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A B S T R A C T

With recent telemetric advancements, the real-time availability of power grid measurements has opened
challenging opportunities for the design of advanced protection and control schemes. Artificial neural networks
(ANN) are promising approaches for detecting and classifying disturbance events from measurement data.
Numerous offline ANN-based classification algorithms were proposed in the past, which increased the interest
for their real-world deployment. However, these algorithms are inadequate due to their conventional offline
training procedures, model updating, and large backend computing requirements. Besides, most ANN-based
algorithms require disturbance event samples to be collectively available during training. This availability may
be uncommon in practice as disturbance events are rare, non-deterministic, and uncertain. Hence, an online
training procedure where the model processes the events on-the-fly is required. However, ANNs may also suffer
from catastrophic forgetting where the model may unintentionally unlearn an occurred disturbance under the
learning of new event types; this means ANN may not detect very similar disturbances of the same type in the
future. In this paper, we propose Dynamic Incremental Learning (IL) method for ANN models, which is updated
in real-time when a new disturbance is detected. Our proposed method adopts a Replay-based IL strategy for
designing long-term IL, balancing the accuracy with catastrophic forgetting of disturbance events. The method
is designed in a way to learn efficiently for incoming disturbance data with minimized training time and
the highest classification accuracy eliminating catastrophic forgetting. The results describe the methodology’s
performance regarding classification accuracy, training time, and storage memory. The findings demonstrate
that the Dynamic IL method is promising for efficient learning and event classification.
1. Introduction

Decarbonization of the energy systems requires expanding and mod-
ernizing the grid infrastructure and other energy sectors by using more
renewable energy resources. Therefore, novel technologies like High
Voltage Direct Current (HVDC) grids, distributed energy generation,
microgrids, offshore energy hubs, and bidirectional grid operation are
more and more utilized. There, power electronic devices will become
the backbone of the future electrical power systems. Whilst the indi-
vidual failure rates are low as the power electronics are developed
at high standards, the overall occurrence of failures will increase due
to the increased complexity of the power systems [1]. The highest
impact on power systems is caused by the cascading failures as system
operators currently cannot fully predict the consequences upon the
occurrence of a contingency. Hence an early (real-time) identification
and classification of equipment and system failures causing specific
disturbance events are essential for the security of power systems [2].

Most electrical system failures, such as cable joint arcing, capacitor
switching restrikes, faults, lightning, and tree contact by a power
line, shall produce unique electric signatures. These signatures can

∗ Corresponding author.
E-mail address: m.popov@tudelft.nl (M. Popov).

be observed from the voltage and current measurement waveforms
associated with the equipment/device. The waveform-type data con-
taining voltage and current signatures representing equipment failure
or power quality disturbance is called a disturbance event sample dataset.
Since some of these technologies are not massively deployed, the
produced disturbance events’ signatures will be yet rather unknown,
and developing disturbance identification algorithms through classical,
manual methods [3] will be time-consuming and expensive. Classi-
cally, collecting event signatures with high resolutions through relays
and power quality meters has always existed. These signatures were
used for manual root cause analysis only in the case of mal-operation
or when a large disturbance (failure) has occurred. Continual data
retrieval from remote monitoring sites into a central processing unit
for real-time processing was not an option as the telemetric systems
were still naive. However, it is desired for every incoming waveform
to be automatically identified and tabulated into specific disturbance
categories [4]. This automated classification can further facilitate quick
corrective measures to prevent significant collateral grid damages.
142-0615/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar
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Nomenclature

Indices

𝑏 mini-batch
𝑑 device
𝑒 epoch
𝑖 sample
𝑗 experience
𝑘 class
𝑡 time

Sets

𝛺𝐵 set of mini-batches occurring in an experi-
ence

𝛺𝐷 set of event samples collected from d
number of devices

𝛺𝐸 events experience set
𝛺𝑂 evaluation dataset of each event experience

set
𝛺𝑆 set of all event samples in a scenario set
𝛺𝑇 training dataset of each Event experience

set

Parameters

𝛾 learning rate reduction factor
𝜄 number of epochs passed after critical

epoch
𝜅 Memory buffer limit
𝛹 generic performance metric used in incre-

mental learning
𝜏 length of the recorded time-series of each

event sample 𝑥𝑖
𝜉 number of epochs to wait before updating

learning rate
𝐾 total number of classes in a particular

scenario 𝛺𝑆

𝑣 number of measurement variables in each
event sample 𝑥𝑖

𝑥𝑖 disturbance event sample dataset of index 𝑖
𝑦𝑖 unique label of an disturbance event sam-

ple 𝑖

Variables

𝛩 deep learning model parameters (weights
and biases)

𝐿 learning rate
𝑝𝑚𝑎𝑥 maximum number of epochs to train each

experience 𝛺𝐸
𝑗

Many ANN approaches were proposed for real-time event clas-
ification algorithms. With the ongoing advancements in telemetric
nfrastructure, a large amount of grid data could be seamlessly trans-
erred almost instantly [5]. This has opened many opportunities to
xplore the design of advanced real-time disturbance event classifica-
ion algorithms using machine learning (ML) approaches [6–9]. There,
NNs is one type of ML model that is often preferred as ANNs can
andle complex disturbance signatures that are sensitive for distur-
ance classification tasks [10,11]. Within the scope of disturbance
lassifications, several different ANN-based models can be suitable such
2

s convolutional neural networks (CNN), recurrent neural networks
(RNN), and the way they are trained varies, for example, using Au-
toencoders [12]. In [13], the authors made use of threaded ensembles
of Auto-encoders for learning from data streams, whilst in [14] an RNN
model is presented that deals with online anomaly detection under the
influence of concept drift. In [15], a classical incremental method using
ML-models is explained and demonstrated. However, these ML-based
methods are not well suited when analyzing complex highly-sampled
electrical signals. The pre-requisite for all these ML-based methods to
perform real-time classification of disturbance events is to determine
a-priori which types of events the system will have to identify. Based
on this a-priori information, an underlying model will be designed and
further trained using a disturbance event training dataset. In these
methods, at the end of the training session, it is expected that the
model is trained well enough to yield the desired accuracy concerning
the test dataset. Some methods can adapt themselves when the test
data has new events which are not part of the training. These methods
adapt the number of neurons, and layers, or modify iteratively the
training strategy to achieve the desired accuracy. In [16], case studies
are summarized comparing ensemble learning with IL methods.

However, these ANN methods have shortcomings in model scalabil-
ity, manual re- engineering requirements, lack of standardization, and
catastrophic forgetting. Due to the lack of model scalability, the model
will incorrectly identify the event class when the incoming waveform
of the disturbance event does not fall under the existing trained classes.
This shortcoming implies that a new event class augmentation over an
already trained model of fixed class size is difficult to consider without
retraining the model from scratch. Some work has approached this
shortcoming by ‘‘freezing’’ the trained model and training a new model
for the new event class. In [17–19], the classification section involves
the training of a new autoencoder model under the detection of unfore-
seen/new classes. Once an ensemble of auto-encoders is formed, the
output layer is combined from one single event classification problem.
Even though these methods pose an interesting argument, all of them
suffer constant (manual) re-engineering requirements of the expert
system due to multiple models and cannot be made entirely automated.
Furthermore, when a new model for a waveform of the existing class
needs to be trained, the entire dataset of that particular class and all
other classes stored in a database needs to be available hinting toward
an expensive (inefficient) memory utilization. Additionally, all the
aforementioned event classification algorithms lack standardization,
hindering easy real-time implementation, and may suffer from catas-
trophic forgetting of once observed disturbances [16]. More precisely,
catastrophic forgetting is defined as a complete erasure of previously
acquired model parameter values that occur when the model is trained
incrementally with a new dataset [20]. Therefore, IL is promising to be
used with a deep learning (DL) model to address the aforementioned
challenges.

This paper investigates the class IL method for event classification
which we found particularly promising to address the issue of catas-
trophic forgetting when new classes (event types) are encountered and
need to be trained on-the-fly [21–24].

