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A B S T R A C T

Trees are of great significance throughout the world, both in urban scenes and in
natural environments. Models of trees can be widely applied in various fields, for
instance, landscape design, geo-simulation, environment modelling, and forestry in-
ventories. Recently, laser scanning technology has been rapidly developed, making
it possible to effectively acquire geometric attributes of trees and achieve accurate 3-
dimensional tree modelling. Existing studies on tree modelling from laser scanning
data are vast. Nevertheless, some works don’t ensure sufficient modelling accuracy,
while some other works are mainly rule-based and therefore highly depend on user
interactions.

In this thesis, we propose a novel method to accurately and automatically recon-
struct tree branches from laser scanned points. We first employ the Minimum Span-
ning Tree (MST) algorithm to extract an initial tree skeleton over the single tree point
cloud, then simplify the skeleton through iterative removal of redundant compo-
nents. A global-optimization approach is performed to fit a sequence of cylinders to
approximate the geometry of the tree branches. The results show that our approach
is adaptable to various trees with different data qualities. We also demonstrate both
the topological fidelity and geometrical accuracy of our approach without signifi-
cant user interactions. The resulted tree models can be further applied in the precise
estimation of tree attributes, urban landscape visualization, etc.
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1 I N T R O D U C T I O N

1.1 background and motivation

Trees are an important component throughout the world. They form and func-
tion in natural ecosystems such as forests, and also in human-made environments
for instance parks and gardens [Deussen et al., 1998]. Urban scenes without trees
or plants are lifeless. Furthermore, satisfying environmental goals always require
heavy reliance on vegetation mapping and monitoring [Maltamo et al., 2014]. Mod-
els of trees, therefore, have a wide range of applications nowadays.

Applications of tree modelling can be classified into two main categories: First,
model artificial trees to be visualized in a digital urban or a natural scene. That
is widely applied in urban landscape design, game visualization and movie effects
design; Second, reconstruct trees accurately to obtain detailed information of the
tree. Important properties of trees, such as the height, the stem thickness, and
the crown size, usually play a significant role in environmental-related studies and
applications, for example, biomass estimation, forestry inventories and ecological
monitoring.

Accurate tree modelling not only enhances the realism within a scene, but also pro-
vides promising approaches to scientifically manage vegetations and forests, which
will in return contribute a lot to ecosystem protection, resource preservation, pre-
venting degradation, and many other human activities [Ke and Quackenbush, 2011].
Hence, conducting researches in accurate tree modelling is necessary and of great
importance to modern society.

The traditional way of measuring trees is to manually conduct fieldwork, which
is usually expensive and time-consuming [Hyyppa et al., 2001]. With the devel-
opment of digital image processing technologies, researchers have tried to conduct
tree analysis and modelling from photographs [Reche-Martinez et al., 2004]. A large
amount of tree modeling researches based on images have been developed in the
past decades [Shlyakhter et al., 2001; Reche-Martinez et al., 2004]. Although these
works are capable of producing realistic tree models which can be visualized from
multiple views, they don’t aim to reconstruct accurate tree branch structure or ge-
ometry. Modelling trees from photographs still remains a challenging problem due
to the complexity of the modelling process [Guo et al., 2018].

In recent decades, laser scanning technology has been widely used in environmental-
and forestry-related studies. As measurements from laser scanning are able to
achieve millimetre-level of detail from the objects, it becomes possible to directly
capture 3D information and rapidly estimate important attributes of the trees [Liang
et al., 2016]. With laser scanning it is easy to obtain accurate point cloud data of
trees with high quality and sufficient density, thus making it possible to derive ex-
plicit tree models.

To achieve accurate tree modelling from laser scanned points, both the branch ge-
ometry reconstruction and the tree skeleton reconstruction are required to be taken
account of. Works of [Hackenberg et al., 2014] and [Wang et al., 2016] adopted a
cylinder-fitting approach to obtain the geometry of tree branches. To further extract
the tree skeletal structure, some works employ a rule-based procedural modelling
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2 introduction

approach to synthesize branches [Guo et al., 2018; Xu et al., 2007], which will gen-
erate the tree skeleton with high quality but requires prior knowledge as well as
manual parameters adjustments. Instead, works of [Livny et al., 2010] proposed
a pure data-driven method to automatically extract the skeleton without requiring
additional user interactions. Nevertheless, the botanical fidelity of the reconstructed
tree model is not ensured.

Based on previous researches and studies, we aim to develop a robust approach to
automatically reconstruct accurate and detailed 3D tree models from point clouds.
Because of the high positional precision of laser scanned data, we use point clouds
of real-world trees collected from various scanning devices as our inputs to the pro-
posed approach. The outputs are 3D tree models with detailed branch structure.
We want to achieve accurate branch reconstruction of the tree, both geometrically
and topologically. Finally, the modelling quality will be evaluated and compared to
previous works.

1.2 research objective

The goal of this research is to develop a method that can automatically reconstruct
tree models from input point clouds. The output tree models should have accurate
and detailed branch structure. From the reconstructed 3D models the tree parame-
ters such as the tree height and the tree stem thickness can be measured. To achieve
this goal, several relevant sub-questions are listed as follows:

• How to extract the tree branch structure from point clouds? Which data struc-
ture is most suitable for storing and representing the tree skeleton structure?

• How can tree tranches be effectively represented? How to reliably reconstruct
the tree branch geometry from noisy and incomplete point clouds?

• How to convey the realism of the reconstructed models?

• How to evaluate the reconstructed tree models? How can we improve the
modelling quality?

1.3 research scope and challenges

This thesis project focuses on 3D tree modelling from point clouds, aiming to
achieve accurate and detailed branch reconstruction of the trees. The reconstruc-
tion of tree leaves is therefore out of the scope of this research. Furthermore, this
research focuses on modelling and reconstruction of the individual trees and we
assume that each tree is segmented out from the point cloud.

3D tree modelling from point clouds is a challenging topic. Compared to other
man-made objects such as buildings, furniture, and mechanical parts, trees typi-
cally have more complicated appearances and structures. Due to the variety of tree
species, branches as well as leaves, it is difficult to achieve accurate and detailed 3D
modelling of trees. On the other hand, data quality is also an important issue that
affects the results of modelling. Since occlusion cannot be avoided during the tree
scanning process, it is common to obtain tree point clouds with missing data and
incomplete branches, thus making the problem more difficult to tackle. To sum up,
3D tree modelling is a valuable research problem. However, multiple challenges
need to be addressed to solve this problem.
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1.4 thesis outline
The thesis paper is organized as follows:

• Chapter 2 reviews the related work, starting from the common data acquisi-
tion techniques to various researches and studies for tree analysis and mod-
elling. Both image-based approaches and Light Detection and Ranging (LiDAR)
-based approaches are presented. In this chapter, we put our most emphasis
on 3D tree modelling approaches from laser scanned data as it’s the most
relevant with our research work;

• Chapter 3 introduces the whole working pipeline for 3D tree modelling. The
skeleton extraction and simplification, as well as the geometry fitting of tree
branches, are mainly elaborated with algorithms, diagrams, and formulas;

• Chapter 4 presents the implementation details, the modelling results for vari-
ous trees from different data sources. Also, relevant discussions are provided
in this chapter;

• Chapter 5 gives a brief conclusion together with the future work.





