x)] = sin(µ)exp(−(1/2)σ2) (3.44)

Ex∼N (µ,σ2)[cos(x)] = cos(µ)exp(−(1/2)σ2). (3.45)

With this, we can compute our final IPE feature as the expected sines and cosines
of the mean and the diagonal of the covariance matrix:

γ(µ,Σ) = Ex∼N (µγ ,Σγ)[γ(x)]

=

[
sin(µγ) ◦ exp(−(1/2)diag(Σγ))
cos(µγ) ◦ exp(−(1/2)diag(Σγ))

]
,

(3.46)

where ◦ represents element-wise multiplication, and the diagonal ofΣγ can be computed
by:

diag(Σγ) =
[
diag(Σ), 4diag(Σ), ... , 4L−1diag(Σ)

]T
. (3.47)
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This vector depends on just the diagonal of the 3D position’s covariance Σ,
which can be computed as:

diag(Σ) = σ2
t (d ◦ d) + σ2

r

(
1− d ◦ d

∥d∥22

)
. (3.48)

As we showed previously, we can conclude that PE retains all frequencies up to a
manually adjusted hyperparameter. At the same time, IPE preserves consistent fre-
quencies over an interval and gently ”removes” frequencies that change over an interval.
Due to the sine and cosine scaling, IPE features can encode the size and shape of a
volume representation smoothly to develop an anti-aliased effect. Meanwhile, the hy-
perparameter L can also be removed by setting it to a substantial value.

3.4 NeRF++

Mip-NeRF is a very impressive method that provides an approach to avoiding alias-
ing artifacts. However, the limitation of applying NeRF-liked models to real-world
problems is still existing. All experiments by authors of the mip-NeRF still concen-
trate on the standard datasets which are built in NeRF project. For 360-degree tests,
these methods only implement reconstructing simple objects with masked backgrounds.
Mip-NeRF is rarely used in realistic scenarios reconstruction, especially in representing
unbounded large-scale scenes. An evaluation [2] shows that mip-NeRF still struggles
with rendering 360-degree views in the real world. According to this study, mip-NeRF
mainly has three aspects of issues:

1) Parameterization. Unbounded 360-degree scenes usually occupy an arbitrarily
large Euclidean region, but NeRF and mip-NeRF can only process scenes within
a bounded area. For this reason, an ideal 3D scene’s optimal parameterization
should be able to give local material more capacity and distant stuff less.

2) Efficiency. Many details need to be represented when we try to generate a large-
scale scene like a cityscape. However, training a large MLP along each ray with
high information content is expensive.

3) Ambiguity. Capturing large-scale scenes usually needs to place the sensor at a
distance from the target. As a result, the content of unbounded scenes may lie
at a significant distance region. Only a tiny part of the rays can observe these
details, which will cause the inherent ambiguity of reconstructing the 3D scene
from 2D images.

In this section, we will focus on an improved method based on NeRF named
NeRF++ [77]. Overall, this approach used an extra network to represent distant ob-
jects which can contribute to solving the first problem we mentioned.

To overcome the limitation of large dynamic depth range caused by complex back-
ground, NeRF++ represents foreground and background separately. Firstly, an in-
verted sphere parameterization is used to facilitate free view synthesis. This sphere
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partitions the scene into two components, the volume of the inner unit sphere contains
the foreground and all the cameras. In contrast, the outer volume represents the re-
mainder of the environment.

Specifically, we can define the 3D sphere with {(x, y, z) :
√

x2 + y2 + z2 = 1}, for
the 3D coordinate (x, y, z) that makes the radius r =

√
x2 + y2 + z2 > 1 are located

outside the sphere. On the contrary, it is located inside the sphere. For the outer
volume, we can reparameterize the coordinate by the quadruple (x′, y′, z′, 1/r), where
x′2 + y′2 + z′2 = 1 and (x′, y′, z′) is a unit vector along the same direction as (x, y, z)
representing a direction on the sphere, which is shown in figure 3.10.

Figure 3.10: NeRF++ applies different parameterizations for scene contents inside and outside
the unit sphere.

