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Summary

In the financial engineering field, many problems can be formulated as stochastic con-
trol problems. A unique feature of the stochastic control problem is that uncertain fac-
tors are involved in the evolution of the controlled system and thus the objective func-
tion in the stochastic control is typically formed by an expectation operator. There are in
general two approaches to solve this kind of problems. One can reformulate the problem
to be a deterministic problem and solve the corresponding partial differential equation.
Alternatively, one calculates conditional expectations occurring in the problem by either
numerical integration or Monte Carlo methods.

We focus on solving various types of multi-period stochastic control problems via the
Monte Carlo approach. We employ the Bellman dynamic programming principle so that
a multi-period control problem can be transformed into a composition of several single-
period control problems, that can be solved recursively. For each single-period control
problem, conditional expectations with different filtrations need to be calculated. In
order to avoid nested simulation (i.e. Monte Carlo simulation within a Monte Carlo sim-
ulation), which may be very time consuming, we implement Monte Carlo simulation
and cross-path least-squares regression. So-called “regress-later” and “bundling” ap-
proaches are introduced in our algorithms to make them highly accurate and robust. In
most cases, high quality results can be obtained within seconds.

Chapter 1 gives a general introduction of the multi-period stochastic control prob-
lem and the Bellman dynamic programming principle. We elaborate on the special fea-
tures, i.e. the “regress-later” and “bundling” approaches, of the simulation-based nu-
merical algorithms implemented by us. We utilize this algorithm to solve four types of
problems, including: (1) a Bermudan option pricing problem, (2) a multi-period utility-
based portfolio optimization problem, (3) a multi-period target-based mean-variance
optimization problem and (4) a multi-period time-consistent mean-variance optimiza-
tion problem.

Chapter 2 deals with Bermudan option pricing problems with Merton jump-diffusion
asset dynamics. We compare the newly-designed regression method with the standard
regression method in an error analysis. Regarding the choice of basis functions for re-
gression and the bundling technique, we propose a uniform way to configure our nu-
merical method. This uniform setting is implemented throughout this thesis. Control
variates are introduced for achieving effective variance reduction for Bermudan option
pricing problems.

Starting with Chapter 3, we investigate dynamic portfolio optimization problems. In
these problems, in order to achieve the optimal performance of a portfolio which is mea-
sured by a target function, an investor dynamically manages the portfolio by specifying
the fraction of the wealth in the risk-free asset and that in the risky assets. In general,
risky assets yield higher expected returns than the risk-free asset but also lead to higher
risk. We first work on a utility-based portfolio optimization problem, in which a con-
stant relative risk aversion (CRRA) utility function is considered as the target function.
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Different from the literature, we introduce a new way to approximate the CRRA utility
functions with a Taylor expansion. Combining this Taylor expansion with our numeri-
cal algorithms for calculating conditional expectations yields more accurate and robust
results compared to existing literature. These results are confirmed by a benchmark al-
gorithm, by which we calculate conditional expectation with a numerical integration
method using a Fourier cosine transformation technique.

A multi-period mean-variance portfolio optimization problem is discussed in Chap-
ter 4. Due to the occurrence of the variance operator in the target function, this kind of
problem cannot be solved directly by using the Bellman dynamic programming prin-
ciple. We first apply an embedding technique to transform the multi-period mean-
variance optimization problem to an equivalent multi-period quadratic optimization
problem. This quadratic optimization problem is also termed a farget-based or a pre-
commitment optimization problem. Since the traditional Monte Carlo approaches can-
not be applied to solve this problem, we develop a forward-backward numerical scheme
for solving this problem. In the forward process, we perform Monte Carlo simulation
with a sub-optimal strategy. In the backward process, we locally solve the optimality to
improve the sub-optimal strategy, which is used in the forward process. Iterating the
forward-backward approach can yield convergent results for the target-based optimiza-
tion. In the numerical tests, it is shown that this result is identical to optimal solutions
from the literature. Our method is highly efficient and generates high quality results in
just a few seconds on a basic personal computer.

We still work on a multi-period mean-variance optimization problem in Chapter 5.
Instead of adopting the embedding technique, we introduce time-consistency condi-
tions into the problem so that the dynamic programming principle can be used. This
problem is termed the time-consistent mean-variance optimization problem. We again
utilize the forward-backward algorithm for solving the time-consistent problem and some
variants of it. We find that, although in the literature the time-consistent strategy is
known to generate lower mean-variance efficient frontiers than the target-based strat-
egy, the time-consistent strategy is not always inferior since two strategies generate sig-
nificantly different terminal wealth distributions.

In Chapter 6, we make a comparison between the target-based strategy and the time-
consistent strategy when model prediction errors occur. Here the existence of the “model
prediction error” means that the real-world market does not evolve as the model predicts
and therefore the optimal controls determined based on the model information may be
problematic in the real-world market. The time-consistent strategy is found to be ro-
bust in terms of model prediction errors. In some cases, the time-consistent strategy
can even generate higher mean-variance efficient frontiers than the pre-commitment
strategy, since “time-consistency” may serve as a protection for the investor. We also
perform an analysis on the robust counterparts of both strategies. The robust strategies
are required to perform well in the worst-case scenarios. We find that for both strategies
the worst-case scenarios can be generated by solving a specific equation at each time
step.

We note that all the work presented in this thesis is based on published or submitted
papers written during the PhD research.



Samenvatting

In de financiéle wiskunde kunnen veel problemen worden geformuleerd als stochasti-
sche regeltechniekproblemen. Een uniek kenmerk van een probleem binnen de stochas-
tische regeltechniek is dat onzekere factoren een rol spelen in het te regelen systeem. Dit
impliceert dat de doelfunctie die bij het probleem hoort vaak wordt weergegeven door
een verwachtingsoperator. In het algemeen zijn er twee manieren om dergelijke sto-
chastische regeltechniekproblemen op te lossen. Men kan het probleem herformuleren
tot een deterministisch probleem en de bijbehorende partiéle differentiaalvergelijking
oplossen. Als alternatief kan men de conditionele verwachtingen in de probleemstel-
ling berekenen door gebruik te maken van numerieke integratietechnieken of Monte-
Carlosimulatie.

We richten ons op het oplossen van verschillende multi-periode stochastische regel-
techniekproblemen met Monte Carlo benaderingen. We maken gebruik van Bellmans
dynamisch programmeerprincipe, waardoor een multi-periode vraagstuk kan worden
omgevormd tot een compositie van verschillende één-periode problemen, die recursief
kunnen worden opgelost. Voor elk afzonderlijke één-periode probleem uit de regeltech-
niek moeten conditionele verwachtingen met verschillende filtraties worden uitgere-
kend. We kunnen een geneste simulatiemethode (dat wil zeggen, een Monte-Carlosimulatie
binnen een Monte-Carlosimulatie), die zeer tijdrovend kan zijn, vermijden door middel
van een combinatie van Monte-Carlosimulatie en kleinste-kwadratenregressie. Op deze
manier kunnen de conditionele verwachtingen efficiént berekend worden. Om de algo-
ritmen zeer nauwkeurig en robuust te maken, introduceren we de volgende twee tech-
nieken “regress-later” en “bundling”. In de meeste gevallen kost het slechts seconden
om resultaten met een hoge kwaliteit te verkrijgen met de verbeterde technieken.

Hoofdstuk 1 geeft een algemene introductie over multi-periode stochastisch regel-
techniekproblemen en Bellmans dynamisch programmeerprincipe om deze problemen
op te lossen. We beschrijven de speciale technieken, dat wil zeggen de “regress-later”
en “bundling” benaderingen, die worden gebruikt in onze op simulatie gebaseerde nu-
merieke algoritmen. We maken gebruik van dit algoritme om vier typen dynamische
stochastische regeltechniekproblemen op te lossen: (1) het prijzen van een Bermuda op-
tie, (2) het optimaliseren van de nutsfunctie van een multi-periode portefeuille, (3) een
multi-periode gemiddelde-variantie optimalisatievraagstuk en (4) een multi-periode tijds-
consistent gemiddelde-variantie optimalisatieprobleem.

Hoofdstuk 2 houdt zich bezig met het prijzen van Bermuda opties, waarbij de on-
derliggende een Merton sprong-diffusie stochastisch model volgt. In een foutenanalyse
vergelijken we de nieuw ontworpen regressietechniek met de standaard regressieme-
thode. Onze numerieke methode kan op een uniforme manier worden geconfigureerd
door de basisfuncties voor de regressie en de manier van het bundelen van stochastische
roosterpunten correct te kiezen. Een uniform algoritme wordt in dit proefschrift voorge-
steld. Variabelen worden geintroduceerd om een effectieve reductie van de variantie te
verkrijgen bij het prijzen van Bermuda opties.

vii
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Vanaf Hoofdstuk 3 starten we met het onderzoeken van vraagstukken met betrek-
king tot het optimaliseren van tijdsathankelijke portefeuilles. In deze vraagstukken be-
heert een investeerder een portefeuille met aandelen en obligaties op een dynamische
manier, door te bepalen welk deel van van het vermogen in risicovrije en welk deel in
risicovolle financiéle producten geinvesteerd zal worden, om zo een door een doelfunc-
tie gegeven optimaal beleggingsresultaat te behalen. Over het algemeen hebben risi-
covolle financiéle producten hogere verwachte opbrengsten dan risicovrije producten,
maar de investeerder loopt dan wel meer risico. Allereerst werken we aan een het opti-
maliseren van een nutsfunctie gerelateerd aan een portefeuille. Hierin nemen we aan dat
de optimaliseringsdoelfunctie gegeven wordt door een constante relatieve risico-aversie
(CRRA) nutsfunctie. We introduceren een nieuwe manier om de CRRA nutsfuncties te
benaderen, namelijk via een speciale taylorontwikkeling. Door deze taylorontwikke-
ling en de ontwikkelde numerieke algoritmen samen te voegen, verkrijgen we resultaten
die nauwkeuriger en robuuster zijn dan reeds gepresenteerde resultaten in de literatuur.
Onze resultaten worden bevestigd met behulp van een referentie-algoritme, waarin we
de conditionele verwachting berekenen met een numerieke methode die gebaseerd is
op Fourier cosinustransformaties.

Een multi-periode gemiddelde-variantie optimalisatieprobleem wordt behandeld in
Hoofdstuk 4. Vanwege de aanwezigheid van een variantie-operator in de doelfunctie,
kan dit probleem niet direct opgelost worden met Bellmans dynamisch programmeer-
principe. Om te beginnen transformeren we het probleem daarom naar een gelijkwaar-
dig multi-periode kwadratisch optimalisatieprobleem. Dit gelijkwaardige probleem noemt
men ook wel een doelgericht optimalisatieprobleem. Aangezien de traditionele Monte-
Carlomethoden niet toegepast kunnen worden bij het oplossen van dit probleem, ont-
wikkelen we een numerieke methode die gebaseerd is op een voorwaartse-terugwaartse
recursie. We voeren eerst een voorwaartse Monte-Carlosimulatie uit en verkrijgen een
suboptimale regeltechniekstrategie. In het daaropvolgende, terugwaarts-in-de-tijd, pro-
ces optimaliseren we lokaal, om de suboptimale oplossing, die we in het voorwaartse
proces verkregen, te verbeteren. Het itereren met deze voorwaartse-terugwaartse op-
timaliseringsmethode kan zorgen voor convergerende resultaten voor de optimalisatie
van het specifieke doel. In de numerieke voorbeelden wordt getoond dat de gevonden
oplossingen identiek zijn aan de optimale oplossingen, die gegeven zijn in de literatuur.
Onze methode is uiterst efficiént en genereert op een standaard computer in slechts en-
kele seconden optimale resultaten van een hoge kwaliteit.

Ook in Hoofdstuk 5 werken we aan een multi-periode gemiddelde-variantie optima-
lisatieprobleem. In plaats van de inbeddingstechniek uit het vorige hoofdstuk, intro-
duceren we hier zogenaamde tijdsconsistente voorwaarden in het probleem. Hierdoor
kan het dynamisch programmeerprincipe weer worden gebruikt. Dit resulterende pro-
bleem wordt ook wel het tijdsconsistente gemiddelde-variantie optimalisatieprobleem
genoemd. Opnieuw gebruiken we het voorwaartse-terugwaartse recursie algoritme om
een oplossing voor dit probleem en verwante vraagstukken te vinden. Volgens de lite-
ratuur genereert een tijdsconsistente optimaliseringsstrategie gewoonlijk minder effici-
énte gemiddelde-variantie oplossing dan de andere, doelgerichte, strategie. Desondanks
tonen wij dat een tijdsconsistente strategie niet altijd minder presteert, omdat de twee
optimaliseringsstrategieén vermogensverdelingen genereren, die significant verschillen.
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In Hoofdstuk 6 vergelijken we de twee strategieén in het scenario dat er onnauwkeu-
righeden in de voorspellingen voor de aandelenmodel in de toekomst voor komen. Met
andere woorden, de concrete aandelenkoersen evolueren niet zoals het model voorspelt
had. Daardoor is de optimale investeringsstrategie, zoals die bepaald was op basis van
de informatie van het model, mogelijk problematisch in de concrete markt. De tijdscon-
sistente optimaliseringsstrategie blijkt het meest robuust met betrekking tot voorspel-
lingsfouten van het model. In sommige gevallen genereert de tijdsconsistente strategie
zelfs efficiéntere gemiddelde-variantie oplossingen dan de doelgerichte strategie, om-
dat “tijdsconsistentie” als een mogelijke bescherming kan dienen voor een investeerder.
Ook verrichten we een foutenanalyse voor de robuuste tegenhanger van beide strate-
gieén. Robuuste strategieén worden gebruikt om acceptabele investeringsstragién te
genereren in het slechtst mogelijke aandelenscenario. We vinden dat voor beide stra-
tegieén het slechtste scenario gegenereerd kan worden door het oplossen van een speci-
fieke vergelijking op iedere tijdstap.

Het werk in dit proefschrift is gebaseerd op gepubliceerde of ingediende artikelen die
voltooid zijn tijdens het promotieonderzoek.
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CHAPTER 1

Multi-period Stochastic Optimization and Dynamic
Programming

1.1. INTRODUCTION

Stochastic optimization refers to the problem of finding optimal controls in the presence
of randomness in an optimization process. Compared to a common optimization prob-
lem in the engineering field, the main difficulty encountered in stochastic optimization
is that the uncertainty has to be taken into account and thus the optimization object is
usually formed by using an expectation operator and perhaps also a variance operator.
In this chapter, we briefly describe the formulation of multi-period stochastic optimiza-
tion problems and the dynamic programming approach, which can be utilized to solve
this kind of problems. We elaborate on the special features of a newly developed numer-
ical method based on Monte Carlo simulation and least-squares regression, which can
be adopted in the dynamic programming. This method is the main technique imple-
mented by us for solving the problems described in the following chapters. An overview
of this thesis is provided at the end of this chapter.

1.2. MULTI-PERIOD STOCHASTIC OPTIMIZATION

We illustrate the problem in the one-dimensional case. We assume that the financial
market is defined on a complete filtered probability space (Q, &, {Z}o<s<T,P) with finite
time horizon [0, T]. The state space Q is the set of all realizations of the financial market
within the time horizon [0, T], & is the sigma algebra of events till time T, i.e. & =
Zr. We assume that the filtration {%;}o<;<T is generated by the price processes of the
financial market and augmented with the null sets of &%. The probability measure P is
defined on &. We firstintroduce a single-period stochastic optimization problem, which
can be formulated by':
Pt = argmaxE(Vr (X7 (@))|Xo, ]

and
Vo (Xo) = E[Vr (X1 ()| Xo, c°P'].

Here cop denotes the optimal control for maximizing the expectation of V1 (Xt (w)) based
on the information at time #, = 0. Xy stands for the state variable’ at time T, c for the

1We show the formulation for a maximization problem. The formulation for a minimization problem can be
established by changing the maximization operator to a minimization operator.
2In the following chapters, we may consider other notations for the state variables.
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control variable and w denotes the randomness in the optimization process, which may
have an impact on the state variable. In this thesis, we omit the letter w in case of no
confusion. Vj and Vr are termed the value functions, respectively, at time 0 and time T.

For a single-period stochastic optimization problem, the control ¢ usually has an
explicit impact on the values of the state variables. An optimal control for this kind of
problems can thus be generated by first transforming the stochastic optimization prob-
lem into an optimization problem without stochastic factors and then solving the new
problem with basic optimization techniques, for example, as discussed in [14]. How-
ever, in the multi-period case, the problem becomes much more involved. The challenge
comes since the controls at different time steps may have different impact on the state
variable X7 and even the control at one time step may be dependent on the controls at
other time steps. Therefore, it is usually not trivial to generate a series of optimal controls
for the multi-period stochastic optimization directly. A common approach to solve this
multi-period optimization problem is to divide this problem into several static problems
and to solve them sequentially in time. This approach is termed dynamic programming,
which will be introduced in the next section.

1.3. DYNAMIC PROGRAMMING

We consider a multi-period stochastic control problem, in which the control variables at
multiple time steps have to be optimized. This multi-period optimization problem can
be formulated by:

Vo(Xo) = max E[Vr(X7)IXo, {erdi=g ). (1.1)

{erd 2o

with a given value function V7 (Xr) at the terminal time step. Here we need to determine
the control variables {ct}[T:‘OAt at M time steps t € [0,At,2A¢,..., T—At], where At = T/ M.
In general, optimizing with respect to all controls {ct}tT;OAt at one run is a difficult task.
One possible to way to simplify this problem is to use the Bellman dynamic program-

ming principle [5].

1.3.1. BACKWARD RECURSIVE CALCULATION

The main idea of the Bellman dynamic programming principle is to transform a multi-
period optimization problem into several static optimization problems, which can be
formulated and solved in a backward recursive fashion. Since the value function Vy(X7)
at time T is known, the optimal control cc}[it A at time step T — At can be generated by:

P = argmaxE[Vr (X1)| Xr-ar, c7-ad)-
CT-At

After the optimal control c(fitAt, which is dependent on Xr_a;, is obtained, the value
function Vy_a:(X1-_a¢) reads:

Vr-ar(Xr-a0) =EIVr (XD X1-pn, 30y )
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The multi-period stochastic control problem can then be solved recursively backward in
time and the optimal controls and the value functions at sequential time steps read:

op

c, ‘= argrr%ax[E[VHm(XHm)IXt,ct], (1.2)
t

V(X)) = ElVisar(Xesad) | Xo, €571, (1.3)

fort=T-At, T-2At,...,At,0.

1.3.2. TIME-CONSISTENCY
In some cases, the optimization problem is formulated by:

Jo(Xo) = max g(EIVr(Xr)lXo,{crdi=g ).

{Cl}z=0

where the function g(-) is a nonlinear function, for example a quadratic function. In this
case, the backward recursive formulation cannot be established as in Equations (1.2) and
(1.3). We use Jo(:) rather than V() as in Equation (1.1) to denote the value function of
this problem. In order to solve this kind of optimization problems, there are in general
two approaches. We can try to reformulate the problem to be an equivalent problem
which can be solved by the backward recursive technique. Otherwise, we can introduce
a time-consistency condition into the optimization process so that optimization targets
at intermediate time steps can be established.
A time-consistency condition means that “given the optimal control for a multi-period

optimization problem, the truncated optimal control should also constitute the optimal
control for the truncated problem”. Mathematically, given any ¢ € [0,At,2A¢t,..., T — Atl,

a set of time-consistent optimal controls {c{’} -2 is defined by the optimal control for:

Ji(Xy) = max gEIVr(X7)I Xy, {esh D),
{c }T*At

Sts=t

with an additional requirement that the subsets {c!¢}1-21, 1 = t+ At, t +2At,..., T - At,
also form the optimal controls for

J:(Xp) = mTa>g[g([E[VT(XT)IXT,{cs}sT_A[]), T=1+At, t+2Af1,..., T —AfL.
na

=T
Sis=1
Since the time-consistency condition gives us information about how the problem
can be established at all intermediate time steps, a multi-period stochastic control prob-
lem with time-consistency requirements can be solved by dynamic programming in a
backward recursive fashion as well.

1.4. STOCHASTIC GRID BUNDLING METHOD

When the multi-period stochastic optimization problem needs to be solved, a challenge
is that conditional expectations with different filtrations need to be calculated. To accu-
rately and efficiently calculate the conditional expectations forms an important topic in
the financial engineering field. For example, in order to proceed the recursive program-
ming process, the value functions, as in Equation (1.3), at several intermediate time steps
have to be computed.
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In this thesis, we will calculate the conditional expectations based on Monte Carlo
simulation and cross-path least-squares regression. We adopt the idea of a recently de-
veloped method, the Stochastic Grid Bundling method (SGBM) [57]. Compared to other
commonly used regression-based approaches like [16, 65], our method exhibits a differ-
ent way to setup the regression step. First, when we perform the least-squares regres-
sion, we choose the regressands and the regressors collected from the same time step.
This approach is termed the “Regress-Later” technique. Compared to its counterpart the
“Regress-Now” technique, which relies on choosing the regressands and the regressors
collected from different time steps, Regress-Later is more involved and requires more
information of the stochastic processes. However, Regress-Later is proved to be more
stable than Regress-Now in [48]. Besides, by using the “bundling” technique, we decom-
pose a global regression problem, as considered in [16, 65], into several local regression
problems. In general, with the same basis functions for regression, more satisfactory
polynomial fitting can be achieved in the local domain than in the global domain.

In the following two subsections, we will explain the “Regress-Later” and “bundling”
techniques in detail.

1.4.1. “REGRESS-LATER” TECHNIQUE
Assume that we need to compute V;(X;) as in Equation (1.3). When using the Regress-

Now technique, we directly approximate the function V;;a;(X;4+a) with basis functions

formed by X; and c?pt:

K
VerneXesar) = Y @ wi(Xp, P, (1.4)
k=0

where {y1.(X;, c‘;pt)}lk(:0 denote the basis functions and {a};_ are the coefficients com-
puted via least-squares regression. By replacing Viia;(Xs+a7) in Equation (1.3) with its
approximation as shown in Equation (1.4) and using the basic property of conditional
expectations, we have:

K
Ve(Xp) = EWVirar(Xesad)| Xe, P 1= Y. ap i (Xe, c7P). (1.5)
k=0

Remark 1.4.1. We can thus also interpret the right-hand-side of Equation (1.4) as an ap-
proximation of Vy(X;), which is defined by the conditional expectation given X; and thus
forms a function of X;.

When we implement the Regress-Later technique, Vya((X;4a¢) is first approximated
with basis functions formed by X;as:

K

VieatXeear) = Y B Pk (Xevar)- (1.6)
k=0
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Then by inserting this approximation into Equation (1.3), we obtain:

Vi (Xy)

K
ELY B b (Xerad | Xe, ¢
k=0

K
> B Elpr(Xeran)| Xe, c;P. 1.7
k=0

According to Equation (1.7), in order to implement the Regress-Later technique, accu-
rate knowledge of the conditional expectations of the basis functions is essential. This is
a limitation for implementing the Regress-Later approach but at the same time this is an
interesting research challenge.

1.4.2, “BUNDLING” APPROACH

The other feature of our method is the “bundling” approach, which provides additional
information in the regression step. We again consider the problem of computing the
conditional expectations shown in Equation (1.3). Assume that X;;a; € ®;4a;, Where
®;.a; denotes a sub-domain of R (note that we are considering the one-dimensional
case in this chapter). Based on the information about the sub-domains, using the Regress-
Later technique, we can approximate Vyya:(Xr4a7) by:

K
ViearXesan) ® Y Pre- dr(Xpwar). (1.8)
k=0

Here we still consider the basis functions {¢ (X;+a t)}lk<:0 as used in Equation (1.6). Since
we have the information that X;,A; belongs to a specified sub-domain, the coefficients
B k}lk(:o may be different from {f k}Ik<:O' Approximating value functions in a sub-domain
usually requires fewer basis functions for achieving satisfactory accuracy.

1.5. OUTLINE OF THIS THESIS

In this thesis, we develop, analyze and implement simulation-based numerical algo-
rithms to solve various kinds of multi-period stochastic control problems.

In Chapter 2, we consider a Bermudan option pricing problem. At a given time step,
the prices of risky assets, whose dynamics are random, are the state variables and the
control variables can be chosen to be either 0 or 1, which respectively stand for exercising
an option or not. For the Bermudan option pricing problem, since the dynamics of the
state variables are not affected by the choice of the control variables, this problem is
not involved. It constitutes the point of departure for us to investigate the multi-period
stochastic control problems. In this chapter, a general way to configure our algorithm is
discussed.

In Chapter 3, we solve a utility-based multi-period portfolio optimization problem.
Similar to the option pricing problem, the state variables in the utility-based portfolio
problem are not influenced by the control variables. However, this problem is more
involved since the control variables may take any real number as their values. To suc-
cessfully solve this problem requires an efficient and robust numerical algorithm. The

,

3

Y
'l
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advantage of using our numerical algorithm over other simulation-based approaches
will be shown in that chapter.

A more involved portfolio management problem will be discussed in Chapters 4 and
5. In Chapter 4, a multi-period mean-variance optimization problem, which cannot be
solved directly via dynamic programming, is first transformed to a multi-period target-
based quadratic optimization problem, which can be solved in a backward recursive
fashion. Since the control variables for this problem have a significant impact on the
state variables, the state variables cannot be simulated without taking control variables
into account. We introduce a forward-backward numerical algorithm for solving this
problem. Using this algorithm, we first simulate paths with sub-optimal controls in
a forward process and then update these controls in a backward process. Highly sat-
isfactory results are obtained. In Chapter 5, the multi-period mean-variance problem
with time-consistency requirements is discussed. By carefully choosing value functions,
we utilize a modified forward-backward numerical algorithm to solve this problem. A
link between the problems respectively discussed in Chapters 4 and 5 is established.
The mean-variance frontiers obtained by performing the optimal controls for these two
problems are compared.

In Chapter 6, we discuss the robust counterparts of the problems solved in Chapters
4 and 5. Introducing the robustness requirement changes the original mean-variance
problem, which is either a minimization problem or a maximization problem, to be a
minimax optimization problem. Analysis on the robust optimization problems is given
and the robustness of the mean-variance strategies discussed in Chapters 4 and 5 is
checked numerically.



CHAPTER 2

Bermudan Options under Merton Jump-Diffusion
Dynamics

In this chapter, we utilize the Stochastic Grid Bundling Method (SGBM) for pricing multi-
dimensional Bermudan options. We compare SGBM with a traditional regression-based
pricing approach and present detailed insight in the application of SGBM, including how
to configure it and how to reduce the uncertainty of its estimates by control variates. We
consider the Merton jump-diffusion model, which performs better than the geometric
Brownian motion in modeling the heavy-tailed features of asset price distributions. Our
numerical tests show that SGBM with appropriate setup works highly satisfactorily for
pricing multi-dimensional options under jump-diffusion asset dynamics.

Keywords: Monte Carlo simulation - Least-squares regression - Jump-diffusion process -
Bermudan option - High-dimensional problem

2.1. INTRODUCTION

Pricing high-dimensional Bermudan options is a challenging topic. For this type of
problem, the traditional methods based on solving partial differential equations or on
Fourier transformation may fail, because the complexity of these techniques grows ex-
ponentially as the dimensionality of the problem increases. Pricing methods based on
simulation generally do not suffer from the curse of dimensionality and, therefore, have
become increasingly attractive for high-dimensional pricing problems.

Simulation-based pricing for Bermudan options took off in 1993 when Tilley [81] in-
troduced a bundling algorithm to estimate the continuation values of the option at in-
termediate time steps. In 1996, an option pricing method based on regression was in-
troduced by Carriere in [20]. The basic idea was to estimate the option’s continuation
values at all time points by projections of the future option values on finite-dimensional
subspaces spanned by pre-selected basis functions. Depending on the procedure of gen-
erating basis functions, regression methods can be categorized into two types: Regress-
Now and Regress-Later approaches, as in [48]. More details of these two methods will be
discussed in Section 2.3. Following Carriere’s work [20] many papers discussing regres-
sion methods based on the Regress-Now feature appeared, for example [65] and [82].
However, the investigation on Regress-Later methods is not abundant.

This chapter is based on the article 'Pricing Bermudan options under Merton jump-diffusion asset dynamics’,
published in International Journal of Computer Mathematics, 92(12):2406-2432, 2015 [24].

7
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The Stochastic Grid Bundling Method (SGBM), introduced in [57], belongs to the
type of Regress-Later approaches. In SGBM, both “bundling” and “regression” are uti-
lized to estimate the continuation values. Similar to [18], SGBM produces two esti-
mators: one biased high and the other biased low, which respectively correspond to
the “value function approximation” and the “stopping time approximation” discussed
n [79]. Compared to the well-known least-squares method (LSM), introduced in [65],
for pricing Bermudan options, SGBM typically yields estimates with significantly lower
variances, according to [57, 59]. In our numerical tests, we obtain similar results: for
achieving comparable accuracy, many more paths and higher computational times are
required in LSM compared to SGBM. Moreover, according to [57], SGBM generates up-
per and lower bounds for the option price and also accurate sensitivities or Greeks of the
option price, while the original LSM is only applicable for calculating the lower bound of
the option price.

In this chapter, we extend the discussion of SGBM in four directions. First, we gain
insight into the essential components of SGBM. According to our analysis, it is sufficient
to choose the basis functions for regression of polynomial type, which ensures that con-
ditional expectations of the basis functions can be calculated exactly. Secondly, in the
error analysis we explicate that the number of bundles used is a “trade-oft” factor of two
types of biases in SGBM. Thirdly, we combine SGBM with control variates to reduce the
variance of the biased low estimator. We implement the traditional control variates and
an improved approach proposed in [73]. According to the tests, the improved control
variates work uniformly better in the one-dimensional case, but for higher-dimensional
problems the cost of calculating the improved control variates is significant and the tra-
ditional control variates appear favorable. Instead of considering plain geometric Brow-
nian motion we focus our discussion on assets with their dynamics following the Merton
jump-diffusion process for high-dimensional Bermudan option pricing.

This chapter is organized as follows. Section 2.2 gives the formulation of the problem.
In Section 2.3 we compare SGBM with the standard regression method. In Section 2.4 we
focus on the features of SGBM and explain how we can configure SGBM. In Section 2.5
the sources of errors in SGBM are compared to those in the standard regression method.
Section 2.6 discusses traditional control variates and the improved versions. In Section
2.7 the Merton jump-diffusion model is introduced and in Section 2.8 the corresponding
numerical results are presented.

2.2. PROBLEM FORMULATION: BERMUDAN OPTION PRICING

This section describes the Bermudan option pricing problem mathematically and sets
up the notations used in this chapter. We assume that a risk-neutral measure Q) equiva-
lent to P exists under which the asset prices are martingales with appropriate numeraire.
The Bermudan option considered can be exercised within a set of prescribed time points
T=1[t=0,...,tm,..., tm = T]. The d-dimensional state variable is represented by an %;-
adapted Markovian process S; = (S}, ..., Sf) € R?, where t € T. Let h(S;) be the intrinsic
value of the option, i.e. the holder of the option receives payoff g(S;) = max(h(S;),0) if
the option is exercised at time ¢. With the money savings account process 2; = exp( fot reds),
where rg denotes the instantaneous risk-free rate of return, we define the discounting
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process as
2,

= Zim
" @tmﬂ ‘
For simplicity, we consider the special case where r; is equal to a constant r. The prob-
lem of valuing a Bermudan option is to find the optimal exercise strategy (or equivalently

the optimal stopping time, 7 € T) and calculating the expected discounted payoff follow-
ing this strategy, that is:

Dy

h(S;)

T

Vo(Sp) =supk . 2.1)

TeT

Fo

The expectation E[-] is computed under the risk-neutral measure Q. Here we write the
option value in the form V4(Sp) to emphasize that when the asset dynamics are fixed the
option value is uniquely determined by the initial asset value.

If we consider a dynamic programming approach, the optimal exercise strategy can
be determined via a recursive process, by which the option values, V;, (S;,,), at interme-
diate time steps can be computed correspondingly. The value of the Bermudan option
at maturity state' (T,Sr) is equal to its payoff, i.e.

Vr(St) = g(S7) = max(h(Sr),0). 2.2)

In the recursive process, the conditional continuation value Qy,, (S;,,) associated to
state (f;,,S:,,), i.e. the discounted expected option value at time f,,+1 conditioned on
filtration %;,,, is given by:

th (Stm) = DtmE[VtWH—l (Stm+1)|stm]' (23)

We write S;,,, which means that the stock price at time ¢, is equal to S;,,. In the follow-
ing discussions, the condition of the expectation may also be formulated as S;,, = Sto
emphasize that the stock price at time t,, is known as a realization S.

The option value at state (¢,,,S;,,) is then given by taking the maximum of its contin-
uation value and the direct exercise value,

Vi, (St,,) = max(Qy, (S4,), 8(S4,,)).- (2.4)

We are interested in finding the option value at initial state (fy,S,), using either Equa-
tion (2.1) or the recursive process mentioned above.

2.3. REGRESSION METHODS FOR BERMUDAN OPTION PRIC-

ING
We consider the Bermudan option with M equally distributed exercise opportunities be-
fore maturity T, i.e. the option can be exercised at time ¢, = mAt, where m=1,...,M
and At = T/ M. When the Monte Carlo generation for the sample of N paths is done and
the function values h(-) are determined, we find the option value associated to each path
at maturity directly via Equation (2.2). Similarly for the ith path we obtain the direct ex-
ercise value g(S;,, (7)) at each exercise time f,,. The remaining problem is to calculate

11t denotes the realization at time T with the values of the option’s underlying assets equal to S-.

i

i
T
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the conditional continuation value Qy,, (S;,,) as in Equation (2.3). To settle this problem,
regression methods are employed.

As mentioned, regression methods can be classified into two categories: Regress-
Now and Regress-Later approaches. In the remaining part of this section, we consider
the standard regression method, which resembles the method introduced in [20, 46], as
a typical case of Regress-Now methods and the Stochastic Grid Bundling Method as a
representative of Regress-Later methods.

2.3.1. STANDARD REGRESSION METHOD
The classical standard regression method (SRM), described in [20, 46], has been widely
discussed for pricing Bermudan options. The pricing procedure can be described as:

Step I: Get the option value at maturity time for each path:
VtM (S[M (i)) = maX(h(S[M (i))) 0)) i= 17 ey N.

Recursively moving backward in time from maturity time ¢, the following steps
are performed at time t,,,, m < M.

Step II: Regression step.

For all paths, we get the regression parameters {ack}Ik(:1 by regressing the option
values {Vy,,.,, (Si,,,, ()}, on basis functions [¢1(S;,,(i)),..., Pk (Ss, (NIY,, that
are constructed using the asset values at time ¢,,. Linear regression offers us an
approximation of the option value for any specified S;,, , i.e.

K
Vipir Stp) = ) ardi(Se,,). (2.5)
=1

Step III: Calculate the continuation value and the option value at time ¢, for the
ith path:

Q1,, (S, (1) Dy, E[V4,.,(St,.,)ISt, =St,, ()]

U

D, E

K
Z ak¢k(stm)|srm = Szm(i)]
k=1

K
Dy, Y axdr(Se, (). (2.6)
k=1

The first equality is immediate from the definition of the continuation value in
Equation (2.3). The approximation is supported by Equation (2.5). The second
equality is valid based on a property of conditional expectations. The option value
Vi,u (84, (1)) can be computed as:

Vi, (81, (1)) = max(Qy, (S, (1)), 8(S4,, (1))). 2.7
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time step

Figure 2.1: Paths from initial state to terminal time step 3. At the first backward recursion step, paths are
bundled according to their state at time step 2, giving the “red” and “blue” paths in two bundles. At the next
recursion step, the paths are bundled according to their state at time step 1, giving the “magenta” and “green”
paths.

2.3.2. STOCHASTIC GRID BUNDLING METHOD

The Stochastic Grid Bundling Method (SGBM) introduced in [57] belongs to the category
of Regress-Later approaches. After generating all paths by Monte Carlo simulation, the
algorithm of SGBM can be described as:

Step I: Get the option value at maturity for each path:
Vine Sty (1)) = max(h(Sy,, (0)),0),i =1,..., N.

The following steps are subsequently performed at time ,,;, m < M.

Step II: Bundle paths at time #;,.

With a specified bundling criterion, we bundle all paths at time ¢, into %,,,(1),...,
B, (D), ..., By, (B) non-overlapping partitions. Figure 2.1 illustrates how bundling
is performed in the one-dimensional case. The details of the bundling technique
are discussed in the section to follow.

