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Abstract

The negative conclusions of the Gibbard-Satterthwaite theorem—that only dicta-
torial social choice functions are non-manipulable—can be overcome by restricting
the class of admissible preference profiles. A common approach is to assume that
the preferences of the agents can be represented by quasilinear utility functions.
This restriction allows for the positive results of the Vickrey auction and the
Vickrey-Clarke-Groves mechanism. Quasilinear preferences, however, involve the
controversial assumption that there is some commonly desired commodity or
numeraire—money, shells, beads, etcetera—the utility of which is commensurable
with the utility of the other alternatives in question. We propose a generalization of
the Vickrey auction, which does not assume the agents’ preferences being quasilinear
but still has some of its desirable properties. In this auction a bid can be any
alternative, rather than just a monetary bid. Such an auction is also applicable
to situations where no numeraire is available, when there is a fixed budget, or
when money is no issue. In the presence of quasilinear preferences, however,
the traditional Vickrey turns out to be a special case. In order to sidestep the
Gibbard-Satterthwaite theorem, we restrict the preferences of the bidders. We show
that this qualitative Vickrey auctions always has a dominant strategy equilibrium,
which moreover invariably yields a weakly Pareto efficient outcome.

The work in this paper is an improved presentation of the idea introduced by Máhr
and de Weerdt (2007) on auctions with arbitrary deals.

1 Introduction

Although it may often seem otherwise, even nowadays money is not always the primary issue
in a negotiation. Consider, for instance, a buyer with a fixed budget, such as a government
issuing a request for proposals for a specific (public) project, a scientist selecting a new
computer using the limited monetary means of a recently acquired project, or an employee
organizing a grand day out for her colleagues. In such settings, the buyer has preferences over
all possible offers that can be made to him. A similar situation, in which the roles of buyers
and sellers are reversed, occurs when a freelancer offers his services at a fixed hourly fee. If
he is lucky, several clients may wish to engage him to do different assignments, only one of
which he can carry out. Needless to say, the freelancer might like some assignments better
than others. In the sequel we consider the general setting which covers all of the examples
above and in which we distinguish between an issuer (of a commission)—the government, the
scientist, the employee or the freelancer in the examples above—and a number of bidders.

In order to get the best deal, the issuer could ask for offers and engage in a bargaining
process with each of the bidders separately. Another option would be to start an (inverted)
auction. In this paper, we show that even without money, it is possible to obtain a reasonable
outcome in this manner. We propose an auction protocol in which the dominant strategy
for each bidder is to make the offer that, among the ones that are acceptable to her, is most
liked by the issuer. We also show that if all bidders adhere to this dominant strategy a
weakly Pareto optimal outcome results.

To run such an auction without money the preferences of the issuer are made public.
Observe that if a single good is sold in an auction with monetary bids, the preferences of
both bidders and sellers are commonly known: bidders prefer low prices to higher ones,
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and for the sellers it is the other way round. Our protocol closely follows the protocol of
a Vickrey, or closed-bid second-price, auction (Vickrey, 1961). First each bidder submits
an offer. The winner is the bidder who has submitted the offer that ranks highest in the
issuer’s preference order. Subsequently the winner has the opportunity to select any other
alternative as long as it is ranked at least as high as the second-highest offer in the issuer’s
preference order. This alternative is then the outcome of the auction.

In the next section some general notations and definitions from implementation theory
are introduced, and in Section 3 we formally define the qualitative auction sketched above
for the setting in which the bidders are indifferent to all outcomes where they do not win
the auction. This makes that we can sidestep the negative conclusions of the impossibility
result by Gibbard (1973); Satterthwaite (1975). We prove that a dominant strategy equi-
librium exists in the qualitative Vickrey auction, which moreover yields a weakly Pareto
efficient outcome for all preference profiles. In the rest of that section we describe several
other properties of the qualitative Vickrey auction like monotonicity and (not) incentive
compatibility regarding the issuer. We conclude the paper by relating our work to other
general auction types such as multi-attribute auctions.

2 Definitions

In this section we review some of the usual terminology of mechanism design and fix some
notations. For more extensive expositions the reader be referred to Moore (1992); Mas-Colell
et al. (1995); Shoham and Leyton-Brown (forthcoming).

