
 
 

Delft University of Technology

Creation of aspheric interfaces on an electrowetting liquid lens using surface oscillations

Strauch, Matthias; Somers, Peter; Bociort, Florian; Urbach, Paul

DOI
10.1063/1.5063994
Publication date
2018
Document Version
Final published version
Published in
AIP Advances

Citation (APA)
Strauch, M., Somers, P., Bociort, F., & Urbach, P. (2018). Creation of aspheric interfaces on an
electrowetting liquid lens using surface oscillations. AIP Advances, 8(11), Article 115224.
https://doi.org/10.1063/1.5063994

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1063/1.5063994
https://doi.org/10.1063/1.5063994


Creation of aspheric interfaces on an electrowetting liquid lens using surface
oscillations
Matthias Strauch, Peter A. A. M. Somers, Florian Bociort, and H. Paul Urbach

Citation: AIP Advances 8, 115224 (2018); doi: 10.1063/1.5063994
View online: https://doi.org/10.1063/1.5063994
View Table of Contents: http://aip.scitation.org/toc/adv/8/11
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/1178022620/x01/AIP/HA_AuthorServices_ADV_PDFCover/HA_AuthorServices_ADV_PDFCover.jpg/686254725256755a63754d4141593558?x
http://aip.scitation.org/author/Strauch%2C+Matthias
http://aip.scitation.org/author/Somers%2C+Peter+A+A+M
http://aip.scitation.org/author/Bociort%2C+Florian
http://aip.scitation.org/author/Urbach%2C+H+Paul
/loi/adv
https://doi.org/10.1063/1.5063994
http://aip.scitation.org/toc/adv/8/11
http://aip.scitation.org/publisher/


AIP ADVANCES 8, 115224 (2018)

Creation of aspheric interfaces on an electrowetting
liquid lens using surface oscillations

Matthias Strauch,a Peter A. A. M. Somers, Florian Bociort, and H. Paul Urbach
Delft University of Technology, 2628CH Delft, The Netherlands

(Received 3 October 2018; accepted 15 November 2018; published online 27 November 2018)

A technique to create aspheric surface shapes on commercially available electrowet-
ting liquid lenses is demonstrated. Based on a previously published surface oscillation
model a technique using a Hankel transform is proposed and tested experimentally.
An alternating actuation voltage is applied to the liquid lens to stimulate surface
oscillations, that temporarily add up to the desired surface shape. The voltage signal
can be repeated at video rate. The measurements were taken with a Mach-Zehnder
interferometer and confirm the previous results. The capabilities and limitations
of the proposed method are demonstrated using the examples of a Bessel sur-
face, spherical aberration, an axicon, and a top hat structure. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5063994

I. INTRODUCTION

The performance of electrowetting liquid lenses is limited by surface oscillations. Already when
the first liquid lenses (LL) were developed, it became clear, when switching the focal distance too fast,
the liquids inertia prevents the liquid surface from following the change instantaneously.1,2 Surface
waves are created. These uncontrolled deviations from a spherical interface were identified as the
cause of dynamic aberrations and have limited the operational speed of liquid lenses. All liquid lenses
therefore have a response time, which depends on the chosen materials and the lens size, that limits
their high-speed application.

Recent work shifted the focus towards this problem by optimizing the liquids and mechanical
surfaces to minimize the response time.3 But also static aberrations, especially spherical aberration,
limit the performance in some applications4 and in consequence, many new lenses have been devel-
oped to create aspheric liquid lenses, e.g., an ultrasonic liquid crystal lens5 and a LL making use of
thermal Marangoni forces6 to shape its surface. Also, the combination of hydrostatic pressure and
electrowetting or the use of multiple liquid interfaces promises to extend the functionality of a liquid
lens.7–10 However, only the simple electrowetting LL has been commercialized.

As an alternative approach we focused on studying the nature of surface waves on a commercially
available liquid lens and its resonance modes in order to avoid, or even to make use of them.11 By
exciting the liquid interface faster than the response time of the LL, waves can be created on purpose
to create new optical surface shapes. The resonant modes have the shape of Bessel functions and can
be excited individually. A similar approach focusing on the application of surface waves on a liquid
lens for optical encryption came to the same conclusion.12 Surface oscillations of liquid droplets have
been studied thoroughly elsewhere,13,14 providing a good overview of liquid immersion and viscosity
effects,15,16 that are necessary to understand the non-linearity of the liquid oscillations.17 However,
a linear dispersion relation based on an inviscid and incompressible model of the liquid18,19 was
confirmed experimentally for small surface excitations up to a few optical path lengths. For a larger
surface excitation instead, a deviation was detected that is similar to the dynamic response observed
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in larger liquid lenses.20 The Bessel nature of the surface shapes motivates us to investigate, whether
the functionality of a liquid lens can be extended to convert a tunable spherical lens into a tunable
asphere. In this paper we will confirm the results of our previously published model with a second
interferometric approach and investigate to what extend it is possible to create aspheric shapes on the
liquid lens.

