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Abstract—This paper proposes a novel sensorless phase-shift
modulation-based voltage balancing technique for a S5-level
Packed U-Cell (PUC5) inverter. Two phase-shifted triangular
carriers are used to modulate the reference signal and generate
the appropriate gate pulses. The switching pulse generation is
specifically designed to charge and discharge the capacitor at the
speed of switching frequency, resulting in a fast voltage balancing
of the auxiliary capacitor. Compared with the reported level-
shifted modulation method, the proposed technique simplifies
comparators and logic gates while keeping the benefit of fast
sensorless voltage balancing and, consequently, the capacitor size
reduction. In other words, it modifies the reference signal to
achieve the fast voltage balancing of the auxiliary capacitor in
PUCS. Simulation results are shown to investigate the effective-
ness of the proposed technique.

Index Terms—multilevel inverter, 5-level packed U-cell (PUCS5),
sensorless voltage balancing.

I. INTRODUCTION

Multilevel Inverters (MLI) are widely used in industries
for higher power applications due to low harmonic pollution
and high efficiency [1]. Therefore, they are widely utilized in
energy conversion systems to enhance inverter efficiency and
to realize the electrification of industrial processes and low-
pollution, low-carbon-emission clean energy transition [2-8].
Among MLI topologies, Cascaded H-bridge (CHB), Neutral
Point Clamped (NPC), and PUCS are popular choices. Fur-
thermore, the intricacy of control and modulation techniques
for classic MLIs is significantly heightened with an increased
number of voltage levels [9-11].

PUCS inverter has many merits, including low complexity,
modularity & scalability, two redundant switching states to
increase flexibility, and inherently regulate the auxiliary ca-
pacitor’s voltage at half of the DC voltage. The classic PUC5
inverter is introduced in [12-14]. It regulates the capacitor
voltage level at half of the DC voltage using the sensorless
voltage balancing technique. However, this control method
necessitates four level-shifted (LS) triangular carriers. Besides,
a switching states table is needed to generate switching signals.
Additionally, one of the most important drawbacks of the
PUCS inverter with sensorless voltage balancing is that the
output voltage ripple can not be ignored, which requires a
matching large auxiliary capacitor to improve the output volt-
age quality. Due to the slow charging/discharging frequency
and bulky auxiliary capacitor, the charging/discharging period
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Fig. 1. PUCS Inverter topology

is also significant. In [15], an LS-based modulation method
aims to solve those issues. The proposed method uses two
level-shifted triangular carrier waves and logic gates. The
number of triangular carriers is halved, and the switching
states table is eliminated, resulting in a remarkable reduction in
the complexity of the proposed modulation method. However,
additional logic gates are introduced to generate appropriate
pulses and perform the voltage balancing of the auxiliary
capacitor. Although the phase-shift switching technique is well
known for its harmonic mitigation performance, it has not
been regularly implemented on multilevel inverters due to
the complexity at a higher number of levels and difficulty
in voltage balancing of the auxiliary capacitors in the con-
figuration [16], [17]. To further improve the performance of
the PUCS inverter, a phase-shift modulation method has been
designed and implemented in [18] yet suffers the capacitor’s
slow voltage balancing and high voltage ripple.

In this paper, a phase-shift (PS) modulation technique
is designed for the PUCS inverter featuring fast sensorless
voltage balancing of the auxiliary capacitor, which decreases
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the size and, consequently, cost of that capacitor, increasing
power density and reliability. Section II describes the PUCS in-
verter. Section III briefly discusses the general PS modulation
method used in [18]. In Section IV, the proposed phase-shift
modulation method is presented. Finally, simulation results are
shown and discussed in section V.

II. PUCS5 INVERTER

The PUCS Inverter topology is illustrated in Fig. 1, which
consists of one pair of low frequency (S1&S4) and two
pairs of high frequency (52&S55 and S3&S6) switches, one
auxiliary capacitor and one isolated DC source [19]. In the
PUCS inverter, the capacitor voltage is controlled at half the
DC source voltage amplitude using the redundant switching
states listed in Table I [12]. Consequently, the need for voltage
and current sensors for voltage balancing purposes in the
PUCS inverter can be eliminated.

Given three pairs of switches, there are eight switching
states to generate five output voltage levels in the PUCS
Inverter. The switching states, output voltage V,,;, and ca-
pacitor status are shown in Table I. The values 1 and O
correspond to the ON and OFF states of the switch Sx,
respectively, while Sx and Sx ;3 are complementary. There
are two redundant states in each positive/negative half cycle
that use different switching paths while generating the same
voltage levels of +E/2 or —E/2 at the output. They can be
used to increase the flexibility in choosing the proper current
path to charge or discharge the capacitor. The effect of each
state on the capacitor voltage is also stated in that table. In
the traditional sensorless voltage balancing method [12], the
capacitor charges during the positive half cycle and discharges
during the negative half cycle of the output voltage waveform,
which means the speed of charging/discharging is fixed at the
reference voltage or line frequency, like 50 Hz. Thus, a large
capacitor is required to diminish the voltage ripples in a steady
state, which inevitably causes a longer start-up charging time.