2 R E L AT E D W O R K

This chapter aims to provide the relevant knowledge of data acquisition techniques
as well as available approaches for tree modelling and analysis. The whole chapter
is organized as follows: Section 2.1 gives a short introduction of common data
acquisition techniques; Section 2.2 covers an overview of existing approaches to
model and analyze trees based on digital images; Finally, researches and studies
focused on tree modelling from LiDAR point clouds are addressed in Section 2.3.

2.1 data acquisition techniques
A conventional way to collect forest and plants inventory data is to conduct periodic
field works. Important plant attributes (i.e. height, stem location, volume, etc.) are
always assessed by manually measuring sample trees or by using personal experi-
ence [Hyyppä et al., 2000]. However, pure ground-based field inventories work on
collecting forestry information is often very expensive and tedious [Maltamo et al.,
2014].

Since the last several decades, remote-sensing technology has been widely exploited
in mapping various information on forests and plants [Kamal et al., 2015]. Both
satellite sensors and airborne sensors are capable of effectively acquiring digital
images with high spatial resolution, and that provides viable data sources and op-
portunities for researchers to conduct forestry analysis on the individual tree level
[Ke and Quackenbush, 2011]. An early application is the visual interpretation of
aerial photography in forest analysis, which serves as an alternative to field mea-
surement [Singh et al., 1986; Ke and Quackenbush, 2011]. However, pure visually-
based analysis is usually labour and time-consuming. Lately, various semi- and
fully-automated algorithms for detecting and analyzing plants have been rapidly
developed, which plays a critical role in modern forestry management because of
their high capability in obtaining timely, accurate, and complete plants information
[Zhen et al., 2016].

In recent years, the LiDAR technology has been widely used in forestry-related anal-
ysis and studies. A LiDAR system is a laser-pulsed system, transmitting laser-pulses
and thus determining the distance to the object surface (in forestry study the object
can be an individual tree or multiple plants) according to the time of travel [Naes-
set, 1997]. Typically, several laser pulses can be recorder per m2, and that allows a
detailed investigation of forest regions and the creation of 3D tree models [Hyyppa
et al., 2001]. There are three typical way of LiDAR scanning: airborne scanning,
mobile scanning and static scanning (Figure 2.1).
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Figure 2.1: Different types of laser scanning. From top to bottom: static scanning, mobile
scanning and airborne scanning.

LiDAR measurements can provide points data with high sampling quality, which are
widely applied in further researches such as tree diameters and height estimation
[Wang et al., 2016], tree canopy analysis [Brandtberg et al., 2003], the identification
of tree species [Holmgren and Persson, 2004], etc.

2.2 imagery-based tree analysis and modelling

Researches and studies in automatic tree analysis and modelling from digital im-
agery date back to the mid-1980s [Ke and Quackenbush, 2011]. In the early 1990s,
[Pinz, 1991] presented the Vision Expert System (VES) to automatically identify tree
locations in color photographs. First, the tree crowns are identified by finding circu-
lar objects with uniform brightness. To avoid too many texture information which
may cause overwhelming local noises within one crown, a low-pass filter is applied
before the circle-searching. This work can roughly identify the tree locations and
extract the tree crowns’ size, nevertheless the detection result is highly influenced
by the data noises.

Pollock [1998] developed a model-based method to detect and delineate individual
tree crowns. By utilizing high-spatial-resolution optical images as the input data,
the work constructs a synthetic image model of the tree crown, which is defined
from both geometric and radiometric aspects (i.e. the crown envelope, the sensor
irradiance, etc.). Then a matching process is conducted between the images and the
synthetic image model instances to recognize the tree crown objects. User-generated
data is additionally involved in the data training process.

Besides analyzing the tree stem location and detecting the tree crown, digital im-
ages can also be used to reconstruct tree models. In 2001 Shlyakhter et al. utilized
images to guide its procedural tree modelling process. The input images are man-
ually segmented into the tree and the background, and then a visual hull is built
to approximate the shape of the tree. By finding the medial axis [Ogniewicz and
Kübler, 1995] of the tree’s visual hull, the plausible tree skeleton is constructed.
Then they apply an open L-system [Honda, 1971] to grow the tree and synthesize
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small branches on top of the main skeleton. Figure 2.2 shows the pipeline of this
work.

Figure 2.2: Procedurally reconstructing tree models from images [Shlyakhter et al., 2001].

Reche-Martinez et al. [2004] described a volumetric approach to visually reconstruct
trees from multiple views. First, a tree is considered as a volume with opacity
and colour values. With the opacities estimated through an optimization method,
they assign corresponding textures to each pixel in the multiple viewing billboards.
This method can realistically model the tree appearance from various viewpoints.
However, it doesn’t provide accurate information on the tree diameter, the tree
volume, etc.

While the works mentioned above can produce impressive modelling results, they
don’t aim to reconstruct explicit branch or leaf geometry. To solve this limitation,
Quan et al. [2006] proposed a points-aided algorithm for modeling trees directly
from images. The tree is captured from different views and the corresponding 3D
point cloud is generated by applying the Structure From Motion (SFM) technique.
Then the user needs to segment the 3D points into individual leaves, which will be
used to form the generic leaf model and further model all other visible leaves. The
whole methodology is delineated in Figure 2.3. Compared with the previous works,
this approach can produce editable tree model which closely resembles the real tree.
Nevertheless, it involves tedious user interactions.

Figure 2.3: Plant modelling from multi-view images [Quan et al., 2006].
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2.3 lidar-based tree analysis and modelling

LiDAR is a promising data source for forestry and vegetation studies. Traditionally,
it is difficult to extract accurate and detailed information of the trees and vegetation
without moving to stereo acquisition. Compared with that, LiDAR actively emits
energy and then receives the signals reflected from a target, and thus can directly
capture the 3D information of objects [Zhen et al., 2016]. LiDAR technology makes it
possible to conduct automatic forestry inventory and tree analysis. Tree attributes
(i.e. tree height, stem thickness, volume, etc.) can be easily measured from the
laser scanned data [Olofsson et al., 2014]. Moreover, by applying LiDAR technology
we are able to acquire highly dense point clouds, which lays the foundation for
accurate tree reconstruction and modelling. This section provides vast researches
and studies in LiDAR-based tree analysis and modelling, which are closely related
to our work and thus we put most of our emphasis on this topic.

2.3.1 Tree analysis from point clouds

Holmgren and Persson [2004] utilized high-density airborne laser scanner data to
identify species of individual trees. This work uses field measurements for training
and further validation of the classification. Tree point clouds obtained from laser
scanning are pre-segmented. Then they are classified according to several character-
istics which include the tree height, the crown area, and base height of the crown.
The classification results demonstrate high accuracy. Nevertheless, sufficient prior
knowledge is required to support tree species detection.

Hyyppa et al. [2001] proposed a segmentation-based method to estimate the stan-
dard attributes for individual trees within a region. Raw point clouds obtained
from airborne laser scanning are pre-classified into terrain points and vegetation
points. Then tree points are segmented using region growing algorithm. Standard
tree attributes such as the tree height, the tree crown size and tree volume are thus
computed using a series of botanical rules. This work can roughly estimate the
individual tree attributes in a large region. However, the estimation results are not
very accurate.

Olofsson et al. [2014] proposed an approach to accurately measure the tree stem
and the tree height from terrestrial laser scanned data. The tree points are classi-
fied into tree stem and tree crown by applying cross-section circles searching. With
the pre-classified points, the tree height is estimated from the ground to the crown;
stem diameter of the tree is estimated by applying the Random Sample Consen-
sus (RANSAC) algorithm.

