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Abstract
For the past few decades the development of self-driving cars has been a large topic in both
science and industry. One of the main challenges to be addressed before bringing it to the
marker is realisation of sufficiently reliable sensing capabilities in different weather, light
and traffic conditions. To realise these features, modern self-driving autos are equipped with
cameras, lidars and radars.

Automotive radar has an advantage over other sensors in that it is better at operating in
bad weather conditions. To see the extent of the effect that adverse weather conditions might
have on the statistics of the data a statistical analysis was performed on real measurement
data. During heavy rain there is a shift that can be observed in the Radar Cross Section
(RCS) of the target. The average RCS of the target increases slightly when it is raining.

In (Multiple Input Multiple Output) MIMO radar it is important to calibrate the radar sys-
tem as there can be both amplitude and phase distortions between the channels that can
produce measurement errors. Calibration coefficients are usually estimated in a controlled
environment with known targets. This calibration however, does not reflect possible degra-
dation of the antenna pattern in the operational mode where the possible presence of dust,
water or mud on the bumper might interfere with the radar performance. Instead it might
be feasible to estimate this from objects of opportunities that are regularly appearing in the
radar field of view.

To tackle this problem a method is used that estimates these calibration coefficients from
measurement data. The method needs to know the angle at which the target is located,
however the range of the target can remain unknown. It uses the ideal steering vector and
one of the antenna elements as a reference element. The method can recreate the phase
errors very well, but relies on the reference element for the amplitude estimation. Therefore
the performance is based on what element is chosen as a reference. To choose the right
reference element some pre-processing is proposed.

The problem of sensor calibration with targets at unknown locations is addressed jointly
with simultaneous localisation and mapping (SLAM) of the sensor. This problem is addressed
jointly with the modification of an Extended Kalman Filter (EKF) for SLAM. The EKF is used to
make an estimate for both the location of the radar, the location of the objects of opportunity
and the estimation of the calibration coefficients based of these landmarks at the same time.
The performance of the resulting algorithm has been investigated and it is feasible to calibrate
the radar while driving in this way.
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1
Introduction

1.1. Motivation
For many years now car manufacturers have been implementing increasingly complex au-
tomotive radars in their cars as they can offer many benefits to the driver. They are very
popular and become commonplace in most modern vehicles. Automotive radar sensors can
detect and track objects. They offer the driver assistance through adaptive cruise control
assistance, parking assistance and collision avoidance. This and other applications can be
seen in Figure 1.1.

Most of these features are safety related and in the future these sensors will even be
implemented to create fully automated vehicles. As time goes on we are becoming more
reliant on these aids to assist us with driving. This is especially the case when there are
adverse weather conditions or road conditions that might impede the safety of the driver.
This makes it very important for these automotive radars to be robust and to work reliably
in all types of difficult road situations.

The road and weather condition will be constantly changing and there are other factors
such as age of the sensor that might impact the working of the sensor. Radar calibration can
be used to counter some of this decaying, but in the ideal case this would happen continu-
ously while the radar is driving. Therefore it is necessary to find targets while driving that
the radar might be calibrated upon. These target will also be called targets of opportunity
that appear in the vision of the radar while driving.

All of this stresses that it is important to study all situations that might occur on the
road and that might affect the performance of these types of radars and even improve upon
the performance through calibration. The problem is a large one and encompasses a lot
of topics. This thesis looks at two different topics that can affect the performance of the
radar. Firstly a study of the effect of adverse weather conditions on the statistical data of a
commercial available radar and secondly a method for estimating the calibration coefficients
of a Multiple Input and Multiple Output (MIMO) radar in its operational mode on the road.

The goal will be to increase the performance of the radar in operating conditions and
with the data that is already available in the radar. This increased performance will make it
safer for drivers on the road and make the radar systems more reliable in all type of weather
situations.

1.2. Literature review
Weather
Looking at how radar behaves in adverse weather conditions we can find that automotive
radar is less affected by them than other types of sensors like lidar [25] and this is one of the
reasons it is so popular. It is however not unaffected and it will be interesting to see if the
effects of weather will affect the statistics of the radar.

Statistical analysis of the data available from a Continental radar in different weather
conditions. This is Frequency Modulated Continuous Wave (FMCW) radar that operates at
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2 1. Introduction

Figure 1.1: Automotive radar application

77𝐺𝐻𝑧. This radar outputs a vectorised data file which has only a few parameters available.
The literature was focused on one of these: the Radar Cross Section (RCS) of the target. This
is the main focus as this one has the most potential of all the parameters outputted by the
radar.

RCS attenuation due to the propagation through rain is usually discussed in dB/km and
is described in an ITU recommendation [34]. However this does not necessarily mean it is
also valid in the small ranges that are used in automotive radar. On such a small range there
can be a lot more sources that influence this.

According to [23] there is no discernible change between the RCS of a dry and a wet
reflector. They measured the backscatter of the reflector after wetting the surface of it and
compared it to the radar return of a dry reflector and saw no significant changes.

Another study in this area [7] depicts a minimal loss where the water sheet thickness on
the reflector is ”relatively thin” (<0.25mm for 17.8GHz). This shows that there can be some
variation due to the rain.

However most papers agree that the largest influence on attenuation is in the effect of a
wet radome or a water film on the radome. There have been a number of studies [8] [15]
that look into this. So where wetting the reflector appears to not have much influence the
influence of a water layer is substantial. When there is a large enough water or ice layer it
can even fully block the function of the automotive radar and distort the antenna pattern.

