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Preface

Dear reader,

My fascination with mechanical systems led me to study Mechanical Engineering. While the Bach-
elor’s degree largely focuses on solving linear and often undamped systems, the Master’s is less per-
missible. My introduction to the the domain of nonlinear dynamics came through the lectures held by
Farbod during the Engineering Dynamics course, and later in Nonlinear Dynamics. His enthusiasm
and clear presentation style inspired me to persue my graduation project in this field.

When asked for possibilities, Farbod offered endless research topics and introduced me to the
remarkable properties of graphene combined with tunable nonlinear damping. The last one caught my
attention. Like many students, I encountered challenges throughout this project. The vastness of the
subject, shifts from graphene to silicon nitride, days in the lab with fruitless results, or the multifaceted
interpretation of measurements all posed as impediments. I am grateful for the invaluable discussions
and advice from Ata and Farbod. Your guidance and encouragement helped me navigate through
setbacks and witness the progress, no matter how incremental it seemed.

This project would not be possible without the support of my friends, siblings and, of course, my
parents, who patiently awaited for this moment. Their unwavering support sustained through the journ-
Thank you all. In closing, dear reader, while this research may appear inconclusive, and far from flaw-
less, I hope it contributes a little to the understanding of the intricate dynamics of micro- and nanosys-
tems. Thank you all.

Bart Schoone
Delft, February 2024
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Summary

Micro- and nanoelectromechanical (MEM/NEM) resonators are used in numerous fields of engineer-
ing and are crucial for time keeping, synchronization, and sensing applications. These systems are
inherently subjected to energy dissipation, which is a limiting factor in the performance. Extensive
understanding is essential when nonlinearities show up in both stiffness and dissipation, to design ap-
propriately. Focusing on dissipative mechanisms, this thesis explores the vibrational behavior of a
suspended clamped-clamped beam fabricated from silicon-nitride. This study reveals a notorious de-
cay in ringdown, when the resonator is decoupled from its vibrational power. A sustained amplitude is
observed for up to 8 seconds. Though the exact source of this anomaly remains elusive, it is suggested
that it might include modal coupling and/or optomechanical effects.
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1
Introduction

Damping has engaged engineers over centuries. Dynamical motion tends to evolve towards a thermal
equilibrium with their surroundings. A dynamical system is often considered to convert energy with the
so-called environmental bath in the form of heat [1]. This applies for system on macro-scale, where a
moving car will eventually come to a stop, as well as for micro-scale where vibrations are damped and
energy dissipated.

Damping in general can also be a major restraint in performance and stability for e.g. sensing
devices and signal processing. Furthermore, such systems must be susceptible to changes in the
environment. Therefore shrinking resonators down to nanoscale therefore massively improves the
responsivity. Therefore nano-electromechanical systems (NEMS) have found their application in in-
numerable sensitive detectors, such as force [2], mass [3], pressure [4] and spin detectors [5]. This
process of miniaturization comes at the cost of the increased susceptibility of energy dissipation of the
mechanical system and nonlinearities in the dynamical behavior.

In micro- and nanoelectromechanical systems, even relatively small vibration amplitudes exhibit
nonlinearities. These can arise from the restoring force as well as the friction, which too can become
amplitude dependent [6]. Such damping forces can comprise both intrinsic aspects such as Akhiezer
[7], thermoelastic [8], and viscoelastic [9] damping, as well as extrinsic factors including support losses
[10] and external interactions [11]. Since dissipation can have so many origins and can also behave
nonlinearly, singling out one source from another will be especially challenging.

In addition, intermodal coupling can also greatly affect the rate of energy dissipation, which can
even be enhanced near internal resonance (IR) [1]. This takes effect when the resonance frequency of
two coupled eigenmodes have an integer ratio. In IR energy is transferred easily to different vibrational
modes even when coupling is relatively small. Besides driving other modes this way and therefore
affecting the resonators behavior, one mode can act as an energy sink for another mode, increasing
the other modes effective dissipation rate.

The relevance of mode coupling extends to the ringdown phase, where a system undergoes free
decay. Free response in itself offers a great means to extract crucial parameters such as mass, (non-
linear) stiffness, and (nonlinear) damping rate in single mode systems [12]. However in combination
with mode coupling, energy redistribution among modes can introduce intriguing deviations in decay
behavior. Notably, cases have been identified where the route of dissipation exhibits an energy depen-
dency, resulting in enhanced dissipation rates for high-energy states [13]. On the contrary, instances
have been documented wherein energy is fed back into the observed mode, sustaining its amplitude
for a brief period of time [14, 15].

This thesis provides a brief exploration of both linear and nonlinear dynamics in Sections 1.1 and
1.2, respectively. Following this, Section 1.3 delves into peculiarities from the existing literature. This
chapter ends with the research question introducing the paper.

In chapter 2, the paper focuses on experimental evidence of anomalous energy decay in extremely
low damped, highly nonlinear resonators during ringdown. The initial stage of the decay is marked by a
sustained amplitude of the first harmonic, while thereafter the dissipation rate is increased and proceeds
linearly. This lasts up to 8 seconds and is suggested to be caused by either or mode-coupling or
optomechanical back-action. Chapter 3 provides recommendations and the conclusion of the research
process.
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Figure 1.1: Vibration of mechanical resonator
A) The overall movement and shape of a resonator can often be deconstructed out of its modeshapes
and corresponding frequencies. B) An example of a duffing resonator with mode hardening, with in-
creased vibration amplitude the resonance is shifting as well. C) Ringdown of nonlinear resonators
can exhibit nonlinear damping besides the linear component. At high amplitudes the vibration is more
heavily damped, thereafter it revert to a linear behavior [12].

