
 
 

Delft University of Technology

Label-free cell imaging and tracking in 3D organoids

Kok, Rutger N.U.; Spoelstra, Willem Kasper; Betjes, Max A.; van Zon, Jeroen S.; Tans, Sander J.

DOI
10.1016/j.xcrp.2025.102522
Publication date
2025
Document Version
Final published version
Published in
Cell Reports Physical Science

Citation (APA)
Kok, R. N. U., Spoelstra, W. K., Betjes, M. A., van Zon, J. S., & Tans, S. J. (2025). Label-free cell imaging
and tracking in 3D organoids. Cell Reports Physical Science, 6(4), Article 102522.
https://doi.org/10.1016/j.xcrp.2025.102522

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.xcrp.2025.102522
https://doi.org/10.1016/j.xcrp.2025.102522


Article
Label-free cell imaging an
d tracking in 3D organoids
Graphical abstract
Highlights
d LabelFreeTracker enables 3D label-free image analysis of

intestinal organoids

d Predicts 3D cell membrane and nucleus based on bright-field

images

d Allows label-free single-cell tracking over multiple

generations

d Provides a tool for quantitative analysis of reporter

expression and cell morphology
Kok et al., 2025, Cell Reports Physical Science 6, 102522
April 16, 2025 ª 2025 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.xcrp.2025.102522
Authors

Rutger N.U. Kok,

Willem Kasper Spoelstra, Max A. Betjes,

Jeroen S. van Zon, Sander J. Tans

Correspondence
j.v.zon@amolf.nl (J.S.v.Z.),
s.tans@amolf.nl (S.J.T.)

In brief

Kok et al. present the LabelFreeTracker

approach for quantitative single-cell

tracking analysis in 3D intestinal

organoids on the basis of bright-field

images. This tool allows for label-free cell

counting, lineage tree reconstruction,

reporter expression dynamics, and cell

shape analysis in intestinal organoids.
ll

mailto:j.v.zon@amolf.nl
mailto:s.tans@amolf.nl
https://doi.org/10.1016/j.xcrp.2025.102522
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrp.2025.102522&domain=pdf


OPEN ACCESS

ll
Article

Label-free cell imaging
and tracking in 3D organoids
Rutger N.U. Kok,1 Willem Kasper Spoelstra,1 Max A. Betjes,1 Jeroen S. van Zon,1,* and Sander J. Tans1,2,3,*
1AMOLF, 1098 XG Amsterdam, the Netherlands
2Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, the Netherlands
3Lead contact

*Correspondence: j.v.zon@amolf.nl (J.S.v.Z.), s.tans@amolf.nl (S.J.T.)
https://doi.org/10.1016/j.xcrp.2025.102522
SUMMARY
Fluorescence live-cell microscopy is one of themost frequently used techniques to study dynamic processes
in organoids. However, it is often limited by laborious fluorescent reporter engineering, limited numbers of
fluorescence channels, and adverse phototoxicity and protein overexpression effects. Label-free imaging
is a promising alternative but not yet established for 3D cultures. Here, we introduce LabelFreeTracker, a la-
bel-free machine-learning-based method to visualize the nuclei and membranes in bright-field images of 3D
mouse intestinal organoids. The approach uses U-Net neural networks trained on the bright-field transmitted
light and fluorescence images of mouse intestinal organoids as obtained by standard confocal microscopy.
LabelFreeTracker frees up fluorescence channels to study fluorescent reporters and allows (semi-)auto-
mated quantification of cell movement, cell shape and volume changes, proliferation, differentiation, and line-
age trees. This method greatly simplifies live-cell imaging of tissue dynamics and will accelerate screening of
patient-derived organoids, for which reporter engineering is not feasible.
INTRODUCTION

Organoids are rapidly advancing as a major tool in drug discov-

ery, personalizedmedicine, andbasic research andoffer an alter-

native to animal testing.1 The dynamics of cell proliferation,2,3

migration,4 and differentiation5 in organoids are critical for under-

standing normal and pathological development.6 Furthermore,

organoids are rapidly advancing as in vitro model systems to

study drug responses. Studying dynamics at the single-cell level

requires that cells are distinguishable fromeach other and can be

followedover time. This is typically achievedby fluorescent label-

ing of either the cell nucleus or membrane.2–5,7–9 However, the

required engineering of fluorescent labels is, in practice, unfeasi-

ble for many applications, such as screening in patient-derived

organoids. Furthermore, the nuclear and membrane labels

needed to identify cells in 3D tissues limit the colors available

for functional studies, such as monitoring cell fate markers or

fluorescence resonance energy transfer sensors over time, while

adding to the phototoxicity. Alternatives, such as holographic

andhyperspectral imaging, havebeendeveloped10,11 but require

specialized equipment that is not broadly available. In contrast,

bright-field microscopy is broadly available and is used exten-

sively for imaging overall organoid growth and morphology.12–16

Besides its general availability, a major advantage of bright-field

microscopy is that it has virtually no phototoxic effects on cells in

the sample. Machine learning approaches have been used to

visualize and track cells in 2D monolayer cultures.17–19 Organo-

ids, however, are typically several tens of microns thick, which

causes strong light scattering by the intervening tissue and
Cell Reports Physical Science 6, 102522, A
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obscures cellular features such as nuclei and membranes10

(Figure 1A, left).