2.3.2 “Icon” trees modelling

Currently, the most common approach is to model the trees as icons, which is easy
to generate and maintain. Gobeawan et al. [2018] constructed 3D tree models in
the format of City Geography Markup Language (CityGML) for the virtual Singapore
city (Figure 2.4). In this work, they use the official tree database to determine the lo-
cations of trees within Singapore. The laser scanned data are processed to measure
the semantic information of individual tree properties (i.e. growth space, branch
sizes, crown sizes and shapes, etc.). The trees are modelled in various Level of De-
tail (LOD). LOD1 is a simple 3D height representation, and LOD2 is a sphpere-crown
and trunk representation. This work enables modelling 3D trees dynamically on a
large region. However, the reconstructed tree models are not accurate or detailed
enough.
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(a) (b)

Figure 2.4: Tree models for the Virtual Singapore [Gobeawan et al., 2018]. (a) LOD1 model.
(b) LOD2 model.

2.3.3 Tree skeleton extraction

As the “icon” tree models are constructed mainly for visualization, it’s difficult
to extract useful or measurable information such as the branch structure and the
explicit tree skeleton from those models. Compared with methods that directly
model trees as icons, a more accurate approach is to reconstruct the tree skeleton
from laser scanned point clouds. According to [Cornea et al., 2007], curve-skeletons
are 1D structural representations of 3D objects, which is useful for many analysis
and visualization tasks such as navigation, animation, model reduction and simpli-
fication.

Existing literature on tree skeleton extraction is vast. In 1999, Verroust and Lazarus
proposed an algorithm to extract consecutive skeletal curves from scattered points
collection. First, they build a neighbourhood graph for the points, where a shortest-
path distance map is then computed from a given source vertex. Vertices within the
graph are assigned to different levels according to their proximity to the source ver-
tex; And based on the levels the skeletal curves are extracted. The whole extraction
process is delineated in Figure 2.5.

(a) (b) (c) (d) (e)

Figure 2.5: Extracting skeletal curves from 3D points [Verroust and Lazarus, 1999]. (a) Scat-
tered points. (b) Neighborhood graph. (c) Shortest path map. (d) Levels. (e)
Skeleton.

An alternative for the shortest-path method is the Medial Axis representation for
the 3D object skeletal structure, proposed by Dey and Sun [2006]. In this work, the
skeleton is defined by the medial axis, which lies within the middle of the object.
As illustrated in Figure 2.6, the equidistant 2D surface is first computed and later
thinned to a 1D skeleton. Compared with the graph representation proposed by
Verroust and Lazarus, this work highly relies on the quality of the input data and
therefore is sensitive to noises or irregularities of the input point clouds.
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(a) (b) (c)

Figure 2.6: Extracting skeleton using Medial Axis function [Dey and Sun, 2006]. (a) Original
model. (b) Medial axis surfaces. (c) Thinned skeleton curves.

Following the work by Verroust and Lazarus, Xu et al. [2007] described a graph-
reduction method to model the main tree branches from laser scanned data. This
work derives the main skeleton by triangulating the input points, finding the short-
est path from the root vertex to the rest vertices, quantizing the points into bins
based on the length of their paths, and extracting the main skeleton accordingly
(Figure 2.7). Additionally, small branches and leaves are synthesized to form the
crown geometry.

(a) (b) (c) (d)

Figure 2.7: Extracting main branch skeleton [Xu et al., 2007]. (a) Triangulation. (b) Shortest-
path graph. (c) Quantized bins. (d) Main skeleton.

Instead of extracting skeleton curves directly from point clouds, Bucksch et al.
[2009] applied another method, organizing points into the octree structure and
generating the skeletal curves from the octree cells. This approach has good per-
formance in terms of computation efficiency. Nevertheless, the results may turn out
to be unreliable when the branches don’t have uniform spatial distributions.

Similarly, Yan et al. [2009] also applied a cluster-based approach to generate the
tree skeleton. The K-mean clustering algorithm is utilized to segment the input
point cloud into different branch clusters. Then the branches are identified through
the cylindrical components searching, where a neighbourhood graph is built and
the skeleton structure is extracted accordingly. This method is effective and fully
automatic but is not robust enough to issues such as holes or missing data due to
occlusions. The reconstruction method is revealed in Figure 2.8.
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(a) (b) (c)

Figure 2.8: Extracting the skeleton from K-means clustering [Yan et al., 2009]. (a) Detected
branches. (b) Skeleton. (c) Lofting results.

Livny et al. [2010] introduced a novel approach which computes the minimum
spanning graph from the point clouds to obtain an initial skeletal structure of the
tree (Figure 2.9). Furthermore, several global optimizations are applied to remove
noises and better model the tree branch structure. This method gave us a lot of
inspiration, from which our research work will be mainly based on. One significant
strength of this method is that it’s capable of reconstructing the topological struc-
ture of the tree branches from pure point clouds, without requiring additional user
interactions or imageries. Nevertheless, this approach still has multiple drawbacks.
One limitation is that it cannot provide reliable results when it comes to missing
data issues. Moreover, it doesn’t guarantee a geometrically-correct tree model, i.e.,
the output model doesn’t fit well to the input point cloud.

(a) (b) (c)

Figure 2.9: Reconstruction of tree branches [Livny et al., 2010]. (a) Input points. (b) Skeleton
obtained from minimum spanning tree. (c) Inflated branches.

Most of the approaches introduced are primarily driven by data. Besides that, Guo
et al. [2018] applied a rule-based approach to model the tree branch structure. The
input data are tree point clouds obtained from stereo tree images. A parametric
plant representation is proposed to simulate the tree growth progress and synthe-
size the 3D skeleton from the point cloud. This method achieves high modelling
quality by combining the data-driven reconstruction with tree growth modelling.
However, prior knowledge on the tree growth parameters, for instance, the branch
rolling angle and the growing unit, requires to be specified by users. Figure 2.10

indicates the important parameters involved in this work.



12 related work

Figure 2.10: Parameters involved when synthesizing the tree branch structure [Guo et al.,
2018].

Reconstruction of tree skeletons has many different applications. In 2018, Calders
et al. applied a skeleton-based approach to reconstruct forest stands from point
clouds, which is later exploited in radiative transfer modelling and simulation. They
developed a semi-automatic workflow which enables the segmentation of tree point
clouds and the cylinders fitting along with tree skeletons. Furthermore, the laser
scanned data is matched with traditional census data to determine the individual
tree species and allocate corresponding radiometric properties.

Another application is to investigate the branch architecture of the trees. Lau et al.
[2019] collected laser scanned data from several tropical trees. By reconstructing
the tree skeleton and branch geometry, the metabolic scaling factors such as the
branch radius scaling ratio and length scaling ratio are estimated. Those estimations
are later compared with the real values manually measured from the same trees.
Results show that estimated metabolic factors of the trees are similar to real values,
indicating that the skeleton-based method can be applied in statistical studies of
trees and other vegetations.

2.3.4 Branch geometry reconstruction

Having obtained the explicit tree branch structure, researchers are considering to
accurately model the tree branch geometry from laser scanned data. When it comes
to this topic, the cylinder-fitting approach becomes a mainstream strategy in works
of literature [Wang et al., 2016].

In 2014, Hackenberg et al. described a method for fitting cylinders into a tree point
cloud. In this work, cylinders are stored as a hierarchical data structure, which en-
ables parent-child neighbour relations. The propagation direction of the tree is also
taken into consideration. By applying the hierarchical-cylinder structure, this work
can efficiently extract different tree components (for example the stem or a single
branch). Nevertheless, this approach is not fully automated, as tree extraction and
pre-processing are performed manually.