II. THEORY

Surface vibrations on a LL can be described as a Bessel-function of first type and zeroth order J0

for sinusoidal actuation.11,18,21 The Bessel-functions of first type and zeroth order form a complete set
of orthogonal basis functions in polar coordinates. This indicates, that for sufficiently large times after
switching on the actuator basically any type of surface shape can be created by simple superposition
of sinusoidal inputs. The surface u for a single oscillation frequency f 0 at time t is11

u=A( f0) cos(2πf0t)J0

(
2πf0

c
r

)
(1)

where c is the capillary speed of waves, A is the amplitude, and r is the radial coordinate. A desired
surface function for t = 0 can be expressed as a superposition of such surface functions for different
amplitudes A( f ) and frequencies f.

u(r ≤ R, t = 0)=
∫ ∞

0
A( f )J0

(
2πf

c
r

)
df (2)

The surface shape is chosen to be zero for all values outside the lens radius R: u(r > R) = 0. To get
a specific surface shape u(r, t = 0) the exact time dependent actuation signal can be calculated using
two basis transforms. First a Hankel transform to calculate the amplitude spectrum of the surface
function and second an inverse Fourier transform to obtain the time dependent actuation signal for
the LL. The Hankel transform is defined as:22

H0[u(r)](k)=
∫ ∞

0
u(r)J0(kr)r dr (3)

with k being the scaling factor along the r-axis. Applying the Hankel transform on Eq. (2) yields:

H0[u(r, t = 0)]=
c

2πf
A( f ) (4)

using the orthogonality property of the Bessel function23
∫
∞

0 Jn(k ′r)Jn(kr)r dr = δ(k ′ − k)/k and
k = 2πf /c. The linear dispersion is only valid for small waves and frequencies and must be replaced
with a more complicated one in more exact fluid models.21

The electrowetting24 boundary condition determines the contact angle deviation θ of the liquid
surface at the lens radius R

∂u(r ≤ R, t)
∂r

�����r=R
=− tan θ. (5)

The voltage actuation signal U(t) is proportional to U(t) ∼ tan(θ) for small angles. Applying the
boundary condition to the model and evaluating it for the derived amplitude spectrum A( f ) (Eq. (4))
for a desired surface u(t = 0) yields the voltage spectrum

Û( f )∼

(
2πf

c

)2

J1

(
2πf

c
R

)
H0[u]. (6)

The time-dependent actuation signal is given by the inverse Fourier transform:

U(t)=
∫ ∞
−∞

Û( f ) exp(2iπft) df (7)

The hereby obtained actuation signal U(t) can now be used to stimulate oscillations on the liquid
lens that add up to the desired surface function u at t = 0. The obtained signal is infinitely long but in
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fact for finite lens sizes only a short pulse holding non-zero information. The pulse can be repeated
continuously to recreate the desired surface function at video rate.

III. IMPLEMENTATION

The presented transforms were implemented in Matlab using its discrete fast Fourier transform
(FFT) and the quasi-discrete Hankel transform.25,26 The Hankel transform is applied on an array
containing the desired surface coordinates u at t = 0 to obtain the spatial spectrum H[u(r, t = 0)](k).
The spatial spectrum is transformed into the temporal voltage spectrum Û( f ) using Eq. (6). The
resulting voltage signal U(t) is obtained by the inverse FFT. The calculation time to obtain the
voltage signal is 24-30 ms on a standard desktop machine (Intel Core i5-3470) independent of the
complexity of the desired surface input. The example of the first resonant Bessel mode u(r ≤ R,
t = 0) = J0( j1,1r/R) with j1,1 being the first root of the Bessel function of first type and first order is
used to illustrate the intermediate steps of the algorithm (FIG. 1). The Hankel transform converts a
Bessel function into a sharp peak at the resonance frequency. The peak width and the side modes are
a direct consequence of the discrete transforms. They enforce resulting signals to be of limited length
and resolution. In other words, the finite radius R of the lens determines the length of the determined
actuation signal. The determined signal is therefore always a pulse, even if a continuous signal could
be used to achieve the same result.