1.1. Mechanical oscillator
Before diving deep on the silicon nitride resonator, and particularly its nonlinear behavior and anoma-
lous phenomenon, let us start first with a more general approach to vibrational systems.

The overall dynamics of a physical system, like a beam or string resonator, can often be described
by a displacement functionw(x, y, z, t), but it can quickly become quite complex (figure 1.1A). Therefore
is the motion often expanded by separation of variables [16], meaning that the function w is divided
into N linear eigenmodes ϕi(x, y, z) and its time dependent generalized coordinates qi(t), such that
w(x, y, z, t) =

∑N
i qi(t)ϕi(x, y, z), where i is the mode number. When the modeshape ϕ is normalized

having a maximum of 1, then qi(t) describes vibration amplitude of that eigenmode. In linear dynamics
these eigenmodes are so-called orthogonal, thus independent of each other with no energy transfer
between them.

Let us scale down a little bit and look into a single mode. This also describes a basic resonator in its
most elementary form, often approximated by a mass-spring system. Described by Newton’s second
law, the spring force, −kx, acting on mass,m, leads to the alteration of the velocity of the mass, ẋ. The
equations of motion of such system would be:

m
d2x(t)

dt2
+ kx(t) = 0 (or mq̈i(t) + kq(t) = 0) (1.1)

This system has already been thoroughly investigated, and the solution involve the position of the mass
oscillating at the fundamental frequency ω0 =

√
k/m. In a physical system energy is being dispersed

so this equation is often complemented with a linear friction term Fd = cẋ. In mechanics, frequently
a dimensionless quality factor, Q = mω0

c , is used to quantify the dissipative term. This dimensionless
number effectively express the number of oscillations of a system before losing most of its vibrational
energy in free oscillation. This means the higher the number, the lower the dissipation per cycle. In a
resonator this loss of energy is usually restored by a (periodic) force, F (t) = F cosωdt, where F is the
drive amplitude and ωd is the corresponding frequency.

When all of these terms are included in equation 1.1, the equation of the linear harmonic oscillator
emerges:

ẍ(t) + τ ẋ+ ω2
0x(t) = F̄ cosωdt (1.2)

Here τ , ω2 and F̄ are c, k and F divided by mass m respectively. Also this expanded system is well-
understood, and the (driven) steady-state amplitude solution scales directly linearly with the applied
force (increasing the force directly increases the resulting oscillation amplitude) and the phase shift
with the oscillatory force is independent of the force magnitude nor the oscillation amplitude. Although
this is an approximation, it is often valid in practice. Because substantial damping and mechanical
failure before the threshold, the nonlinear response cannot be reached by most resonators.

On the other hand, scaling down allows us to produce structures that can easily reach oscillation
amplitudes where the dynamic response cannot be described by such harmonic oscillator.
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1.2. Nonlinear dynamics
On the larger scale, the linear approximation holds for it requires immense forces to overcome the high
levels of damping and bring the system into nonlinear regime. As scaling down improves properties
such as responsivity, it also allows the system to show nonlinearities. Relatively large amplitudes induce
stresses for example that modulate the effective stiffness [17, 18]. This results in additional terms in
the equation of motion such as a Duffing term, γq3, and nonlinear friction, like τnlq

2q̇. The last is where
the damping is enhanced while the amplitude increases [19]. These deviations from the linear model
even allow for modal interactions, in which energy can be transferred from one mode of vibration to
another.
The new model for the oscillator then would become:

ẍ(t) + (τ + τnlx
2)ẋ+ ω2

0x(t) + γx3(t) = F cosωdt (1.3)

The amplitude dependent stiffness has a noticeable effect on the systems dynamics, for with an increas-
ing amplitude the effective stiffness becomes larger (for γ > 0) or lower (for γ < 0). This is either called
spring hardening or spring softening respectively. When this model is plotted onto a figure, where the
x-axis represent the drive frequency and the y-axis the steady state amplitude, figure 1.1B is generated.
Here the drive frequency is normalized with respect to ω0, and the values of m, τ , τnl and γ are arbi-
trary (γ is chosen here to be positive). With an increased drive the effect of the Duffing term becomes
apparent; The resonance frequency (the peak) shifts as the amplitude of the resonator increases too.

Ringdown, or free vibration, serves as a valuable tool for characterizing vibrational systems. It inher-
ently comprises components at modal eigenfrequencies. Linear and nonlinear damping can easily be
obtained (as can be seen in figure 1.1C) [12]. Considering nonlinear stiffness, the relationship between
instantaneous frequency and amplitude, is also defining the underlying structure of the characteristic
curve known as the backbone curve (dashed line in figure 1.1B). This curve reveals how the frequency
will evolve during ringdown. Tracking the vibration amplitude the linear damping parameter is easily
extracted [12]. It also allow to swiftly capture non-monotonic behavior induced by nonlinearities in the
system [20]

As mentioned in section 1.1 a system’s motion is not always captured by a single degree of freedom
and due to nonlinearities energy can transfer between eigenmodes. This is called intermodal coupling,
originating from the coupling potential Ucp. The motion of one mode is generating a periodic force on
another mode [21]. This becomes especially important when the eigenfrequencies of the considered
modes match up in an integer ratio, often a 1:3 or 1:2 ratio. In that case one mode can drive the other
one into resonance, which is called internal resonance (IR).
In IR the second mode qj must be considered in the equation of motion. So with the nonlinear terms
included too this converges to the following equation [1]:

q̈i + (τi + τnl,iq
2
i )q̇i + ω2

0iqi + γq3i +
∂Ucp

∂qi
= Fi(qi, t)

q̈j + τj q̇j + ω2
0jqj +

∂Ucp

∂qj
= 0

(1.4)

Where i and j are distinctive coupled modes. A strong interaction in IR results in peculiar transient
behavior in free response characterized by the energy exchange between modes. In the subsequent
chapter this phenomenon undergoes further exploration and analysis from literature as well as a more
elaborated examination on the origins of nonlinear damping.