Let N be a finite set of agents and Ω a set of alternatives or outcomes. The players
are commonly denoted by natural numbers. By a preference relation %i of player i we
understand a transitive and total binary relation (that is, a weak order or a total preorder)
on Ω, with �i and ∼i denoting its strict and indifferent part, respectively. We use infix
notation and write a %i b to indicate that player i values alternative a at least as much
as alternative b. It is not uncommon to restrict one’s attention to particular subsets of
preference relations on Ω, e.g., the sets of quasilinear or single-peaked preferences on Ω. Be
Θi such a class for each i ∈ N , we have Θ denote Θ1×· · ·×Θn. A preference profile % in Θ
(over Ω and N) is a sequence (%1, . . . ,%n) in Θ1 × · · · ×Θn associating each agent with a
preference relation over Ω.

Given a preference profile Θ on Ω, an outcome ω in Ω is said to be weakly Pareto
efficient whenever there is no outcome ω′ in Ω such that all agents i strictly prefer ω′ to ω.
Outcome ω said to be Pareto efficient if for all outcomes ω′ in Ω, ω is weakly preferred
to ω′ by all players and strictly preferred to ω′ by some.

A social choice function (on Θ) is a map f : Θ → Ω associating each preference profile
with an outcome in Ω. A social choice function on Θ is said to be (weakly) Pareto efficient
whenever f(%) is (weakly) Pareto efficient for all preference profiles % in Θ.

A mechanism (or game form) M on a set Ω of outcomes is a tuple (N,S1, . . . , Sn, g),
where N is a set of n agents, for each player i in N , Si is a set of strategies available to i,
and g : S1 × · · · × Sn → Ω is a function mapping each strategy profile s in S1 × · · · × Sn

on an outcome in Ω. A mechanism (N,S1, . . . , Sn, g) is said to be direct (on Θ) if each
agent’s strategies are given by her possible preferences, that is, if Si = Θi for each agent i
in N . For Ω a set of outcomes, a pair (M,%) consisting of a mechanism M on Ω on a and a
preference profile % on Ω we refer to as a game (on Ω). With a slight abuse of terminology,
we will also refer to functions si : Θ → Si as strategies and sequences s = (s1, . . . , sn) of
such functions, for each agent one, as strategy profiles.

An equilibrium concept (or solution concept) associates each game with a subset of its
strategy profiles; the set of strategy profiles thus associated may depend on the preference
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profile. A mechanism M is said to implement a social choice function f on Θ in an equilib-
rium concept C whenever for all preference profiles % in Θ there is some s∗(%) ∈ C(M,%)
with f(%) = g(s∗(%)).

A direct mechanism M = (N,Θ1, . . . , Θn, g) is said to be truthful (or incentive compati-
ble) in an equilibrium concept C whenever for each preference profile % each agent i revealing
her true preferences %i is an equilibrium in C(M,%), that is, if % itself is in C(M,%).

If for a mechanism M = (N,S1, . . . , Sn, g) and an equilibrium concept C, C(M,%)
is nonempty for all preference profiles %, we can associate with M a direct mecha-
nism M∗ = (N,Θ1, . . . , Θn, g

∗) where for each % in Θ we have g∗(%) = g(s∗) for some
selected equilibrium s∗(%) in C(M,%). Intuitively, M∗ mimicks M by asking the agents to
reveal their preferences, be it truthfully or untruthfully, calculating equilibrium strategies s∗i
in M for them given the revealed preferences and returning the outcome g(s∗1, . . . , s

∗
n). Thus

we find that a social choice function f being implementable in C implies it being truthfully
implementable in C, a fact better known as the revelation principle.

In this paper we will be primarily concerned with dominant strategy equilibrium, which
is extensively studied in the context of mechanism design (Dasgupta et al., 1979; Green and
Laffont, 1979) and in terms of which also the infamous Gibbard-Satterthwaite theorem is
formulated. For the purposes of this paper we say that s∗i is a dominant strategy for a player i
in a game (M,%), whenever no matter which strategies the other players adopt i is not worse
off playing s∗i than any other if her strategies, that is, if for all strategy profiles s ∈ S and
all ti ∈ Si we have

g(s1, . . . , si−1, s
∗
i , si+1, . . . , sn) %i g(s1, . . . , si−1, ti, si+1, . . . , sn).