However, the outer volume cannot represent the unlimited distance from the origin, all
the numbers in the re-parametrized quadruple are bounded. This is mainly because far-
ther objects will also fade into the background in real situations. As for the ray tracing
operation, the inner NeRF does not need re-parameterization, so this part is identical
to the original NeRF, but the outer NeRF should leverage the 4D bounded volume
after an inverted sphere parameterization. In particular, the ray r = o+ td is divided
into two segments also by the unit sphere. In this way, the rendering equation 3.31 can
be rewritten as:

C(r) =

∫ t′

t=0

σ(o+ td) · c(o+ td,d) · e−
∫ t
s=0 σ(o+sd)dsdt︸ ︷︷ ︸

(i)

+ e−
∫ t′
s=0 σ(o+sd)ds︸ ︷︷ ︸

(ii)

·
∫ ∞

t=t′
σ(o+ td) · c(o+ td,d) · e−

∫ t
s=t′ σ(o+sd)dsdt︸ ︷︷ ︸

(iii)

.

(3.49)
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Terms (i) and (ii) are computed in Euclidean space, while term (iii) is computed
in inverted sphere space with 1

r
as the integration variable. In other words, we use

σin(o+ td), cin(o+ td,d) in (i) and (ii), and σout(x
′, y′, z′, 1/r), cout(x

′, y′, z′, 1/r,d) in
(iii).

To compute term (iii) for the ray, some extra operations are required to evaluate
σout, cout at any 1/r by computing (x′, y′, z′) corresponding to a given 1/r. As shown in
figure 3.11, the intersection point a of the ray and the sphere is a = o+ tad which can
be obtained by solving |o+ tad| = 1. And the the midpoint of the chord aligning with
the ray be the point b = o+ tbd which is computed by solving dT (o+ tbd) = 0. Then
to get (x′, y′, z′) given 1/r, we can rotate the vector a along the unit vector k = b×d,
which can be defined by a cross product of two arbitrary non-zero vectors, by the angle
ω = arcsin|b| − arcsin(|b| · 1

r
). We will use Rodrigues formula for the rotated vector P:

P = acos(ω) + (k× a)sin(ω) + k(k · a)(1− cos(ω)). (3.50)

Then we can sample a finite number of points from the interval [0, 1] to compute term
(iii).

Figure 3.11: The derivation of (x′, y′, z′) for point P with known 1/r in the inverted sphere
parameterization.

According to the experiments of NeRF++, it can implement 360-degree reconstruc-
tion simply. In the next section, we will discuss more details and show the test results
in Chapter 5. Moreover, mip-NeRF will be introduced into the NeRF++ to explore
the performance of using different ray casting geometric shapes.
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Implementation details 4
In earlier chapters, we discovered the fundamental principles of rendering with a built
neural radiance representation. We aim to offer a complete introduction to our efforts
and experiments throughout this project, as well as explain why we altered the model
and how these changes help to high-quality reconstruction of the structure. To be more
specific, we will focus on the following four aspects: the preparation of the dataset
from raw images, parameters for the camera path dataset, network adjustment and the
implementation of 360-degree reconstruction with NeRF++ and mip-NeRF.

4.1 Data collection and camera parameters estimation

In the beginning, it is essential for me to introduce what data should be included in
the dataset and how we can obtain such a dataset when we have RGB images only.

Figure 4.1: Examples of raw images from our dataset.

For this project, all the images are provided by TÜV SÜD in Singapore. They
collected image information using DJI ZH20T unmanned aerial vehicle (UAV). The
Resolution of the captured raw images is 4056× 3040. When they collect information,
they let the drone fly to a height between 70 and 80 meters and take bird’s-eye photos
of their office building. The drone flies slowly around the building to capture 360-degree
information about the building. To ensure that too much detail is not lost the distance
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between the camera and the building is controlled within a limited region so that not
all of these images can include the complete building. Figure 4.1 shows some example
images of our dataset. From these pictures, we can notice that the background of these
images is very complicated which will be very challenging for NeRF to distinguish the
object from the environment.

4.1.1 Commonly-used datasets for NeRF

In this section, we will give a brief introduction to the datasets used by NeRF-like
methods. The structure and data format of these datasets provide guidance on how we
may pre-process our raw images.

1) NeRF-synthetic. NeRF creates this dataset which has eight objects, six of them
are rendered from viewpoints sampled on the upper hemisphere and two of them
are sampled on an entire sphere. All of these objects are generated by the open-
source 3D graphic software Blender. There are 100 images in the train set and
200 images in the test set, all of them are 800 × 800 pixels. And it uses three
JSON files to store transformation parameters for train, test, and validation sets.

2) LLFF. Another widely-used dataset is using the script from Local Light Field
Fusion algorithm [45]. Images in this dataset are collected in the real world with
cellphones and downsample these images with 1

4
and 1

8
. Because this dataset is

captured from the real world instead of modelling software, COLMAP [59] is used
to estimate camera parameters and the information is stored in a NPY file. LLFF
dataset mainly contains images within a minimal angle of view.