Class IL can adapt incrementally to new event types, in the liter-
ature related to IL called ‘experiences’, expanding the model’s event
classification capabilities in an online fashion, without the need to
be completely retrained. Class IL strategies can be classified into
three groups, namely rehearsal, regularization, and architectural-based
strategies [25]. Architectural and regularization-based strategies alter
the model layers to adapt to new event types. Rehearsal strategies
intelligently replay some data samples from the previous experience
during the new experience’s training. This rehearsal method retrains
the model with selective datasets from all experiences, thus retaining
previous knowledge along with training for new event types. However,
for real-time applications of IL, the requirements are to balance training
duration, computational burden, memory requirements, and strategy

complexity [26].
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The paper has three primary novel contributions. Firstly, it in-
troduces Incremental Learning (IL) to power systems that train the
model ‘‘on-the-fly’’ without requiring complete retraining when a new
disturbance event type occurs. Secondly, we compared and analyzed
four IL strategies namely, Replay [27], GDumb [28], LWF [29] and,
EWC [30] as these strategies have advantages and are successful with
class IL. Then, by identifying Replay strategy as the best strategy for
our application, the paper proposes a modified Replay strategy that
consists of a dynamic memory buffer that can adapt itself based on the
incoming event streams. A dynamic memory buffer is a combination of
the parametric memory buffer and reservoir sampling that intelligently
stores important event sample representatives from previously seen
classes. These event sample representatives will be replayed along with
newly received streams for model training. This Replay combined with
a dynamic memory buffer strategy is practical and straightforward to
ddress catastrophic forgetting. However, it has computational training
imes that are too high, making it unsuitable for real-time studies in the
ong run. Thirdly, we propose, for the first time, a novel Dynamic IL
ethod to balance the training duration, buffer memory requirements,

nd classification accuracy for the task of near-real-time event learning.
his Dynamic IL method adds an efficient experience training method
o the Automated workflow for real-time event classification. Addition-
lly, this paper contributes to an IL-based real-time disturbance event
lassification system consisting out of

1. an IL strategy to train a model that considers new types of
disturbance events in real-time,

2. an algorithm that generates for this training strategy
non-repetitive experiences of event types and

3. performance metrics for evaluating the real-time training of
these non-repetitive experiences.

he paper is organized as follows: Section 2 deals with an automated
orkflow of real-time event classification description. Further, the

teps required to achieve the classification description through IL are
iscussed. Section 3 describes the new Dynamic IL method which is
uilt upon a generic IL methodology. In Section 4, we provide a stage-
ise analysis of Dynamic IL using various performance metrics like loss,
ccuracy, training time, and memory utilization. Various formulations
re devised to describe our findings in detail. Finally, in Section 5, we
rovide conclusions and discuss future research goals for an IL-based
eal-time event classification system.

. Learning for real-time event classification

.1. Automated workflow for real-time event classification

The proposed real-time workflow towards automating the event
etection and classification in transmission control rooms is shown
n Fig. 1. The novel Dynamic Incremental Learner is the green part
hich requires as a ‘‘pre-step’’, an event detector that records time-

eries disturbance events from multiple locations of the power system.
n event identifier is used to identify if the detected event is known
r unknown to the ‘‘representative’’ model. Then, this representative
odel can be used to classify the event class in real-time. If the event

dentifier identifies the detected event as a new event type, then the
roposed Dynamic IL method is used to expand the model ‘‘on-the-
ly’’ to learn this new event. The new event datasets are named as
xperience dataset 𝛺𝐸 formed at time 𝑡. This updated model forms the
ew representative model that in the future, can classify this new event
ata class in real-time. The model 𝑀 training is supervised, since the
lassification labels are provided to the model. An IL strategy governs
he model adaptation for this new event type without forgetting the
nowledge of the previously seen events and addresses in parallel
he subject of catastrophic forgetting aiming for high accuracy of
3

reviously seen events as well.
Fig. 1. Real-time workflow for incrementally learning a classifier for new events when
they arise.

2.2. Near-real-time incremental learning

The proposed workflow includes three generic parts

• Generating experiences (introduced in Section 2.2.1)
• Incremental model learning strategies (introduced in

Section 2.2.2)
• Model evaluation metrics (introduced in Section 2.2.3)

These operations will be explained in detail in the subsequent sections.

2.2.1. Experience generation
We consider the future power grids being fully observable and

equipped with a number of devices 𝛺𝐷 where each device 𝑑 ∈ 𝛺𝐷
can record data that complies with IEC 61850 protocols and/or IEEE
C37-118.1 synchrophasors. If a disturbance event 𝑖 occurs, the device’s
𝛺𝐷

𝑖 ⊂ 𝛺𝐷 that are in the area of the event 𝑖 are detecting the event using
an event detecting scheme. Detecting this event 𝑖 triggers the recording
of event’s voltage and current signatures at the corresponding devices
𝛺𝐷

𝑖 . The record of the event 𝑖 is

𝑥𝑖,𝑑 ∈ R𝑣×𝜏 ∀𝑑 ∈ 𝛺𝐷
𝑖 , (1)

where 𝜏 is the length of the recorded time-series and 𝑣 is the number
of measurement variables. Then, this disturbance event 𝑖 with the
recorded time-series 𝑥𝑖 from affected devices 𝛺𝐷

𝑖 are transmitted to
the control station in real-time. Next, as shown in Fig. 1, an algorithm
determines whether the event is of a new type (unknown) or not
(known). If the event 𝑖 is not of a new type (known before), then, a
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pre-trained ML-model 𝑀 assigns an existing class label {0, 1, 2,…𝐾} to
the detected event 𝑖 by

�̂�𝑖 ← 𝑀(𝑥𝑖,𝑑 ), (2)

for a randomly selected 𝑑 ∈ 𝛺𝐷
𝑖 . If the assigned class label �̂�𝑖 matches

the actual class label 𝑦𝑖, then the model prediction of event 𝑖 is correct
and classification accuracy remains high. All recorded time-series data
𝑥𝑖,𝑑 and their assigned label �̂�𝑖 are stored and their unique combinations
𝑖, 𝑑} of event 𝑖 and time-series at the devices 𝑑 are added to the existing

experience event dataset

𝛺𝐸 ← {𝑖, 𝑑} ∀𝑑 ∈ 𝛺𝐷
𝑖 . (3)

There, the cardinality of the set |𝛺𝐸
| is increasing by |𝛺𝐷

𝑖 | that can
differ for any event 𝑖.

Challenging is to consider a new event type in the existing event
classification model 𝑀 . If the event is of a new type, then, a new class
label ′𝐾+1′ has to be generated and the number of possible class labels
has to be incremented 𝐾 ← 𝐾+1. Then, the new label for this new event
s manually assigned by

𝑖 = 𝐾 + 1. (4)

t is not straightforward to change the model 𝑀 so that in the future
vents of this new event type are classified correctly. For example, a
onventional DL model would misclassify and assigning inaccurately
ne of the existing event types/classes.

This paper proposes the class incremental learning approach to ad-
ress this challenge. If there is a new class, then, we start by introducing
new experience 𝑗, a new experience event dataset 𝛺𝐸

𝑗 = {}, where we
add

𝛺𝐸
𝑗 ← {𝑖, 𝑑} ∀𝑑 ∈ 𝛺𝐷

𝑖 , (5)

and increment the number of classes by

𝐾𝑗 = 𝐾𝑗−1 + 1, (6)

here we introduced the index 𝑗 to denote the maximal number of
lasses 𝐾 varies from experience to experience. Eq. (5) replaces Eq. (3).
hen, this new experience 𝑗 is added to the set of experiences 𝛺𝑆 ← 𝑗.

This set 𝛺𝑆 is also called class incremental scenario set.
During real-time model training, the experience dataset from Eq. (5)

is split into training 𝛺𝐸,𝑇
𝑗 and evaluation data 𝛺𝐸,𝑉

𝑗 with a ratio of 𝑟
(e.g., typically set at 𝑟 = 0.8) so that

𝛺𝐸,𝑇
𝑗 ∪𝛺𝐸,𝑉

𝑗 = 𝛺𝐸
𝑗 . (7)

The training set is formed by randomly selecting a temporary subset of
event samples 𝛺𝐸,𝑇

𝑗 ⊂ 𝛺𝐸
𝑗 with cardinality |𝛺𝐸,𝑇

𝑗 | = 𝑟|𝛺𝐸
𝑗 |. The residual

is the evaluation data 𝛺𝐸,𝑉
𝑗 = 𝛺𝐸

𝑗 ∖𝛺
𝐸,𝑇
𝑗 .

2.2.2. Incremental learning strategies
IL aims at efficiently learning a new model 𝑀𝑗 predicting 𝐾𝑗 classes

based on the new experience dataset 𝛺𝐸
𝑗 and based on the previous

model 𝑀𝑗−1 predicting 𝐾𝑗−1 classes. Various training strategies exist to
avoid forgetting of previous classes (catastrophic forgetting). IL strate-
gies differ in their approaches that are either based on architecture,
regularization, or rehearsal [25].

Architecture-based IL strategies: Inspired by the hippo-campus-cortex
duality nature of the human brain, dual memory models are developed,
where catastrophic forgetting is addressed by modifying layers, freezing
certain model parameters 𝜃𝑀𝑗 which can be weights or biases in
activation functions. Hence, some model parameters 𝑎 are frozen and
selected from the previous model 𝑀𝑗−1 for the new trained model 𝑀𝑗
so that

𝜃
𝑀𝑗
𝑎 = 𝜃

𝑀𝑗−1
𝑎 . (8)

As a result, these dynamic architectures can address catastrophic forget-
4

ting, however, they quickly result in considerable complex models [31].
Regularization based IL strategies: Regularization techniques can also
address catastrophic forgetting by penalizing changes in model pa-
rameters (weights and biases) that are strong representatives of past
experiences. There, the IL training strategies have the objective to
minimize the balance

min 𝜀 + 𝜆|𝜃𝑀𝑗 − 𝜃𝑀𝑗−1
|, (9)

where 𝜆|𝜃𝑀𝑗 − 𝜃𝑀𝑗−1
| represents the model regularization and 𝜀 the

upervised training error. There, | ⋅ | denotes the absolute value of
the deviation of the model parameters and 𝜆 is the regularization
parameter. Various strategies are devised under this technique that
quantify this penalty regularization parameter 𝜆, including synaptic
relevance [32], fisher information [30], and uncertainty estimates [33].
These regularization techniques are efficient in training time and mem-
ory usage. However, they suffer from brittleness from representation
drift [34].

