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Using a symmetry-accounting ensemble-averaging method, we have identified the wind in
unbounded Rayleigh–Bénard convection. This makes it possible to distinguish the wind from
fluctuations and to identify dynamic features of each. We present some results from processing five
independent three-dimensional direct numerical simulations of aG=4 aspect-ratio domain with
periodic side boundaries atRa=107 and Pr=1. It is found that the wind boundary layer scales
linearly very close to the wall and has a logarithmic region further away. Despite the still noticeable
molecular effects, the identification of log scaling and significant velocity and temperature
fluctuations well within the thermal boundary layer clearly indicate that the boundary layer cannot
be classified as laminar. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1920350g

Recent theories for the prediction of the scaling behavior
of the nondimensional heat fluxNu and the Reynolds number
Rein the Rayleigh–Bénard convection presume the existence
of “wind,” 1,2 a large scale circulation that autonomously
arises in the system. Indeed, this circulation has been ob-
served by various groups and received quite some attention
over the last years.3–9 The theories use wind primarily as a
conceptual notion; little is known about the actual magnitude
of the wind as compared to velocity fluctuations and if it is
present for all Rayleigh numbers.9 But most important, a
straightforward definition of wind seems to be missing. The
natural candidates are the ensemble average, a time average
over a sufficiently long period, a spatial average over a suf-
ficiently large area, and a combination of the three. However,
the problem is that all these averages yield a vanishing wind
ū=0. For the ensemble average and the spatial average this
may be obvious from symmetry considerationsssee belowd,
but for the time average it is more subtle. In this context the
experiments5,9 are most instructive. Here it is shown that the
wind erratically reverses its direction on time scales far ex-
ceeding the convective turnover time, Sreenivasan, Bershad-
skii, and Niemela9 propose a simple dynamical picture to
explain these wind reversals, with two metastable states, i.e.,
clockwise and counterclockwise mean wind motions; only
extreme events, such assa combination ofd energetic plumes,
can flip the system from one state to another. The relevant
point here is that the reversals actually conserve theergo-
dicity of the system: theslongd time average becomes equal
to the ensemble average—which is zero. The purpose of this
letter is therefore to come up with a suitable and useful defi-
nition of wind. Based on this definition we then determine
the wind based on five direct numerical simulationssDNSd
of moderate aspect ratio and with periodic side boundaries.
An analysis of the wind field and fluctuations shows evi-
dence of a boundary layer that is not laminar.

The Rayleigh–Bénard convection is generated when a
layer of fluid with thicknessH is subjected to a positive
temperature differenceD between the bottom and top wall.

Within the Boussinesq approximation, the only control pa-
rameters are the Rayleigh numberRa=bgDH3snkd−1 and the
Prandtl numberPr=n /k. Heren is the kinematic viscosity,k
is the thermal diffusivity, andb is the expansion coefficient.
In domains with finite size, the aspect ratioG=L /H, with L
as the horizontal extent of the layer, is an additional control
parameter. The direction of gravity pointing in the negativez
direction, the equations for momentum, continuity, and heat
transfer are given by

]tui + uj] jui + r−1]ip − n] j
2ui = bgQdi3, s1d

] juj = 0, s2d

]tQ + uj] jQ − k] j
2Q = 0, s3d

with r as the density,ui as the velocity,Q as the temperature,
andp as the pressure.

Since definitions for the processes occurring in the
Rayleigh–Bénard convection are not unambiguously defined,
a small glossary is given here. We prefer to use the term
convective structure, which generalizes the terms wind and
large-scale circulation, in that it involves both the velocity
and the temperature field. This convective structure normally
features convection rolls, which are the steady roll-like struc-
tures. Plumes are the unsteady structures erupting from the
boundary layers and propagating to the other side. Spatial
averages will be denoted byklA andklH for plane and height
averaging, respectively.

Invariant to translation and rotation, Eqs.s1d–s3d contain
many symmetries, e.g.10,11 The domain and boundary condi-
tions put additional constraints on the symmetries but for
sufficiently simple domains, many symmetries remain. In the
solutions ofs1d–s3d, a subset of these symmetries will show
up, although—due to the nonlinear interactions—for large
Rayleigh numbers only in an average sense.10

Instead ofui =0 being the trivial solution, one may have
an image in which the zero ensemble mean consists of
groups of superimposed equiprobable conjugate symmetrical
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modes, as shown in Fig. 1. Here a two-dimensional cell is
sketched, together with some possible convective structures
smodesd. Focusing on the situation with one roll, the clock-
wise and counterclockwise modes are qualitatively and after
a reflective operation also quantitatively identical. A more
thorough and precise treatment of these arguments can be
found in Refs. 11 and 12.