To check the validity of the Hankel-transform method, its result is compared to the analytic
actuation signal for the second resonant Bessel mode u(r ≤ R, t = 0) = J0( j1,2r/R) in FIG. 2. Within
the first half of the pulse, both methods create the identical signals. The second half of the pulse is
symmetric and destroys the surface shape to restore a flat surface. At t = ±20.4 ms the pulse ends.
The pulse length resembles the traveling time of a wave on the lens from one side to the opposite
side and is given by the ratio of the radius R of the lens and the speed of waves on the LL surface c.

The applicability of the method will be demonstrated experimentally with four different exam-
ples: The trivial case of creating a Bessel shape on the LL surface, a Zernike polynomial to address

FIG. 1. Illustration of the working principle of the Hankel transform algorithm. The desired surface shape u (here: first Bessel
mode) is taken as an input function (a) and converted into its Bessel components H0 (b). The frequency spectrum of the
actuation voltage Û( f ) is displayed in (c) and then Fourier transformed to obtain the voltage actuation signal U(t) (d).
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FIG. 2. Comparison of the actuation signal for the second resonant Bessel mode on the LL for an infinitely extended lens
using the analytic model (red) and a finite lens radius using the proposed Hankel transform method (blue).

spherical aberrations, a conical surface to create an axicon and a top hat structure to show the
limitations of the model.

IV. EXPERIMENT

The used LL is a Varioptic Arctic 39N0 by Corning.27 During standard operation the optical
power ranges from −5 m−1 to 15 m−1 for voltages from 39 V to 58 V. A flat surface can be obtained
for ± 45 V. The maximum voltage range is 24 - 70 V. The lens makes use of AC electrowetting,
therefore all input voltages are modulated with a square wave at 1136 Hz. At 632.8 nm, the refractive
indices of the two used liquids are n1 = 1.3846 and n2 = 1.4921. The response time between two
extreme foci is 20 ms and the root-mean-squared (RMS) wavefront error is WFErms = 50 nm (i.e.
(n2 − n1) ×WFErms = 0.5 µm RMS surface error). The speed of capillary waves has been found to
be c = 26 cm/s.11 The measurement temperature is T = 25◦C. The radius of a flat LL interface is
R = 2.65 mm.

A HeNe laser beam is collimated and sent through a Mach-Zehnder interferometer (FIG. 3). The
light passing through the liquid lens interferes with the reference and is measured with a camera. A
lens is used behind the Mach-Zehnder interferometer to image the optical phase shift introduced by
the LL surface onto the camera. The camera is a SVS-VISTEK eco424MVGE with an adjustable
frame rate (1 - 124 Hz) and integration time (3 µs - 1 s). All videos are made using an external trigger
to synchronize the camera to the LL surface movement. The videos are in consequence not showing a
high-speed image of a single lens surface oscillation but are recorded over many oscillation periods.
The calculated voltage signal is sent via a NI-9263 D/A converter from the computer to a voltage
amplifier (8×) and then applied to the LL electrodes.

FIG. 3. The liquid lens surface is measured in a Mach-Zehnder interferometer. The phase change due to the liquid lens is
imaged onto the camera with an additional lens.
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The interferogram is analyzed in Matlab using standard FFT techniques28 and 2D phase
unwrapping.29

V. RESULTS

The presence of Bessel shaped modes as predicted by the previously published analytical model
can be additionally confirmed with the interferometric surface measurement. A cosine voltage
with an amplitude of 1.6 V and a frequency of 59 Hz is applied to the liquid lens to repro-
duce the first resonant Bessel mode.11 Figure 4(a) (Multimedia view) shows the measured surface
profile for maximum deflection along the y-axis of the camera sensor. The measurement surface
shape agrees to the model (compare Eq. (1)). The RMS wavefront error WFErms = 0.02 µm is
smaller than the one given by the LL manufacturer. The RMS wavefront error of 0.01 − 0.02 µm
can be observed in all measurements (even without the LL) and is therefore associated with the
Mach-Zehnder interferometer. The movement of the liquid lens surface is not entirely symmetrical,
when applying a cosine voltage as can be seen in the video. The behavior of the surface changes
slightly with the polarity. This asymmetry has been described recently30 and can be explained
by the theory of charge restraint. Negative ions are restrained more easily by the dielectric dur-
ing the oscillation and therefore prevent the formation of a flat surface in half of the cases. The
video of the surface oscillation is taken with time steps of 292 µs/frame and the exposure time
is 80 µs.