Another path that might prove useful is to look at [19], [27] and [13]. They represent
papers that show the different scattering behaviours of several different road surfaces in
different weather conditions. It shows that the surface of the road is important for the level
of backscatter and that the backscatter can increase drastically on wet concrete.

Nowadays all radars are made by specialised companies, like Continental and Bosch, who
have their own version that they bring on the market. The companies process the raw radar
data and only output a vectorised data file. On one hand this makes the radar very consumer
friendly, however on the other hand it also causes the radar to behave like a black box. It
performs processing on the raw data internally and outputs only a list of detected objects
and some of the characteristics of these objects. It is however not known in what way this
alters the statistical effects that might be observed with the radar data.
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MIMO
After this analysis the topic will shift to estimating the calibration coefficients for a MIMO
radar. In MIMO several similar antennas that are located closely to each other are combined
to create a better signal. Every antenna element that is produced has its own imperfections
and therefore it is necessary to calibrate the antenna array to compensate for the faults that
are always present. These errors are caused by imperfect channels and the non-uniformity
of the array. They are detected and estimated during the calibration of the array; a process
which is usually performed by measuring a predefined set of targets while the car is standing
still. This process is time-consuming and very precise.

Inaccurately estimating these coefficients will degrade the performance of the array so
therefore there have been a number of implementations on how to estimate the calibration
coefficients. After the measurement data has been received by the receiver it is range pro-
cessed into bins with a (Fast) Fourier Transform. Most of the calibration algorithms work
with the range processed signal.

When the initial calibration is done this does not mean that the process of calibration
is finished now. This is because there are a lot of factors that could change the array’s
response over time: like the age of the components, rough environment, thermal effects and
so on. Therefore it remains necessary to keep calibrating the array over time. Next to the
road there are certain distinct objects that periodically appear when driving. This can be
either a road sign or a lamp post and they should always give roughly the same detection
distribution to the radar. The measurements of these objects could be used to recalibrate
the radar.

The paper [14] talks about the errors that can occur and what effect they have on the
calibration. The negative effects that are described are: beam pointing error, broadening of
the main beam, a rise in the sidelobes or the deviation of the grain of the antenna array.

It also proposes a self-calibration method that, to find the amplitudes, calculates the mean
over all signal amplitudes which allows to estimate the gain of each transmitter and receiver
combination by �̂�፦፧ = |�̃�፦፧|/|�̄�|. For the phase errors it assumes a linear behaviour as they
should be located in the far-field. A least squares method is used for determining the phase
errors.

In our application it will be necessary to use real measurement data for the estimation of
the calibration coefficients and there are already certain papers that have this requirement.
There are however certain requirements that are needed for doing this.

Most methods like [31] require a very precise measurement scenario where all of the ref-
erence sources and their locations need to be known beforehand. A lot of papers extended
on [31], giving different implementations for different types of sensors however these papers
all have a quite rigid set of requirements.

In paper [22] the requirements are relaxed as they jointly try to estimate the coupling
matrix, the element factor and the phase centre. There are no more requirements on the
location of the array centre or about the individual antenna elements. The trade-off for this
relaxation of the requirements is that the algorithm is very complex and does not always
converge (quickly).

In [28] a method is proposed for estimating the MIMO calibration matrix from real mea-
surement data that only needs the angle of the target to be known. It relies on the ideal signal
steering vector that can be created from the angles to reproduce the antenna pattern. The
method ”arbitrarily fixes the phases of the entries of the first antenna element to the phases
of the measured signals”. By doing this it alleviates the need to estimate the absolute phase
term in the first element. The method relies on the first element to be able to relate to the
measured signals.

1.3. Problem statement
This thesis is divided into two subtopics that are both looking at different parts of the plethora
of factors that might impede the performance of the radar.

Firstly it will study the effect of rain and other adverse weather conditions on the statistics
of observed radar targets. To do this there will be a statistical analysis of real radar data that
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has been collected in different weather conditions.
Secondly it will try to use objects of opportunity to estimate the calibration coefficients of

a MIMO radar system. To do this it will be necessary to look at different algorithms that can
be used to estimate the calibration coefficients. As well as a way to simulate and calculate
the radar moving through the environment while calculating the calibration coefficients. It
will also be necessary to study the impact of calibration error on the radar measurement.

1.4. Outline of thesis
The rest of this thesis is organised as follows.

• Chapter 2 will provide with the background information and the state-of-the-art re-
search in the field. It will give an overview of how general radar systems function as
well as more information about MIMO radar and its calibration. There is also informa-
tion on SLAM and the EKF that will be important later.

• Chapter 3 will take a look at the influences of adverse weather conditions on the radar
data. To do this there will be a description of the used radar and target setup and of
the algorithm used to process the available data.

• Chapter 4 will then look into how the calibration coefficients can be estimated and how
accurate those estimations will be.

• Chapter 5 will take a look at the beam pointing error and how this can be related to
distributions in phase or magnitude error of calibration matrix. The relation between
these errors will be used further in Chapter 6.

• Chapter 6 will describe the algorithm of SLAM as it is described in literature. Then the
joint problem of simultaneous localisation, calibration and mapping is then addressed
with the modification of EKF SLAM. The performance and limitations of the proposed
algorithm are investigated via numerical simulations.

• The final chapter discusses all of the results in the earlier chapters and draws conclu-
sions from this. It also gives some recommendations for potential future research.