Step I1I: Regression step.
Assume that there are Np(b) paths in bundle 28,,, (b) and denote their asset values

at time f;,,1 as {S(tf;)+1 (i)}i.\fl(b) and the option values as {Vt(i’il (i)}f.\fl(b)

paths, we get the bundle regression parameters {« k(b)}I]f:1 by regressing the option
values {Vt(jil (St (i)} V2 on the basis functions (1 Ss? ay,..., (J)K(S(b) e,

i=1 tm+1 Im+1 i=1

which are constructed using the asset values at time #,,.;. For assets whose values

S, =[S} ,...,S? | are covered by bundle %;,, (b), the corresponding option value
m m

at time t,,+1 can be approximated byz:

. For these

K
Vipir Stmin) = Y @k(D)Pic(Sy,,,)- (2.8)
k=1

2The authors of [9] show that Regress-Later is fundamentally different from Regress-Now, noticing that the
former does not introduce a projection error between two time steps in the regression stage. As a result,
Regress-Later achieves a faster convergence rate than Regress-Now in terms of the sample size.

o
i

e wy .
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At each time step, the regression is repeated for all bundles. In each bundle, the
same basis functions [¢p; (), ..., Pk (-)] are utilized.

Step IV: Calculate the continuation value and the option value at time t;, for the
ith path.

Assume that the ith path at time ¢, belongs to bundle %;,,(b). The continuation
value at time f,, associated to this path is given by:

Q1 S4,, (1)) = Dg, E[Vy,, (SISt = St,, (1]
K
~ Dy, E| ) ar®)¢r(Si,,.)|Si, = st,n(i)]
k=1

K
Dy, ) ar(E[$k(St,,.))I8t, =Sy, ()]

k=1
Note that, compared to Equation (2.6), the last equation contains conditional ex-
pectations of the basis functions, which is typical for Regress-Later approaches.

The motivation for the equality and approximation signs above is the same as for
Step III of SRM. To obtain a closed-form expression for Qy,, (S;,, (i)), we need an-
alytic conditional expectations of the basis functions, E[¢x(S,,,,)IS:, =St ()],
k=1,...,K, which are achievable when the basis functions {¢ (S tmﬂ)}llf:l are cho-
sen appropriately. The option value can be computed via Equation (2.7).

2.4. CONFIGURATION OF SGBM
There are basically two distinct features between the algorithms of SGBM and SRM:

* The basis functions in SGBM are required to have explicit analytic moments so
that there is no error introduced in the last step of the algorithm. For SRM, the
basis functions can be chosen freely.

At each time step, the regression in SRM is done for all paths, while the regression
in SGBM is done separately within each bundle. By the bundling technique in
SGBM, the global fitting problem reduces to a local fitting problem.

Based on these two points, we will explain how to configure SGBM to make it feasible
and robust for different scenarios.

2.4.1. CHOICE OF BASIS FUNCTIONS
The special requirement for the basis functions in SGBM may complicate the application
of this pricing algorithm for some involved options. For example, in [57], the powers of
the maximum of asset values are chosen as the basis functions for pricing max-on-call
options. Since the moments of these basis functions are not analytically available, they
need to be approximated by Clark’s algorithm [22]. Because of the inaccuracy of this
numerical approximation, the duality method is required. This procedure makes the
pricing algorithm less tractable.

We find that if the following conditions are satisfied, it is not necessary to choose
“max” or “min” functions as the basis functions.
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Condition 2.4.1. The transition probability density function f(s,Ss; t,S;), which denotes
the probability density function from state (s,S;) to state (t,S;), is continuous with respect
toS;.

Condition 2.4.2. The option’s direct exercise value g(S;) is continuous with respect to S;.
With these conditions, we can prove the following theorem:

Theorem 2.4.3. At each exercise time, the option value Vy, (S;,) can be uniformly ap-
proximated by polynomials formed by S,

Proof. Consider the backward pricing process of Bermudan options. At maturity time
we have: Vr(S7) = g(St), which is continuous with respect to Sy. This follows directly
from Condition 2.4.2. We then use backward induction. Assuming that V;,,, (Ss,,,) is

continuous with respectto S, ., , we have:
th (Stm) Dtm[E[V[rrHl (Stm+l)|stm]

Dl’m ‘A‘Qd Vler] (Stm“)f(tm; stmv tm+lrstm+1)dstm+1

u

D, fH Vi Sty o) f (St s Erasts St )dSe .

The second equality is from the definition of conditional expectation and assuming that
the dimension of S, , is d. The approximation sign is because of truncation of the inte-
gral from R to H. Without loss of generality, we assume that H is a compact subspace
of R,

Since V;,,,, (S4,,.,) is continuous with respect to S;,,,, on the compact domain H, itis
bounded. With Condition 2.4.1, we can prove that Qy,, (S;,,) is continuous with respect
to Stm .

The option price V;,, (S;,,) is constructed by taking the maximum of the continuation
value and the direct exercise value:

Vi, (St,,) = max(Qy, (Sy,,), 8(S4,,)) 2.9)

and both Q,, (S;,,) and g(S;,,) are continuous with respect to S;,,. So, the option price
Vi,,(8t,,) is also continuous with respect to S, .

We conclude the proof by using the generalized Stone-Weierstrass theorem on the
space H. O

Conditions 2.4.1 and 2.4.2 generally hold in option pricing. The continuous transi-
tion density functions associated to the commonly implemented models, such as the
geometric Brownian motion and the jump-diffusion model, satisfy Condition 2.4.1 di-
rectly. The direct exercise value of a call or a put option is continuous with respect to the
values of underlying assets. However, since a digital option does not have a continuous
payoff function, using the Regress-Later approach to price a Bermudan digital option
may lead to a large approximation error.

Theorem 2.4.3 tells us that it is not necessary to include the “max” or “min” of un-
derlying assets as a basis function. We choose here to only use polynomials as the basis
functions in SGBM for multi-dimensional problems.

.
y
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2.4.2. BUNDLING

A good “bundling” technique should make the regression within the bundle easier, or,
more precisely, make the regression less biased even though only a few paths are inside
the bundle. This gives us a hint for bundling: if we bundle the paths such that paths in
one bundle have similar option values, we expect that regression in this bundle would
be easier.

The instruction that paths inside one bundle should have similar option values is not
directly under our control, since bundling is done at time ¢, but the option values con-
sidered in regression are from time t,,,. However, the option value at time t,,,+; should
be to some degree related to its intrinsic value at time ¢,,. For example, considering the
max-on-call option, if one path has a large intrinsic value at time ¢,,, which means that
one asset associated to this path has a large value, we expect that the option value at this
path at time #,,1; would still be large. In other words, since asset values are usually con-
tinuous in probability, paths, whose intrinsic values at time ¢, are almost identical, are
supposed to have similar option values at time #,,+1.

“Bundling” is not new in the field of Bermudan option pricing. In [81] Tilley initiated
the technique for pricing Bermudan options by Monte Carlo simulation using a simple
bundling algorithm, which is however only applicable for a one-dimensional problem.
Tilley’s bundling algorithm can be described as a two-step method: “reordering” and
“partitioning”. In the “reordering” step, all paths are sorted according to their asset val-
ues. Then in the “partitioning” step, the reordered paths are partitioned into distinct
bundles of N, paths each. The first N}, paths are assigned to the first bundle, the second
N, paths to the second bundle and so on.

In [41] and [3], Tilley’s bundling is extended to high-dimensional scenarios. The tech-
nique in [41], where multi-dimensional max options are dealt with using bundling, is to
first reduce the multi-dimensional bundling problem to one dimension by choosing one
single asset as representative for the multi-dimensional function. All paths are then bun-
dled by applying Tilley’s algorithm on the one-dimensional data. Within each bundle, a
next bundling step is done by choosing another single asset as the new representative
and again applying Tilley’s algorithm. These newly generated bundles are called the
“sub-bundles”. The bundling can be done recursively within each sub-bundle until a
prescribed number of bundles is reached.

Inspired by bundling in [81], [3] and [41], we also define our bundling algorithm as a
two-step method. For reordering the paths in the multi-dimensional case we first trans-
form the multi-dimensional problem to a single-dimensional problem. Mathematically,
it is equivalent to mapping the vector S; = (S}, ..., Sf) to a number by specifying a func-
tion R(-), such that R : R? — R. In this chapter, we call the variable R(S;) the “bundling
reference”. Sometimes, we need more than one bundling reference as shown in [41]. In
that case, we denote the bundling references subsequently as R; (S;), R2(S;) and so on.

In [81] and [41], the bundling is done to make each bundle cover the same number
of paths so that we call it “equal-size bundling”. This is different from the bundling in
the original SGBM in [57], which we call “equal-range bundling”®. In this chapter we will
perform “equal-size bundling”. According to our tests, there is no clear advantage on ac-

31f we want to bundle the paths into two parts, the partition point for “equal-size bundling” is the median of
the asset prices while that for “equal-range bundling” is the mean of the asset prices.
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curacy of either bundling scheme over the other. However, “equal-size bundling” is more
robust than “equal-range bundling”, because we always keep enough paths within each
bundle to support the regression. If we choose the latter, the number of paths within
some bundles may be so small that the estimation in those bundles is highly biased. The
necessity of having enough paths inside one bundle will be further discussed in the next
section.

Our bundling algorithm for the paths with asset values {S, (i)} ,, where S, (i) = (S} (i),

=1’

...,8%(1)), can be described as:

Step I: Reordering

(1) Based on the type of option, choose mapping functions R;(-),...,Rp(-), by
which the bundling references can be generated.

(2) Start with bundling reference R; (S;), bundle all paths equally into n; parti-
tions following Tilley’s bundling. Record the index of the bundle b, (i) (b, (i) €
{1,2,...,m}), where the ith (i € {1,2,..., N}) path is located in.

(3) With reference R»(S;), divide the paths in a sub-bundle generated in the pre-
vious step into ny partitions. Again record the index of the bundle b, (i) (b2 (i) €
{1,2,...,n2}), where the ith (i € {1,2,..., N}) path is located in.

(3) Repeat the process above with each bundling reference inside a sub-bundle.
For the ith path, we get the vector recording its location (b, (i),..., bp(i)), see
Figure 2.2 for an example of recording the location of a single path.

(4) Construct the global bundling reference for the ith path as:

RS;()=by (i) - NPV 4+ bo(i)- NP2+ 4 bp_1(i))-N+bp(i),i=1,...,.N

(5) Reorder the paths according to the global bundling reference R(S;).

Step II: Partitioning
N
P

Partition the sorted paths into HI;ZI ny, bundles each of N

P
P paths, where [T,,_,

is an integer factor of N.

The following examples demonstrate that some common bundling schemes fit into
our generalized bundling technique.

Example 2.4.4. Foraone-dimensional problem, we choose the bundling reference R(S;) =
S:. So the bundling algorithm covers the simplest one-dimensional case.

For a basket option of assets S; = (S%, vy Sf), if we choose bundling references respec-
tively equal to the value of each individual asset, we will get “bundling on the original
state space’, as termed in [57].

3
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(a) Start bundling according to Ry (S¢) = S} with (b) Within each bundle perform sub-bundling ac-
n1 = 4. Record the location of Path A as (1,-). cording to R2(S¢) = S? with 7y = 3. Record the lo-
cation of Path A as (1,3).

Figure 2.2: Obtaining the location of Path A with two bundling references.

CHOOSING THE BUNDLING REFERENCE
After we have specified the basis functions of polynomial type, the performance of SGBM
depends on whether we can choose an accurate bundling reference. For example, when

we consider the geometric basket option with underlying assets following multi-dimensional

geometric Brownian motion, an accurate bundling reference is the geometric mean of
the asset values. This is supported by the fact that the geometric average of (jointly) log-
normal random variables is still log-normal. This implies that when dealing with the
geometric basket option an optimal bundling reference is the geometric mean of the as-
set values. Moreover, although there is no representation technique for the arithmetic
basket option, our tests suggest that the arithmetic mean of asset values is a preferred
bundling reference for arithmetic basket options.

For options whose payoff functions are related to the “max” or “min” of asset values,
choosing the intrinsic value alone as the bundling reference is not sufficient, as shown in
Example 2.4.5. Inspired by this example, we should separate paths whose option values
are related to only one asset, from paths whose option values are affected by each asset.
This gives us another bundling reference: the difference between the asset values. In
Section 2.8.2, we can see that combining them offers us a much better result than using
any of them individually and this combination also outperforms other possible combi-
nations of the bundling references.

Example 2.4.5. If we consider a two-dimensional put-on-min option with assets S; =
(S},S%) and strike K = 2, following the instructions in the previous subsection we choose
basis functions as [1,S}, S?]. Assume that we have six paths respectively with assets S;(1) =
(1,10), S;(2) = (10,1), S;(3) = (1,0.9), S;(4) = (1,1.1), S;(5) = (0.9,1) and S;(6) = (1.1,1).
Their option values are recorded as [1,1,1.1,1,1.1,1].

If we bundle these paths in the same partition based on their intrinsic values (Figure
2.3(a)), then the approximated option values will be[1,1,1.05,1.05,1.05,1.05]. If we intro-
duce one more bundling reference (Figure 2.3(b)) so that the first two points are separated
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(a) One bundling reference (b) Two bundling references

Figure 2.3: Bundling for pricing the two-dimensional put-on-min option.

from the other ones, then the approximated option values for the last four paths will be
given by [1.1,1,1.1,1].

2.5. ERROR ANALYSIS: COMPARING SRM AND SGBM

In this section, we will compare the errors of SRM and SGBM when estimating the con-
ditional continuation value Qy,, (S), where we denote $ as a realization of S;,- Here
we consider the approximation error in one backward pricing step, so the option value
Vipar Stey) at time 5,11 is assumed to be known exactly. In the following discussions,
we will write 7(Sy,,,,) as the density function of S, ,, conditioned on S, =S. With these
notations, the analytic continuation value Qy,, (S) reads:*

Q:,,8) =E[V4,,, (S, )ISs, =S =E" (V4. (St,,.,)], (2.10)

where E”[-] indicates that the expectation is computed with 7(S;,,,,) as the density func-
tionof Sy, ,.

2.5.1. ERROR IN THE OPTIMAL REGRESSION-BASED APPROACH

Let us start with a trivial problem where we perform sub-simulation to calculate Qy,, S).
In the framework of Monte Carlo pricing, we simulate the realizations {S;,,,, (i)}fi | with
the dynamics associated to the density function 7(S;,,,,)°. We denote their empirical
density function as 7 (S;,,,,), which can be defined by6:

N
ASty) = N71Y 884, (D) = Siyi),
i=1

4For simplicity, we neglect the discounting term D tm-

5Since 7(S tm+1) is defined by the density function of S, conditioned on 8¢, = §, the simulation gf Sty
with respect to this density function can be treated as a sub-simulation from the unique state Sy,,, =S.

6In the following sections, other empirical density functions can be defined in a similar fashion.

3
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where 6 () indicates a kernel density function. With a suitable simulation technique, we
assume that the empirical density 7(S;,,, ,) resembles its theoretical counterpart (S, ,, )
when the number of simulation trajectories goes to infinity.
Since the function V;,,,,(Ss,,,) is assumed to be known, we find the realizations
Vi Sty (i))}fi , of the exact option value. If we estimate Qy,, (8) by regression instead
of simply by taking the average of {V,,,, (Si,,,, (i)}, we can regress {Vy,,,, (Si,,,, (D},
on {¢; (th+l @, ..., gbK(Sth (z’))}ﬁ\i1 and obtain the regression parameters {dk}le,
which minimize the sum of the squared errors of the samples:

N
3
i=1

K 2
Vi Sty ) = Y @k k(S (m) :
k=1

Since {S;,,,, (i)}ﬁ\i , follows the empirical distribution of density #(S;,,,,), the regression
parameter {& k}le also minimizes the mean square error:

A K 2
[En Vtm+1 (Sthrl) - Z dk(pk(strr”l)) ] *
k=1

If we denote the regression error €% (S,,,.,) as

N K
€n(stm+l) = Vtm+1 (Stm+l) - Z dk(?bk(stmﬂ)’
k=1

the least-squares linear regression guarantees:
E" €7 (Sy,,,)] =0. @.11)

The approximated continuation value Q,, (S) can be computed as:

Q.,,S) E”

K
Y @x¢r(Si,,,)
k=1

E" Vi (Styer) €7 (St1)]
Q1,8+ (E"167 (84,11 ~E7[€7 (S5, ).

The first equality is directly from the regression-based approximation scheme. The
second equality is valid because we rewrite the approximated option value as the true
option value plus regression error, and the last step is supported by Equation (2.11).
Since we can simulate a large number of realizations of S;,,,,, the empirical distribution
function #(S,,,,,) resembles 7(S;,,,,). Moreover, using the Cauchy-Schwarz inequality
we have:

|E” (€™ (S4,,,,)] — E"[€7 (S,,.,)]]
| /€™ (St )70(S1,0:1)8S 11 = [51 €7 (S0, ) (S1,,,,)dS ., |

1
(fH (eﬁ(stmﬂ))zdstm-v-l) ‘. (fH (”(Stmﬂ) _ﬁ(stm+1))2dstm+1) ’

IA
D=
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where the integral domain H is defined in Section 2.4.1 as a truncated subspace of RY
and we assume that the regression error is bounded on this domain. When the sample
size is sufficiently large, |E” [e" (S¢,,.1)1 —EF e (Stm+1)]| will be close to 0 and therefore
th (S) will be an accurate approximation of Q;,, S).

However the process mentioned above is not achievable in a real application, since
we cannot afford sub-simulation for every state (f,,,5;,,). As feasible alternatives, we

have the cross-path regression methods, for example, SRM and SGBM.

2.5.2. ERROR IN SRM

In the regression step of SRM, we regress the option values {V;,,,, (Sy,,., (i))}f.\i , on the ba-
sis functions [¢1 (S, (1)),..., Pk Sy, (i))]i.\i 1~ Since all paths are generated from the same
initial state, we denote the theoretical density function of S;,,,, by 7(S,,,,) and the em-
pirical density function, which is represented by the samples {S;, ., (i)}i.\i 1 by 6 (S¢,,.1)-
Since the regression is done with respect to the samples {S;,, ., (i)}fi we have

ET6 "6 (S,,,,,)] = 0. 2.12)

After we determine the regression parameters {ag}lk(:l, the approximated continua-
tion value Qgﬂ (S) can be generated as:

K

al di(St,)
k=1

Qi ®) + (E7[€70(S,,,.)) ~E™6[€76(S,,. )1 + (E™C1€76(S,,,,)] ~ EC €7 (Sy,,,,)] ).

QS = F" = E" Vi, Styr) + €76 (S ty,1)]

The last equality is found by writing E” [e7¢ (St,,,,)] in the form of a telescopic sum
and eliminating the last term based on Equation (2.12).

When there are enough samples, we have 7(S;,,,,) = 76(Sy,,,,), which leaves the
approximation bias in SRM merely determined by

E*[€76 (S, )] —E"C[e"6 (S, ).

Since 7(S;,,,,) stands for the analytic density function of S;, ,, conditioned on S;,, =
$ and 75(S;,,,,) for the analytic density function of S;, ,, conditioned on S;,, they are
obviously not identical. This makes the path-wise bias in SRM uncontrollable no matter
how we change the setup of simulation.

2.5.3. ERROR IN SGBM

In SGBM, we consider the paths originating from the same bundle 23,,, (b), which covers
N O) IR
i=

. on the basis func-
m+1

the state (tm,S), and regress the option values {Vt(,i’il (S
tions [¢; (S(trbn)+1 @),.. .,(JJK(S(II:W)+1 (i))]g\i’*l(b). Again we denote the theoretical density func-
tion of §;,,,,, whose previous state (#,,,S;,,) is within the spreading of bundle %;,, (b), by
7B(8y,,,) and the empirical density function of {S(til1 (i)}ﬁ\iBl(b) by 75 (St,,.,)-

With similar arguments as in SRM, we obtain the approximated continuation value
Q2 (S) by SGBM as:

QF 8= Qi,, )+ (E"1€™ (84, )1 ~E™ [ (Sy,,. )| + (E™ (€7 (S, )]~ E (€™ (S5,

3
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Different from SRM, the setup in SGBM can help us to control the bias. When we
increase the number of bundles, the spreading of any individual bundle will reduce. In
the limiting case where the bundle covers only the state (¢, S), we will have 7 B(St,.1) =
7(8s,,,,). However, in a simulation-based approach, if we do not increase the total sam-
ple size, increasing the number of bundles will cause a decrease of the number of paths
per bundle, which makes the empirical density function 7 3(S;,,,,) different from the an-
alytic density function 75 (S,,,,).

To summarize, if we regard E” "B (S )] —E7B [€"B (S¢,,.,)] as the “distribution bias”
and E7B [¢75 (St — E7B (7B (8,,.,)] as the “sample bias”, the number of bundles is a
“trade-off” between these two types of biases. To make a balance, we should choose the
number of bundles neither too small nor too large so that both the biases are controlled.

Based on the analysis above, we can conclude that the path-wise estimation error of
regression methods comes from two parts: the regression error and the sample bias. By
choosing suitable basis functions, we reduce the impact of the first part. By introducing
“bundling”, we control the sample bias and also simplify the problem of global regression
to that of local regression.

2.6. VARIANCE REDUCTION FOR PATH ESTIMATOR

2.6.1. PATH ESTIMATOR

From the backward pricing algorithm of SGBM, we will get a biased high estimator V(Sq)
of the initial option value V;(Sp). We call this estimator the direct estimator. Once we ob-
tain the regression parameters for any bundle at any time step, the approximated contin-
uation value th (S4,,) of the option at the given state (#;,,,S;,,) can be calculated. Relying
on this approximation, we can decide either to exercise the option or to hold it at the
specified state. Based on this exercise policy and some fresh simulated paths, we can
develop a biased low estimator V,(Sp) of the option value V;(Sp). We call this estimator
the path estimator. The procedure of calculating the path estimator can be described as:

Step I Simulate a new sample of paths {Sg(i),..., S, (D)}, i =1,..., Np.

Step II Based on the approximation of the continuation value, determine the op-
timal exercise time 7 (i) for the ith path:

(i) =min(ty, : (S, (1) = Qr, (Sy, (), m=1,..., M). (2.13)
Step III Compute the path estimator:

N, .

1 £ hSzp)(@)

L= =g
pi=1 (i)

The proof of convergence and the bias of the path estimator are shown in [57].
2.6.2. VARIANCE REDUCTION: CONTROL VARIATES

When estimating the option value via Monte Carlo simulation, we not only desire a pre-
cise point estimate but also pursue a reasonable interval estimate, which is constructed
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in the form of the point estimate plus-or-minus its standard error multiplied by the con-
fidence factor. A satisfactory simulation-based method should provide us a narrow in-
terval estimate.

Within the framework of the general simulation-based estimation, the standard error
of the point estimate is believed to be proportional to the reciprocal of the square root of
the sample size. Therefore, to reduce the range of the interval estimate by a factor of 10,
the sample size should increase by a factor of 100.

Variance reduction methods offer us an alternative approach to reduce the standard
error of the estimation. A commonly used variance reduction method is the control vari-
ate method, which has been implemented for American-style option pricing, for exam-
ple, in [15], [19] and [73].

As the first choice for control variates for pricing Bermudan options one would con-
sider the corresponding European options, whose values can be easily computed. From
the perspective of optimal exercise we never exercise a single asset Bermudan call op-
tion before its maturity, so using the European option will provide us a zero-variance
control. As concluded by Rasmussen in [73], for pricing the Bermudan option “a good
control variate” should have the following two properties: it should be highly correlated
with the payoff of the option in question and its conditional expectation should be easy
to compute.

For simplicity, we restrict the following discussion to using only one control variate.
For the generalized control variate method, where multi-controls are involved, we refer
the reader to [1].

PATH ESTIMATOR WITH CONTROL VARIATES

To improve in particular the path estimator based on crude Monte Carlo simulation by

control variates, the Bermudan option value h(s@L’())(m for the ith path will be replaced by:
T

h(Sz i) (1))
(i)

ov;(i) = +0(Y (i) —E[Y]),

where Y (i) denotes the control variate for the ith path and E[Y] is its analytic expectation
with ﬁltration Fy. The weighting parameter 0 can be chosen freely, since the new esti-
h (S ). A reasonable choice would

be:
~ Cov(%s:),i/)

Var(Y)
which controls the variance of OV; to the minimum value:

h(Sz)
Var( 2. )(1— %),

T

)

S Cov(“52,Y)
where p = Corr (T;, Y) = n [73], the ratio ;— p > is called the “speed-

Var( h(ST) )

Var(Y)
up factor”, which indicates that utihzmg control variates is equivalent to amplifying the

3
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TRADITIONAL CONTROL VARIATES

As mentioned before, the conditional expectations of the control variates should be easy
to calculate. For the Bermudan option with multi-dimensional underlying assets S; =
(S}, e S‘? b eees S?) € R, the traditional choice of control variate is the discounted payoft
of the European option measured at maturity with the single underlying asset S‘[S, ie.

Y:gw%
27’

and the Monte Carlo estimate with control variate for the ith path is:

|

indicates the value of the single asset European option starting at state

g(S
7

e SO (i
OV (i) = LSI0) +9(g( 1) g

7

7(i)

g(s9)

Here E o7

(0, Sg) and maturing at time T with the same strike as the discussed Bermudan option.

IMPROVED CONTROL VARIATES

Monte Carlo pricing with the option payoff measured at maturity as control variate is
quite cheap, because after the simulation of the paths we get {g(S‘;(i))}ﬁ 1 immediately.
However, empirical tests indicate that this choice of control variate is not always effi-

5 .
g(85.(0) by ICV; (i) which is defined

cient. An alternative introduced in [73] is to replace

DT
as:
1 HEAO)
ICV:(i) = Esz; .
! Di 0 o Dr-1(i)

The stopping time 7 (i) for the ith path is defined in Equation (2.13). Ez;[-] indicates

HGAG)

the conditional expectation with filtration %;(;) and Ez(; D denotes the single
=711

asset European option value associated to the ith path starting at state (f(i),S?( i)(i))

and maturing at time T with the same strike as the Bermudan option. The expectation

g(8%)
@TT . In [73], Ras-

mussen shows that this new choice of control variate makes variance reduction more
efficient. However, we notice that {I CVf(i)}ﬁ is not directly available any more, be-
cause for the ith path it is the discounted single asset European option value measured
at time 7(i). For one-dimensional pricing problems, fast pricing algorithms, that help us
calculate the path-wise control variates {ICV; (i)}é\i . efficiently exist. We will implement
the COS method introduced in [37] for the one-dimensional pricing.

In our numerical test, we find that in some situations applying improved control vari-
ates is much more efficient than increasing the sample size. However, for the geometric
basket option and the arithmetic basket option, the effect of using improved control vari-
ates is not so obvious that we still prefer to use traditional control variates and increase
the sample size for reducing the standard error of estimation.

E[ICV;] is identical to the single asset European option value E
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2.7. MERTON JUMP-DIFFUSION PROCESS

2.7.1. MOTIVATION OF JUMP-DIFFUSION MODEL

Despite the wide use of the geometric Brownian motion to model the movement of asset
prices, the almost instantaneous asset price change cannot be captured well. Such rapid
price variations are sometimes modeled by a “jump”. It is stated in [61] that the jump
model behaves better in modeling the leptokurtic feature of the asset price distribution
and the empirical phenomenon “volatility smile” in option markets.

Jump-diffusion models essentially contain a Brownian component punctuated by
jumps at random intervals. Compared to their counterparts “infinite activity Lévy pro-
cesses” in jump models, “finite activity jump-diffusion models” are easier to simulate.
In this chapter, we will consider an elementary jump model, the Merton jump-diffusion
(MJD) model’, which was introduced in [70].

2.7.2. MODEL FORMULATION

We consider the MJD model with contagious jumps on each asset, i.e. the jumps in the
dynamics of each asset arrive following the same Poisson process. Under this model, the
d-dimensional asset prices follow:

dSi = SH((r =6, — Ampk)di +dwi + (¥ —1)dl'y), i=1,...,d,

where x; = [E[ezl -1], dwidwi =o0;0p;;dt, r the risk-free rate, §; the dividend rate, o;
the volatility of diffusion, T'; a Poisson process with mean arrival rate Ajymp, z = (2, ..., 29]’

the multivariate normally distributed jumps with mean p/ = [ ,u{ yeeey ,u{i]’ and covariance

i 9 wi A S Y |
matrix X \Nlthelementszl.j—ol.ajpij.

The analytic formulas for the dynamics read:

NP(t
Si = S(i) exp((r —0; — Ajumpki) £+ wi) exp ( Z()zin) , i=1,...,d, (2.14)
m=1
where Sy = (Sl,...,Sg) is the initial state, w, = [w},...,w?]’ the diffusion component,
Zy, = [z,ln, e z,‘i]’ the jump component and NP(#) the number of Poisson jumps within
time interval ¢ with mean arrival rate Ajump. The diffusion component w; follows mul-
tivariate normal distribution with mean 0 and covariance matrix = with elements Z;; =
0;0jp;ijt and the jump component z,, with mean W= [u{ Yooy u{i]’ and covariance ma-

trix =J with elements Z{j = U{O’;p{j.

The log-process X; = (X},..., Xfl), where Xf = log(Si), i=1,...,d, has analytic form:

NP(#)
X, =Xo+p-t+ws+ Z Zm,
m=1
O'2 Ufi
where p = [r =61 = Ajumpk1 — 5>+, 7 =04 — ljumpKa — 51

7SGBM is also feasible for another well-known jump-diffusion model, the Kou model [61]. Since the only
distinction between the MJD model and the Kou model is the distribution of jump sizes, all discussions in
this chapter about SGBM can be extended to the Kou model as well.

Hu:E' N
LIl 1
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2.7.3. DIMENSION REDUCTION: GEOMETRIC AVERAGE OF M]JD ASSETS

Within the framework of GBM, the dynamics of the geometric average of multi-dimensional

assets can be formulated as a one-dimensional problem. This technique is also applica-
ble for the MJD model®. Suppose that the equivalent one-dimensional MJD model has
analytic formula:

o _ NP(1)
St = Soexp((r =6 — AjumpK) t + Wy) exp( Z Zm),

m=1

where 0, is normally distributed with mean 0 and variance >t and Z,, normally dis-
tributed with mean i/ and variance 6’. To make it represent the geometric mean of the
assets with dynamics shown in Equation (2.14), we need:

1
~ d \d Z‘.{ ”J
So = HS(’)) , ﬂ]=—l_1 L

(i—l d

. Zi,jU{U§P,[j . \JLi,joi0;pij
o= o=——,

d d

2
57)2 - YL 6+ T+ Aumpki) 62

ﬁ:exp(ﬂ]+(02) )—1, 5=ttt z e -%—Ajumpﬁ.

Remark 2.7.1. This dimension reduction technique also works on the geometric basket
containing assets following geometric Brownian motion and assets following the MJD
model, because geometric Brownian motion can be regarded as an MJD model with zero
jump size.

2.7.4. ANALYTIC MOMENTS OF BASIS FUNCTIONS IN THE MJD MODEL
For the model with dynamics shown in Equation (2.14), we have the conditional expec-
tations of polynomial basis functions in closed form. The conditional moments of the
original stock prices, [E[(Si)kIS(’;](i =1,...,d;k=1,2,...), read:

o . 1 1
E(SH¥ISi] = (Si)*exp (k¢ + 5kzaf.r+)L,-umpzr(exp(ku{ + 5lcz(a{)z) -1), (2.15)

where
2 Jy2

. gi 7, )
bi= r_6i — ? —//‘/jump(exp (Hl + T) - 1)

The conditional moments of the geometric mean of the asset prices {Si}?ﬂ can be
calculated by first presenting the dynamics of the geometric mean in one dimension as
shown in Section 2.7.3 then using Equation (2.15).

Since there exists no general form of the conditional expectation of the log-stock
prices [E[log(Si)kISé](i =1,...,d;k=1,2,...), we present the first three moments as fol-

8The jumps in the dynamics of each asset should however follow the same Poisson process.
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lows:
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The conditional expectation of the cross-product term [E[log(Si) log(Si) ISi , Sé] (i # j)reads:

Ellog(SHlog(S)IS), S]1 (log(Sh) + ;) log(Sh) + pj0) + 0,0 pijt

+ (10g(Sg) + 7 (1] Ajump 1) + 10g(S]) + 1 () Ajump 1
+ (/ljzump %+ Ajump t)ﬂzj‘“§ + Ajump tU{U§P{j ’

2.8. NUMERICAL EXPERIMENTS

In this section we perform several numerical experiments to test the performance of
SGBM for pricing different types of Bermudan options with assets following the MJD
process. We compare different choices of bundling references, basis functions and vari-
ance reduction approaches for options on multi-dimensional assets.

The one-dimensional MJD model is furnished with three different choices of model
parameters, which respectively indicate “common” jump, “intensive” jump and “rare”
jump. The multi-dimensional tests are conducted for various options: geometric basket,
arithmetic basket, put-on-min and call-on-max. For some scenarios, we get the bench-
mark value directly from the literature. However, in case of absence of references we
generate the benchmark ourselves. For the geometric basket option, the representation
discussed in Section 2.7.3 is implemented and the one-dimensional problem is solved
by the COS method. For the remaining scenarios, we implement the LSM method [65]
to generate the reference values. MATLAB R2011b is used and the computations are per-
formed on Intel(R) Core(TM) i5 3.33 GHz processor with 16GB RAM.

The parameter sets used for the tests are listed in Table 2.1.

2.8.1. SGBM AND TUNING PARAMETERS

We start testing the performance of SGBM on single asset options under geometric Brow-
nian motion dynamics, which gives a general insight how SGBM performs with its tuning
parameters. The performance of SGBM is influenced by three parameters”:

1. N and N,: the number of simulated paths,

9In fact, the number of basis functions is also a tuning parameter, but large number of basis functions may
result in an over-fitting problem in the regression step. We therefore choose the number of basis functions
just three or four in the one-dimensional case.
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Table 2.1: Parameter settings used in the test.

SetI(a): “common” jump

So =40, K =40, =0.06,6 =0,0 = 0.2, Ajump =3, 4/ =—0.2,07 =0.2, T =1, M® = 20.
SetI(b): “intensive” jump

So =40, K=40,r=0.06,6 =0,0 =0.2, Ajump =8, ¢/ =-0.2,0/ =0.2, T =1, M = 20.
SetI(c): “rare” jump

So =40, K =40, r=0.06,6 =0, 0 =0.2, Ajump = 0.1, ¢/ = -0.9, 07 =0.45, T =1, M = 20.
Set II:

So = [100,100]’, K =100, r =0.05, § =0, ¢ = [0.12,0.15]', pij = 0.3, Ajump = 0.6,

W =1-0.1,0.1, 0/ =[0.17,0.13]', p], = =0.2, T =1, M = 8.

Set I1I:

So = [100,100]’, K =100, r =0.05, 6§ =0.1, 0 = [0.2,0.2]’, pij=0,T=3, M=9.

SetIV:

S = [100,100,100,100,100]’, K = 100, r = 0.05,

§=0,0=[0.15,0.15,0.15,0.15,0.15]', p;; = 0.3, Ajump = 0.5,

w =[-0.3,-0.2,-0.1,0.1,0.2]’, o’ = [0.1,0.1,0.1,0.1,0.1]’, p{j =-02,T=1,M=8.

4 M denotes the number of early exercise opportunities, which are equidistantly dis-
tributed in T years.

2. n: the number of bundles,
3. M: the number of exercise opportunities.

In the following tests, the default setup is: n = 16,M = 20,N =217, N,, =272. N. The
model parameters are chosen from Set I in Table 2.1 without the jump component. We
use the improved control variates for variance reduction on the path estimator, and per-
form three tests respectively by changing n, M and N. The test results are plotted in
Figure 2.4. Figure 2.4(a) shows that as the sample size increases, the standard error of
the estimators in SGBM decreases by the order N~!/2, As shown in Figure 2.4(b) the total
computational time increases in order N. When we increase the number of exercise op-
portunities up to M = 128, both the direct and the path estimator of SGBM are satisfac-
tory. If we keep doubling the number of exercise opportunities, the performance of the
direct estimator in SGBM decreases while the path estimator remains reliable. The poor
performance of the direct estimator in case of many exercise opportunities is mainly
caused by the “distribution bias” as explained in Section 2.5. However, in any scenario
the path estimator is approving, as in LSM. Figure 2.4(d) displays the trade-off between
the “distribution bias” and the “sample bias”. When the number of bundles is small, the
“distribution bias” is the dominant part that makes the direct estimator highly biased. As
the number of bundles increases, SGBM exhibits highly satisfactory performance. How-
ever, when the number of bundles increases further, the “sample bias” forms a problem
and the direct estimator in SGBM becomes unsatisfactory.

