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Optimal Crop Rotations subject to Weed Dynamics:
Exponential Stability and Nonlinear Programming

Maarten de Jonga, Koty McAllistera and Giulia Giordanob

Abstract— Agricultural production of annual crops is often
hampered by annual weeds, which compete with planted crops
and persist through the collection of dormant seeds in the
soil called the weed seed bank. Conventional weed management
relies heavily on chemical herbicides, which are not sustainable.
A complementary method that reduces the need for herbicides
is ‘cultural control’, in which the crop rotation is designed in
part to manage the weed population. We propose a methodology
that optimizes the crop rotation, here defined as periodic crop
planting densities, subject to periodic weed dynamics. We adopt
a well-established model of discrete-time annual weed seed bank
dynamics with crop planting density inputs, and show that any
periodic weed seed bank trajectory corresponding to a periodic
crop rotation is globally exponentially stable. This guarantees
convergence to the optimal periodic trajectory obtained by
solving a nonlinear optimal control problem with periodic
constraints, which we formulate as a nonlinear program.

I. INTRODUCTION

Weed management in agricultural systems is a persistent
challenge, and the potential loss of agricultural production
due to weeds exceeds 30%. This loss is caused mainly by
competition for resources like light, water and nutrients [1],
[2]. Annual weeds, which complete their life cycle within a
single year, are particularly problematic due to rapid growth
and prolific seed production [3]. Throughout most of the
year, the annual weed population exists merely as dormant
seeds in the weed seed bank (WSB), i.e., the reservoir of
weed seeds in the soil. At the start of the respective growth
season (e.g., summer or winter), some of the seeds emerge
and start to compete with planted annual crops. Mature
weeds produce new seeds, of which some are incorporated in
the WSB. Seeds in the WSB can survive from a few years to
several decades [4], [5]. This persistence necessitates a long-
term approach to annual weed management. Conventional
weed management practices often rely heavily on chemical
herbicides, which have adverse effects on the environment
and sustainability, and lead to resistance buildup [1], [6];
optimal control for yearly herbicide treatment subject to an
evolving WSB has been studied e.g. in [7], [8]. An alternative
or complementary approach is cultural control, in which
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the crop rotation is designed in part to manage the weed
population. A major element in cultural control is the natural
competitive ability of crop species; weed-suppressive crops
may be cultivated simultaneously with (intercropping) or
subsequent to (crop rotation) less weed-suppressive crops
[1], [3]. The planting density of crops (plants/area) has a
large effect on the suppression of weeds [3]. Therefore, one
may look for optimal crop rotations in terms of yearly crop
planting densities for each available crop species.

Optimization of crop rotations has been explored in the
form of linear programs [9], [10] and exhaustive approaches
[11]–[15], which are restricted to monocultures or bicultures
with fixed planting densities. Moreover, many of them op-
timise across a finite horizon [9]–[12], which may lead to
myopic solutions that allow the WSB to significantly increase
towards the end of the horizon. Some studies simulate WSB
trajectories with candidate crop rotations until periodic WSB
trajectories are observed, evaluating them across a single
period [14], [15], but do not address uniqueness and stability
of the periodic patterns; also, such a methodology does not
lend itself to a continuous action space.

Here, we adopt a new long-term optimization approach
where the annual planting densities of available crops are
nonnegative real optimization variables and we minimize an
economic cost subject to the dynamics of the annual WSB,
considered as the state variable. To this aim, we rely on a
well-established model of WSB dynamics, as well as crop-
weed and crop-crop competition [1], [11], [12], [15]–[17].
We formulate the problem as an economic nonlinear optimal
control problem with periodic constraints [18]–[20], which
can be cast as a nonlinear program. The parameters within
our cost function are related to economic and ecological
quantities, and are therefore interpretable and can be esti-
mated in real situations. Our periodic constraints require that
the optimal solution must start and end with the same WSB,
making our optimal strategy sustainable in the long term.

This approach is similar in spirit to economic model
predictive control (EMPC) [20], but with key distinctions.
WSBs are often difficult to measure and therefore deploying
EMPC in a moving horizon fashion with feedback is not
practical. Instead, we demonstrate that any periodic trajectory
of planting densities results in a unique, exponentially stable
WSB trajectory. Thus, we can solve for an optimal periodic
trajectory without any knowledge of the current WSB. The
optimal crop rotation can then be implemented (repetitively),
so that we obtain a sustainable infinite horizon crop rotation
trajectory with an optimal average cost.