A strategy profile s∗ = (s∗1, . . . , s
∗
n) is then said to be a dominant strategy equilibrium if s∗i is

a dominant strategy for all players i in N . The advantage of dominant strategy equilibrium is
that it is very robust. The dominant strategies of an agent i do not depend on the preferences
of the other agents, they can be calculated on the basis of i’s preferences alone. Moreover,
there seem to be no reason why agents would not play a strategy that is not dominant
if a dominant one is available. On the downside is the Gibbard-Satterthwaite theorem,
which shows that implementation in dominant strategy equilibrium allows for extremely
little flexibility if one does not impose restrictions on the players’ preference relations.

3 A Qualitative Vickrey Auction

In the setting we consider, a commission is issued and auctioned. The commission can get
a number of alternative implementations denoted by A. The commission is then assigned
to a bidder who commits herself to implement it in a particular way. Thus the outcomes
of the auction are given by pairs (a, i) of alternatives a ∈ A and bidders i in N , that is,
Ω = A × N . Intuitively, (a, i) is the outcome in which i wins the auction and implements
alternative a. For each bidder i in N we have Ωi denote A × {i}, the set of offers i can
make. Obviously, each offer is also an outcome, rather, we have Ω =

⋃
i∈N Ωi. We assume

each bidder to be indifferent to outcomes in which the commission is assigned to another
bidder, that is, ω ∼i ω

′ for all bidders i in N and all outcomes ω and ω′ in Ω \Ωi. In what
follows we have Θi denote the set of i’s preference profiles over Ω which comply with these
restrictions. However idealistic, we do not believe that for our auction setting this is an
overly unreasonable assumption to make. No other restrictions on the bidders’ preferences
are imposed, unless expressly stated otherwise. If (a, i) %i (x, j) for some alternative x and
some bidder j distinct from i, outcome (a, i) is said to be acceptable to i, and unacceptable
to i, otherwise. That is, an outcome ω is acceptable to bidder i if i values at least as much
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as any outcome in which she does not win the auction. Observe that if i 6= j, any outcome
(a, j) ∈ Ωj is acceptable to i. We assume there to be at least two bidders.

Let ≥ be a linear (that is, a transitive, total and anti-symmetric) order over the out-
comes Ω = N × A. The qualitative Vickrey auction on ≥ is defined then by the following
protocol. First, the order ≥ is publicly announced. For ω ≥ ω′ we say that outcome ω
is ranked at least as high as outcome ω′ in ≥. Then, each bidder i submits a secret of-
fer (a, i) ∈ Ωi to the auctioneer. The bidder i∗ who submitted the offer ranked highest
in ≥ is declared the winner of the auction. Observe that ties are precluded because of the
linearity of ≥. Finally, i∗ may choose from among her own offers in Ωi∗ any outcome that
are is ranked at least as high as the offer that ranks second highest in ≥ among all the
ones submitted. The outcome she chooses is then the outcome of the auction. The winner’s
initial offer is witness to the fact that such an outcome always exists.1

Example 1 Let N = {1, 2, 3} and A = {a, b, c, d}. Let us further suppose that the order ≥
on the alternatives is lexicographic, that is,

(a, 1) > (a, 2) > (a, 3) > (b, 1) > · · · > (c, 3) > (d, 1) > (d, 2) > (d, 3).

Suppose the three bidders 1, 2, and 3 submit the offers (c, 1), (a, 2) and (d, 3), respectively.
Bidder 2 then emerges as the winner, as (a, 2) > (c, 1) > (d, 3). Since (c, 1) is the second-
highest offer, bidder 2 may now choose from the outcomes (a, 2) and (b, 2), these being the
only outcomes in Ω2 that rank higher than (c, 1). In case bidder 2 prefers (b, 2) to (a, 2) she
would only do well selecting (b, 2), which would then also be the outcome of the auction.

For different orders ≥ on the outcomes, the qualitative Vickrey auction can obviously
yield different outcomes. So, actually, we have defined a class of auctions. With a slight
abuse of terminology we will nevertheless speak of the qualitative Vickrey auction if the
respective order ≥ can be taken as fixed. At first we will consider ≥ an extraneous feature
of the auction. Later we will come to consider the case in which ≥ represents the preferences
of the issuer of the commission.