Rehearsal based IL strategies: Rehearsal-based IL strategies train the
model 𝑀𝑗 (𝑥𝑖,𝑑 ) by ‘replaying’ some selected event samples {𝑖, 𝑑} from
previous experiences 𝛺𝑆 in addition to the new experience dataset 𝛺𝐸

𝑗 .
When designing a rehearsal-based IL strategy, the task is to define the
function 𝑓 that selects previous experiences 𝑗

𝑗 ← 𝑓 (𝛺𝑆 ) (10)

so that the model 𝑀𝑗 (𝑥𝑖,𝑑 ) is trained considering the training data 𝛺𝐸,𝑇
𝑗

of previous experiences 𝑗 in the training loss function, e.g., as the
cross-entropy multi-classification loss

min
∑

{𝑖,𝑑}∈𝛺𝐸,𝑇
𝑗

∑

𝑘=0,1,…𝐾𝑗

𝑌𝑖,𝑘 log 𝑌𝑖,𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜀

. (11)

There, 𝑌𝑖 ∈ {0, 1}𝐾𝑗 is the one-hot encoded actual class label 𝑦𝑖. 𝑌𝑖,𝑘
denotes the 𝑘th entry of the vector 𝑌𝑖 where exactly one entry is 1,
hence, the norm of the vector is |𝑌𝑖| = 1. Hence, when the class label is
𝑦𝑖 = 𝑘, then the 𝑘th entry is 𝑌𝑖,𝑘 = 1, and all other entries are zero 𝑌𝑖,𝑘 =
0 ∀𝑘 ∈ {0,…𝐾𝑗}∖𝑘. Correspondingly, the one-hot encoded predicted
class label from Eq. (1) is 𝑌𝑖. The rehearsal-based IL training strategy
alternates between Eqs. (10) and (11), where in each alternation the
function 𝑓 selects an experience 𝑗 in Eq. (10) and ‘rehearses’ (trains
the model with) the data from this experience using the supervised
loss function defined in Eq. (11). This paper explores rehearsal-based
IL strategies in detail and further develops a variant suitable for real-
time event learning and classification tasks. There are several methods
to design function 𝑓 that selects the right event samples {𝑖, 𝑑} from
the experiences. These methods can be based on memory reservoirs
and pseudo-rehearsal with generative models. The paper then proposed
to use replay with dynamic memory buffer strategy as this training
strategy is simple and often results in high classification accuracies for
class IL scenarios as shown by [25].

2.2.3. Evaluation metrics
A model 𝑀𝑗 trained for classification is typically evaluated by the

classification accuracy

𝛹 𝑎𝑐𝑐 = 1 − 1
|𝛺𝐸,𝑉

𝑗 |

∑

{𝑖,𝑑}∈𝛺𝐸,𝑉
𝑗

∑

𝑘=0,1,…𝐾𝑗

|𝑌𝑖,𝑘 − 𝑌𝑖,𝑘|
2

(12)

that signifies the model’s generalization capabilities. There, | ⋅ | in
|𝛺𝐸,𝑉

𝑗
| denotes the cardinality of the evaluation dataset 𝛺𝐸,𝑉

𝑗
and

| ⋅ | denotes the absolute difference of actual and predicted labels
|𝑌𝑖,𝑘 − 𝑌𝑖,𝑘|. Similarly, also the evaluation loss

𝛹 𝑙𝑜𝑠𝑠 =
∑

{𝑖,𝑑}∈𝛺𝐸,𝑉

∑

𝑘=0,1,…𝐾𝑗

𝑌𝑖,𝑘 log 𝑌𝑖,𝑘 (13)
𝑗
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Fig. 2. Workflow description of incremental learning experiments.
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1
1
1
1

an be computed which is similar to calculating 𝜀 but here the evalua-
ion data 𝛺𝐸,𝑉

𝑗
is used. However, scenario level classification accuracy

sing 𝛹𝑆,𝑎𝑐𝑐 or 𝛹𝑆,𝑙𝑜𝑠𝑠 alone does not suffice as IL has additional (multi-)
bjectives such as efficient training in addition to the accuracy.

In response, this paper approaches the multi-objective nature of the
roblem by adding calculations of internal stage-wise metrics. These
tage-wise metrics make the training efficient and calibrate the model
yper-parameters. Then, these performance metrics track and support
he performance analysis of an IL strategy over a set of experiences in
scenario.

.3. Workflow of incremental learning

The generic workflow of a class incremental learner, is shown in
ig. 2 that connects the three steps discussed in Section 2.2, generating
xperiences, the IL strategies and the evaluation metrics. The IL strategy
elects sequentially the experiences 𝑗 from the set of all experiences
𝑆 . In each sequence, the IL strategy learns (incrementally) the model
arameters 𝛩𝑀𝑗 for the model 𝑀𝑗 ; then, updates the evaluation metrics
𝐵,𝑎𝑐𝑐 , 𝛹𝐵,𝑙𝑜𝑠𝑠, 𝛹𝑃 ,𝑎𝑐𝑐 , 𝛹𝑃 ,𝑙𝑜𝑠𝑠, 𝛹𝐸,𝑎𝑐𝑐 , 𝛹𝐸,𝑙𝑜𝑠𝑠, 𝛹𝑆,𝑎𝑐𝑐 , 𝛹𝑆,𝑙𝑜𝑠𝑠 that are

based on Eqs. (12) and (13), respectively. In the remainder of this
section, we simplify the notation to 𝛹𝐵 , 𝛹𝑃 , 𝛹𝐸 and 𝛹𝑆 by dropping
the superscripts for 𝑙𝑜𝑠𝑠 and 𝑎𝑐𝑐.

A naive class-IL strategy is shown in more detail in Algorithm 1.
Initially, the experience training datasets 𝛺𝐸,𝑇

𝑗
are randomly split into

𝐵 mini-batches 𝛺𝐸,𝑇 ,𝐵
𝑗,𝑏

of equal size

|𝛺𝐸,𝑇 ,𝐵
𝑗,𝑏

| =
|𝛺𝐸,𝑇

𝑗
|

𝐵
, ∀𝑏 ∈ 𝛺𝐵

𝑗
, ∀𝑗 ∈ 𝛺𝑆 (14)

where 𝛺𝐵
𝑗

is the set of mini-batches for the experience 𝑗. In the same
way, the evaluation dataset 𝛺𝐸,𝑉

𝑗
is split into 𝐵 mini-batches 𝛺𝐸,𝑉 ,𝐵

𝑗,𝑏
of equal size. For each experience 𝑗 ∈ 𝛺𝑆 , the algorithm considers
the training data 𝛺𝐸,𝑇

𝑗
in total 𝑝max times when training the model

𝑀𝑗 . There, in each epoch 𝑝 the model is trained not on the entire
training data at once, but in 𝐵 mini-batches. When training with each

ini-batch 𝑏, the model 𝑀𝑗 predicts the labels �̂�𝑖 using Eq. (1), then
the loss is computed with Eq. (11), respectively with mini-batch data
∀{𝑖, 𝑑} ∈ 𝛺𝐸,𝑇 ,𝐵

𝑗,𝑏
. Subsequently, the model parameters 𝛩𝑀𝑗 are updated

by back-propagating the loss gradients. Subsequently, the classification
accuracy 𝛹𝐵

𝑏 as defined in Eq. (12) is computed using the evaluation
data 𝛺𝐸,𝑉 ,𝐵

𝑗,𝑏
of the batch 𝑏. After the model has been updated on

all mini-batches, hence if, 𝑏 = 𝑝max, then, the epoch 𝑝 is completed.
5

Subsequently, the average metric for the epoch 𝑝 is
Algorithm 1 to run naive class-IL strategy

Input: Class incremental scenarios 𝛺𝑆 with |𝛺𝑆
| experiences. Each

experience 𝑗 ∈ 𝛺𝑆 has 𝐾𝑗 classes with training data 𝛺𝐸,𝑇
𝑗

and

evaluation data 𝛺𝐸,𝑉
𝑗

. The training data of each experience 𝑗 is

{𝑖, 𝑑} ∈ 𝛺𝐸,𝑇 ,𝐵
̂𝑗,𝑏

and the evaluation data is {𝑖, 𝑑} ∈ 𝛺𝐸,𝑉 ,𝐵
𝑗,𝑏

, respec-
tively for all batches ∀𝛺𝐵

𝑗
. The training and evaluation data {𝑖, 𝑑}

corresponds to the time-series 𝑥𝑖,𝑑 and actual labels 𝑦𝑖. Learning rate
𝐿 and stopping criterion 𝑝max.

utput: 𝑀𝑗 with 𝛩𝑀𝑗 , 𝛹𝐵 , 𝛹𝑃 , 𝛹𝐽 , 𝛹𝑆

1: for 𝑗 = 1 to |𝛺𝑆
| do

2: for 𝑝 = 1 to 𝑝max do
3: for 𝑏 = 1 to 𝐵 do
4: Predict �̂�𝑖 with model 𝑀𝑗 (𝑥𝑖,𝑑 ) ∀{𝑖, 𝑑} ∈ 𝛺𝐸,𝑇 ,𝐵