2
Radar background

The word radar stands for RAdio Detection And Ranging. As the name suggest the systems
uses radio waves to both detect objects and determine the object’s range. It was invented
during the SecondWorld War, but it has been improved upon since then and now has become
much more advanced. In the modern day radar can be used to determine the range, angle
and velocity of targets all at once.

This upcoming chapter will give an overview of how general radar systems function as well
as more information about MIMO radar and radar calibration [24] [30]..

2.1. Radar basics
Radar is a detection system that uses electromagnetic (EM) waves to determine the location
of objects by studying the reflections of the EM waves on these objects. The range R can be
determined by the time it takes for these waves to propagate to the target and back (Δ𝑇). Here
𝑐 ≈ 3 ∗ 10ዂ is the speed of light in m/s.

𝛿𝑅 = 𝑐Δ𝑇
2 (2.1)

This the the theoretical limit, but this is in fact a statistical parameter and this is why
we would need to take a look at the Cramer-Rao Lower Bound (CRLB). This bound limits the
variance of any unbiased estimator �̂� and it can be defined in the following way [17] [18]:

𝑣𝑎𝑟(�̂� ≥ 1
−𝐸 [Ꭷ

Ꮄ፥፧፩(፱፱፱;᎕)
Ꭷ᎕Ꮄ ]

(2.2)

Now looking into how the range can be approximated using this equation [17]:

𝑣𝑎𝑟(�̂�) ≥ (𝛿𝑅)ኼ
𝑆𝑁𝑅 ̄𝐹ኼ

(2.3)

Here the value ̄𝐹ኼ is related to the bandwidth of the target and it can be assumed a con-
stant. We can see that this equation is related to the range resolution and the SNR of the
target. This statistical estimation will always be less than the range resolution.

When the detected object is moving there will be a change in the frequency of the reflected
waves (Δ𝑓). This is called the Doppler effect and it can be used to determine the velocity of
the detected object relative to the velocity of the radar (Δ𝑣).

Δ𝑓 = 2Δ𝑣
𝑐 (2.4)

Every object has a different way of scattering or reflecting EMwaves and this is represented
by the Radar Cross Section (RCS) 𝜎. The RCS is for example influenced by the size and the
material of the target. The higher the RCS the better the object is detectable by the radar.

5



6 2. Radar background

The targets of interests are assumed to be lamp posts and these can be fairly well repre-
sented as a point like target. However at certain angles and ranges they might not be and
they will be spread out over several bins. Then they are considered to be an extended target
instead. On the roof most of the targets that were studied were extended targets. That means
that they have multiple reflective surfaces that can be grouped together to form one extended
object. An extended target is an object of interest that appears in multiple resolution bins.
The range resolution of a radar can be defined as the minimal distance at which two differ-
ent target can be distinguished. That means that they are at least a beamwidth apart. The
beamwidth is usually defined as the angular distance between the half power points. This is
at -3dB from the peak of the main lobe.

Similar to the range resolution we can also define the Doppler resolution; which is the
smallest difference in Doppler shift for a moving target that can be detected. Positive Doppler
shifts usually indicate that the target is moving towards the radar while negative shifts indi-
cated it is moving away from it.

Figure 2.1: Automotive radar principle, Figure taken from [1]

The resolution of the velocity 𝛿𝑣 can be described in this way:

𝛿𝑣 = 𝜆
2𝑇 (2.5)

Here 𝑇 is the radar refresh rate
The beamwidth can be approximately described as:

𝛿𝜙 ≈ 𝜆
𝐷 (2.6)

Here 𝐷 is the size of the antenna array.

2.1.1. Radar range equation
The radar performance can be described by the radar range equation which ties a lot of the
radar’s characteristics together.

𝑃፫ =
𝑃፭𝜆ኼ𝐺፭𝐺፫𝜎
(4𝜋)ኽ𝑅ኾ (2.7)
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Here 𝑃፫ represents the power of the received signal and it depends on the transmitted
power 𝑃፭, the wavelength 𝜆, the gain of both the transmitting and receiving antennas 𝐺፭ , 𝐺፫,
the radar cross section 𝜎 and the range 𝑅 to the target.

2.1.2. FMCW
Frequency Modulated Continuous Wave (FMCW) radar is a type of radar that is constantly
emitting and receiving waves that are modulated in frequency. This is very different to a
pulsed radar which sends short pulses and determines distance by measuring time delay
between the pulses. The advantage is that it is very easy to filter out large stationary objects
and slow moving clutter from the received signals.

Figure 2.2: Radar block diagram

The signals emitted by the FMCW radar are constantly varying in frequency and the dis-
tance to the target is estimated based on the difference in frequency of the transmitted and
received signal. A radar block scheme for FMCW radar can be found in Figure 2.2.

Exactly how the waves are modulated can vary between radars, but there are several
standard modulation patterns like sawtooth or triangular modulation that are often used.
They each have their own advantages and applications.

2.1.3. MIMO radar
In coherent MIMO the transmit and receive antennas are closely located and the signals are
coherently combined to improve angular resolution. MIMO uses multiple 𝑀 transmit 𝑇፱ and
𝑁 receive 𝑅፱ antennas in a priori known formation. The elements are at distance 𝑑 located
from each other.

The signal that are sent must be orthogonal to each other, because otherwise they might
start interfering with each other: either constructively or destructively. The orthogonality
of the system can be achieved in different ways by for example with spreading them out in
time (Time-Division Multiplexing) or frequency (Orthogonal Frequency Division Multiplexing).
When the transmitted signals are orthogonal we can create a virtual MIMO array that consists
of 𝑀 ∗ 𝑁 elements. This virtual array is the advantage that MIMO has over normal phased
array as it can have the same performance with less actual antenna elements. This leads to
an overall better angular resolution.