The traditional second-price or Vickrey auction, in which a single item is allocated, is a
special case of the above protocol, when the alternatives are taken to be monetary bids for a
single good, the bidders have quasilinear preferences over the outcomes and ≥ representing
the natural order over monetary bids—ranking higher bids higher than lower ones—and a
tie-breaking rule.2 Since from each bid the bidder’s entire preference relation can be derived,
the traditional Vickrey auction could be considered a direct mechanism. Moreover, it being
a special case of the VCG mechanism, it is incentive compatible in dominant strategies.

The qualitative Vickrey auction, however, is not in a general a direct mechanism, as
from an offer the full preference relation of a player cannot be derived in general. As such
incentive compatibility is not a concept that directly applies to it. Instead we prove the
existence of a dominant strategy equilibrium s∗(%) for each preference profile % in Θ. Thus,
the qualitative Vickrey auction implements a social choice function f∗, which is defined such

1 A closely related but slightly simpler auction could be defined as follows. First a linear order ≥ on the
alternatives A is announced and each bidder submits a closed bid consisting of an alternative a in A. The
bidder who submitted the alternative a∗ that is ranked highest in ≥ wins the auction and may choose from
all alternatives that are ordered strictly higher than the second-highest bid in ≥. In case of a tie, that is, if
there is no unique bidder who submitted the alternative that is ranked highest in ≥, the tie is broken via
some tie-breaking rule and the winner of the tie may choose an outcome from among all outcomes ranked
at least as high as his own bid. In this auction an dominant strategy equilibrium also always exists and is
based on the same underlying principles and intuitions. We are indebted to Kevin Leyton-Brown for this
observation.

2Not all tie-breaking rules τ , however, can thus be represented. E.g., if τ is such that τ(1, 2) = 1,
τ(2, 3) = 2 and τ(1, 3) = 3, it cannot be represented by an order ≥.
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that for all preference profiles % in Θ, f∗(%) is the outcome of the equilibrium s∗(%). We
will then study the formal properties of this social choice function.

Intuitively, the classic Vickrey auction is truthful because an agent’s bid only determines
whether she turns out the winner but not the price she has to pay if she does so. Things
are much similar in the qualitative Vickrey auction. Again, the bidder’s offer determines
whether she emerges as the winner, but the range of alternatives from among which she
may choose is decided by the second-highest offer.

A strategy for a bidder i in the qualitative Vickrey auction consists of an offer (a, i) in Ωi

along with a contingency plan which outcome to choose from among the outcomes in Ωi

that are ranked higher than the second-highest offer submitted in case i happens to win the
auction. Any such strategy may depend on a preference profile % in Θ. We call a strategy
for i adequate if it fulfills the following properties:

(i) the offer i submits is the outcome in Ωi that is ranked highest in ≥, and that is still
acceptable to i,

(ii) in case Ωi contains no outcomes acceptable to her, i submits the outcome in Ωi that
is ranked lowest in ≥,

(iii) in case i wins the auction, she chooses one of the outcomes in Ωi she values most
among those that are ranked higher than the second-highest offer submitted.

Given a preference profile % items (i) and (ii) completely determine the offer i is to submit,
but (iii) may allow for a little flexibility, if i’s preferences over Ωi are not linear. Also
observe that whether an offer is acceptable to a bidder i or not can be read off immediately
from i’s preference relation and does not depend on the preferences of the other players or
other extraneous features.

Example 1 (continued) Let the preferences of the three bidders 1, 2 and 3 be given by
the following table, where higher placed outcomes are more preferred.

1 2 3
(c, 1) (d, 2) (x, i) /∈ Ω3

(d, 1) (b, 2) (a, 3)
(x, i) /∈ Ω1 (a, 2) (d, 3)
(b, 1) (x, i) /∈ Ω2 (c, 3)
(a, 1) (c, 2) (b, 3)

If the bidders 1, 2 and 3 were all to play an adequate strategy, they would offer (c, 1), (a, 2)
and (d, 3), respectively, since these are for 1 and 2 their highest-ranking acceptable bid and
for 3 the lowest-ranking bid overall. In this case (b, 2) would be the outcome of the auction,
because bidder 2 is the winner and may select any alternative ranked above (c, 1). It might
be worth observing that it can happen that, if all of her offers are unacceptable to her, a
player adhering to the strategy bids her least preferred outcome. Bidder 3, e.g., would do so
if the outcomes (b, 3) and (d, 3) had been interchanged in her preference order.