TABLE I
SWITCHING STATES OF PUCS5 INVERTER

Switching Capacitor
State R Vout Charge/Discharge
Vi 1 0 0 +E \
Vs 1 0 1 +E/2 Charge
\%! 1 1 0 +E/2 Discharge
Vi 1 1 1 0 \
Vs 0 0 0 0 \
Vs 0 0 1 —-E/2 Discharge
%4 0 1 0 —E/2 Charge
Vs 0 1 1 -k \

III. PHASE-SHIFT MODULATION OF PUCS5 INVERTER

In PS modulation, the carrier waves have the same fre-
quency and peak-to-peak amplitude. But as its name suggests,
a fixed phase shift angle ¢, exists between any two adjacent
carrier waves, given by:

360°
(m—1)

Where m is the number of output voltage levels. Moreover,
for an m-level converter, m — 1 carrier waves are required for
PS modulation. Therefore, In PUCS, with 5 voltage levels at
the output, a 90° angle exists between any two adjacent carrier
waves. The required carrier waves are shown in Fig. 2.

X OOOOOCK

Fig. 2. Required carrier and reference waves for PUC5 Inverter with basic
PS modulation (fre; = 50Hz, fsw = 200H 2)

d)cr = (1)

Each carrier wave (C7, Cs, C3, C4) is compared with the
reference wave during every discrete time period. When the
reference is greater than Cj, it outputs 1, otherwise 0. As
described in [17], the result of those comparisons will be
added at each interval, generating a discrete number between
0 and 4 corresponding to the output voltage levels of —FE to
+E, respectively. The flowchart of the generalized phase-shift
modulation is shown in Fig. 3.

IV. PROPOSED PHASE-SHIFT MODULATION METHOD

A. Switching Pattern of Proposed Phase-Shift Modulation
Method

The proposed PS modulation method is depicted in Fig.
4, which comprises only two phase-shifted triangular car-
rier waves, Crl and Cr2, without complex logic gates or
a switching table. Therefore, the proposed method doesn’t
require complex calculations or logic gates, making it easily
implementable on affordable microcontrollers.

PUCS Converter balances the capacitor voltage at the
frequency of the reference voltage V,..r. The goal of this
new scheme is to increase the balancing frequency from the
fundamental frequency f..y (50 or 60 Hz) to the switching
frequency fs,, (in kilohertz). Given Table I, the switching
pattern of PUCS Converter can be generalized as follows:

S1 is always on when the reference voltage is positive while
off when the reference voltage is negative. S4 is complemen-
tary with S1. The pair of switches S1 and S4 only answer
to the change of polarity of the reference voltage. Therefore,
it uses low-frequency switches. For the other two pairs of
switches, they are responsible for reference voltage tracking
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Fig. 4. Proposed phase-shift modulation for PUC5 Converter

and capacitor voltage balancing. They need high-frequency
switches. Charging and discharging happen in switching states
V2/V3 and Vi/V7, which only involve the transition of Sy
and S3 with complimentary switching of S5 and Sg. Thus, So
and S5 are designed to have 180°phase shift to ensure regular
transition.

The proposed switching method utilizes a zero-crossing
comparator (Z¢) to detect the positive half cycle of the ref-
erence voltage (V;..¢) and control (57, S4) at the fundamental
frequency. The expressions for Z- and (S1, S4) are as follows:

_ ]-7 V;ef > 0
ZC‘{ 0, Vier <0 @)
S1=2584=Zc (3)

Decoupling the switching actions of S; from S and S, the
reference signal V,..; should be modified in a way to generate
appropriate pulses for Sy and S3. Therefore, one can assume

that V/, ; is a modification of V,..; with the switching matrix
shown in Table II. To generate those 4 states for Sy and S3
by standard PS modulation, 2 carrier waves are required (Crl
and Cr2), which are shifted 180°.

TABLE II
DESIRED SWITCHING MODULATION METHOD

So  S3 Modulation Method

0 0 Vi ,<Crl & V], <Cr2
0 1 Vr’ef<Crl & V;efZCr2
1 0 Vr/ef >Crl & V?"/ef < Cr2
11 VL >0l & V> Cr2

According to Fig. 1, the relationship among output voltage
Vout, DC link voltage V7 and auxiliary capacitor voltage V.
can be written as below:

Vout = ‘/1 - ch (4)

Here, one can decouple the mathematical model of the
PUCS converter into two switching parts [20]. It works when
the switching frequency is high enough compared to the
fundamental frequency [21] [22]. Therefore, the reference
signals for generating required pulses of those decoupled parts
can be written based on Eq. (4). V,..; represents the reference
signal for output voltage, Z. is assigned for the switching
behavior of (51,54), so:

Vref = Zc - r/ef (5)

Thus, the modified reference signal Vr’e 5 can be calculated
as the following:

rer = Zc = Vyey (6)

Eq (6) is essential to generate the V)., which will be modu-

lated by Crl and C7r2 to generate the pulses for So and Sj.
The switching pattern, defined alternative function outputs, and
output voltage waveform of the proposed modulation method
are illustrated in Fig. 5.