Thus although mathematically correct, the ensemble
meanui =0 does not necessarily represent a physical mode of
the system. Therefore, we argue that for a useful interpreta-
tion of results it is important to account for these symmetries
and present a generalized ensemble-averaging method that is
able to do so. In classical ensemble averaging the average is

defined asX̄;1/N oa=1
N Xsad with N as the number of real-

izations and X=Xsxd. To extend this to a symmetry-
accounting ensemble-averaging method, we have to apply
some operations before averaging:

X̃ ;
1

N
o
a=1

N

SsadXsad. s4d

HereSsad is an operatorS for realizationa. The operator
S is composed of one or more elementary symmetry opera-
torsSsad=S1+S2+ . . ., such as horizontal or vertical reflections.
The elementary operators follow directly from the symme-
tries of the domain and boundary conditions. Classical en-
semble averaging now reduces to the case whenS is the
identity. Like in classical ensemble averaging, we can de-
compose the fields in a symmetry-accounted mean and fluc-

tuating part asX=X̃+X8.
Applying these concepts to our problem with periodic

sidewalls, the most important symmetry that must be ac-
counted for is the translation invariance inx,y. This opera-
tion is denoted bySr with r ;srx,ryd as the relative displace-
ment. This would make the displacementr the only
unknown per realization, but unfortunately the convective
structure is not known eithera priori, which we address by
using an iterative pattern-recognition technique.13 With this
technique the convective structure and the displacements are
determined simultaneously, gradually improving the estima-
tion for the convective structure in successive iterations. The
only assumption needed for this method is that—among all
realizations—one and only one persistent structuresmoded is
present inside the domain.

To start the iterative pattern-recognition process a refer-
ence fieldX0sxd is needed, for which a randomly picked
realization is used—the convective structure is present in ev-
ery realization so the starting point should not make a differ-

ence. Using a correlation functionCsX,Yd, every realization
can be compared toX0sxd, and the location of maximum
correlation is picked as the displacement vector,

dsad ← max
r

CsSrX
sad,X0d. s5d

There is some freedom in choosing how to calculate the
overall two-dimensionals2Dd correlation field, as it is con-
structed fromXP hui ,Q ,pj. In this case we opted for the
instantaneous height-averaged temperaturekQlH which is
closely related to the convective structure askQlH.0 where
w.0 and vice versa. After calculatingdsad for all realiza-
tions and usings4d, a new and improved estimation can be
determined by

X̃n+1 =
1

N
o
a=1

N

SdsadXsad. s6d

Repeatedly applyings5d with X0 replaced withXn and s6d
until X̃n+1sxd=X̃nsxd=X̃sxd results in the convective struc-
ture, or symmetry-accounted averages4d, as well as the rela-
tive displacementsdsad.

The DNS used for this analysis integrates Eqs.s1d–s3d
with a second-order Adams–Bashforth time-marching algo-
rithm. The grid is equidistant, staggered and all derivatives
are discretized with central differences. The boundary condi-
tions are periodic for the side boundaries; the top and bottom
walls have no-slip velocity and fixed temperature. The simu-
lations reported here are done atRa=13107, Pr=1, and
with an aspect-ratioG=4 domain, the grid consisting of 2563

cells. For thisRa, the convective turnover time based on the
maximum variance of horizontal velocity ist* =40 s; the
nondimensional time is defined ast̂; t / t* . In total five inde-
pendent simulations have been performed.

Figure 2 shows four successive time shots of one of the
simulations for the height-averaged temperaturekQlH, which
clearly show the persistence of the convective structure and
its growth in time. At t̂=12.5 fFig. 2sadg, the flow is orga-
nized into two up- and downward regions, then follows an
intermediate situationfFig. 2sbdg, resulting in a configuration
with one up- and downward regionfFigs. 2scd and 2sddg. The
growth of convective structures has been observed
before,6,14,15and goes on long after the process is statistically
stationary. Although the details of the field are very unsteady
as plumes rise and fall, the large-scale pattern is remarkably
steady as Figs. 2scd and 2sdd clearly show, indicating the
presence of a persistent convective structure.

Applying symmetry-accounting ensemble averaging on
about 200 independent realizations, Fig. 3 shows the average
wind field sconvective structured. The realizations are taken
from five independent simulations at intervals ofDt̂=0.5,
from the moment the flow has developed to its largest scale.
In the lower boundary layer, the streamlinesfFig. 3sadg
clearly show an attracting region where the flow is upward;
one repelling region where the flow is downward and two

saddle points. The height-averaged temperaturekQ̃lH fFig.
3sadg is consistent with this picture, as the relatively hot fluid
is carried upwards and vice versa. Figure 3sbd shows a side
view of the average field after averaging over they direction.