Here, we present LabelFreeTracker, a label-free imaging

method to visualize and track cells in 3D organoids using 3D

bright-field images as obtained from the transmitted light in stan-

dard 3D confocal microscopy (Figure 1A). Using a custom ma-

chine learning approach and a min-cost flow solver, it integrates

spatial information in 3D from the scattered light to reconstruct

cell nuclei and shapes over 50 mm, deep and temporal informa-

tion to track cells over multiple generations. The method over-

comes the substantial tracking challenges in organoids, where

cell nuclei are densely packed and move rapidly during division,

while tracking cells through cell divisions is prone to errors,

and even single errors can cause large-scale alterations to

lineage trees. LabelFreeTracker20 works in conjunction with

OrganoidTracker,9 our custom-built and freely available soft-

ware tool for single-cell tracking in organoids, and can be used

on data acquired with a standard confocal microscope. Further-

more, LabelFreeTracker can be readily extended to other orga-

noid systems and cellular features. It will enable the analysis of

dynamic processes in patient-derived and other organoids

when nuclear and membrane labels are not available.

RESULTS

The LabelFreeTracker structure
To train LabelFreeTracker, we used a dataset of 3,894 paired

bright-field/nuclear fluorescence images from 22 organoids and

bright-field/membrane fluorescence images from 25 organoids,
pril 16, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
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Figure 1. LabelFreeTracker predicts cell nuclei and membranes from bright-field images of 3D intestinal organoids

(A) Bright-field image of amouse intestinal organoid (left), predicted nuclear fluorescence signal by LabelFreeTracker (middle), andmeasured fluorescence signal

(right). Scale bars indicate 20 mm.

(B and C) Overview of the training (B) and testing (C) neural networks that constitute LabelFreeTracker. U1 is used to predict nuclear center positions from nuclear

fluorescence images and serves as a ground truth for U4. U2, U3, and U4 are networks trained to predict the nuclear fluorescence, membrane fluorescence, and

nuclear center positions from bright-field images, respectively. Micrographs are 128 3 128 pixels, equivalent to 40 3 40 mm.

(D) 2D slices from organoids with the H2B-mCherry nuclear reporter (top) and E-cadherin-GFP reporter (bottom). The difference image shows the difference

between normalized measured and predicted fluorescence intensities. Green indicates underprediction, and magenta indicates overprediction. Scale bars

indicate 30 mm.

(E) Magnifications of regions indicated by arrowheads in (D). Note that LabelFreeTracker shows correct predictions despite (1) almost no visible nuclear features

and edge distortions in villi, (2) some membrane but limited nuclear features in crypts, (3) distortions in the bright-field images suggesting thinner epithelial

thickness than found in the measured fluorescence image, and (4) limited membrane features. Scale bars in magnifications indicate 10 mm.
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which were all obtained using standard 3D confocal microscopy

(80%/20% training/validation split; see training data for nucleus

and membrane predictions for details). With this dataset, we

trained four different neural networks, eachwith a3DU-Net archi-

tecture21,22 (Figure 1B). We first trained a U-Net (U1) to predict

nuclear center positions from nuclear fluorescence images ac-

quired with a confocal microscope. This allowed us to obtain

a complete ground truth dataset with nuclear fluorescence,

membrane fluorescence, nuclear center positions, and the corre-
2 Cell Reports Physical Science 6, 102522, April 16, 2025
sponding bright-field images. We then used this complete

dataset to train three new neural networks that directly predict

the nuclear signal (U2), membrane signal (U3), and nucleus-cen-

ter points (U4) from the corresponding bright-field images. By

training on crypt and villus domains, we included cell types at

all positions along the crypt-villus axis and cell shape changes

during growth, division, and differentiation. After training, U2,

U3, and U4 accurately predicted cell nuclei, membranes, and

nuclear positions, respectively, from new bright-field movies



Figure 2. LabelFreeTracker prediction accuracy increases by combining information across multiple Z slices

(A) Predictions based on increasing number of Z slices supplied as input to the nucleus prediction network (U2). Yellow circles indicate regions in which a single Z

slice predicts poorly but multiple Z slices work well.

(B) Predictions based on increasing number of Z slices supplied as input to the prediction network (U3).

(A and B) Scale bars indicate 30 mm.

(C) Pixel-wise correlations for variants of the nuclear prediction network (U2) with the given number of Z slices (U2). Note that improvements in specific areas

(yellow circles in A) are poorly represented in this global metric.

(D) Statistical significance (p value) that the number of Z slices on the horizontal axis results in higher correlations than the number of Z slices on the vertical axis

(*p < 0.05, one-tailed Student’s t test).

(E) Pixel-wise correlations for variants of the membrane prediction network (U3) with the given number of Z slices (U3).

(C and E) The horizontal lines indicate the median.

(F) Like (D) but for membranes.
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(Figure 1C). LabelFreeTracker identified nuclei and membranes

even when these structures were not recognizable by the eye

(Figure 1D). Specifically, it correctly predicted the membrane

signal in areas where visual inspection of the bright-field images

suggested a substantially thinner epithelial layer and, hence,

epithelial boundaries at the wrong location (Figure 1D, arrow 3).

In some areas, it appeared superior even to the measured fluo-

rescence in recognizing all parts of the membrane, which is key

to reconstructing cell shape (Figure S1).