1.3. Observations from literature
Prior to conducting measurements, a comprehensive literature survey is undertaken. This survey in-
volves acquiring a principal understanding of various dampingmechanisms, followed by an assessment
of specific discoveries in ringdown research.

1.3.1. Nonlinear damping
Damping plays a pivotal role in determining the response of a device, and various mechanisms can
contribute to the effective quality factor, Q−1. In nanomechanics damping can have different origins
and this section includes various means explained by an example from research papers.

Viscoelastic damping. This form of friction originates from the combination of elastic and viscous
properties of the resonator material. Where the first is the restoration force after deformation while the
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second is a form of drag to the velocity. For nonlinear models this form of friction is too considered
inherently nonlinear [22]. This property is a major cause of damping for polymers [23].

Thermoelastic damping (TED), arises from the coupling of elastic modes with thermal phonons
(vibrational waves in a crystal lattice). It becomes significant in every material where thermal variations
are linked to (strain-induced) volume changes (thermal expansion), combined with a reasonable dis-
persion rate. This material property can be largely influenced by the modeshape [8], the resonator’s
dimensions, and the ambient temperature [6, 24].

Akhiezer damping is a phenomenon involving energy flow between phonon modes. In nanome-
chanical systems, vibrations are quantized into discrete phonon modes. A low-frequency eigenmode
is coupled to high frequency phonons and when these modes interact, energy is dispersed from higher-
frequency phonon modes to lower-frequency phonon modes [6]. This form of damping also scales with
size and ambient temperature.

Clamping losses occur through the resonator’s base or substrate, where acoustic phonons tunnel
through the substrate, acting as a thermal bath. Research indicates that acoustic radiation loss is highly
dependent on mode number [25]. Optimizing substrate design can mitigate this loss [26].

Surface losses are various losses attributed to the interaction of the resonator and the environment.
Air, roughness or contact can induce a fair amount of friction [25]. Two-level systems are caused by
defects in the material at a fairly low temperature [27].Electrostatic forces impact nonlinear resonator
behavior, which can tune multiple aspects of the resonator but can too introduce amplitude-dependent
damping [28].

1.3.2. Mode coupling
Modal coupling is caused by the nonlinear coupling potential, Ucp. In combination with internal res-
onance (IR), condition where the ratio of resonance frequencies forms a rational number, a strong
intricate nonlinear behavior is originated. IR can be created by careful design [29], by electrostatic
tuning [13], by using the amplitude-frequency relation [1] or a combination to bring the resonator into a
n:m relationship (nω1 = mω2).

Tracking one mode in the vicinity of IR, the coupling increases and more energy is sapped to the
second mode; the effective nonlinear damping will increase significantly [1].

In ringdown, a coupled mode can show different trajectories of how the energy is distributed over
time. Observations from a 3:1 graphene resonator show that as the system reaches high energetic
vibrations, modes couple and hybridize, leading to joint decay of modes ((τ1 + τ2)/2). The decay rate
and coupling strength decrease over time, causing the modes to decouple (τ1 and τ2 separately) [13].
In general the linear damping of a higher frequency mode is larger than that of a lower one (τ1 << τ2).
In a theoretical analysis [30] the energy of the first mode is dispersed through its linear damping and by
the energy exchange with the highly damped coupled mode such that the overall damping increases.

To the contrary, a reversed phenomenon at IR is observed by [14] and [15], storing energy in the
second mode such that the second mode acts as a ”mechanical battery” and giving back energy to the
first mode. Consequently a coherence time, τcoherent, is introduced, the duration where the amplitude
of mode 1 is preserved. After that time the modes run out of phase and decouple. If one mode is
transferring energy to the other mode faster than it is receiving, this mode will decrease faster than
the linear thermalization. During the other mode will experience a slower decay than its linear rate.
Together the energy in total is still being dispersed due to other mechanisms [20].

1.4. Goals of the research
This thesis is focused on the dynamics of nonlinear nanoresonators and specifically on the nonlinear
damping characteristic in the vicinity of internal resonance. As seen in the research of Keşkekler [1]
the nonlinear damping increases significantly near IR, which is largely in agreement with the research
of Güttinger [13] and Shoshani [30].

Accordingly one would expect that nonlinear damping enhances near IR, yet the works of Chen [14]
and Wang [15] report differently. Their research found sustained oscillation for a period of time after
the periodic drive was shut off. And [15] goes even further recording coupling and sustained oscillation
only moments after the ringdown initiated.