Moreover, the proposed optimization problem determines
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both which crops to sow and their corresponding planting
densities. Thus, we do not a-priori enforce yearly monocul-
tures, or bicultures, or polycultures: These are just possible
solutions within a more general framework.

Our main contributions are the following:
• we consider a weed dynamics model with crop planting

densities as inputs (Section II) and we analyse its
qualitative properties (Section III);

• we prove existence, uniqueness and global exponential
stability (i) of its positive steady state for constant crop
planting densities (Section III-A), and then, building
upon this result, (ii) of periodic positive trajectories for
periodic crop planting densities (Section III-B);

• we formulate, and solve with gradient-based methods,
a nonlinear optimal control problem with periodic con-
straints to find the optimal crop rotation and WSB
trajectory for a given economic cost (Section IV); the
model properties guarantee that, under periodic inputs,
the system trajectory converges to the optimal periodic
orbit, as confirmed by our numerical tests (Section V).

II. WEED SEED BANK DYNAMIC MODEL

Both the crops and the weeds we consider are annual.
Hence, it is natural to resort to a discrete-time dynamic
model, with an annual time step. The WSB in year t is
represented by xt ∈ [0,∞), which is the number of seeds per
unit area, at the start of a new season. In the integration from
one year to the next, we consider three parallel contributions
to the WSB: surviving non-germinated seeds of the current
year that survive into the next year; incorporated seeds that
are newly produced by weed plants, are incorporated in the
soil, and survive to the next year [1]; and inflow seeds that
are coming in from outside the field, such as seeds carried by
the wind, or excreted by birds or other animals [21]. Seed
survival is generally assumed to be an exponential decay
process [22]: we denote by δ ∈ (0, 1) the constant fraction
of established seeds that do not germinate and survive to the
next year. The second contribution embodies seed germi-
nation, weed development, reproduction, and incorporation
into the soil of the new seeds, and is generally described
by a saturation curve, reflecting approximately exponential
growth under low WSB densities, and saturation at high
WSB densities due to intra-specific competition [1], [17],
[23]. We denote by λ ∈ (0,∞) the seed incorporation
per seed in the absence of intra-specific competition, and
by α ∈ (0,∞) the density-based intraspecific competition
constant. For the n available crops that can be sown in
the field, we denote crop planting densities in year t by
ut ∈ [0,∞)n (seeds/area); the resulting competition effect is
modelled by an additional weighted sum in the denominator,
with competition constants captured by b ∈ [0,∞)n. Lastly,
the annual seed inflow is modelled as a positive constant
µ ∈ (0,∞). The three contributions are added up in the
transition function f(·), resulting in the difference equation:

xt+1 = f(xt, ut)
.
= δxt +

λxt
1 + αxt + b⊤ut

+ µ (1)
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Fig. 1. Cobweb map of the weed dynamics in equation (1) with a constant
input ut ≡ ū. The steady state x̄ ≈ 125 resides at the intersection of
f(xt, ū) and the identity line. Both x0 = 0 < x̄ and x0 = 248 > x̄
eventually result in convergence to x̄.

0 50 100 150 200 250

xt

0

20

40

60

80

100

120

140

160

x
t+

1

/ = 0:1; 6 = 10; 7 = 20; , = b1 = b2 = 0:1

f(xt; 7u)
Identity line
Bound at xt 5 7x
Bound at xt 6 7x

Fig. 2. Exponential convergence bounds of system (1) when x ≤ x̄ and
x ≥ x̄, with a constant input ut ≡ ū. The system is exponentially stable
under all non-negative inputs, see Proposition 5.

where b⊤ is a row vector. Given a constant input ut ≡ ū ∈
[0,∞)n, the system dynamics can be visualized by a cobweb
map, such as the one shown in Figure 1.

In the following, we say that a property is structural [24]
if it holds for all admissible values of the parameters (i.e.,
δ ∈ (0, 1), while all the other parameters are positive).

III. EXPONENTIAL STABILITY

In this section, we outline key properties of system (1),
which stem from the qualitative (i.e., structural) properties
of the functional expression of f(x, u).

Proposition 1 (Qualitative properties of f(x, u)). The func-
tion f(x, u) : [0,∞)× [0,∞)n → (0,∞) in equation (1) has
the following properties: given a fixed u ∈ [0,∞)n,

(i) the function f(x, u) is monotonically increasing in x:
∂
∂xf(x, u) > 0;

(ii) limx→∞
∂
∂xf(x, u) = δ ∈ (0, 1);

7068

Authorized licensed use limited to: TU Delft Library. Downloaded on April 11,2025 at 09:27:01 UTC from IEEE Xplore.  Restrictions apply. 