𝑗,𝑏
as in Eq. (1)

5: Compute loss Eq. (11) on (𝑦𝑖, �̂�𝑖) ∀{𝑖, 𝑑} ∈ 𝛺𝐸,𝑇 ,𝐵
𝑗,𝑏

6: Update 𝛩𝑀𝑗 with 𝐿 and back-propagation
7: Update mini-batch metrics 𝛹𝐵

𝑏 with Eq. (12) and Eq. (13) but
using (𝑦𝑖, �̂�𝑖) ∀{𝑖, 𝑑} ∈ 𝛺𝐸,𝑉 ,𝐵

𝑗,𝑏
8: end for
9: Update epoch metrics 𝛹𝑃

𝑝 with Eq. (15)
0: end for
1: Update experience metrics 𝛹𝐸

𝑗
with Eq. (16)

2: end for
3: Update scenario metrics 𝛹𝑆

𝑠 with Eq. (17)

𝛹𝑃
𝑝 = 1

𝐵
∑

𝑏∈𝛺𝐵
𝑗

𝛹𝐵
𝑏 . (15)

The next epoch starts, so 𝑝 ← 𝑝 + 1 is incremented, and all mini-
batches are used again to further update the model parameters 𝛩𝑀𝑗 .
This sequence is repeated 𝑝max times. The metric 𝛹𝑃

𝑝 is the performance
of the IL strategy when ‘‘showing’’ the data 𝑝 times to the model. After
the model 𝑀𝑗 was trained 𝑝max times on the data from experience 𝑗,
the average performance metric is computed across all epochs

𝛹𝐸
𝑗

= 𝛹𝑃
𝑝max

. (16)

Then, the next experience is selected using Eq. (10).
In this naive baseline the experiences are selected one after each

other 𝑗 = 1… |𝛺𝑆
|. The model 𝑀𝑗 hence is trained on that new

selected experience as described above. Finally, after the model was
trained on all experiences 𝛺𝑆 , the overall average performance across
all experiences is

𝛹𝑆
𝑠 = 1

|𝛺𝑆
|

∑

𝑗=1,…|𝛺𝑆
|

𝛹𝐸
𝑗
. (17)

The IL strategies generally force additional control on updating
model parameters (architectural and regularization-based strategies)
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Fig. 3. Graphical representation of Dynamic IL objectives.

r modify the experience dataset(rehearsal-based strategies) to en-
ure high classification accuracy over all the incrementally considered
xperiences with the least catastrophic forgetting.

. Dynamic incremental learning in real-time

This section introduces our proposed Dynamic IL method based on a
ehearsal strategy to address the problem of catastrophic forgetting and,
t the same time, achieve near-real-time training of new experiences.
e target this by defining three objectives 𝑂1, 𝑂2, and 𝑂3 which are

the following.

𝑂1 is avoiding catastrophic forgetting. This objective corresponds to
maintaining classification accuracy for previous classes during
training of new classes,

𝑂2 is a high learning efficiency. This objective corresponds to ac-
curacy improvement per time and per number of training data,
and

𝑂3 is a high classification accuracy at the end of each experience
training phase.

Fig. 3.a summarizes this multi-objective problem using an ideal
loss curve. If 𝑂3 determines the lowest 𝛹𝑃 ,𝑙𝑜𝑠𝑠

𝑝 , ideally approaching 0
at an experience level, then 𝑂1 determines the lowest 𝛹𝑃 ,𝑙𝑜𝑠𝑠

𝑝 , ideally
approaching 0 at the scenario level considering all the experiences
(or event types) seen so far. 𝑂2 can be assessed by the steepest slope
approached in the loss curve, signifying fast training. To achieve these
objectives, we propose Algorithm 2 by applying three modifications to
Algorithm 1.

3.1. Modification I: Replay with dynamic buffer

The objective of the proposed modification I is 𝑂1 to maintain
accuracy for previous classes, modification I controls the rehearsal to
‘remember’ the previously trained classes avoiding catastrophic forget-
ting and ensuring high classification accuracies. Also, this modification
limits the training time (𝑂2) for replay using reservoir sampling and
introducing the limit 𝜅 on
∑

|𝛺𝐸,𝑇
𝑗

| ≤ 𝜅 (18)
6

𝑗∈𝛺𝑆∖𝑗
Algorithm 2 to run dynamic IL for real-time training

Input: as in Algorithm 1 but modified 𝛺𝐸,𝑇
𝑗

⟵

M
od

ifi
ca

tio
n

I

Output: as in Algorithm 1
1: for 𝑗 = 1 to |𝛺𝑆

| do
2: for 𝑝 = 1 to 𝑝max do
3: run lines 3:9 from Algorithm 1
4: if |𝛹𝑃 ,𝑙𝑜𝑠𝑠

𝑝 − 𝛹𝑃 ,𝑙𝑜𝑠𝑠
𝑝−1 | ⩽ 𝛿 and 𝑝 > 1 then

5: 𝜉 = 𝜉 + 1
6: else
7: 𝜉 = 0
8: end if

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

M
od

ifi
ca

tio
n

II

9: if 𝜉 ≥ 𝜉max then
0: Update learning rate 𝐿 = 𝛾𝐿

11: 𝜉 = 0
12: end if
13: if 𝛹𝑃 ,𝑎𝑐𝑐

𝑝 > 𝛹𝐸,𝑎𝑐𝑐
𝑗

and 𝑝 > 1 then

14: Update best accuracy 𝛹𝐸,𝑎𝑐𝑐
𝑗

= 𝛹𝑃 ,𝑎𝑐𝑐
𝑝

15: Store best model 𝛩𝑀𝑗 ,∗ = 𝛩𝑀𝑗

16: 𝜄 = 0
17: else
18: 𝜄 = 𝜄 + 1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

M
od

ifi
ca

tio
n

III

19: end if
20: if 𝜄 ≥ 𝜄max or 𝑝 ≥ 𝑝max then
21: Take best model 𝛩𝑀𝑗 = 𝛩𝑀𝑗 ,∗

2: break
3: end if
4: end for
5: end for
6: Update scenario metric 𝛹𝑆

𝑠 with Eq. (17)

the total amount of training data from previous experiences 𝑗 ∈ 𝛺𝑆∖𝑗.
o comply with this limit, the training data per experience 𝑗 is reduced
y randomly removing the data

𝑖, 𝑑} ← 𝛺𝐸,𝑇
𝑗

, (19)

hat is repeated until the experience 𝑗 has the reduced training data
ize (training buffer size)

𝛺𝐸,𝑇
𝑗

| = 𝜅
|𝛺𝑆

| − 1
∀𝑗 ∈ 𝛺𝑆∖𝑗 (20)

and then, also constraint Eq. (18) holds. In this way, we prepare a
training dataset, which is a representative collection of all datasets from
previous experiences. The impact of this modification is illustrated in
Fig. 3.b using a confusion matrix. A confusion matrix is a table that
allows visualization of the classification accuracy considering multiple
classes. Each row and column of the matrix represents the instances of
the true class and the predicted class respectively. The 100% classifica-
tion accuracy (true class = predicted class) is represented by a diagonal
matrix (shown in black), however, when influenced by catastrophic
forgetting, a conventional DL model inaccurately predicts/misclassifies
previous class datasets into new classes forming a vertical strip (shown
in white). Thereby reducing the classification accuracies of the previous
classes. In IL, when a new class is introduced, a new class label/s is
introduced and the evaluation of the proposed strategy is done after
each experience training.

3.2. Modification II: Dynamic updating of learning rates

The objective of the proposed modification II is 𝑂2 to improve
learning efficiency. As we propose to use rehearsal strategy in near
real-time, for the first time, we consider the learning efficiency in
rehearsal strategies as typically the training time is not an objective.
This modification controls the learning rate 𝐿. As shown in Algorithm
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2, in each epoch 𝑝 the epoch metric 𝛹𝑃 ,𝑙𝑜𝑠𝑠
𝑝 is computed with Eqs. (13)

nd (15). Subsequently, the metric from epoch 𝑝 is compared to the
revious epoch 𝑝−1, and, if the reduction |𝛹𝑃 ,𝑙𝑜𝑠𝑠

𝑝 − 𝛹𝑃 ,𝑙𝑜𝑠𝑠
𝑝−1 | ⩽ 𝛿 is lower

than a threshold 𝛿 for 𝜉max epochs, then, the learning rate is reduced
y the factor 0 ≤ 𝛾 ≤ 1. Therefore, the user has to specify the tuple
𝛿, 𝜉max, 𝛾) based on the requirement and objectives of the application,
.g., to meet real-time requirements. The impact of this modification
s illustrated in Fig. 3.c where, the 𝐿 is reduced in steps of 𝛾 from the
nitial user-defined value 𝐿 until 𝜉max is reached.