Raumonen et al. [2013] proposed another method for constructing precise tree
models efficiently from point clouds. This approach is based on a step-by-step col-
lection of small connected surface patches, which are extracted from local subsets
of the input point cloud. The neighbour-relations and geometrical properties of
these patches are extracted and used to segment the point cloud into branches, af-
ter which a set of cylinders are used to model the branches. One drawback of this
method is that it requires a high quality of the input point clouds. An individual
tree often needs to be scanned multi-times from various viewpoints to ensure a
good output model.
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As most of the methods focus on the tree modelling in a flat area, the work con-
ducted by Wang et al. [2016] paid attention to the tree stem reconstruction in
landslide-affected areas, where the terrain is usually steep and the tree stems often
grow in an irregular direction. In their work, the tree stem is modelled by fitting a
series of cylinders using a RANSAC-based approach. The estimated stem parameters
from the reconstructed trunk have various applications (i.e. biomass computation,
tree growth estimation, etc.). Figure 2.11 shows that the trunk cylinder is fitted from
input scanned points.

Figure 2.11: Cylinder fitting process for the stems [Wang et al., 2016].

2.3.5 Crown modelling

Having attempted to reconstruct the skeleton structure of tree branches, some fol-
low up works focus on the modelling of tree crowns and tree leaves. Livny et al.
[2011] encoded lobe-based tree representations from sample trees and later synthe-
sized them into detailed tree models, resembling the sample tree data (Figure 2.12).
This approach requires the prior knowledge of tree species information.

Figure 2.12: Lobe representation of the tree crown [Livny et al., 2011]. Left: dividing the tree
crown into and assigning the textured lobes; Right: textured lobes.
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In order to enhance modelling realism, Xie et al. [2016] utilized examples of real
trees to reconstruct tree models with fine details. 3D real-world trees are captured,
sliced, and stored as exemplar tree-cuts (Figure 2.13). Those fine-level geometric
details later will be transferred to the reconstructed tree models, enabling that the
generated tree models inherit fine realism from the example models.

Figure 2.13: Tree-cuts examples with fine details [Xie et al., 2016].



3 M E T H O D O LO GY

Based on the research objective defined in Chapter 1, and the previous researches
presented in Chapter 2, we propose our methodology in this chapter. Our input
data is the point cloud of a single tree, which typically contains noises and out-
liers, but is expected to convey the major branch structure of a tree. To reconstruct
the tree branch structure in details, we utilize a skeleton-based approach which is
inspired by Livny et al.. To improve the topological correctness and the geometri-
cal correctness of the reconstructed 3D model, we further adjust the tree skeleton
according to the desired characteristics of the input point cloud. Furthermore, an
optimization method is applied to obtain accurate geometry of the tree branches.
We aim to produce a fully automatic modelling algorithm, which allows faithful
reconstruction for various types of trees while alleviating the users from tedious
interactions.

The chapter is organized as follows: Section 3.1 provides an overview of the re-
constructed approach; Section 3.2 describes the skeleton-based approach applied to
extract the initial tree branch structure; Section 3.3 presents the algorithm we use
for simplifying the tree skeleton; Inflation of branch geometry is further introduced
in Section 3.4; And Section 3.5 shortly describes the realism enhancing process.

3.1 overview
To appropriately represent the tree skeleton, we introduce the concept Branch Strc-
ture Graph (BSG), defined as a spatially connected and directed graph which is
acylic [Livny et al., 2010]. The tree BSG has a set of vertices, representing either the
tree root, the important turning points, the bifurcations or the leave nodes. The
straight edges connecting the BSG vertices represent the tree branches. (Figure 3.3a)
gives a complete illustration on the tree BSG.

A good BSG representation of the tree skeleton usually bears several desired charac-
teristics:

• The BSG should fit enough to the input point cloud;

• The BSG should have relatively long branches near the tree root and relatively
short branches close to the tree crown;

• The thickness of the branches is highly relevant with their length of subtree.

15
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(a) (b)

Figure 3.1: Graph representation of the tree branch structure. (a) Real tree. (b) Tree BSG
graph.

Our proposed tree reconstruction pipeline is consisted of four major steps, as de-
picted in Figure 3.2.

• Initial skeleton extraction: We triangulate the tree points and apply the
shortest-path algorithm to extract the initial skeleton graph. Note that the
main-branch points are identified and centralized beforehand to improve the
quality of the extracted initial skeleton;

• Tree skeleton simplification: The initial skeleton graph is iteratively simpli-
fied, resulting in a fine tree skeleton. We simplify the graph by retrieving and
merging adjacent vertices if their distance is sufficiently small;

• Branch fitting: Based on the reconstructed tree skeleton, we we fit a se-
quence of cylinders over the input points to approximate the geometry of
the branches. We first apply non-linear least squares adjustment to obtain ac-
curate radius of the tree trunk. Then, we derive the radius of the subsequent
branches from the main trunk;

• Adding realism: Finally, we synthesize random leaves at the end of tree
branches and add textures to enhance realism.

Figure 3.2: An overview of the proposed methodology.
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3.2 initial skeleton extraction
The very first step of tree modelling is to read input point cloud and extract the
initial tree skeleton from points. Points proximal to each other are more likely to
belong to the same branch. Based on such characteristic, we construct a MST graph
over the input point cloud to represent the tree skeleton. The MST is a weighted
graph where the sum of the weights of the edges is minimized. It provides a rough
estimation of the intrinsic structure from a given dataset [Zhong et al., 2015]. It’s
very suitable for representing the tree branch structure, as it constructs the least
expensive spanning path for the tree-points.

The initial tree skeleton can be extracted by computing a MST graph from point
cloud, which mainly involves two steps:

Firstly, we apply Delaunay triangulation to construct an initial graph from the input
points. Delaunay triangulation defines a piecewise linear interpolation function and
generates a well-shaped spatial tessellation [Gudmundsson et al., 2002]. It lays the
foundation for MST computation as many efficient approaches extract a MST among
edges within the Delaunay triangulation of the points [Zhou et al., 2001]. Addi-
tionally, Delaunay triangulation helps to complete the missing region or incomplete
branches, which will make the skeleton extraction more robust to the input point
clouds with poor data quality;

After the initial triangulation graph is constructed, we weight all the edges using
their lengths defined in the Euclidean space. Then, we apply the Dijkstra shortest
path algorithm to compute the minimum-weighted spanning tree from the Delau-
nay graph, which will create an initial tree skeleton. The skeleton extraction process
is summarised in Figure 3.3.

(a) (b) (c) (d) (e)

Figure 3.3: Initial skeleton extraction process. (a) Real tree part. (b) Scanned points. (c)
Delaunay triangulation. (d) MST. (e) Initial skeleton.

We test our skeleton extraction method on multiple trees from various types and
with different sizes. Under most cases, the MST constructed gives a reasonable
indication of how the tree’s branch structure looks like (Figure 3.4).
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(a) (b)

Figure 3.4: Skeleton extraction of a tall tree. (a) Tree point cloud. (b) Initial skeleton where
red edges indicate the main skeletal branches.

Nevertheless, still examples exist when the pure MST cannot represent the tree skele-
tal structure correctly (Figure 3.5). We can observe that there are two main branches
within the single trunk area, which is not correct.