For this research the dynamics of a beam resonator will be investigated. Firstly by dynamic char-
acterization, followed by amplitude measurements whilst the resonator experience free decay. These
findings are presented in a scientific paper format in the following chapter. After which, in chapter 3,



1.4. Goals of the research 5

0 0.5

A
m

p
lit

u
d

e 
[l

o
g(

a.
u

.)
]

0

-1

Device III, Vg = -2V

Device III, -3V

Device II, -3.7VDevice II, -3.85V

A

0

1.5

1.5

0 0.2 0.4
Time [s]

A
m

p
lit

u
d

e
[μ

m
]

A
 [
μ

m
] 1

0.1
0 1t [s]

B.1

A
 [
μ

m
] 1

0 1t [s]

0

1.5

1.5

A
m

p
lit

u
d

e
[μ

m
]

0 0.2 0.4
Time [s]

B.2

a

a

Figure 1.2: | Mode coupling in ringdown. A) Mode coupling causes a hybridization of mode 1 and 2, enhancing the damping
of the measured mode. After the energy is depleted the modes decouple[13]. B) A clear preservation of vibration amplitude is
observed at a higher starting amplitudes, where energy exchange between modes allow one mode to be sustained [14, 15].

the conclusion and recommendations concerning this research can be found. Additional information
about the method and extra measurements can be found in the Appendices.



2
Paper

This chapter contains the main matter of the research, presented in a scientific paper format.
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Micro- and nanoelectromechanical (MEM/NEM) resonators are used in numerous fields of engi-
neering and are crucial for time keeping, synchronization, and sensing applications. These systems
are subjected to energy dissipation, which is a limiting factor in the performance. Extensive un-
derstanding is essential when nonlinearities show up in both stiffness and dissipation, to design
appropriately. Focusing on dissipative mechanisms, this paper explores the vibrational behavior of
a suspended clamped-clamped beam fabricated from silicon-nitride in the nonlinear regime. This
study reveals a notorious decay in ringdown, when the resonator is decoupled from its vibrational
power. A sustained amplitude is observed for up to 8 seconds. Though the exact source of this
anomaly remains elusive, it is suggested that it might include modal coupling and/or optomechanical
effects.

I. INTRODUCTION

Micro- and nanomechanical resonators are critical
for time keeping components, synchronization [1], and
sensing applications. For sensors, scaling down to the
nanoscale enhances the responsivity, leading to their
widespread application in sensitive detectors for force
[2, 3], mass [4, 5], pressure [6], and spin detectors [7].
These sensors are constrained by the intensity of dissi-
pation. In addition, the assumption of linearity breaks
down due to the small size and enormous aspect ratios.
Tiny oscillations can already introduce an amplitude de-
pendent stiffness and exhibit nonlinear damping. Con-
temporary sensors still often avoid the nonlinear domain
for their complex dynamics and dissipation mechanisms
[2].

The study of energy dissipation has captivated re-
searchers across various fields of physics. A physical sys-
tem is often simply assumed to be coupled to the envi-
ronmental bath, without fully understanding the origins
and effects of this dispersion [8]. Knowing the sources of
damping is fundamental for the utilization of the entire
spectrum in the field of engineering and its applications.
Damping can be intrinsic, like Akhiezer [9], thermoelas-
tic [10] and viscoelastic damping [11], as well as extrinsic,
support losses [12] and external interactions [13]. This
attributes to the behavior of the resonator. Yet, untan-
gling one source from the other can be a daunting task,
for damping can stem from multiple origins simultane-
ously.

Besides dispersion to the environment through vari-
ous mechanisms, energy can also be redistributed among
eigenmodes of the system. This can be perceived as
strong nonlinear damping for the measured mode, no-
tably in the vicinity of internal resonance (IR) [14]. At
IR, modes interact strongly and takes place only when
the ratio of the frequencies of the coupled modes is an

∗ This paper is a part of the Masters thesis of the author

integer. The significance of mode coupling is also visi-
ble in the free response, where the system in decoupled
from the drive. Different linear and nonlinear parameters
can be extracted by using the free vibration response, i.e.
the stiffness, Duffing parameter and the damping param-
eters, both linear and nonlinear [15]. When modal cou-
pling is present in the system, specifically in or near IR,
energy is easily being redistributed among modes, gener-
ating an anomalous decay as the vibrational amplitude
evolves [16]. On the one hand, research found that the
path of dissipation is energy dependent, such that for
high energy states the dissipation rate is enhanced [17].
On the other hand, studies found energy being delivered
back to the observed mode, such that the amplitude re-
mains steady for a short period of time [8, 18].

In this work, we also experimentally show an anoma-
lous decay of a micromechanical resonator. The highly
nonlinear resonator shows a sustained amplitude during
the initial stages of the ringdown. Using the lock-in tech-
nique we measure the contribution of different overtones
during ringdown and find that the first harmonic expe-
riences a greatly reduced damping for up to 8 seconds.
After this the decay rate increases as expected and pro-
ceeds linearly. The cause of this phenomenon is tried
to track down but remains elusive. The origins of the
anomaly are suggested to lie within either mode-coupling
or optomechanical back-action.

II. RESULTS

The experimental setup involves a suspended
clamped-clamped beam resonator. It is fabricated from
silicon nitride (Si3N4), measuring 4µm by 96nm, with
a length of 1300µm. The resonator is set approximately
6µm above the silicon (Si) substrate, which is forming the
backplane. The structure is placed onto a piezo stack and
enclosed within a vacuum chamber, where the pressure
is reduced to 2e− 6mBar.