.3. Modification III: Dynamic termination of training

The objective of the proposed modification III is 𝑂3, maximizing
he classification accuracy. This modification controls the number of
raining epochs 𝑝 to avoid overfitting. The validation accuracy 𝛹𝑃 ,𝑎𝑐𝑐

𝑝
s computed with Eqs. (12), (15) after each epoch 𝑝. Then, only after
he first epoch 𝑝 > 1, this validation accuracy is compared to the best
ccuracy 𝛹𝐸,𝑎𝑐𝑐

𝑗
, and if greater 𝛹𝑃 ,𝑎𝑐𝑐

𝑝 > 𝛹𝐸,𝑎𝑐𝑐
𝑗

, then, this updates the
est validation accuracy 𝛹𝐸,𝑎𝑐𝑐

𝑗
= 𝛹𝑃 ,𝑎𝑐𝑐

𝑝 , and the best model parameters
𝑀𝑗 ,∗ = 𝛩𝑀𝑗 are stored. However, the training terminates when the
𝑃 ,𝑎𝑐𝑐
𝑝 is not greater than the best accuracy for 𝜄max times in a row. The

mpact of this modification is illustrated in Fig. 3.d where the validation
ccuracy after each epoch is recorded and compared with the previous
alue until no improvement is observed in a row.

. Results and analysis

In this Section, we provide results and performance analysis of the
ynamic IL method that targets to incrementally train a model 𝑀𝑗 in
ear real-time for unforeseen events without catastrophic forgetting.
e achieve this by applying modifications to the naive class IL strategy

o improve training time, experience data size, and classification accu-
acy. Classification accuracy is generally prioritized over training time
nd experience data size as it directly signifies the event recognition
apability of the trained model. Due to multiple objectives, we have
ivided dynamic IL’s performance analysis in terms of formulations
forms. in short). Table 1 provides a summary of various formulations
ighlighting the control parameters, evaluation metrics, assumptions,
nd goals. In form. 𝐴, we compare three promising IL strategies de-
cribed in [27–29] with the baseline naive strategy and demonstrate
he advantages of replay strategy in meeting 𝑂1 and 𝑂3 related to
lassification accuracy. However, due to near real-time training require-
ents, it is desirable to achieve this maximum classification accuracy

n the minimum training time to describe as efficient learning 𝑂2. This
inimum training time is achieved by simultaneously optimizing two
ifferent local hyper-parameters the learning rate 𝐿 and the number of
raining epochs 𝑝𝑚𝑎𝑥 described in form. 𝐵 and 𝐶. The form. 𝐴𝐵𝐶 de-
cribes the overall performance of the Dynamic IL method in achieving
1, 𝑂2, and 𝑂3. Furthermore, Section 𝐴𝐵𝐶∗ and section 𝐴𝐵𝐶∗∗ are

pecial cases that extend our analysis further to check the robustness
f our Dynamic IL method.

.1. Dataset preparation

To demonstrate the applicability of our proposed Dynamic IL
ethod, time-series signatures of nineteen disturbance event types (𝐾𝑗
19) are generated using a Real-Time Digital Simulator (RTDS). The
ethod was applied on disturbance events that were generated on

he MV ring network owned by Stedin [35]. The event signatures
enerated by RTDS corroborate the closest resemblance to the real-
orld signatures. However, the proposed method only depends on the
rovided measurements regardless of the network and the simulator
ype. Table 2 enlists the disturbance events along with their correspond-
ng labels. The listed disturbance events are few of the many events that
7

an be trained and classified. Our method can learn and further classify
ny disturbance event that produces a distinctive signature. However,
ome pseudo-events, like cyber-attacks that are non-distinctive and
imic other disturbance events, are hard to classify [36]. It requires

ystem logs such as relay status log and network event monitor logs
s input along with input measurements and also a model 𝑀 that can
rocess such heterogeneous inputs. One should note that, the class-IL
orkflow can accommodate multiple new classes witnessed at the same

ime. In this regard, three combination sets of scenarios are prepared
n which each experience contains a different number of classes as
hown in Table 2. Experiments performed in form. 𝐴,𝐵, 𝐶, and 𝐴𝐵𝐶
ollow the scenario set A. The scenario set A has classes divided into
ive experiences 𝛺𝐸 = [4, 4, 4, 4, 3] with randomly chosen classes. Every
xperience in scenario set A introduces four new classes for the model
o learn. We use scenario set B to execute the form. 𝐴𝐵𝐶∗ experiments
here one class per experience is considered. This is the most practical

cenario that is witnessed by the Dynamic IL method, as multiple new
vent types at the same time are rare. The first experience has two
lasses and hence there are eighteen sets of experience. The scenario
et C is used for form. 𝐴𝐵𝐶∗∗ experiments which have two classes
er experience. Classes that belong to each experience in a scenario
ill not undergo shuffling to maintain the experiment’s repeatability.
owever, the datasets inside each experience are shuffled for better
eneralization during the training procedure. The number of event
amples belonging to each class has not been massively varied, since
nearly balanced dataset is assumed. The event’s sampling rates are

arefully selected to prioritize the clarity of the event’s dynamics how-
ver, for each event 𝑖, the record of the event 𝑥𝑖,𝑑 has the dimensions
× 𝜏 = 6 × 500 as shown in Eq. (2). The measurement variables are

he time-series signatures of voltages and currents. These dimensions
re maintained consistently throughout our experiments since the CNN
odel is designed to accommodate these input dimensions. However,
sers can design models based on their event measurement dimensions
nd still use our Dynamic IL method.

.2. Form. A — Comparative analysis between various rehearsal IL strate-
ies

This study first demonstrates the phenomenon of catastrophic for-
etting, and thereafter, how to address the phenomenon with class
L learning. Fig. 4 shows the confusion matrices after training two
onsecutive experiences using naive strategy (Algorithm 1). It can be
bserved that when the second experience set 𝛺𝐸

𝑗 is trained on the
odel 𝑀𝑗 , the model completely forgets the previously trained classes

by 𝛺𝐸
𝑗−1 and miss-classify all the previously trained events to the classes

corresponding to new sets of experience. This appears as a vertical
strip in an evolving confusion matrix. It should be pointed out that the
confusion matrix also shows the classes from future sets of experience.
However, this is not considered during the computation of classification
accuracy.

Fig. 5 shows the results of the comparative analysis for various
class IL strategies that address catastrophic forgetting using evolv-
ing confusion matrices. The comparison along x-axis denotes the IL
strategy’s performance on experiences, while the comparison along
y-axis denotes a comparative analysis of rehearsal IL strategies for
remembering previous experience’s classes.

The naive strategy excessively forgets the previously trained classes
which can be observed in row 1. The model is unsuccessful in remem-
bering the old classes, and only the classes corresponding to the current
dataset 𝛺𝐸

𝑗
are classified correctly.

The Learning Without Forgetting (LWF) strategy [29] retains by
transferring the learned ‘‘knowledge’’ from a previously trained model
to the model trained on the new data. As shown in row 2, as the model
is highly dependent on data, the model gradually builds up errors. From
columns 1 and 2, we can observe that the model aims at ‘‘remembering’’
classes from the first experience on the diagonal (since the events are

concentrated on the diagonal). However, as the classification error
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Table 1
Formulations derived to monitor and measure the key performance indicators of Dynamic IL method.

Form. Designed for Strategy Metric Optimizing
Parameter

Assumptions Parameters Goal

𝐴 (Section 3.1) Choosing best
IL Strategy

Rehearsal
Strategies

Evolving
Confusion
Matrix

Classification
Accuracy

Fixed L
and
Fixed 𝑝𝑚𝑎𝑥

Memory
buffer size
𝜅

Training without
Catastrophic
Forgetting

𝐵 (Section 3.2) Optimizing 𝐿 for
individual
experiences

Naive 𝛹𝑃 ,𝑙𝑜𝑠𝑠
𝑝 Learning Rate

(𝐿)
Fixed 𝑝𝑚𝑎𝑥 𝜉𝑚𝑎𝑥,

𝛾, 𝛿
Controlling 𝐿 s.t.
𝛹𝑃 ,𝑙𝑜𝑠𝑠
𝑝

reaches 0 at the
earliest
for 𝛺𝐸

𝑗

𝐶 (Section 3.3) Dynamic termination
of training

Naive 𝛹𝑃 ,𝑎𝑐𝑐
𝑝 𝛩𝑀𝑗 ,∗

and 𝑝
Fixed 𝐿 𝜄𝑚𝑎𝑥 Choosing optimal

𝛩𝑀𝑗 ,∗

specific to 𝛺𝐸
𝑗

avoiding
over-training

𝐴𝐵𝐶 Evaluating overall
performance on
scenario level
acc. and training
time

Replay with
dynamic
memory
buffer

𝛹𝑆,𝑎𝑐𝑐

and overall
training time

Events
classification
accuracy and
training time

– Parameters
of 𝐴,𝐵
and 𝐶

Efficient near
real-time learning
without catastrophic
forgetting

𝐴𝐵𝐶∗ Investigation on
one class per experience
case which is highly
probable in power grids

Replay
with
dynamic
memory
buffer

Eval. Acc
and
Confusion
Matrix

Adaptation of
weights and
biases due to
constant new
event types

One or max.
two event
classes per
experience

Parameters
of 𝐴,𝐵
and 𝐶

To analyze
performance metrics
when experience
contain fewer event
samples

𝐴𝐵𝐶∗∗ Evaluating influence
of mem. buffer size
on classification
acc.