LabelFreeTracker performance increases with the
provided number of Z slices
The ability of LabelFreeTracker to combine information in 3D

from many Z slices is important for its identification capabilities.
In contrast to the human eye, neural networks can combine in-

formation frommultiple Z slices in 3D images. To further optimize

the prediction process, we assessed the degree towhich predic-

tion of fluorescent signals improved with the number of Z slices

given to the neural networks. Importantly, we observed strong

local differences: In some regions within the imaged volume,

LabelFreeTracker was completely unable to identify nuclei and

membranes when using a single bright-field Z slice (Figures 2A

and 2B, yellow circles). These challenging regions could be

properly resolved only when making use of multiple Z slices

(Figures 2A and 2B, yellow circles). To further quantify the perfor-

mance of the U2 and U3 networks, we computed the Pearson

correlation coefficient for each pair of measured and predicted

fluorescence images (Equation 1):
Cell Reports Physical Science 6, 102522, April 16, 2025 3
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r =

P
i

ðxi � xÞðyi � yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

ðxi � xÞ2P
i

ðyi � yÞ2
r : (Equation 1)

Here, x is the fluorescence image, y is the predicted image, xi
and yi are the intensities in the image at pixel i, x, and y are the

mean intensities of each entire image. For both nuclear and

membrane fluorescent signals, we found that the correlation co-

efficients increased with an increasing number of Z slices,

although the difference between 8 and 16 Z slices was not statis-

tically significant (Figures 2C–2F). We also noted that theminimal

values of the correlations increased as more Z slices were used

(Figures 2C and 2E).
Verification and validation of LabelFreeTracker
Overall, LabelFreeTracker identified features over 40 mm into the

organoid tissue, enabling full 3D reconstruction of crypt and

villus domains (Figure 3A). The percentage of identified nuclei

was high up to an imaging depth of 50 mm, after which the per-

formance dropped, with the F1 score showing a similar trend

(Figures 3B and S1). To verify that predicted intensity values

matched the fluorescence intensity values, we compared the

average intensity values in 8 3 8 pixel areas in the predicted

and measured fluorescent signals and found close agreement

(Figures 3C, S2A, and S2B). Similarly, we computed the Pear-

son correlation coefficient for the measured and predicted

intensity values for individual pixels and found strong correla-

tions for both the nucleus and membranes (0.76 and 0.85,

respectively).

Next, we set out to measure how well the predicted fore-

ground (nuclei or membranes) colocalized with the actual fore-

ground. Every pixel reaching at least 10% of the maximum

brightness was considered foreground. The intersection-over-

union ratios were 0.59 and 0.79 for nuclei and cell membranes,

respectively, indicating that the approximation was moderate

for nuclear shape and good for cell shape.Within the foreground,

the Pearson correlation coefficients were 0.52 and 0.45 for nuclei

and membranes, respectively, indicating a moderate correlation

between fluorescence intensity and predicted signal. In addition,

we analyzed the batch-to-batch variability and found a coeffi-

cient of variation of 0.04 and 0.24 for nuclei and membranes,

respectively (Figures S2C and S2D).

We also performed a validation experiment to exclude that the

presence of fluorescent markers had any detectable effect on

the transmitted light signal. To this end, we acquired bright-field

images of completely label-free wild-type (WT) organoids and

predicted the nuclear signal. Directly after this initial round of im-

aging, we added a fluorescent dye marking the cell nucleus

(Hoechst) and imaged the same organoids after 20 min. In these

20 min, changes in the number of cells were negligible (Fig-

ure 3D). We compared the predicted number of cells to the num-

ber of cells determined by manual annotation after staining and

consistently found a strong correlation (Figure 3E). Furthermore,

we computed the convex hull volume of the organoids and the

distance between cell centers in the predicted images and found

close agreement with the fluorescence images (Figures S2C

and S2D).
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Neural-network retraining
To illustrate network retraining for adifferent experimental setting,

we used fluorescent dyes to stain the nucleus (Hoechst) and

cell boundaries (EpCam). We acquired time-lapse imaging data

consisting of 916 z stack images with accompanying Hoechst

and EpCam staining from 91 WT organoids and trained neural

networks for nuclear and membrane prediction (Figure 3F). The

full process of data acquisition and training took less than

1 day. The resulting network was able to predict nuclei and cell

membranes, though, as expected, the results were not as good

due the lower-quality staining (Figures 3F–3H). We thus provide

a protocol for adapting LabelFreeTracker to other systems

and imaging modalities. Note that the training dataset, batch

numbers, and training parameters can be adapted to achieve

thedesired accuracy, depending on the application. This proced-

ure may be further optimized by using more specific and brighter

nuclear andmembranedyesandusingbackgroundcorrection for

images with noticeable background signal.

Applications of LabelFreeTracker
LabelFreeTracker can be used for quantitative analysis of

diverse types of single-cell and organoid analyses. Here, we

demonstrate three applications of LabelFreeTracker to illustrate

its utility for intestinal organoids. The first application is counting

the number of cells in a developing organoid. We used

LabelFreeTracker to count the number of nuclei in growing orga-

noids where, at a certain time point, the cell division inhibitors

cyclin-dependent kinase 4 and 6 (palbociclib) were added. After

addition of palbociclib, the cell count continued to increase for

approximately 15 h, after which cell division was effectively

blocked (Figure 4A). In contrast, control organoids continued

to contain proliferative cells in the same time frame. While

methods that quantify the overall organoid size can detect over-

all changes in organoid growth, they average between cells and,

hence, are less suited to address spatially localized proliferation

in a small subset of cells. Overall, this assay illustrates how

LabelFreeTracker can assess pharmacological interventions

on the single cell level without the need for nuclear fluorescent

markers.