FIG. 1. Convection cell with zero mean flow. The zero ensemble mean
solution is the result of a superposition of conjugate symmetric modes.
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The contour lines are of relative temperature, which is the

deviation from the plane-averaged temperaturekQ̃lAszd.
Clearly visible in the figure is the projection of the two rolls
onto the side view. This result may clarify why two-
dimensional simulations are able to predict theRa-Re-Nu
behavior reasonably well.16

Decomposed in a contribution due to the convective

structureũiũi and to plumes and turbulenceui8ui8̃, the plane-
averaged distribution of kinetic energy along the vertical is
an indication for the magnitude of wind and fluctuations. The

total kinetic energyk is given byk=skũjũjlA+kuj8uj8̃lAd /2 and
it can be seenfFig. 3scdg that the energy contained in the

vertical fluctuationskw8w8̃lA is higher than in the convective
structure kw̃w̃lA, indicating that the instability-generated
plumes dominate in the vertical transport. In the horizontal,
the average and fluctuating parts are of similar magnitude,
with a striking difference that the squared mean horizontal
velocity kũũlA peaks at the hydrodynamic boundary layer,

but the mean squared velocityku8u8̃lA is quite uniformly dis-
tributed outside the boundary layers, revealing a well-mixed
bulk. Here we distinguish a thermal boundary layerlQ, de-
fined as the location of maximum temperature variance

kQ8Q8̃lA and a hydrodynamic boundary layerlu, defined by
the location of maximum squared mean horizontal velocity
kũũlA. It can be appreciated that even deep inside the thermal
boundary layerlQ finset Fig. 3scdg, the mean squared hori-

zontal velocityku8u8̃lA is significant and of the same order as
the squared mean velocitykũũlA.

Focusing on the hydrodynamic boundary layer, the inset
of Fig. 4sad shows the horizontal velocity profile nondimen-
sionalized with the wall-shear stress, whereu+;u/u* , z+

;zu* /n, with the friction velocityu* ;Îts/r and local wall-
shear stressts. The velocity profiles are obtained by taking
equidistant vertical cuts from the average field shown in Fig.
3sbd. Clearly, scaling with the wall-shear stress does not
yield a universal profile, indicating that the effects of buoy-
ancy are not negligible—as would be expected from a
buoyancy-driven flow. However, all profiles do collapse
upon normalization ofz by the local hydrodynamic boundary
layer thicknesslusxd and u by the wind maximumulsxd
=usx,lusxdd fFig. 4sadg. The universal profile shows a linear
near-wall profilefFig. 4sbdg, followed by a short region with
logarithmic scalingfFig. 4scdg.

According to the classic similarity theory for forced con-
vection, the existence of a logarithmic behavior indicates the
presence and dominance of turbulence. However, Fig. 4scd
shows that the logarithmic region starts well inside the ther-
mal boundary layer where the molecular effects are not neg-
ligible. On the other hand, from the profiles of components
of kinetic energy it is clear that the horizontal fluctuations

ku8u8̃lA are significant deep inside the thermal boundary

FIG. 2. Development and growth of large-scale structures in time as indi-
cated by the instantaneous height-averaged temperaturekQlH. sad t̂=12.5;
sbd t̂=16.75;scd t̂=22.25;sdd t̂=37.5.

FIG. 3. Symmetry-accounted wind field;sad streamlines at the edge of bot-
tom thermal boundary layer with contours of height-averaged temperature

kQ̃lH; sbd the wind field averaged over they directionftop to bottom in Fig.
3sadg; scd distribution of kinetic energy and along the vertical, decomposed
in symmetry-accounted average and fluctuation components; inset: close-up
of the boundary layer.
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layer, showing that the boundary layer is not laminar. Per-
haps the action of plumes, major contributors to the fluctua-
tions, cause the boundary layer’s dual behavior—an idea that
Kerr17 also adopts after an analysis of dissipation rates.

Whether the velocity fluctuationsku8u8̃lA have true features
of turbulence can be judged only after a thorough analysis of
the spectrum and other turbulence indicators, which is be-
yond the scope of this letter.
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FIG. 4. Horizontal velocity profile in boundary layer:sad normalized asû
= ũ/ ũl and ẑ=z/lu with ulsxd=usx,lusxdd. Inset: nondimensionalized with
wall-shear stress.sbd Log-log plot of û, showing a linear near-wall profile.
scd Semilog plot ofû, showing a logarithmic region.
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