(a) (b)

Figure 3.5: Skeleton extraction of a fat tree. (a) Tree point cloud. (b) Initial skeleton where
red edges indicate the main skeletal branches..

Experimental results illustrate that trees with a short and fat shape especially don’t
have good skeleton extraction results. We think that the phenomenon occurs be-
cause points collected from fat plants are typically more scattered. Instead of grow-
ing compactly on a natural vertical manner, the computed MST would grow on a
loose horizontal manner.

To address that problem, different possible solutions are taken into account. The
first option is to manually thin the input point cloud before constructing the tree
skeleton. However, the extraction result is still not satisfying, as point cloud thin-
ning does not change the intrinsic spatial characteristic of the points.

The other option is to deliberately centralize the points to produce a more compact
tree skeleton. Nevertheless, that does not apply for all the input points. Points lying
within main branches should be centralized to generate condensed branches, while
points near the root, the bifurcations, or the branch tips should remain to keep the
original shape of the tree. Based on this idea, we begin by retrieving every single
point data and identifying if it belongs to the main branches.
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We can identify the main-branch points according to the tree points density change.
A density map of the tree point cloud is computed and visualized in Figure 3.6.
We observe that points at the tree base, the bifurcations or the branch tips typically
have a sharp change in terms of their density, while points within a single branch
share a relatively stable density.

Figure 3.6: Density map of the tree point cloud. Blue color indicates low density and the red
color indicates a relatively high density.

Based on the desired characteristic of the points density distribution, we identify the
main-branches points by computing their density changing rate within the neigh-
bourhood. For each point, the density changing rate ∆ρ is computed using the
following equation:

∆ρ =
1
n

n

∑
i=1
| di − d | (3.1)

Where n is the neighbourhood number for the specific point, di is the density of the
ith neighbouring point, d is the density of the current point. If the changing rate of
density is smaller than a given threshold:

∆ρ ≤ ε (3.2)

It means that the point has a stable density within its neighbourhood. Then, we
recognize the point as the main-branch point. For the main-branch point which has
been identified, we apply a mean shift method to centralize its location. Mean shift is
a simple iterative procedure, shifting each point to the average of its neighbouring
[Cheng, 1995], as demonstrated in Figure 3.7.
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Figure 3.7: Mean shift method.

After identifying and centralizing the main-branch points, we extract the tree’s
skeleton over the processed tree point cloud, as shown in Figure 3.8. We can observe
that now the initial skeleton extracted has a correct topological branch structure.
The extracted result shows that main-branch points centralization helps to improve
the topological correctness of the tree branch structure.

Figure 3.8: Skeleton extraction aided by the main-branch points centralization. Red edges
indicate the main skeletal branches.

3.3 skeleton simplification

Having extracted the initial tree skeleton from the input point clouds, we notice that
the graph has amounts of redundant vertices and edges. Most of the redundant
vertices and edges don’t contribute to the tree skeleton shape and thus are of little
importance. Those unimportant components should be removed to simplify the tree
graph. The simplification is conduct by iteratively checking the proximity between
adjacent vertices. Two scenarios are taken into account during the simplification
process:
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• If the current vertex has one single child, then a line-simplification algorithm
will be applied to check the if the current vertex can be cleared from the initial
skeleton;

• If the current vertex has multiple children, then a multiple-children simplifi-
cation strategy will be conducted to merge close children vertices.

The simplification process loops iteratively until the tree skeleton is refined to its
simplest. The overview of the simplification process is provided in Algorithm 3.1.

Algorithm 3.1: Skeleton Simplification
Input: Initial skeleton of the tree
Output: The simplified tree skeleton

1 δ← True;

2 while δ do
3 δ← False;
4 for V in skeleton do
5 if V has single child then
6 conduct single-child simplification;
7 δ← True;

8 else
9 conduct multi-children simplification;

10 δ← True;

11 return simplified skeleton

3.3.1 Assigning confidences to vertices and edges

We assign weights to vertices and edges in the initial tree skeleton to further guide
the simplification process. We want to keep important vertices and main branch
edges while ignoring short branches and noisy points. A number of previous works
[Guo et al., 2018] suggest utilizing the point density, together with the point orien-
tation vector extracted from Principal Component Analysis (PCA), to indicate the
importance of the vertex. However, the weights evaluated in such way are signifi-
cantly dependent on the quality of the scanned points and thus become unreliable
when encountered with poor scanning issues.

Instead of weighting from the density, we weight each vertex according to its length
of subtree, which is computed as the sum of the length of all edges within the
subtree of the vertex. Through such way, high-connective vertices close to the tree
base area get heavier weights while low-connective vertices near the tree crown get
smaller weights. One advantage is that the weighting process is not sensitive to in-
put points density, which makes it robust to data with different scanning qualities.

Accordingly, each branch edge is weighted as the average of the subtree length of
its two ending vertices:

we =
Lv1 + Lv2

2
(3.3)

Where we is the weight of the edge, Lv is the subtree length of the specific vertex.

Figure 3.9 shows the weighs assigned to vertices and edges, which is also briefly
abstracted in Figure 3.10. It is noticed vertices and edges on the tree crown have
consistent low weights, while near the tree base area small branches have drastically
small weights compared to the main tree branches. Such characteristic helps us clear
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away noisy branches at the trunk, and, at the same time, keep the small leave twigs
at the crown.

(a) (b)

Figure 3.9: Weights assigned to the vertices and the edges. Red indicates high weight while
blue indicates low weight. (a) Vertices weights. (b) Edges weights.

Figure 3.10: An illustration of the vertex and edge weights. Red and thick lines indicate high
weights, green and thin lines indicate low weights.

To clear away the noisy small branches at the tree base, we retrieve all the vertices
in the initial tree skeleton. For each vertex, we compute the weight ratio between it
and its parent vertex:

δwi =
wi
wp

(3.4)

Where wi is the weight of the ith vertex and wp is the weight of the parent vertex. If
δwi is smaller than a given threshold:

δwi ≤ τ (3.5)

We assume that the current vertex is a noisy data point, which is culled away to-
gether with its subtree branches. Figure 3.11 shows that after removing the noisy
vertices and small branches, we obtain a more concise tree skeleton.
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(a) (b)

Figure 3.11: Eliminating small noisy branches. (a) Initial tree skeleton. (b) Skeleton after
removing noisy edges.

3.3.2 Simplifying the vertex with one single child

For vertex which has only one single child, we specify the problem as a line sim-
plification problem. According to [Wu and Marquez, 2003], the Douglas-Peucker
algorithm is regarded as the most effective line simplification algorithm in litera-
tures. Douglas-Peucker is applied to simplify line segments by gradually decimat-
ing those unimportant points on the segments. The more proxy the current point
is to the segment, the less important it is. Hereby, we use a similarity indicator α to
describe the closeness between the point and the line segment:

α =
d
r

(3.6)

Where d is the distance between the current point and the line segment formed by its
parent and its child, r is the distance threshold of an edge in the tree skeleton which
controls the simplification process. As illustrated in Figure 3.12, if the indicator
value α is smaller than a given threshold:

α ≤ σ (3.7)

We assume that the current point is unimportant and therefore clear it from the
graph.