AsecondapplicationofLabelFreeTracker issingle-cell tracking,

which allows lineage tree reconstruction and quantification of

fluorescent reporters. Here, we used LabelFreeTracker to analyze

live-cell imagingdataofanorganoid linewitha livenuclear reporter

for Axin2.23 Axin2 is a Wnt target gene that indicates stemness24

and is only expressed in stem cells at the bottom of the intestinal

crypt. We reconstructed lineage trees of individual cells tracked

for over 60 h (Figures 4B–4D, Video S1). In these tracks, we

measured the fluorescence intensity of the Axin2-sGFP signal

for all individual cells. Three types of cells were clearly distinguish-

able (Figures 4B–4D and S3). First, stem cells were identified that

remained in the stem cell zone at the bottom of the crypt. They

remained proliferative throughout the duration of imaging and

kept high levels of Axin2-sGFP (Figures 4B–4D, red line). The sec-

ond category was transit-amplifying cells, which remained prolif-

erative but lost their Axin2-sGFP marker as they moved away

from the stem cell zone (Figures 4B–4D, blue line). The third cate-

gory was differentiating cells, which stopped proliferating for over

24handhad lost all their Axin2-sGFPsignal (Figures4B–4D, green



Figure 3. Verification and validation of LabelFreeTracker

(A) 3D reconstruction of nuclear predictions up to 50 mm deep into the tissue.

(B) Precision, recall, and F1 score of nuclear prediction against depth (n = 15 stacks from three organoids). The precision is the number of correctly predicted

nuclei divided by the total number of predicted nuclei (TPs and FPs together). The recall is the number of correctly predicted nuclei divided by the actual number of

nuclei. The F1 score is the harmonic average of the precision and the recall.

(C) Predicted versus measured fluorescence intensity for 83 8-pixel areas (327 and 136 stacks for nuclei and membranes, respectively, each from 3 organoids).

Fractions were normalized so that the columns add up to 1.

(D) Bright-field image of a WT organoid before staining, with nuclear and membrane prediction (top row), and bright-field image of a WT organoid after staining

with Hoechst and a conjugated EpCam antibody (bottom row). The scale bar indicates 20 mm.

(E) Number of cells predicted by the nucleus-center prediction network (blue squares) and membrane network (red dots) versus number counted after subse-

quent Hoechst staining (n = 14 organoids).

(F–H) LabelFreeTracker retraining for organoids stained for nuclei and membranes with fluorescent dyes (Hoechst and EpCam, respectively).

(F) A bright-field image (left) was used to predict nuclei and membranes using the retrained LabelFreeTracker network (top row). The bottom row shows the

genetically encoded reporters H2B-mCherry and E-cadherin-GFP for comparison. Scale bars indicate 20 mm.

(G and H) Pearson correlation coefficients for predicted and measured nuclear (G) and membrane (H) signals using the retrained network. A horizontal line in-

dicates the median Pearson correlation.
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line). This shows that LabelFreeTracker allows the reconstruction

of lineage trees of individual cells with high linking accuracy (Fig-

ure S4) while leaving fluorescence channels available to resolve

key developmental processes.
A third application of LabelFreeTracker is the quantification of

cell volume over time (Figures 4E–4G). Importantly, this requires

cell membrane reconstruction on all sides for many time points,

which is especially challenging in dense epithelia. To measure
Cell Reports Physical Science 6, 102522, April 16, 2025 5



Figure 4. Applications of LabelFreeTracker

(A) Predicted cell count in control organoids (gray) and in organoids where cell division is blocked pharmacologically by palbociclib (blue).

(B) Lineage trees of cells in Axin2-sGFP reporter organoids tracked over 60 h. A green lineage indicates a cell that eventually differentiates, whereas the blue and

red lineages indicate cells that remain proliferative throughout the time lapse.

(C) Normalizedmeasurements of Axin2-sGFP fluorescent signal for the branches highlighted in (B) (seeMethods for details of normalization). The green, blue, and

red curves correspond to the cells that are in the villus, transit-amplifying region, and crypt, respectively, at the end of the time lapse. Areas around the lines

represent the standard error of an 8-h time window.

(D) Images corresponding to (B), showing the positions of the highlighted cells along the crypt-villus axis at the start (0 h) and end (62 h) of the time lapse. The scale

bar indicates 20 mm.

(E) 3D rendering of the predicted volume of a post-mitotic cell (top) and dividing cell (bottom).

(F) Predicted cell volume over time for the mitotic cell in (E).

(G) Predicted volume for a cell that remains proliferative (same organoid as in E and F).