(iii) f(x, u) ≥ µ > 0;
(iv) f(x, u) is concave in x: ∂2

∂x2 f(x, u) < 0.

Proof. (i) Given a fixed u ∈ [0,∞)n, the derivative

∂

∂x
f(x, u) = δ +

λ(1 + b⊤u)

(1 + αx+ b⊤u)2

is positive for all x ≥ 0.
(ii) As x → ∞, the second term of ∂

∂xf(x, u) tends to
zero, thus limx→∞

∂
∂xf(x, u) = δ ∈ (0, 1).

(iii) Since f(0, u) = µ > 0 and f(x, u) is monotonically
increasing in x, it must be f(x, u) ≥ µ for all x ≥ 0.

(iv) The second derivative

∂2

∂x2
f(x, u) = −2

αλ(1 + b⊤u)

(1 + αx+ b⊤u)3

is negative for all x ≥ 0. ■

The fundamental properties of f(x, u) allow us to draw
conclusions on the qualitative (i.e., structural) dynamic be-
haviour of the system xt+1 = f(xt, ut).

Proposition 2 (Positivity). The dynamical system xt+1 =
f(xt, ut) in (1) is positive: if x0 ≥ 0 and ut ∈ [0,∞)n for
all t, then xt ≥ 0 for all t.

Proof. Positivity of system (1) can be shown by noticing that
xt+1 = f(xt, ut) > 0 for any xt ≥ 0 and ut ∈ [0,∞)n, also
in view of Proposition 1, (iii). ■

Since the system is positive, we refer to properties of the
system (such as exponential stability) as global if they hold
for all x0 ≥ 0.

A. Constant planting density

We first analyze the system xt+1 = f(xt, ut) in equation
(1) when the planting density is constant, ut ≡ ū ∈ [0,∞)n,
and we prove the existence, uniqueness, and exponential
stability of the steady state x̄ = f(x̄, ū) for this system.

Proposition 3 (Steady state: existence and uniqueness).
Given any constant input ū ∈ [0,∞)n, the dynamical system
xt+1 = f(xt, ū) as per equation (1) admits a unique non-
negative steady state x̄ = f(x̄, ū), which is strictly positive.

Proof. Since, as shown in Proposition 1, f(x, ū) is strictly
positive for x = 0, monotonically increasing and concave,
and ∂

∂xf(x, u) has a limit δ ∈ (0, 1) for x→ ∞, the function
must have a unique intersection with the identity line, which
occurs at strictly positive values. ■

Proposition 4 (Local asymptotic stability). The steady state
x̄ of the dynamical system xt+1 = f(xt, ut) in (1) is
structurally locally asymptotically stable.

Proof. The system Jacobian computed at the steady state,
f ′(x̄), is Schur: 0 < f ′(x̄) < 1. In fact, the system Jacobian

f ′(x) =
∂

∂x
f(x, u) = δ +

λ(1 + b⊤u)

(1 + αx+ b⊤u)2
> 0 (2)

is always positive, as shown in the proof of Proposition
1. From the steady-state conditions, we have that λ =

1+αx̄+b⊤ū
x̄ [(1 − δ)x̄ − µ]. Substituting this expression of λ

into (2) yields

f ′(x̄) =
∂

∂x
f(x, u)|x=x̄ = δ +

[(1− δ)x̄− µ](1 + b⊤ū)

x̄(1 + αx̄+ b⊤ū)
.

We want to show that f ′(x̄) < 1. Rearranging and simplify-
ing gives −µ(1 + b⊤ū) < αx2(1− δ), which is always true
when δ ∈ (0, 1) and the other parameters are positive. ■

Remark 1. Any strictly positive, monotonically increasing
and concave function ρ(x) for which limx→∞ ρ′(x) < 1
satisfies ρ′(x̄) < 1 for the unique intersection point with the
identity, x̄ = ρ(x̄); see e.g. Figure 2.

Proposition 5 (Global exponential stability). The steady
state x̄ of system (1) is structurally globally exponentially
stable: there exists ν ∈ (0, 1) such that the solution xt to
the equation xt+1 = f(xt, ū) satisfies

|xt − x̄| ≤ νt|x0 − x̄| ∀x0 ≥ 0, t ∈ {0, 1, . . . }.