We are now in a position prove that a bidders’ adequate strategies are dominant in the
qualitative Vickrey auction.

Proposition 1 In the qualitative Vickrey auction and given a preference profile % in Θ,
all adequate strategies for a bidder i are dominant.
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Proof: Let i be an arbitrary bidder and s(%) an arbitrary adequate strategy for i. First
assume that there are no outcomes in Ωi that are acceptable to i and that i adheres to si(%)
submitting the lowest ranked offer in Ωi, denoted by (ai

0, i). If i loses the auction, some other
bidder i∗ ends up winning the auction and chooses some offer (a∗, i∗) in Ωi∗ as the eventual
outcome. Observe that (a∗, i∗) is acceptable to i and among her most preferred outcomes.
If i wins the auction, she may choose among all outcomes in Ωi and, following si(%) she
will select one that she likes best. Any other offer she could make would still make her win
the auction and leaving her the same range of outcomes to choose from. So, obviously, in
both cases, si(%) is a dominant strategy.

For the remainder of the proof we may assume that there are outcomes in Ωi which are
acceptable to i. Let (ai, i) denote the highest ranked offer in Ωi that is still acceptable to i,
that is, the offer i would make if she follows the adequate strategy si(%). First assume that
submitting (ai, i) would make i lose the auction, that is, that some other bidder i∗ would
win the auction by offering (a, i∗) and choose (a∗, i∗) as the eventual outcome. Now consider
any other offer (a′, i∗) in Ωi which i could submit. Obviously, if (a′, i∗) were also a losing
offer, i∗ would still win the auction and i would be indifferent between the outcome i∗ would
then choose and (a∗, i∗). On the other hand, if (a′, i) would make i win the auction, we
have (a′, i) ≥ (a, i∗), rendering (a, i∗) the second-highest offer. Then, i has to choose from
among the outcomes in Ωi ranked higher than (a, i∗). All of these outcomes, however, are
unacceptable to i, that is, (a∗, i∗) �i ω for all ω ∈ Ωi with ω ≥ (a, i∗). Thus, also in this
case we may conclude that si(%) is a dominant strategy for i.

Finally, assume that i wins the auction by offering (ai, i) and that (b, j) is the second-
highest offer. Let (a∗, i) be the outcome she chooses as her most preferred outcome among
the outcomes in Ωi that are ranked higher than (b, j). Then, (ai, i) ≥ (a∗, i) > (b, j), because
any outcome in Ωi ranked higher than (ai, i) is unacceptable to i. Obviously, (a∗, i) %i ω
for any outcome ω /∈ Ωi. For any other winning offer, the second-highest offer would remain
the same and so does the set of outcomes from which i may choose. Thus, i would do no
better than by offering (ai, i) as prescribed by si(%). On the other hand, if i were to submit
a losing offer, some outcome ω /∈ Ωi would result. Then (a∗, i) %i ω, again i would have
done better by offering (ai, i). Hence, si(%) is a dominant strategy for i. �

Among the adequate strategies of a bidder i one stands out, namely, the one in which she
selects the highest ranked outcome among those which she prefers most and, of course, are
ranked higher than the second-highest offer submitted. For each preference profile % in Θ we
denote this strategy by s∗i (%). In virtue of Proposition 1, the strategy profile s∗(%) in which
each agent i adheres to s∗i (%) for each % in Θ, is a dominant strategy equilibrium. Accord-
ingly, the qualitative Vickrey auction implements the social choice function f∗, which is such
that for all preference profiles % in Θ, f∗(%) equals the outcome the strategy profile s∗(%)
gives rise to.

Now we are also in a position to define a direct mechanism M∗ = (N,Θ1, . . . , Θn, g
∗) such

that N are the bidders participating in the qualitative Vickrey auction we are considering,
Θi the possible preference relations over Ω (restricted as in the beginning of this section),
and g∗ such that for all % in Θ1 × · · · ×Θn we have g∗(%) = f∗(%).

Proposition 2 The direct mechanism M∗ truthfully implements the social choice func-
tion f∗.