The equipment used for measurement, includes a
commercially available Polytec MSA400 Laser Doppler



2

Frequency [kHz]

A
m

pl
itu

de
 [l

og
(V

)]

-2

199.22 199.24 199.26199.18 199.20

-4

-3
F0 = 199.223
Q  = 154 x103

BA

Zbase

Vacuum chamber

Polytec Laser
Doppler Vibrometer

Scanning
laser

Lock-in Amplifier

0�m 400�m

C

A
m

pl
itu

de
 [l

og
(V

)]

-4

-3

-2

-1

0

Frequency [kHz]
199.22 199.26199.18 199.30 199.34 199.38

0.2 V
1.4 V
2.7 V
3.9 V
5.1 V
6.3 V
8.8 V

Drive Voltage

1300�m

FIG. 1 | Schematic set-up, linear frequency sweep and nonlinear frequency sweep. A, Measurement
set-up schematic: The SiN string resonator inside a vacuum (1e-5 mBar) chamber excited with a piezo base

actuator. Measured from top view by a red laser by the Polytec MSA400 and processed by the ZI HF2LI. B. Linear
direct frequency response curve (motion amplitude versus drive frequency) of the first harmonic. C. Direct
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Vibrometer (LDV), fitted with a red sensing laser with a
wavelength of λ = 633nm. A Zurich Instruments HF2LI
Lock-In Amplifier is utilized for data acquisition and pro-
cessing and to actuate the piezostack. A schematic of the
setup is depicted in Figure 1a. More details in Appendix
A.

To characterize the beam resonator the piezo is
driven by the alternating voltage generated by the Lock-
In Amplifier. By sweeping the frequency of the voltage
from a low to a higher frequency, the frequency response
curve is characterized. This curve presents the resulting
amplitude response at various frequency steps, enabling
the determination of several key parameters, like eigen-
frequency and linear damping rate. For high enough am-
plitudes and multiple measurements this also allow the
determination of the Duffing and the nonlinear damp-
ing rate [14]. The natural frequency of the clamped-
clamped beam is measured to be around 199.223 kHz.
Due to the non-constant ambient temperature the reso-
nance varies slightly. The parameter of the linear damp-
ing rate (2Γẋ) is determined to be Γss/2π ≈ 0.648 Hz.
Consequently, the quality factor (Q) is found to be ap-
proximately 154× 103, as illustrated in Figure 1b.

Upon increasing the drive power, the motion of the
microbeam rises to the point where linear approximations
are no longer valid. For clamped-clamped beams, nonlin-
earities can already arise from its geometry, where a mass
is attached to two linear springs [19]. The amplified drive
voltage can lead to amplitude-dependent stiffness, non-
linear damping behavior, and modal coupling. By incre-
mentally elevating the drive amplitude, we obtained the
nonlinear frequency response, which is presented in Fig-
ure 1c. For increased response amplitude the resonance
frequency is progressed with the drive frequency, estab-
lishing a high-energy state, before falling down to the
low-amplitude branch. At first glance, this curve closely
resembles the behavior of a typical Duffing resonator.

The curve presented in Figure 1c serves as the ba-
sis for our energy decay measurements. By driving the
resonator using the piezo stack, we actuate the resonator

in an out-of-equilibrium state. Subsequently, by switch-
ing off the driving force while the system is in a steady
state, we monitor the decay of vibrational energy using
the LDV.

Ringdown is a valuable probe for evaluating non-
linear dissipation. To observe the free decay of the res-
onator in the nonlinear regime, we can employ two meth-
ods. The first method would be to determine the highest
steady state amplitude per drive voltage and measure the
decay turning of the drive at that point. When in the
nonlinear (Duffing) regime, this means to approach the
saddle-node bifurcation, just before the high-amplitude
state ceases to exist. In figure 1c this measurement point
would then be just before the amplitude drops down. A
second method would be to drive the resonator with a
fixed high drive voltage and measure the ringdown at
various points on the Duffing curve. Both methods allow
different starting amplitudes to be measured, however,
the latter method offers greater resilience to minor varia-
tions in temperature or pressure, which may cause shifts
in resonance and the saddle node’s position.

Figure 2A displays the full frequency sweep at 8.8
V. Herein the specific frequencies and corresponding am-
plitudes are highlighted at which the driving force is
switched off. Subfigure 2B depicts the normalized am-
plitude, where all measurements are scaled with respect
to the highest steady state power, pointing out the ob-
served trend.

Starting in the lower amplitude regime (denoted as
point A to the left of the figure), the system exhibits al-
most linear behavior during the free response, as shown
in Figure 2B, line A. Here, we monitor the amplitude
of the fundamental harmonic. The resonator is driven
up to t = toff , after which the piezo is shut off and
the resonator undergo a free decay. The linear damp-
ing coefficient can easily be determined using the expo-
nential decay formula a = a0e

−Γt [15]. This value can
be cross-verified with the results obtained from the fre-
quency response curve, yielding a linear damping rate of
Γrd/2π = 0.840 Hz.
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As we progress along the nonlinear frequency re-
sponse curve, we conduct ringdown measurements at
points B to E. The steady state amplitude of lines A to
E are normalized such that their amplitude while driven
are set equal. This way the deviations are more notice-
able; Line B in Figure 2B is already displaying slight
nonlinearity in ringdown, showing a different path than
its lower amplitude predecessor. This effect is more pro-
nounced at higher amplitudes. The observed decay rate
in the first stage is strongly reduced for a considerable
time, before the amplitude shows a similar line like line
A, the linear decay. This effect is observed for an elon-
gated period up to 7s in current configuration. Higher
powers also resulted in an even longer two-staged ring-
down. Notably, the resonance frequency shifts during the
ringdown process, necessitating the use of a wide signal
filtering bandwidth. This approach prevents data loss in
the extensive frequency range where vibrational energy
is dissipated, however, this also increases the noise level.
We have also observed this phenomenon in similar res-
onators with the same cross-section and anchor point but
varying lengths (more detail in Section III).