Proof. Given ū ∈ (0,∞)n, we denote f(x) .
= f(x, ū). In

view of the steady-state condition, µ < x̄ and therefore

ψ
.
=
x̄− µ

x̄
∈ (0, 1). (3)

When x ≤ x̄, monotonicity of f implies that f(x) ≤
f(x̄) = x̄, where the equality expresses the steady-state
condition. Concavity of f implies that the curve f lies above
the line passing through the points (0, µ) and (x̄, f(x̄)),
where f(x̄) = x̄; see Figure 2. Therefore, we can write
f(x) ≥ ψx+ µ, where ψ is defined as in (3), and

|x̄− f(x)| = x̄− f(x) ≤ ψ(x̄− x) = ψ|x̄− x|,

where the equalities hold since x̄−x ≥ 0 and x̄−f(x) ≥ 0.
If x0 ≤ x̄, then xt ≤ x̄ for all t and we obtain the bound

|xt − x̄| ≤ ψt|x0 − x̄|.

If xt ≥ x̄, concavity of f implies that the derivative of f
computed at x̄, f ′(x̄), is larger than the derivative computed
at any point in (x̄, xt); see also Figure 2. In particular,
consider the value θ ∈ (x̄, xt) such that f ′(θ) = f(xt)−x̄

xt−x̄ ,
which exists in view of Lagrange’s mean value theorem.
Then, f ′(θ) ≤ f ′(x̄) and therefore

|f(xt)− x̄| = f(xt)− x̄ ≤ f ′(x̄)(xt − x̄) = f ′(x̄)|xt − x̄|,

where the equalities hold because xt − x̄ ≥ 0 and thus
f(xt) − x̄ ≥ 0 due to the monotonicity of f . Note that
f ′(x̄) ∈ (0, 1), as shown in the proof of Proposition 4. If
x0 ≥ x̄, then xt ≥ x̄ for all t and we have the bound

|xt − x̄| ≤ (f ′(x̄))
t |x0 − x̄|.

For all x ≥ 0, we have

|xt − x̄| ≤ νt |x0 − x̄|

where ν = max{ x̄−µ
x̄ , f ′(x̄)} ∈ (0, 1). Hence, the unique

positive steady state is exponentially stable for all x ≥ 0. ■

Corollary 1 (Global asymptotic stability). The steady state
x̄ of system (1) is structurally globally asymptotically stable.
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B. Periodic planting densities

For crop rotations, we have a periodic planting density
trajectory denoted ū = {ū0, ū1, . . . , ūN−1} with period N ∈
N instead of a constant planting density. We have proven the
existence, uniqueness and exponential stability of the steady
state for system (1) in the case of a constant input ū. We now
show that analogous properties hold in the case of a periodic
input: for any N -periodic input trajectory ū, there exists a
unique N -periodic trajectory x̄ = {x̄0, x̄1, . . . , x̄N−1} that is
globally exponentially stable for any initial condition x0 ≥ 0.

Proposition 6 (Existence and uniqueness of periodic
weed seed bank). Given the N -periodic input trajec-
tory ū = {ū0, ū1, . . . , ūN−1}, the system (1) admits a
unique N -periodic trajectory of non-negative states x̄ =
{x̄0, x̄1, . . . , x̄N−1}, such that

x̄t+1 = f(x̄t, ūt) ∀t ∈ {0, 1, . . . , N − 2},
x̄0 = f(x̄N−1, ūN−1).

(4)

Proof. For j ∈ {0, 1, . . . , N − 1}, define fūj
(x) := f(x, ūj)

and, denoting by ◦ function composition,

ϕ(x) := fūN−1
◦ fūN−2

◦ · · · ◦ fū1 ◦ fū0(x).

Then, given k ∈ N, the dynamics satisfies

xkN+j = ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
k times

(xj) := ϕk(xj). (5)

Function ϕ inherits key properties from f . In particular:
ϕ(0) > 0, because fū0(0) = µ > 0 and f(·, w) maps
(0,∞) into (0,∞) for every w; ϕ is monotonically in-
creasing and concave, because it is the composition of
monotonically increasing and concave functions; moreover,
limx→∞ ϕ′(x) = δN ∈ (0, 1) by application of the chain rule
to ϕ and the fact that f(·) is monotonically increasing with
limx→∞ f(x) = ∞. Thus, ϕ admits a unique non-negative
fixed point x̄ = ϕ(x̄), which is strictly positive.