2.8.2. CHOICE OF BUNDLING REFERENCE

In this section we consider different bundling schemes while testing and focusing on

pricing the put-on-min option with assets S; = (S}, S?) following the two-dimensional
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MJD model. The model parameters are chosen from Set II in Table 2.1. The basis func-
tions are fixed as: 1,1og(S}),log(S2),log(S})?,1og(52)?,1og(S!) log(S?). Seven different ways
for bundling are included in the test. They are:

1. bundling according to one reference:

* bundling reference A: R*(S;) = min(S}, $?),
* bundling reference B: RB(S,) = S},
* bundling reference C: R%(S;) = S} - S%.

2. bundling according to two references:

* bundling reference D: RP(S;) = S}, RD(Sy) = S2,

* bundling reference E: RE(S,) = min(S}, $2), RE(S,) = S} - 2,
* bundling reference F: Rf(St) = min(S%, S%), R;(S,) = S},

* bundling reference G: R¥(S;) = S! - $%, RS(S,) = S}.

According to Figure 2.5, when pricing the put-on-min options we should not limit
ourselves to bundling with a single reference, which is outperformed by any bundling
scheme with two references. Among the two-reference bundling schemes, the one in-
volving the intrinsic value of the option and the difference between the asset values is
the best choice. For the geometric basket option and the arithmetic basket option, we
do not present our test results. However, for both of them bundling simply with the op-
tion’s intrinsic value yields highly satisfactory results.

2.8.3. CHOICE OF BASIS FUNCTIONS

One aspect influencing the efficiency of regression methods for option pricing is the
choice of basis functions. Although we claim that it is sufficient to get convergent results
for various option contracts by simply choosing polynomials as basis functions, in some
situations we have alternative choices. For example, for the geometric basket option it
is recommended in [57] to choose the powers of the geometric mean of asset prices as
basis functions. We compare three choices of basis functions for pricing the geometric
basket option with assets following the two-dimensional MJD process:

* Basis A: the intrinsic value of option

3
1,1/8182,8182,1/Sk82 , (S}SH)>2.
* Basis B: polynomial terms of asset prices

1, log(S%),log(S})Z, log(S%),log(S%)z,log(S}) log(Sﬁ).

* Basis C: polynomial terms of asset prices, without the cross-product term

1,log(S}),log(S})?,log(82),log(S%)?.
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Figure 2.5: Comparison of different bundling schemes for pricing two-dimensional put-on-min option. The
basis functions are fixed as: l,log(S}),log(S%),log(S})z,log(S%)z,log(S})log(S%). When the bundling is done
according to two references, the number of bundles with respect to each reference is the square root of the
“number of bundles”. The sample size for the direct estimator is 217 and the sample size for the path estimator
is 218. The reference option price is collected from [74].
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Figure 2.6: Comparing different choices of basis functions in SGBM for pricing two-dimensional geometric
basket option. The parameters of the MJD model are chosen from Set II in Table 2.1. The sample size for the
direct estimator is 217. The path estimator with sample size 218 is controlled by traditional control variates.

Figure 2.6 shows that different choices of basis functions in SGBM have an impact
on the option price estimates. When the number of bundles is small, Basis A performs
best. When the number of bundles is sufficiently large, the final results of SGBM with
Basis A and Basis B are very similar. On the other hand, we notice that although Basis C
does not appear satisfactory compared to the other two choices, the confidence intervals
of the associated direct and the path estimator cover the true option values. For truly
high-dimensional problems, including the cross-product terms into basis functions will
lead to a quadratic increase of the number of basis functions, which further requires
an exponential increase of the sample size to make the regression accurate [47]. In this
case, we prefer to form basis functions by the polynomials without cross-product terms.
However, ignoring the cross-product terms may lead to approximation errors for some
particular types of options.

So, when dealing with low-dimensional problems, we choose the ordinary polynomi-
als as basis functions since their conditional expectations are always available. When the
dimensionality of the problem is high, we consider polynomials without cross-product
terms, or, if possible, we use polynomials of the option’s intrinsic values as the basis func-
tions. In Section 2.8.7 we can see that these choices of basis functions provide us highly
satisfactory results.

2.8.4. EFFICIENCY OF USING CONTROL VARIATES

One problem with SGBM [57] is that the standard error of the path estimator is usually
larger than that of the direct estimator. Here we test the variance reduction methods
introduced in Section 2.6 for reducing the standard error of the path estimator. The
test is performed under one-dimensional and two-dimensional MJD models. Figures
2.7(a) and 2.7(b) show that using the control variates helps to reduce the standard error
of the path estimator. In the one-dimensional case using the improved control variates
is extremely efficient with a speed-up factor around 900, while for the two-dimensional
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Figure 2.7: Comparison of two variance reduction approaches. The standard errors of the path estimators
following three different algorithms are presented. “Original SGBM” means standard SGBM algorithm without
control, “SGBM-CV-1" stands for SGBM with the traditional control variates and “SGBM-CV-2” for SGBM with
the improved control variates. For all three algorithms, the basis functions, the bundling reference and the
number of the paths for the direct estimator are identical. The x-axis indicates the sample size for the path
estimator.

model the improved control variate is less efficient with speed-up factor around 14. In
both scenarios, applying the traditional control variates provides us a variance reduction
with speed-up factor around 3.

The traditional control variates is free of additional cost and therefore we should
treat the traditional control variates as an alternative to the improved control variates.
As shown in Table 2.2, for geometric and arithmetic basket options, the improved con-
trol variates is not effective regarding its cost. In these cases we will use the traditional
control variates and increase the sample size for variance reduction.

2.8.5. 1D PROBLEM

We start systematic testing under the one-dimensional MJD process. Three different
types of jumps are considered: common jump, intensive jump and rare jump. Their
model parameters are respectively Set I(a), Set I(b) and Set I(c) in Table 2.1. The basis
functions in SGBM are chosen as 1,log(St),log(St)z,log(St)s. We choose improved con-
trol variate for the one-dimensional case.

In Figure 2.8, we see that the path estimator is always an accurate lower bound es-
timate to the true option price: its standard error is small and it is consistently smaller
than the true option price. The direct estimator also converges to the true option value
as the number of bundles grows. The convergence is rapid for the MJD process with
common jump and for that with intensive jump. In the rare jump case although the
convergence is not satisfactory, the exercise strategy associated to the direct estimator is
accurate since the relevant path estimator is very close to the true value. The estimation
error of the direct estimator is the curse of rare events. For the MJD model with the rare

N |::‘\§‘::! ]‘ W‘l



32

2. BERMUDAN OPTIONS UNDER MERTON JUMP-DIFFUSION DYNAMICS

Table 2.2: Comparing two variance reduction approaches in SGBM pricing for different types of two-
dimensional options. The sample size for the direct estimator is always fixed as 217.

geometric basket  arithmetic basket put-on-min

NG 516 17 516 o17 516 518 519

cvb Cv-2 CV-1 CV-2 CV-1 CV-2 CV-1 No

s.e. 0.0123 0.0097 0.0118 0.0107 0.0093 0.0106 0.0151
RNG timed  6.2051 11.4671 6.2051 11.4671 6.2051  23.7172 48.8246
CPUtime 20.3588 2.9489 20.3984 3.2454 21.8977 5.3324 10.1195
total time  26.5639 14.4160 26.6035 14.7125 28.1028 29.0496 58.9441
speed-up 3.7284 2.1081 2.7834 1.8016  13.8211  3.9224 1

4 The sample size for the path estimator.
b “CV-1” stands for SGBM with the traditional control variates and “CV-2” for SGBM with
the improved control variates.

¢ The standard error of the path estimator.

d The time for generating the sample of the path estimator. Its unit is seconds.
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Figure 2.8: SGBM with the improved control variates is implemented for pricing options with underlying
assets following three different one-dimensional MJD processes. The number of the paths for estimating direct
estimator is 200000, while the number of the paths for estimating path estimator is only 20000. The reference
price is generated using the COS method [37].
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Table 2.3: Test of SGBM for two-dimensional max-on-call options.

So Reference Reference SGBM? SGBM Ref.
upper bound® lower bound upper bound® lower bound Valued
(s.e.) (s.e.) (s.e.) (s.e.)

(90,90) 8.105 8.067 8.075 8.072 8.075
(0.086) (0.020) (0.011) (0.008)

(100,100) 13.906 13.898 13.907 13.897 13.902
(0.035) (0.023) (0.017) (0.012)

(110,110) 21.339 21.338 21.352 21.338 21.345
(0.023) (0.022) (0.022) (0.015)

2 The sample size for the direct estimator of SGBM is 217 and that for the path estimator
is 216, The single asset European option values measured at the exercise time are used
as the control variates for the path estimator. The bundling done in “SGBM” is based on
two references: the maximum of assets’ prices and the difference between assets’ prices.
According to each bundling reference, 16 bundles are constructed. This leads to 256 bun-
dles in total. The basis functions are: 1,1og(S}),log(5?),1og(S})?,10g(S?)?,log(S!) log(S?).

b This upper bound is provided in [57], where duality approach is applied to generate this.
¢ This upper bound is just the direct estimator of SGBM.

4 The reference value is obtained from [57].

jump, the sample distribution of the paths within one bundle is quite likely to be biased
to their analytic distribution and consequently SGBM may be inaccurate according to
our discussion in Section 2.5.

Using improved control variates provides efficient variance reduction in the one-
dimensional case. Even though the path estimator has a sample size of only one tenth of
the direct estimator, the standard error of the path estimator is smaller. Moreover, even
when the number of bundles is small, the path estimator is much closer to the true value
than the direct estimator.

2.8.6.2D PROBLEM

In this section we test SGBM on three different types of two-dimensional options. We
fix the basis functions as 1,log(S}),log(57),10g(S})?,10g(5%)?,log(S}!) log(S?) and perform
the bundling based on the bundling references recommended earlier: for the geometric
basket option and the arithmetic basket option, the paths are bundled according to the
option’s intrinsic value; for the min option, the paths are bundled based on the option’s
intrinsic value and the difference between asset prices.

Besides the test on the MJD model, we also consider pricing the max-on-call option
with assets following two-dimensional geometric Brownian motion. We compare our
results to those of the same test in [57]. The model parameters are presented in Set III
of Table 2.1. The test results are shown in Table 2.3. We find that with proper choice
of bundling reference SGBM performs highly satisfactorily for pricing max options even
though the maximum of the asset values is not included in the basis functions.

In Table 2.4, we compare the results of SGBM, presented in Figure 2.9, to those of
LSM. The parameters of the MJD model are chosen from Set II in Table 2.1. The esti-
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Figure 2.9: SGBM with control variates for pricing three different types of options with assets following two-
dimensional MJD process. The sample size for the direct estimator is always fixed as 217. For the geometric
basket option and the arithmetic basket option, we cast the traditional control variates on the path estimator
with sample size 218, For the put-on-min option, the path estimator with sample size 216 is controlled by the
improved control variates. We always consider two controls equal to the European option value of the single
asset. The reference option value for the put-on-min option is acquired from [74].
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Table 2.4: Comparing SGBM and LSM for pricing three different types of options for two-dimensional MJD
model.

SGBM LSM?
DE PE CPU time®  optionvalue  CPU time Ref.

(s.e.) (s.e.) (RNG time®) (s.e.) (RNG time)  Value
Geometric 3.6747 3.6686 8.9260 3.6682 2.4796 3.6693
basket option  (0.0055) (0.0053) (34.3233) (0.0063) (46.4791)
Arithmetic 3.3904 3.3812 8.8582 3.3813 1.9655 3.3825
basket option  (0.0056) (0.0055) (34.3233) (0.0066) (46.4791)
Put-on-min 9.5960 9.5404 22.0341 9.5075 2.2155 9.5526
option (0.0098) (0.0181) (18.1747) (0.0158) (46.4791)

3 The sample size for LSM is 2°.
b The time for backward recursive calculation. The unit is second.
¢ The time for simulating paths. The unit is second.

mated option values using 64 bundles are chosen to stand for the reference results of
SGBM. We see that for the mean basket options the result of LSM is similar to the path
estimator of SGBM. However, for the put-on-min option, SGBM gives a better estimate
than LSM.

Remark 2.8.1. In Figure 2.9(c) we see that the direct estimator of SGBM is not satisfactory.
The main cause for this bias is the volatility of the jump size. High volatility of the jump
size implies difficulty of having unbiased samples. The impact of the jump intensity is
similar but much smaller than that of the volatility of jump size.

The direct estimator has higher bias than the path estimator. This observation is con-
sistent to the conclusion in [79], as the direct estimator can be viewed as the “value func-
tion approximation” and the path estimator as the “stopping time approximation” [79].

2.8.7.5D PROBLEM

According to our two-dimensional tests, LSM does not perform well at pricing min op-
tions with jump assets. For the five-dimensional case, since there is no reliable reference
price for the min or max option with jump assets, we restrict our discussion to the geo-
metric and the arithmetic basket options. In Table 2.5, we compare LSM with SGBM for
pricing five-dimensional geometric basket options. In-the-money, at-the-money and
out-of-the-money options are included and two different types of basis functions are
investigated:

* Basis A: p1(S) = 1, p1 (S9) = (15, S5 k=1,2,3,4;
* Basis B: 1(S) = 1, ¢2:(Sy) =10g(Sh), ¢2i+1(Ss) =1log(S)? i=1,2,3,4,5.

In Table 2.5, we can see that Basis A offers slightly better results than Basis B. However,
both are close to the reference value.

Table 2.6 contains the results for pricing five-dimensional arithmetic basket options.
For this type of option, since the conditional expectation of the power of its intrinsic
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Table 2.5: SGBM for pricing five-dimensional geometric basket options. The parameters of the model are

chosen from Set IV. The sample sizes for both the direct estimator and the path estimator in SGBM are

217,

The sample size for LSM is 218, 64 bundles are constructed in SGBM with the intrinsic value of option as the

bundling reference.

K  Ref. Value® algorithm Direct est. Path est. Path est. with ~ CPU time®
(s.e.) (s.e.) CVP (s.e.) (seconds)

90 0.5564 SGBM-AY  0.5567(0.0010) 0.5572 (0.0033)  0.5575 (0.0029) 12.4011

SGBM-B  0.5588(0.0026) 0.5564 (0.0035) 0.5567 (0.0030) 9.3775

LSM 0.5563 (0.0031) 1.4305

100 3.1231 SGBM-A  3.1233(0.0037) 3.1220 (0.0097) 3.1226 (0.0071) 12.2884

SGBM-B  3.1228(0.0052) 3.1198 (0.0096) 3.1204 (0.0073) 9.4389

LSM 3.1238 (0.0063) 1.8754

110 9.8020 SGBM-A  9.8025(0.0075) 9.8014 (0.0108) 9.8018 (0.0101) 12.2220

SGBM-B  9.8055(0.0080) 9.7986 (0.0104) 9.7990 (0.0102) 9.3486

LSM 9.8045 (0.0103) 2.4182
2 The reference price is generated by using the technique introduced in Section 2.7.3
to reduce the high-dimensional problem to one dimension and pricing the one-
dimensional option by the COS method.
b The traditional control variates are used here.
¢ The computation time includes the time to compute the direct estimator and the path
estimator. However, it does not cover the simulation time, which is around 45 seconds.
d “SGBM-A” stands for SGBM with Basis A and “SGBM-B” for SGBM with Basis B.

value has a complicated form, we will not consider them as basis functions. According
to our test, SGBM with Basis B still performs well with a small difference between the
direct and the path estimator, which means that the true option value is located in an
interval with sharp bounds.

2.9. CONCLUSION

We utilized the Stochastic Grid Bundling Method (SGBM), which is a hybrid of regression-
based and bundling-based Monte Carlo methods, to solve Bermudan option pricing
problems. SGBM was compared to the standard regression method and its configuration
is thoroughly discussed, including how to choose basis functions for regression and how
to partition the bundles. We conducted error analysis on the regression-based pricing
methods, especially focusing on the features of SGBM. Traditional and improved control
variate methods were introduced for variance reduction in SGBM. Numerical examples
on the Merton jump-diffusion (MJD) model were presented for problems up to five di-
mensions.

Bundling has a significant impact on the accuracy of SGBM. For the arithmetic and
geometric basket options it is sufficient to choose the intrinsic value of the option as the
bundling reference, but for “min” or “max” options introducing more than one bundling
reference is preferred. Control variates work well for reducing the variance of the path
estimator in SGBM. In the one-dimensional case, using an improved control variate is
highly efficient. When the dimension of problem grows, the cost for implementing the
improved control variates increases while its effect decreases. As a result, we favor the
traditional control variates in the high-dimensional case.
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Table 2.6: SGBM for pricing five-dimensional arithmetic basket options. The parameters of the model are
chosen from Set IV. The sample sizes for both the direct estimator and the path estimator in SGBM are 217,
The sample size for LSM is 218, 64 bundles are constructed in SGBM with the intrinsic value of option as the

bundling reference.

K  algorithm Direct est. Path est. Path est. with  CPU timeP
(s.e.) (s.e.) CV2 (s.e.) (seconds)

90 SGBM-B 0.3516(0.0017) 0.3504 (0.0030) 0.3506 (0.0025) 9.0072

LSM 0.3508 (0.0024) 0.8488

100 SGBM-B  2.5783(0.0048) 2.5745 (0.0078) 2.5748 (0.0060) 9.3762

LSM 2.5795 (0.0059) 1.1445

110 SGBM-B  9.4683(0.0082) 9.4604 (0.0101) 9.4606 (0.0100) 9.0477

LSM 9.4675 (0.0091) 2.4182

2 The traditional control variates are used here.
b The computation time includes the time to compute the direct estimator and the path
estimator. However, it does not cover the simulation time, which is around 45 seconds.

We have shown that it is sufficient to choose the basis functions in SGBM as polyno-
mials to get convergent results. The outcome of our tests suggests that sometimes it is
not necessary to include all terms as the basis functions and in some situations choosing
the basis functions determined by the type of option contract could be more effective.
When the dimensionality of the problem is not large, it appears feasible to use SGBM
with basis functions of polynomial type. According to our experience, choosing poly-
nomials without cross-product terms as basis functions works even for ten-dimensional
problems. However, when the dimensionality of problem surges up, we need alterna-
tives to polynomials as basis functions to release ourselves from the corresponding de-
mand for the huge sample size. As mentioned in [57], polynomials of the intrinsic value
of option are promising choices in this scenario.
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CHAPTER 3

Multi-period Portfolio Management based on Utility
Optimization

We enhance a well-known dynamic portfolio management algorithm, the BGSS algo-
rithm, proposed by Brandt, Goyal, Santa-Clara and Stroud (Review of Financial Studies,
18, 831-873, 2005). We equip this algorithm with the components from the Stochastic
Grid Bundling Method (SGBM) for calculating conditional expectations. When solving
the first-order conditions for a portfolio optimum, we implement a Taylor series expan-
sion based on a nonlinear decomposition to approximate the utility functions. In the nu-
merical tests, we show that our algorithm is accurate and robust in approximating the
optimal investment strategies, which are generated by a new benchmark approach based
on the COS method (SIAM J. Sci. Comput., 31, 826-848, 2008).

Keywords: Dynamic portfolio management - Simulation method - Least-square regres-
sion - Taylor expansion - Fourier cosine expansion method

3.1. INTRODUCTION

Solving dynamic portfolio management problems has become an interesting topic ever
since empirical findings in financial research suggested that asset returns were predictable.
When the distributions of the asset returns are time-invariant, [69] and [75] have shown
that an investor using a power utility function, who re-balances her portfolio optimally,
should choose the same asset allocation at every time point, regardless of the investment
horizon'.

However, if the distributions of the asset returns are time-dependent, for example,
when the asset returns follow a vector auto-regression (VAR) model, the optimal asset
allocations at intermediate time points are usually not identical. In this case, an investor,
who aims to find an optimal asset allocation at initial time, has to first consider all possi-
ble asset allocations in subsequent time points, which in turn are also influenced by the
initial investment decision. Mathematically, an investor must solve a multivariate opti-
mization problem regarding asset allocations at all portfolio re-balancing opportunities.

Generally it is difficult to solve this multivariate optimization problem directly, and
therefore this problem is usually solved by a backward recursion process, where at each
time step the investor considers a simplified problem. Basically, there are two stages for

This chapter is based on the article 'Accurate and robust numerical methods for the dynamic portfolio man-

agement problem’, published in Computational Economics, pages: 1-26, 2016 [25].

LFor other types of utility functions, the investment horizon may have an impact on investment decisions, as
discussed for example in [50].

39
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solving this step-wise optimization problem. First, we determine how to formulate this
optimization problem. We can either focus on the optimization problem directly or try
to solve its corresponding first-order conditions, which usually depend on a prepara-
tory approximation of the optimization problem. Then, the rest of the problem can be
treated as a mathematical problem of computing conditional expectations. In [16], the
authors work on the first-order conditions and compute the conditional expectations
by simulation and cross-path regression. We call the algorithm the BGSS algorithm. In
[85], the authors propose an alternative algorithm, the vBB algorithm, where they work
on the optimization problem directly via grid-searching but still utilizing simulation and
cross-path regression to compute the conditional expectations. They state that the vBB
algorithm is more stable than the BGSS algorithm, since the BGSS algorithm essentially
relies on an approximation of the utility function. Many other numerical approaches for
computing conditional expectations have been considered, for example, in [2], [58] and
[42].

We propose improvements for the BGSS and the vBB algorithms, which, respectively,
rely on solving the first-order conditions and grid-searching to tackle the optimization
problem.

In the original BGSS algorithm, cross-path standard regression is employed for solv-
ing first-order conditions, that correspond to the utility function via a Taylor series ex-
pansion. Within this framework, we particularly contribute in two aspects. First, we re-
place the standard regression method by the (local) regression combined with bundling
of simulated paths, as employed in Chapter 2. According to our tests, this modifica-
tion makes the algorithm more stable and robust, and therefore our algorithm performs
highly satisfactorily compared to the BGSS and the vBB algorithms, particularly when
the investment horizon is long and risk aversion is high. In the process of approximat-
ing the utility function, we consider an alternative Taylor expansion to the expansion
employed in the original BGSS algorithm. This Taylor expansion was introduced in [42].
This expansion is however not directly compatible with regression-based approaches.
With a specific choice of the Taylor expansion center, we can equip our SGBM regression-
based portfolio algorithm with this improved Taylor expansion, making the approxima-
tions less biased. In short, our enhanced algorithm still constitutes an algorithm based
on simulation and cross-path regression. It thus remains possible to extend this algo-
rithm to high-dimensional scenarios without increasing the computational complexity
dramatically.

Based on grid-searching, which is the basic idea of the vBB algorithm, we utilize a
Fourier cosine series technique [37, 38] to compute the conditional expectations and
come up with a benchmark algorithm, the COS portfolio management method. Because
this method is not based on simulation, there is no such error present in the correspond-
ing numerical results. In the test cases to follow, reference solutions can therefore be
generated via this COS-based algorithm.

The chapter is organized as follows. Section 3.2 gives the mathematical formulation
of the investor’s problem. In Section 3.2.1, we introduce a special case of the investor’s
problem where the simulation- and regression-based methods can be applied. In Sec-
tion 3.3 the SGBM algorithm is briefly described and the alternative Taylor expansion is
also discussed. The benchmark algorithm based on the COS method is presented in Sec-
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tion 3.4. Following that, we display results of the numerical tests in Section 3.5. A brief
discussion of the errors of the simulation-based methods is performed in Section 3.5.6.
We conclude in the last section.

3.2. PROBLEM FORMULATION: THE INVESTOR’S PROBLEM

We consider a portfolio consisting of one risk-free asset and d risky assets, which can be
traded at M discrete time points, t € [0,Af,..., T — At], before terminal time 7. The time
step At is equal to T/ M. At each trading time ¢, an investor decides her trading strategy
to maximize the expected value of the utility of her terminal wealth W7. Formally, the
investor’s problem is given by

Vi(Wi,Zo) = max ELUWD)IW,,Zd), 3.
X,

Shs=t

subject to the constraints:
Wiiar=Ws- RS A, +Rp),  s=1,1+AL,...,T-AL

Here x; denotes the asset allocation of the investor’s wealth in risky assets. Vector trans-
position is denoted by the prime sign. Ry is the return of the risk-free asset, which is

assumed to be constant for simplicity, and R¢_ ,, = [RffA t,...,RE;rdAt] are the excess re-
turns of the risky assets at time s+ Az. The function U(Wr) denotes the utility of the
investor’s terminal wealth. V;(W;,Z;) is termed the value function, which measures the
investor’s investment opportunities at time ¢ with wealth W; and market state Z;. We
assume that {Zt},T:O is an %;-adapted Markov process.

Mathematically, an investor decides her asset allocations {xS}ST:‘OAt at all time steps to
maximize Vo(Wo, Zo) or, equivalently, E[U(Wo [TZZM (R?, , + Rp)) | Wo, Zo).

3.2.1. NUMERICAL APPROACHES TO THE INVESTOR’S PROBLEM

From Equation (3.1), we see that at time ¢ it is impossible for the investor to determine
the optimal asset allocation x; without knowing optimal asset allocations {xs}ST:‘tﬁ‘At at
future time points. A multivariate optimization problem with respect to all asset alloca-
tions {xs}ST;tM may be considered, but due to the complexity of the dynamics of Z; it is
usually not feasible to solve this problem.

A special case, discussed in [2], [16] and [85], is when the investor has constant rel-
ative risk aversion (CRRA), her optimal asset allocation x; is independent of her wealth
Wt.

The CRRA utility function U(Wr) reads:

w, "
UWwr) = e Y#1, 3.2)
and
UWr) =log(Wr), y=1, (3.3)

where Equation (3.2) is termed the power utility function and Equation (3.3) the log util-
ity function. This utility function is homothetic in wealth, which means that with iden-
tical market state Z;, two investors, one with wealth W; and the other with wealth 1, will
have the same optimal investment strategy at subsequent time points.

I elft
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With this utility function, the optimization problem with respect to the original value
function, V;(W;,Z;), which depends on two variables W; and Z;, reduces to an optimiza-
tion problem with respect to a simplified value function, v;(Z;):

ve(Zy) = Vi(1,Zy)
T-At
= max E[U( H &R A+ ROIZ,.

{xs}

Value function v;(Z;) can be written as a recursive procedure:
T-Ar
v(Z;) = max [E[U( H R, A, + ROIZ,]
{xs}
T—-At

= max E[E[U( H KRS, o+ RIZiiad)|Ze]

{XS}T At 5=

T-At
= maxE| max E[UC[] GRS,y +R)IZeiad |2 (3.4)
! x 5}5 iy s=t

= maX[E[Vt+At((X R[+At +Rp), Zeint)|Ze].

Equation (3.4) is based on the Bellman principle of optimality and dynamic program-
ming [5], which forms the basis for any recursive solution of the dynamic portfolio prob-
lem. The principle can be applied since the state vector is assumed to follow a Markov
process and, therefore, the optimal asset allocation x; only depends upon time and the
current state Z;.

Using the simplified value function and the power utility function with parameter vy,
we can solve the investor’s problem, in a backward recursion processz, as follows:

e Attime T, we determine the value function as:

1
Zr)=—— 1;
vr(Zr) -y Y #

° Attime T — At, the investor considers the optimization problem:
maxE[UX,_,. R+ Rp)|Z
o [U( T-AtRT f)l T— At]

= )r(IT1an[E[(xT ARG+ RO 0 (Zr) | Zrad).
t

Vr-At(Z7-A¢)

We denote the optimal asset allocation by x7._, ,, so that:

maxE[UX;_ RS+ Rp)|Zr_ar := E[UK}_ 5 RS + Rp)|Zr_aql.

XT-At

Recursively, moving backward in time, the following steps are subsequently per-
formed at times ¢, t = T —2At, T —3A¢t,...,At,0.

2Choosing the CRRA utility function is essential for this process to be valid.
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T-At

s=11ap are determined, we can

* When the investor’s optimal asset allocations, {x;}
calculate the value function v;ya¢(Zs+ay) as:

T-At

Vieat@esar) = EIUC [ &R A+ RO Zeadl.
s=t+At

Then, the value function v;(Z;) reads
T-At

max [E[U((Xt tear+ Rp) l_[ (X2R§+At+Rf))|Zf]

{xs}s + s=t+At

vi(Zy)

T-At
maxE | (¢ RE, , +R)' max EUC ] RS+M+Rf))|zt+M]|zt

T-At
Xt riar s=r+At

maxE[( Ry, 5, + R O Y Vel Zeend)1Ze), (3.5)

where the last equality is valid by using the definition of v;1a¢(Z;+a(). Value func-
tion v;(Z;) can also be written as:

T-At
rr’l(c:LX[E[(x/tR?+At+Rf)l YE[U( lt_[A[(X*,RiJrAt+Rf))|Zt+At]|Zt]
S=i+
T-At
max[E[(x Rt+At+Rf)1 Tu( H (x*’RngM
s=t+At

vi(Zy)

+RIZy, (3.6)

where the last equality follows from the law of iterated expectations.

Either Equation (3.5) or Equation (3.6) can be employed to evolve the information in
the backward recursion. They respectively correspond to the “value function iteration”
and the “portfolio weight iteration”, to be discussed in the following subsection. In ei-
ther case, the optimization problem with respect to x; can be solved via numerical tech-
niques.

As mentioned before, there are basically two numerical approaches available for
dealing with this problem, one is by grid-searching and the other is by solving the first-
order conditions. These techniques are discussed in subsequent sections.

PORTFOLIO WEIGHT ITERATION OR VALUE FUNCTION ITERATION

In the backward recursion process, after either the optimal asset allocations {x;} .~ o t T A . or
Xeenr and vear(Zeiar) have been determined, we need to evolve the information from
time step t + At to time step ¢ to proceed the recursive computation. We can consider
either Equation (3.5) or Equation (3.6) for this purpose. The former is termed “portfolio
weight iteration” and the latter “value function iteration”. In [85] the authors show that
more stable results can be obtained by the portfolio weight iteration. They explain their
results as follows. In the value function iteration, the value function is a conditional
expectation approximated by cross-path regression and approximation errors may ac-
cumulate in the backward recursion process. In the portfolio weight iteration, since the
portfolio weights are bounded by borrowing and short-sale constraints, the approxima-
tion error remains bounded throughout the whole valuation process.

'ﬂ! ' " )
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However, if the value function at each intermediate time step can be approximated
accurately, the value function iteration should yield similar results as the portfolio weight
iteration. In the numerical tests to follow, we will see that our enhanced numerical meth-
ods perform highly satisfactory and, in most cases, using the value function iteration
produces comparable results as the portfolio weight iteration.

3.3. SOLVING FIRST-ORDER CONDITIONS
When the value function vsa¢(Zs4a;) is known, we consider the optimization problem
displayed in Equation (3.5).

One approach to obtain the optimal asset allocation x; in Equation (3.5) is to solve
the first-order conditions for an optimum, i.e.

0 'pe 1-y
Bl (OIRT o+ R T Ve ar Zad) 124 =0, (3.7)
t

Since Equation (3.7) is not directly solvable with respect to x;, in [16] the authors
proposed an approach to first approximate the value function v;(Z;) via a Taylor series
expansion and then solve the first-order conditions corresponding to the approximated
function. Second-order Taylor expansion of the value function is written as’:

vi(Z) = rrgx{[E[(Rf)l‘Yva(sznZtJ+[E[(1—y)(Rf)‘Yx’tRiwvtw(z,w)|zt]

1
+ [E[E(l—y)(—y)(Rf)‘l‘Y(x;Riw)zvtw(ztwnzt]}.

The corresponding first-order conditions read:

E[1—-1)(Rp) TRE, o Virar Zesa) ZA+EIA-P PR TV RE A R 0 ) ViearZivan)|Ze)x; =0,

and the optimal asset allocation x}, which is assumed to be Z;-measurable, is given by:
x; = [E[y- (R, 5 R A Vieat@Ziead)Z1 ! “EIRfRE, A VirarZrsnn) | Zs]. (3.8)

Here the conditional expectations can be approximated via simulation and cross-path
regression, as done in [16], [65] and [82].

It is mentioned in [16] that solving first-order conditions is quite sensitive to the or-
der of the Taylor expansion of the value function and the results from second-order and
fourth-order expansions can be different. If we consider the fourth-order Taylor expan-
sion of the value function v;(Z;), i.e.

vi(Zy)

u

max {E(RP)' Y vearZeran)|Ze)
X
+ EIA-PR)TXRY \ VesarZrian)Zy]

1
+ [E[E(l =7 (=y) (Rf)_l_y(X;RiJrAt)z Vernt(Zera)|Ze]

1
+ E0-pEnE1-y) (Rp) 2V KR, 7 vivar Zisnd)1Zy]

1
E[

7 L= NENEL-N 2= R TR ) vrsarEesaIZl ],

3We first consider the Taylor expansion as implemented in [16]. Another Taylor expansion will be introduced
in Section 3.3.2.
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the optimal asset allocation x is defined as an implicit solution of the following equa-
tion:

X’; = [[E[Y‘(R‘;JrA,R‘;ﬁrAt)Vt+At(Zt+At)|Zt]]_l'{[E[RfRzAtUt+At(Zt+At)|Zt]
1_(-71-7) ,
+ EE[%(xth?+At)2R?+AtVt+At(Zt+At)|Zt]
1_(nE1-=2-y) ,
+ <l Y (Rfy)z o RS, )RS, g s ar Za )2} 3.9)

This equation can be treated as a fixed point problem, x = RH (x) with RH(:) denoting
the right-hand side in Equation (3.9). This can be solved by an iterative method. To
start the iteration, we need an initial guess of the optimal asset allocation. Following the
discussion in [16], we can take the solution from the second-order Taylor expansion of
the value function as the initial guess x.

The iteration can be conducted by Newton’s method for RH(x) —x = 0:

1 I
B RH(xt) —X;

I+1 _ I
RH'xb) -1

Il —xl 1=0,1,2,....

We stop the iteration, if either the 2-norm of the distance between two consecutive
approximations xlt and xé” is smaller than a tolerance value eror, or the number of it-
erations reaches a predetermined value /5. We take the last iteration xlfrl as the final
solution of Equation (3.9). In the numerical tests, we choose etor, = 0.0001 and /a1 = 30.
Always the tolerance etgr, can be reached, unless stated otherwise.

3.3.1. STOCHASTIC GRID BUNDLING METHOD
The Stochastic Grid Bundling Method (SGBM), introduced in [57], is a powerful regression-
based method for calculating conditional expectations in Equations (3.8) and (3.9).

It is shown in [57] that applying SGBM is highly efficient for obtaining the early-
exercise boundary when pricing American-style options and the estimated path-wise
option value is so accurate that the Greeks can be generated directly. In this chapter, we
implement SGBM for the dynamic utility-based portfolio management problem. Similar
as [16], we take the second-order Taylor expansion in the description of the algorithm for
expositional ease. However, in our numerical experiments, we always employ the fourth-
order Taylor expansion. Extension to fourth-order expansion can be achieved with the
formulas in Equation (3.9). Our algorithm can be formally described as follows:

Step I: Simulation.
Simulate N paths [Rf(i),Zt(i)]ﬁl, t=0,At,..., T, and set the value function at terminal
time T as:
vr(Zr (i) = L i=1,...,N.

-y
The following steps are subsequently performed at times ¢, t < T — At.
Step II: Bundling.
We bundle the paths at time ¢ into B non-overlapping partitions, %8;(1),...,%;(B). Let
each bundle cover a similar number of paths.

1
L Lhelft
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Step III: Regression.
Assume that there are Ng(b) paths in bundle 98;(b) and their value functions at time ¢ +
Atare {vViat(Zisnr) (z)} B( ) , or, equivalently, the optimal asset allocations read {x; (l)}NB (b)

s =t+At,...,N, and thelr excess returns {Rt AL are known. For these paths,
we determine bundle-wise regression parameters {a;(b)}X t—1 Dy regressing the values

Iy - (RS, 5 (DR, 5 (Va1 Zea) ()15 on basis functions [¢1 (RS, (1), Zrsar (D), ...,
bk (RH_At(l) ZHM(I))] B(b), which are constructed using the information at time ¢+ A¢.
In this chapter, we always choose basic polynomials for the basis functions. Following
our discussion in the previous chapter, this choice of basis functions should be sufficient
in the regression step when the approximated function is continuous.