III. DISCUSSION

Our observations show a distinct two-stage dissipa-
tion with the initial stage exhibiting a strongly reduced
decay rate. The examined literature do not show direct
similarities to these observations (figure 3A). The phe-
nomenon can be attributed to several factors including
mode coupling and optomechanical effects. Where mode
coupling is specific to the resonator, optomechanical ef-
fects are caused by the interaction of setup (e.g. measure-
ment laser) and resonator. In the following paragraphs

both are elaborated more. The two-staged slope even
show similarities to two-level system defects described
by [20] (Appendix B). However, these types of sustained
oscillation can only occur at extremely low temperatures
(< 4K) [21, 22].

Our research shows similarities with (non-)linear
mode coupling as described in the research by C. Chen et
al. [18], M. Wang et al. [8] and in a mirrored manner with
the work of Güttinger et al. [17]. These authors describe
their observations as a consequence of mode coupling.
For a system to observe strong modal coupling, at least
two of the vibrational eigenmodes need to get close to in-
ternal resonance (IR). This means that one eigenmodes
frequency is an integer multiple of the other eigenmodes
frequency (nωi = mωj). When a perfect string is con-
sidered, the eigenmodes are aligned at an integer value.
Assuming a perfect string, similar with a guitar string
for example, has its eigenmodes aligned an integer value
apart from the primary resonance.

Both Chen [18] and Wang [8] define a system where
the higher harmonic can be used as a sort of a mechan-
ical battery, a storage such that the modal energy can
be redistributed towards the observed harmonic. As a
result, the observed mode maintains it’s amplitude after
the system is decoupled from the drive. For a moment
of time, coupled modes provide enough energy to sustain
and even increase the vibrational amplitude of this har-
monic. After the so-called coherence time, the harmonics
decouple and decay separately. The composition of the
eigenmodes make the coupling such that the first mode
decay is negated in its entirety in high amplitude region.
On the other hand, the work of Güttinger et al. [17] de-
scribes a coupling revealing the opposite. They describe
a hybridized decay rate, where the energy of the first har-
monic is distributed. This mode experiences an enhance
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damping in high energy state. A global representation of
the work of Chen et al. and Güttinger et al. is offered in
figure 3A. In this work the decay rate is only reduced in
comparison to a fully sustained one.

To gain deeper insights into the mechanism govern-
ing the exchange of energy within our system, our mea-
surement setup has been configured to capture higher-
order data as well. The input of the Lock-In Amplifier
can be multiplied by different references simultaneously.

This allows for measuring multiple harmonics at the same
time (Figure 3B). In the research conducted by Chen et
al., they harnessed the concept of resonant mode cou-
pling to facilitate the transfer and storage of mechanical
energy across various vibrational modes. Subsequently,
this energy is redistributed back to the principal mode
during free response. Notably, this phenomenon trans-
lates to a faster depletion of energy in higher modes,
influenced by both the (non-)linear decay rate and the
dynamic exchange of energy between the third mode and
the primary mode.

Figure 3B shows the first 5 overtones observed at
nω0, where ω0 is the primary modes eigenfrequency. The
4 higher overtones are also nonzero while powered. the At
t = toff (after 1.7s in figure 3B) the external excitation
is terminated. The overall amplitude of the first overtone
is sustained for up to 1.2s before the decay progresses lin-
early. For ease the ringdown is separated into 3 sections
(S1-3). In the first section all the modes are losing am-
plitude at each a different rate. In comparison, with the
third section the third mode also seems to sustain the am-
plitude, while still an observable decay is visible. After
about 0.6 seconds the decay of the third overtone seem
to increase. The same appears for overtone 5 in section
1 and 2, however overtone 5 gains amplitude in section 3
and decays freely thereafter. Even more remarkable are
the lines describing overtones 2 and 4. Both gain am-
plitude in section 2 and cross overtone 5 in amplitude.
In the last section before "decoupling", the amplitude of
overtone 2 increases even more to match overtone 3. The
amplitude of 5 surpasses overtone 4 again here at the
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lower end. Only the first 6 overtones are recorded (over-
tone 6 not showing any significance), overtone 7, being an
odd overtone, might show again similarly with overtone
(1), 3 and 5.

A similar intricate decay has also been observed in
other strings. The length of sustained amplitude seems
to be a function of amplitude, frequency and Q-factor
(more details in Appendix B). Figure 4 show other strings
of 700 µm and 1100 µm respectively. These strings have
different resonance and different Q-factors but the man-
ner of decay seems similar. The time the decay rate is
diminished, however, is various.

When modal coupling is considered as primary
means of sustaining the primary mode, one can argue
that energy is being transferred between modes. The de-
crease in amplitude of overtone 3 and overtone 5 seem
to match in that sense that energy is pumped into the
primary mode. This is in accordance with the simula-
tions of the Fermi-Pasta-Ulam-Tsingou problem, where
first mode’s vibrations of a string first distribute vibra-
tional energy among higher modes and after a while the
energy is transferred back to the first mode. In an ideal
situation only the odd modes are actuated this way and
all the energy is transferred back to mode 1. In non-
ideal systems even harmonics can be actuated as well
and energy is also transferred to the environmental bath
[19, 23].