Figure 3.12: Single-child vertex simplification.
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3.3.3 Simplifying the vertex with multiple children

For vertex which has multiple children vertices, we check the closeness between
its children vertices. If the children are too close with each other, then we merge
them into a new child vertex. To evaluate the proximity between a specific pair of
children vertices, we propose the bidirectional similarity indicator, which is defined
as follow:

α1↔2 = min(
l1 sin θ

r2
,

l2 sin θ

r1
) (3.8)

Where α1↔2 indicates the closeness between the pair of two children vertices, l
represents the length of the edge between one specific child vertex and its parent,
θ is the angle between two edges, and r is the distance threshold of an edge (see
Figure 3.13).

(a) (b)

Figure 3.13: Bidirectional similarity indicator. (a) Indicator computed from V1 to V2. (b)
Indicator computed from V2 to V1.

The reason we name the similarity indicator as bidirectional is that the indicator
computed from different direction (i.e. from V1 to V2 or from V2 to V1) will have
different values. As the example in Figure 3.13 illustrates, the indicator value com-
puted aligning V1 to V2 will have a smaller value compared with the other way
around. Therefore, we select the minimum indicator value to evaluate the proxim-
ity between a pair of two children vertices. The smaller the indicator value, the
more possible it will be to merge vertices together.

Generally, one bifurcation vertex has more than two children vertices. Therefore,
for each bifurcation vertex, we retrieve every possible pair of its children and com-
pute the corresponding bidirectional similarity indicator. We identify the pair with
the smallest indicator value α1↔2. If the identified indicator is smaller than a given
threshold:

α1↔2 ≤ σ (3.9)

Then we merge the pair of vertices into a new vertex. The merged new vertex
location pnew is computed as the weighted average of the two old vertices, where,
as declared in Section 3.3.1, the weight of each vertex is represented as its subtree
length:

pnew =
p1w1 + p2w2

w1 + w2
(3.10)

Some special cases exist when a small indicator value doesn’t ensure high similarity
between two edges. As depicted in Figure 3.14, an extremely short edge will result
in a small indicator value but doesn’t necessarily mean that it is similar to the
other edge. Merging vertices under such circumstances will cause unreasonable
orientations of branches, and therefore should be avoided during the simplification
process.
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(a) (b)

Figure 3.14: Unreasonable merging. (a) An illustration how the indicator is computed. (b)
Merging result where grey edges are new-produced branches.

To avoid unreasonable merging, we forbid clustering edges together if they differ
a lot in the length (i.e., the long edge should not exceed the 2 times length of
the short edge). Figure 3.15 shows how our strategy helps to maintain the natural
topological structure of the tree branches during the merging process. It is observed
that the simplification result after we forbid short-edges merging has more natural
and smoother growth direction of the tree branches.

(a) (b)

Figure 3.15: Comparison of different simplification method. (a) Normal simplification. (b)
Simplification where the short-edges merging is forbidden.

The initial tree skeleton is iteratively retrieved, with its proxy vertices recognized
and clustered, until no further vertices can be merged. Figure 3.16 shows the sim-
plified tree skeleton in comparison with the initial tree skeleton.
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(a) (b)

Figure 3.16: Skeleton simplification. (a) Initial skeleton without noisy branches. (b) Simpli-
fied skeleton.

3.4 branch fitting
The next step after skeleton simplification is inflating the tree branch geometry
based on the tree skeleton. To precisely model the geometry of tree branches, [Guo
et al., 2018] utilized a B-spline curve fitting method, [Chen et al., 2008] applied a
sketch-based modelling system which reconstructs tree branches from user’s free-
hand drawing.

Apart from existing methods, we want to explore a simple way to reconstruct the
geometry of tree branches while avoiding users’ interactions as much as possible.
To achieve that, we explore a cylinder-fitting approach. It is observed that gener-
ally trees branches in a natural or urban environment can be well represented as
cylinders (Figure 3.17). According to [Markku et al., 2015], the cylinder is the most
robust primitive in terms representing the geometry of the tree branches, even with
holes and noises in the dataset. Moreover, compared with complex curve-fitting,
cylinder-fitting method is relatively easy and fast in computation.



3.4 branch fitting 27

(a) (b)

Figure 3.17: Tree branches in the nature. (a) Tree branches with regular growth. (b) Tree
branches with irregular growth.

We want the reconstructed branch cylinders to accurately fit the input points. There-
fore, we exploit an optimization-based approach to obtain accurate branch geometry.
For those small tree branches which don’t have sufficient supportive points or suffer
from missing scan data, we apply an allometric tree growth theory to derive their
geometries.

3.4.1 Main trunk fitting

The main trunk close to the tree base area is often the branch with the highest
density of supportive points. It is important to accurately model the geometry
of the trunk, as it lays the foundation for the propagation of the rest subsequent
branches. We begin by identifying the points which belong to the main trunk. We
build the kd-tree over the point cloud and assign all the points to the corresponding
branch edges through the kd-line intersection query. Figure 3.18 shows how the
points are segmented into different tree branch parts.
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Figure 3.18: Points assigned to different branch edges. Different colours indicate different
tree branch parts.

The next step is to fit a cylinder to approximate the branch geometry on the basis of
the corresponding trunk points. This is a typical non-linear least squares problem.
We hereby define our input data, parameters to be solved, and the objective function
as follow (Figure 3.19):

(a) (b)

Figure 3.19: Cylinder fitting. (a) Parameters to be solved. (b) Distance computation from the
point to the cylinder axis.

• Input data are the position P of the input points;

• Parameters to be solved are the axis direction vector ~a of the cylinder, the
position Pa of the end point on the axis, and the radius R of the cylinder;

• Objective function is defined as the sum of the squared distance min ∑ D
from the points to the branch cylinder.

To obtain the distance D between the point and the cylinder, we first obtain the
distance between the point and the axis daxis and then subtract it from the cylinder
radius R.
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D =| daxis − R | (3.11)

While daxis can be computed as follow:

daxis = l sin β = ‖P− Pa‖ sin
(

arccos
~a(P− Pa)

‖P− Pa‖

)
(3.12)

As delineated in Figure 3.19, l is the distance between the current tree point P to
Pa, which is the end point on the cylinder axis, β is the angle formed by the axis
and the vector

−→
PaP. It is denoted that the axis direction vector ~a is supposed to be

normalized beforehand.

Each tree point defines a distance expression:

f (p) = D =| daxis − R | (3.13)

And our objective is to minimize the sum of f(p) for all the tree-points:

min
n

∑
i=1

f (p)i (3.14)

For solving the 7 unknown parameters, we have multiple expressions as many as
the number of the trunk points. That introduces huge redundancy and thus enables
an accurate solution. Levenberg Marquardt algorithm to is applied to solve the non-
linear least squares problem [Moré, 1978].

To further improve the solution quality, we repeat the non-linear least square pro-
cess and introduce the weights for each point during the second computation iter-
ation. We want to give heavy influence to the points closer to the cylinder and rel-
atively low influence to the points which are far from the cylinder. Hence, weights
are assigned according to the point’s distance to the cylinder. The weight for one
specific point is defined as follow:

wi = 1− Di
Dmax

(3.15)

Where Di represents the distance between the current ith point and the cylinder
obtained from the initial adjusting process, and Dmax is the maximum distance
among all the points to the cylinder. Through such way, we normalize all the
weights of the points to the range between 0 and 1.

The objective function is denoted accordingly:

min
n

∑
i=1

f (p)iwi (3.16)

After the cylinder-fitting process, we obtain the accurate geometry of the tree trunk,
as depicted in Figure 3.20.
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(a) (b)

Figure 3.20: Trunk cylinder fitting. (a) Trunk points. (b) Fitted cylinder.

