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Abstract

External factors are hard to model using a Marko-
vian state in several real-world planning domains. Al-
though planning can be difficult in such domains, it may
be possible to exploit long-term dependencies between
states of the environment during planning. We intro-
duce weighted state scenarios to model long-term se-
quences of states, and we use a model based on a Par-
tially Observable Markov Decision Process to reason
about scenarios during planning. Experiments show that
our model outperforms other methods for decision mak-
ing in two real-world domains.

The full version of this extended abstract has been published
in the Proceedings of the Conference on Uncertainty in Ar-
tificial Intelligence (Walraven and Spaan 2015).

Introduction

Markov Decision Processes can be used to model planning
problems in various domains (Puterman 1994). However,
external factors can be difficult to predict, which makes
it hard to define a Markovian model with the right state
features and an appropriate level of detail (Witwicki et al.
2013). Decision making in such domains can be challenging
since it is often difficult to estimate transition probabilities
and it can be hard to predict uncertain events.

An example of a domain with hard-to-model external fac-
tors is a smart grid, in which wind influences the availability
of renewable electricity supply. The most severe problems
in electricity grids occur during peak hours, when the de-
mand of consumers is high and renewable generation is in-
terrupted (Moura and De Almeida 2010). In such cases, the
supply of electricity may not be sufficient to satisfy the de-
mand. This problem can be addressed by scheduling flexible
loads of consumers in such a way that they can be supplied
when renewable supply is available, but it can be hard to
model uncertain renewable supply using a Markovian state.

In this work we propose a framework which enables
agents to reason about future states in domains with hard-
to-model external factors. Rather than defining a state-based
transition model, we use scenarios to reason about states that
may be encountered in the future.

agent

m′
aot

R

scenario
process

domain-

environment

level

(a) Agent and its environment.
t

S
c
e
n
a
r
io ∗

o1,t

(b) State scenarios.

Figure 1: Agent-environment interaction and state scenarios.

Weighted State Scenarios
We assume that an agent interacts with an environment as
shown in Figure 1a. The environment consists of a process
for which the domain-level state changes to m′ after execut-
ing an action a. There is another process for which a com-
pact Markovian model does not exist, called the scenario
process. We assume that an agent observes a numerical-
valued state ot of this process at time t, which we call a state
observation. Actions do not influence the state transitions of
the scenario process.

The rewards received by the agent are dependent on both
the domain-level state, as well as the state of the scenario
process. Therefore, it is required to reason about future states
of the scenario process during planning. We use scenarios
which encode long-term sequences of numerical states of
this process, and we assume that a large set containing pos-
sible scenarios can be obtained from historical data, as visu-
alized in Figure 1b. When interacting with the environment,
the first t state observations are encoded in a vector o1,t,
which is represented by the bold line. We use the vector to
assign weights to scenarios, corresponding to the likelihood
that a scenario predicts the future. In order to do this, we
compare the vector o1,t with each scenario and we compute
the sum of squared errors. The weights assigned to the sce-
narios are inversely proportional to the computed errors.

The illustrative example in Figure 1b shows four scenar-
ios and the state observations until time t. If the scenarios
are accurate, then it is most likely that the scenario marked
with the star provides an accurate prediction of the future.
For this scenario the computed error is relatively small, and
therefore the weight assigned to this scenario is high com-
pared to other scenarios.
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Figure 2: Dynamic Bayesian network of the POMDP model.

Planning with Scenarios
We present a model that is based on a Partially Observable
Markov Decision Process (POMDP) to reason about scenar-
ios during planning, for which the corresponding dynamic
Bayesian network is shown in Figure 2. Each state s of the
POMDP can be factored into a tuple s = (m,x, t), where m
is the observable domain-level state of the environment, x is
the scenario of the scenario process, and t is a variable repre-
senting the current time. State variable m represents the state
of multiple flexible loads in a smart grid, but our model can
also be applied to other domains. State variable x is not fully
observable since this would imply certainty regarding the fu-
ture states of the scenario process. In state s = (m,x, t) the
observation o corresponds to the state in scenario x at time t.
Before selecting the next action, we derive a probability dis-
tribution over state variable x from the weights associated
with the scenarios. Then we invoke the POMCP algorithm
for planning (Silver and Veness 2010), which is a Monte-
Carlo planning algorithm that is capable of dealing with a
large number of states. Our POMCP implementation sam-
ples scenarios based on weights that have been assigned.

Experiments: Scheduling in Smart Grids
Our experiments focus on a smart grid domain, where loads
of consumers have to be scheduled in such a way that wind
power is used as much as possible and power consumption
from the grid is minimized. In each experiment we consider
a collection of flexible loads (e.g., household appliances,
electric vehicles), and we formulate the scheduling problem
using our POMDP model. Scenarios define wind speed dur-
ing the day, and have been derived from historical data that
we obtained from a wind farm in Spain.

In the experiments we compare our method with a consen-
sus algorithm (Ströhle et al. 2014) and optimal omniscient
schedules that have been computed using mixed-integer pro-
gramming. We also make a comparison with an MDP plan-
ner which models wind speed as a Markov chain. The results
are shown in Figure 3, where the cost of optimal omniscient
schedules is represented by 1, and the distributions visualize
the cost increase compared to the cost of these omniscient
schedules. Outliers have been omitted for readability rea-
sons. We use two variants of our planner. We consider the
situations in which the algorithm encounters a scenario that
is already present in the set (1), and we consider the situation
in which the algorithm only encounters new scenarios (2).
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Figure 3: Comparison of scheduling methods in smart grids.

Our method outperforms other methods in case it encoun-
ters known scenarios, and performs competitively in case
new scenarios are encountered. In the paper (Walraven and
Spaan 2015) we present similar results for a planning prob-
lem in financial stock markets.

Conclusions
We proposed a method to reason about future states in
domains with hard-to-model external factors. We defined
weighted scenarios that represent long-term sequences of
states, and we presented a POMDP model to reason about
scenarios during planning. Our model has been shown to
outperform other methods in smart grids and stock mar-
kets, which can also be considered as a motivating example
of promising applications for sequential decision making.
In future work we aim to investigate how wind prediction
methods based on analog ensembles (Van den Dool 1989)
can be combined with our work.
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