B. Sensorless Voltage Balancing of the Auxiliary Capacitor

In the proposed modulation method, the auxiliary capacitor
undergoes charging and discharging in each switching period
based on the load current direction and the switching oper-
ation. The voltage balancing process of the PUCS5 converter
capacitor in each PWM period is depicted in Fig. 6.

To better illustrate the balancing process, a zoomed-in figure
is depicted in Fig. 7. In this cycle, the reference voltage is kept
positive, and 57 is on. When S5 is on while Sj3 is off, during
to and t4, the capacitor discharges. When Sy is off while Sy
is on, during S; and Sy, the capacitor charges. Because the
switching frequency fs,, is very high, the charging/discharging
time is very short, and the change of capacitor current 7. can
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be taken as a constant. The electrical charge of the capacitor
q is derived as:

)
®)

q= /icdtz ic<t1 +t3 —to —t4)

= ic<tsw30n - tsw2on)

Where tg20n and tg,30n, are the on time of switches S
and S3 respectively. In steady state, as long as fs,20n and
tswson are equal, the PUCS converter capacitor voltage is
always balanced at the voltage level of E'/2. Since the negative
reference voltage half cycle is mirroring with the positive
cycle, the voltage balancing works as well.
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Fig. 7. Zoomed-in capacitor pattern of one switching cycle from Fig. 6

V. SIMULATION RESULTS

MATLAB/Simulink is used to simulate a standalone system
feeding RL load to verify the proposed modulation method
and integrated fast sensorless voltage balancing technique.
Parameters of the simulation are listed in Table III. The basic
PS modulation method and the proposed one have been im-
plemented separately in the simulation for a fair comparison.

Steady-state Simulation results are shown in Fig 8. A
smooth 5-level voltage waveform is generated at the output
of the PUCS inverter due to the accurate voltage balance of
the auxiliary capacitor. Consequently, a low harmonic current
is also drawn by the load.

TABLE III
SIMULATION PARAMETERS

DC source voltage 200V

RL load 409, 10mH
Switching frequency 2kHz
Capacitor 100pF' / 2000pF
Modulation index 0.9

Output Voltage(V)

Output Current(A)

257
Time (seconds)

255 258 258 258

Fig. 8. Output voltage and current of the proposed modulation method

To show the efficient functionality of the proposed switching
technique in precise tracking of the reference voltage, a step
change has been applied in the amplitude of the DC source.
therefore, F has been changed from 200V to 300V and results
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are shown in Fig 9. It is clear that the capacitor voltage has
been properly balanced at half of the DC voltage.
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Fig. 9. Transient behavior of sensorless voltage balancing in proposed
modulation method

In the next test, the auxiliary capacitor’s voltage ripple and
the start-up charging time were measured, and this is shown
in Fig. 10. It is clear that the capacitor voltage reaches the
reference level in almost 0.3s with a peak-to-peak ripple of
7V.

Capacitor Voltage in steady state(V)

265 2.7 275 28 285 29

Time (seconds)
Capacitor Voltage(V)
100F
501 1
0 1 L 1 L 1 L

0 0.1 02 03 04 05 0.6
Time (seconds)

0.7 0.8 0.9

Fig. 10. Capacitor voltage in the steady state of the proposed phase-shift
modulation method with C=100pF

Eventually, to have a fair comparison with the basic PS mod-
ulation technique, a 2000uF capacitor replaced the 100uF
as the auxiliary capacitor to have the same voltage ripple of
almost 7V. Results are depicted in Fig. 11, showing the same
amount of voltage ripple but a long start-up charging time of
almost 1.2s. Moreover, the frequency of the charge/discharge
transition is obvious from those figures. Obviously, the pro-
posed technique charges/discharges the capacitor at the switch-
ing frequency, resulting in a significant reduction in the
capacitor size. As shown here, the capacitor size has been

reduced by 95% from 2000uF" to 100pF' after implementing
the proposed switching technique.

Capacitor Voltage in steady state(V)

4.2 4.3 4.4 45 46 4.7 4.8 4.9 5
Time (seconds)

Capacitor Voltage(V)

100F

50

0 02 04 06 08 1 12 14 16 18
Time (seconds)

Fig. 11. Capacitor voltage of the basic phase-shift modulation method
C=2000pF

VI. CONCLUSION

In this paper, a fast sensorless PS-modulation-based volt-
age balancing for the PUCS inverter has been designed
and implemented. Compared to other reported methods, the
proposed technique not only reduced the complexity of the
voltage balancing algorithm but also increased the speed of
charge/discharge transition of the capacitor, which led to low
voltage ripple and size reduction significantly. Various simu-
lation results have been illustrated and discussed, proving the
efficiency and accuracy of the proposed technique in balancing
the voltage and tracking the reference value. Moreover, a
comparison to basic PS modulation showed an achievement
of 95% capacitor size reduction with the proposed technique
while having the same performance and voltage ripple at the
auxiliary capacitor.
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