Proof: That M∗ truthfully implements f∗ is an almost immediate consequence of Proposi-
tion 1 by an argument much similar to that for the revelation principle. �

It is quite possible that, given a preference profile %, if all bidders play an adequate
(and hence dominant) strategy, the outcome (a∗, i∗) of the qualitative Vickrey auction is
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unacceptable to i∗ although some submitted offers (a, i) were acceptable to the respective
bidder i. To appreciate this consider once more Example 1 but now suppose that the
bidders’ preferences are such that all offers are unacceptable to them, apart from (d, 2),
which is acceptable to bidder 2. Then, bidder 1 would win the auction and be forced to
select some outcome (x, 1) that is unacceptable to her. This could, and probably should,
be considered a serious weakness. Fortunately, this defect can easily be remedied in the
direct mechanism M∗ by making the following adaptation. In principle, the bidder i∗ with
the highest ranked offer (a, i∗) in Ωi∗ that is still acceptable is declared the winner of the
auction, but in case there is no such bidder, that is, if for all bidders i all offers in Ωi are
unacceptable, the bidder i whose lowest ranked offer in Ωi is still higher ranked than the
lowest ranked offers of any of the other bidders is declared the winner. The outcome of the
auction is then i’s most preferred outcome in Ωi.

3.1 Pareto efficiency

The generalized Vickrey auction fails to be (strongly) Pareto efficient among the bidders,
in the sense that for some preference profiles there could be an outcome (a∗∗, j) that is
weakly preferred by all bidders over the dominant equilibrium outcome (a∗, i∗), and strictly
preferred by some.

Fact 1 For any order ≥ on the outcomes, there is a preference profile for which the outcome
of the qualitative Vickrey auction on ≥ is not Pareto efficient among the bidders.

Proof: Let ≥ any order on the outcomes and let (a, i) the lowest ranked outcome therein.
Now define the preference profile % such that for all players j distinct from i all outcomes
in Ωj are unacceptable to j and that (a, i) is the only outcome in Ωi that is acceptable to i.
Obviously, there is no way in which (a, i) can be the outcome of the auction. Still, (a, i)
Pareto dominates any other outcome (a∗, i∗): i∗ strictly prefers (a, i) to (a∗, i∗) whereas all
other bidders are at least indifferent.

In contrast to strong Pareto efficiency, weak Pareto efficiency among the bidders is sat-
isfied almost trivially, that is, there are no preference profiles and orders ≥ such that some
outcome is strictly preferred over the dominant equilibrium outcome by all players. If there
are three or more bidders, for any (a, i) and (b, j) there is some bidder k distinct from both i
and j and thus (a, i) ∼k (b, j). With two distinct bidders, i and j say, we have (a, i) ∼j (b, i)
and (a, j) ∼i (b, j) for all a, b ∈ A. The only way, moreover, in which it can happen that
both (a, i) �i (b, j) and (a, i) �j (b, j) is that (a, i) is acceptable to i and (b, j) unacceptable
to j. In that case, however, (b, j) will not be the dominant strategy equilibrium, as we
remarked previously. The case of one bidder is of course trivial.

3.2 Monotonicity

Another property of the social choice function implemented by the qualitative Vickrey auc-
tion is that of mononicity. A social choice function f is said to be monotonic if the outcome ω
stays the same for all preference profiles where the order relative to ω is kept, but everything
else may change. In other words, for every player the order above ω may be completely over-
thrown, as well as the order below ω in its preference order, but no alternative may change
from below to above or vice-versa. Formally, we define this property as follows: for any
ω ∈ Ω and any preference profile % with f(%) = ω, for any other preference profile %′ with
the property that ∀i ∈ N , ∀ω′ ∈ Ω, if it holds that ω %′i ω

′ if ω %i ω
′, then it must be that

f(%′) = ω.
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Fact 2 The social choice function implemented by the qualitative Vickrey auction is mono-
tonic.

Proof: Let a preference profile % be given, and let ω = (a∗, i∗) be the outcome of the social
choice function implemented by the qualitative Vickrey auction. Let now another preference
profile %′ be given, such that ∀i ∈ N , ∀ω′ ∈ Ω it holds that ω %′i ω

′ if ω %i ω
′. Then it

holds for any bidder j 6= i∗ that set of acceptable bids in %′j is exactly the same as the set of
acceptable bids in %′j , namely, all bids (b, j) for which (b, j) %j (a∗, i∗). For player i∗ it holds
that when (a∗, i∗) was acceptable in %i∗ , then it is also acceptable in %′i∗ . Consequently,
the acceptable offer from i∗ that is highest in ≥ is at least as high in ≥ as (a∗, i∗), and thus
player i∗ is still the winner.