For any path whose state Z; is covered by bundle 28;(b), the denominator of the right-

hand side part in Equation (3.8), E[y- (RHMR‘;;M) Vi+Ar(Zi+ar)|Zs], can be approximated
by:

(l)}NB(b)

Ely- RS, A R a D Vit @rinn)|Zy] Zak(b)[E[gbk(RHm,ZHm)|zt].
k=1

Similarly, E[R fRi AL Vi+ar(Zi+ar)|Z;], the numerator of the right-hand side part in Equa-
tion (3.8), can be approximated by:

E[RfRY p VirntZsnn)|Zy] Z Br(DEpr R, 5 Zivar)Zs],

where the regression parameters {8 (b)} , are obtained by regressing {R¢R{_ (i) Vrsar

VA0 B(b) on the basis functions [¢; (RHA;U),ZHAt(i)), . ‘PK(RHA[(Z) ZH—A[(Z))]NB(I?).
For any path whose state Z; is covered by bundle %8, (b), the optimal asset allocatlon

is approximated by:

-1

Z ak(b)[E[(,bk(RHM,ZHAt)|Zt] t+Atth+At)|Zt]

The regression step is repeated for all bundles at each time step, so for each path we find
the corresponding optimal asset allocation.

Step IV: Transition.

For the i-th path in bundle 28,(b), we can either apply portfolio weight iteration or value
function iteration to transfer the information of the optimal investment strategy from
time 1 to time ¢ — Af.

When using the portfolio weight iteration, we just store the optimal asset allocations
{xs} A" and write v, (Z,) as [IZ/ %(RY, ,, + Rp)! ™ /(1—7) in the regression step at time
r— At

If we use the value function iteration, the process is slightly more involved. For all
paths in bundle 2, (b), we regress {(x/ (z)RHAt(l) +Rf) Y UHM(ZHM(l))} B(b) on the fol-
lowing polynomial basis functions [ (,bl(Zt(l)), (pK(Zt(z)) NB(b) formed by {Zt(l)}NB(b)

and obtain regression parameters [ (D), ..., ¢ K(b) The Value function is then approxi-
mated by:

S+At

K
viZ) = Y E(b)Pr(Zy).
k=1
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It should be noted that the standard regression method is implemented in this step. Ac-
cording to our tests, introducing SGBM in this step is not helpful.

3.3.2. TAYLOR EXPANSION BASED ON A NONLINEAR DECOMPOSITION

In both, the BGSS and SGBM" algorithms, an essential step before solving the equations
for the first-order conditions is to rewrite the value function, v;(Z;), in a Taylor series
expansion in which the asset allocation x; is separated from the conditional expectations

of R?, ,,. A Pth-order Taylor expansion in SGBM can be written as’:
p 4P
- g (O
CRAVES DEEEDY lp, (x:R7, A PP, (3.10)
p=0 P

where glip (0) denotes the pth derivative of fllmction g1(y) when y = 0. Function g; () =
(y+Rp) 7. So, g1(x(Ry, \) = (x(Ry ,, +Rp)" 7.
Since the excess return Ry is a nonlinear transformation of the log excess return r{,

i.e.
R§+At = eXp(rf+At)Rf - Ry,

e

an alternative way to perform a Taylor expansion for (x:R;, ,,

+ Rf)l_y is given by:

P g;l’) 0)

(XeR{ p + R = ZO T(rfw)”, 3.11)
F=

where function g»(z) is defined by:
82(2) = (Ry + x,(exp(@) Ry —Rp)' .

Functions g (x;R{, ,,) and g»(r) are both identical to (x; Ry, ,,+Ry) 1=7 but different
ways of choosing the underlying variable yield different Taylor expansion formulas.

In [43], the authors term the expansion described in Equation (3.10) as “Taylor ex-
pansion based on a linear decomposition” and the expansion described in Equation
(3.11) as “Taylor expansion based on a nonlinear decomposition”. They show that when
the centers of Taylor expansions are carefully chosen, the “Taylor expansion based on a
nonlinear decomposition” is more accurate than the “Taylor expansion based on a linear
decomposition” when approximating the function (x;R;, ,, + Ry) 17, We will call these
expansions “original Taylor” and “log Taylor” expansions, respectively, in the rest of this
chapter. Although the log Taylor expansion has been implemented in [42] for dynamic
portfolio management, their choice of expansion center is not compatible with the algo-
rithm discussed here. We deal with this problem by performing a log Taylor expansion
around center 0, as displayed in Equation (3.11). We especially choose the Taylor expan-

sion center to be 0, because only in this case is there no term related to x; inside the

4Wwith a little abuse of the term, we also denote our dynamic portfolio management method by “SGBM”.
5For simplicity, we describe the dynamic portfolio management problem with one risky asset here.
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power transformation, for example:

g0 = ®Rp'7,
g0 = (1-NERY x,
g0 = L-PRYT(—yx+x0).

According to the numerical tests in Section 3.5, we find that the log Taylor expansion
is indeed a superior choice even when the expansion center is chosen to be 0. The rea-
soning is that the log excess return r; usually exhibits a distribution similar to the normal
distribution. Therefore, a Taylor expansion with respect to this variable, i.e. the so-called
“log Taylor” expansion, can yield accurate results with a limited number of expansion
terms. The distribution of the excess return R? usually exhibits a fat tailed distribution,
which requires more terms in the original Taylor expansion to approximate its moments.

3.4. GRID-SEARCHING METHODS

An alternative technique to solving first-order conditions is based on grid-searching,
which is an intuitive idea for solving the optimization problem described in Equation
(3.5). In grid-searching, we reduce the optimization problem on the continuous domain
to a problem on a discrete domain. For example, if we consider the allocation, x;, of
one risky asset, the original optimization problem is solved on a domain [0,1]. By grid-
searching, we construct K; equidistant grid points { %}ff:o and consider the optimiza-

tion problem on the discrete domain DM = {%I km=0,1,...,Kuyt. To solve this discrete

optimization problem, we test each possible choice of the allocation xgk’”) = I’g—;, km =
0,..., Ky and calculate the corresponding value functions:

v (Z) =Bl ™ R p + RO Vs rean) | Zo). 3.12)

We determine the maximum, v}**(Z,), from {vgk'") (Zt)}Ik(M:0 and denote its correspond-
ing asset allocation as "the optimal asset allocation". "

Although it is mentioned in [84, 85] that the grid-searching method is robust and
avoids a number of numerical issues regarding convergence that occur when solving
first-order conditions, it should be noted that grid-searching is an expensive numeri-
cal approach. The workload of grid-searching grows exponentially as the dimension-
ality of the problem increases. Moreover, according to our numerical tests in the low-
dimensional cases, the vBB algorithm, which employs grid-searching together with sim-
ulation, yields more “uncertain” results (larger variance) compared to the other simulation-
based algorithms.

However, if we wish to find an accurate reference solution to the dynamic portfolio
management problem, grid-searching seems our only choice since solving first-order
conditions essentially relies on Taylor approximations of the utility function, whereas
grid-searching does not. In the next subsection we will present our benchmark approach
based on the idea of grid-searching.
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3.4.1. COS PORTFOLIO MANAGEMENT METHOD

In this section, we present a benchmark method, based on the Fourier cosine series ex-
pansion (COS) method to calculate the conditional expectations. This method was intro-
duced in [37] for pricing one-dimensional European options and later in [38] for pricing
one-dimensional Bermudan and barrier options. In [74], this method was extended to
the two-dimensional case. Because the COS method is not based on simulation, it can
yield benchmark solutions to the investor’s problem, especially in the basic case with
one risky asset and one risk-free asset. Following the previous discussions, this basic
investor’s problem with power utility function is given by:

Vi-at(Zi-ad) = glanrE[(xt,me + R Y0 (Z)| Zi-ad) £=1,..., T = At (3.13)
—=At
where the terminal condition reads:
1
vr(Zr) = ——,y#1.
-Y

If we denote the conditional transition density function from state Z;_», to (RY, Z;) as
f (R}, Zt| Z;—ay), the investor’s problem reads:

viseZiesd =max || s RE+R) T 020 f (RS Z0 2 s)dREAZe, 1= 1, T=A

(3.14)
The COS algorithm for calculating conditional expectations can be described in five
steps:
Step I: Truncate the integration range in Equation (3.14).
If we assume that the integrand is integrable, we can truncate the integration range from
R? to [ag, br] x [az, bz] without losing significant accuracy. The approximated value
function D;_a;(Z;—a¢) reads:

br

Ue—nt(Ze—ne) = max f (Xr-arRE + Rf)1 Yvi(Z) f(RY, Zy| Zi-ar)dR{ A Z;.
Xr—Ar azy

Remark 3.4.1. For one variable, for example Z;, the suggested integration range [az, b]

in [38] and [74] is [612 — LEZZ,flz + LEZZ], where flz is the mean of Z; and 622 the standard

deviation of Z;. L should be large enough to make the truncation error acceptably low.

Step II: Expand the integrand in Fourier cosines.
If we denote the Fourier cosine expansion of f(R¢, Z;|Z;_a:) on [ag, br] x [az, bz] by:

2 2 bz rbr
A A = — R;, Z:| Z;—
ko (Ze-at) by —dy bR—deaz n fR;, ZH| Zi—ar)
¢—ag Z,—ay
COS(klﬂ )cos(kgn—)dedZt,
R — 4R bz-az

and similarly define the utility coefficients as:

2
bz—-az br—ag

e_ ag
)cos (kzn
br—ar

bz rbgr 1
Ve ko (6, X—At) f f (xt—AtRff'i'Rf) v Zy)
az

cos (kln )dR dz;,

bz—a

Fur

Jelft
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value function v;_a;(Z;—a;) can be approximated by:

by—az br—a
<z R R Z Z "Aky ey (Zt=2 ) Viey ke (8, Xt At)}
2 2 {20 oo

The primed sum Y.’ means that the first term of the summation has half weight.
Step III: Truncate the infinite series.
We truncate the infinite series, as follows:

Denr(Ze-ne) = maX{

= bz —az bp—ag Nl*l,NTl,
Di-nt(Zi—pr) =maxy ——— Yo Ak (Ze—ad) Vg ko (8, X 1= A1)
Xt-At 2 2 F1=0 Kp=0

Step IV: Calculate the coefficients Ag, k,(Zi—nz).
The coefficients Ay, i, (Z;—a;) can be approximated by Fy, r, (Z;—a¢), as follows:

2
bz asz ar

A
cos kz]’[—
R— AR bzy-az

Fr) 1, (Zt-ar) f FRE, Zel Zi—nr)

cos (klﬂf ) dRr7dz;.

Using the following property of cosines: 2 cos(a) cos(f) = cos(a + 8) + cos(a — 3), we can
calculate Fy, x,(Z;—ay) by:

Ff o (Ziea) +FL . (Zi—ay)
k1, k t—=At K1,k t—At
Fo by (Zi—ng) = —= L ,

2
where
Fi 1, (Zi-ar)
2 RE ar Z[
_ R¢, Z1Z cos(k T +kom )dR dz
bZ a4y br— aRf I t1Zi—nt) 1 br—an 2T by—a t
2 2 ¢

R; Z;
(f fRS, Z| Z,— At)exp(zklnb +lk2nb—)dRedZt

by —az br—ag R — AR z—az

exp( ikym ar Fikom az ))
. —iky YT —Z
bR—aR bz—az
2 2 ki ko ) ( ar _ . az ))
R ,+ Zi-At]: —ikimn————Fikon————||.
(w(bR_aR bz—dz) ey e lan—aR+l 2ﬂbz—az

R(-) means taking the real part of the input data. ¥ (u,, uz|Z;—a,) is the bivariate condi-
tional characteristic function of (R, Z;) given state Z;_a:

bz —-az br—ag

Y(Uug, uz|Zi_ar) = ff[RzZ exp(ilug,uzl- [Ri,Zt]’)f(Re,Zt|Zt—At)dedZt-

For many asset dynamics models this bivariate characteristic function is known in closed
form.
Step V: Calculate the coefficients Vi, k., (t, Xt—a¢).
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The coefficients ¥, , (¢, x;—a;) are not directly related to any closed-form expression.
However, we can apply numerical integration and the discrete cosine transform (DCT)
to approximate ¥, , (, X;—a7). To do this, we take Q = max[Nj, N»] grid points in each
spatial dimension and define:

1
R = aR+(n1+§)ARt m=1,...,Q
np 1
Z;* = az+(m+)AZ np=1,...,Q
br—a by —a
AR, = -R_R Ay .-"2"7Z
Q Q

The midpoint-rule integration gives us

Q-1 Q-1 2 2

u

Ve ko (6 Xt—ar) (xe-arRM+ R T 0(2))

obr—ar bz—az

n=0ny=
RM"—a Z"”—a
cos(klnt—R)cos(kznt—Z)AR[AZt
br—ag bz—az
R ) R"—a
= Y == (x-aRM+Rp) T 0(2)%) cos (klnt—R)cos (kg]'[
n1=0n2:0Q Q bR_aR

The equation above can be calculated efficiently via a two-dimensional DCT, for ex-
ample, with the function dct2 of MATLAB. Moreover, we can rewrite the sum of multipli-
cations into a multiplication of sums, that is:

ny _

Q-1 R a
22 1- Ok
Vi o (6, Xp-np) = Q0 (nlz_,o(xt—AtR?I +Ry) Ycos(kln btR —ag ))
Q-1 7" _q
1) vt(Ztnz)cos(kgﬂ—t Z) .
}’l2:0 bZ - aZ

Then, the two-dimensional DCT can be replaced by two separate one-dimensional DCTs,
which helps reducing the computational time.

For state Z;_a; and asset allocation x;_5;, we can calculate the conditional expec-
tation shown in Equation (3.13) by the COS method. To solve the optimization prob-
lem with respect to x;_a;, we employ grid-searching: we evaluate discretized values of
Xt-At € {I@—xlkm =0,...,Ky} and find the largest conditional expectation. The backward
recursion process can be performed from time T — At to the initial time.

Within the COS method, we have five parameters to adjust the truncation and dis-
cretization errors. These are Nj, N,, L, Q and Kj;. Generally, larger values of these pa-
rameters lead to more accurate approximations but also to higher computational load.
We use the following default parameter setting:

N; =50, N, =100, L =8,Q =100, Kjs = 200. (3.15)

According to our experiments, the COS method provides highly accurate results under
this setting. However, when the admissible asset allocation can be chosen from a very
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wide range of values, the COS approach, which is based on discrete grid search, may lose
its accuracy. In that case, the SGBM method equipped with the log Taylor expansion and
alarge number of paths will still generate satisfactory solutions and appears favorable.

Remark 3.4.2. The COS method suffers from the curse of dimensionality. However, this is
a problem for any method involving discretization of the state space and grid-searching.
In high-dimensional cases, dimension reduction, adaptive discretization, or sparse grids,
and grid-searching may be applied.

Remark 3.4.3. The computational load of the COS method for a dynamic portfolio man-
agement problem is mainly related to the DCT computations, for which the computa-
tional complexity at each time step is O(N, - Kpr - Q -1log(Q)). Computations at each time
step are performed sequentially, but the computations for the value function at each state
point are independent, so it should be possible to accelerate the COS method by parallel
processing.

3.5. NUMERICAL EXPERIMENTS

In this section, we test the performance of five methods for generating the optimal dy-
namic portfolio management strategy. These are:

* “BGSS”: the method introduced in [16];

¢ “vBB”: the method introduced in [85];

* “SGBM”: SGBM with the original Taylor expansion;
* “SGBM-LT”: SGBM with the log Taylor expansion;

* “COS”: the COS method.

We impose borrowing and short-sale constraints on the asset allocations, that are
therefore restricted between 0 and 1. When we implement the simulation-based al-
gorithms, we always generate 2'* paths. For “SGBM” and “SGBM-LT”, which require
bundling, we employ 32 bundles at each time step. We approximate the utility function
by Taylor expansions, up to 4th-order for both the log Taylor expansion and the origi-
nal Taylor expansion. For “BGSS” and “vBB”, we use polynomials of the state variable
up to second-order as the basis functions for the cross-path regression. For “SGBM” and
“SGBM-LT”, the polynomials are also second-order but are of both the state variable and
the return variable.

To measure the performance of a dynamic portfolio management strategy, we con-
sider the statistic, “annualized certainty equivalent rate”, CER. It describes the annual-
ized return rate of a risk-free asset which at terminal time Y (years) yields the same util-
ity of wealth obtained from the dynamic portfolio management strategy. Equivalently,
the CER is the risk-free rate that an investor is willing to accept rather than adopting a
particular risky portfolio management strategy. Formally the CER is defined by:

UWy-(1+CER)Y)) = Vp(Wo, Zo), (3.16)
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where the value function V,(Wjp,Zy) is defined by Equation (3.1). Generally, a portfolio
management strategy with high CER is close to the optimal strategy and can thus be
regarded as an accurate solution to the dynamic portfolio management problem.

We perform numerical tests here for a basic test case where the portfolio contains
one risky asset and one risk-free asset. We consider the vector auto-regression (VAR)
model to describe the dynamics of the log excess return r; of the risky asset and its log
dividend vyield d;, that are chosen as the state variables. Quarterly data are generated
with the following process, as in [16], [85] and [42]:

réoac] [ 0227 ] [0.060 € ay
droar) ~ |-0.155] " [0.958) 1T [ed |
where
A 0 0.0060  —0.0051
t+AL| = =
ed |~ NWeZe) pe =g andZe= | 6 0051 00049

In most of the tests, the initial state, dy, is chosen as the unconditional mean, i.e.,
dp = —0.155/(1 —0.958) = —3.6905. Only in Section 3.5.4 we will consider three quan-
tiles, the 25%, 50% and 75% quantiles, of the unconditional distribution of state vari-
able respectively as the initial state. The gross return of the risk-free asset is chosen as
Ry = 1.06%2% and the excess return R} of the risky asset is R} = Ry (exp(r{) —1).

Associated to the 1D-VAR model, the characteristic function, which is essential for
the COS portfolio management method, can be formulated as:

Y(ur, Uzl Zi—n) = exp(i-u,-(0.22740.060 Z;—as) +i-uz-(—0.155+0.958- Z;_af)) -

] 1
exp l,ue/[ur;uz]/_E[ur;uZ]Ze[ur»uZ],

Since RY is an injective function of r7, for all equations in Section 3.4 replacing the func-
tions of R{ by functions of r/ is valid with trivial modification.

In the following tests, the unit of the investment horizon T is the quarter. We set M
always equal to T, and therefore the re-balancing time step At is always equal to 1.

3.5.1. QUALITY OF THE COS PORTFOLIO MANAGEMENT METHOD

We first check the validity and quality of the COS portfolio management method. For the
dynamic portfolio management problem with the 1D-VAR model, we calculate the op-
timal asset allocations and the corresponding annualized certainty equivalent rates and
compare them with the reference values from [42]. As we can see in Table 3.1, in case of
different investment horizons and risk aversions, the COS method always provides ac-
curate approximations of the annualized certainty equivalent rates and also highly sat-
isfactory approximations of the optimal initial asset allocations.

As the COS method with the parameter settings in (3.15) and the reference method
involve some approximation errors, it is difficult to say whose optimal initial asset allo-
cation is superior. However, since it is known that first-order deviations in the portfolio
policy have only second-order welfare effects [23] and the COS method and the refer-
ence method yield similar annualized certainty equivalent rates, we consider these as
the optimal solutions when comparing with simulation-based methods.
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Remark 3.5.1. We have also tested the performance of the COS portfolio management
method with different initial states dy. For any initial state tested, it generates very similar
results as the reference values in [42].

Remark 3.5.2. According to Table 3.1, although the COS method may generate initial as-
set allocations that are different from the reference values, the annualized certainty equiv-
alent rates are always very satisfactory. This implies that it is possible to generate good
portfolio management strategies even based on a very coarse control grid discretization.

Table 3.1: Initial optimal asset allocations and the corresponding annualized certainty equivalent rates of the
COS portfolio management method, based on the 1D-VAR model, with reference values from [42].

Optimal initial asset allocation (%) Annualized CER(%)
Y=5 v=15 Y=>5 v=15
COS Reference COS Reference | COS Reference COS Reference
T=10 41.5 42.8 15.0 15.6 7.23 7.22 6.43 6.43
T=20 56.5 56.3 23.0 25.3 7.84 7.84 6.72 6.72
T=30 69.0 66.9 33.0 35.4 8.26 8.26 7.01 7.01
T=40 775 76.8 43.0 44.5 8.53 8.53 7.27 7.26

3.5.2. PORTFOLIO MANAGEMENT WITH THE BUY-AND-HOLD STRATEGY

In this section, instead of the dynamic portfolio management problem, in which an in-
vestor decides her optimal asset allocations at intermediate times ¢ = 0,At,..., T — At,
we consider a case where the investor decides her optimal asset allocation at time ¢ =0
and holds a fixed amount of assets until terminal time ¢ = T. The corresponding value
function reads

— 1 e 1-y
vo(Z) = maxEl— (xoRj_r + Rpo-1)' 1 Z),

where Ryo_.r = (Rp)T,RS_ ;= Rpg_r-eXi=st"{ =Ry ..

This type of problem can be viewed as a static portfolio management problem, for
which the aforementioned four simulation-based methods (“SGBM-LT”, “SGBM”, “BGSS”
and “vBB”) can be applied. The COS method is utilized to generate benchmarks for the
optimal asset allocations and the corresponding annualized certainty equivalent rates.

Figure 3.1 shows that “vBB” provides identical results to the optimal ones, since it
does not involve Taylor expansion errors. For the other three candidates, in which Tay-
lor expansions are involved, “SGBM-LT” provides the best approximation of the initial
asset allocations. When the investment horizon is long, although the asset allocations of
“SGBM-LI” are not close to the optimal solutions, their corresponding certainty equiv-
alent rates are similar to the optimal ones. For the other two methods, “SGBM” and
“BGSS”, the estimates of asset allocations and certainty equivalent rates are acceptable
only when the investment horizon is shorter than 10 quarters.

This test indicates that the log Taylor expansion (2!* paths, 32 bundles) outperforms
the original Taylor expansion for approximating the utility functions. The advantage of
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using the log Taylor expansion is obvious when the distribution of the accumulated ex-
cess return, Ry_ ;, exhibits a fat tail.
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Figure 3.1: For the simulation-based methods, we report the point estimate of the initial asset allocations from
100 runs. The optimal values are generated with the COS method.

3.5.3. DYNAMIC PORTFOLIO MANAGEMENT WITH DIFFERENT INVESTMENT
HORIZONS AND RISK AVERSION PARAMETERS

Following the discussion in [85], we consider for the dynamic optimization problem the

portfolio weight iteration in the transfer step and compare the four simulation-based

methods.

In Table 3.2, we observe that “SGBM-LT”, among the four methods, always provides
the highest certainty equivalent rates, which implies that the portfolio management strat-
egy generated by “SGBM-LT” is most similar to the optimal one. However, when the in-
vestment horizon is long and risk aversion is high, even the results of “SGBM-LT” are not
highly satisfactory. In that case, we prefer to solve the dynamic portfolio management
problem by the COS portfolio management method. Regarding the simulation-based
methods, “SGBM” and “SGBM-LI” are superior to “BGSS” and “vBB”, since their corre-
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sponding CERs have larger means and smaller standard errors.

Table 3.2: Mean and the standard derivations of the CER from 100 runs, comparing 4 simulation-based meth-
ods for dynamic portfolio management for different investment horizons and risk aversion parameters. The
portfolio weight iteration is utilized; The COS method serves as the reference.

annualized certainty equivalent rate (%)
Yy BGSS (se) VBB (se) SGBM (s.e) SGBM (s.e) COS
-LT
T=40 5 8.51 (0.02) 8.52 (0.02) 8.55 (0.02) 8.56 (0.02) 8.53
10 7.61 (0.03) 7.63 (0.04) 7.67 (0.02) 7.77 0.03) 7.74
15 7.12 (0.03) 7.08 (0.05) 7.17 (0.02) 7.26 0.02) 7.27
20 6.85 (0.03) 6.72 (0.06) 6.90 (0.01) 6.97 (0.02) 6.98

T=80 5 8.79  (0.02) 8.78 (0.02) 8.96 (0.01) 8.97 (0.01) 8.94
10 7.76 (0.04) 7.63 (0.03) 8.08 (0.02) 8.28 (0.02) 8.29
15 7.18 (0.05) 7.03 (0.04) 7.47 (0.01) 7.65 (0.02) 7.83
20 6.86 (0.05) 6.65 (0.06) 7.13 (0.01) 7.28 (0.01) 7.49

Different from the findings in [85] that value function iteration also results in low
certainty equivalent rates here. Table 3.3 shows that when using “SGBM” or “SGBM-
LT”, we can also get satisfactory results by the value function iteration in most test cases.
Portfolio weight iteration is significantly better than value function iteration when the
risk aversion is large and the investment horizon is long.

3.5.4. INFLUENCE OF VARYING INITIAL STATE

We consider three different initial values, dy, of the state variable. Each value corre-
sponds to the p-th quantile of the unconditional distribution of d, where p takes values
25,50 and 75.

Figure 3.2 shows that, for any initial state, “SGBM-LT” performs better than the other

three simulation-based algorithms. The intermediate asset allocations generated by “SGBM-

LT” are most similar to the optimal ones. At the initial recursion steps, “vBB” also gen-
erates similar asset allocations. However, as the backward recursion progresses, the un-
certainty in the “vBB” estimates grows and hence the accuracy of “vBB” gets worse.

In any case, “SGBM” and “SGBM-LT” yield estimates with low uncertainties. More-
over, we see that “SGBM-VFI” and “SGBM-LT-VFI”, in which the value function iteration
is considered in the recursion step, respectively, generate very similar results to those of
“SGBM” and “SGBM-LT”. These are advantages of the new method to calculate condi-
tional expectations.

3.5.5. INFLUENCE OF VARYING MODEL UNCERTAINTY
If we consider higher model uncertainty in the 1D-VAR model, the aforementioned meth-
ods perform differently. The model uncertainty can be modified by introducing a multi-

plier MP? to the original covariance matrix X, of the white noise vector [6; A e’t’l+ At]’, o)
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Figure 3.2: Comparison of simulation-based algorithms for estimating the optimal intermediate asset allo-
cations for different initial states. At each time step, the average asset allocations are computed. For the
simulation-based algorithms, the mean and the standard derivation of the average asset allocations are gener-
ated from 100 runs. The optimal values are generated by the COS method. Notice that the x-axis denotes “time
to maturity”. Since we perform recursive programming backward in time, we get accurate solutions when time
to maturity is zero, i.e. ¢ = T. However, the uncertainty in the asset allocations increases when time to maturity

gets larger.
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Table 3.3: Mean and the standard derivations of the CER from 100 runs, comparing “SGBM” and “SGBM-LT”
with the portfolio weight and the value function iteration; different investment horizons and risk aversion
parameters; The COS method serves as the reference.

annualized certainty equivalent rate (%)
SGBM SGBM-IT CcosSs
PWI (s.e) VFI (s.e.) PWI (s.e) VFI (s.e.)
8.55 (0.02) 8.53 (0.02) 8.56 (0.02) 853 (0.02) 8.53
10 7.67 (0.02) 7.61 (0.03) 7.77 (0.03) 7.70 (0.04) 7.74
)
)

o=

15 717 (0.02) 7.13 (0.02) 7.26 (0.02) 7.18 (0.16) 7.27
20 6.90 (0.01) 6.86 (0.08) 6.97 (0.02) 6.81 (039 6.98

T=80 5 896 (0.01) 894 (0.02) 8.97 (0.01) 894 (0.02) 8.94
10 8.08 (0.02) 8.02 (0.02) 8.28 (0.02) 8.18 (0.15) 8.29
15 7.47 (0.01) 742 (0.05 7.65 (0.02) 7.55 (0.11) 7.83
20 713 (0.01) 7.09 (0.04) 7.28 (0.01) 7.16 (0.17) 7.49

that the covariance matrix of the error term will be:
M- MP?. 2. (3.17)

In this test, with a fixed risk aversion parameter y = 10, we change the multiplier MP and
the investment horizon and report the certainty equivalent rates corresponding to the
different algorithms.

As shown in Table 3.4, when the model uncertainty increases, “vBB” is the most im-
pacted algorithm. “BGSS” performs somewhat better than “vBB” but worse than “SGBM”
and “SGBM-LT"” as the corresponding certainty equivalent rate is smaller and with higher
uncertainty. “SGBM-LT” outperforms “SGBM”. The differences are obvious when the
model uncertainty is high and the investment horizon is long. The “SGBM-LT” values
in the table are obtained with sample size 2'4. In any case, “COS” yields the reference
results, which are verified by using “SGBM-LT” with a large sample size 2'8. In that case,
we find, for example, the certainty equivalent rate of “SGBM-LT” has mean value 7.71
and standard error 0.02 when T =20 and MP =4.

3.5.6. ERRORS OF THE FOUR SIMULATION-BASED METHODS

In this subsection, we would like to briefly summarize the errors encountered within
the methods analyzed. If we do not consider errors in the simulation part, the errors
of the four simulation-based methods, “vBB”, “BGSS”, “SGBM” and “SGBM-LT”, can be
subdivided into three categories:

° approximation error, which occurs when we approximate the true value functions
by the Taylor series expansion.

* projection error, which occurs when we use low-order polynomials to approximate
the conditional expectations of the value functions or of the approximated value
functions.
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Table 3.4: Comparing four methods with various model uncertainties. The risk aversion parameter is fixed as
10. For different investment horizons T in quarters and MP values in Equation (3.17), the table reports the
mean and the standard derivation of the certainty equivalent rate from 100 runs. The results from the COS
method serve as the reference values.

annualized certainty equivalent rate (%)
MP BGSS (se) vVvBB (se) SGBM (se) SGBM (s.e) COS
-LT

T=10 1 6.64 (0.03) 6.64 (0.03) 6.65 (0.03) 6.65 (0.03) 6.64
2 6.65 (0.03) 6.65 (0.03) 6.66 (0.03) 6.66 (0.03) 6.65
3 6.79 (0.38) 6.59 (0.82) 6.84 (0.05) 6.86 (0.03) 6.85
4 6.98 (1.05) 0.11 (6.46) 7.11 (0.04) 7.14 (0.04) 7.13
T=20 1 7.06 (0.03) 7.07 (0.04) 7.07 (0.03) 7.10 (0.03) 7.06
2 7.06 (0.03) 7.01 (0.06) 7.06 (0.03) 7.12 (0.04) 7.07
3 7.21 (0.31) 6.84 (0.34) 7.27 (0.06) 7.40 (0.05) 7.34
4 7.20 (0.99) -0.23 (5.00) 7.54 (0.11) 7.78 0.07) 7.72

* regression bias, which occurs when we use cross-path regression to approximate
the conditional expectations.

The approximation error does not occur when Taylor series expansions are not in-
volved, for example, in “vBB”. However, as we have seen in the numerical tests, “BGSS”
and “SGBM” suffer from this source of error in a similar fashion, while “SGBM-LT” ap-
pears to suffer less.

The projection error is the main source of error in “vBB”, where low-order polyno-
mials are implemented to approximate the value functions, which may be high-order
functions when the risk aversion is high, see Equation (3.12). For “BGSS”, “SGBM” and
“SGBM-LT”, this is generally not a problem since the object functions, as in Equation
(3.9), are at most of fourth-order.

The regression bias, which has been discussed in Chapter 2, can be controlled effec-
tively by bundling. The regression bias is high in “vBB” and “BGSS” but relatively low in
“SGBM” and “SGBM-LT”, that benefit from their bundling technique.

A general description of the error components of the four simulation-based methods
is listed in Table 3.5. “SGBM-LT” exhibits a highly satisfactory performance in our tests,
since it has relatively small-sized errors in all three aspects. We expect however that
when the risk aversion parameter is high and the model volatility is large, even “SGBM-
LT” may fail to converge in some cases. In those cases, we propose either to use a large
number of paths in the simulation together with more bundles.

3.6. CONCLUSION

In this chapter, we enhanced a popular dynamic portfolio management algorithm, the
BGSS algorithm, in two aspects. First, for the computation of the conditional expecta-
tions appearing, we replaced the standard regression method by the techniques from
the Stochastic Grid Bundling Method, so that the variances of the approximated asset

MLV L) elift
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Table 3.5: Errors of the four simulation-based methods.

vBB BGSS SGBM SGBM-LT

approximation error - high  high low
projection error high  low low low
regression bias high  high low low

allocations and the corresponding certainty equivalent rates can be reduced. Then, a
log Taylor expansion, based on a nonlinear decomposition, was employed in our algo-
rithm. This expansion gives rise to improved results compared to the original ones when
approximating the utility function. The resulting SGBM-based portfolio management
algorithm results in a lower biased approximation of the optimal asset allocations.

Based on the COS method and the grid-searching technique, we developed the COS
portfolio management method for generating reference values, which are quite compa-
rable to the reference values and further serve as the “optimal” solutions in our numeri-
cal tests.

In our tests, combining SGBM and the log Taylor expansion yielded superior results
to those of other simulation-based algorithms. In all testing cases, “SGBM-LT” shows
the higher certainty equivalent rates. When we merely consider introducing the SGBM
components in the regression step, the benefits are obvious: the value function iteration
and the portfolio weight iteration associated to both “SGBM” and “SGBM-LT” generate
quite similar results, which indicate that the approximation errors at each recursion step
are small.

Our simulation- and regression-based algorithm “SGBM-LT” can be generalized to
higher-dimensional dynamic portfolio management problems. Besides, since our algo-
rithm is robust even in scenarios with high volatility dynamics, it is also possible to focus
on models with more complicated dynamics, for example, models with jump compo-
nents or other time series models. In those cases, we may need some effective bundling
technique as proposed in Chapter 2 but in each local domain we may still use low-order
polynomials as the basis functions. This helps to retain the robustness of our algorithm.



CHAPTER 4

Multi-period Mean-Variance Portfolio Optimization

“If you live each day as if it was your last, some day youw'll most certainly be right.”

In this chapter, we propose a simulation-based approach for solving the constrained dy-
namic mean-variance portfolio management problem. For this dynamic optimization
problem, we first consider a sub-optimal strategy, called the multi-stage strategy, which
can be utilized in a forward fashion. Then, based on this fast yet sub-optimal strategy,
we propose a backward recursive programming approach to improve it. We design the
backward recursion algorithm such that the result is guaranteed to converge to a solution,
which is at least as good as the one generated by the multi-stage strategy. In our numerical
tests, highly satisfactory asset allocations are obtained for dynamic portfolio management
problems with realistic constraints on the control variables.

Keywords: Dynamic portfolio management - Mean-variance optimization - Constrained
optimization - Simulation method - Least-square regression

4.1. INTRODUCTION

Since Markowitz’s pioneering work [68] on a single-period investment model, the mean-
variance portfolio optimization problem has become a cornerstone of investment man-
agement in both academic and industrial fields. An interesting topic, extending Markowitz’s
work, is to consider the mean-variance target for a continuous or multi-period optimiza-
tion problem. Along with introducing dynamic control into the optimization process,
constraints on the controls can be included.

In some situations, the constrained dynamic mean-variance optimization problem
can be solved analytically. For example, [64] solves this portfolio management problem
with no-shorting of stock allowed and [10] solves the problem with bankruptcy prohibi-
tion. In [40], the authors investigate the mean-variance problem with a borrowing con-
straint, where the investor faces a borrowing rate different from the risk-free saving rate.
However, all this research is performed in the framework of continuous optimization. In
fact, as mentioned in [28], the continuous constrained optimization problem is usually
easier than the discrete one. In general, an elegant analytic mean-variance formulation
can be derived in case of a complete market, where re-balancing can be performed con-
tinuously and there are no constraints on the controls and no jumps in asset dynamics.

This chapter is based on the article 'Multi-period mean-variance portfolio optimization based on Monte Carlo
simulation, published in Journal of Economic Dynamics and Control, 64(1):23-38, 2016 [26].
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If we consider a realistic problem which is designed in an incomplete market, it will be
difficult to obtain analytic solutions and thus utilizing computational techniques to cal-
culate numerical solutions is the preferred choice.

The nonlinearity of conditional variance is the main obstacle for solving the dynamic
mean-variance optimization problem. In [91] and [63], an embedding technique, by
which the mean-variance problem is transformed into a stochastic linear-quadratic (LQ)
problem, is introduced. For the linear-quadratic problem, an investor does not need to
choose a trade-off parameter between mean and variance. Instead, she decides a final
optimization target of her investment. In [91] and [63], it is proved that varying the final
investment target traces out the same so-called time-0 mean-variance efficient frontier'
as varying the mean-variance trade-off parameters. To generate the efficient frontier
of the mean-variance optimization problem, we can thus solve the LQ problem with
different target parameters.