We now initialize the dynamics at x̄0 = x̄. By equation
(5), we have x̄kN = ϕk(x̄0) = x̄0. By applying the periodic
input, for any 1 ≤ j ≤ N − 1, we have

x̄kN+j = fūj
◦ · · · ◦ fū1

◦ fū0
(x̄kN )

= fūj
◦ · · · ◦ fū1

◦ fū0
(x̄0) = x̄j .

Hence, initialising system (1) at x̄0 and applying the
N -periodic input ū = {ū0, ū1, . . . , ūN−1} generates the
unique N -periodic trajectory of non-negative states x̄ =
{x̄0, x̄1, . . . , x̄N−1} that satisfies the requirements in (4). ■

Proposition 7 (Global exponential stability of periodic weed
seed bank). The N -periodic trajectory for system (1) dis-
cussed in Proposition 6 is exponentially stable, namely, there
exist ν ∈ (0, 1) and M > 0 such that the solution xt to the
equation xt+1 = f(xt, ūt mod N ) satisfies

|xt − x̄t mod N | ≤Mνt|x0 − x̄0| ∀x0 ≥ 0, t ∈ {0, 1, . . . }.

Proof. Due to the properties of function ϕ outlined in the
proof of Proposition 6, as discussed in Remark 1, we have

0 < ϕ′(x̄) < 1.

Also, since the functions ϕ and f share the same qualitative
properties, by following the same reasoning as in the proof
of Proposition 5 with f now replaced by ϕ, we can show that
there exists ν ∈ (0, 1) such that, for any t = kN , k ∈ N,

|xt − x̄0| = |ϕk(x0)− x̄0| ≤ νk|x0 − x̄0| = (ν
1
N )t|x0 − x̄0|.

Denote ν̃ = ν
1
N ∈ (0, 1). Due to the expression of f ′ shown

in equation (2), there exists 0 < Mū0
< ∞ such that 0 <

f ′ū0
(x) < Mū0

for all x. Now, let t = kN +1, k ∈ N. Then,
applying Lagrange’s mean value theorem yields

|xt − x̄1| = |fū0
(ϕk(x0))− fū0

(x̄0)|
≤ Mū0

νk|x0 − x̄0| =Mū0
ν̃−1ν̃t|x0 − x̄0|.

Continuing by induction for t = kN + j, with k ∈ N and
j = 2, . . . , N − 1, we can finally obtain a constant M̄ such
that

|xkN+j − x̄j | ≤ M̄ν̃kN+j |x0 − x̄0|,

for all k ∈ N and all j ∈ {0, 1, . . . , N − 1}. ■

Therefore, we can guarantee that for any periodic planting
density trajectory ū, the WSB converges to a unique periodic
trajectory x̄ for any initial WSB x0 ≥ 0. In practice, this
means that measurements of the WSB are not required to
drive the system to this desired periodic trajectory, i.e., we
do not need feedback control to reach this desired periodic
trajectory. Thus, we can now focus on determining an
optimal rotation and corresponding periodic WSB trajectory
for the system, with the guarantee that any periodic trajectory
is globally exponentially stable.

IV. PERIODIC OPTIMAL CONTROL PROBLEM

Given the existence and stability guarantees outlined in
the previous section, the optimal control problem consists in
finding a sequence of inputs that minimizes the desired cost
function, subject to periodic WSB dynamics.

Crop yield, in our case interpreted as economic gain,
can be expressed in terms of crop and weed densities as a
saturating function, which has the same form as the weed
reproductive function [17], [23]. The maximum yield per
plant is given by the constant vector h ∈ (0,∞)n, yield
reduction by weeds constants c ∈ (0,∞)n, and crop-crop
competition matrix D ∈ Rn×n

≥0 . The cost per seed sown is
associated with cost vector p ∈ (0,∞)n. At each time step
t the cost can be written as total cost minus total yield:

g(xt, ut) =

n∑
i=1

(
piui,t −

hiui,t
1 + cixt +Diut

)
, (6)

where we denote by vi the ith element of a vector v, while
Di is the ith row of matrix D and ui,t is the ith element of
the input vector ut at the time step t. The cost function over
a period of N time steps is therefore:

J(x,u) =

N−1∑
t=0

g(xt, ut). (7)

