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ABSTRACT

Direct, NAD(P)H-independent regeneration of Old Yellow Enzymes represents an interesting approach for simplified reaction schemes for the stereoselective re-
duction of conjugated C=C-double bonds. Simply by illuminating the reaction mixtures with blue light in the presence of sacrificial electron donors enables to
circumvent the costly and unstable nicotinamide cofactors and a corresponding regeneration system.

In the present study, we characterise the parameters determining the efficiency of this approach and outline the current limitations. Particularly, the photolability
of the flavin photocatalyst and the (flavin-containing) biocatalyst represent the major limitation en route to preparative application.

1. Introduction

Ene-reductases from the Old Yellow Enzymes (OYEs) family have
been known for close to a century [1]. They catalyse the stereospecific
trans-hydrogenation of conjugated C=C-double bonds creating up to
two new chiral centres (Scheme 1).

Their potential as catalysts for organic synthesis, however, has only
been recognised by Faber, Hauer and coworkers a decade ago [2,3].
Since then, preparative applications of OYEs have increased ex-
ponentially [4,5] with the first examples of industrial application [6,7].

OYEs contain a flavin prosthetic group — mostly a flavin mono-
nucleotide (FMN) - which in the first reduction half-reaction of the
catalytic mechanism is reduced by the nicotinamide adenine dinu-
cleotide cofactor (NAD(P)H); in the second oxidation half-reaction of
the mechanism, the reduced flavin transfers a hydride ion in a Michael-
type addition to the (3-carbon atom of the enzyme-bound unsaturated
substrate followed by protonation of the resulting enolate anion in a
trans fashion.

In the past years, a range of alternative reductants have been re-
ported replacing the costly and unstable nicotinamide cofactors [8].
Amongst them, chemical reductants such as synthetic nicotinamides
[9-12] or transition metal catalysts [13,14] have been proposed. Also
photochemical approaches are gaining attention [15-26]. The latter
approaches mostly utilise FMN (the prosthetic group of OYEs) as pho-
tocatalyst to channel electrons from a sacrificial electron donor (e.g.
EDTA) to the OYE's active site (Scheme 2). The photochemistry of the
(yellow) flavin photocatalyst has been established decades ago [27-31],
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but a critical evaluation of their practical usefulness is so far missing.
We therefore set out to investigate the scope and limitations of direct,
photochemical regeneration of FMN to promote OYE-catalysed reduc-
tion reactions.

As a model reaction for our investigations, we chose the stereo-
specific reduction of 2-methylcyclohexenone to (R)-2-methylcyclohex-
anone catalysed by the OYE homologue from Bacillus subtilis (YqjM)
(Scheme 2) [32-34].

2. Results and discussion

Recombinant YqjM was produced in Escherichia coli using an auto-
induction medium [35,36]. His-Tag containing YqjM was purified by
affinity chromatography using Ni-NTA chromatography.

For the photochemical reaction outlined in Scheme 2, we used
commercial LEDs (A = 450nm) as light source wrapped around the
reaction vessel (Figs. S1 and S2). With this setup, full conversion of
10 mM 2-methylcyclohexenone could be achieved within < 5h (Fig. 1).
No further side product was observed using gas chromatography for
analysis.

The enantioselectivity of the reaction was superb (ee > 99.5%) as
throughout the experiment only traces of the (S)-enantiomer were ob-
served. This finding also confirms our assumption of the enzymatic
reduction of the conjugated C=C-double bond as the direct reduction
by the reduced mediator would have yielded racemic product. It is
worth mentioning that anaerobic reaction conditions were essential for
the reaction as, in the presence of molecular oxygen, lower reaction
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Scheme 1. Reduction of activated C= C-double bonds by Old Yellow Enzymes (OYEs). EWG = electron withdrawing group (typically a carbonyl group).
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Scheme 2. Photoenzymatic reduction of 2-methylcyclohexenone to (R)-2-methylcyclohexanone using YqjM as biocatalyst. In situ regeneration of the reduced flavin
prosthetic group is achieved using photoexcited FMN in the presence of EDTA as sacrificial electron donor.
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Fig. 1. Time-course of the photoenzymatic reduction of 2-methylcyclohex-
enone (4) to (R)-2-methylcyclohexanone (A). Conditions: 100 mM potassium
phosphate  buffer (pH6.5), c(2-methylcyclohexanone) = 10mM; ¢
(FMN) = 0.2mM, c(YqjM) = 6.9uM, c(EDTA) = 50mM, T =30°C, light
source: blue LED (450 nm, 80 uW.cm’z). During the reaction, anaerobic con-
ditions were maintained leading a N, stream over the reaction.

rates were observed (2.04 mMh™! instead of 3.39 th'l, Fig. S8). This is
in line with some previous findings about the high reactivity of reduced
flavins in the presence of O, [37-42]. Therefore, we applied a gentle N,
stream over the reaction mixture to maintain anaerobic reaction con-
ditions. This, however, also lead to some increased evaporation of the
reagents (as confirmed in appropriate control experiments), explaining
the rather poor mass balance of approx. 70%. Improved reaction setups
including condensers to minimise the reagent evaporation will cir-
cumvent this technical issue.