To solve the constrained target-based problem, the Hamilton-Jacobi-Bellman partial
differential equation (HJB PDE) is often considered. Accurate results can be generated
by solving the HJB PDEs for a one-dimensional scenario. For example, [88] solves the
continuous constrained mean-variance optimization problem with various constraints
and the risky asset following geometric Brownian motion. The authors of [33] solve a
similar problem with the risky asset following jump-diffusion dynamics. In both papers,
realistic constraints are cast on the control variables. However, it may be rather expen-
sive to implement the algorithm, which is based on solving the HJB PDE, for a problem
with several risky assets. Reducing the dimensionality of such a problem is a potential
solution. However, when constraints are introduced, the assumption for establishing
the well-known mutual fund theory is not valid and the ratio between the different risky
assets is not constant any more. A general multi-dimensional problem can hardly be
transformed into a one-dimensional problem.

To deal with the curse of dimensionality, using Monte Carlo simulation constitutes
a possible solution. A well-known simulation-based dynamic portfolio management al-
gorithm is proposed in [16] and further enhanced as in the previous chapter. However,
this is for a problem where the investor has constant relative risk aversion. For such
problems, the investor’s optimal asset allocation is only influenced by the dynamics of
the risky asset, so dynamic programming can be performed after the (forward) simula-
tion of the risky assets. For an investor with other types of risk aversion, her optimal
intermediate decisions usually do not only depend on the dynamics of the risky asset
but also on the amount of wealth at that time. The simulation approach proposed in
[16] is therefore not feasible for a general investment problem. Solving the constrained
dynamic mean-variance problem based on Monte Carlo simulation is the focus of our
work in the present and the following chapters.

Our methods depend on transforming the mean-variance problem into the LQ prob-
lem, which is a so-called target-based problem. In [4], the investment strategy for solving
the LQ problem is named the pre-commitment strategy, which however does not guar-
antee time consistency. As mentioned in [89], a time-consistent strategy can be formu-
lated as a pre-commitment strategy plus time consistent constraints on the asset alloca-
tions. Thus, the pre-commitment strategy generally yields an efficient frontier which is

1n the following part we use the term “efficient frontier” for short.
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superior to the one generated by a time consistent strategy. In this chapter, we will con-
tribute to pre-commitment strategies and propose two solutions for the dynamic mean-
variance problem, one is performed in a forward manner and the other in a backward
manner.

In the forward approach, we decompose the dynamic optimization problem into
several static optimization problems by specifying intermediate investment targets at
all re-balancing time steps. A reasonable approximation for the optimal controls can
be determined at each single stage and solving the problems at all stages provides us
a sub-optimal strategy called the “multi-stage strategy”. We prove that the multi-stage
strategy is the optimal strategy when there are no constraints on the asset allocations.
Although the multi-stage strategy becomes sub-optimal in case of constrained controls,
it is straightforward to implement the multi-stage strategy for either high-dimensional
problems or problems with complicated constraints. While experimenting, we observe
that the multi-stage strategy can yield highly satisfactory results compared to the refer-
ence solutions.

The main challenge to perform backward programming for a constrained optimiza-
tion problem is that the value function at each time step is non-smooth and thus the
optimality cannot be computed efficiently by solving the corresponding first order con-
ditions. To tackle this problem, we utilize the idea of differential dynamic programming
[56], by which a stochastic control problem is solved by a local optimization strategy, and
we come up with a backward recursive approach. Our backward recursive programming
algorithm is an iterative method. With special design of the algorithm, we can guarantee
that the outcome converges to a solution, which is not worse than the solution gener-
ated by the multi-stage strategy. In the backward process, conditional expectations are
calculated recursively via cross-path least-squares regression. To make this numerical
approach stable, we implement the “bundling” and the “regress-later” techniques, as
adopted in Chapters 2 and 3. The idea of “bundling” is highly compatible with the local
optimization in differential dynamic programming. The backward recursive program-
ming is initiated with a reasonable guess for the asset allocations, which can be, but is
not restricted to, the one generated by the multi-stage strategy. In our tests with the
initial allocation generated by the multi-stage strategy, we achieve highly satisfactory re-
sults after at most four backward iterations. Like the multi-stage strategy, the backward
recursive programming can be performed highly efficiently. In our numerical tests, one
iteration of the backward recursive programming only takes a few seconds.

This chapter is organized as follows. In Section 4.2, we introduce the formulation of
the dynamic mean-variance problem and the embedding into a stochastic LQ problem.
Section 4.3 describes the multi-stage strategy. The optimality of the multi-stage strat-
egy in the unconstrained case is proved in Section 4.3.1. In Section 4.4, the backward
dynamic programming method is presented. Section 4.5 displays several realistic con-
straints for the portfolio management problems and in Section 4.6 numerical tests are
performed for both one- and two-dimensional problems. We conclude in Section 4.7.

4.2. PROBLEM FORMULATION

For convenience, we consider a portfolio consisting of one risk-free and one risky asset.
To extend the analysis to a problem with more than one risky asset is feasible. We assume

-
UDelft




64 4. MULTI-PERIOD MEAN-VARIANCE PORTFOLIO OPTIMIZATION

that the re-balancing dates for the portfolio are equidistantly distributed and that the
total number of re-balancing opportunities before terminal time T is equal to M. The
time step At between two re-balancing dates is thus A—T/[, and the portfolio can be traded at
times f € [0,At,..., T—At]. Ateach trading time ¢, an investor decides the trading strategy
to maximize the expectation of the terminal wealth and to minimize the investment risk.
Formally, the investor’s problem is given by

JiW) = max {EWr|Wi - A-Var[Wr| Wi}, (@.1)

{XS}S:_[
subject to the wealth restriction:
Wiiar =W (xRS +Rp)+C-At,  s=1,t+A,...,T—AL

J:(Wy) is termed the value function, which measures the investor’s investment opportu-
nities at time ¢ with wealth W;. x; denotes the asset allocation of the investor’s wealth in
the risky asset in the period [s, s+At). Itis assumed that the admissible investment strat-
egy X is an &;-measurable Markov control, i.e. x; € F;. Ry is the return of the risk-free
asset in one time step, which is assumed to be constant for simplicity, and RY is the ex-
cess return of the risky asset during [s, s+At). We assume that the excess returns {R{} IT:‘OM
are statistically independent. C- At stands for a contribution of the investor in the port-
folio during [s, s + Af), and a negative C can be interpreted as a constant withdrawal of
the investor from the portfolio. The risk aversion attitude of the investor is denoted by A,
which is the trade-off factor between maximizing the profit and minimizing the risk.

Remark 4.2.1. For a risky asset with dynamics following geometric Brownian motion or
a Levy process, assuming the returns to be statistically independent is valid. For some
problems where the asset returns are directly defined, for example, as model-free data, the
independence assumption is also correct. For a VAR or GARCH model, this assumption is,
however, not satisfied.

Remark 4.2.2. When the mean-variance optimization problem proposed by Equation
(4.1) is convex, then solving Equation (4.1) is equivalent to determination of the Pareto
optimal points, i.e. solving

min {Var[WTIWt]},
{xsh A

s.LEIWr|W] = d,

with a suitable choice of d. However, when the problem is not convex, solving Equation
(4.1) generates Pareto optimal points, but not all of them.

The difficulty of solving this mean-variance optimization problem is caused by the
nonlinearity of conditional variances, namely Var[Var[Wr|%]|%;] # Var[Wr|%l,s < ¢,
which makes the well-known dynamic programming valuation approach not applica-
ble. To tackle this problem, the original mean-variance equations can be transformed
into another framework as done in [63, 88, 91]. The following theorem supports the
transformation.
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Theorem 4.2.3. If {x;‘}ST:‘tA” is the optimal control for the problem defined in Equation

(4.1), then {x; }ST:‘tAt is also the optimal control for the following problem:
. _ Z 2
i, {Elwr = Dwial, 4.2)

where y = % + 2E,+« [Wr|Wy]. Here the operator Ex«[-] denotes the expectation of the in-

vestor’s terminal wealth if she invests according to the optimal strategy {x; }STZ‘IM .

Proof. See [63]. O

Based on this theorem, the original mean-variance problem can be embedded into
a tractable auxiliary LQ problem. The investment strategy corresponding to this LQ
problem is called the pre-commitment strategy. This technique can also be interpreted
as transforming the original mean-variance problem into a target-based optimization
problem, which has been discussed in [44, 52]. For numerical computation, the pre-
commitment optimization problem as shown in Equation (4.2) is usually formulated as
an HJB PDE and realistic constraints on either controls or state variables can be cor-
respondingly established as boundary conditions. In this manner, [88] solves the mean-
variance problem numerically and derives a solution to the constrained pre-commitment
strategy.

However, even for the LQ problem, casting constraints in the numerical approach
is in general not trivial. Imposing constraints on the controls will substantially change
the formulation of the problem and make it nontrivial to solve the problem efficiently.
The reasoning is as follows. For the unconstrained problem, the value function at each
time step forms a smooth function and thus the optimality can be obtained by solv-
ing the first-order conditions associated to this smooth function. Adding constraints
will remove the smoothness of the value function. Derivative-based optimization tech-
niques cannot be applied in this situation and the optimality has to be computed by
grid-searching on the whole domain of possible controls, for example, as in [38].

In the following section, we propose a sub-optimal yet highly efficient strategy for the
mean-variance portfolio management problem. In this strategy, we avoid dealing with
non-smooth value functions even if there are constraints on the controls. It is possible
to extend this sub-optimal strategy to high-dimensional problems and to problems with
complicated asset dynamics.

4.3. A FORWARD SOLUTION: THE MULTI-STAGE STRATEGY
When we prescribe constraints on the allocations, neither the original mean-variance
strategy associated to solving Equation (4.1) nor the pre-commitment strategy associ-
ated to solving Equation (4.2) is easy to obtain.

Here we treat the mean-variance optimization problem from a different angle. After
writing it into the pre-commitment form, or equivalently into the target-based form,
the objective of the reformulated optimization problem is to minimize the difference
between the final wealth and a predetermined target. Hence the optimization problem
at time ¢ reads:

viwy = min {Elwr - 22w}, (4.3)

{xs}s—;
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or, in a recursive fashion,

V(W) = min{E[Vesar(Wrsa0)| Wil (4.4

with Ve (Wr) = (Wt — 72—/)2. Here we denote the value function by V() instead of J,(-),
which is used in Equation (4.1). As mentioned in Chapter 1, J;(-) stands for a value fuc-
tion which cannot be solved directly by Bellman dynamic programming.

At the state (f, W;), i.e. time ¢ and wealth Wy, the value function V;(W;) depends on
all optimal allocations at subsequent time steps. That is why generally this kind of op-
timization problem has to be solved in a backward recursive fashion via, for example,
solving the HJB PDEs or backward stochastic differential equations (BSDEs) with condi-
tions at the terminal time.

Solving this dynamic programming problem numerically in a backward recursive
fashion suffers from two problems. First, solving the optimality, especially for constrained
cases, at each time step may be difficult or computationally expensive. Secondly, since
we use the value function to transmit information between two recursive steps, the error
accumulates as the recursion proceeds.

Reflection on these two issues leads us to define a sub-optimal strategy, which does
not involve these two types of errors, which we call the multi-stage strategy.

Notice that at the terminal time, our target is % Then, at state (¢, Wy), in the multi-
stage strategy we choose x; to be:

2
x; ™= argmin {E[(W; - (e Rf + Rp) + C- At = Zpan) |Wt]}, (4.5)
t
where .
Y_copp 2R
_ bcar—g -
=t= (Rf)(Tft)/At : :

So, here we do not consider the optimality in the future, but perform a single-stage, or
static, optimization with respect to a given target value.

Equation (4.6) is straightforward. We set an intermediate target at time ¢ such that
once we achieve this target, we can put all the money in the risk-free asset and at the
terminal time the wealth reaches the final target. Therefore, this intermediate target is
computed by discounting the final target while taking into account the constant contri-
bution.

Considering an intermediate wealth target is not a new idea. In [45], the authors
study the target-based optimization problem for a defined-contribution pension plan
and make use of intermediate targets mainly for calculating the cumulative losses through-
out the management period. In [29], the authors consider an intermediate threshold.
Once the portfolio wealth exceeded this threshold, they proved that withdrawing a suit-
able amount of money from the portfolio will not influence the performance of the port-
folio in the sense of mean-variance optimization.

Since our multi-stage method merely depends on solving a single-stage optimization
problem at each time point, the problem can be solved in a forward fashion:

* First, we generate the intermediate target values at each time step.
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» Then, starting at the initial state we compute the optimal allocation step by step
until the terminal time.

If we consider no periodic contributions, i.e. C = 0, we can rewrite the optimal allo-
cation for the pre-commitment problem in Equation (4.3) as:

ape T-Ar 712
xP (Wt):argmin{[E[(Wt-(xtRf+Rf)- I &’ R§+Rf)——) ‘Wt]}, 4.7)
e s=t+AL 2
where {x,” C}ST:‘tﬁtAt denote the optimal allocations at times s = ¢ + At,..., T — At.

In this scenario the multi-stage optimization problem can be formulated as:

XS (W) = argrr}citn{[E[(Wt (xR +Rp)- :]j;t(fef) - g)zjwt] b 4.8)

We see that the objective of the multi-stage optimization is indeed different from that
of the original optimization. Instead of considering the true optimization {x;” C}ST:‘tﬁ’m,
we “specify” {x;‘ms}st‘tﬁtM to be zero. That is why we call the multi-stage solution sub-
optimal. However, by sacrificing the possibility to pursue the optimality, we also gain

some profits which are discussed in the next section.

Remark 4.3.1. The multi-stage strategy can be treated as a ‘greedy strategy” for the stochas-
tic optimization problem [13]. In each stage, we minimize the distance between our wealth
and the target of the current stage.

Remark 4.3.2. One crucial restriction for constructing the multi-stage strategy is that
there should be a risk-free asset in the market. Regarding the wealth-to-income case dis-
cussed in [88], we cannot find a risk-free part in the market and therefore cannot derive
the intermediate optimization target for our multi-stage approach.

GAINS AND LOSSES

By the multi-stage strategy, we avoid the backward recursive programming by construct-
ing determined intermediate targets. Since there is no error accumulation in the recur-
sion, the optimization problem solved at the intermediate time step is unbiased” to what
we designed it to be.

On the other hand, casting constraints on this sub-optimal strategy is trivial. Since at
every time step we deal with a quadratic optimization problem in the multi-stage strat-
egy, solving the constrained optimization problem can usually be performed efficiently.
In the one-dimensional case, for example, solving the constrained quadratic optimiza-
tion problem is equivalent to first solving the unconstrained problem to generate the
optimal control and then truncating this optimal control by the constraints.

The drawback of the multi-stage strategy is also obvious: instead of tackling the orig-
inal optimization problem, we work on a tailored one. The optimal control for the sub-
optimal problem may differ from that for the original problem, so the mean-variance

2In the traditional backward programming approach, since numerical errors cumulate alongside the recursive
procedure, biases in the intermediate optimization problems exist.
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pair corresponding to this sub-optimal strategy may be located below the optimal ef-
ficient frontier. However, in the next section we will prove that in some situations the
optimal allocation for the multi-stage strategy is exactly the same as that for the original
pre-commitment strategy.

4.3.1. EQUIVALENCE IN THE UNCONSTRAINED CASE

In this section, we restrict ourselves to the situation where there is no periodic contri-
bution, i.e. C = 0. Extending the analysis to the case where C # 0 is however possible.
Under the following condition, we can prove that the multi-stage strategy and the pre-
commitment strategy are equivalent for generating the optimal asset allocations.

Condition 4.3.3. The asset allocations at each time step are unconstrained.

In this case, we can obtain the analytic form of the value function at intermediate
time steps for the pre-commitment problem.

Lemma4.3.4. For the pre-commitment problem shown in Equation (4.3), the value func-
tion Vi(Wy) can be formulated as:

2
ViWi) =L+ (Wi (R T2 L), (4.9
whereL; = HST:t I with l; defined as follows:
E[R¢)?
l;=1- o t=0At,..., T —At,
E[(R))?]

Ir=1
Proof. At time step T, the value function is known as:
Ve(Wp) = (W - 172
which satisfies Equation (4.9). At time step T — A¢, the value function reads:

Ve-aWr-a) = max{EWVF(Wr-ag- (er-acR§_y + RO)IWr-ail |

XT-At

= max [E[(Wroa i (or-a RSy, +Bp) - g)zwa_M] b @10

XT-At

To obtain the analytic form of Vy_a;(Wr_a;), we first need to determine the optimal
asset allocation x?f AP which satisfies:

X7_a, =arg min {[E[(WT—At “(x7-arR7_p, + Rf) = )2—/)2)WT_M] }

XT-At

Solving the first-order conditions of the optimality problem gives us that x7._,, is the
solution to the following equation:

[ (Wr-ar Grr-aiRS_ g+ R = 3)- Wr-as Ry [ Wr-ac| = 0.
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So, the optimal allocation x7._,, can be calculated as:

(X —Wr_aRp)-EIRS_, ]

Xpn =
T8 Wriar - EI(RS._, )%

(4.11)

Inserting Equation (4.11) into Equation (4.10) yields:

e . pe
1) | (e

2
Vrat(Wr_ar)

]2
T-At

'~ g ) (Wrarke )

( E[RS

It is clear that the value function at time step T — At has the same form as in Equation
(4.9). For the remaining time steps, we can formulate the value functions by backward
induction.

Assume that at time step ¢+ At we have:
Y)Z

Vieat(Weear) = Levac (Wt+At : (Rf)(T_t)/At_1 ~5

Then at time step ¢, the value function can be formulated as:

Vi(Wy)

max {E[Veaar (Wi - (xR + Rp)IWil}

= rr)lc?x{[ Lt+At'(Wt'(xtRf+Rf) . (Rf)(T—t)/At—l _ %)2|Wt]}

= [E[LHAA-n}a;x{[E[(Wt-(xtRhRf)-(Rf)(T—”’M—l—§)2|W,]}.

Here the last equality is based on the independence of the excess returns. Solving the
first-order condition yields:

_ G =W RO R

*

T = Wt.(Rf)(T—t)/At—l -[E[(Rf)z] , (4.12)
and the corresponding value function reads:
VW) = Liaas(1- [E[E[Eﬁ_g;) (Wit 1Y
= Lt.(WI,(Rf)(T—t)/At_g)z.
Thus we finalize the proof. 0

Remark 4.3.5. The optimal asset allocation shown in Equation (4.12) is exactly the same
as the one proposed in [63] for the one-dimensional case.

With Lemma 4.3.4, we can prove the equivalence between our multi-stage strategy
and the pre-commitment strategy. Formally, the equivalence is shown in the following
proposition.
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Proposition 4.3.6. For a mean-variance portfolio management problem, where Condi-
tion 4.3.3 is satisfied, the optimal control for the multi-stage strategy and for the pre-
commitment strategy are identical. That is, x: P¢ and x;™S, as respectively shown in Equa-

tions (4.7) and (4.8), are equal at each time step t.
Proof. For the pre-commitment problem, the optimal control x;kp “ reads:
x; 7 = argmin {E[Vear (We - (reRE + Rp)IWi}.
Using the form of the value function V;;a;(-) as shown in Lemma 4.3.4, we find:
*p

c .
x,”" =argmin {[E
Xt

Lt+At'(Wt'(XtRf+Rf) . (Rf)(T—t)/At—l _ §)2|Wt”

Because of the independence of the excess returns, we can treat L, as a constant fac-
tor and thus the minimization problem turns out to be:

xPC= argn}citn{[E[(Wt (X RE+ Rp) - (Rp)T-0/AE1 E)Z(W,] 3 (4.13)

Since the right-hand-sides of Equations (4.8) and (4.13) have the same form, the proofis
finished. =

Notice that we only establish the equivalence between the multi-stage problem and
the pre-commitment problem when the excess returns are independent and the alloca-
tions are unconstrained. If we equip the excess returns with path-dependent dynamics
or cast constraints on the allocations, the equivalence may be lost. However, based on
numerical results in [90], we know that the efficient frontiers for different investment
strategies may differ significantly in the unconstrained case but the differences are rel-
atively smaller when constraints are introduced. In our numerical approach we only
apply the multi-stage strategy to generate asset allocations and then the mean-variance
pair is calculated by combining the simulated trajectories and the corresponding “sub-
optimal” allocations. As spotted in [88], small errors in asset allocations may not influ-
ence the accuracy of the mean-variance pair dramatically.

Even though the multi-stage strategy may be not equivalent to the pre-commitment
strategy in some situations, it can serve as a sub-optimal solution to the constrained dy-
namic mean-variance portfolio optimization problem. If some other accurate solutions
exist, the corresponding efficient frontiers should be at least above that of the multi-stage
strategy. Moreover, for some numerical methods that depend on iteratively updating the
asset allocations, a reasonable initial guess can be provided by the multi-stage method,
see Section 4.4.

The authors of [78] proposed a similar technique to the multi-stage strategy for the
quadratic convex optimization problem. Our research differs in two aspects. First, in-
stead of dealing with one optimization problem which can yield one point on the ef-
ficient frontier, we consider a series of optimization problems which generate results to
construct the whole efficient frontier. We find that the multi-stage strategy is particularly
satisfactory when the investor is highly risk averse. However, in case the investor is less
risk averse, the sub-optimal strategy turns out to be problematic. For this, we propose a
backward dynamic programming approach, which is different from the forward strategy.
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Remark 4.3.7. Asdiscussedin [29, 34], a semi-self-financing strategy exists which is better
than the pre-commitment strategy. In that strategy, a positive amount of money is with-
drawn from the portfolio when the wealth in the portfolio is above a determined value.
Similarly, the multi-stage strategy can be adjusted in this respect. However, since the im-
provement achieved by breaking the self-financing is not significant, we will not deal with
the semi-self-financing multi-stage strategy in this chapter.

4.4, BACKWARD RECURSIVE PROGRAMMING

In the preceding sections, we considered the “greedy policy” for the dynamic optimiza-
tion problem, and therefore the constrained dynamic mean-variance problem can be
solved in a forward fashion via Monte Carlo simulation. Except for the unconstrained
case, the multi-stage strategy allocation is generally not the optimal solution to the dy-
namic optimization problem. In order to get the optimal solution, we have to consider
a backward dynamic programming solution. In this section, we present an approach to
perform backward recursive calculation based on the solution of the multi-stage strat-

egy.

BENEFIT FROM THE CONSTRAINTS

In general, constraints complicate dynamic optimization problems. For an unconstrained

optimization problem, the value functions are smooth, so the optimality can be obtained

by solving the first-order conditions. When constraints are introduced, the smoothness

of the value functions is destroyed and derivative-based optimization is thus no longer

feasible. However, if we treat the constraints differently, they can also be “helpful”.
Consider an optimization problem at the state (¢, W;):

Ve(W) = min{EVesar(WeradI Wil (4.14)
X€A

where A is the admissible set for the asset allocation x;. V;(-) is the value function at
time ¢. When A # %, this is a constrained problem, which may not be easy to solve.
However, if we consider a special case where A = {x;|x; = K}, i.e. x; is restricted to be a
constant, the constrained problem becomes trivial. In fact, since we know that x; has to
be constant, the “optimal” solution in the admissible set is known immediately.

Using the multi-stage strategy, we obtain x;"**, which may be a reasonable approx-
imation of x}, which denotes the real optimal allocation. If we construct a truncated
admissible control set, A, = [x;™* —n, x{"** + 7], the solution to the following optimiza-
tion problem

VW) = min {EIVisarWesan Wil
Xt€Ay,
should be the same as that of the problem shown in Equation (4.14). Assuming that the
optimal allocations for the state (¢, W;) are in an interval [x} ™ —n, x;™*+n], the investor’s

optimal wealth W;,a; should be located in the domain®:

(DI+A[ = {WI+AZ’|WI+AI = Wl" (xl»Rf'FRf) +C'At, Xt € AT]}

3This domain is much smaller than the domain obtained without restricting x;. To avoid unnecessary techni-
calities, we assume that the wealth process is locally bounded.
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We further transform the original optimization problem shown in Equation (4.14) to be:
Vi(Wy) = Lneill}{ﬂ':[VHAt(Wt+At)|Wtr Wiinr € q’t+At]}, (4.15)
t

where an additional condition is introduced into the conditional expectation. Instead
of considering the optimization problem on the whole domain of Wy, A, we restrict the
optimization problem to a finite domain ®,,; and thus establish a local optimization
problem. For solving the stochastic optimization problem at state (¢, W;), we focus on
the value function V4 a;(Weiap) on a finite interval ®@; 4 a;.

BENEFIT FROM BUNDLING

By means of the constraints, the original problem in Equation (4.14) is simplified to a
truncated problem in Equation (4.15). To solve this truncated problem, we first need to
determine the value function V;4p;(Wyia;) on domain @4 5;. A common simulation-
based approach is that we vary x; around x;"”** and perform sub-simulation, which is
however involved and costly. One way to avoid sub-simulation is by plain Monte Carlo
simulation combined with bundling. Using the bundling technique, the domain ® 4,
can be approximated by:

Dpinr = Wiad Wesnr = Wi+ (] R + Rp) + C-At, W, € Bg},

where Bs = [W;—68, W;+6]. So, instead of varying x,, we vary W; by considering the paths
whose states are around (¢, W;). For more details about bundling, we refer the readers to
[57] and early chapters of this thesis.

4.4.1. BACKWARD PROGRAMMING ALGORITHM
Now we formally describe the algorithm for the backward programming stage.

* Step 1: Initiation:
Generate an initial guess of optimal asset allocations {Sct}tT:’OAt and simulate the
paths of optimal wealth values {Wt(i)}ﬁ.\; pt=0,...,T. At the terminal time T, we
have the determined value function V;(Wr).
The following three steps are subsequently performed, recursively, backward in

time, at t =T — A¢t,...,At,0.

* Step 2: Solution
Bundle paths into B partitions, where each bundle contains a similar number of
paths and the paths inside a bundle have similar values at time ¢. Denote the
wealth values associated to the paths in the bundle by {Wtb(i)}i.\fl, where Njp is
the number of paths in the bundle. Within each bundle, we perform the following
procedure.

— For paths in the bundle, we have the corresponding wealth values {Wg At(l’)}ﬁ\iBl
and the continuation values {thir arl i)}ﬁ\fl attime t+At. So, afunction fﬁr Al

which satisfies thi Ar= fﬁr A z(W£+ Ag On the local domain, can be determined
by regression.
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- For all paths in the bundle, since the value function ftﬁ At(thi Ap) has been
approximated, we solve the optimization problem by calculating the first-
order conditions. In this way, we get new asset allocations {fc? (i )}5131.

— Since the wealth values {Wtb (i)}ﬁ\iB1 and the allocations {fcf (i)}ﬁ\iB1 are known,
by regression we can also compute the new continuation values {V[b(i)}fl.
Here th(i) is the expectation of V;4a;(Wy4a;) conditional on Wtb(i) and fc?(i),
that is,

VEG) = ElViar (Wesa) W, = WE(G), x, = 2P ().

* Step 3: Update

For the paths in a bundle, since we have an old guess {fcﬁ’}ﬁ.\g
tions, by regression we can also calculate the old continuation values {th(i)}ﬁ\fl.
For the i-th path, if V(i) > VP(i), we choose i’(i) as the updated allocation.
Otherwise we retain the initial allocation. We denote the updated allocations by

PHOINE

for the asset alloca-

 Step 4: Evolve
Once the updated allocations {xi’ (i)}?fl are obtained, again by regression we can

calculate the “updated” continuation values {th(i)}i.\fl and proceed with the back-
ward recursion.

In the algorithm, regression refers to the technique of approximating the target func-
tion by a truncated basis function expansion, where the expansion coefficients are deter-
mined by minimizing the approximation error in the least squares sense. At each time
step and inside each bundle, four regression steps are performed. Especially, the last
three regression steps are added for calculating value functions. Since the value func-
tion is used to evolve information between time steps, an error in calculating them will
accumulate due to recursion. In general, we can settle this problem by using a very large
number of simulations, which is however expensive. In our numerical approach we al-
ways use the “Regress-Later” technique as applied in Chapters 2 and 3.

When we use the regression, polynomials up to order two are considered as basis
functions. For the unconstrained problem, the value function is a quadratic function, so
this choice of basis functions is sufficient. In the constrained case, although the value
function is non-smooth, it is still piecewise quadratic as stated in [40]. Since the regres-
sion is performed with respect to paths in the same bundle, it is a local regression, i.e.
local polynomial fitting. In all, our algorithm, which adopts second order local poly-
nomial fitting to approximate piecewise quadratic functions, should yield satisfactory
results.

After one iteration of the algorithm, we will obtain an “updated” asset allocation at
each time step. The algorithm can be performed iteratively. In the remaining part of this
section, we will prove that these iterations will lead to a convergent result.

Remark 4.4.1. In the engineering field, this type of dynamic programming is called dif-
ferential dynamic programming. For more details, we refer the reader to [56] and [80].

A
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4.4.2. CONVERGENCE OF THE BACKWARD RECURSIVE PROGRAMMING
For the dynamic backward recursive programming, we have

Vt(Wt) ZII)ICin{[E[V[JrAt(Wt' (xtR?‘l'Rf) + CAI)'W[]}, t= T—At,...,O,
t

where the expectation is taken over the return Ry. This recursion can be written as:
Vt:\Pl’Vt+At’ t= T—At,...,O,
where ¥, is the Bellman operator, defined as

(¥, F)(W,) = n}citn{[E[F(Wt-(xtRf +Rp)+C-0Iwl, (4.16)

for any function F(-).
According to [6], the Bellman operator has the monotonicity property, which is de-
scribed by the following lemma.

Lemma 4.4.2 (Monotonicity). ForanyF,: % — % and F>: % — X,
F <F=Y,F <¥,F,
where the inequalities are interpreted pointwise, and ¥ ; is as in (4.16).
We can prove the following proposition:

Proposition 4.4.3. The backward recursive updating process, as explained in Section
4.4.1, converges. That is: there exists a function V (-) satisfying

Vo Wo) = lim vV wy),
k—+00

where Vo(k)(W()) denotes the value function at initial state after k iterations of the algo-
rithm in Section 4.4.1.

Proof. The proofis directly based on the design of the backward recursive programming
algorithm and the Monotonicity Lemma 4.4.2. Since at each iteration, we compare the
previous and the new allocations and retain the one which generates a smaller value
function and since the Bellman operator preserves monotonicity, we get:

VW) = VE W) = -2 VIO W), k=1,..., kinax.

Since the value function is positive, according to the Monotone Convergence Theorem,
we can finalize the proof. O

Whereas the convergence can be proved, the convergence rate is not determined.
The convergence rate depends on the smoothness of the value functions and the initial
guess of the allocations. For example, for a smooth quadratic value function, any non-
zero initial guess should give the correct result after one iteration. On the other hand,
if we choose zero as the initial guess for all the asset allocations, the solution can never
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depart from the stationary point, which is generated by the risk-free investment strategy.
In this case, the value function cannot be accurately approximated via the regression
technique and thus the backward recursive programming algorithm proposed cannot
proceed. In our numerical tests, however, we always achieve satisfactory results using
the initial guess of the asset allocations generated by the multi-stage strategy.

On the other hand, the solution of our backward recursive approach is not guaran-
teed to be the optimal one. We call this algorithm “sub-optimal” because a bias is in-
troduced when we approximate the non-smooth value function by piecewise quadratic
polynomials. Although the numerical tests indicate that our algorithm generates highly
satisfactory solutions, we expect that when the value function is highly non-smooth the
approximation bias in our algorithm will be large and the accuracy of our algorithm may
be unsatisfactory. As reported in [87], smooth approximations to a non-smooth value
function can be very unreliable and thus a typical policy iteration technique may fail to
converge. However, since the update step is introduced in our algorithm, we only up-
date value functions and controls when they yield better results. This update step makes
our algorithm a bit different from a common policy iteration algorithm but it guarantees
that our algorithm will always generate convergent results.

4.5. CONSTRAINTS ON THE ASSET ALLOCATIONS

From the perspective of real-life applications, introducing constraints on the asset allo-
cations is important. For example, when an investor goes bankrupt, she should not be
allowed to manage her portfolio any more. Besides, according to regulations for banks,
the leverage ratio should be bounded. In this section, we will formulate controls on the
asset allocations.

4.5.1. NO BANKRUPTCY CONSTRAINT

In this chapter, the “no bankruptcy” constraint implies that there is zero probability of
bankruptcy when the constraint is cast on the asset allocations. To ensure that the allo-
cation at time ¢ does not lead to bankruptcy at time ¢ + At, we need:

Wt-(xtRf+Rf)+CAt20. (4.17)

Note that if there is a “no bankruptcy” constraint, definitely we have W; > 0. Therefore,
to guarantee that Equation (4.17) is valid, we need:

XR=-Rp— —. (4.18)

-Rpz-—- and x;=0.

to ensure Equation (4.18) to be valid. Reformulating these equations, we have:

CAt

O<sx;<1+ .
Wl’Rf

(4.19)
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The “no bankruptcy” constraint given by Equation (4.19) implies limy, o (x;- W;) =0, as
given in [88, 89] for the continuous portfolio optimization problem. Our version of the
“no bankruptcy” constraint for the multi-period case is stronger than the constraint in
[88, 89]. Rather than specifying that wealth should not be invested in the risky asset when
the total wealth amount is close to zero, our constraint also indicates that special con-
sideration to the asset allocation should be given even though the wealth amount is far
above zero. This is due to the difference between continuous and discrete re-balancing.
In the latter case, since we cannot manage the portfolio between two re-balancing op-
portunities, it is possible that the investor goes bankrupt after an extreme market move-
ment. To avoid this situation, we need to impose more strict constraints on the asset
allocations, which is however not necessary for a continuous re-balancing problem.

4.5.2. NO BANKRUPTCY CONSTRAINT WITH 1 —2{% CERTAINTY

When the wealth in a portfolio is large, according to the discussion in the last subsec-
tion, the upper bound for “no bankruptcy” constraint (4.19) will be close to 1, which is
quite rigorous. Using this as the upper bound protects an investor from bankruptcy ex-
cept in the rare case that the risky asset yields zero return. A possible way to relieve this
constraint is to take the possibility of bankruptcy into account.

Assume that the {- and the (1 - {)- quantiles of the excess return R are respectively
Rf’( and Rf'l_(. Then with certainty 1 —2{% and the constraints shown below, we can
guarantee that the “no bankruptcy” constraint in Equation (4.17) is valid. The bounds
for the asset allocations can be computed as:

~CAt—W, Ry ~CAt—W, Ry
e - 7

< (4.20)
W;- R W;-R%*

Remark 4.5.1. The constraints proposed by Equation (4.20) correspond to discrete mon-
itoring at re-balancing times. If an investor is restricted by the “no-trading if insolvent”
condition, under which she has to liquidate all assets if involvent, continuous monitoring
of the portfolio is required.

4.5.3. BOUNDED LEVERAGE

Equations (4.19) and (4.20) imply that when an investor’s wealth is close to zero, the
upper bound for the allocation in the risky asset goes to infinity. The “no bankruptcy”
constraint does not forbid an investor from gambling when she is almost bankrupt. To
avoid this, we can impose constraints on the leverage ratios, for example, by restricting
the proportion of investor’s wealth in the risky asset to be within [Xmin, Xmax]-

4.6. NUMERICAL EXPERIMENTS

In this section, we test our algorithms by solving several multi-period mean-variance
portfolio management problems. We start with a simple case with one risky asset and
one risk-free asset in the portfolio. We choose geometric Brownian motion as the dy-
namics of the risky asset, and assume that the log-return of the risky asset has volatility
o and mean r¢+¢-0. Here ry is the log-return of the risk-free asset and ¢ the market price
of risk. Since only the return of the risky asset is stochastic, we call this problem a “1D
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Table 4.1: Parameter settings used in the test.

Set I (From [88]):

ry=0.03, ¢=0.33,0=0.15,C=0.1, T =20(years), Wy =1, M* = 80.
Set II (From [10]):

rr=0.06,¢=0.4,0=0.15,C=0, T = 1(year), Wp = 1.

Set III (From [39]):

re= 0.04,¢(=0.4,0 =0.15,C=0, T =30(years), Wp =100, M = 30.

* M denotes the number of early exercise opportunities, which are equidistantly distributed in T years.

problem”. We will also consider a “2D problem” with two risky assets and one risk-free
asset in the portfolio. We consider only bounded leverage constraints in the 2D problem,
and therefore it can be solved highly efficiently.