The transmit antennas 𝑇፱ emit a signal 𝑠(𝑡) that is reflected on an unknown target at
distance 𝑟 and angle 𝜃 of the radar. The distances 𝑑 between the antennas can be no smaller
than 𝜆/2 to be able to uniquely estimate the angle of arrival 𝜃.

The signal model for MIMO that is written down here was also described in [20].
The transmit signal 𝑠ፓ that is send to a target can be written as:

𝑠ፓ𝑠ፓ𝑠ፓ(𝑚) =
ፌ

∑
፦ኻ

𝑒ዅ፣ኼ Ꮂ፟Ꭱᑞ(᎕)𝑥፦(𝑛) = 𝑎∗(𝜃)𝑥𝑎∗(𝜃)𝑥𝑎∗(𝜃)𝑥(𝑛), 𝑛 = 1…𝑁 (2.8)

where 𝑓ኺ is the carrier frequency of the radar, 𝜏፦(𝜃) is the time needed by the signal emitted
via the 𝑚th transmit antenna to arrive at the target, .∗ shows the conjugate transpose and N
denotes the number of samples of each transmitted signal pulse.
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𝑥𝑥𝑥(𝑛) is the vector of the transmitted signals in all channels and 𝑎(𝜃)𝑎(𝜃)𝑎(𝜃) denotes the complex
amplitudes of these signals.

𝑥𝑥𝑥(𝑛) = [𝑥ኻ(𝑛)𝑥ኼ(𝑛)…𝑥ፌ(𝑛)]ፓ (2.9)

𝑎(𝜃)𝑎(𝜃)𝑎(𝜃) = [𝑒፣ኼ Ꮂ፟ᎡᎳ(᎕), 𝑒፣ኼ Ꮂ፟ᎡᎴ(᎕), … 𝑒፣ኼ Ꮂ፟Ꭱᑄ(᎕)]ፓ (2.10)

The same can be defined for the receiver side where 𝑦𝑦𝑦(𝑛) is the vector of all signals received
by the receiver antennas and 𝑏(𝜃)𝑏(𝜃)𝑏(𝜃) is the complex amplitudes of these signals. Here �̃�፦(𝜃) is
the time needed for the reflected signal to travel from the target at angle 𝜃 to the receiver
antenna.

𝑦𝑦𝑦(𝑛) = [𝑦ኻ(𝑛)𝑦ኼ(𝑛)…𝑦ፌ(𝑛)]ፓ (2.11)

𝑏(𝜃)𝑏(𝜃)𝑏(𝜃) = [𝑒፣ኼ Ꮂ፟Ꭱ̃Ꮃ(᎕)𝑒፣ኼ Ꮂ፟Ꭱ̃Ꮄ(᎕)…𝑒፣ኼ Ꮂ፟Ꭱ̃ᑄ(᎕)]ፓ (2.12)

This leads to the received data vector:

𝑦𝑦𝑦(𝑛) =
ፊ

∑
፤ኻ

𝛽፤𝑏𝑏𝑏(𝜃፤)𝑎∗𝑎∗𝑎∗(𝜃፤)𝑥𝑥𝑥(𝑛) + 𝑒𝑒𝑒(𝑛), 𝑛 = 1…𝑁 (2.13)

where K is the number of targets that reflect the signals back to the radar receiver, 𝛽፤ are
complex amplitudes proportional to the radar cross sections (RCS) of those targets, 𝜃፤ are
the target location parameters, e(n) denotes the interference plus-noise term, and (.) denotes
the complex conjugate.

The signals that fall onto the target are reflected back to the radar and received by the 𝑅፱
antennas. The reflected waves each arrive at the receiver elements at different time instances.
This causes them to have a different delay which can be used to estimate the angle of arrival.

The signals that are send by the antennas have to be narrowband (𝐵 << 𝑓) to assume
that the signal delay can be represented by a phase shift.

Figure 2.3: MIMO radar principle; Figure taken from [26]

As an example in Figure 2.3 there are two transmit antennas and four receivers. Because
the second antenna is placed at a distance of 4𝑑 any signal will see an additional phase shift
of 4𝜔. This will result in 8 distinct phase sequences at the receiver. The size of the virtual
array is 8, and will give the same result as a system with one transmitter and eight receivers.
This is called antenna diversity.
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2.1.4. Radar calibration
To some degree there are always deviations from the ideal antenna pattern when implement-
ing the antenna elements. These disturbances can cause distortions in the antenna beam
pattern like an increase of the side lobe level or they can lower the accuracy of the direction
of arrival estimation. The distortions are usually represented in the coupling matrix C, where
C is a linear distortion of the true multi-channel signal:

sዱ(𝑡, 𝜃) = C(𝜃)sኺ(𝑡, 𝜃) (2.14)

The calibration consist of estimating the calibration matrix T that reverses the effects done
by the coupling matrix C so that:

TC(𝜃)sኺ(𝑡, 𝜃) = sዱ(𝑡, 𝜃) (2.15)

In the ideal case 𝑇 = 𝐶ዅኻ. When there are 𝑀 antenna elements the matrices C and T will be
of size 𝑀𝑥𝑀.

There are two types of error here. The first one is a calibration error that represents the
uncertainty in the actual channel gains and phases of the system. When there is no distortion
all of the antenna elements behave equally. In this case the elements of the diagonal of the
coupling matrix should be all ones. Secondly an error is introduced because the antennas
are located so closely together. The transmit antennas will have a direct line-of-sight to the
receiver antennas. This will cause interference for the reflected signal. This is also called
mutual coupling between the elements.