3) Tanks and Temples. This dataset consists of 360-degree images that predict
camera poses with COLMAP. To run a NeRF-based model with this dataset,
this dataset is usually constructed with corresponding TXT files to store pose
and intrinsic matrices with respect to each image. In this project, we will use
a similar method to pre-process our building images because of its impressive
performance on 360-degree scenes.

4.1.2 Pose and intrinsic matrices estimation with COLMAP

In this section, we will show the pipeline of using COLMAP to estimate pose parame-
ters and introduce how to use their open-source software to generate the data structure
that we need.

COLMAP was developed based on incremental Structure-from-motion (SfM) which
is a strategy for reconstructing 3D scenes with unordered images. The pipeline of in-
cremental SfM is shown in figure 4.2. From this diagram, we can find that it consists
of two sections, the first component is correspondence search which aims to find the
overlap region between input images, and the second step is an incremental reconstruc-
tion which implements image registration and reconstruction. The first step starts by
extracting invariant features from each image and then using the extracted features
to find the overlap area between different images by matching the similarity between
features. However, this matching process is not always reliable. Additional geometric
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Figure 4.2: Pipeline of incremental Structure-from-Motion [59].

verification is necessary. SfM verifies the matches by attempting to estimate a trans-
formation that leverages projective geometry to map feature points between pictures.
Depending on the spatial configuration of an image pair, different mappings describe
their geometric relation. This procedure outputs a scene graph with images as nodes
and verified pairs of images as edges. For the incremental reconstruction stage, SfM
needs to choose an initial pair at the beginning. Then by solving the Perspective-n-
Point (PnP) problem [12], camera pose and intrinsic parameters can be predicted using
RANSAC and a minimal pose solver [17]. And SfM has another crucial step that can
improve the initial camera pose through increased redundancy, named triangulation.
Up to now, all actions have been helpful for our project.

The COLMAP introduced a new geometric verification strategy, view selection
method, and triangulation approach. In general, these improvements contribute to
the robustness and efficiency of the camera parameters estimation results. Meanwhile,
COLMAP developed mature software which is easy to install and use with customized
image input. They offer both pre-built binaries and building-from-source options. Af-
ter the program runs, we will get three binary files that contain sparse models, and
the information is split into three files about cameras, images, and 3D points. Then
the information on the world-to-camera matrices and intrinsic camera matrices can
be obtained. As we introduced in Section 3.1.2, the pose matrix is the inverse of the
W2C matrix, so we can quickly get pose matrices. Then the final step is storing these
parameters with the needed structures. If all these processes run in order, the desired
dataset is built successfully. As for the NeRF++, because we need to make sure that all
cameras are inside a sphere whose radius is scaled to a smaller value than the difference
between the centre of the camera positions and each camera, we need to normalize the
camera position to ensure that the unit sphere covers the majority of the foreground
scene content.

The dataset that we used in our experiment is built using the COLMAP. We fi-
nally chose 84 images, 70 of them are training sets and 14 of them are test sets. In
each folder, three subfolders are used to save RGB images, pose matrices and intrinsic
matrices, respectively. As for the RGB images, we downsample the original images to
1034×767 to improve efficiency and robustness. In the following sections, we will name
our dataset with TÜV SÜD dataset.
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4.2 Camera path adjustment

We have obtained all the required parameters for training and test operations. However,
when we finish training the model, there is still one more step required to generate the
360-degree rendered results. We can imagine that we locate another series of cameras
surrounding the object that are taking photos of the target. We need to ensure that we
can observe the entire building from each camera and by combining output pictures,
we can get a continuous video of the building. To determine the location and pose of
these cameras, we need to set values of their poses and intrinsic matrices and put them
in another subfolder.

Figure 4.3: Pipeline of defining camera path.

Figure 4.3 shows the pipeline of generating the camera path dataset. The first
stage is defining a circle where cameras locate on with setting sin and cos values to
determine the direction of the coordinates. Ideally, there should be an axis with a fixed
value so the camera will rotate around this axis. However, because our raw images are
bird-eye images whose rays are not parallel to the ground, so we need to set all three
axes with trigonometric functions and determine suitable coefficients for these axes, to
make sure that all cameras are at a similar altitude. In the next step, specific locations
of these cameras will be evenly spaced on the circle. According to our experiment,
[rsin(t), 0.87rcos(t),−0.5rcos(t)− 10] is the final setting for the circle that can render
the building perfectly, where r is the radius of the circle and t is the location of these
cameras. Afterwards, we need to define the rotation matrices of cameras to make sure
that all cameras can capture nearly the whole building accurately. The fourth step is
still normalization, and we also need to check if all cameras are bounded by the unit
sphere as the final step. If everything is good, we need to save the generated pose
matrices and intrinsic matrices to TXT files.