On the other hand, figure 3B shows also similari-
ties with mechanical overtones and frequency combs de-
scribed by De Jong et al. [24]. In their research, the
back-action is described between the mechanics and the
optical properties of the cavity. This is caused by the
partial optical transparency of the used material and the
(partial) reflectivity of the backplane. The incoming laser
is reflected and forming a standing wave with the incom-
ing light. The resonator used in our experiments, silicon
nitride, and the backplane, silicon, have a reflectivity of
about 30% and 35% respectively for the used wavelength
of λ = 633nm [24]. The laser is parallel to the motion
of the resonator, which is therefore moving through the
induced nonlinear optical field. This can induce differ-
ent optomechanical back-action being photothermal [25],
radiation pressure [21] and dielectrophoretic [24] forces.

When a (powerful) light source or laser is focused
on a material, some of its energy will be absorbed by
the material in the form of heat. The photothermal ef-
fect is laser-induced heating, which in turn changes the
tension in the material due to the thermal expansion.
Si3N4 is very susceptible to (local) change in tempera-
ture. In a string resonator this is causing the frequency
to shift substantially for example. For a resonator which
is subjected to a periodic optical intensity [14] or which
is moving through an optical field [25], the fluctuations
in tension can induce a parametric driving force. Al-
though the probe laser is not powerful (p ≤ 3mW [24])
a slight frequency change is observed over time after the
laser is turned on, assuming a temperature change due
to the incident laser. This may explain the reduced rate

of dissipation of the first observed mode, the system is
parametrically pumped by the probing laser. However
the boost is not sufficient to fully sustain the vibration.
The amplitude still decays at a low rate to the point
where the pumping is no longer possible.

The optomechanical interference can also lead to
a radiation pressure force. Basically using photons to
transfer momentum into the resonator. For this effect
to take place in a substantial matter, a cavity must be
created where light can be trapped such that the total
adds up [21]. Therefore this phenomenon is very unlikely
to be apparent in our set-up: the backplane is not highly
reflective and the string is not acting like an optical trap.

Another back-action force can also be exerted on the
Si3N4 resonator if the initial motion is in the order of >
λ/4. The combination of the dielectric property of Si3N4

and the electromechanical optical field generated by the
standing wave is generating a dielectrophoretic force on
the resonator. This force is proportional to the gradient
of the optical intensity. Accordingly the additional force
switches direction twice per optical peak the resonator
passes at high amplitude. This 2n (number of peaks)
periodic force is generating motion components at nω0.
This force is not directly imposing additional energy to
the system or institute negative nonlinear damping but
it would explain the higher order overtones of the system
seen in figure 3B.

IV. CONCLUSION

This paper has delved into the dynamics of the sus-
pended clamped-clamped beam fabricated from silicon-
nitride, with a focus on vibrational dissipative behav-
ior. The initial characterization the beam provided pa-
rameters such as natural frequency, linear damping rate
and quality factor. Driving it with higher excitation
showed considerable nonlinearities notably an amplitude-
dependent stiffness in the frequency sweep. Subsequent
investigation consisted of analysis of the free response
of the resonator, unveiling intriguing phenomena, partic-
ularly a reduced decay rate. This observation was at-
tributed to potential factors, as mode coupling and op-
tomechanical effects, accentuating the complexity.

Firstly, parallels were drawn with prior research on
mode coupling, which found an enhanced or a fully can-
celled out damping rate of the first mode for a short pe-
riod of time. As shown, the reduced damping rate in our
system can last up to seconds. However, the complexity
of the observed dynamics, among which amplitude, fre-
quency and Q-factor dependence, presented challenges
for achieving a comprehensive understanding.

Additionally, optical effects were considered. These
included photothermal effect, radiation pressure and di-
electrophoretic forces. While the first concept can be ac-
counted for the reduced dissipation rate, the latter could
be the source of the higher harmonics visible.
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The experimental findings do raise broader questions
about the interplay of various factors in vibrational dy-
namics. Further research may include an extensive analy-
sis on mode coupling (e.g. STEP method [26]) or analysis
on optomechanical interference with simulations. Also
another measurement technique (other laser frequency

or intensity, could help unveiling the true source of the
anomaly found in this paper.

also may exclude can help uncovering the anoma-
lous phenomena and advancing the field of microscale
mechanical systems.
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3
Conclusion and recommendations

3.1. Conclusion
This thesis has delved into the investigation of the suspended clamped-clamped beam fabricated from
silicon-nitride, revealing nonlinearities and intriguing phenomena. As explained in the introduction, this
included amplitude dependent stiffness, nonlinear damping and possible mode coupling.

With a focus on the vibrational dissipative behaviour, the system showed unusual decay in ring-
down. A reduced decay rate was observed when the drive was turned off when a certain steady state
amplitude was reached. In ringdown, the first harmonic was sustained for a relatively long period of
time. Including higher harmonics suggested a complex interplay eigenmodes through mode coupling
or, as later argued, effects induced by the measurement laser.

Subsequently, the paper remains inconclusive and further investigation is needed to pinpoint the
sources of the anomaly. Should modal coupling be identified as the root cause, this research would be
a start for designing mechanical batteries, storing energy in higher modes. Conversely, if the anomaly
originates from the optical domain, the laser induced harmonics may be used as tool in metrology and
timing applications.

3.2. Recommendations
Based on the findings and discussions presented in this work, the following recommendations are
proposed:

3.2.1. Modelling
• Generating a comprehensive understanding concerning modal coupling would include using the
STEP method proposed by [31]. This method involves Finite Element modelling (e.g. using
Comsol) to work towards a linear reduced order model. Using that to extract interactions and
form a nonlinear model which includes multi modal interaction. Analysing and simulations would
then shed light on modal enegry transfer during ringdown.