An initial calibration of the radar will usually be performed just after production. Accord-
ing to[21] the errors that occur after this can be assumed random and uncorrelated. As other
systematic errors (which would be correlated) have to be corrected in this first calibration.
This makes it possible to approach the problem in a statistical way.





3
Influence of weather on radar statistics

This chapter will look at the influence that the weather has on the radar data itself. For this
purpose some measurements were collected with a commercial FMCW radar. The commer-
cial radar has a fixed amount of parameters available for each detected target. All of the
measurements were done using the fixed radar scene with set of stationary targets on the
roof of the EEMCS building in different weather conditions. The goal was to see the effect
of varying weather conditions, especially the presence of precipitation and fog, on the radar
data.

3.1. Description of radar
To better understand the way vectorised radar data could be used to assess the influence of
weather on the sensor data we first need to analyse what data are available at the output
radar interface.

All available data were collected using a Continental ARS-309 radar [9] [10] . This is a
Frequency Modulated Continuous Wave (FMCW) based radar with an operating frequency
between 76 and 77 GHz. The operating frequency is automatically chosen by the radar. The
amount of samples outputted by the radar is between 14 and 16 per second.

Figure 3.1: Continental radar with two different beams, Figure taken from [10]

It has two radar beams that have very different performances, which makes it difficult to
compare the beams directly. The main differences are reproduced in Table 3.1. The mea-

11
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Near field radar beam Far field radar beam
Distance range 0.25...60m 0.25...200m
Distance resolution 2m or >5.5 km/h
Distance accuracy 0.25m or 1.5 @>1m
Angle resolution 4∘close-up range 1∘far field
Angle accuracy 1...2∘close-up range 0.1∘far field

Table 3.1: Continental radar beam performance

surements with the radar haven been taken in a so called stand-still mode. When the radar
detects that it is standing still (not moving), it lowers the maximum detection range for near
and far field radar beams to 25 and 50 meters, respectively. This was the case in all of the
collected measurements.

Variable Unit
Number of targets -
Distance (range) m
Angle (azimuth) ∘

Radar Cross Section 𝜎 dBsm2
Length of target m
Width of target m
Relative velocity 𝑉፫፞፥ m/s
Standard deviation 𝑉፫፞፥ m/s

Table 3.2: Available variables at the output interface of the radar

The radar output consists of only a few variables that are chosen by the manufacturer.
Exactly what signal processing algorithms and operations are done to achieve these results
is unclear as there are no available detail documentation or access to raw radar data. The
list of available at the output interface of the radar variables can be found in table 3.2.

Of note here is that, for stationary targets, the standard deviation of the relative velocity is
always equals to 0.01. This is within the accuracy of the measured velocity, but the radar’s
processing algorithm always assumes that it is moving and that objects are also moving.
This might cause the radar to have more difficulty detecting and tracking stationary targets
(compared to detecting moving objects). The radar has the possibility to track targets through
iterations of sequential scans and to assign a type to them, but for the measurements in this
study has been used only detection mode when radar reported only the list of detected targets
with measured parameters from the table 3.2.

3.2. Measurement description
The dataset was gathered in a setup on the roof of the EEMCS building. Within this setup
the radar measured the antennas and various (mostly metal) objects that are located on the
roof. Some of these objects of opportunity can be seen in Figure 3.2. In total there are 18
usable measurements that have been conducted throughout a period of a one year. While
working on this project, a few updated measurements were added to this database with an
easily identifiable cylindrical reflector that was placed right in front of the radar.

The analysis of the measurements shows that for the same target a variation in the RCS
between the two radar beams (near-field and far-field) can be up to 5 dBsm2. The same can
be said for the angle as there can be a variation of up to 5 degrees for an extended target.
However, there is no such variation observed for the range of the target variable. The spread
in observed angles is always larger than the spread in observed range. This is most likely
due to the way that extended targets are being processed over multiple 2D range-azimuth
angle resolution bins. The accuracy of both near- and far-field radar beams are different and
this causes some targets to be assigned to different radar 2D resolution bins. All of these
things make it not trivial to make a comparison between radar scene measurements with two
sequential near- and far-field antenna beams.
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Figure 3.2: Objects of opportunities on roof

To overcome this difficulty it was decided to analyse the influence of the precipitation
and for on observed targets parameters for near-field and for far-field beams separately.
It is interesting and important to see from the data analysis that the effect of the rain on
the observed targets parameters can be detected in both beams. All following results are
consistent and can be reproduced for both beams, but only results for the near-field radar
beam will be presented in this thesis.

The measurements on the roof were not supported with simultaneous and co-located
measurements of visibility. To try to quantify the precipitation intensity during the mea-
surements the logs of the weather station that is located on the same roof was consulted.
However, linking the radar measurements with the weather logs show that there were no
measurable rainfalls detected in the weather logs during all cases of radar observations. Ei-
ther the weather logs were inaccurate for the exact situation at the time of the rainfall on the
roof or the rain was mild enough that there was no registered by the weather station rainfall
rate. As result, collected radar data have only qualitative vague weather condition descrip-
tions (like ”fog”, ”light rain”, ”snow”), that describe the situation in which the measurement
was taken. There was however no actual indication of how severe the rain was (other than
”light rain” in some cases).