Replay with
dynamic
memory
buffer

Memory
buffer size and
Eval. accuracy

Memory buffer
size (𝜅)

– Memory
buffer size
𝜅

To achieve max.
classification acc.
with minimal mem.
buffer size
Table 2
Description of disturbance event classes and their corresponding scenario sets. Forms.
𝐴,𝐵, 𝐶,𝐴𝐵𝐶 follow scenario set A, form. 𝐴𝐵𝐶∗ follow scenario set B and form. 𝐴𝐵𝐶∗∗

follow scenario set C.
Disturbance event class Event ID Scenario set

A
Scenario set
B

Scenario set
C

3 phase fault 0 𝛺𝐸
5 𝛺𝐸

1 𝛺𝐸
1

F + 2nd harmonics 1 𝛺𝐸
1 𝛺𝐸

1 𝛺𝐸
1

F + 3rd harmonics 2 𝛺𝐸
5 𝛺𝐸

2 𝛺𝐸
1

F + 4th harmonics 3 𝛺𝐸
4 𝛺𝐸

3 𝛺𝐸
2

F + 5th harmonics 4 𝛺𝐸
1 𝛺𝐸

4 𝛺𝐸
2

F + 7th harmonics 5 𝛺𝐸
3 𝛺𝐸

5 𝛺𝐸
3

F + 9th harmonics 6 𝛺𝐸
4 𝛺𝐸

6 𝛺𝐸
3

F + 11th harmonics 7 𝛺𝐸
1 𝛺𝐸

7 𝛺𝐸
4

F + 3rd + 5th harmonics 8 𝛺𝐸
1 𝛺𝐸

8 𝛺𝐸
4

F + 3rd + 7th harmonics 9 𝛺𝐸
4 𝛺𝐸

9 𝛺𝐸
5

F + 3rd + 11th harmonics 10 𝛺𝐸
4 𝛺𝐸

10 𝛺𝐸
5

AG fault 11 𝛺𝐸
5 𝛺𝐸

11 𝛺𝐸
6

BG fault 12 𝛺𝐸
3 𝛺𝐸

12 𝛺𝐸
6

CG fault 13 𝛺𝐸
2 𝛺𝐸

13 𝛺𝐸
7

ABG fault 14 𝛺𝐸
3 𝛺𝐸

14 𝛺𝐸
7

BCG fault 15 𝛺𝐸
2 𝛺𝐸

15 𝛺𝐸
8

CAG fault 16 𝛺𝐸
2 𝛺𝐸

16 𝛺𝐸
8

Healthy data 17 𝛺𝐸
2 𝛺𝐸

17 𝛺𝐸
9

Lightening data 18 𝛺𝐸
3 𝛺𝐸

18 𝛺𝐸
9

builds up over time, the learning capabilities drastically decrease after
the second experience (third column and following).

The Elastic Weight Consolidation (EWC) strategy [30] is shown in
row 3. EWC strategy is best known for Domain Incremental Learning,
where the ‘‘ground truth’’ of the disturbance events drift over time.
However, it is investigated in class incremental learning due to its
translational property. The strategy slows down the learning of certain
weights based on how important they are to previously seen classes.
From the figure, it can be seen that the strategy performs poorly for the
initial few experiences, however, the classification accuracy improved
8

Fig. 4. Effects of catastrophic forgetting observed between two consecutive experiences
in the case of naive strategy. Forgetting is clearly highlighted by a vertical band
moving from 𝛺𝐸

𝑗−1 to 𝛺𝐸
𝑗 , without remembering the knowledge acquired from previous

experience training.

at the later stages (row 3, column 5), signifying the inter-dependency
of model size and the number of classes in the input dataset.

The Greedy sampler, Dumb selector (GDumb) strategy [28] is shown
in row 4. This strategy replays old experiences and has the potential
to addressing catastrophic forgetting. However, still, we can see some
miss-classifications at some individual class classification-accuracy.
Therefore, the training is needed for a higher number of epochs than
the prefixed value (𝑝𝑚𝑎𝑥 = 100) that is not aligned with objective 𝑂2.

The Replay strategy [27] with additional reservoir sampling and
parametric buffer see row 4, shows the best performance as the trained
events are stacked on the diagonal of a confusion matrix, and at
each experience stage, the model remembers classes from the previous
experiences without catastrophic forgetting. Hence, the replay strategy
with parametric buffer and reservoir sampling will be further used for
the proposed dynamic IL implementation in form. 𝐴𝐵𝐶, 𝐴𝐵𝐶∗, 𝐴𝐵𝐶∗∗.
This strategy shows a high performance as the strategy organizes the
way of sampling and storing the experience datasets. The parametric
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Fig. 5. Comparison between various class IL strategies suffering from catastrophic forgetting phenomenon. Each sub-figure corresponds to one confusion matrix with individual
value scales ranging from 0 to 200. Each row represents one IL strategy. Each column represents a ‘‘snapshot’’ in time of the strategies’ performances, evolving column-wise from left
to right. Hence, the strategies can be compared across the columns. The performance is high when only values are on the diagonal, and all others are zero. Then, the disturbances
are detected well, with a few classification errors.
buffer updates every time the algorithm receives a new experience. The
buffer has a limit of 𝜅 = 0.7, signifying that 70% of the datasets from
the previous experiences are stored and replayed. The parametric buffer
memory fills with data samples from previous experiences until the
maximum buffer capacity of |𝛺𝐸,𝑇

𝑗
| = 300 samples. However, on further

experiences’ arrival, the buffer data samples are randomly replaced to
accommodate new experience datasets. Reservoir sampling ensures that
the data samples are replaced from the parametric buffer such that
the parametric buffer contains an equal number of event datasets to
avoid imbalance in the dataset from all classes seen so far. The limit
𝜅 and maximum buffer capacity |𝛺𝐸,𝑇

𝑗
| can be chosen based on user

requirements after ensuring computational capability.

4.3. Form. B — Dynamic updating of learning rates

This study investigates the improvement in minimizing the loss with
modification II that proposes a dynamic learning rate 𝐿. We start by in-
vestigating the importance of 𝐿 in training. Four different experiments
are performed on Algorithm 1 with 𝐿 = [0.1, 0.001, 0.0006, 0.0001].
Conventional DL uses a static dataset where the full dataset is available
all at once. The value of 𝐿 is determined based on a parametric sweep
to achieve the best results on the classification accuracy. For class IL,
when the model is presented with a new unknown set of event classes
with varying and unknown transient dynamics, a single pre-determined
𝐿 may lead to overshooting or slow learning effects that contemplate
9

real-time model adaptation capabilities. For instance, 𝐿 = 0.1 performs
poorly, and the loss does not converge to 0 for all 𝛺𝐸

𝑗 . 𝐿 = 0.001
performs poorly on 𝛺𝐸

2 while other experiences adapt well. For 𝐿 =
0.0001, 𝛺𝐸

1 and 𝛺𝐸
2 does not converge well. Caused by this specific

𝐿 requirement for each experience dataset, the user cannot pre-define
the 𝐿 value, which highlights the importance of dynamic updating
of learning rates by tracking loss 𝛹𝑃 ,𝑙𝑜𝑠𝑠

𝑝 ‘‘on-the-fly’’. As discussed in
Section 3.2, we apply modification II to the Algorithm 1 whilst setting
aside other modifications. The results from these four experiments are
documented in Fig. 6 demonstrate the importance of 𝐿 on training loss
𝛹𝑃 ,𝑙𝑜𝑠𝑠
𝑝 . Fig. 7 presents a comparison between modification II and the

best suitable 𝐿 = 0.0006 for all experience training’s in this scenario.
Each experience dataset 𝛺𝐸

𝑗 starts learning with a conservative 𝐿 =
0.001. Once the loss stops reducing for 𝜉𝑚𝑎𝑥 = 5 epochs, 𝐿 is reduced
by a factor of 𝛾 = 0.9 as shown in Algorithm 2, line 10. We observe
that modification II outperforms (or is at least equal to) all training
settings with a static, fixed 𝐿. For each experience training the value
of 𝐿 updates approaching objectives 𝑂2 and 𝑂3. However, during the
training of 𝛺𝐸

2 , we observe that the steepness of the loss curve for
modification II is lower than that when using a fixed, static 𝐿 = 0.0006.
Therefore, using this static 𝐿 is sub-optimal and not aligned with the
objective 𝑂2. This accounts for an unnecessary update of 𝐿 at an early
stage causing a delay. However, the loss value is lower when using
modification II. Table 3 shows the final value of 𝐿 attained at the end
of each experience’s training. This is the closest value to optimally



International Journal of Electrical Power and Energy Systems 148 (2023) 108988N. Veerakumar et al.
Fig. 6. Evaluation loss 𝛹𝑃 ,𝑙𝑜𝑠𝑠
𝑝 is computed for experiences 𝛺𝐸

𝑗 while adopting different 𝐿. It is preferred that 𝛹𝑃 ,𝑙𝑜𝑠𝑠
𝑝 curves should reduce to 0 at the earliest. 𝛺𝐸

1,2,5 performs best
with 𝐿 = 0.0006, whereas 𝛺𝐸

3,4 performs best with 𝐿 = 0.0001. This signifies the need for dynamic updates of 𝐿 unique to each experience.
Fig. 7. Comparison between evaluation loss 𝛹𝑃 ,𝑙𝑜𝑠𝑠
𝑝 computed for experiences 𝛺𝐸

𝑗 using fixed learning rate 𝐿 = 0.0006 and proposed modification II case. It is preferred that 𝛹𝑃 ,𝑙𝑜𝑠𝑠
𝑝

curves should reduce to 0 at the earliest. The modification II case as highlighted recorded a lower 𝛹𝑃 ,𝑙𝑜𝑠𝑠
𝑝 than best performing case of fixed 𝐿 = 0.0006.
Table 3
Learning rate 𝐿 settled at the end of each experience training due to modification II .