(F and G) Areas around the curves represent the standard deviation of a 6-hour time window.
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cell volumes, we segmented the cells using the predicted mem-

brane signal. For each time point, we first predicted the mem-

brane signal of each image. Next, we obtained a mask of the

entire organoid by thresholding (10% of the maximum intensity)

the predicted membrane signal, closing any holes, and eroding

the final mask by four pixels. Using a watershed algorithm with

the predicted nucleus-center points as seeds then yields a full

3D reconstruction of individual cells (Figure 4E). Here, we ex-

ploited the fact that the predicted signal is smooth, as it lacks im-

aging noise, thus creating a favorable intensity landscape for the

watershed algorithm. While cell volume at individual time points

was noisy, a 6-h moving average gave consistent predictions of

cell volume over time. The 3D reconstructions during one cell cy-

cle showed cells rounding up during cell division, the formation
6 Cell Reports Physical Science 6, 102522, April 16, 2025
of a narrow apical surface directly after division and then finally

growing again in volume (Figure 4E). Volume growth showed

an expected doubling during the cell cycle for dividing lineages

but also a notably sudden arrest directly after the last division

(Figures 4F and 4G), which correlates with cell differentiation.5

DISCUSSION

With the development of organoid models, highly dynamic pro-

cesses can be directly observed through live-cell imaging in a

broad range of tissues. Live-cell microscopy, however, comes

with a set of limitations, such as the limited number of fluorescent

labels due to spectral overlap, phototoxicity, photobleaching,

and laborious manual data annotation.25 To overcome these
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limitations, label-free imaging approaches present an exciting

direction. Previously, label-free or in silico labeling methods

have been developed,17–19 but they were only used to predict

cellular structures in bright-field 3D z stacks of flat, 2Dmonolayer

cell cultures, which are not hampered by light scattering of inter-

vening tissue. Additionally, a recent study presented amethod to

predict the nuclei of cells in spheroids inside a microfluidic chip

for high-content screening applications.26 To broaden the scope

of label-free imaging to 3D organoid cultures, we developed

LabelFreeTracker, a machine-learning based algorithm for the

prediction of nuclei, membranes in 3D, as well as their tracking

through time. LabelFreeTracker is based on 4 U-Net neural net-

works that together predict nuclear andmembrane fluorescence

and nucleus-center positions from bright-field images as ob-

tained from the transmitted light in standard confocal micro-

scopy. Strikingly, LabelFreeTracker accurately predicted the

cell nuclei and membranes even in cases where these structures

were completely invisible to the human eye (Figure 1A). To some

extent, this can be explained by the fact that, in contrast to the

human eye, LabelFreeTracker is able to simultaneously integrate

information from multiple slices of a 3D stack. LabelFreeTracker

allows reconstruction of nuclear volumes up to 50 mm deep into

the tissue, after which recall (that is, the percentage of retrieved

nuclear center positions) drops sharply. We demonstrated the

applicability of LabelFreeTracker with three use cases of

tracking the dynamics of individual cells over longer periods of

time, though it can also be used for static analysis at a single

time point. First, we showed that LabelFreeTracker can perform

cell counting in organoids grown under normal conditions and

conditions where cell division was pharmacologically blocked.

Second, we demonstrated that it enables cell tracking and,

hence, allows complete lineage tree reconstructions and quanti-

fication of intracellular fluorescent signal from transcriptional re-

porters. Finally, we showed that our approach allows quantifica-

tion of the dynamics of single-cell shape and volume.

LabelFreeTracker is especially promising as a tool for quanti-

tative analysis of dynamic processes in patient-derived organo-

ids. For example, our approach allows automated tracking of

cells across multiple divisions and therefore makes it possible

to directly test the effect of drugs and pharmacological treat-

ments that target cell proliferation. While we focused on the pre-

diction of nuclei and membranes of mouse intestinal organoids,

LabelFreeTracker can be readily expanded to other organoid

systems. Extending LabelFreeTracker to other organoid sys-

tems and/or imaging setups requires training datasets of

bright-field images paired with nuclear/membrane fluorescence

images. Key here are the size of the training dataset, the imaging

resolution in space and time, and the laser power. While the

desired reconstruction quality can differ between applications,

we note these guidelines (see methods for specific numbers):

(1) The size and diversity of the training dataset should be

such that all organoid morphologies are represented and that

different batches are included. (2) For tracking cells across mul-

tiple generations, the time resolution should be such that at least

two images are taken during each cell division. This ensures that

two daughter cells can be connected to the corresponding

mother cell. (3) The Z resolution should be set so that nuclei

spanmultiple (3 or more) Z slices. In the case of mouse intestinal
organoids, we found that this criterion was satisfied for 2-mm in-

tervals between Z slices. (4) Bright-field images must not be

over- or undersaturated, as this dramatically affects the training

and performance (Figure S5). Finally, while we have here only

shown that LabelFreeTracker works for nuclei and membranes,

the approach may be extended to identify other subcellular fea-

tures, such as mucin in goblet cells, nucleoli, microtubules, and

mitochondria.17

METHODS

Organoid culturing
Organoids were cultured under standard conditions in ENR

medium.27 Briefly, organoids were seeded in gel consisting of

basement membrane extract (BME2, Trevingen) mixed with

Advanced DMEM/F-12 at a 2:1 to 3:1 volume ratio. This me-

dium consisted of Advanced DMEM/F-12 (Life Technologies)

with the following added ingredients: murine recombinant

epidermal growth factor (50 ng/mL, Life Technologies), murine

recombinant Noggin (100 ng/mL, PeproTech), human recombi-

nant R-spondin 1 (500 ng/mL, PeproTech), N-acetylcysteine

(1 mM, Sigma-Aldrich), N2 supplement (13, Life Technologies),

B27 supplement (13, Life Technologies), GlutaMAX (2 mM, Life

Technologies), HEPES (10 mM, Life Technologies), and peni-

cillin/streptomycin (100 U/mL, Life Technologies).