The datasheet of the radar [10] says that there should be “no impairment of technical
data relevant to functionality during rain up to 10 mm/h or fog.” This is all information that
is included in the datasheet of the radar about the effect that adverse weather conditions
might have. This might be accurate, but it is difficult to verify this statement exactly with
the available datasets as there was no exact pluviometer next to it. It proved very difficult
to distinguish the measurements with the ’light rain’ tag from the ’normal weather’ cases
and this could indicate that the rainfall was less than 10 mm/h and it does not impede the
performance as the datasheet says. It is not specified how the performance of the radar will
be affected by larger rainfall rates so there is no comparison for this.

Weather Amount of measurements
Normal 3
Fog 5
Rain 8
Snow 2

Table 3.3: Categories of available in database measurements

Based upon their tags the measurements have been divided into different weather cate-
gories (see table 3.3).

One of the problems with the measured on the roof dataset is that the setup on the roof
has not always remained the same throughout the long period of measurements. Some of
the antennas have been moved or the radar might have moved, but what exactly happened
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is unknown. This makes it difficult to draw definite conclusions over scans, especially sep-
arated by long time intervals. To clear some things up some new measurements have been
done with the same radar with a different setup. This made it possible to verify the results
with a few new measurements. To ensure this a cylindrical target has been placed in front
of the radar and observed during a few intervals with and without precipitation.

Figure 3.3: Probability of detection ፏᐻ of objects of opportunities on roof

Figure 3.4: Mean RCS of objects of opportunities on roof

Figures 3.3 and 3.4 both show an example of what is seen by both of the beams in one
of the available datasets. This dataset is one where the weather is normal and there are no
weather factors that influence the measured target parameters. This illustrates what type of
data is available.

Figure 3.3 takes all of the detected targets in all of the observed scans and plots where
they are located on the 2D range-azimuth map. It also show with which probability these
detections are seen at specific 2D resolution bins of this map. This might give some insight
in which of these detections might be false alarms and where these occur.

It is unsure how exactly the radar defines a detected target. If an object is reported by the
radar at the radar output interface as detected at a certain range and angle, in this thesis
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we assume that the middle of the object is given and that the object stretches left and right
to half of the reported length. Also that the object stretches towards its detection point plus
the given width. There is no indication of this in the datasheet at all and this is just what
was assumed based on radar basics and common sense.

In some cases there were no reported width and length associated with a detected target
and in those cases there is only one 2D bin with the given range and angle was used to update
the probability of detection. This shows how much variation there is for the detections and
which targets remain fairly constant throughout the measurements.

It is interesting to note here that in this image there are straight forward narrow lines of
detections appearing in the radar visions. These are most likely false detections, however
why these false detections extend into these patterns is not clear from available for analysis
information. It appears to happen in both of the radar beams, but is more visible in the
near-field radar beam. Most likely that this effect has something to do with the resolution of
the radar in azimuth that is lower for the near-field radar beam.

Figure 3.4 presents the mean RCS of all of the detections of all the targets in every 2D
resolution bin. It shows the variability of spatial distribution of the RCS for every observed
during specific measurement target. This might help with the targets associating in the
sequence of scan and measurements, especially in cases when the situation on the roof has
changed between the measurements.

3.3. Data association
The radar output includes a list of detections for every scan. In the detection mode, which
was used for measurements with the radar on the roof of the EEMCS building, there is
no data association between scans. This is what needs to be done to be able to create a
model of the influence of precipitation and other different weather conditions on the observed
characteristics of the cylindrical target (and perhaps other targets).

As soon as both the target and the radar are not moving, a Nearest Neighbour (NN) algo-
rithm has been proposed to be used to cluster the data. Data association for a moving radar
might require more advanced processing.

Detections are associated to the target by looking in a certain grid around the target. The
grid is only specified in location (range and angle). There is no limitation for the target in any
other parameters statistic (like RCS). This means that the possible false detections that have
a wildly different RCS are not taken into account. As result, there might be some outliers
of different target associated falsely in the measurement. To avoid this the period of spatial
grid must not be taken too large. This located grid does not need to be updated between
detections as the object that is studied is standing still.

When there are two possible detections, the one closest to the middle of the grid is chosen.
The other one is thrown away so there is only one detection is taken into consideration on
every cycle. The case of having multiple detections only happens in the near-field radar beam
and this is most likely due to the size of the bins compared to the grid. It is however not the
case that the detections are split into two ’half’ detections. If in the other case no match is
found in the grid it counts towards the not tracked percentage.

3.4. Discussion of results
After the data association the obtained results are visualised in the histograms in this section.
The histograms that have been created show the course of the data over time. All measure-
ments have been divided into N parts of 5 minutes duration. The images were created with
50% overlap to smooth them. All images show the near-field radar beam unless otherwise
specified. If an object is not detected within the grid in a certain iteration the values will
be collected in the rightmost bin of the image to allow every histogram to retain the same
amount of iterations.

The metrics that will be compared are: the distance to the target, the azimuth angle to
the target and the measured RCS of the target.



16 3. Influence of weather on radar statistics

3.4.1. Comparison near- and far-field radar beam

Figure 3.5: RCS of cylinder, near-field beam, heavy rain case Figure 3.6: RCS of cylinder, far-field beam, heavy rain case

The targets are detected differently by the near- and far-field radar beams. To illustrate
that these beams show the same variation, Figures 3.5 and 3.6 present the comparison of
observations with them the same target. These images show the vertical cylindrical target
that was observed in heavy weather conditions. To easily compare the two beams the same
2D grid size has been taken. It causes some issues with the far-field beam as there are
some gaps in gridded data appearing due to the difference in resolution, but the equality
in grids makes it easier to compare data from different beams. Two images show the same
comparable shift in RCS at the same time of the measurement. As it was mentioned before,
there is a difference between the two beams in mean observed RCS. In presented case it is
equals to nearly 4 dBsm2 in mean RCS, but other cases show that it can vary depending on
the type of target.