Furthermore, we show that (a∗, i∗) is the outcome that is most preferred by i∗ in %′i
from the outcomes ranked above the second-highest offer in ≥. Firstly, we note that this
second-highest offer is the same with %′ as with %, since all other bidders have exactly the
same set of acceptable bids. Secondly, (a∗, i∗) is still ranked above this second-highest offer
in ≥. Finally, suppose for the sake of contradiction that there is a offer (b, i∗) that is ranked
higher in %′i∗ than (a∗, i∗) and also higher than the second-highest offer in ≥. Then this
would have been the winning offer for % as well. Consequently, (b, i∗) = (a∗, i∗).

In the border case where no offer is acceptable to any bidder, the outcome for % is
the highest offer of the bidder i∗ whose highest offer is ranked highest in ≥. Since, ≥
does not change, the winner is also i∗ for %′, and by definition of %′, we can immediately
conclude that (a∗, i∗) is still his highest offer. So for the profile %′, the social choice function
implemented by the qualitative Vickrey auction selects ω = (a∗, i∗) as the outcome. �

Since the qualitative Vickrey auction is both weakly Pareto efficient and monotonic, one
might think that the Muller and Satterthwaite (1977) theorem applies, saying that it must
be that this social choice function is dictatorial when there are three or more alternatives.
This, however, is not the case here, because this theorem talks about social choice functions
on general preferences. The restriction to the distinct subsets of outcomes we introduced in
this paper appears sufficient to thwart the application of this theorem. Note however that
when the order ≥ ranks all bids of one bidder above all others, this mechanism is in fact a
dictatorship.

3.3 Incentive compatibility for the issuer

So far we have assumed that the preference order of the issuer is publicly known, like the
fact the a seller likes to get a higher price. In some settings however, this order ≥ may not
be common knowledge. Therefore we should also study whether the proposed mechanism is
incentive compatible for the issuer as well. Unfortunately, we can show that this is not the
case, leaving an open problem for future work.

Fact 3 The qualitative Vickrey auction is not incentive compatible for the issuer.

Proof: Consider the following case as a counter example. As always, the winner can select
an alternative that is equally or more preferred than the second-highest bid in the publicly
known ordering. Suppose that there is an alternative in this set he prefers over his own bid.
By definition, this alternative is less preferred by the seller than the highest bid. Had the
seller manipulated its order, the winner wouldn’t have had any other choice than to accept
his original bid.

For example, take the preferences and the bids from Example 1. Suppose the buyer
moves the alternative (c, 1) up in its order to the spot between (a, 2) and (a, 3). In that
case the dominant strategies for the bidders would still lead to the same bid, and the winner
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would still be player 2 with his bid (a, 2), but now he is only allowed to choose among the
bids higher than or equal to (c, 1), which leaves (a, 2) as the only acceptable alternative.
This outcome is better for the buyer than (b, 2), which was the outcome based on his true
preference order. �

4 Extensions and variants

In this section we consider a number of extensions and variants of the idea put forward in
this paper.

4.1 Other auction types

To start with, similar results on incentive compatibility and Pareto-efficiency can be obtained
for the English auction in a straightforward manner. In this setting the auctioneer accepts
only bids in increasing order of the global ordering until no bidder is interested anymore.
The dominant strategy for a bidder i is then to bid the highest acceptable alternative in
his preference order that is higher in ≥ than the current accepted bid. The effect of this
strategy is equivalent to the dominant strategy described earlier for the qualitative Vickrey
auction: the winner is the bidder that has an acceptable bid that is highest in the public
order and the winning alternative is not dominated by any acceptable bid by any other
player.

The qualitative auction protocol can also be rephrased for Dutch auctions, or first-price
sealed bid auctions, but those are not incentive compatible. But then, neither are traditional
variants of these auction, when preferences are assumed to be quasilinear.