The organoids were passaged every week, after which they

were re-fed twice during the next 7 days. The passagingwas car-

ried out as follows. The organoids from two wells were collected

in Advanced DMEM/F-12 medium and mechanically disrupted

by pipetting up and down with a narrowed glass pipette. Subse-

quently, the organoids were spinned down for 5min at 320 g. Su-

pernatant was aspirated and a second centrifugation round was

carried out. The supernatant was again removed, and then the

organoids were seeded in gel on wells of a new culture plate. Af-

ter leaving the plates in an incubator for 20–30 min, the growth

medium was added.

Organoid lines
H2B-mCherry/Lgr5-GFPandWTmurine intestinal organoidswere

a gift from Norman Sachs and Joep Beumer (Hubrecht Institute,

the Netherlands). H2B-mCherry/E-cadherin-GFP organoids were

a gift from Daniel Krueger (Hubrecht Institute, the Netherlands).

Axin2P2A-rtTA3-T2A-33NLS-SGFP2; tetO-Cre; Rosa26mTmG murine in-

testinal organoidswere a gift from the VanAmerongen lab (Univer-

siteit van Amsterdam, the Netherlands).27

Organoid time-lapse microscopy
One or two days before the start of the time lapse experiment,

we seeded mechanically dissociated organoids in BME2 gel in

four-well chambered cover glass (CellVis), using the same pro-

cedure as during passaging. To prevent the gel from solidifying

immediately, seeding was performed on a cold block. The imag-

ing well was put at 4�C for 10 min to allow the organoids to sedi-

ment down. Afterward, the chambered cover glass was put at

37�C and 5% CO2 to allow the gel to solidify. After leaving the

plates in an incubator for 20–30 min, the growth medium was

added. Imaging was performed on a Nikon A1RMPmicroscope

with a 403 oil immersion objective (NA = 1.30). 31 Z slices with
Cell Reports Physical Science 6, 102522, April 16, 2025 7
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2 mm step size were taken per organoid every 12 min. Experi-

ments were performed at 37�C and 5%–8% CO2, achieved by

using a stage-top incubator (Okolab). An imaging well typically

contains over 50 organoids, of which we imaged about 20 per

experiment. We selected for a diverse set of organoids, as our

goal was to obtain a diverse training set. By diverse, we mean

that organoids had different sizes, number of crypts, morphol-

ogies (cystic, bulged, budded, etc.), and degrees of debris pre-

sent in and around the organoid. We set the imaging settings so

that the bright field was never oversaturated or undersaturated.

For the fluorescent channels for imaging H2B and E-cadherin,

we aimed to make all cells anywhere in the imaged part of the

organoid appear as bright cells at the cost of oversaturation

elsewhere in the organoid.

Imaging and measuring Axin2 reporter organoids
The organoids were passaged 1 day before the experiment and

imaged over an entire weekend as described above. We per-

formed semiautomatic tracking on these organoids (see above)

and corrected the tracks for five larger lineage trees. We then

segmented all cells at all time points (see above) and used the

obtained masks to measure the total Axin2-sGFP2 signal of

every cell. We noticed that a specific type of cell segmentation

error was causing issues with the sGFP2 measurement. Some-

times, the membranes between two cells were missing, likely

because the neural network could not locate it. This caused

the volume of one cell to be assigned to a neighbor of the cell.

This error was largely eliminated by averaging the predicted

membranes with a distance map, which was 0 at the center of

the cell and then increased linearly up to 1 at a distance of

7 mm. In this average, the membranes had a weight of 75%

and the distance map a weight of 25%. The downside of adding

the distance map to the watershed landscape is that, for cells

that are both large and stretched, it causes them to appear

more spherical than they are. Formeasuring the intensity of a nu-

cleus-localized signal, this is not an issue, but for measuring the

volume of the cell it is. Therefore, we only used the distance map

for measuring Axin2-sGFP2 and not for measuring the cell vol-

ume. The Axin2-sGFP2 signals were then normalized as follows.

The lowest measured Axin2-sGFP2 signal in the time lapse was

assumed to correspond to the background. This background,

measured in intensity per pixel, was then subtracted from every

measured Axin2-sGFP2 signal. The intensities were then multi-

plied by a factor so that the median intensity of the organoid,

across all time points, was 1. To reduce noise in the measured

Axin2 signal, we applied a moving average with an 8-h time

window.

Inhibition of cell division
A 5.6 mM palbociclib (Sigma-Aldrich) stock solution was pre-

pared by dissolution in endotoxin-free demineralized water. A

few hours before the start of a time-lapse movie, a certain

amount of the thawed stock solution was added to the medium

so that the final concentration in the medium was 10 mM.

Training data for nucleus and membrane predictions
For acquiring training data of nuclear fluorescence, we used

H2B-mCherry/Lgr5-GFP murine intestinal organoids, which
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were a gift from Norman Sachs and Joep Beumer (Hubrecht

Institute, the Netherlands). For acquiring training data of mem-

brane fluorescence, we used H2B-mCherry/E-cadherin-GFP

organoids, which were a gift from Daniel Krueger (Hubrecht

Institute, the Netherlands). We did not use this line to create nu-

cleus prediction training data, as the nuclear marker of this line

is less bright compared to our other line.We used E-cadherin as

a membrane marker even though it technically only marks cell-

cell junctions. In practice, this is not a problem, as the intestinal

epithelium is a tightly connected epithelium. As a result, often

the entire cell surface is still visible in images of E-cadherin.