3.4.2 Small branch propagation

Since the point cloud usually becomes noisier and contains more outliers when it
comes to the tree crown and branch tips, fitting an accurate cylinder to a small
branch will be almost infeasible. Instead, we apply an allometric rule to obtain
plausible estimates for the rest of the tree branches [Guo et al., 2018]. The radius of
a branch edge is proportional to its weight, which, as defined in Section 3.3.1, is the
average of the subtree length of its two ending vertices. We compute the radius of
the rest branch edges using the following equation:

Rei = Rt(
wi
wt

)1.1 (3.17)

Where Rei is the radius of the ith branch edge, Rt is the radius of the trunk which is
obtained from Section 3.4.1, w is the weight of the specific branch edge, parameter
1.1 is used to control the branches propagating speed. Figure 3.21 shows the derived
tree branches model from the constructed tree skeleton.

(a) (b)

Figure 3.21: Branch fitting. (a) Tree skeleton. (b) Tree branch model.
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3.5 adding realism
To further add realism, we add leaves and texture to the reconstructed tree models.
Since it’s almost impossible for us to capture the geometry and texture characteris-
tics of leaves from laser scanned data, we are unable to reconstruct accurate leaves
purely from the input point cloud. Therefore, leaves reconstruction is out of the
research scope. However, we would like to render leaves to convey the realism of
the model. We randomly generate oriented leaves at the end of each branch. The
leaves are rendered as textured quads in the rendering. Figure 3.22 shows the final
reconstruction.

(a) (b)

Figure 3.22: Adding leaves and texture. (a) Tree branch model. (b) Final tree model.





4 R E S U LT S A N D D I S C U S S I O N

This chapter aims to provide the experiment results for the study. First, a detailed
description of the implementation and prototype is provided in Section 4.1. Then, to
demonstrate the robustness of our method, we test our algorithm over a wide range
of tree point clouds with various species, sizes, and data sources (Section 4.2). Fi-
nally, some discussions considering parameters, comparisons with previous works,
our limitations and future applications are made in Section 4.3.

4.1 implementation details

4.1.1 Datasets

To develop and test the proposed tree reconstruction method, several point cloud
datasets have been collected. These test datasets contain point clouds from publicly
available point cloud repositories, the Floriade Project of Almere, and the AHN
dataset. These point clouds include various tree species and types. Also, a wide
range of data sources is covered, i.e., static laser scans, mobile laser scans, and
airborne laser scans.

4.1.2 Software prototype

We use C++ as the programming language to implement the algorithms described
in chapter 3. The development environment is Microsoft Visual Studio 2017. We
select C++ because it enables high computation efficiency. Also, many necessary
libraries for the tree skeleton graph modelling and the fine model rendering are
provided in C++, which are listed as follow:

• BGL: Boost Graphic Library; it provides support for graph structures, among
which the adjacent list is used to construct graphs and the shortest path is
used to compute the MST; Furthermore, BGL allows users to define the needed
attributes for the vertices and edges.

• OpenGL: Open Graphics Library; it is used to render 2D and 3D vector graph-
ics. It achieves hardware-accelerated rendering performance by directly inter-
acting with the GPU;

• Qt Library: It is mainly used for the User Interface design and creation of the
tree modelling application platform.

• Easy3D: It is a C++ library for processing and rendering 3D data, which is
developed by Nan [2019]. In this thesis we mainly use Easy3D for efficiently
rendering input tree point clouds and reconstructed tree models.

Besides the C++ libraries, tools like Mapple, which is a tool for visualizing and edit-
ing 3D point clouds [Nan, 2018], will be used for the visualization and segmentation
individual tree point clouds.
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4.2 results

To verify the effectiveness and capacity of our proposed methodology, we recon-
struct a variety of trees with different species and branch structure. Among them,
some trees are tall and slim, while others are short and fat. Most trees can be validly
reconstructed, as delineated in Figure 4.1.

Our reconstruction results demonstrate that our proposed methodology can process
various type of trees with different sizes. Especially, we show a tree with missing
data due to occlusion (Figure 4.1b). The algorithm is able to complete the missing
region and reconstruct plausible branch structure.

(a)

(b)

(c)

(d)

Figure 4.1: Reconstructed models for various trees. From left to right: point cloud; skeleton;
tree branches; tree final model.
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In addition, we also test our methodology over tree scans from various data sources,
including static scanning, mobile scanning as well as airborne scanning. The mod-
elling results are shown in Figure 4.2.

(a)

(b)

(c)

Figure 4.2: Reconstructed models from various data sources. (a) Mobile scanning. (b) Static
scanning. (c) Airborne scanning.

It is observed that point clouds collected by mobile scanning or static scanning al-
ways have high quality, and thus will be accurately reconstructed. On the other
hand, trees sampled by airborne scanning are poorly collected and are difficult to
reconstruct. Since our approach is mainly data-driven, insufficient input points will
compromise the accuracy of the modelling results. Nevertheless, our approach is
able to keep the main structure of the tree branches. The last example of Figure 4.2
shows an individual tree point cloud from ANH3 dataset, which is poorly scanned
and contains sparse points. Still, our approach can reconstruct the basic topological
structure of the tree branches.

We evaluate the geometrical accuracy of the modelling results by computing the
mean distance between the input points and the generated tree branch model. The
reconstructed model is re-sampled as vertex sets, where for each vertex we find
its closest point from the input laser scanned data. Then we record the distance
between the vertex and the targeted point. Tree No.1 (Figure 4.1a), Tree No.2 (Fig-
ure 4.1b) and Tree No.3 (Figure 4.1d) are randomly chosen for this evaluation. Re-
sults in Table 4.1 suggest that our approach can generate tree models which fit
closely to the input point cloud data and thus ensures high geometrical accuracy.
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Tree No.1 Tree No.2 Tree No.3

Height 5.61m 10.05m 10.61m
Mean Distance 2.76cm 10.04cm 6.25cm
Standard Deviation 0.02 0.08 0.06

Table 4.1: Geometrical accuracy evaluation

Figure 4.3 shows the error distance computed from each point to the tree branch
model, taking the tree of Figure 4.1a as an example. Blue colour indicates a low
value and red colour indicates a high value. It is denoted that points lying within
the main branches typically fit closely to the model, while points near the branch
tips or branch turning angles have high values of error.

Figure 4.3: Error visualization from points to the model.

4.3 discussion

4.3.1 Parameters

As described in Chapter 3, a number of parameters are introduced to control the
tree modelling process, including the threshold ε of the density changing rate, the
threshold τ for eliminating noisy branches, and the threshold σ for simplifying the
skeleton. This section discusses how different parameters influence the modelling
results, based on which, we choose the threshold values that best fit our methodol-
ogy.

Threshold of the density changing rate

The threshold ε of the density changing rate is introduced during the main-branch
points centralizing process (see Section 3.2). A very small ε means that nearly no
points will be clustered or centralized, while a very large ε indicates that points will
be over clustered and thus cause the tree skeleton to lose its original shape. We test
the value of ε from 0.1 to 1 and the results are shown in Figure 4.4.

It is observed that when ε is extremely small, main-branch points can be hardly
recognized and thus centralized, resulting in unnatural trunk structures. On the
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other hand, an extremely big ε value will over-centralize points. According to our
trial and error testing results, we select 0.5 as the value for threshold ε.

(1) ε=0.1 (2) ε=0.5 (3) ε=1.0

(a)

(1) ε=0.1 (2) ε=0.5 (3) ε=1.0

(b)

Figure 4.4: Reconstruction results using different ε. (a) Tree No.1. (b) Tree No.2.