Choosing the right parameters for a suitable camera path is not easy, we can use
Open3D [79] to visualize these cameras and their poses. It can help us have a more
precise observation of the effect of different parameters on camera pose. Figure 4.4
shows a visualized example during our experiment. We can see the direction of these
cameras and the difference between the two sets of camera paths intuitively.

4.3 Implementations and improvements for large 360-degree
scenes

When all data is prepared, we can start to study the implementation procedure of the
NeRF++ program and seek improvement methods to improve our rendering effect. In
this section, we will introduce how the NeRF++ algorithm is implemented, how we
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Figure 4.4: An example of visualizing camera path.

fine-tuned the network and a combination of NeRF++ and mip-NeRF to improve the
performance.

4.3.1 NeRF++ implementation

Figure 4.5 shows the pipeline of NeRF++; the first step is loading the dataset and
generating the origin of rays, the direction of rays, and RGB values with given pose
matrices and images. Then defining the depth parameters of foreground and back-
ground respectively so that the ray functions can be expressed. Then these parameters
will be input to MLP in order and we can get density and colour results, respectively.
Finally, calculating the weighted summation of RGB values together will get the final
RGB data of both the inner and outer spheres. Then we composite the foreground and
background together and get the RGB information of an entire image. These results
can compute the loss value to optimize the network during training or convert to output
PNG images during testing.

Figure 4.5: Pipeline of NeRF++.
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4.3.2 Fine-tuned network

As shown in figure 3.7, there is a Sigmoid activation function at the end of the RGB
layer. Following equation shows the expression of the Sigmoid function:

σ(x) =
1

1 + e−x
. (4.1)

As an activation function, the Sigmoid function can limit the output range, so the
data is not easy to disperse in the process of passing, but the gradient may be too
small at the time of convergence. In our experiment, we tried to remove this Sigmoid
function and achieved a better result.

4.3.3 Combining NeRF++ with mip-NeRF

NeRF++ uses the original NeRF model to process both foreground and background.
As mip-NeRF became a popular alternative algorithm for NeRF, replacing the NeRF
network in the NeRF++ with mip-NeRF is expected to be a hopeful method to improve
performance. In the following sections, we will call this model mip-NeRF++.

As we introduced before, the most significant difference between mip-NeRF and
NeRF is that mip-NeRF traces cones instead of rays. To express the cone, the radius
value needs to be defined in advance with the width of the pixel in world coordinates
scaled by 2/

√
12. Then the multivariate Gaussian expression of conical frustums can

be derived, and input the result to IPE instead of PE to encode a 3D position and
its neighbour region. In our project, we only replace the foreground network’s NeRF
with mip-NeRF and continue to use NeRF to represent the background because the
foreground is the object we need to reconstruct, so we want to concentrate more on
the foreground. Meanwhile, mip-NeRF has the same number of samples on both the
”coarse” and ”fine” networks, but NeRF uses different values, so these parameters need
to be set separately.

To be more specific, the first step of updating NeRF to mip-NeRF is to add al-
gorithms to calculate the mean and covariance of the Gaussian function. In another
work, we need to use equation 3.41 instead the simple ray function r(t) = o+ td. The
next improvement is implementing positional encoding to approximate the mean and
the covariance. Afterwards, inputting these encoded parameters into the network. The
rest of the steps are the same as for NeRF++.

With changing previous components, we have a new framework with the combina-
tion of mip-NeRF and NeRF++. Experimental results and discussions will be presented
in the next section.
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Results and discussions 5
Section 4 introduced the most critical steps in changing 2D images to a 3D representa-
tion. In this section, we will introduce three widely recognized metric methods in the
area of neural reconstruction at the beginning. Then we will show visualized rendering
results and compare the performance between different approaches. Finally, we will
discuss these findings and weigh the benefits and drawbacks of each strategy.

5.1 Metrics

Although visualized results can clearly show our model’s performance on large-scale
scene representation, we still need to calculate numerical results to evaluate our
model quantitatively. There are three commonly-used metrics: PSNR, SSIM [69] and
LPIPS [78].