Settled
hyperparameter

𝛺𝐸
1 𝛺𝐸

2 𝛺𝐸
3 𝛺𝐸

4 𝛺𝐸
5

𝐿 0.0007 0.00059 0.00065 0.0009 0.001

approach 𝑂3 with the aforementioned static, baseline naive approach
using the static, fixed 𝐿. The higher 𝐿 for a particular experience,
the lower are the temporal complexities of event signatures, and the
selected 𝐿 is optimal, requiring no step-wise reduction of 𝐿. However,
a lower 𝐿 for a particular experience causes a step-wise reduction in 𝐿
from the conservative value of 𝐿 = 0.001. The final settled 𝐿 value
will be the most suitable learning rate for event signatures that are
complex over time. Thus, modification II makes the Dynamic IL method
adapting when the complexities of event signatures change over time.
This feature of modification II adapting to these complexities will be
useful during the transitional phase of the electric grids. For example,
it will be useful when the grid simultaneously uses the two old and new
devices with low and high sampling rates.

4.4. Form. C: Dynamic termination of training

The goal of this study is to investigate the importance of experience
training duration and the impact of modification III on approaching 𝑂2
and 𝑂3. The experiments show the impact of modification III on Algo-
rithm 1 whilst setting aside the other modifications. Typically, in con-
ventional DL, the total number of training epochs 𝑝𝑚𝑎𝑥 is selected based
on user expertise. Then, the model is trained on a static dataset until
the user observes the maximum improvement in evaluation accuracy.
10
This case study trains a model with class IL where the model is
incrementally presented with a new unknown set of event classes.
The new event classes have different transient dynamics that are un-
known to the model (the model has never seen these before). As the
pre-determined 𝑝𝑚𝑎𝑥 value may result in under-fitting or over-fitting
(e.g., as in conventional DL), we constrain the training for each 𝛺𝐸

𝑗
‘‘on-the-fly’’ according to the maximum 𝛹𝑃 ,𝑎𝑐𝑐

𝑝 . Modification III tracks
𝛹𝑃 ,𝑎𝑐𝑐
𝑝 during the training process, and the training terminates when

𝛹𝑃 ,𝑎𝑐𝑐
𝑝 does not improve any further for 𝜄𝑚𝑎𝑥 = 10 epochs in a row. The

model parameters 𝛩𝑀𝑗 ,∗ with the highest classification accuracy are
stored as shown in Algorithm 2, line 21. Later, these model parameters
𝛩𝑀𝑗 ,∗ will be used to further learn new incoming experiences. The
experiments are conducted with fixed 𝐿 = 0.0006. The results of
these experiments are shown in Fig. 8 and Table 4. Fig. 8 shows the
effect of the dynamic termination of experience training. The black
line corresponding to modification III shows that training intelligently
terminates compared to the static case of 𝑝𝑚𝑎𝑥 = 100. This reduction in
𝑝𝑚𝑎𝑥 implies improved training time 𝑂2. For most cases of experience
training, there is no major change in 𝛹𝐸,𝑎𝑐𝑐 𝑂3 because of modification
III. However, when looking at 𝛺𝐸

3 in Fig. 8, we observe modification III
addressing over-fitting concerns. The experience evaluation accuracy
𝛹𝐸,𝑎𝑐𝑐 starts degrading when trained with a pre-determined number
of epochs 𝑝𝑚𝑎𝑥 = 100. Table 4 shows the number of training epochs
for each experience 𝑝𝑚𝑎𝑥 and highest experience classification accuracy
recorded for each experience 𝛺𝐸

𝑗 for modification III. We see that there
is a high degree of variance in choosing an optimal number of 𝑝𝑚𝑎𝑥
for each 𝛺𝐸

𝑗 signifying the importance of modification III when training
new event classes incrementally.
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Fig. 8. The fast termination of experience’s training is highlighted by comparing Form. B with the base case (Algorithm 1). It is preferred that evaluation accuracy 𝛹𝑃 ,𝑎𝑐𝑐
𝑝 should

reach close to ‘1’ within the least number of epochs. Experience training is terminated by modification III sub-algorithm once 𝛹𝑃 ,𝑎𝑐𝑐
𝑝 reaches a maximum and no further improvement

is observed.
Table 4
Performance of modification III measured as 𝑝𝑚𝑎𝑥 and 𝛹𝐸,𝑎𝑐𝑐 during training after each
experience.

Evaluation metrics 𝛺𝐸
1 𝛺𝐸

2 𝛺𝐸
3 𝛺𝐸

4 𝛺𝐸
5

Number of training
epochs 𝑝𝑚𝑎𝑥

84 55 64 45 14

Experience classification
accuracy 𝛹𝐸,𝑎𝑐𝑐

99.3% 98.0% 99% 99.8% 100%

4.5. Form. ABC — Dynamic incremental learning method

The objective of this study is to investigate the performance of the
Dynamic IL method, described in Algorithm 2.

Table 5 shows the obtained results for objectives 𝑂1, 𝑂2, and 𝑂3 un-
der the combined influence of modifications I, II and III. This is different
from the previous case studies where these modifications were acti-
vated individually. All other experiment settings remain the same as in
previous studies. 𝑂1 is analyzed by the scenario classification accuracy
𝛹𝑆,𝑎𝑐𝑐 which is computed by taking into account all the trained classes
seen so far. We observe from Fig. 9.a that the catastrophic forgetting is
greatly reduced compared to the naive strategy. The overall achieved
scenario accuracy after training the model incrementally in near real-
time is 94.3%. From Table 5, row 3 it can be seen a slight decrease
in 𝛹𝑆,𝑎𝑐𝑐 after each experience training, signifying the presence of
catastrophic forgetting concern. It is important to note that the memory
buffer limit is 𝜅 = 0.7. The effect of varying 𝜅 on 𝑂1 shall be discussed
in form. 𝐴𝐵𝐶∗∗.

In the absence of reservoir sampling, the dataset grows proportion-
ally with each new experience, and the execution time of each training
epoch increases, thereby increasing the experience training time. How-
ever, in form. 𝐴𝐵𝐶, we see that the training time is maintained below
25 s due to efficient learning modifications, which were discussed
in Sections 3.1–3.3. The results of 𝑂3, the experience classification
accuracy, are shown in Table 5, row 5. The values provided in this
row are computed without taking into account the previous class’s
accuracy. Modification I and modification II collectively contribute to
these results as 𝐿 and 𝑝𝑚𝑎𝑥 are tuned ‘‘on-the-fly’’. The results show
that the experience classification accuracy 𝛹𝐸,𝑎𝑐𝑐 remains similar or
sometimes is improved due to the collective contribution of modifi-
cation I and modification II. Additionally, by comparing Tables 4 and
5, we observe that for 𝛺𝐸

1,4, experience classification accuracy 𝑂3
value is reduced whereas learning efficiency 𝑂2 is improved for the
form. 𝐴𝐵𝐶. However, it is important to have 𝑂3 prioritized over 𝑂2
since classification accuracy holds importance over learning efficiency
for event classification tasks. This behavior points out the need for
advanced metric prioritizing algorithms where the user can prioritize
performance metrics based on his requirement.

The discussed results are specific to the event datasets of Section 4.1,
DL model Appendix and other strategy-specific parameters as described
11
Table 5
Performance analysis of the Dynamic IL method. Improvement in training time and
maximum experience and scenario classification accuracy obtained for each event
experience set when considering each objective individually.

Objectives Experiences

𝛺𝐸
1 𝛺𝐸

2 𝛺𝐸
3 𝛺𝐸

4 𝛺𝐸
5

𝑂1 :Scenario classification
accuracy 𝛹𝑆,𝑎𝑐𝑐

98.9% 96.9% 96.0% 95.1% 94.3%

𝑂2 : Learning efficiency
(% improv. in training time)

9.1% 39.0% 65.3% 74.3% 88.8%

𝑂3 : Experience classification
accuracy 𝛹𝐸,𝑎𝑐𝑐

98.9% 98.6% 99.1% 98.6% 100%

in Section 3. However, similar results can be expected when the Dy-
namic IL method is applied together with the rest of the real-time event
classification workflow, as indicated in Fig. 1.