The catalytic performance of YqjM in terms of turnover frequency
(TF = amount of product formed in time divided by the amount of
YqjM used) was only in the range of 8 min" and thereby fell back sig-
nificantly behind the activities reported using NADPH as reductant
[32]. We therefore decided to investigate the parameters influencing
the reaction rate in more detail. Particularly, we systematically varied
the concentration of the photocatalyst (Fig. 2A), the biocatalysts
(Fig. 2B), the light intensity (Fig. 2C) and the concentration of the sa-
crificial reductant (Fig. 2D).

Varying the photocatalyst concentration, we observed a saturation-
type behaviour of the reaction rate with increasing FMN concentra-
tions. Half-maximal reaction rates were observed at FMN concentration
around 200 uM. This is almost 100-fold higher than the Ky, value de-
termined for the natural reductant (NADPH) [34] suggesting that the
interaction of the (reduced) FMN to the active site of YqgjM may be
overall rate-limiting due to the sterically impaired interaction and sub-
optimal electron transfer from the photocatalytic FMN to the enzyme-
bound FMN.
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Fig. 2. Influence of the photocatalyst concentration (A), the enzyme concentration (B), the light intensity (C) and the sacrificial electron donor concentration (D) on
the reduction rate of 2-methylcyclohexenone. Unless stated in the graph the following conditions were used: 100 mM potassium phosphate buffer (pH 6.5), c(2-
methylcyclohexenone) = 10 mM; c(FMN) = 0.2mM, c(YqjM) = 6.9 uM, c(EDTA) = 50mM, T = 30 °C, light source: blue LED (450 nm, 80 pW.cm'z). During the
reaction, anaerobic conditions were maintained leading a N, stream over the reaction.

Increasing the biocatalyst concentration resulted in an almost linear
increase of the overall reaction rate, which is in-line with the assump-
tion of the reduction of YqjM being overall rate-limiting. The same is
true for the observed influence of the light intensity. Higher photon
fluxes are expected to yield higher concentrations of photoexcited fla-
vins and therewith increase the concentration of reduced external fla-
vins. The concentration of the sacrificial electron donor (EDTA) had
only a minor influence on the overall rate. Only marginal conversion
was observed in the absence of EDTA, which may be explained by the
photochemical reduction of FMN by traces of ‘contaminating’ re-
ductants (vide infra). Between an EDTA concentration of 5 to 50 mM,
the overall rate remained largely unchanged and slightly decreased at
higher EDTA concentrations. Activity assays of YqjM in the presence of
elevated EDTA concentrations gave no indication for an inhibitory ef-
fect of EDTA (e.g. by removal of structurally relevant metal cations).
Hence, at present stage we are lacking a plausible explanation for the
decreased productivity of the photocatalytic system at higher EDTA
concentrations.

Encouraged by these results we aimed at scaling up the reaction by
increasing the substrate concentration to 50 mM. Unfortunately, pro-
duct accumulation ceased after approximately 5h (Fig. S6), which was
also the time span of the experiment shown in Fig. 1. We ascribe this
observation to a poor stability of YqjM under the reaction conditions.
Indeed, product formation, resumed upon addition of fresh biocatalyst

(Fig. S7) resulting in the accumulation of 36 mM of enantiopure pro-
duct (72% yield and 100% conversion due to the above-mentioned
evaporation issue). YqjM performed > 2500 catalytic cycles in this
experiment.

Therefore, we investigated the stability of YqjM under different
conditions (Fig. 3). If incubated in buffer in the presence of FMN but in
the dark, YqjM was relatively stable with a half-life of approx. 33 h.
This value, however, dramatically dropped upon illumination with blue
light (both in the presence and absence of external FMN) and the ap-
parent half-life of YqjM dropped to < 2h. Under reducing conditions,
i.e. in the presence of EDTA (or NADH), this decrease was somewhat
less pronounced (ti, = 5.5 h). Furthermore, illumination with either red
or green light had a far less detrimental effect on the stability of YqjM.