5.1.1 PSNR

The Peak Signal-to-Noise Ratio (PSNR) is the most basic and straightforward metric
in the field of neural rendering. PSNR is a statistic of the ratio between the maxi-
mum possible power of a signal and the power of corrupting noise. The logarithmic
representation of the PSNR is as follows:

PSNR = 10 · log10
(
MAX2

I

MSE

)
= 20 · log10

(
MAXI√
MSE

)
, (5.1)

where

MSE =
1

mn

m−1∑
0

n−1∑
0

∥f(i, j)− g(i, j)∥2, (5.2)

f represents the matrix data of our original image, g is the matrix data of our rendered
images, m indicates the number of rows of pixels of the images and i is the index of
that row. Similarly, n and j show the columns and MAXI is the maximum possible
pixel value of the image.

5.1.2 SSIM

Structural Similarity Index (SSIM) is another commonly-used method to quantify
the visibility of errors between a distorted image and a reference image. SSIM is a
perception-based model that considers image degradation as a perceived change in
structural information while incorporating critical perceptual phenomena, including
luminance masking and contrast masking terms.
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With knowing two windows of target images x and y, and there averages µx

and µy, the variance of σ2
x and σ2

y, covariance σxy, C1 = (k1L)
2 and C2 = (k2L)

2 are
two variables to stabilize the division with weak denominator, L is the dynamic range
of the pixel-values, k1 = 0.01 and k2 = 0.03. The expression of SSIM is based on three
comparison measurements: luminance, contrast and structure:

l(x,y) =
2µxµy + C1

µ2
x + µy2 + C1

, c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

, s(x,y) =
σxy + C3

σxσy + C3

, (5.3)

where C3 = C2/2. Then, SSIM can be computed by a weighted combination of those
comparative measures:

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ, (5.4)

where α, β and γ are parameters used to adjust the relative importance of the three
components. If α = β = γ = 1, we can get:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(5.5)

5.1.3 LPIPS

The Learned Perceptual Image Patch Similarity (LPIPS) is another metric which can
be used to judge the perceptual similarity between two images. LPIPS aims to compute
the similarity between the activations of two image patches for some pre-defined and
more similar image patches that will bring lower LPIPS.

Figure 5.1: Pipeline of calculating LPIPS [78].

As shown in figure 5.1, a neural network F (VGG [62], AlexNet [33] or
SqueezeNet [24]) is used to extract features from two input patches x, x0. Then
we unit-normalize the output features of each layer in the channel dimension to
ŷl, ŷl0 ∈ RHl×Wl×Cl . Then the l2 distance is calculated by multiplying the weights
wl ∈ RCl and averaging the distances. The expression of calculating the distance is
shown below:

d(x, x0) =
∑
l

1

HlWl

∑
h,w

∥wl ⊙ (ŷlhw − ŷl0hw)∥22, (5.6)

where h is a perceptual judgment trained by a small network G and wl = 1∀l is
equivalent to computing cosine distance.
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5.2 Reconstruction results of the TÜV SÜD dataset

For our experiments, we set the learning rate to a fixed value 5×10−4 and use the Adam
optimizer to optimize the network. Optimizing a scene typically takes around 250-300k
iterations to converge on two NVIDIA RTX A6000 GPUs to accelerate training.

5.2.1 Rendered results based on the test set

When we finish training and acquire checkpoints, we must first render photos using
test postures, such that the output images have the same view as the test images.

The first pair of images (figure 5.2 and figure 5.3) show a comparison between results
from NeRF and NeRF++ respectively using the same dataset. We can observe that
the image on the left-hand side is extremely blurred and we can only barely make out
the exterior of the building without any detailed display. On the other hand, the result
of NeRF++ is much better, we can recognize the surface of the building, and many
details like windows and letters are also represented. As for the numerical result, we
can also find that the value of PSNR increased significantly from 12.83 to 16.83.

Figure 5.4 shows the results of training the NeRF++ model with our customized
building dataset. The top two rows display the entire rendered images, the middle two
rows only show the predicted foreground scenes without background information, and
the last two lines are the ground truth images. As for the rendered results, we can find
that for each angle of the scene, the majority part of the building can be represented
accurately. However, they are still quite blurred when we try to observe details, such
as letters and glasses. For the background landscape, we can find that our results are
also not detailed. Buildings in the distance cannot be represented because of the lack
of depth information in the training dataset, i.e., choosing images depends more on the
coverage of buildings instead of the background. We find that most of the background
vanishes for the six images without background, and the building is highlighted.