4.6. Form. 𝐴𝐵𝐶∗ — Special case considering one class per experience

This section aims to demonstrate the performance of the Dynamic
IL method when each experience contains only one event class as
described in scenario set B.

It is common in IL (or DL in general) to combine multiple classes
in the form of batches before feeding them into the model. However,
in an actual power system, the occurrence of events is rare, non-
deterministic, and unique. The recorded signatures at any time belong
to an individual class (rarely two classes, due to cascading effect).
Hence, when testing the Dynamic IL method with scenario set B, we
corroborate the learning of events close to real-life scenarios. The
findings presented in Table 6 show the performance of the Dynamic
IL method for the case of scenario set B (one class per experience).
The achieved scenario accuracy 𝛹𝑆,𝑎𝑐𝑐 at the end of the experiment is
94.9%, and it is similar to that of 𝛹𝑆,𝑎𝑐𝑐 which is 94.3% in form. 𝐴𝐵𝐶.
This demonstrates clearly dynamic IL’s implementation in an actual
power system. The time taken for real-time event classification on
already trained disturbance events ranges from 0.36 ms to 0.49 ms. This
is for the disturbance events described in Table 2 and for the 1D CNN
model in Appendix. The time taken for new disturbance event learning
is shown in Table 6. The varying training time (expressed in training
epochs) is due to the varying complexity of the input datasets and
pre-trained model state. One should note that we consider a balanced
dataset during the entire learning process. However, in reality, the
number of disturbance datasets collected will be proportional to the
impact of a disturbance event on the grid. Here, our findings on training
the model incrementally with one class per experience are primary
analyses of the possibility of training incrementally with a few datasets.
This model training corresponds to the rarest and most severe events. IL
has a specialized branch called one-shot learning [37] that investigates
this operational setting in more detail.
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Fig. 9. (a) Scenario classification accuracy is computed after each experience’s training to evaluate the effect of catastrophic forgetting 𝑂1 caused by IL. (b) Training time
comparison between form. 𝐴𝐵𝐶 and form. A shows that modifications I, II, and III collectively result in reduced training time below 25 s for form. 𝐴𝐵𝐶 and improving learning
efficiency 𝑂2.
a
Table 6
Performance metrics of Dynamic IL method in case of scenario set B (one class per
experience).

Experience Event class Optimized 𝐿 Training
epochs

Scenario
accuracy

𝛺𝐸
1 0,1 0.0008 13 100%

𝛺𝐸
2 2 0.001 12 100%

𝛺𝐸
3 3 0.001 12 100%

𝛺𝐸
4 4 0.001 12 100%

𝛺𝐸
5 5 0.001 12 100%

𝛺𝐸
6 6 0.001 13 100%

𝛺𝐸
7 7 0.001 14 99.6%

𝛺𝐸
8 8 0.001 19 99.4%

𝛺𝐸
9 9 0.0008 17 99.01%

𝛺𝐸
10 10 0.001 15 98.92%

𝛺𝐸
11 11 0.001 13 98.80%

𝛺𝐸
12 12 0.001 17 98.06%

𝛺𝐸
13 13 0.0008 18 97.8%

𝛺𝐸
14 14 0.001 18 96.99%

𝛺𝐸
15 15 0.00064 66 96.37%

𝛺𝐸
16 16 0.0008 29 95.84%

𝛺𝐸
17 17 0.00051 32 95.61%

𝛺𝐸
18 18 0.0008 13 94.93%

4.7. Form. 𝐴𝐵𝐶∗∗ — Enhancement of dynamic IL performance by increas-
ing buffer size

This section investigates the impact of the memory buffer limit 𝜅 on
cenario classification accuracy 𝛹𝑆,𝑎𝑐𝑐 .

Rehearsal-based IL strategies present various approaches to opti-
ize the buffer memory design to achieve the highest classification

ccuracy with the most diminutive memory buffer size. Here, we adapt
arametric buffer and reservoir sampling (dynamic memory buffer)
o efficiently manage buffer memory requirements. Fig. 10 presents
he scenario classification accuracy achieved by applying scenario set

to the Dynamic IL method with a variable 𝜅. A direct co-relation
etween 𝛹𝑆,𝑎𝑐𝑐 and 𝜅 indicates the need of designing more strategic
ample selection policy to optimize the memory buffer size that can
chieve higher scenario classification accuracy. With this strategic
ample selection policy the memory buffer can be designed based on
12

he user’s event learning efficiency 𝑂2 requirement. In other words, 𝑂2
nd 𝑂1 can be tuned in a way to meet the best solutions with advanced
high-processing control room equipment of the future.

4.8. Limitations of dynamic IL method

In this section, the limitations of the developed model are discussed.
Although the Dynamic IL method addresses the problem of catastrophic
forgetting and, at the same time, achieves near-real-time training of
newly detected disturbance events, it still suffers from gradual miss-
classification. As this gradual reduction of classification accuracy due
to re-training on-the-fly is a limitation, it might not be acceptable in
the future. Hence, the threshold for model re-training can be defined
as a performance metric, and further actions can be suggested. Our
model and all deep learning-based models for event classification have
a fixed input size, which requires the disturbance event signatures to
be of fixed length. However, the event signatures range from transient
to steady-state events captured at different sampling rates. Hence,
this requires a pre-processing stage of online over-sampling or under-
sampling. This stage might alter the ‘truth’ of a disturbance event.
For example, high-frequency switching events and cyber-attack events
might require a different architecture or more preprocessing steps with
human intervention to add to the training data. Another aspect is
that Our present work requires labeled datasets that are not always
available in actual power grids. Our Dynamic IL method follows a
supervised learning procedure, where the event type (y label data) is
used during the training. Then, the model’s classification accuracy is
measured against this labeled data. In actual power grids, the event
datasets acquired from the grid for training will be without labels. Our
future work will include unsupervised learning, which may be able to
assign these labels.

5. Conclusion

This paper deals with the development and the demonstration of a
Dynamic IL method that can train a DL model incrementally in near
real-time. The method is analyzed and validated by devising various
formulations which investigate its implementation in an automated
real-time event classification workflow that detect, classify, and adapt
to unknown disturbance events. The performed analysis shows the
model’s learning capability of new unforeseen disturbance events with-
out catastrophic forgetting of the old events. Prompt recognition and
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Fig. 10. Scenario classification accuracy 𝛹𝑆,𝑎𝑐𝑐 compared to the dynamic buffer size 𝜅. The direct co-relation signifies the importance of 𝜅 in achieving higher 𝛹𝑆,𝑎𝑐𝑐 .
Fig. A.11. 1D Convolutional Neural Network model.
learning new events are of utmost importance for the control room
operators to prevent cascading effects that may lead to blackouts.

To achieve a high classification accuracy and computationally ef-
ficient learning in terms of training time and new events/experience
data size, three modifications are applied to the naive class IL strategy
(explained in Algorithm 1). Modification I utilizes a replay strategy
with a dynamic buffer to tackle catastrophic forgetting. In this way,
it improves the classification accuracy and optimizes the experience
data size. Modification II automates the update of learning rates 𝐿,
which significantly reduces the training time and improves the classifi-
cation accuracy as the sub-algorithm also minimizes loss. Modification
III automates the training process termination when the best model
parameters resulting in the highest classification accuracy are obtained.
All these modifications enable the Dynamic IL method (in Algorithm 2)
to fulfill a near-real-time learning and an associated event classification
objectives.

To study the robustness of replay strategy with a dynamic buffer
against catastrophic forgetting, replay strategy is compared by other
rehearsal-based IL strategies — LWF and GDumb. The evolving con-
fusion matrix depicts the superiority of our replay strategy with a
dynamic buffer against other strategies by achieving the highest sce-
nario (overall) classification accuracy. Furthermore, two special sec-
tions are prepared to validate our method for real-life scenarios. Form.
𝐴𝐵𝐶∗ demonstrates the dynamic IL’s capability to operate for one
event class/experience scenario, which is common in practice. Form.
13
𝐴𝐵𝐶∗∗ demonstrates the direct proportionality between the memory
buffer size and the classification accuracy indicating the importance of
buffer memory requirements. However, an increase in memory buffer
size, increases the training time, and thereby decreases learning effi-
ciency. Hence, our proposed method allows the user to choose between
learning efficiency and classification accuracy during model training.

Lastly, we follow a modular approach for the development of the
Dynamic IL method. Each sub-module can investigate more complex
optimization techniques, thus providing an opportunity to expand
our research continuously. To this end, advanced architectural and
regularization-based IL strategies will be explored to improve the
performance metrics of the Dynamic IL method. As a future work, we
intend to expand the Dynamic IL method with a user-defined priority
metric that can prioritize between training time, memory buffer size,
and classification accuracy. This user-defined priority metric can be
based on the severity and importance of the event.
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Appendix. Model architecture

The model chosen for this particular multivariate time series anal-
ysis comprises 1D Convolutional Neural Network (CNN) models as
depicted in Fig. A.11. The 1D model is chosen over the 2D CNN
model since the time-series signals of voltages and currents are to
be analyzed individually without interference from each other. The
number of layers and the size of each layer is selected by trial and error
analyzing the overall accuracy on the dataset.
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