Threshold for eliminating noisy branches

The threshold τ for eliminating small noisy branches is introduced when we assign
weights to the vertices in the tree skeleton and remove small noisy branches near
the tree base area (see Section 3.3.1). If the subtree length ratio between one specific
vertex and its parent is below τ, then the vertex together with its subtree is cleared
away. A small τ means that many small noisy branches which should be removed
will be retained, while a very large τ indicates that some normal branches will also
be culled away. We test the value of τ from 0.005 to 0.04 and the results are shown
in Figure 4.5.

As illustrated in Figure 4.5, when τ is too small, many noisy branches near the tree
base area can’t be removed; when τ is too large, there is also a possibility that long
main branches will be wrongly culled away. Therefore, it is important to select an
appropriate value for threshold τ. Based on our experiments over different tree
point clouds, we choose 0.02 as the threshold value.
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(a) (b) (c)

Figure 4.5: Noisy branch eliminating results using different τ values. (a) τ = 0.005. (b)
τ = 0.02. (c) τ = 0.04.

Threshold for simplifying skeleton

The simplification threshold σ is introduced during the tree skeleton simplification
process (see Section 3.3.2, Section 3.3.3), where we utilize an indicator α to evaluate
the proximity between the adjacent vertices.

α =
d
r

(4.1)

The equation above defines how the indicator α is generally computed. d is the
distance between one vertex and the corresponding branch edge of its adjacent
vertex. r is the radial distance threshold for that edge. To compute r for each
branch edge, we first select trunk points which are below 2% of the tree height
above the ground. By projecting the trunk points onto the ground and applying
a circle fitting, we obtain an initial radial distance threshold rt for the trunk edge.
Then an allometric rule is utilized to compute the distance threshold of each edge:

rei = rt(
wi
wt

)1.1 (4.2)

Where w is the weight of the specific edge (see Section 3.3.1). The equation above
illustrates that the indicator α determines the relative proximity between adjacent
vertices. Accordingly, a very small threshold σ for the indicator will make it tough
for close vertices to merge together, while a very big σ will cause oversimplification.
We test the value of σ from 0.5 to 3 and the results are shown in Figure 4.6.

(a) (b) (c)

Figure 4.6: Simplification results using different σ values. (a) σ = 0.5. (b) σ = 1.5. (c) σ = 3.

We can draw a conclusion that when σ is too small, many redundant vertices and
edges cannot be simplified; when σ is too large, the tree skeleton will be oversim-
plified that it doesn’t keep the natural shape anymore. Based on our experiments,
we choose 1.5 as the threshold value.
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4.3.2 Comparison

We compare our modelling results to Livny’s work (2010) as it’s the closest related
to our work. Given the same point cloud, our algorithm is capable of reconstructing
tree models with higher topological accuracy and geometrical accuracy. That results
from several reasons: First, we identify and centralize main-branch points, which
will in return generate more plausible tree skeleton; Second, we avoid unreasonable
merging that may lead to abnormal branch growing angles; Last, we make use of the
positions of input points to fit the branch geometry. We make a visual comparison
between our reconstruction approach and Livny’s approach, which is shown in
Figure 4.7.

(1) Livny’s reconstruction (2) Our reconstruction

(a)

(1) Livny’s reconstruction (2) Our reconstruction

(b)

Figure 4.7: Comparison between Livny’s method and our method. Our reconstruction
demonstrates both topological accuracy (a) and geometrical accuracy (b).

4.3.3 Limitations

Our proposed approach can successfully reconstruct accurate and detailed 3D tree
models from point clouds. However, it still has some limitations. First, our ap-
proach is mainly data-driven. For those input point clouds with high data qual-
ity, it is able to accurately reconstruct the tree branches; However, for those poorly
scanned data with sparse points, while our method can reconstruct a plausible topo-
logical structure of the tree branches, it is unable to achieve sufficient geometrical
accuracy; Also, our work does not consider natural growing rules for tree branches
(i.e. branch split angle, branch growing length, etc.). The combination of our data-
based approach and the rule-based approach will be a promising field for our future
study.
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4.3.4 Applications

Our proposed approach enables accurate reconstruction of 3D trees from point
clouds. The generated tree models can be employed in many applications. Most pri-
marily, it opens up the chance for automatically obtaining precise tree attributes (for
instance, the tree height, the trunk thickness, and the Diameter at Breast Height).
That will save a lot of time and labouring efforts compared to the traditional manual
measuring method. Implicit tree variables can also be derived from the tree models,
i.e. by computing the sum volume of all reconstructed branch cylinders we are able
to estimate the wood volume from the tree, and further quantify biomass and other
forest-related variables. Besides, accurate tree models with synthesized leaves and
textures can be employed in urban landscape design and visualization, to enhance
the realism of the digital scenes. More details are provided in Appendix A.



5 C O N C L U S I O N A N D F U T U R E W O R K

In this thesis study, we propose an automatic approach to accurately reconstruct 3D
tree models from individual tree point clouds. Generally, the reconstruction results
are promising.

During the modelling process, both the geometrical accuracy and topological fi-
delity of the tree are taken into consideration. One novelty of our work is that we aid
the skeleton construction process with the main-branch point centralization and fur-
ther abandon unreasonable skeleton simplification, which comtributes to improve
the quality of the generated tree branch structure. Moreover, an optimization-based
approach is employed to accurately reconstruct the geometry of the tree branches.

Tested results in Chapter 4 reveal that our method is robust in dealing with various
types and sizes of the trees. As long as the input point cloud maintains significant
branch structure, our method is able to generate tree models with good quality.
When it comes to the airborne laser scanned data with sparse points, our method
can reconstruct plausible a topological structure of tree branches. Nevertheless, the
geometrical accuracy may be compromised.

In future we would like to continue in the following directions:

• We would like to conduct pre-segmentation for the input point clouds con-
taining multiple trees. As our method only works for an individual tree point
cloud now, automatic segmentation will expand our algorithm to a broader
range of applications;

• As there are many irregular shapes of tree branches in nature, we will further
consider fitting free-form surfaces instead of cylinders to model the branches
geometry more precisely;

• Images of trees can act as a supplement data source for point clouds, from
where we are able to achieve higher modelling quality. For example, from
images we can extract detailed tree textures to enhance better realism;

• For now we use uniform parameters for all input point clouds. As differ-
ent trees typically have different branch growing pattern, computing specific
parameters from the specific individual point cloud may achieve higher mod-
elling quality. We will consider involving that into our future work;

• Currently our approach is mainly data-driven. In future we would like to
combine our approach with rule-based approaches. By applying botanical
knowledge of the tree growth, for instance the branch rolling angle and the
growing unit, we want to generate tree models with more plausible branches
structure so as to achieve higher topological fidelity.
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A P OT E N T I A L A P P L I C AT I O N S

Specific details of the potential applications of accurate tree models are provided
in this appendix. Figure A.1 shows that important tree attributes such as the tree
height and the trunk thickness can be measured from the reconstructed model. Fig-
ure A.2 indicates that the wood volume of the tree can also be estimated as the sum
of the volume of all branch cylinders within the tree model. Figure A.3 gives an
example of how the tree models help to enhance the realism of the digital urban
scenes.

Figure A.1: Measurements of tree height and tree thickness.

Figure A.2: Wood estimation.
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Figure A.3: An illustration how tree models enhance the realism of the scene.
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