Figure 5.2: NeRF result (PSNR: 12.83). Figure 5.3: NeRF++ result (PSNR: 16.83).
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Figure 5.4: Rendered results with test set camera settings using NeRF++.
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Figure 5.5: Comparison of rendering from the same view with using NeRF++, fine-tuned
NeRF++ and mip-NeRF++ respectively. Fine-tuned NeRF++ and replacing NeRF with
mip-NeRF can improve the ability to represent details.
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Furthermore, we have made improvements by removing the Sigmoid activation func-
tion and mip-NeRF, figure 5.5 shows the results. The first image is the result from
NeRF++. We can find that the logo and letters on the building are not transparent
and the glass is blurred. And the second image is the result from NeRF++ without Sig-
moid activation, an improvement in the region of the letters can be clearly noticed. The
last one is from the framework with mip-NeRF, the overall appearance of the picture
is sharper. Meanwhile, focusing on the letter ”Ü”, the rendered results from NeRF++
models are highly blurred. However, when mip-NeRF is introduced to NeRF++, these
two points can be distinguished. And the word on the logo is also vaguely distinguish-
able as another two are entirely vague.

In summary, we can conclude that our improvement can benefit rendering the tar-
get building with given raw images in visualized results. In the next section, we will
provide numerical results to analyse our results quantitatively.

Figure 5.6: Rendered results with camera path using mip-NeRF++.

5.2.2 Rendered results based on camera path

After verifying our model on the test set, we can render the final images with our
camera path. For our experiments, we locate 200 cameras in total on a circle around
the building, combining images of these cameras, we can obtain a video to help us view
the representation from 360-degree views. Figure 5.6 shows 4 examples of the RGB
results and figure 5.7 presents results without background. More output images can be
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found in the appendix.

Figure 5.7: Rendered results with camera path using mip-NeRF++ with foreground network
only.

5.3 Evaluation and discussion

5.3.1 Results with the TÜV SÜD datasset

Table 5.1 shows numerical results of testing NeRF, NeRF++, fine-tuned NeRF++ and
mip-NeRF++ respectively. We can observe that each boost has an improvement on
the PSNR results, but the values of SSIM and LPIPS have no greater change or even
a tendency to get worse.

PSNR↑ SSIM↑ LPIPS↓

NeRF 11.86 0.33 0.71
NeRF++ 19.44 0.58 0.52

Fine-tuned NeRF++ 19.59 0.58 0.52
Mip-NeRF++ 19.74 0.57 0.57

Table 5.1: PSNR, SSIM and LPIPS results of all three main implementations.

First of all, it shows clearly that NeRF++ improves the performance of 360-degree
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large-scale scene reconstruction distinctly. In general, two facts may cause this terrible
consequence: (1) the amount of input images is not large enough, NeRF cannot rep-
resent all details using only one network, (2) the outdoor 360 scene has an extremely
complicated background with extensive depth range, significant artifacts or severe res-
olution loss may be caused. NeRF++ uses a different network to process foreground
and background separately can contribute to avoiding such an unbounded problem.

Combining the visualized results and numerical results, we can tentatively conclude
that the changing of traced ray can benefit the visualized results to some extent. Com-
pared to ray-tracing, cone-tracing can help to restore more details, including generating
more identifiable letters and logos and a more contrasted glass effect. From a geometric
point of view, casting a ray requires positional encoding features extracted by sampling
points. Because of the inadequate expressiveness due to being too narrow per ray,
the detailed shape and size of the object may be ignored by each ray. Consequently,
the same confusing point-sampled feature may be produced by two different cameras
imaging the same spot at different scales. When we switch to tracing cones, we get
a continuous space of scales. The intersection of two cones may explicitly model the
volume of each sampled conical frustum. This can be easily considered as a simulation
of mipmapping, which uses a series of images with progressively lower resolution to
speed up rendering and reduces image jaggies. Sections from the top to the bottom of
the cone represent more information and construct a prefiltered radiance field.

Besides the overall analysis, we also evaluate the building’s front, back and side,
respectively. To better display the model’s ability to represent details, we have taken
the areas of these images that contain more detail as we did in figure 5.5. Numerical
results of these areas are also calculated and are shown in table 5.2, 5.3, and 5.4.

Table 5.2: Numerical results of the front scene, segmentation 1 is the logo view and segmen-
tation 2 is the glass view.