These results are most probably due to photodegradation of the
enzyme-bound FMN [43-46]. Under dark conditions, virtually none of
the YqjM-tightly bound FMN is photoexcited and therefore stable. The
emission spectra of the green and red LEDs used in this experiment
hardly overlap with the FMN absorption spectrum [40] and therefore
only lead to minor photoexcitation and photodegradation on YqjM-
tightly bound FMN (green light overlaps somewhat more and therefore
also decreases the half-life of YqjM more pronouncedly). The effect of
the reducing conditions may be explained by the significantly reduced
absorption of reduced flavins at 450 nm. This assumption is also sup-
ported by the spectral changes recorded for both YqjM and free FMN
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Fig. 3. Stability of YqjM under different incubation conditions. Incubation
conditions: 6.88 pM of YqjM in KPi buffer 100 mM pH 6.5 in presence of either
200 uM of FMN and/or 50 mM of EDTA and illuminated by either blue, red or
green LED or protected from any light source, T = 30 °C. Activity assay con-
ditions: 20 mM of glucose, 150 uM of NADPH, 10 U/mL of glucose oxidase,
1 mM of 2-methylcyclohex-2-en-1-one and 0.85 pM of YqjM.

upon illumination with blue light (Fig. 4).

In the course of our experiments we also frequently observed a
precipitate, which we believed to be denaturated YqjM. SDS-PAGE gel
analysis revealed a loss of soluble protein under blue light illumination
(Figs. S24-S25). Furthermore circular dichroism analysis (Figs.
$22-823) of the illuminated enzyme pointed towards some loss in the
integrity of the tertiary structure of the enzyme. Size exclusion chro-
matography of a light treated YqjM sample showed an aggregation of
enzymes over time (Fig. S21). We also performed a proteolytic digest of
the illuminated and native YqjM using trypsin and analysed the re-
sulting peptides by mass spectrometry for degradation products (Figs.
S3-S4). This revealed that in the illuminated YqjM, two methionine
residues (M14 and M134) were oxidised to the corresponding sulfoxides
(Fig. S5). Although some oxidation of another methionine was observed
already for the non-illuminated protein, the degree of sulfoxidation
increased significantly after exposure to light. Illumination of the YqjM
samples occurred under anaerobic conditions (using a stream of N, gas)
which makes H,0, a rather unlikely oxidant for this reaction. Possibly,
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photoexcited flavins can directly oxidise methionine via a so far un-
known mechanism and electron sink. It is also worth mentioning that
this analysis did not cover the entire YqjM polypeptide, therefore, at
present time we cannot exclude further modifications of the protein to
account for the decreasing stability under illumination. As these amino
acids are at the surface of the protein, oxidation of these amino acids
may well account for the protein aggregation and precipitation ob-
served. Similar effects have been already described for oxidative stress
related biological aging and degradation [57]. Future experiments with
YqjM mutants devoid of these methionine residues will show if such
mutants exhibit higher robustness under the photochemical reaction
conditions [58].

3. Conclusions

Overall, we have confirmed that direct, NAD(P)H-independent re-
generation of YQjM can productively be achieved using photo-
regenerated, reduced FMN photocatalysts/mediators.

The main limitation of the current setup lies with the poor photo-
stability of the enzyme-bound, as well as the free FMN cofactor. As
consequence, comparably low turnover numbers
(TON = molp oquer X molcmlystrl) in the range of 2000 and 30-40 for
YqjM and FMN, respectively, were observed. While these numbers are
in the range of state-of-the-art OYE reactions [3,59,60] they are orders
of magnitude too low for economical synthesis of non-highly value-
added products [61]. Therefore, further work will have to concentrate
on increasing the robustness of the photoenzymatic reaction. Particu-
larly we will focus on photocatalysts/mediators such as methylene blue
and its derivatives [62] exhibiting an absorption maximum in the
(infra)red range. This way, the photodegradation of OYEs can be
minimised. Ideally, these photocatalysts/mediators exhibit more effi-
cient interaction with the enzyme active site to accelerate the electron
transfer from the reduced mediator to the oxidised, enzyme-bound
flavin [63].
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Fig. 4. Spectral changes observed for FMN (A) and YqjM (B) upon illumination with blue light. FMN: spectra were taken at 0, 1, 2, 4 and 8 min (from dark to light);
YqjM: spectra were taken a 0, 1, 2, 5 and 23 h (from dark to light). General conditions: 20 uM of YqjM or FMN in KPi buffer 100 mM pH 6.5 illuminated by blue LED,

80puW.cm ™2, T = 30°C.
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Supplementary data to this article can be found online at https://
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