The same surface shape can be created using the proposed algorithm as displayed in FIG. 4(b)
(Multimedia view). A pulse is calculated for the first Bessel mode on the liquid lens as shown in
FIG. 1. The pulse is repeated with a frequency of 10 Hz. The video shows the pulse in time steps of
62.5 µs/frame and the exposure time is 20 µs. The Bessel function is created with the same quality
(WFErms = 14 nm) as with the continuous actuation voltage. However, the surface profile looks very
different at all other times than t = 0.

Creating a Zernike function like deformation that can be added to the spherical surface of the
LL is an application of the technique. The primary spherical aberration Z0

4 can be created in the same
way as the Bessel surface shapes. Figure 5 illustrates the result of the algorithm and shows the created
surface and the surface profile. The peak to valley deflection of the surface is 3 µm, which resembles
an optical phase difference of π. The change in phase can be chosen to be smaller than 2π as well
as larger than the wavelength. The smallest phase change tested successfully is 0.16π. The absolute
deviation from the desired surface is similar to the previous examples (WFErms = 0.02 µm) but is
relatively larger due to the choice of a smaller surface deflection.

Surface shapes with higher spatial frequency content are more difficult to create. An axicon is for
example still possible with good accuracy using the linear dispersion model, but a top hat structure
cannot be created. Figure 6(a) shows the measured surface shape of an axicon. While the slopes of

FIG. 4. The Bessel function created in two different ways: (a) by a continuous 59 Hz cosine actuation signal and (b)
by a pulsed signal as shown in FIG. 1 (black dots). The theoretical prediction is plotted in blue. Multimedia views:
https://doi.org/10.1063/1.5063994.1; https://doi.org/10.1063/1.5063994.2

https://doi.org/10.1063/1.5063994.1
https://doi.org/10.1063/1.5063994.2
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FIG. 5. The primary spherical aberration (a) is transformed into a voltage actuation signal (b). The surface measurement is
displayed (c) and a surface profile is shown (d).

the axicon are nicely mimicked (WFErms = 0.02 µm), the tip of the axicon appears slightly rounded
and loses its sharpness for higher amplitude signals.

The top hat structure is displayed in FIG. 6(b). The slopes of the top hat are too steep to be fully
described by the simple membrane-based model. The measured surface slope is 6 µm/mm which
equals an optical path length difference of one optical wavelength per millimeter for a HeNe laser.
The slope limitation is not constant over the lens diameter but it is proportional to the envelope of
the Bessel functions (∂u/∂r ∼

√
2/(πr) for large radii). Large slopes close to the center of the lens

need high actuation frequencies. Everywhere else, larger slopes require larger actuation voltages in
the input signal and thus are affected more by non-linearities. A description of the surface vibration,
that takes account of the non-linear dispersion of capillary waves, the exact lens geometry, and the
viscosity is expected to improve the creation of high-frequency surface shapes.

FIG. 6. A pulsed signal is used to design a specific surface shape (blue) and measured interferometrically (black dots) for (a)
an axicon and (b) a top hat.
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The presented results are highly repeatable. A difference in the resulting wavefront exceeding
the 50 nm RMS wavefront error has neither been found, when measuring the surface shape of the LL
for a specific actuation signal over several days in a row, nor when repeating the same experiment
after 109 days.

The radius of the LL is directly responsible for the calculated pulse lengths and therefore imposes
a limit on the maximum repetition rate of the desired liquid lens surfaces. To increase the repetition
rate, the pulse can be shortened to half its length by setting the actuation voltage to zero for t > 0.

VI. CONCLUSIONS

A new way to create aspheric surfaces on a liquid lens has been demonstrated. The proposed
Hankel transform method can calculate the voltage actuation signals to generate any surface shape
temporarily on the LL. However, friction and the viscosity of the liquid limit the applicability of the
undamped model to surface deviations in the range of a few optical path lengths. The underlying
simplification of a linear surface wave dispersion further limits the shapes to low spatial frequencies.
The creation of a Bessel function, the primary spherical aberration Zernike polynomial, and an axicon
has been demonstrated successfully. Creating a top hat structure however failed due to the simplicity of
the underlying liquid model but could be improved by considering a more thorough liquid dispersion
model.
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