4.2 Multi-attribute auctions

The qualitative Vickrey auction we proposed does not assume that preferences of players
can be expressed as quasilinear utility functions. This can be a feature for applications
where preferences cannot easily be expressed in terms of money. Similar considerations play
an important role the related field of multi-attribute auctions. In a multi-attribute auction
the good is defined by a set of attributes which can take different values. A bid consist of a
value for each attribute and a price. Che (1993) analyzed situations where a bid consists of
a price and a quality attribute, and proposed first-price and second-price sealed-bid auction
mechanisms. His work was extended by David et al. (2002) for situations where the good is
described by two attributes and a price. They analyzed first-price sealed-bid, and English
auction formats, and derived strategies for bids in a Bayesian-Nash equilibrium. In addition,
they studied a setting where the issuer can also strategize, and they showed when and how
much the issuer can profit from lying about his valuations of the different attributes.

Parkes and Kalagnanam (2005) concentrated on iterative multi-attribute reverse English
auctions. Here prices of attribute-value combinations (a full specification of the good) are
initially set high, and bidders submit bids on some attribute-value combinations to lower
the prices. The auction finishes when there are no more bids. Such auctions allow the
bidders to have any (non-linear) cost structure, and the authors claim that myopic best-
response bidding (always bid a little bit below the current ask price) results in an ex-post
Nash equilibrium for bidders, and that the auction then yields an efficient outcome. One
of the main differences with our approach, besides their proposing an iterative protocol and
using Bayes-Nash equilibria as solution concept, is that they assume quasilinear preferences
in that the bids always have to include a price. Moreover, the monetary prices are essential
to the mechanism working properly. In our model, however, price could be handled as one
of the attributes, but could also be left out altogether.
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5 Discussion

In this paper we showed that there is another way of dealing with the impossibility theorem
by Gibbard (1973); Satterthwaite (1975) besides requiring quasilinear utility functions. For
settings where there is only one winner, all that is required is that all bidders are indifferent
to all outcomes where they are not the winner. We proposed a protocol for settings where
the preference order of the issuer is publicly known (in a way similar to the public knowledge
that selllers prefer high prices and buyers low prices). This protocol is called the qualitative
Vickrey auction since it can be seen as a generalization of the Vickrey auction to a setting
without quasilinear utility functions.

We defined a dominant strategy for this qualitative auction, and showed that it is weakly
Pareto efficient in the resulting equilibrium, and that the implemented social choice function
is monotonic. Furthermore we showed that the mechanism is not incentive compatible for
the issuer, and we briefly discussed the relation to other auction types. Still there are
a number of interesting questions left unanswered regarding the properties of qualitative
mechanisms such as the one presented here.

To start with, we would like to show what the price is of having a lying issuer. Another
direction stems from the fact that we defined qualitative Vickrey auctions as a class of mech-
anisms, and that this class includes dictatorships (i.e., when all outcomes where a player i
wins are ranked above all others). It is interesting to study under which condition on the so-
cial order does the dictatorship property holds. Also, other restrictions may lead to specific
properties, such as when the preference order of each bidders is the (weak) inverse of the
public order ≥. Finally, we are interested in seeing whether we can introduce other qualita-
tive generalizations of quasilinear mechanisms (for example of online auctions (Hajiaghayi
et al., 2005)).
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Tamás Máhr and Mathijs de Weerdt. Auctions with arbitrary deals. In V. Marek, V. Vy-
atkin, and A.W. Colombo, editors, HoloMAS 2007, volume 4659 of LNAI, pages 37–46.
Springer-Verlag Berlin Heidelberg, 2007. ISBN 978-3-540-74478-8.

A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford University
Press, Inc., 1995.

J. Moore. Implementation, contracts, renegotiations in environments with complete infor-
mation. In J.J. Laffont, editor, Advances in Economic Theory, chapter 5, pages 182–282.
Cambridge University Press, 1992.

Eitan Muller and Mark A. Satterthwaite. The equivalence of strong positive association and
strategy-proofness. Journal of Economic Theory, 14(2):412–418, 1977.

David C. Parkes and Jayant Kalagnanam. Models for iterative multiattribute procurement
auctions. Management Science, 51(3):435–451, 2005. Special Issue on Electronic Markets.

M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions. Journal of Economic
Theory, 10:187–217, 1975.

Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, Cambridge, forthcoming.

W. Vickrey. Counter speculation, auctions, and competitive sealed tenders. Journal of
Finance, 16(1):8–37, 1961.

Paul Harrenstein
Theoretische Informatik
Institut für Informatik
Ludwig-Maximilians-Univerität München
80538 Munich, Germany
Email: paul.harrenstein@ifi.lmu.de

Tamás Máhr
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