The optimization problem is constrained by the WSB dy-
namics in system (1) and includes periodic constraints on the
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WSB. The optimization problem can therefore be expressed
as:

min
x,u

J(x,u)

s.t. xt+1 = f(xt, ut) t ∈ {0, 1, . . . , N − 1}
xt ≥ 0, ut ≥ 0 t ∈ {0, 1, . . . , N − 1}
x0 = xN

(8)

This optimization problem is a nonconvex nonlinear program
(NLP), in which both the cost function J and dynamics f
are nonconvex. In fact, the functional form of both J and f
permits a reformulation of (8) as a nonconvex quadratically
constrained quadratic program (QCQP). We solve this NLP
or QCQP with gradient-based methods via IPOPT [25]
with CasADi for algorithmic differentiation [26]. Since the
problem is nonconvex, we cannot guarantee that a global
minimum of (8) is found and we observe that the solution
reported by IPOPT is sensitive to the initial guess for both
NLP and QCQP formulations.

V. NUMERICAL EXAMPLES

In this section, we explore possible solutions of the NLP,
given different numerical parameters. The parameters are not
meant to be biologically representative, instead, we aim to
show how our methodology has monocultures and bicultures
as possible solutions in a more general framework, and
how the solutions correspond to exponentially stable periodic
trajectories of the WSB. We consider two hypothetical crop
plants and a WSB, characterized by the parameters displayed
in Figure 3. The two crops have the same cost. Crop 1
is highly valuable, but it is strongly affected by weeds,
and it does not suppress weed seed production. Crop 2
has no economic value, but it is not affected by weeds,
whereas it does suppress weed seed production. We look
for a rotation of (at most) six years that minimizes the
cost function subject to the dynamics, resulting in the NLP
formulated in (8). The optimal rotation critically depends
on the interspecific crop-competition constants D12 and
D21. We consider three cases in Figure 3 (code available
at: https://gitlab.tudelft.nl/mndejong/cdc-2024-optimal-crop-
rotation-st-weed-dynamics). With no interspecific competi-
tion (D12 = D21 = 0, Figure 3 left), the optimal rotation
ū∗ is constant intercropping: the same positive crop planting
densities are applied each year, allowing for simultaneous
cash crop cultivation and weed suppression. The resulting
WSB trajectory x̄∗ is also constant. Hence, the optimal
period-6 solution is (also) the optimal steady-state solution.
In general, an optimal crop rotation of period N may be
composed of shorter period solutions by which N is divisible
(including period 1 for steady-state). With strong interspe-
cific crop-crop competition (D12 = D21 = 10, Figure 3
center), the optimal crop rotation ū∗ alternates monocultures
of weed-suppressive crop 2 with the intercropping of crops
1 and 2. The corresponding optimal WSB trajectory x̄∗ is
now larger, and varies within the cycle. This solution is
not composed of repetitions of shorter crop rotations. For
even stronger interspecific crop-crop competition (D12 =

D21 = 20, Figure 3 right), the optimal rotation ū∗ consists
of alternating monocultures: crop 2 is sown to manage the
WSB, and crop 1 is sown for revenue. The corresponding
WSB trajectory x̄∗ declines following cultivation of crop 2,
and increases again following cultivation of crop 1. Here,
the period-6 optimal crop rotation is composed of two
period-3 rotations. The global exponential stability of the
optimal WSB trajectory x̄∗ corresponding to the optimal crop
rotation ū∗, which was proven in Proposition 7, implies the
convergence of any WSB trajectory to x̄∗; see e.g. Figure 4.

VI. CONCLUDING REMARKS

We presented a novel approach to find crop rotations that
are optimal in the long run, in the presence of an annual
WSB. We show that any feasible (periodic) crop rotation
results in a periodic trajectory for the WSB population. We
also show how to formulate and solve the problem as a NLP.
Interestingly, monoculture solutions turn out to be optimal
only in the presence of very strong interspecific competition
between the crops. Clearly, other reasons in favour of mono-
culture cultivation are not embedded in our optimization
problem, such as the fact that most operations are cheaper
for monocultures. Moreover, competition is not the only way
that a crop rotation affects the WSB; agricultural operations
associated with each crop type typically correspond to unique
parameters in the transition function (as is the basis of matrix
models, e.g. [13], [14]). A more involved mixed-integer NLP
formulation would be required to both capture the continuous
aspects of density-dependent plant-plant competition, and the
categorical aspects of costs and WSB dynamics associated
with each crop type. Crucially, the stability guarantees out-
lined in Section III still hold for such a formulation.
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