In the numerical tests, we choose the sample size to be 50000 and the number of
bundles to be 20 in the backward recursive programming stage. When we employ the
“no bankruptcy” constraint (4.20), we choose parameter { to be sufficiently small, { =
1078, which ensures that the undesired event will not happen. Regarding the backward
recursive programming, we use a common random seed to generate Monte Carlo paths
for one run of the algorithm (including one forward and several backward processes). To
ensure that the choice of random seed does not introduce a bias, we consider 20 different
random seeds in all tests.

Based on reference results, we choose three different sets of parameters, shown in
Table 4.1.

4.6.1. 1D PROBLEM

MULTI-STAGE OPTIMIZATION WITH CONSTRAINTS
We first test the plain multi-stage strategy using the model parameters from Set I in Table
4.1. Different types of constraints are prescribed on the asset allocations. The bounded
control is chosen to be [0,1.5]. Figure 4.1 shows that constraints on the controls have a
significant influence on the efficient frontiers obtained by the multi-stage strategy.
Without periodic contribution, i.e. C = 0, an analytic solution to the “no bankruptcy”
case with continuous re-balancing is presented in [10]. For a corresponding test, we
choose the model parameters from Set II in Table 4.1. In Figure 4.2, we can see that
when the number of re-balancing opportunities is sufficiently large, the efficient frontier
generated by the multi-stage strategy is close to the analytic solution, especially when
the investment risk is not large.

BACKWARD RECURSIVE PROGRAMMING

In this section, we show the performance of the backward recursive programming stage.
Unless indicated differently, the initial asset allocations are generated by the multi-stage
strategy. We first consider a continuous re-balancing scenario shown in Figure 4.2, where
an analytic solution is available. We observe that when backward recursive program-
ming is implemented, we obtain a better efficient frontier than the one generated by the
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Figure 4.1: Different types of constraints on the management strategies. By varying the target y €
(9.125,85.125), we trace out the efficient frontiers.
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Figure 4.2: The “no bankruptcy” case. An analytic solution is available if continuous re-balancing is applied.
We check the efficient frontier generated by our algorithm. For backward recursive programming, we use the
results obtained after four backward iterations when M = 128.
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multi-stage strategy. Moreover, we find that the efficient frontier resulting from back-
ward recursive programming is close to the analytic solution.

Subsequently, we perform tests for a multi-period portfolio management case pre-
sented in [39] with the parameters from Set III in Table 4.1. We consider bounded con-
straints [0, 1.5] on the asset allocations.

In Figure 4.3, we present the efficient frontiers generated by the multi-stage approach
and by the first four iterations in the backward recursive programming stage. Again we
can see that the backward recursive approach generates better results than the multi-
stage approach. Even with one iteration of backward programming, the result is already
highly satisfactory.

In Table 4.2, we consider two cases for which also reference results are available. We
find that in general, even with the same terminal target, the mean-variance pair calcu-
lated by the multi-stage strategy is different from the reference value. However, after the
backward recursive programming, the result is highly satisfactory. In fact, the backward
programming even provides results somewhat superior to the reference values*. More-
over, the multi-stage strategy and the backward recursive programming stage cost only
seconds.

Table 4.2: Comparison of the results generated by the multi-stage strategy and the backward recursive pro-
gramming to the reference values in [39].

Target Y =1751.94 Y =5856.15
Ej (Wr) Stdg (Wr) CPU time E; (Wr) Stdg (Wr) CPU time
(s.e.) (s.e.) (in seconds) (s.e.) (s.e.) (in seconds)

Reference 816.62 142.85 2008.55 969.33

Multi-stage 823.84 154.37 4.71 2031.65 987.55 4.17
(0.71) (1.28) (4.86) (2.54)

One backward 818.83 143.33 9.09 2018.47 969.29 8.23
iteration (0.70) (1.30) (4.73) (2.58)

Four backward  817.74 141.40 22.25 2014.90 964.80 20.34
iterations (0.70) (1.28) (4.73) (2.62)

The backward recursive programming technique is robust regarding different choices
of initial allocations. As shown in Figure 4.4, even though we fix the initial asset alloca-
tions to be constant’, the backward recursive programming stage still gives us a satisfac-
tory result after some iterations.

4.6.2. 2D PROBLEM WITH BOX CONSTRAINTS

To tackle dynamic portfolio management problems with either the forward or the back-
ward strategy proposed, we essentially need to deal with a constrained convex optimiza-
tion problem. Some fast numerical solvers exist for this kind of problems in high dimen-
sional scenarios. In this section, we will consider a simple 2D case where box constraints
are cast on the asset allocations. In this case, bounded controls are prescribed for the

4For generating the efficient frontiers, we implement Monte Carlo simulation while the authors of [39] utilize
a PDE approach. As explained in [66], the simulation based approach usually yields slightly better results.
5In general this will lead to quite a rough initial approximation of the mean-variance pair.

20
TUDelft



80 4. MULTI-PERIOD MEAN-VARIANCE PORTFOLIO OPTIMIZATION

Multi-stage
20| — 1 Backward lteration
2 Backward lterations|
— 3 Backward lterations|
—— 4 Backward lterations|

Multi-stage

—— 1 Backward lteration
2 Backward lterations|

— 3 Backward lterations|

—

1400

1200 800

780
1000

B T
Ei §i 760 4
3 e
w 800 w
740 4
600 720 A
700 1
400
] 50 100 150 200 250 . 300 350 400 450 500 100 105 110 115 120 125 . 130 135 140 145 150
stdg[W,] stdg[W)]
n (a) Efficient frontier with bounded control (b) Efficient frontier with bounded control (zoom
in)

Figure 4.3: Backward recursive calculation using the allocations generated by the multi-stage strategy as
guesses for the optimal asset allocations.
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choice will lead to an inaccurate estimate of the mean-variance pair. However, after several (in our tests, at
most four) iterations of backward programming, we achieve highly satisfactory results.
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allocations of both risky assets. Solving this constrained 2D convex optimization prob-
lem is therefore equivalent to solving five simple optimization problems and choosing
the best results from them. The reason is that for a quadratic optimization problem with
box constraints the optimal solution lies either at the boundary or in the interior of the
admissible set. These five optimization problems include one unconstrained 2D prob-
lem" and four 1D problems with bounded constraints.

We use the parameters displayed in Set III from Table 4.1 and for the other risky asset
we use the same market price of risk but a higher volatility, o;, = 0.4. The correlation p
between these two risky assets is fixed at p = 0.4, unless mentioned otherwise. For both
assets, we prescribe bounded constraints [0,0.75] on their asset allocations.

First, we test the influence of adding another risky asset to the portfolio. Here we
simply implement the multi-stage strategy for generating the mean-variance efficient
frontier. As shown in Figure 4.5, increasing diversification in the portfolio has a signif- u
icant impact on the solution of the dynamic optimization problem. When the corre-
lation between the two risky assets is close to —1, an optimal efficient frontier can be
obtained. This is intuitive, because a large part of the volatility can be hedged in the
case of two negatively correlated risky assets. When their correlation gets larger, the
efficient frontier gets worse. However, in most cases two risky assets in the portfolio
yield better results than having one risky asset in the portfolio. For example, when we
choose the correlation to be 0.4 and the final target to be 5856.15, as used in Section
4.6.1, we obtain [[EO[WI’?], Stdo[WT*]] =[2501.41,893.87] which is significantly better than
[Eo[Wr1,Stdo [W]] = [2031.65,987.55] as acquired in the 1D case.

In Figure 4.6, we compare the multi-stage strategy and the backward recursive pro-
gramming approach. The outcome is similar to that observed in the 1D tests. When we
implement the backward recursive programming stage, a significant improvement is ob-
tained. For example, when the standard deviation is around 200, an almost 10% higher
expected return can be obtained if we consider the backward recursive programming
approach rather than the multi-stage approach.

Remark 4.6.1. In the 2D case, we also observe that satisfactory results can be obtained
after several iterations of backward recursive programming even if we start with an inac-
curate initial guess of the asset allocations.

4.7. CONCLUSION
In this chapter, we proposed simulation-based approaches for solving the dynamic mean-
variance portfolio management problem. To deal with the nonlinearity of the condi-
tional variance, we used the embedding technique introduced in [63] to transform the
mean-variance optimization problem into a linear-quadratic problem, which has a de-
termined final optimization target. To tackle this target-based dynamic optimization
problem, also known as “the pre-commitment problem”, we proposed two approaches,
one in a forward fashion and the other in a backward fashion.

The forward approach, called the “multi-stage strategy”, is based on determining an
intermediate investment target at each re-balancing time. The intermediate target is

6First, we solve the unconstrained 2D problem. Then we penalize the optimal solution when the constraints
are not satisfied.
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with low volatility. Bounded control [0,0.75] is cast on both assets. For the 1D test case, we employ the risky
asset with low volatility in the portfolio and bounded control [0, 1.5].

2500 1600

1500
2000

- B
2 150 =
=3 =3
w W 1300
1000
1200
500 100k
== Multi-stage - == Multi-stage
Backward Recursive Programming| Backward Recursive Programming|
0 100 200 300 400 500 . 600 700 800 900 1000 200 220 240 260 280 300 . 320 340 360 380 400
std [W,] stdg[W,]
(a) 2D efficient frontier (b) 2D efficient frontier (zoom in)

Figure 4.6: We compare forward and backward strategies for the 2D dynamic portfolio management problem
with box constraints. When considering the backward recursive programming, we use the results obtained
after four iterations.
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chosen as the amount of wealth, which, if obtained, an investor can invest with a risk-
free strategy and still reach the final investment target. Although it is generally believed
that backward programming is essential for solving a dynamic optimization problem,
we proved that the multi-stage strategy yields optimal controls when no constraints are
involved. In the case that there are constraints on the controls, the multi-stage strategy
can only yield a sub-optimal solution. However, since it is a forward and thus highly
efficient approach, it is always feasible even when the dimensionality of the problem
increases.

Although the forward approach is fast and easy-to-implement, in general it is not op-
timal for a dynamic optimization problem. Therefore, we proposed another simulation-
based approach which involves backward recursive programming. The main idea of the
backward recursive approach is that we consider local quadratic optimization instead
of global optimization. By tailoring the numerical algorithm, the backward recursive
programming is guaranteed to yield convergent results after several iterations. In the
numerical tests, it was shown that, although the backward approach is also sub-optimal,
it always generated better efficient frontiers than the multi-stage strategy.

In the backward approach, we need to calculate conditional expectations associated
to each simulated path recursively by least-squares regression. To make this regression-
based numerical approach stable, we implemented the “bundling” and the “regress-
later” techniques. We found that our backward recursive approach is very robust. Even
if it is initiated by an inaccurate guess for the allocation, highly satisfactory results can
be obtained after several iterations.
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CHAPTER D

Multi-period Mean-Variance Portfolio Optimization with
Time-Consistency Constraint

In this chapter, we establish a link between a time-consistent and a pre-commitment in-
vestment strategy. We define an implied investment target, which is implicitly contained
in a time-consistent strategy at a given time step and wealth level. By imposing the im-
plied investment target at the initial time step on a time-consistent strategy, we form
a hybrid strategy which may generate better mean-variance efficient frontiers than the
time-consistent strategy. We extend the numerical algorithm proposed in the previous
chapter to solve constrained time-consistent mean-variance optimization problems. Since
the time-consistent and the pre-commitment strategies generate different terminal wealth
distributions, time-consistency is not always inferior to pre-commitment.

Keywords: Finance - Investment analysis - Decision analysis - Simulation - Time-consistency

5.1. INTRODUCTION

In this chapter, we consider dynamic mean-variance optimization problems. In gen-
eral the Bellman dynamic programming principle [5] should be applied to this kind of
path-dependent optimization problem. Due to the nonlinearity of the variance opera-
tor, however, the mean-variance problem cannot be solved in this manner as explained
in Chapter 4.

In [91] and [63], the authors introduced an embedding technique, by which the orig-
inal mean-variance problem was formulated as a tractable linear-quadratic (LQ) prob-
lem. Instead of pursuing an optimal balance between profit and risk, an investor then
designs an investment strategy to minimize the difference between her wealth and a pre-
determined investment target. In [4], the optimal strategy for the LQ problem is termed
pre-commitment strategy. Related research on the pre-commitment mean-variance port-
folio optimization problem has been performed in [64], [92], [10], [40] and [28], where
realistic constraints were considered in the dynamic optimization process. Moreover,
since target-based features of the pre-commitment strategy fit well to pension plan in-
vestment, some discussion regarding this strategy arose in the insurance management
literature as well, see [52], [44] and [86].

However, as noticed in [4], after an initial time step, a real world investor will be
on only one of many possible stochastic paths and an investor with a determined risk

This chapter is based on the article 'On pre-commitment aspects of a time-consistent strategy for a mean-
variance investor’, published in Journal of Economic Dynamics and Control, forthcoming, 2016 [27].
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aversion attitude may then have an incentive to depart from the pre-commitment strat-
egy. The authors in [4] emphasize that an optimal dynamic strategy should be a time-
consistent strategy, i.e. given an optimal investment policy for the complete mean-variance
problem, a sub-policy should also constitute the optimal policy for the corresponding
sub-problem. As spotted in [89], [90] and [21], introducing the time-consistency condi-
tion requires casting additional constraints on the controls and the mean-variance ef-
ficient frontier generated by a time-consistent strategy is thus usually lower than the
frontier generated by a pre-commitment strategy. In the case of discrete and continu-
ous re-balancing, the author in [32] developed a time-consistent formulation of mean-
variance efficiency in a semimartingale framework. Extensions of the time-consistent
mean-variance strategy have been made by modeling the risk aversion parameter as a
state-dependent variable, see [54], [30], [11] and [31]. The strategy of a dynamic mean-
variance investor is then defined to be time-consistent in efficiency, which does not nec-
essarily meet the time-consistency conditions but may yield higher mean-variance effi-
cient frontiers. Despite some discussion on the pre-commitment and the time-consistent
mean-variance strategies in the operational research literature, the link between these
strategies is mainly at the stage of problem formulation: a time-consistent strategy can
be obtained by casting a time-consistency constraint on a pre-commitment strategy.

In this chapter, the point-of-departure is to focus on the relation between the two
strategies. Since for the pre-commitment as well as for the time-consistent strategy the
optimal allocations for a mean-variance investor are available, we can establish a link
between the former, which is driven by a target, and the latter, driven by a risk aversion
parameter. In the case where a pre-commitment investor adopts the same asset alloca-
tions as a time-consistent investor, a one-to-one function between the target and the risk
aversion parameter can be established. This function gives information on how the risk
aversion attitude of a pre-commitment investor changes and how much wealth a time-
consistent investor desires during the dynamic investment process. We call the target
for the time-consistent investor the implied target.

During an investment period, the implied target of a time-consistent investor varies
while the target of a pre-commitment investor remains fixed. This makes the distribu-
tions of their potential terminal wealth significantly different. Reflecting on this, we de-
fine a hybrid strategy by introducing a fixed target into the time-consistent strategy. This
hybrid mean-variance strategy is dual to a mean-variance strategy which minimizes the
shortfall to a target. Introduction of a target into the mean-variance formulation essen-
tially makes a strategy semi-self-financing, which suggests that the investor can withdraw
money from the portfolio in some scenarios. Since a semi-self-financing strategy offers
a broader set of admissible controls than a self-financing strategy, as explained in [29]
and [34], introducing semi-self-financing into a pre-commitment strategy can improve
the mean-variance efficient frontiers.

In principle, any target higher than the risk-free target could be a reasonable target
for the hybrid strategy. However, if the target is too high, a hybrid investor will behave like
the time-consistent investor. In this chapter, we choose the target to be equal to the im-
plied target at the initial time step of a time-consistent investor. With this setting, we find
that the mean-variance frontier generated by the hybrid strategy is higher than the one
generated by the time-consistent strategy. In the constrained case, the mean-variance
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frontier generated by the hybrid strategy is often almost identical to the one generated
by the pre-commitment strategy. In this case the hybrid investor behaves more like a
pre-commitment than a time-consistent investor.

Since different strategies may generate different terminal wealth distributions, the
mean-variance efficient frontier may not tell us all about the performance of a strategy.
When considering partial variance, for example, we find that the time-consistent strat-
egy is not always inferior to the pre-commitment strategy. If we only consider downside
risk, the time-consistent strategy and the pre-commitment strategy perform compara-
bly. Moreover, in terms of the potential to achieve higher returns, the time-consistent
strategy may perform even better.

In the previous chapter, we proposed an efficient simulation-based algorithm for
solving the pre-commitment mean-variance problem with constraints on the controls.
In the unconstrained case, the optimal pre-commitment strategy was shown to be iden-
tical to the strategy taken by a “myopic investor”, who designs her optimal strategy with-
out taking future optimality into account and therefore simply utilizes a forward strategy.
In this chapter, we will extend the numerical algorithm, based on a forward followed by
a backward iteration proposed in the previous chapter, to the time-consistent problem.
Solving the constrained time-consistent mean-variance problem with a simulation-based
approach has, to our knowledge, not yet been performed previously. The authors in [4]
handle the variance operator by writing it as the difference of two variables being the
mean of the square of the variable and the square of the variable’s mean. With such mod-
ifications in our algorithm, highly satisfactory results for the constrained time-consistent
problem can again be obtained. In the unconstrained case the optimal strategy of a time-
consistent investor can be duplicated by a myopic investor as well.

This chapter is organized as follows. In Section 5.2, we describe the dynamic mean-
variance problem, the pre-commitment and the time-consistent strategies. Section 5.3
has its focus on the time-consistent strategy. We derive an analytic formula for the time-
consistent optimal allocation in Section 5.3.1. Reflecting on this, we compare the time-
consistent and the pre-commitment strategies in Section 5.3.2. The hybrid strategy,
which is constructed by inserting a target in the time-consistent strategy, is introduced
in Section 5.3.3. Section 5.3.4 introduces the partial variance for evaluating the mean-
variance strategies. Our numerical algorithm is presented in Section 5.4 and following
that in Section 5.5 numerical tests are performed. We conclude in the last section.

5.2. PROBLEM FORMULATION

We again consider the multi-period mean-variance optimization problem as formed in
Chapter 4. Therefore, we still use the notations as defined in Section 4.2.

In Chapter 4, the original mean-variance problem was embedded into a tractable
auxiliary linear-quadratic (LQ) problem. The investment strategy corresponding to this
LQ problem is called the pre-commitment strategy. A pre-commitment investor always
pursues a pre-determined target and thus invests according to the pre-determined strat-
egy. However, this also implies that the investor does not stay with the initial trade-off
parameter A.

If an investor has a time-consistent risk aversion, then the investment strategy is
termed the time-consistent strategy as in [4]. Mathematically, the time-consistent strat-
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egy can be defined as follows:

Definition 5.2.1 (Time-consistent strategy). At time t, the time-consistent optimal con-
trol {x; ”}ST:_tAt is defined by the optimal control for Equation (4.1) with an additional
time-consistency condition requiring that the subsets {x: '} -2 7 = t+At, t+2-At,..., T~

N
At, also constitute optimal controls for:

Je(Wo) = max |E[Wr|W;] - A-Var[Wr Wy, GRY

{xs}s:r
fort=t+At,t+2-At,..., T - At.

Similar as in Chapter 4, various constraints can be cast on the asset allocations. For
example, the no bankruptcy constraint, which requires that the asset allocation does not
lead to bankruptcy of the investor, and the leverage constraint, which forms bounds on
the asset allocation.

Remark 5.2.2. Similar as in Chapter 4, we consider a no-bankruptcy constraint with 1 —
2-{% certainty. At time t, for an investor with wealth Wy, the constraint on the asset
allocation x; reads:
—CAt—W;- Ry —CAt—W;- Ry
- 22 ' < .

< (5.2)
W;- R W;-R%*

Rf’( and R?’lf{ respectively denote the (- and the (1 - {) - quantiles of the excess return Ry.
When we consider the bounded leverage constraint, we set upper and lower bounds for
the asset allocation. The bounded leverage constraint reads:

Xmin < Xt < Xmax-

Remark 5.2.3. The authors of [11] introduced a state-dependent risk aversion parameter,
which can be determined by the amount of wealth in a portfolio. Formally, the state-
dependent risk aversion parameter reads:

AWy = 0
(W) = W,
where0 is a fixed constant.

The state-dependent risk aversion parameter implies that an investor will be less risk
averse when she has a large amount of money and more risk averse when she is almost
bankrupt. This may be reasonable for a real-world investor, but it also leads to some prob-
lems. For example, when an investor is close to bankruptcy, applying the risk-averse strat-
egy indicates that it is hardly possible to get back to sufficient wealth. On the other hand,
with a large amount of money, she is less risk-averse and willing to “‘gamble’, which may
lead to significant losses. To sum up, although this way of forming the risk aversion pa-
rameter seems reasonable, the corresponding investment strategy has “easy-to-lose” and
“hard-to-recover” features. Therefore, as shown in [89] and confirmed in our numerical
tests, this strategy will generate a lower efficient frontier than the plain time-consistent
strategy.
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Note that there is no guarantee of Pareto optimality when the risk aversion parameter
is not a constant scalar. This explains why in the numerical tests we can get higher mean-
variance frontiers even when more strict constraints are cast on the asset allocations of a
time-consistent investor with state-dependent risk aversion.

In the following section, we will analytically derive the optimal unconstrained multi-
period time-consistent strategy. Besides, reflecting on our findings in Chapter 4 about
the pre-commitment strategy, we will make a thorough discussion comparing the time-
consistent strategy and the pre-commitment one.

5.3. THE TIME-CONSISTENT STRATEGY

5.3.1. THE OPTIMAL ASSET ALLOCATION
Under the following condition, we can derive an analytic expression for the asset alloca-
tions in the time-consistent strategy.

Condition 5.3.1. The asset allocations at each time step are unconstrained.

The formulation of the asset allocations for the time-consistent strategy is described
in the following proposition. Since it is not easy to derive the value function of the time-
consistent strategy (because of the nonlinearity of the variance operator), our proof is
based on the essential properties of an “optimal control”.

Proposition 5.3.2. Variablex}'°, the optimal asset allocation for the time-consistent mean-
variance optimization problem at time t, can be calculated by:

E[R]
22 Wy- ROAY Var[Rg) ’

*fC _
Xy =

(5.3)

wheret =0,At,..., T —At.

Proof. We consider the dynamic programming technique for solving the time-consistent
problem. At time T — At, since the terminal condition at time T is known, the time-
consistent strategy will certainly generate the asset allocation as shown in Equation (5.3).
That is:

E[RS_,.]
*1 _ T-At
A = o VarRE T (5.4)
T-At ar[ T—A t]
Subsequently, we consider the optimization problem at time T —2A¢t, where
X3 a, = arg max |E[Wr|Wr—za¢] = A -Var[Wr|Wr_oa] |. (5.5)

Note that the wealth Wr_,; and Wy respectively have the form:

Wr_a¢ Wr_oar- (X7-28¢RG_,5, + Rp) + C-At,
Wr = Wroar (6F% RE_p,+Rp)+C-At.

e
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Allocation x;th , indicates that the optimal allocation will be chosen at time step T —At.

The formulation for the terminal wealth Wt then reads:

Wr

(WT_ZA, (x7-20¢RG_op, + Rp) + C-At) N

+

(WHA, -(X7-anc RS pp + RP)+ C-At) ‘Rp+C-At
EIRT_,IRT_,
2-A-Var[R7_|]

Kr_ont + Wr_oar-RG_op; - Rp - XT-200) (5.6)

+ Wr_oat- (XT_ZAIR%_ZAt+Rf)'Rf+C'At'Rf+C'At

where the second equation is based on the property of the optimal control as shown
in Equation (5.4): x’;ffm multiplied by Wr_a; will yield a constant. In the last line in
Equation (5.6), we use K7_2a; to denote all terms that are not related to x7_2a;. Since
we perform optimization with respect to control variable x7_,a; and returns at differ-
ent time steps are independent, knowledge of the details of K7_»a; is not needed when
solving our optimization problem.

We insert Equation (5.6) into the mean-variance formulation and obtain:

E(Wr|Wr_ons]l = A-Var[Wr|Wr_oa,]
= Kr-aar+ Wroaar EIRG ;5 ) Rp X180 = A WE_p - VarlRG 5 1+ (Rp)? - X7y,

Solving the first-order conditions with respect to x7_2a; gives us:

E[RS ,.,]
XN = =28 ¢ ) (5.7
2:A- WT72At . Rf -Var[RT_ZM]

which is identical to the allocation shown in Equation (5.3), when ¢ = T — 2A¢.
The allocations for other time steps can be proved by backward induction in a similar
fashion. O

The asset allocations for the time-consistent strategy shown in Equation (5.3) can be
explained in a straightforward way. Consider a myopic investor who only manages the
portfolio for the coming period and chooses a risk-free policy afterwards. Then, the op-
timal time-consistent strategy is identical to the strategy taken by this myopic investor.
We will discuss this in some more detail in Section 5.4.1. Moreover, if we assume that the
risky asset returns at different time steps have a stationary distribution, Equation (5.3)
implies that a fixed constant amount of wealth should be invested in the risky asset at all
time steps.

When the periodic contribution C is not included in the portfolio, a general solution
for an unconstrained time-consistent multi-period portfolio management problem has
been established in the literature, for example in Proposition 5 in [4] and in Lemma 3.2 in
[32]. However, we notice that introducing periodic contributions does not affect the op-
timal asset allocations of a time-consistent investor. Meanwhile, as discussed in the pre-
vious chapter, a pre-commitment investor takes the contribution amount into account
when the investment strategy is determined. Knowledge of the periodic contribution is
essential for the pre-commitment strategy.
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In the remaining analysis part of this chapter, we restrict ourselves to the situation
where there is no periodic contribution, i.e. C = 0. However, extending the analysis to
the case C # 0 is possible.

Remark5.3.3. Asshown in Equation (5.3), the optimal asset allocation in a time-consistent
strategy depends on the first and second moments of the excess return rather than on the
complete distribution. However, when we use these asset allocations to generate the mean-
variance pairs, the distribution of the excess return has an impact. The same holds for the
pre-commitment strategy, see [35] for related discussion.

Remark 5.3.4. As reported in [90], in the unconstrained case, the time-consistent mean-
variance solution is identical to a mean-quadratic-variation optimization, whose objec-
tive function reads:

T
max E WT—/lf (er(T_s)dWS)2|Wt].
t

In other words, a time-consistent investor implicitly cares about the average volatility of
the wealth in the whole investment period.

5.3.2. PRE-COMMITMENT VERSUS TIME-CONSISTENT STRATEGY
By combining our findings in Section 5.3.1 with those in Section 4.3.1, we can establish
a link between the pre-commitment and the time-consistent strategy for the dynamic
mean-variance optimization problem. In fact, the pre-commitment strategy can be seen
as a strategy consistent with an investment target but not with a risk aversion attitude,
while the time-consistent strategy appears as a strategy consistent with a risk aversion
attitude but not with an investment target.

According to our discussions in the last chapter, if a pre-commitment investor has
an investment target y, the optimal control at state (¢, W;) in the unconstrained case is
equal to:

wpe _ (Y =We- R TV EIR])
= W, - (Rf)(T—t)/At—l[E[(R;?)Z] ’

(5.8)

where the target y uniquely determines the asset allocations when other parameters are
fixed and vice versa. When the periodic contribution is taken into account, the uncon-
strained asset allocation for the pre-commitment strategy reads:

1_R\T-n/At
y—W;- (Rf)(T—t)/At —C-At- IC—Rf [E[Rf]

’

*pc
X =
4 Wt-(Rf)(T*t)/At*I[E[(Rl‘f)Z]

where the periodic contribution obviously has an impact on the pre-commitment strat-
egy.

Suppose that a time-consistent investor has risk aversion A, at state (¢, W;) the time-
consistent optimal asset allocation then reads:

E[R]
2-0-W;- R]&T‘”’M‘l -Var[R¢]’

*IC _
Xy =

e
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where the asset allocation is also uniquely determined by risk aversion parameter A.
Atstate (¢, Wy), if a pre-commitment investor has the same optimal allocation as x; ¢,
because the allocation x: P¢ and the investment target y form a one-to-one function, as

shown in Equation (5.8), we can calculate an implied investment target yltmp by solving:

A L N

W;- (Rf)(T—t)/At—l[E[(R;?)Z] - 2-1-W, ‘R}T—L‘)/At—l -Var[Rf] :

This gives us:

i - E[(R})*]

imp (T-1)/At t
=WR —L

Ti T 2AVar[R¢]

The reasoning for using an “implied investment target” is similar to that for the well-
known “implied volatility” in option pricing problems. An option can be priced by an in-
volved model, but the Black-Scholes model is utilized for generating the implied volatil-
ity, which reflects the volatility in the market. In our case, the asset allocation corre-
sponds to the “option price” and the time-consistent strategy to the “involved model”.
The “implied investment target” informs us about the target hidden in the strategy of
a time-consistent investor. A similar idea is introduced in [29], where an induced risk
aversion is established for a pre-commitment investor.

In general, it is hard to say whether being consistent with a target or being consistent
with a risk aversion attitude is best. Fixing a criterion, either the investment target or
the risk aversion parameter, essentially means that the other criterion will vary during
an investment period. According to Equation (5.9), at time ¢, for a wealthy investor with
a fixed risk aversion A, the optimal asset allocation indicates that a higher investment
target is desired. On the contrary, in the case of lower wealth values, the implied invest-
ment target will be lower, which indicates that a time-consistent investor will focus on a
lower terminal wealth. In short, a time-consistent investor has a varying target whereas
a pre-commitment investor has a fixed target throughout the investment process.

Adopting a target-oriented strategy essentially keeps a pre-commitment investor away
from risky strategies and, of course, from potential profits when the amount of wealth is
sufficiently large. In a similar situation, a time-consistent investor will act and perform
differently, i.e. when the amount of wealth is large, she desires to gain more due to the
consistent risk aversion throughout the investment period. This investor is thus never
satisfied with a predetermined target.

The differences between the time-consistent and the pre-commitment strategies also
lead to differences in the distributions of the corresponding terminal wealth profiles. For
a pre-commitment investor, the terminal wealth follows a distribution with a fat left-tail
and a large portion of the potential terminal wealth is located very close to the target.
For a time-consistent investor, the distribution of terminal wealth is usually rather sym-
metric. An illustrative plot is presented in Figure 5.1.

(5.9)

Remark 5.3.5. Ifwe consider the time-consistency in efficiency, as proposed [29], Equation
(5.9) indicates that an investor should have a target that is no less than the risk-free target
to guarantee that the risk aversion parameter should be non-negative, i.e. the investor
never takes risks that lead to loss of money on average.
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—— Pre—commitment
o= Time—consistent |

PDF of WT under optimal control

Figure 5.1: Comparison of the probability density functions of the terminal wealth, which is achieved by re-
spectively performing unconstrained pre-commitment and time-consistent strategies. For both strategies, the
investment horizon, the initial wealth and the return process are the same. By carefully choosing investment
target y and trade-off parameter A, we make them generate a terminal wealth with the same variance, but
the distributions of the terminal wealth appear to be very different. Meanwhile, the mean return of the time-
consistent strategy is of course smaller than that of the pre-commitment strategy.
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5.3.3. HYBRID STRATEGY: TIME-CONSISTENT WITH DETERMINED TARGET
Although time-consistency appears to be an important element of a real-life investment
strategy, taking time-consistency into account is like casting additional constraints on
the asset allocations and a time-consistent strategy therefore generates typically lower
efficient frontiers than the pre-commitment strategy [4, 89].

As discussed in Section 5.3.2, an essential difference between the time-consistent
and the pre-commitment strategy is the notion of being satisfied with a target, or not. In
this section we design a hybrid strategy which combines features of the time-consistent
and the pre-commitment strategy. Our aim is straightforward: we impose intermediate
investment targets on a time-consistent strategy and once the target at an intermedi-
ate time step is achieved the investor is forced to take a risk-free investment strategy at
subsequent time steps. Following this hybrid strategy, a time-consistent investor is sat-
isfied with a target and thus behaves like a pre-commitment investor when the wealth
is sufficient. On the other hand, we still assume that the investor has a time-consistent
risk aversion when the amount of wealth does not reach the target. Therefore, in this
scenario the investor still acts in a time-consistent way.

Mathematically, intermediate targets can be introduced to a time-consistent strat-
egy in a similar way as done in [34], where intermediate targets are introduced to a pre-
commitment strategy. The definition of the hybrid strategy is as follows.

Definition 5.3.6 (Hybrid strategy). Assume that a terminal investment target O is given.

At time t, the hybrid optimal control {x, "} =7t

is defined by the optimal control for

h
77 (W) = max
{x 22

| |Etmin(We, 01)1W;1 = A- Varlmin(wr, 0 I W1,

with an additional condition requiring that {x, hy yLZAT also constitutes an optimal con-

trol for:

J&Wo) = max [E(min(Wr, 07)|Wr] = A-Varlmin(Wr, 01| Wil |,

[ENray
fort=t+At, t+2-At,...,T—At.

Due to the target-based feature, the optimal asset allocations of a hybrid strategy are
known immediately in some situations. If we define intermediate targets {0} -2’ by

s=t
Or
HSZW, s=tt+At,..., T—At,
the optimal asset allocation {x; "”}7=A" for the hybrid strategy satisfies:
x"=o0, itw,>0, (5.10)

fors=tt+At,...,T—At.

Since the hybrid strategy can be interpreted as imposing time-consistent constraints
on a pre-commitment strategy when the wealth level is low, the hybrid strategy typically
generates lower efficient frontiers than the pre-commitment strategy. However, as the
hybrid strategy can also be regarded as one that removes the time-consistency require-
ments in the time-consistent strategy when the wealth level is high, the hybrid strategy
should generally generate better efficient frontiers than the time-consistent strategy.
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A suitable target? Introducing an investment target for a pre-commitment strategy is
not new, see, for example, [29] and [34]. Prescribing an investment target in a time-
consistent strategy has however, to our knowledge, not yet been pursued. In this setting,
the question is how to define a suitable target 67. When the investment target is very
high, it will be difficult to reach it and the hybrid strategy will just be the same as the
plain time-consistent strategy. When the investment target is low, for example the risk-
free target, the investor will always follow the risk-free strategy.

In this chapter, we propose the following approach to generate an investment tar-
get in the case where returns of risky assets are identically distributed'. We introduce a
tuning parameter k in the implied investment target at time t = 0 and form the terminal
target by:
riae , ., ELED’)

Or = WoR 0
T 2AVar[R¢]

(5.11)

When k = 1, Equation (5.11) generates the implied investment target at the initial
time step. For larger k-values, it will be increasingly difficult to reach the investment
target and the hybrid strategy will be similar to a time-consistent strategy. In the nu-
merical section, we will also numerically analyze the impact of different k-values for the
targets in the hybrid strategy. We found that generating the target using k = 1 improves
the efficient frontiers of the time-consistent strategy. In some cases, the efficient fron-
tier generated by this hybrid strategy is almost identical to the one generated by the pre-
commitment strategy. Introducing “targets” in this fashion makes the hybrid investor re-
semble more a pre-commitment than a time-consistent investor. However, if the prede-
termined target is too high for a hybrid investor, she will just follow the time-consistent
strategy.

Minimizing mean-variance of shortfall The value function of a hybrid strategy reads:

I W) = max [EFFWD)IWil = A-VarlF(WpI Wi, (5.12)

(x5} T
where function F(u) is defined by:
F(u) =min(u,07).
Since we have
min(Wr,07) = min(Wr —07,0) + 01 = —max(@1 — Wr,0) + 07,

and if we define F(u) = max(@1 — u,0), the optimal control for value function (5.12) can
be calculated in a duality form:

argmax,,  r-ac |[ELF(WD)| W] - A-Varl F(Wp)| W, |

= argming, [[E[P"(WT)lwt] +/1~Var[l3(WT)|Wt]].

lWhen the returns at different time steps are not identically distributed, our proposed way to generate the
target may be questionable and the conclusions regarding the choice of k in Equation (5.11) may be incorrect.
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The duality form stands for an optimal control of minimizing the shortfall, which is de-
fined by max(67 — Wr,0). A similar way of formulating the problem with the shortfall is
proposed in [33].