We used this fluorescence marker because it produced a bright

signal in our organoids, making it easy to image. We collected

3,894 paired images of bright-field/nuclei, which consisted of

22 organoids in total. 13 organoids were newly imaged, and

the rest were from a previous publication.9 The data consist

of four independent experiments. In addition, we collected

1,908 paired images of bright-field/membranes of 25 organoids

distributed over two independent experiments. The images

were split into a training/validation set using an 80%/20% split

at the individual time point level. The same organoid can thus

appear in both the training and validation sets, although always

at different time points. We normalized the time lapse so that, at

all time points and all depth layers, the fluorescent signal was

saturated. Different normalizations were sometimes used for

different depths and time points. We split the 512 3 512 3 32

pixel images in smaller patches of 128 3 128 3 16 pixels. For

many of our images, the organoids did not occupy the entire

view, which caused a considerable number of patches to

show no fluorescence. To speed up the training process, we

removed almost all of these patches. A patch was considered

black if the brightest pixel found in the patch was lower than

half of the highest fluorescence in the entire image. We kept

5% of the black patches in the training set so that the network

still learned to not predict any fluorescence outside the orga-

noid. We first trained the network that predicted the nuclear

signal from the bright field and then the network that predicted

themembrane signal. For the network predicting themembrane

signal, we used the trained network that predicted nuclei as a

starting point so that the cell membrane network could reuse

cell detection knowledge of the nuclear network. We trained

the network to minimize the mean squared error loss between

the fluorescent signal and the predicted signal.

Testing data for nucleus and membrane predictions
For the testing data in Figures 2 and 3A–3C, we used an addi-

tional 4 organoids (same line) for the nucleus network (544 image

pairs). Three organoids were from a previous publication.9 For

testing themembranepredictions, we imaged2organoids in 2 in-

dependent experiments (136 image pairs). The microscope, im-

aging settings/conditions, and organoid lines were identical to

those for the training data.

Predicting nucleus-center positions
For training the nucleus-center position network, we used pairs

of bright-field images and images with bright spots at the

center of the nuclei. We first used OrganoidTracker9 to automat-

ically find the nucleus centers in our training set, based on the
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fluorescent nuclei. Then, we created images with bright

Gaussian spots at the location of the nucleus centers with the

standard deviations of the Gaussian function sx and sy being

4 pixels (1.28 mm), and sz being 1 pixels (equal to 2 mm in this

case, as the resolution is lower in the z direction). We trained

the neural network on the training set for 10 epochs. A large

part of the images containing the nucleus centers was black,

as there were no nucleus centers within a few pixels. Therefore,

the network tended to just predict all pixels as black and not

draw any nucleus centers at all. We solved this issue by reducing

theweight of black pixels by a factor of 4. To test the network, we

applied the network to three organoids. We first obtained a

ground truth for five time points in each of these organoids by

manually annotating all cell centers at these time points. We

selected the time points at 0%, 25%, 50%, 75%, and 100% of

the time lapse duration. To obtain a performance metric, we

used the following method to calculate the number of true pos-

itives (TPs), false positives (FPs), and false negatives (FNs). Any

nucleus center detected by the neural network was assigned to

the closest nucleus center from the ground truth under the con-

dition that the distance was no longer than 5 mm. Every nucleus

center cannot have more than one assignment. Each successful

assignment was a TP. Then, any manually tracked nucleus cen-

ter that was left with no assignments became an FN. Finally, any

nucleus center from the neural network that was left with no as-

signments was regarded as an FP. The precision was then

calculated as TP=ðTP +FPÞ, and the recall was calculated as

TP=ðTP +FNÞ. The F1 score is the harmonic average of the pre-

cision and recall: F1 = 2$ðprecision $recallÞ=ðprecision + recallÞ.

Prediction neural network
The network architecture follows aU-Net type architecture with a

downward block, an upward block, and skip connections be-

tween the blocks. The input of the network consists of 3D gray-

scale images of 1283 1283 16 pixels. The downward part of the

network consists of four repeating units, with each unit consist-

ing of 2 3D convolutions, maximum pooling, and batch normali-

zation. The upward part consists of four repeating units, with

each unit consisting of a transposed convolution, followed by

two convolutions, followed by batch normalization. At the end

of the network, a final convolution is done. The network is opti-

mized using the Adam optimizer28 with the mean squared error

loss function. The intensities of the bright-field images are offset

and multiplied so that the average of an entire 3D stack of a sin-

gle time point is 0, and the standard deviation is 1. For the fluo-

rescence images, the images were normalized from 0 to 1 with

the background at 0. Normalization factors were chosen by

hand for several slices during the time lapse at different times

and depths. For other slices, the factors were calculated from

the manually set factors by linear interpolation. The only data

augmentation that was done was horizontal and vertical flipping.

Rotations and scaling data augmentations were omitted on pur-

pose to not remove any details provided by individual pixels.