3.4.2. Weather analysis

Figure 3.7: Distance to cylinder, normal
weather Figure 3.8: Distance to cylinder, light rain Figure 3.9: Distance to cylinder, heavy

rain

The presented here images demonstrate the weather dependence of observed radar pa-
rameters for two different objects. Figures 3.7 until 3.15 shows the known vertical cylindrical
target that was placed in front of the radar, while Figures 3.16 until 3.24 shows an object that
has remained on the roof throughout the whole period of measurements. It is an extended
object with a high RCS.

The cylindrical target is located at at distance of 3.8m and azimuth angle around -4.3 deg.
Its RCS as seen by the near radar is around -8.5 dBsm2. The other target is an extended
structure located at a distance of 14m and and angle around -10.5 deg with a much higher
RCS of around 8 dBsm2.

Looking at these images it can be seen that the deviation in location is very small for
all detections. The object is almost always detected at the same range, especially when the
weather is normal. Only when it starts raining quite heavily a change in the distance to the
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Figure 3.10: Azimuth angle to cylinder,
normal weather

Figure 3.11: Azimuth angle to cylinder,
light rain

Figure 3.12: Azimuth angle to cylinder,
heavy rain

Figure 3.13: RCS of cylinder, normal
weather Figure 3.14: RCS of cylinder, light rain Figure 3.15: RCS of cylinder, heavy rain

target can be observed. For the cylindrical target the object is shifted by 0.3 - 0.5m during
the rainy measurement.

For all characteristics there is a slightly larger spread of values when the weather is severe.
This is not as visible in the distance as the changes here are small, but it is visible for all
other variables.

The most interesting change can be see in Figures 3.15 - 3.24. These are both heavy rain
cases and in both cases a shift in average RCS can be observed. During the measurement
the average RCS of the object increases and the observed change is roughly the same for both
objects. The change is most likely tied to the varying rainfall intensity.

In Figure 3.25 the average RCS of the cylindrical object is compared for all datasets. Here
we see that within the heavy rain measurement the average RCS changes by 0.7 dBsm2
within the measurement. For the normal and light rain case the average RCS remains con-
stant throughout the measurement.

The same trends can be seen in Figure 3.26 were a target with a high RCS was taken.
The increase in RCS that can be seen here is larger: up to nearly 2 dBsm2 within the same
measurement. This gives an indication that the size of the increase is related to the RCS of
the target.

Figure 3.16: Distance to object, normal
case Figure 3.17: Distance to object, light rain Figure 3.18: Distance to object, heavy

rain
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Figure 3.19: Azimuth angle to object,
normal case

Figure 3.20: Azimuth angle to object,
light rain

Figure 3.21: Azimuth angle to object,
heavy rain

Figure 3.22: RCS of object, normal case Figure 3.23: RCS of object, light rain Figure 3.24: RCS of object, heavy rain

Another change between the different weather cases that can be detected, is that for the
light rain case the average RCS is higher than for the dry weather case. This phenomenon is
consistent over all objects. For the cylindrical target this difference is roughly 0.6 dBsm2.

For the higher RCS target this is an average RCS that is nearly 1.5 dBsm2 higher. The
size of this increase does again seem to vary depending with the RCS of the target.

Cause for the RCS increase
What exactly causes these RCS increases? Usually there is an attenuation in RCS due to
propagation through rain that is in the order of a few dB/km [34]. The objects that are
detected on the roof are at most 30m away, so the effect of this should be very low.

What is seen in this data is however not an attenuation in RCS, but an increase. The
increase appears during the measurement when it is raining heavily.

During rain the objects that are target become wet and this could cause the objects to be
better visible to the radar because of the moisture layer on the target that creates a better
reflective surface. Research [23] shows there should not be a change in RCS when comparing
a wet and a dry reflector so this will most likely not the answer.

Looking further at the environment it must be noted that the floor of the roof is made of
concrete. During heavy rain puddles are formed that might produce reflections that cause
this. The radar backscatter increases when the concrete is wet and this could cause the
increase in RCS due to stronger multi-path component of the received signal. This theory
is supported by [13], [19] and [27] where measurements have been done that show that
the backscatter coefficient increases during both different weather events and the state of
underground.

The increase in RCS is linked to the rainfall rate as it changes throughout the measure-
ment. It might also be that it is linked to the wetness of the concrete surface and that
prolonged rain would have the same effect as one heavy rainfall.

3.5. Conclusion
There was a lot of data that needed to be analysed to take a look at what the influence
of adverse weather conditions might be on the radar data. According to the datasheet the
commercial radar should not be impaired in functionality during light rain, but nothing was
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Figure 3.25: Average RCS for the cylinder against the iteration time

said for larger rainfall rates. The radar had two different radar beams that showed the same
trends for objects, but were not easily compared because there was always a shift in where
the target was detected. The data that was gathered had very loose weather labels attached
to the measurement. The measurement that were gathered were of targets in stationary
conditions and therefore a nearest neighbour algorithm was used to cluster the data and
analyse it.