5.3.4. EVALUATION WITH PARTIAL VARIANCE

Being satisfied with a target may be a double-edged sword. A pre-commitment investor
is not exposed to the risk of losing money when she is sufficiently rich but also gives
up the chance to gain higher profits. As mentioned in Section 5.3.2, this makes time-
consistent and pre-commitment strategies different in terms of the distributions of the
terminal wealth. Although it is reported in [89] that the pre-commitment strategy always
generates higher mean-variance efficient frontiers than the time-consistent strategy, a
portfolio manager may worry about the composition of the variance. All paths that are
either lower or higher than the expectation contribute to the variance, but only the lower
part is undesired since it reflects downside risk, i.e. potential losses. In this section, we
discuss partial variance as another measure to evaluate the performance of a portfolio
management strategy.

Partial Variance For a random variable L, one way to measure the downside risk is to
use the Lower Partial Variance (LPV), defined by:

LPV(L) = E[(min(L — E[L],0))?].
Meanwhile, we can also define the Upper Partial Variance (UPV) by:
UPV(L) = E[(max(L — E[L],0))*].
Notice that the variance of L is composed of LPV and UPV:

var(L) = LPV(L) + UPV(L).

5.4. A SIMULATION-BASED ALGORITHM

In this section, we propose a simulation-based numerical algorithm for generating the
time-consistent mean-variance portfolio optimization solution. Our algorithm consists
of two steps: a forward approximation and a backward programming iteration.

5.4.1. FORWARD ITERATION: THE MULTI-STAGE STRATEGY

In Section 5.3.1 we mentioned that in the unconstrained case a time-consistent investor
chooses the same asset allocations as a myopic investor. We use the name multi-stage
investor here, because the investor solves the problem in several separate stages. The
optimal asset allocation for a multi-stage investor at state (¢, W;), i.e. time ¢ and wealth
Wy, reads:

T-At
x;™ = argmax |E[W;-(x,R{+Rp) [] (RpIW/]
Xt S=r+AL
T-At
—A-VarlW,- (RS +Rp) T[] (RpIWG]. (5.13)

s=t+At
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Solving the static mean-variance optimization problem as shown in Equation (5.13)
in a forward fashionyields the optimal control for the multi-stage strategy, which reads:

E[R®]
2-1- W, -R}T’”/M’l -Var[R¢]’

*ms __
X =

(5.14)

If we consider the value function of the time-consistent strategy, then the optimal
control at time ¢ can be defined by:

T-At
x;' = argmax |E[W;-(x;Rf+Rp) [[ (x}*R¢+Rp)IWY
x‘ s=r+AL
T-At
—A-Var[W;- (x;R{ +Rp) [] (xi"R¢{+RpIWi|, (5.15)
s=t+At

where {x; t C}ST:‘tﬁtAt denote the future optimal controls in the time-consistent strategy.

As shown in Equations (5.13) and (5.15), the value function of the multi-stage strategy
is clearly different from the value function of the time-consistent strategy. However, the
optimal controls in Equations (5.3) and (5.14) for these two strategies are identical in the
unconstrained case, i.e. x} te = x;"™ for any t.

Similar as in the last chapter, we consider the multi-stage strategy as a sub-optimal
solution for a constrained optimization problem.

The multi-stage strategy can be derived in a forward fashion. As time proceeds, new
information becomes available and a new optimal multi-stage solution is obtained for
the new state. Therefore, the multi-stage strategy is very efficient for generating a sub-
optimal solution for a constrained time-consistent problem and it constitutes a forward
solution in our algorithm.

Remark 5.4.1. In order to generate a forward solution for a hybrid strategy, we can com-
bine the multi-stage strategy with the constraint as in Equation (5.10). However, even in
the unconstrained case, this only constitutes a sub-optimal solution for the hybrid case.

5.4.2. BACKWARD RECURSIVE PROGRAMMING ITERATION

By using the multi-stage strategy, we can solve the time-consistent problem in a forward
manner by Monte Carlo simulation. However, in a general situation, the multi-stage
strategy is usually not the optimal solution to the dynamic optimization problem. In or-
der to find the optimal solution, we need to consider a backward dynamic programming
solution as in Chapter 4. In this section, we present an approach to perform a backward
recursive iteration based on the solution of the multi-stage forward iteration.

Decomposing the Variance Operator As mentioned, a problem for the efficient solu-
tion of the dynamic mean-variance optimization problem is caused by the nonlinear-
ity of the variance operator. To deal with this problem, as in [4] and [89], we consider
the conditional mean of the terminal wealth and the conditional mean of the terminal
wealth square, respectively, as two separate value functions. Then, at time ¢, we have:

U (W) =E" [Ur(Wp)IW,], V(W) =E"[Vr(Wr)|Wil,
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with terminal conditions
Ur(Wr) = Wr, V(W) = Wi (5.16)

Here, E* [Up(W7)|W;] and E* [V (W7r)| W] indicate the expectations of the terminal value
functions when the time-consistent optimal control is cast on the portfolio in period
(¢, T1.

Remark 5.4.2. When we implement this algorithm for generating hybrid strategies, we
only need to modify the terminal conditions. In that case, the terminal conditions U?y (Wr)
and V;fy (W) read:

2
Uy (Wr) = min(Wr,07), V¥ (Wy) = (min(Wr,07)) .

The value function J;(W;) as shown in Equation (4.1) can then be rewritten as:

Jw) = max [EIWrIW,l - A-VarlWr ||
(x5} 1A

= B (Wriwil - A- (B WAIWi - € (Wr W)
= EE [Wr Wi dIWi]

A (B [ (WA Ws s s IWH] - €7 B (W | Wr s [ Wi)?)
= E'[Uar(Weran) W]

—A- ([E* [(Virat(Weea) IWe] = (EF [Ut+At(Wt+At)|Wt])2)

= max [ElUr a0 (Wrsa 0| Wil
A (EVieai Wi Wil = €U arWeead W2 .

Assume that we have obtained the value functions U at(Wriay) and Viga(Wisas), then
the optimization at time ¢ can be regarded as a static optimization problem. By combin-
ing the optimal control x} and the future value functions Uysa; (Wyiag) and Viga (Wegas),
we can calculate value functions U;(W;) and V;(W;) and proceed with the backward re-
cursive programming iteration.

Backward Programming Algorithm The basic idea of backward recursive program-
ming is to turn a globally non-smooth optimization problem into several locally smooth
optimization problems. In Chapter 4, the pre-commitment mean-variance optimization
problem was solved with a similar algorithm. The main difference here is that we have
two value functions U;(W;) and V;(W}) in the backward programming iteration instead
of a single value function. The algorithm for solving the time-consistent mean-variance
problem is defined as follows:

* Step 1: Initiation:
Generate an initial guess, for example using the multi-stage strategy, of optimal as-

setallocations {X;}]_;*' and simulate paths of optimal wealth values {W; (i)} |, 1 =
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0,...,T. Atterminal time T, we have the determined functions Ur (W7r) and V3 (Wr).
The following three steps are subsequently performed, recursively, backward in
time, at t = T — At,...,At,0.

e Step 2: Solution
Bundle paths into B partitions. In practice, this can be performed by first reorder-
ing the paths based on their associated wealth values and then partitioning the
reordered paths into bundles such that each bundle contains a similar number of
paths and the paths inside a bundle have similar wealth levels at time 7.

Denote the wealth values associated to the paths in the bundle by { Wb (1)} e’ with
Np the number of paths in the bundle. Within each bundle, we perform the fol-
lowing steps:

- For the paths in the bundle, we have the wealth values {W. bl At(l)}ﬁ\if‘l and
N, .
continuation values {U Hm(l)} B and { Hm(l)}L Bl at time r + At. Functions
ft+At() and g/, 5, (), that locally satisfy U7, , = ff.a(W/ia) and V7, =
gt L AI(W ) Tespectively, can be determined by regression

- For all paths in the bundle, with fHAt( HM) and gHAt(W +At) determined,
we solve the optimization problem

ELFL e (Wera Wil = A+ (ELgFp (Wesad Wil = ELFD p (Wea D WiD? |

by solving the first-order conditions. In this way, we get new asset allocations
Py Y
ErdQIALY
~ Since the wealth values {W/( i)}?iBl and allocations {? (i)}i.\fl are now known,
by regression we can also compute new continuation values {Uth(i)}f.\fl and
Wrme,

UL (i) := ElU 4 nr (Wi a )| Wy = WP (D), x, = 22(0)],
VEG) = ElVisar (Wesa )W, = WP, x, = 2P (1)1,

By combining them, we obtain the value function { J f(i)}f.\fl

* Step 3: Update
For the paths in a bundle, based on a previous approximation, {x ¥ Bl, for the asset
allocations, by regression we can calculate the corresponding continuation values
{ff(i)}ﬁ\fl. If, for the i-th path, J2(i) < j2(i), we choose %?(i) as the updated al-
location. Otherwise, we retain the previous allocation. We denote the updated

allocations by {xi’(i)}é\f1

* Step 4: Evolve
Once the updated allocations {x @} _Bl are obtained, again by regression we cal-

culate the “updated” {U tb (z)} =] and {th ( z)} P values, and the backward recursion
proceeds.
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After one backward recursive calculation, we have updated the asset allocations at
each time step. To further improve the asset allocations, we can apply the backward
procedure iteratively. After several iterations, we will obtain highly satisfactory results.

The purpose of performing bundling is to reduce the bias caused by solving the first-
order conditions for a non-smooth optimization problem (due to the constraints). In
the unconstrained case, starting with any forward solution, we will end up with a satis-
factory result after one backward iteration. Therefore, in this scenario, bundling is not
required. When the value functions are highly non-smooth, a large number of bundles is
required. According to our experience, 20 bundles are in general sufficient for a variety
of problems.

In the algorithm, at each time step and inside each bundle, four regression steps
are performed. Three of them are employed for calculating the value function. Since the
value function is used to evolve information between time steps, an approximation error
will accumulate due to recursion. In general, we can deal with this problem by using a
large number of simulations, which is however expensive. In our numerical approach
we use the so-called “regress-later technique”, as applied in Chapters 2, 3 and 4.

When we perform the (local) regression, polynomials up to order two are considered
as basis functions, that is, in the local bundle, U;(W;) and V;(W;) are approximated by:

UW)= fPawp= a?@w?+a?mw,+a?(0),
Viwp = gbwy = BL@w?+playw; + BL0).

Here {ai’ (i)}?:0 and { ﬁ? (i)}?:0 denote the regression parameters inside the bundle.

We choose polynomials up to order two as the basis functions for two reasons. The
first is that regression with respect to polynomials up to order two should be sufficient
for approximating value functions in small-sized, local domains. The other reason is
due to the use of the “regress-later technique” in our algorithm. When we implement
this technique, one condition is that the conditional expectations of the basis functions
should be known analytically, see [57] and [24]. If we choose other basis functions, the
conditional expectations may not be directly available and therefore the accuracy of the
“regress-later technique” may be affected negatively.

Since the budget constraintreads W; = W;_a s (X-a IR;t A FRp) and we have E[U (W)
Wi_az)? in the formulation of J;_a;(W;_a;), value function J;_a;(Ws_a;) in the local do-
main will become a fourth-order function of x;_a;. To solve the optimality with respect
to x;—a;, we implement the Newton-Raphson method with the solution from the previ-
ous iteration as the initial guess. In our numerical tests, the Newton-Raphson method al-
ways achieves a convergent solution within three iterations. However, the readers should
notice that other optimization methods, for example the gradient ascent method, may
also be applied here.

Remark 5.4.3. In the unconstrained case, it is sufficient to parameterize U;(W;) by first-
order polynomials. However, according to our experiments, in the constrained case ap-
proximating U;(W;) by second-order polynomials yields more stable and satisfactory re-
sults.

Remark 5.4.4. The forward and backward numerical iterations described in Sections
5.4.1 and 5.4.2 can also be used for the time-consistent problem with a state-dependent
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risk aversion, as in Remark 5.2.3. The only difference is that, instead of keeping a fixed risk
aversion parameter, we choose a state-dependent risk aversion parameter for the value
functions and calculate the corresponding optimal strategy. Since this state-dependent
time-consistent strategy is only valid when the wealth is positive, which implies a con-
strained scenario, the forward strategy can only generate a rough approximation for the
asset allocations. However, after using the backward recursive updating iterations, we ob-
tain satisfactory results.

5.5. NUMERICAL TESTS

In this section, we utilize our algorithm for solving time-consistent multi-period mean-
variance portfolio management problems. We will first check the convergence of the
backward recursive programming step in our algorithm. Then, our numerical algorithm
will be tested on time-consistent problems with different constraints. Following that,
we will perform a test with the hybrid strategy proposed in Section 5.3.3, analyzing the
choice of targets. In the last test, the performance of different mean-variance portfolio
management strategies will be compared. In the numerical section, we use the following
short notations: “TC” for a time-consistent strategy, “PC” for a pre-commitment strat-
egy, “hybrid” for the hybrid strategy proposed in Section 5.3.3 and “TCSD” for a time-
consistent strategy with state-dependent risk aversion.

5.5.1. SETUP OF NUMERICAL TESTS

We perform the tests in the case of one risky asset and one risk-free asset in the portfolio.
We choose geometric Brownian motion as the dynamics of the risky asset. We assume
that the log-returns of the risky asset are governed by volatility o and mean r¢+¢-o. Here
17 is the log-return of the risk-free asset and ¢ the market price of risk.

In our numerical tests, we choose the sample size to be 50000 and the number of
bundles to be 20 for the backward recursive iteration. In case the forward solutions are
not optimal, we always present the solutions obtained after three backward recursive
iterations. We use a common random seed to generate Monte Carlo paths for one run of
the algorithm (including one forward and several backward processes). To ensure that
the choice of random seed does not introduce a bias, we consider 20 different random
seeds in all tests.

When we take the “no bankruptcy” constraint, Equation (5.2), into account, we choose
parameter { to be sufficiently small, { = 1078, which ensures that the undesired event
will happen with a very low probability. When we consider the “bounded leverage” con-
straint, we always take [Xmin, Xmax] = [0, 1.5].

The model parameters used in our tests are shown in Table 5.1. With this setup for the
tests, both the forward approximation step and one backward iteration in our algorithm
can be performed within a few seconds.

Remark 5.5.1. We also performed tests using the Merton jump-diffusion model [70] with
rare and negative jumps as the asset dynamics. However, when we compare the perfor-
mance of different strategies, we do not get different conclusions from using geometric
Brownian motion. Therefore, we do not report the results of testing the jump problem in
this chapter. For more details about how the efficient frontier may change when jumps
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Table 5.1: Parameter setting (from [89]) used in the tests.

Risk-free rate r¢ .03
Market price of risk ¢ 0.33
Volatility o 0.15
Periodic contribution C 0.1

Investment duration T (years) | 20
Rebalancing opportunities M | 40
Initial wealth W, 1

come in, we refer the readers to [33] and [34].

5.5.2. NUMERICAL RESULTS

Convergence of Backward Recursive Iteration We first analyze numerically the con-
vergence of the backward recursive iterations. We consider two test cases with bounded
leverage constraints on the asset allocations. In the first case, we choose the multi-stage
strategy as the initial solution and perform a backward recursive iteration. Although the
multi-stage strategy does not generate the optimal solution, it should constitute a rea-
sonable initial guess to start the backward iteration. In the second case, we construct
the initial solution by constant asset allocations. In general, this kind of initial solution
is questionable and the backward iteration process is essential for accurate constrained
solutions.

Table 5.2: The convergence of the backward recursive iterations. The multi-stage strategy is chosen as the
initial solution.

Risk aversion A=0.05 A=0.25
Ey (Wr) Stdy (Wr) E; (Wr) Stdg (Wr)

(s.e.) (s.e.) (s.e.) (s.e.)

Forward iteration 13.17 9.60 8.49 2.87
(0.04) (0.04) (0.01) (0.01)

After one backward iteration 12.89 9.03 8.30 2.76
(0.04) (0.04) (0.01) (0.01)

After two backward iterations 12.87 8.97 8.28 2.75
(0.04) (0.04) (0.01) (0.01)

After three backward iterations 12.87 8.97 8.28 2.75
(0.04) (0.04) (0.01) (0.01)

According to Table 5.2, the solution obtained after the backward iteration is different
from the forward solution. The most significant improvement is achieved by the first
backward iteration. After the second backward iteration, the convergent solution is ob-
tained.
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Figure 5.2: Risk aversion A = 0.15, constant asset allocations, varying from 0.3 to 1.5, as the (inaccurate) initial
solution. After three backward recursive iterations, convergent results are obtained.

Figure 5.2 shows that, starting with inferior (constant) initial guesses, we can reach
convergent results after three backward iterations. This is an indication that the back-
ward iteration is highly efficient and robust in this test case.

Time Consistent Strategy with Constraints We consider the time-consistent strategy
with different constraints. The efficient frontiers are shown in Figure 5.3. In the case
of a bounded leverage constraint, we have as a reference value [stdg [WT],[E:; (Wrll =
[8.175,12.661] [89] for the continuous time-consistent re-balancing problem. With our
algorithm, if we set the re-balancing opportunities to M = 240, we obtain the mean-
variance pair [std; [Wr], Ey [Wrll = [8.175,12.582]. Our algorithm for the time-consistent
problem thus performs highly satisfactory.

Hybrid Strategy with Different Investment Targets As mentioned in Section 5.3.3, the
choice of investment target has a significant impact on the efficient frontiers generated
by the hybrid strategy. In this test we consider different choices of the value k in Equation
(5.11), generating targets in the hybrid strategy.

As shown in Figure 5.4, when k = 1, the corresponding efficient frontiers generated
by the hybrid strategy are close to the one generated by the pre-commitment strategy
for an optimization problem with bounded leverage constraint. When k increases, the
efficient frontiers generated by the hybrid strategy resemble the one generated by the
plain time-consistent strategy. In the following numerical tests, when we compare the
hybrid strategy to other mean-variance strategies, we will form the target with k = 1.
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Figure 5.3: Casting different constraints on the time-consistent strategy.
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(a) Hybrid strategy, different targets (b) Zoom of left-side figure

Figure 5.4: The influence of choosing different targets for the hybrid strategy. Bounded leverage constraint
[Xmin, ¥max] = [0, 1.5] is imposed on the asset allocations.
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Comparing Different Mean-Variance Strategies First, we compare the mean-variance
efficient frontiers for different strategies. We find that in all scenarios the pre-commitment
strategy generates the highest efficient frontier, and meanwhile the time-consistent strat-
egy with state-dependent risk aversion as in Remark 5.2.3 gives the lowest frontier. The
hybrid strategy generates similar efficient frontiers as the pre-commitment strategy, es-
pecially when constraints are imposed. Even though the time-consistent strategy gen-
erates lower efficient frontiers, the difference between the time-consistent and the pre-
commitment frontiers is not significant.

—TC .
---PC e
25 Hybrid

E Wil

PRI PENRCI
stdg[w,] stdg[w,]

(a) No constraint (b) No bankruptcy constraint

—TC
---PC
“ Hybrid
== TCSD P

EqW,]

4 +5 6
std W]

(c) Bounded control

Figure 5.5: Comparing the mean-variance frontiers of different strategies.

Figure 5.6 shows that if we consider the mean-LPV frontier, it is difficult to say whether
the pre-commitment strategy is superior to the time-consistent strategy. The time-consistent
strategy usually generates a lower mean-variance efficient frontier,but the main reason
is that it yields a lower mean-UPV frontier. The UPV indicates the potential for an in-
vestor to achieve more wealth than the expectation, so a high UPV is not a problem. The
time-consistent strategy with state-dependent risk aversion has the lowest mean-LPV
frontier.

By examining how the risk is distributed, we find that the time-consistent strategy
may be a better choice than the pre-commitment strategy for multi-period mean-variance
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optimization. In order to achieve the same level of mean return, the time-consistent
strategy is not more risky than the pre-commitment strategy. On the other hand, the
time-consistent strategy is more likely to generate a higher amount of wealth than ex-
pected and thus exhibits a higher potential than the pre-commitment strategy.

15 15
f i3 ¢
14 ,,,’7’ - -
A N
2 PR
B B
=S =S
- 3
w w
—TC —TC
---PC ---PC
hybrid hybrid
--:- TCSD { -~ TCSD
4
o 1 (LSVO[W}]‘;‘/Z 5 6 7 o 2 (U;VO[W:'_]E)VZ 10 12 14
(a) Lower Partial Variance (b) Upper Partial Variance

Figure 5.6: For different strategies, we compare the Lower Partial Variance and the Upper Partial Variance.
Bounded leverage constraint [Xyin, Xmax] = [0, 1.5] is imposed on the asset allocations.

5.6. CONCLUSION

In this chapter, we focused on the time-consistent mean-variance optimal asset alloca-
tion problem, and compared the results to those obtained by the so-called pre-commitment
strategy.

In our analysis, we found that in the unconstrained case the risk aversion parameter
of a time-consistent investor and the optimal asset allocation form a one-to-one func-
tion. At a given time step, the optimal asset allocation is uniquely determined by the
risk aversion attitude. In Chapter 4 we have reported similarly that, at a given time step,
the optimal asset allocation of a pre-commitment investor is uniquely determined by
the investment target. Based on this, we established a link between the time-consistent
and the pre-commitment strategies. We assumed that at a given time step the time-
consistent investor had the same asset allocation as the pre-commitment investor and
a one-to-one relation between the risk aversion attitude of the time-consistent investor
and the investment target of the pre-commitment investor was obtained. For a time-
consistent investor, we called this function the “implied investment target”.

We find that the (implied) investment target of a time-consistent investor and that
of a pre-commitment investor vary in different ways through the dynamic management
process. The investment target of a time-consistent investor varies over time, while a
pre-commitment investor always has a fixed target. We defined a hybrid strategy by in-
troducing a fixed target into the time-consistent strategy. In our test cases, when we
chose the “implied investment target” at the initial time step as the target, the hybrid
strategy generates a better mean-variance efficient frontier than the time-consistent strat-
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egy. In the constrained case, the efficient frontier generated by this hybrid strategy is very
similar to that generated by the pre-commitment strategy.

We also extended the numerical simulation-based algorithm, which was proposed in
Chapter 4 for the pre-commitment mean-variance problem, to solving time-consistent
mean-variance problems. With some modifications of the algorithm, we could utilize it
to achieve highly satisfactory results for the time-consistent problem as well as for the
hybrid problem. Our proposed algorithm appears to be robust and very efficient.

“Focusing on a fixed target” often gives completely different distributions of the ter-
minal wealth from time-consistent and pre-commitment strategies. The time-consistent
strategy often yields a lower mean-variance frontier, but the main reason is that the time-
consistent strategy has a lower mean-UPV frontier (which does not indicate more risk).
If we consider the mean-LPV frontier, the time-consistent, the pre-commitment and the
hybrid strategies exhibit similar performance. Reflecting on this, we conclude that the
time-consistent strategy is not always inferior to the pre-commitment strategy. Requir-
ing time-consistency on a mean-variance strategy is reasonable from the perspective of
real-life applications. Meanwhile, it does not introduce additional downside risk to the
strategy.
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CHAPTER O

Robust Mean-Variance Portfolio Optimization

We consider robust pre-commitment and time-consistent mean-variance optimal asset
allocation strategies, that are required to perform well also in a worst-case scenario. We
show that worst-case scenarios for both strategies can be found by solving a specific equa-
tion at each time step. In the unconstrained asset allocation case, the robust pre-commitment
as well as the time-consistent strategy are identical to the corresponding robust myopic
strategies. In the experiments, the robustness of pre-commitment and time-consistent
strategies is studied in detail. Our analysis and numerical results indicate that the time-
consistent allocation strategy is more robust when possible incorrect assumptions regard-
ing the future asset development are modeled and taken into account. In some situa-
tions, the time-consistent strategy can even generate higher efficient frontiers than the
pre-commitment strategy (which is counter-intuitive), because the time-consistency re-
striction appears to protect an investor in such a situation.

Keywords: Robust optimization - Mean-variance optimal asset allocation - Pre-commitment
strategy - Time-consistent strategy - Model prediction error

6.1. INTRODUCTION

Mean-variance optimization, which is based on two criteria, is popular with practition-
ers because it has a clear and very informative target function, which explicitly contains
a profit term, a risk term and the trade-off between these. From the perspective of aca-
demic research, this mean-variance framework forms the basis for many interesting re-
search directions. One potential way to generalize Markowitz’s mean-variance strategy
[68] is to take dynamic optimal asset allocation into consideration.

Solving a dynamic mean-variance optimization problem is not a trivial task, how-
ever. Due to the nonlinearity of the variance operator, the dynamic mean-variance op-
timization problem cannot be solved directly via the Bellman dynamic programming
principle [5]. To tackle this issue, two possible directions are recommended in the lit-
erature. One is based on placing the dynamic mean-variance problem into a dynamic
linear-quadratic (LQ) optimization context, using an embedding technique [63, 91], and
the other direction is to impose a time-consistency restriction, which also serves as a
condition, at all intermediate time steps [4]. See the previous two chapters.

The work in the previous two chapters is based on the assumption that the market
evolves exactly as the model prescribes. This may be questionable in reality, since we

This chapter is based on the article 'On robust multi-period mean-variance porfolio optimization, submitted
for publication, 2016.
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can only estimate model parameters from historical data. As mentioned in [8], [12] and
[17], designing an investment strategy based on historical data may lead to significant
losses. One possible way to tackle this problem is to take model uncertainty into account
and to consider robust variants of the optimal asset allocation problem. It is suggested in
[71] to solve the mean-variance portfolio selection problem using statistically robust es-
timates. Noticing that accurately estimating returns may be a difficult task, the authors
of [62] recommend to replace the original uncertain return process with a tractable one.
Another common way to introduce model uncertainty is to consider an approach, in
which the corresponding optimal strategy is required to perform well even in a so-called
‘worst-case scenario’. In [83], a worst-case static mean-variance problem is transformed
into a saddle-point problem and is solved using an interior-point algorithm. In [51], the
authors implement a scenario tree to represent stochastic aspects and introduce uncer-
tainty into a multi-period mean-variance portfolio problem. For a general discussion on
robust optimization, we refer to [7], where a static robust mean-variance optimization is
discussed as a special case. For more pointers to aspects of robust portfolio problems,
we refer to a review paper [60] and the references therein.

To our knowledge, no research paper has addressed robust pre-commitment and
time-consistent optimization problems. This chapter is meant to fill this gap.

We start our work by analyzing the robust pre-commitment and time-consistent as-
set allocation problems. Following [36] and [55], we consider an independent structure
for parameter uncertainty, which makes the Bellman backward programming principle
feasible within the robust dynamic optimization context. Without any constraints on
the asset allocations, analytic solutions can be derived. We show that the worst-case
scenarios are generated by solving a specific equation at each time step for both the pre-
commitment and the time-consistent strategies. The optimal robust pre-commitment
and time-consistent strategies are identical to the corresponding robust myopic strate-
gies, where an investor derives the optimal allocation for one upcoming time period
without taking future optimal allocations into account. Robustness can be introduced
into the pre-commitment and the time-consistent strategies without drastically increas-
ing the computational complexity.

The robustness of the pre-commitment and the time-consistent strategies is exam-
ined in particular when model errors occur, meaning that the assumptions on the behav-
ior of the stochastic asset process do not reflect accurately the actually observed asset
path (in the future). Considering the efficient frontiers, we find that the time-consistent
strategy appears more robust than the pre-commitment strategy.

In the numerical section, we test the robustness of both strategies using the algo-
rithms proposed in Chapters 4 and 5, that are feasible for both unconstrained and con-
strained optimization problems. We show that in the case of an unexpectedly poor mar-
ket the time-consistent strategy can be superior to the pre-commitment strategy. In
such a situation, the constrained pre-commitment strategy even yields a higher frontier
than the unconstrained pre-commitment strategy, since the constraints on the alloca-
tions act as a form of “protection” when the model prediction is inaccurate. In the two-
dimensional case, the influence of inaccurate correlation prediction between the risky
assets is analyzed. The unconstrained pre-commitment strategy appears vulnerable to
such prediction inaccuracies, whereas the time-consistent strategy appears robust.
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The chapter is structured as follows. In Section 6.2, we describe the pre-commitment
and the time-consistent strategies and their robust counterparts. Analysis for both strate-
gies is performed in Section 6.3, where the robustness of the time-consistent strategy is
also studied. Numerical results are presented in Section 6.4. We conclude in the last
section.

6.2. PROBLEM FORMULATION

6.2.1. MULTI-PERIOD MEAN-VARIANCE PORTFOLIO

We consider a portfolio consisting of n + 1 assets, one risk-free and n risky. We assume
that the portfolio can be traded at discrete opportunities', ¢ € [0,At,..., T — At], before
terminal time T. At the initial time 7y = 0, an investor decides a trading strategy to max-
imize the expectation of the terminal wealth and to minimize the investment risk. For-
mally, the investor’s problem is given by

JoWo) = max {EIWrIWol = A-Var[Wr|Wol, 6.1)

{fit}t;o
with J the value function, subject to the wealth restriction:
Weear=We-&R{+Rp),  t=0,A,...,T-Ar

We use notations with hat here, because we will reserve the plain notations for the for-
mulation of the robust optimization problem, which forms the main part of this chapter.
As in the previous chapters X; = [£;(1), £;(2),..., %;(n)]’ denotes the asset allocations of
the investor’s wealth in the risky assets in the time period [z, £ + At). The prime sign
denotes the vector transpose. The admissible investment strategy X; is assumed to be
adapted. The risk aversion attitude of the investor is denoted by A, which is a trade-
off factor between maximizing the profit and minimizing the risk. Ry is the return of
the risk-free asset in one time step, which is assumed to be constant for simplicity, and
RY = [R{(1),R{(2),...,R{(n)]' denotes the vector of excess returns of the risky assets dur-
ing (¢, t+ At). We assume that the excess returns {R¢} tTZ‘OAt are sequentially independent.
At each time point ¢, R is supposed to follow a distribution with determined parame-
ters. Extending the problem to a situation where the distribution parameters are uncer-
tain constitutes the robust counterpart of a dynamic mean-variance problem, which we
will elaborate on in Section 6.2.2.

The difficulty of solving the dynamic mean-variance problem is caused by the non-
linearity of conditional variances, i.e. Var[Var[Wr|%]|%;] # Var[Wr|%;], s < t, which
makes the well-known dynamic programming valuation approach [5] not directly ap-
plicable. To tackle this problem, there are basically two viable approaches: one is to
use an embedding technique and replace the dynamic mean-variance problem by a dy-
namic quadratic optimization problem [63, 91], and the other is to introduce a time-
consistency restriction as an additional condition into the backward programming ap-
proach [4, 89].

1 The re-balancing times are equidistantly distributed and the total number of re-balancing opportunities be-
fore terminal time T equals M. The time step At between two re-balancing days is %

2
TUDelft



112 6. ROBUST MEAN-VARIANCE PORTFOLIO OPTIMIZATION

Following the first path, we can formulate the dynamic quadratic problem as in Equa-
tion (6.2):
Vo(Wp) = min {E[(Wr —7)°|Wolf, (6.2)
{5{[} Z"z—oAt { }

where we use V to denote the value function. By assigning different values to the param-
eter y and solving the corresponding problems, we can trace out points on an efficient
frontier. The authors of [63] proved that this efficient frontier is the same as the one ob-
tained by solving Equation (6.1) with the trade-off parameter A taking different values.
An advantage of considering dynamic quadratic problem (6.2) is that the Bellman dy-
namic programming principle can be applied and the problem can therefore be solved
in a backward recursive fashion. Since parameter y in (6.2) acts as an investment tar-
get in the dynamic quadratic problem, this kind of optimization problem is also termed
target-based optimization by [52] and [44].

It is mentioned in [4] that prescribing a determined target for an investor will cause
a time-inconsistency. To solve this problem, they suggest to take a time-consistency
restriction into account, which forms the other path for solving the dynamic mean-
variance problem. Since a time-consistency restriction can also be treated as a condition
in the dynamic programming framework, the dynamic mean-variance problem with
time-consistency conditions can also be solved in a backward recursive manner. The
authors of [4] call the strategy obtained by following the first path the pre-commitment
strategy and the one achieved by following the second path the time-consistent strat-
egy. For a dynamic mean-variance optimization problem, we formally define these two
strategies as follows.

Definition 6.2.1 (Pre-commitment strategy). The pre-commitment strategy {x P C}T At

defined by the optimal control for Equation (6.2).

is

Definition 6.2.2 (Time-consistent strategy). The time-consistent strategy {X; tC}T At e

defined by the optimal control for Equation (6.1) with an additional time- conszstency
condition requiring that the subsets {X *“}T M, T =At2-At,..., T — At, also constitute
optimal controls for:

Jiewe) = max {EIWrlWl - A-Var(Wr W}, 6.3)

&by

fort=At2-At,...,T-At.

6.2.2. THE ROBUST COUNTERPART

In the discussion above, we assume that the excess returns R of the risky assets follow
a distribution of determined parameters. However, this assumption may not be realis-
tic. Since we can only assess the returns of risky assets by means of historical data, the
estimated distribution parameters may be biased and may not necessarily reflect the dy-
namics of the risky assets in the future. Deriving an investment strategy based on these
estimated parameters can lead to significant losses as pointed out by [8] and [12]. To
make the investment strategy more reliable, an estimation error in the parameters can
be taken into account. To this end, we consider here the robust counterpart to a dynamic
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mean-variance optimization problem. In that case, an investor has a rival, nature, that
gives rise to difficulties in the optimization process. For the mean-variance problem, we
assume that the rival specifies a mean vector and a covariance matrix of the excess re-
turns RY of the risky assets at time ¢ € {0,At,..., T — At}, that are respectively denoted by
u; and X;.

We do not assume any special structure on the uncertainty sets of u; and X; except
that they are bounded and non-empty, so the uncertainty set can be an ellipsoidal set as
discussed in [49] or it can be a separable set as considered in [53]. Besides, we assume
that (us, %), t =0,At,..., T—At, is not stationary. If we consider the robust optimization
problem as a game of two players, the investor and nature, this latter assumption implies
that nature does not necessarily choose the same adverse strategy at each time step. This
leads to a time-varying uncertainty model as termed by [36].

In order to make the Bellman programming principle feasible for the robust dynamic
optimization problem, we prescribe the rectangularity assumption as proposed by [55].
In this chapter, the rectangularity assumption” is defined by:

Assumption 6.2.3 (Rectangularity). The choice ofu; and X, at time t, does not restrict the
choice ofug and X at time s € {0, At,..., T — At}\{t}

As mentioned by [55], since the sources of uncertainty in different time periods are
typically independent of each other, the rectangularity assumption, which is also an in-
dependence assumption, is appropriate for finite horizon Markovian problems in most
cases. However, if we would consider a stochastic volatility asset model or a time series
asset model, the rectangularity assumption does not hold any more.

For the pre-commitment and the time-consistent strategies as formed in Section
6.2.1, we establish their robust counterparts as follows:

Definition 6.2.4 (Robust pre-commitment strategy). The robust pre-commitment strat-

egy {x, P c} T-At s defined by the optimal control for the following dynamic programming
problem:
Ve(W,) = minmax{E[Visar (Ws- OGRS + ROIWi},  £=0,A1,.., T=At,  (6.4)
t WUg,2p

with the terminal condition V(W) = (Wr —y)2.

Definition 6.2.5 (Robust time-consistent strategy). The robust time-consistent strategy
;1= is defined by the optimal control for

JoWo)= max  min {E[Wr|Wp] - A-Var(Wr|Wol}, 6.5)

X A g, 2 A

*tC}T At —
)

with an additional time-consistency condition requiring that the subsets {x
At,2-At,..., T —At, also constitute optimal solutions for:

JEWy) = max min {EWrIW,] - A-Var(Wr| W}, (6.6)

X T2A a2} 12

fort=At,2-At,..., T - At.

2For a more general definition, we refer the readers to [55].
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In order to meet the duality condition as proposed in [53] for a min-max mean-
variance optimization problem, we require the asset allocations to be loosely bounded,
i.e. the allocation x; at each time ¢ satisfies —M < x; < M for a large positive number M,
where the inequality sign is in element-wise sense. We use the term “loosely bounded”
to emphasize that this restriction does not have an impact on the choice of the optimal
asset allocations since the positive M can be chosen sufficiently large. Therefore, if we
assume the asset allocations to be loosely bounded, the optimal control performed by
an investor can still be obtained by solving the first order condition.

Remark 6.2.6. It should be emphasized that we form the robust pre-commitment strat-
egy by directly imposing parameter uncertainty on a plain pre-commitment strategy as
defined in Section 6.2.1. Without the robustness requirement, the equivalence between
the pre-commitment strategy and the optimal dynamic mean-variance strategy has been
established in [63]. However, it is not yet clear whether the robust pre-commitment strat-
egy is equivalent to the robust dynamic mean-variance strategy. In this chapter we will
consider the robust pre-commitment strategy as described in Definition 6.2.4.