• Laser-induced self-actuation may be simulated by using the model provided by [32]. The tem-
poral distribution of the optical field has its interactions with the motion of the beam resonator.
Their model includes this periodic dielectrophoretic force on silicon nitride. Simulation in time of
the undriven system would then possibly show overtones and the anomaly as observed during
measurements.

3.2.2. Experimental
Additional measurements could also shed light on the observations:

• Conduct frequency sweep and ringdown measurements under varied conditions, different then
drive power, frequency and pressure. Specifically, adjusting probe laser power or frequency to
impact the material differently, following insights from [32].

• The interaction among higher harmonics, as discussed in Chapter 2, suggests that driving higher
harmonics into resonance could result in strong coupling. The hypothesized energy exchange
from higher harmonics back to the first mode during ringdown might also induce reciprocal inter-
actions when only a higher mode is actuated. Furthermore a driven higher mode would involve
even higher order interactions.

14



3.2. Recommendations 15

• Address any potential significance of the ”Auxiliary” warning light on data integrity. This might be
caused by sensor saturation, though the software of the PSV would have captured this. Some
measurements found coherence in the observations and the auxiliary light.

By combining experimental investigations with detailed modelling, a comprehensive understanding
of the underlying mechanisms can be gained. These steps can serve as a framework to determine
whether the observed response stems from modal coupling, optical effects, or it may even reveal novel
influences that may not have been previously considered.
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Appendix A: Method

In this chapter additional information is provided concerning procedures during the experiments.

.1. SiN nanobeams
The silicon chip is povided with a set of silicon-nitride nanobeams with varying lengths. Which have
the a width of 6µm, and a thickness of 92nm. The space inbetween beams is 800 µm. The different
lengths are 100µm, 300µm, 700µm, 1100µm, 1300µm, 1900µm, 3100µm. The beams are edged
without anchor pads and with a cavity of around 2 µm in depth. The beam resonators were previously
used for other research in nonlinear dynamics. The beams are designed to have low damping and to
show significant nonlinearities.

.2. Setup
Figure 1a of the paper shows the global setup of the system. The chip is put inside a vacuum chamber
onto a piezoactuator mostly without double sided tape (a few measurements double sided tape was
used). The piezoelement is connected to the outside to a Zurich Instruments HF2LI, 50MHz Lock-In
Amplifier. A red laser (633 nm) is used to detect the velocity of the resonator using laser Doppler vi-
brometry with a commercial Polytec Scanning Vibrometer (PSV). The output of the PSV is then fed
to the HF2LI. The eigenfreqeuencies of the beams are easily found utilizing the PSV, but for further
analysis the HF2LI is used. The velocity accuracy of the PSV is set to VD-09 500 mm/s/V.

.2.1. Process
First harmonics are recognised using the software provided with the PSV. This would serve a starting
point when continuing the measurements with the Lock-in amplifier. High Q results in narrow resonance
peaks, which are difficult to recognise when just sweeping the drive. Using the Lock-in acquisition tech-
nique higher harmonics can then be measured too. When the SiN beams are not yet acclimated, the
frequency tends to shift due to temperature changes. Even the laser induced heat causes a significant
frequency shift of the resonance of the beam.

Frequency sweeps are done to measure its resonance frequency again precisely and to observe
the Duffing effect when driven to larger amplitudes. Seen in figure 1b and 1c of the paper, the nonlinear
effect increases in frequency reach. At the same time different overtones can be tracked using the lock-
in technique, by multiplying the incoming signal with a corresponding reference. The signal is mixed
with a reference signal, which can also be a higher harmonic, and with the reference signal 90 degree
out of phase. This gives the X and Y value respectively, the magnitude and phase difference of both
give the vibration amplitude and phase of the signal. The reference frequency is also used as a drive
output voltage.

When sweeping a small bandwidth is applied, so the frequency range over which the amplitude is
averaged is smaller, but the settling time is larger. In ringdown the bandwidth must be larger, since the
frequency is about to shift due the Duffing parameter, the bandwidth should be chosen accordingly.

Notably, at high vibration amplitudes the ”auxiliary” light of the PSV was turned on. Though this
output was not considered in measurements and was discarded being important.
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Appendix B: Measurements

Different strings were measured in the process. Strings measuring 300µm, 700µm, 900µm, 1100µm,
1300µm and 1800µm. The string of length 1300µm is already extensively discussed in the paper. Nu-
merous measurements were conducted varying string length and drive power. Following are just a
handfull of measurement: Figure 1 shows ringdown measurements in a string of length 700µm when
the initial drive is at 6V. At different point in the sweep curve, a ringdown is initiated, capturing overtones
simultaneously.
Figure 2 shows multiple drive voltages and the ringdown of the first harmonic of the string of 1100µm.
Figure 3 shows yet other string resonators, though the exact data was not captured properly, they still
show the phenomenon at 860kHz (300µm) and 136 kHz (1800µm).
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Figure 1: | 700µm. Ringdown measurements of a string of length 700µm with an initial drive of 6V. Along the curve multiple
steps are measured
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Figure 2: | 1100µm. Ringdown measurements of a string of length 1100µm the drive voltage is varied while still measuring the
ringdown at different frequencies

When the voltage was set to the maximum for the string of length 1100µm, also the frequency sweep
shows great anomalies. The dimple in the sweep is also recognisable in ringdown. The amplitude seem
to follow the same route back while the frequency is slowly reduced due the decaying amplitude (figure
4).
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Figure 3: | 300µm and 1800µm. Only a screenshot was properly saved. Both strings are driven at 10V at 860 kHz and 136
kHz respectively
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Figure 4: | 1100µm. The voltage is set to maximum while the pressure
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