Comparison of human annotated and predicted cell
counts in WT organoids
To demonstrate that bright-field-based prediction of nuclei

works in label-free organoids, WT mouse intestinal organoids
were mechanically disrupted and embedded in BME2 gel with

growth medium. Two days after passaging, z stacks of label-

free organoids were acquired. After the first image acquisition,

cells were incubated for 15–25 min in live-cell staining medium

consisting of growth medium supplemented with Hoechst

34580 and 0.8 mg/mL Alexa 647-conjugated anti-mouse

CD326 antibody (Invitrogen, 17-5791-80) before a second

z stack was acquired with the same imaging conditions as for

the label-free image acquisition. In each organoid, the centers

of all nuclei were manually annotated based on the Hoechst

signal, and the centers of all nuclei were automatically pre-

dicted by an independent human annotator using the

LabelFreeTracker algorithm. This last annotator also manually

annotated all cell centers based on the predicted membrane

signal.

Semiautomated cell tracking
We used the position detection network (see predicting nu-

cleus-center positions) to generate a set of positions. Our

next step was to link these positions over time. As a first step,

we estimated the chance PðLjdÞ, which is the chance of two

cell positions in subsequent time points being of the same

cell (i.e., having a link L), given the distance d between both po-

sitions. This function is expected to start at a high chance for

d = 0 and then drop off toward 0 for increasing d. To estimate

this function, we used the tracking data of one organoid with

a nuclear marker that was tracked previously.9 For every posi-

tion, we recorded the distance to the nearest position at the

previous time point as well as the distance to any position

that is at most twice as far. We also recorded whether that po-

sition represented the same cell, which allowed us to estimate

the chance PðLjdÞ. We noticed that the center positions of the

predicted nuclei were less accurate than the center positions

of fluorescent nuclei. This resulted in larger apparent cell move-

ments in between time points, which made the function PðLjdÞ
underestimate the chance of two nucleus positions being of the

same cell. To correct for this, we simulated errors in the nu-

cleus-center positions of our previously tracked organoid. We

added ðrandðÞ � randðÞÞ$1:6 mm to the x and to the y coordinate

of each position, with randðÞ a function that returns a uniformly

distributed random number from 0 to 1. For the z coordinate, we

choose a random integer from 1 to 6 (inclusive); if the number

was 5, then we added 2 mm (corresponding to one z layer) to

the z coordinate, and if the number was 6, then we subtracted

2 mm.

Having obtained a representation for PðLjdÞ, we used this as

input for the track creation algorithm of Haubold et al.29 This al-

gorithm presents an approximate solution of the problem of link-

ing cell detections over time. It builds on the shortest path min-

cost flow-solving algorithm but adapts the residual graph so

that divisions become possible. Although the algorithm cannot

guarantee an optimal solution, a good performance is nonethe-

less achieved within polynomial time. Besides the linking proba-

bilities described in the previous paragraph, the algorithm addi-

tionally expects probabilities of a cell to divide at a given time

point as input. We provided those with a single baseline division

probability. As a result, the solver could only detect a few divi-

sions (<5 divisions per organoid). Using OrganoidTracker,9 we
Cell Reports Physical Science 6, 102522, April 16, 2025 9
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manually corrected these tracks for five lineages, thereby adding

the missing cell divisions.

Comparison of cell linking performance
Cell linking performance was compared against manual

tracking based on a fluorescent nuclear marker. The same set

of testing organoids was used as for validating nucleus and

membrane prediction performance. We manually tracked part

of each organoid. We then performed automatic tracking as

described in the previous section and then used the links com-

parison feature of OrganoidTracker9 to calculate the recall, pre-

cision, and F1 score. The comparison was done by matching

manually annotated nucleus centers to automatically detected

nucleus centers close by, up to a distance of 5 mm, and then

checking whether the links of the position match. Areas where

no manual center annotations were created (i.e., where auto-

matically detected center positions could not be matched to

any manual annotation close by) were excluded from the per-

formance evaluation.

Reconstruction of cell shape in organoids
Here, we used a time-lapse movie of the H2B-mCherry/Lgr5-

GFP organoids, where the Lgr5-GFP channel was not imaged.

A membrane signal was predicted for each time point as well

as nucleus-center points, both based on the transmitted light im-

age of the confocal microscope. This signal was first used to

reconstruct a mask of the entire organoid; the predicted mem-

brane signal was thresholded at 10%of themaximum signal, fol-

lowed by closing any holes in the mask and eroding the final

mask by four pixels. Next, we reconstructed the masks of single

cells using a 3D watershed algorithm (Mahotas30) with the pre-

dicted nucleus-center points as seeds and the predicted mem-

brane signal as the watershed landscape. The measured volume

over time was noisy for most cells; to correct for this, a 6-h mov-

ing average window was applied.

Software packages
The panels follow the standard boxplot settings of the software

library Matplotlib31 version 3.6.0. Neural networks were imple-

mented in Tensorflow32 version 2.5.1. The 3D watershed algo-

rithm was provided by the Mahotas30 software library.

RESOURCE AVAILABILITY

Lead contact

Requests for further information, resources, and reagents should be directed

to and will be fulfilled by the lead contact, Sander J. Tans (s.tans@amolf.nl).

Materials availability

This study did not generate new unique reagents or organoid lines.

Data and code availability

d The raw imaging data reported in this study cannot be deposited in a

public repository due to its size. To request access, contact the lead

contact.

d All original code has been deposited at Zenodo (Zenodo: https://doi.

org/10.5281/zenodo.14814672)33 and is publicly available.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
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