Full image Segmentation 1 Segmentation 2
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF++ 16.83 0.53 0.55 17.38 0.48 0.50 19.29 0.51 0.57
Fine-tuned NeRF++ 17.05 0.52 0.55 16.97 0.48 0.50 19.72 0.52 0.55
Mip-NeRF++ 17.14 0.51 0.60 16.70 0.45 0.56 19.93 0.51 0.64

Table 5.3: Numerical results of the back scene, segmentation 1 is the logo view and segmen-
tation 2 is the slope view.

Full image Segmentation 1 Segmentation 2
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF++ 20.54 0.65 0.49 20.73 0.65 0.46 20.04 0.56 0.55
Fine-tuned NeRF++ 20.53 0.65 0.49 20.53 0.65 0.46 19.46 0.55 0.48
Mip-NeRF++ 21.08 0.64 0.53 21.29 0.65 0.50 19.86 0.54 0.50
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Table 5.4: Numerical results of the side scene, segmentation 1 is the roof view and segmen-
tation 2 is the glass view.

Full image Segmentation 1 Segmentation 2
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF++ 23.04 0.69 0.51 20.61 0.58 0.52 21.87 0.59 0.49
Fine-tuned NeRF++ 23.04 0.69 0.50 20.70 0.59 0.52 22.13 0.60 0.48
Mip-NeRF++ 23.13 0.68 0.57 20.69 0.56 0.59 22.28 0.59 0.54

From this detailed evaluation, the previous inference is proved to be a common
phenomenon. All of the PSNR results of these full images show that introducing the
idea of mip-NeRF to NeRF++ can benefit the result. Because PSNR is computed by
comparing the maximum possible intensity levels of the image and the mean square
error between the rendered images and the ground truth images, higher PSNR rep-
resents that the reconstructed model has better quality in direct comparison for each
pixel. However, the major limitation of PSNR is that it does not consider the visual
characteristics of the human eye, so it cannot always reflect human perception. There-
fore, SSIM and LPIPS are introduced as references. According to SSIM and LPIPS
results, which evaluate the differences between the two images from more aspects. The
poor performance of our mip-NeRF++ indicates that our model is not a perfect im-
provement. Considering the performance of visualized and numerical results together,
our model still has its strength in detail reconstruction but also has weakness in an
all-around arrangement. Consequently, our model is still a competitive approach for
tasks that require restoring more details.

5.3.2 Results with the Tanks and Temples dataset

In addition to the TÜV SÜD dataset, we also tested our model on the Tanks and
Temples dataset [31]. Table 5.5 shows the results of testing on the train scene with
setting the batch size to 1024. All three metrics on this public dataset show that our
model has a noticeable improvement compared to previous approaches. Combining
with the visualized results as demonstrated in figure 5.8, 5.9, 5.10 and 5.11, we can
conclude that in some more miniature practical scenes, our model is still competitive.
However, the fine-tuned results are not a good improvement for this scenario.

Table 5.5: PSNR, SSIM and LPIPS results of the train scene with three main implementations.

PSNR↑ SSIM↑ LPIPS↓

NeRF++ 16.77 0.50 0.58
Fine-tuned NeRF++ 16.83 0.50 0.59

Mip-NeRF++ 17.41 0.52 0.57
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Figure 5.8: Ground truth. Figure 5.9: NeRF++.

Figure 5.10: Fine-tuned NeRF++. Figure 5.11: Mip-NeRF++.

48



Conclusions and future works 6
6.1 Conclusion

This project accomplished 360-degree large-scale scene reconstruction of a building
using neural radiance fields-based approaches. Experiments include data preparation,
camera calibration, network training, and rendering. During this project, we discovered
the limitation of NeRF, And then we found NeRF++, which can solve our problems
perfectly and have a good match for our goals. As a result, we chose NeRF++ as our
starting point and proposed several methods to improve performance in response to
our needs. The first improvement happens on the network, we found that removing
the Sigmoid function can benefit the resolution of the rendered image. Furthermore,
we also embedded mip-NeRF into the NeRF++ model to improve the anti-aliasing
ability of the foreground network. Eventually, visualized generated results show the ef-
fect of improvement intuitively and numerical results also help us recognize the impact
of different models from different aspects. We found that our model is only partially
ahead in reproducing large buildings, but its improvement is more notable in a smaller
scene from the Tanks and Temples dataset. We may conclude from these results that
our model is worth examining in some practical scenarios. Additionally, the position
of hypothetical cameras used to observe the reconstructed model from surrounding
perspectives are defined by setting camera paths. For different objects, they require
additional parameters to compute the final pose matrices. This mainly depends on the
size of the thing, the distance between the lens and the target, and the relationship be-
tween the target and world coordinates. With plenty of experiments, the most suitable
camera parameters are obtained to get the best view of the whole building.