6.3. ANALYSIS IN THE UNCONSTRAINED CASE

Within the framework presented in the last section, we can derive an analytic solution
for the optimal robust pre-commitment and the optimal robust time-consistent strat-
egy by the Bellman dynamic programming principle. In the former case, we consider
the value function iteration in our proof, while in the latter case we make use of an es-
sential property of a time-consistent control. Meanwhile, we also generate the adverse
choices taken by nature at each time step. Similar as our findings in Chapters 4 and 5,
we observe that, for either a pre-commitment or a time-consistent investor, the robust
dynamic mean-variance strategy is the same as a corresponding robust myopic strategy.

In our derivation, we assume that the expectation of the excess return of any risky
asset is larger than the return of the risk-free asset.Also we make the assumption that the
covariance of the excess returns of the risky assets is positive definite.

6.3.1. ROBUST PRE-COMMITMENT STRATEGY

We first consider the robust pre-commitment strategy, which has been formed in a recur-
sive setting as in Definition 6.2.4. The optimal control for the robust pre-commitment
strategy can be described by the following proposition.

Proposition 6.3.1. For the robust pre-commitment optimization problem as in Definition
6.2.4, an investor at time t with wealth W; has the following optimal control:

-0/
Y_WIR}T HIAt

(T-0)/At-1
W,Rf

x; 7wy = SErulad)al, r=0,A1,..., T - A1, (6.7)

with the parameters {u;, X7} for the worst-case scenario solving a minimization problem:

{u}, %7} = argmin fu}x; . (6.8)
u,2;
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Proof. Attime step T, the value function is known as:
Vr(Wp) = (Wr—7)%
At time step T — At, the value function can be calculated by:

Vr-at(Wr-p;) = min  max {[E[VT(WTfAt‘(X,T_A[R?,At‘*‘Rf)HWTfAt”

XT-AtUT-AHZT-Ar

2
= min max {E[(Wr-ar 6 RSy + R -7 |W e}
min omax T-at* Xp_pR7_p +Rp) =7 |[Wr-as
Since the asset allocations are assumed to be loosely bounded and the feasible sets for
ur_a; and Z7_x are bounded and non-empty, based on Lemma 2.3 in [53], perfect du-
ality holds, i.e. changing the order of minimization and maximization does not influence
the value of the value function. Therefore, we have:

Vi Wrad = max  min {E[(Wroar- &y RS+ RO —7) [ Wil

ur-pAnZ7-Ar XT-At

We define a new function Fr_a;(Wr-as, Z17-As, Wr—ay) by:

2
Fr-ar@r-ae, Zr-at, Wr-ar) =§ITl_lilt {[E[(WT—At'(leAtRef—AﬁRf)_Y) |WT—At]}, (6.9) m
whereur-a; and X7-4, influence the distribution of R, _ , ,. The value function Vr_a(Wr-a,)
can then be written as:
Vr-at(Wr-ag) = max {FT—At(uT—AmZT—AmWT—Ar)}.
ur-anZr-At

For a given set of parameters {ur_as, Z7-ar, Wr—a¢}, the optimization problem with
respect to X7_a as shown in Equation (6.9) constitutes a smooth and convex optimiza-
tion problem. Therefore, by solving the first-order-conditions for the optimality, we get:

Y —Wr-acRy

Zroart lleAtu'T_At)_l ‘ur-p¢. (6.10)
Wr_a:

X7 a Ur-an Z7-an Wr-a) =
Inserting the optimal control in Equation (6.10) into Equation (6.9) gives us:
Froar@ar—as, Zr-ap, Wr-ag) = (y— WT_AfRf)Z'(1_u,T—At'(ZT—AI"'uT—Atu,T_At)_l .uT_At)
and
Vr-ar(Wr-a) =~ max {(Y_WT—AtRf)Z'(1—u/T_M'(ZT—At+uT—Atu/T_At)_1 'uT—m)}.

ur-anZT-At

Therefore, the optimal adverse policy taken by nature should solve the minimization
problem:

* * . / ! -1
U ApZ7r_pafd= arg ~min {UT,M c(Er-artur—aap_,,) ‘uT—At}-
T-At&T-At

2
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By the Sherman-Morrison formula [77], we can simplify the optimization target and the
optimal adverse policy should satisfy:

. ! -1
Wi ap Z7-ad = arguT—IAl;llzl}r—At {quAtZTfAtuT—At}'

So, the proposition is verified at time T — At and the value function at time T — At
reads:

2 -1
Vr-aeWr-a) = (y = Wr-aiRp)™ (1 —uipr (BT pp U AT ) 'u*T—At)‘
Since the policy of nature satisfies the rectangularity assumption, the factor 1 —u*%._,, -
(Z5 5, tU* T,Atu*’T_m)‘l -u” r_a; will not influence the optimality at time T — 2At.
Therefore, we can finalize the proof by mathematical induction. O

In our proof, in the inner optimization, i.e. the optimization with respect to the asset
allocations, we solve the first-order-conditions to obtain the optimality. This is feasible
since the asset allocations are assumed to be loosely bounded. In the outer optimiza-
tion, i.e. choosing the optimal adverse policy, we do not explicitly solve the problem.
However, since the rectangularity assumption holds, this will not affect the backward
programming process.

6.3.2. ROBUST TIME-CONSISTENT STRATEGY

Here, we consider the optimal control for the time-consistent strategy. Different from the
derivation for the robust pre-commitment strategy, we do not utilize the value function
iteration, which will be complicated in the time-consistent case. Instead, by benefiting
from the special structure of a time-consistent optimal control, we focus on generating
the optimal controls directly. A similar approach is considered in Chapter 5. Our findings
in the robust time-consistent case can be described by the following proposition.

Proposition 6.3.2. For the robust time-consistent optimization problem in Definition
6.2.5, an investor at time t with wealth W; has the following optimal control:

*—1 %
2w

W’ [:O,At,...,T—At, (611)
f

X;tc(Wt) =

with the parameters {uy,X}} for the worst-case scenario solving the minimization prob-
lem:
{u;, =7} :argmin{u’tZ;lut}. (6.12)
up,Z;
Proof. Itis not difficult to prove that the proposition is correct at time T — A¢:
*—1 *
2T AT A 6.13)

*fc
X Wr_ay) =
T—At( T-At) ZAWT_AI;

and the optimal adverse policy reads:

* * _ . ! -1
W _Ap 2 pfd = arguT,gu}:nT,M {uT—AtzT—At“T—At}'
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Assume that at time T —2A¢ an investor has wealth Wr_,a s, then, after performing some
control at time T —2At, the corresponding terminal wealth is given by:

Wr = Wr_onr (X7_pnRT_pp, + Rp)- (CAGMIS AV Ry),

where x’}“f A, and RE" | indicate that the investor will take future optimality into account

while designing the optimal control at time T —2A¢. Further we have:

Wr = Wroaar o0 RS0, +Rp)- ((X;t—cm), ‘R7_A; +Ryp)

*/

1 w1 *
- ﬁuT—AzZT—AzReT-At + Wr-aar (X7_pp R7_on, + Rp) - Ry
= Kr-ar+Wr-oar- ®7_op R7_on, + Rp) - Ry,

the second equality is valid since the optimal control is as in Equation (6.13), which indi-
cates that multiplying the wealth at time T — At with the optimal time-consistent control
should yield a determined number. In the last line, we define the factor Kr_;, which
only contains elements from time step T — A¢. Since we have the rectangularity assump-
tion and the excess returns are assumed to be sequentially independent, the optimal
control at time T —2At can be obtained by ignoring factor Kr_x; and by solving:

. !
max  min {[E[szm-(xT_ZMReT,ZM+Rf)-Rf|WT72Ar]—
XT-201UT 200, 2T-2A¢

A-VarlWr o o RS_pn, + R - Ryl Wr_aal.

By solving this static max-min optimization problem, we can verify the proposition at
time T —2At. At the remaining time steps, we can prove the proposition by mathemati-
cal induction. The key point in the proof is that, after taking the structure of an optimal
control into account, the robust time-consistent problem shares the same optimal con-
trol as a robust myopic problem, which can be solved elegantly. O

For the time-consistent case, we do not give details about how the two-layer opti-
mization problem can be solved, because the basic machinery is the same as in the
pre-commitment case. We find that the robust pre-commitment and the robust time-
consistent strategies share some common features. We will elaborate on them in Section
6.3.3.

ROBUST MEAN-VARIANCE EFFICIENCY

In the real world, it is impossible to determine the mean u; and the covariance matrix
2, for the future excess return at time step ¢, since only one realization can be observed.
Usually, the basic strategy is that we specify the excess returns at different time steps to
follow a stationary distribution with pre-determined mean i and covariance matrix s,
i.e.weassumeu; =tiand X; =3, for t = 0,At,..., T —At. Assuming the excess returns to
be stationary may not be very restrictive, but prescribing the mean and the covariance
may be questionable. For example, if in reality the risky assets follow a stationary distri-
bution with a mean value @ and covariance matrix £, that are significantly different from
it and £, then the corresponding optimal control on the portfolio will certainly be dif-
ferent from the control resulting from the basic strategy. Reflecting on this, the question
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is: how much different is a portfolio managed under the basic strategy from a portfolio
managed under an optimal strategy (where we mean by optimal strategy, the case where
accurate asset information is used in the model)? As implied by Proposition 6.3.3, in
some situations the basic strategy can generate the same mean-variance efficient fron-
tier as an optimal strategy.

Proposition 6.3.3. For two investors, Investor A assuming that the excess returns of risky
assets have mean G and covariance ¥ and Investor B assuming the mean to be & and the
covariance £, their time-consistent strategies generate portfolios with the same Sharpe ra-
tio [76], if

 (Condition 1) their strategies are performed in the same market,
* (Condition 2) £~ = K -2, where K is a constant.

Proof. The proof is straightforward. We first generate the optimal time-consistent con-
trols of these two investors and then cast the controls on the portfolios starting with the
same amount of wealth.

Following a similar derivation as in the proof of Proposition 6.3.2, we obtain the op-
timal asset allocations for Investors A and B, as:

A = £ 'a By = ='a
X ( t) - ZA,W[R(T_”/AI_I’ Xt ( t) - 2AW[R(T—t)/At—I'
f f
at time points t =0,At,..., T - At.
For Investor A, imposing the optimal control on a portfolio starting with initial wealth
Wy will generate terminal wealth:

so1g
Wi = WoRFA + M“

“(RG+RY, +--+R%_,)). (6.14)

For Investor B, the terminal wealth can be written in a similar fashion as:

TIAt z lﬁ e e e
+7'(RO+RA1§+”'+RT—AI)' (6.15)

wE = WoR;

Notice that the excess returns {R¢}!- " are random numbers, that indicate the move-
ment of the risky assets in the market. Since we assume that two investors perform their
strategies in the same market, the same notations for the excess returns are used in Equa-
tions (6.14) and (6.15).

If we choose the risk-free portfolio as the benchmark portfolio, the Sharpe ratio of
the portfolio managed by Investor A is given by:

E[W/] - WoR['™!

\/ Var[W

E[(E @) (RS +R, +---+RS_, )]

VVarl(E-1a) - (RE + R+ + RS, )]
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In a similar way, we can calculate the Sharpe ratio of the portfolio managed by Investor B.
Since we have the assumption that £~'a = K- £, we obtain S4 = S5, i.e. the portfolios
managed by Investor A and Investor B share the same Sharpe ratio. O

As shown in Equations (6.14) and (6.15), since two investors have different views on
the market, the amounts of their terminal wealth are different. However, when their
insights on the market satisfy a special condition, Proposition 6.3.3 implies that their
portfolios will share the same return-to-risk ratio. It also means that the mean-variance
efficient frontier generated by Investor A with a basic guess of the market will be identical
to that generated by Investor B with expert knowledge.

In the one-dimensional case, based on Proposition 6.3.3, we find a stronger conclu-
sion as described in the following corollary.

Corollary 6.3.4. For a time-consistent investor managing a portfolio with one risky asset
and one risk-free asset, no matter what is the estimation of the return of the risky asset, the
strategy is always mean-variance efficient.

Proof. The proof process is similar to that for Proposition 6.3.3. The key point in the
proof is that in the one-dimensional case Condition 2, which is required to establish
Proposition 6.3.3, is always valid. O

According to the results in Chapter 5, when there is only one risky asset in the port-
folio and its returns have a stationary distribution, a time-consistent investor always in-
vests a constant amount of money in this risky asset. Even if the return distribution is
mispredicted, the time-consistent investor will still invest in the risky asset with a con-
stant amount. This makes the portfolio end up on the efficient frontier but at a place
different from expected.

6.3.3. SOME REFLECTIONS

Based on the derivations in Sections 6.3.1 and 6.3.2, we give some insights respectively
on the adverse policy of nature and on the optimal policy of an investor in a dynamic
mean-variance optimization framework.

On the optimal adverse policy According to Equations (6.8) and (6.12), at a given time
step the optimal policy of nature solves the same optimization problem for either the
pre-commitment or the time-consistent problem. In the case of one risky asset, the op-
timization problem is intuitive: the expectation of the excess return is assumed to be as
low as possible and the variance of the excess return as high as possible.

Although the policy of nature may be strictly constrained, we notice that constraints
on the policy of nature do not influence the smoothness of the value function in the pre-
commitment case and we assume that neither the smoothness of the value function in
the time-consistent case is affected. At a given time step, the policy of nature is indepen-
dent of the amount of wealth held by the investor.

Moreover, if we assume that at each time step the feasible sets for nature are identical,
we see that the optimal adverse policy is to take a stationary strategy although it is not
required to perform in this manner.
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On the optimal policy of an investor At each time step, for either a robust pre-commitment
or a robust time-consistent investor, the optimal asset allocations can be obtained by
solving the corresponding robust myopic problems, where a myopic investor is assumed

to perform an optimal control only for a next time period and to adopt the risk-free strat-

egy afterwards. For a non-robust pre-commitment or a time-consistent strategy, similar
results have been found respectively in Chapters 4 and 5. One application of this is that,

in the unconstrained case, the optimal control policy of an investor can be generated
efficiently in a forward fashion.

A recently published paper by [72] also deals with the robust dynamic mean-variance
problem. In that model setting, the author also finds that the robust dynamic strategy
is identical to a myopic strategy. Our discussion differs from this in two aspects. First,
[72] requires investment risk to be bounded at each time step and is therefore neither re-
lated to the pre-commitment nor to the time-consistent case discussed in this chapter.
Secondly, as a consequence of choosing different model settings, our optimal asset allo-
cations are not same. The optimal choice of nature is included in deriving our optimal
strategy, while the optimal strategy in [72] does not take this into account.

As discussed in Chapter 5, when the nominal model is correct, the pre-commitment
strategy usually generates a higher mean-variance efficient frontier than the time-consistent
strategy, since the time-consistent strategy is restricted by the time consistency con-
straint. However, our derivations in Section 6.3.2 suggest that, when the market does
not perform as expected, a time-consistent strategy appears to generate more robust ef-
ficient frontiers and thus has the potential to yield higher efficient frontiers than a pre-
commitment strategy. In a special case where a portfolio consists of one risky asset and
one risk-free asset and the risky asset’s return has a stationary distribution, any time-
consistent mean-variance strategy is guaranteed to generate the same mean-variance
efficient frontier as a robust time-consistent strategy.

Of course, all our derivations in Sections 6.3.1 and 6.3.2 are based on the assump-
tion that the asset allocations are loosely bounded. If we impose strict constraints on
the policy of an investor, the value functions will be non-smooth and our derivation will
be violated. In that case, the optimal strategy of an investor is not the same as an opti-
mal myopic strategy any more, but we can implement numerical methods to generate
constrained solutions (as is done in the numerical section to follow).

Remark 6.3.5. As mentioned in Chapter 5, when there is periodic money withdrawal
from (or injection in) the portfolio, a pre-commitment strategy will be very sensitive to the
amount of withdrawal. When the amount is not as expected, a time-consistent strategy
may also generate a higher efficient frontier than a pre-commitment strategy.

6.4. NUMERICAL EXPERIMENTS

In the previous sections, we discussed the optimal allocations and the worst-case scenar-
ios for the robust mean-variance optimization problem. A robust mean-variance strat-
egy suggests that an investor should take the worst-case scenario into account and adopt
a conservative strategy. In this chapter, we assume that the uncertainty sets of parame-
ters at different time steps are identical. Our proof then implies that the worst-case mar-
ket, which solves Equation (6.8) or (6.12) for either an unconstrained pre-commitment or
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a time-consistent investor, can be generated by the same model parameters at each time
step. In the constrained case, we make a conjecture that this choice of model parame-
ters still yields the worst-case scenario. Since the purpose of constructing the worst-cast
scenario is to challenge an investor to achieve good performance of the management
strategy, we believe that, even if this conjecture is not correct, this choice of model pa-
rameters has a significant influence on the performance of a portfolio. With these criteria
for choosing model parameters, we can compare the unconstrained and the constrained
cases in the same framework.

Different from [51] and [62], we do not consider an uncertainty parameter set in our
tests, since a fixed point in the uncertainty set can already give us the worst-case scenario
(see Propositions 6.3.1 and 6.3.2). We perform numerical tests to examine the robustness
of the proposed mean-variance strategies. We assume that a model error is present in
our test cases. Two scenarios are considered, one is the model scenario and the other the
real-world observed scenario. We derive the asset allocations from the model scenario,
adopt those allocations and analyze their impact for the observed real-world scenario.
When the model scenario appears conservative, the corresponding strategy can be seen
as a robust strategy.

Numerical Algorithm We utilize the numerical method proposed in Chapters 4 and 5
to solve the pre-commitment and the time-consistent problems, respectively. This nu-
merical method consists of two phases, a sub-optimal solution is first generated in the
forward phase and subsequently updating is performed in the backward phase to im-
prove the solution. The backward phase is only necessary for the constrained case. After
iterating the forward-backward process for several times, we obtain highly satisfactory
results. In our tests, we always choose the myopic strategy as the initial guess and report
the result obtained after three backward iterations.

Since we wish to check how a strategy performs if the observed real-world market
does not appear to be as expected by the model assumptions, our simulation-based op-
timization algorithms are slightly adjusted. In the forward phase, we generate paths by
using the dynamics of the observed real market; in the backward phase, we update the
path-wise controls only based on the model information.

6.4.1. 1D PROBLEM

Test Setup We first perform our numerical tests in the one-dimensional case, where
the portfolio contains one risky asset and one risk-free asset. We choose geometric Brow-
nian motion as the dynamics of the risky asset and assume that the log-returns of the
risky asset are governed by volatility o and mean r¢ + ¢ - 0. Here ry is the log-return of
the risk-free asset and ¢ is the market price of risk. When we consider constrained op-
timization scenarios, we impose a bounded leverage constraint x € [Xmin, Xmax] On the
portfolio allocations. The values of the parameters are presented in Table 6.1.

In the following tests, o and ¢ represent the parameters used in the model whereas
Oreal and Creq are the parameters in the observed real-world market; the difference be-
tween these values we call the model error.

We design numerical experiments with the following questions in mind:

* Is a time-consistent strategy sensitive to model errors?
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Table 6.1: Parameter setting.

Risk-free rate r¢ 0.03
Investment duration T (year) 1
Re-balancing opportunities M | 12
Initial wealth W, 1
Leverage constraint [Xmin, Xmax] | [0,1]

16 16
15 . , 0’ 1.5
o
14 .t - 14 0@
- L-° - o7
E;: 13 e’ E;: 13 ,-°
w ) o w . o
o o
12 D’ 1.2 D’
o o o o
11 &‘f’oeb 11 ddaooo
L e e o reono-8-8-5—a—8—a—a—=aa
0 0.05 0.1 - 0.15 0.2 025 0 0.05 0.1 . 0.15 0.2 0.25
std;[W,] stdy (W]
(a) Unconstrained case (b) With leverage constraint

Figure 6.1: By choosing different pairs of (¢, ea1), We obtain four efficient frontiers generated by the time-
consistent strategy. They are respectively represented by: the red line (¢, {ye,)) = (0.1,0.1), the magenta dashed
line (¢, &yeq)) = (0.1,2), the squares (¢, & peq)) = (1,0.1) and the circles (¢, &req) = (1,2).

° When an unexpectedly poor market is encountered, how are efficient frontiers,
generated by a pre-commitment or a time-consistent strategy, affected?

In order to answer these questions, various choices for (o,¢) and (0 eq, €rea) are made in
the following tests.

Robust Mean-Variance Efficiency of Time-Consistent Policy We first check whether
the time-consistent strategy is sensitive to model errors (i.e. real-world parameters #
model parameters). We assume that the volatility of the real-world market is the same
as that indicated by the model, gea = 0 = 0.15. We consider two model settings, ¢ = 0.1
and ¢ = 1, and two market settings, &yea; = 0.1 and &yeq; = 2. When we choose ¢ = 0.1,
it yields a robust strategy since the management strategy is generated in the worst-case
scenario. The choices of ¢.ea can be explained as follows: &y = 0.1 means that the
worst-case scenario indeed appears and ¢y = 2 indicates a good market where the risky
asset yields a high return.

As shown in Figure 6.1, in the unconstrained as well as the constrained situation,
the efficient frontiers generated by the time-consistent strategy are not sensitive to the
model errors. The locations of the efficient frontiers mainly depend on the real-world
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market parameters. When the real-world market is booming, the time-consistent effi-
cient frontiers are high. When the market is poor, the time-consistent frontiers are low.

Unexpectedly Poor Market In this numerical test, we check the performance of the
pre-commitment and the time-consistent strategies when the market is not as expected.
We consider two scenarios, one with fixed mean (rp+o- ¢) and unexpected volatility 3
of the risky asset return and the other with fixed volatility and unexpected mean of the
risky asset return. In these two scenarios, the parameters are chosen as in Table 6.2.

Table 6.2: Parameters for modeling an unexpectedly poor market.

Set I: o = O.].,é‘ = 0.33,0-real = 0.5, freal = 0.066.
Set II: g = 0.15,6 = 1,0-real = 0.15, freal = 0.]..

As seen in our first experiment, the time-consistent strategy is not sensitive to the

model prediction and yields efficient frontiers that can also be achieved by a time-consistent

investor with correct market information. When a bounded leverage constraint is in-
troduced, the time-consistent frontier tends to be somewhat lower than in the uncon-
strained case.

A surprising finding is that, when the model prediction is inconsistent with the real
market, the pre-commitment strategy may generate lower efficient frontiers than a time-
consistent strategy. According to our findings in Chapter 5, if the market moves ac-
cording to the model prediction, a pre-commitment strategy generates a higher fron-
tier than a time-consistent strategy. This is due to the fact that time-consistency can be
regarded as a constraint on a pre-commitment strategy. However, in case of an unex-
pectedly poor market, the time-consistency constraint may protect an investor, while a
pre-commitment investor may suffer from the poor market. As presented in Figure 6.2,
in both situations, the unconstrained pre-commitment strategy generates the lowest ef-
ficient frontier. When the constraint is introduced into the pre-commitment strategy,
the efficient frontier gets higher than in the unconstrained case. This is not difficult to
understand. When a model yields the correct prediction, introducing a constraint forms
a restriction on a portfolio; when a model generates an incorrect prediction, the con-
straint acts as a “protection”. Therefore, when market movement is not as anticipated,
the constrained pre-commitment strategy may perform better than its unconstrained
counterpart.

We also see that the constrained pre-commitment and time-consistent frontiers co-
incide at their right ends. When an investor pursues a very high return, the maximal
possible allocation will be set at almost all time steps. Therefore, in this situation, a
constrained pre-commitment strategy will be similar to a constrained time-consistent
strategy.

Remark 6.4.1. When we consider an unexpectedly booming market where 0 ea = 0 and
Ereal > &, the pre-commitment strategy generates a higher efficient frontier than the time-

3In case of unexpected volatility, we choose the volatility of the real market to be 50%, which is similar to the
scenario happening after the 2008 financial crisis in the American market [67].
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Figure 6.2: Comparing the performance of a pre-commitment and a time-consistent strategy when the market
is unexpectedly poor. In the unexpected volatility case, we choose parameters from Set I in Table 6.2. In the
unexpected mean case, parameters from Set II are used.
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consistent strategy. In this scenario, introducing constraints makes both the pre-commitment
and the time-consistent efficient frontiers lower, as expected.

Although the time-consistent strategy can generate a robust efficient frontier, it does
not mean that the time-consistent investor, who designs a strategy with expected return
[E; [Wr] = d in mind, will achieve this amount of return in an unexpected market. When
the market is worse than expected, the pre-commitment investor will attempt to reach
the predetermined target by taking more risk. Meanwhile, the time-consistent investor
may just be satisfied with a lower mean return associated with less risk. In this case,
it is interesting to examine both strategies by checking the probability of getting less
than, say, 90% of the predetermined return d. This shortfall probability also reflects the
robustness of an investment strategy.

As shown in Figure 6.3, when the market is as expected in the model, both the time-
consistent strategy and the pre-commitment strategy lead to low shortfall probabilities.
When an unexpectedly poor market occurs, the shortfall probabilities increase. It is not
easy to say which strategy is more robust with respect to the shortfall probability crite-
rion. According to Figure 6.3(b), the time-consistent strategy has a higher probability of
generating the terminal wealth lower than 90% of the desired level. However, if we con-
sider the probability of getting the terminal wealth lower than 60% of the desired target,
the time-consistent strategy appears to be less risky as shown in Figure 6.3(c).

6.4.2. 2D PROBLEM WITH UNEXPECTED CORRELATION

An advantage of using the simulation-based numerical algorithms proposed in Chapters
4 and 5 is that they can be generalized to higher-dimensional scenarios. In this part,
we consider a portfolio with two risky assets and one risk-free asset. In terms of model
uncertainty, we consider a scenario where the correlation between two risky assets is
not as predicted. The parameters for risky assets A and B are respectively shown in Table
6.3, where p denotes the correlation between the two risky assets in the model and p;ey)
denotes the observed real-world correlation in the market. In the constrained case, we
consider bounded leverage constraints [Xmin, Xmax] = [0,0.5] on both risky assets. For the
other parameters, we set them as in Table 6.1.

Table 6.3: Parameters for two risky assets A and B.

OpA= O.Z,fA 20.5,03 20.4,63 =0.5
P =-0.9, prea1 = 0.9.

In the unconstrained case, we first check what kind of results a correlation prediction
error can bring. We compare the efficient frontiers generated by the pre-commitment
and time-consistent strategies, when the correlation is inaccurately predicted, as shown
in Table 6.3, as well as the frontiers generated by both strategies when the observed real-
world correlation is predicted accurately (p = peq;). As shown in Figure 6.4, when ac-
curate information is available, the pre-commitment frontier is slightly higher than the
time-consistent frontier. However, when the model correlation is not accurate, the pre-
commitment strategy degrades, while the time-consistent strategy does not change sig-
nificantly in terms of mean-variance efficiency. The time-consistent strategy with inac-
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Figure 6.3: The shortfall probability of the pre-commitment and the time-consistent strategies in the con-
strained case. The x-axis displays the desired target wealth and the y-axis the shortfall probability. For “an
unexpectedly poor market”, we use the parameters from Set I in Table 6.2. For “an expected market”, the same
model parameters are used and the real-world market parameters are assumed to be identical to the model
parameters.
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Figure 6.4: Comparison of the efficient frontiers generated by the pre-commitment and the time-consistent
strategies in cases with or without accurate information of the correlation between risky assets.

curate information generates almost the same frontier as the one with accurate infor-
mation. When we consider a test case with a longer investment horizon or fewer re-
balancing opportunities, the difference between these two time-consistent frontiers will
be more pronounced. However, in general, the time-consistent strategy is more robust
than the pre-commitment strategy in terms of an inaccurate prediction of the assets cor-
relation.

In Figure 6.5, we show the frontiers generated by the pre-commitment and the time-
consistent strategies in the unconstrained and the constrained cases, when the asset
correlation is not correctly predicted by the model. When the constraints are introduced
on the allocations, the pre-commitment frontier increases and the time-consistent fron-
tier decreases. In our test setting, when the mean return is not large, the time-consistent
frontier is higher than its pre-commitment counterpart.

However, please note that when the misprediction of the correlation is not very sig-
nificant, for example [p, preal]l = [-0.2,0.2], the constrained pre-commitment strategy
still generates higher frontiers. This is as expected, since the pre-commitment strategy
should generate higher frontiers when the market information is known exactly.

In Figure 6.6, we show the asset allocations of both strategies over time. We choose
a scenario where both strategies generate mean returns that are equal to 1.13. As shown
in Figure 6.5, this is approximately the point where the time-consistent and the pre-
commitment frontiers cross. The presented allocations are the average values of the
allocations on all simulated paths. Although both strategies generate returns with the
same mean and also similar variances, their allocations are significantly different. By
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Figure 6.5: Comparison of the efficient frontiers when the correlations between risky assets are inaccurately
predicted.

adopting the pre-commitment strategy, an investor assigns more money to the risky as-
sets initially and shifts to risk-free asset allocations at the end of the investment period.
This is due to the fact that this investor has a target in mind and close to the target she
may not take risk to achieve higher wealth levels. For a time-consistent investor, the
optimal asset allocations are quite different. Since the time-consistent investor is not
satisfied with a target, the strategy does not reduce to a risk-free strategy. Initially, a
time-consistent investor is more risk-averse than a pre-commitment investor; however,
at the end, the time-consistent investor appears to be more risk-seeking.
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Figure 6.6: Comparison of asset allocations in the two-dimensional case. The red lines represent the allo-
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The straight lines denote the allocations for the time-consistent strategy and the dashed lines for the pre-
commitment strategy.
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6.5. CONCLUSION

In this chapter, we considered the robust pre-commitment and the robust time-consistent
mean-variance optimization problems. In the unconstrained case, a specific equation
for determining the worst-case scenario was derived for the robust pre-commitment
and the robust time-consistent strategies. At a given time step, the optimal allocations
generated by both strategies are then identical to their myopic counterparts, where an
investor derives the optimal allocation for one upcoming time period, assuming that a
risk-free strategy will be taken in the future.

The robustness of the pre-commitment and the time-consistent strategies is checked.
Our analysis and the corresponding numerical experiments suggest that a time-consistent
strategy appears to be more robust in terms of model errors. When an unexpectedly poor
market is encountered, the time-consistent strategy may generate higher efficient fron-
tiers than the pre-commitment strategy. Introducing constraints into the robust pre-
commitment strategy can even increase the frontiers, since the constraints may serve
as a “protection”. In the two-dimensional case, the influence of inaccurately predicting
the correlation between risky asset returns was examined. Again we found that the pre-
commitment strategy may be vulnerable to such prediction errors and constraints on as-
set allocations can increase a pre-commitment frontier. Meanwhile, the time-consistent
strategy still performed in a robust way. We checked the asset allocations of both strate-
gies when they generate similar mean-variance pairs, and found that a pre-commitment
investor prefers to bear more risk at the beginning of an investment period while a time-
consistent investor appears to be more risk-seeking than a pre-commitment investor at
the end of the period.



CHAPTER 7

Conclusions and Outlook

7.1. CONCLUSIONS

In this thesis, we have solved various types of multi-period stochastic control problems
via numerical approaches. Our methods are based on Monte Carlo simulation and least-
squares regression. In order to make our methods robust and accurate, we learned from
the Stochastic Grid Bundling Method proposed in [57] and adopted the “regress-later”
and “bundling” techniques when calculating conditional expectations. In all the test
scenarios, our methods generate highly satisfactory results.

In Chapter 2, we considered a Bermudan option pricing problem with Merton jump-
diffusion asset dynamics. To successfully solve this problem required us to determine
the optimal exercise policy of the option accurately. We investigated how to choose
basis functions in the least-squares regression process and how to set up bundling to
achieve good quality results. Based on these discussions, we established a uniform way
to configure our numerical methods: we always choose polynomials as basis functions
and perform “equal-size bundling”. This constituted the guidelines for configuring the
“regress-later” and “bundling” techniques in this thesis. We also performed error analy-
sis on our method and the standard regression method.

In Chapter 3, we enhanced a well-known dynamic portfolio management algorithm,
the BGSS algorithm, proposed in [16]. We improved the simulation-based BGSS algo-
rithm with the “regress-later” and “bundling” techniques. We found that the modified
algorithm could generate robust results. Since both the BGSS algorithm and the algo-
rithm proposed by us rely on a Taylor expansion to approximate value functions, we also
introduced an idea, which is similar to [42], for increasing the accuracy of the Taylor ex-
pansion. With the modified Taylor expansion, highly accurate results can be obtained es-
pecially for a portfolio management problem with a long time horizon. Reflecting on the
grid-searching idea in [85], we utilized a Fourier cosine series technique [37, 38] to com-
pute the conditional expectations and came up with a benchmark algorithm. In most
of the test cases, combining the modified simulation-based algorithm with the modified
Taylor expansion yielded the most approving results, that were confirmed by using our
benchmark algorithm.

In Chapters 2 and 3, the optimal controls depended on the state variables, which can
be simulated independently without introducing biases. This implies that, when solving
the Bermudan option pricing problem and the multi-period utility-based portfolio op-
timization problem, we can first finalize the Monte Carlo simulation and then calculate
the optimal controls. However, this is not the case for either the pre-commitment or the
time-consistent mean-variance portfolio optimization problem, respectively discussed
in Chapters 4 and 5. The main difficulty encountered in these optimization problems
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was that the state variables, by which we determined the optimal controls, evolve in turn
depending on the controls cast by us. Therefore, we cannot simulate the state variables
without taking the controls into account. We proposed a forward-backward simulation-
based algorithm for solving these problems. In the forward step, we simulated the state
variables with a rough guess of the optimal controls. In the backward step, we solved
optimality locally, computed the value functions and, if necessary, updated the con-
trols used in the forward step. After iterating these forward-backward process for several
times, satisfactory results could be obtained. Moreover, for either the pre-commitment
or the time-consistent mean-variance problem, we proved that the unconstrained opti-
mal strategy is equivalent to a myopic strategy, by which an investor designs the optimal
control for one coming period assuming that the risk-free strategy will be taken after-
wards. In the constrained case, this myopic strategy serves as a reasonable guess of the
optimal strategy and can be used to initiate the forward-backward algorithm.

In Chapter 6, we considered robust pre-commitment and time-consistent mean-
variance strategies, that are required to perform well in a worst-case scenario. We showed
that worst-case scenarios for both strategies can be found by solving a specific equation
at each time step. We compared the efficient frontiers respectively generated by the pre-
commitment and the time-consistent strategies when a model prediction error arises.
Different from our findings in Chapter 5, we noticed that the time-consistent strategy
may generate a higher mean-variance efficient frontier than a pre-commitment strategy
when an unexpectedly poor market occurs. According to our numerical tests, in the 2D
case the time-consistent strategy also appears to be more robust when the correlation of
asset returns is mispredicted.

7.2. OUTLOOK

We suppose that the “regress-later” and “bundling” techniques can be used to improve
most of the simulation-based numerical algorithms, that utilize cross-path least-squares
regression to calculate conditional expectations. According to our experience, the im-
proved numerical methods typically generate highly accurate and robust results. Im-
proving currently existing numerical methods in this fashion may extend their limits and
give rise to some new findings.

We chose geometric Brownian motion to model asset dynamics when we solved the
mean-variance optimization problems. Some other models may also be considered, for
example the vector auto-regression model as discussed in Chapter 2, to depict the asset
dynamics. Using involved models to describe asset dynamics will essentially increase
the dimensionality of the state variables. However, with a suitable bundling scheme, our
simulation-based algorithm should still generate satisfactory results.

When we considered the portfolio optimization problems, we always solved the first-
order conditions to obtain the optimality. Compared to grid-searching, solving first-
order conditions is usually more efficient. However, we also noticed that solving the
first-order conditions can be difficult for some problems, for example the mean-partial-
variance optimization and the mean-CVaR optimization. For these problems. finding
an efficient way to obtain the optimality can be a very challenging task. Nevertheless,
the forward-backward algorithm may still form the basic framework for solving these
problems.
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When a model prediction error is encountered, the pre-commitment mean-variance
strategy may suffer. A potential way to improve the pre-commitment efficient frontier is
to take model uncertainty into account and perform machine learning techniques when
new data become available. In the mean-variance portfolio optimization, the asset al-
locations are determined by the mean and the covariance of asset returns. The filtering
approaches, like Kalman filters, especially the ensemble Kalman filter, may be helpful in
this scenario.
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