According to these results that we received from experiments, we have several im-
portant findings as follows:

1) NeRF++ is a powerful model for large scene representation and is still efficient
in super large-range reconstruction.

2) Removing the Sigmoid function from the RGB layer is worth to be tried to improve
the training process.

3) Introducing mip-NeRF to NeRF++ to change the way of ray casting is contro-
versial. On the one hand, visualized results indicate that mip-NeRF helps the
model generate more precise details. PSNR values also show that the improved
model performs better on the pixel level. On the other hand, SSIM and LPIPS
values are not improved compared to the original model. It means that our ren-
dered results are still defective for human habits. However, this attempt is still a
potential method to obtain better large-scale reconstruction results.
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6.2 Contributions

In this section, we will summarize our efforts to achieve this effect:

1) Constructing the TÜV SÜD dataset with given raw images. Data are pre-
processed by COLMAP and required camera parameters are estimated.

2) Successfully implemented NeRF++ with the constructed dataset and fine-tuned
the network to improve the performance.

3) Setting camera path parameters against our data so that we can observe the entire
building from 360-degree view in the distance.

4) We combined mip-NeRF with NeRF++ and came up with mip-NeRF++ that can
achieve a better result in some assessment methods. This improvement provides
a new option for realistic large-scale scene reconstruction.

6.3 Future work

NeRF-based methods, being one of the most popular neural rendering approaches, have
enormous potential to be applied to additional domains and achieve greater outcomes.
In terms of large-scale 360-degree scene reconstruction, the following approaches are
still worth investigating for future study.

For large-scale scene reconstruction, the first method worth trying is parameterizing
rays before positional encoding as done in [2]. A parameterization of a 3D scene in terms
of disparity can allocate more capacity to nearby content and less to distant range. In
practice, a Jacobian function can be used as the smooth coordinate transformation to
map parameters. This process is equivalent to the classic Extended Kalman filter [28].
However, implementing this process is problematic because it needs to calculate the
Jacobian matrix in each step. However, using PyTorch to calculate consumes too many
resources, so the training speed is deficient. As a result, we have to give up this idea in
this project. In future work, with the update of PyTorch or using another framework
such as JAX may have the ability to overcome this limitation.

The second vital improvement may happen in training and rendering speed. Too
slow training is a common problem for all original NeRF-based methods. A typical
NeRF-based model takes more than one day to train and render when trained on
reasonably high-performance GPUs. If we do not downsample the raw images, it will
consume more time and resources. A typical NeRF-based model takes more than one
day to train and render when trained on reasonably high-performance GPUs. To solve
this problem, a caching system can be developed to store learned radiance values and
then use them in explicit spatial data structures during rendering. In addition, another
less compactness method introduces a dual network that takes an orthogonal direction
by learning how to reduce the number of required sample points best.

The third possible effort is about data collection. For this project, the original
dataset only contains RGB images without any camera parameters. So we have to use
COLMAP to estimate all the required parameters. However, results from COLMAP
are not always precise, so the offset of rays may cause ambiguity. In this region, if we
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pursue developing a commercial 3D reconstruction model, we should change the way
of collecting data. For instance, we can calibrate the camera in advance so that the
intrinsic matrix can be obtained directly. Pose matrices can also be more accurately
estimated by using GPS information. Aside from camera sensors, lidar sensors are
helpful for measuring distances to surfaces, leading to more accurate ray expressions.
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Rendered examples A
A.1 Rendered entire images using NeRF++

Figure A.1: Examples of rendered images with NeRF++54



A.2 Rendered images with foreground only using NeRF++.

Figure A.2: Examples of rendered foreground images with NeRF++.
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A.3 Rendered entire images using fine-tuned NeRF++

Figure A.3: Examples of rendered images with fine-tuned NeRF++
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A.4 Rendered images with foreground only using fine-tuned
NeRF++

Figure A.4: Examples of rendered foreground images with fine-tuned NeRF++.

57



A.5 Rendered entire images using mip-NeRF++

Figure A.5: Examples of rendered images with mip-NeRF++.
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A.6 Rendered images with foreground only using mip-
NeRF++

Figure A.6: Examples of rendered foreground images with mip-NeRF++.
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