During a rainy event the radar appears to have almost no variation in how the target is
detected in range, a little shift might occur in angle and a large shift in RCS. The data shows
a shift in average RCS of an increase 0.7 dBsm2 within one heavy rain measurement. This
shift is probably caused because of reflections of the wet concrete floor which increases the
backscatter of the radar and thus the RCS of the target, as a result of multi-path propagation.

The variation of the target RCS is slow and thus can be neglected when observing targets
in the operational mode.
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Figure 3.26: Average RCS for high RCS target



4
Estimating of calibration coefficients

In this chapter, the techniques for antenna array calibration in presence and absence of
mutual coupling will be investigated.

These algorithms are analysed in terms of the number of required observation and the
angular sector over which the targets are observed. Application of a moving platform with
sequential estimation of the targets at different range or angular location is also considered.

The distortion that needs to be estimated consists of both a linear amplitude and phase
component that is different for each element. It is described in the complex coupling matrix
𝐶𝐶𝐶 which describes the coupling coefficients for each antenna element. The estimation tries
to find the elements of the calibration matrix T which should in theory perfectly cancel out
the negative effects of the coupling matrix.

It is important to properly calibrate the array as [2] shows that ”coupling causes an error
in the detected angle of the target by as much as 12deg and an increase in the beamformed
response sidelobe level of as much as 8 dB.”

4.1. Estimation algorithm with mutual coupling
This section will expand further on the algorithm [28] on which the two approaches are based.
The example has 𝑀 antenna elements and 𝑃 measurements. The estimation algorithm needs
𝑃 measurements of targets, but not of P targets. Calibration with a moving radar makes it
possible to use multiple measurements of the same target that has moved in the radar’s field
of view. This is likely to happen in the scenario where objects of opportunity are measured.

There are two approaches to estimate these calibration coefficients. In the first approach
the full calibration matrix is estimated, which includes not only amplitude and phase dis-
tortion of every antenna element, but also the coupling coefficient between each couple of
elements.

The second approach estimates only amplitude and phase distortion of every element.
This is a simplification as the calibration matrix is a full matrix, but this improves the speed
and stability of the algorithm.

Both approaches require the angular position of the targets to be known beforehand.
This need to know the locations of the targets limits applicability of these algorithms to radar
calibration in the operational mode.

Both of the approaches work with the same principle. The calibration matrix 𝑇𝑇𝑇 can be
defined as the matrix that shows the difference between the ideal signal matrix 𝑆𝑆𝑆 and the
measurement matrix 𝑋𝑋𝑋 that has been distorted.

𝑇𝑋𝑇𝑋𝑇𝑋 = 𝑆𝑆𝑆 (4.1)

The locations of the targets need to be known for this method as they will be used to
construct the ideal signal matrix 𝑆𝑆𝑆. The mathematical model that is used to construct this
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matrix can be described as this:
𝑆𝑆𝑆 = [𝑠𝑠𝑠ኻ𝑠𝑠𝑠ኼ…𝑠𝑠𝑠ፌ] (4.2)

where every column gives the contribution of one antenna element.
The measurements are gathered in the matrix 𝑋𝑋𝑋 which consists of 𝑃 measurements with

targets at a known angular position 𝜃፭,፩. It is assumed that the angle and the configuration of
the radar array is known beforehand; the range 𝑟 to the target can remain unknown. These
angles are used to create the ideal signal model that will be used in the algorithm.

The measurement matrix 𝑋𝑋𝑋 is corrupted by the coupling matrix 𝐶𝐶𝐶 and noise 𝑁𝑁𝑁:

𝑋𝑋𝑋 = 𝐶𝑆𝐶𝑆𝐶𝑆 +𝑁𝑁𝑁 (4.3)

It consists of 𝑃 measurements of targets:

𝑋𝑋𝑋 = [𝑥𝑥𝑥ኻ𝑥𝑥𝑥ኼ…𝑥𝑥𝑥ፏ] (4.4)

The calibration matrix T can be found with the least squares estimator as:

𝑇𝑇𝑇 = argmin
ፓፓፓ

||𝑆 − 𝑇𝑋𝑆 − 𝑇𝑋𝑆 − 𝑇𝑋||ፅ (4.5)

𝑇𝑇𝑇 = 𝑆𝑋ፇ𝑆𝑋ፇ𝑆𝑋ፇ(𝑋𝑋ፇ𝑋𝑋ፇ𝑋𝑋ፇ)ዅኻ (4.6)

The algorithm uses the least squares approach to estimate the calibration matrix 𝑇𝑇𝑇. In
order to have matrix (𝑋𝑋𝑋𝑋𝑋𝑋ፇ) invertible, the matrix 𝑋𝑋𝑋 should consist of 𝑃 > 𝑀 independent
measurements at different angles [28]. This ensures that the matrix 𝑋𝑋𝑋𝑋𝑋𝑋ፇ is of full rank and
thus will be invertible.

As mentioned earlier the angles 𝜃፭,፩ of the targets need to be known. From these angles
the ideal signal model can be created and they will be based on the relative signal phases 𝜙
between the antenna elements. They can be calculated in this way:

𝜙(𝑚, 𝜃፭,፩) = 2𝜋
𝑐ኺ
𝑓ኺ
𝑦ፑፗ(𝑚)𝑠𝑖𝑛(𝜃፭,፩) (4.7)

where 𝑐ኺ represents the speed of light, 𝑓ኺ the operating sweep start frequency and 𝑦ፑፗ the
positions of the antenna elements.

The ideal signal model 𝑆𝑆𝑆 can then be calculated by relating the relative signal phases to the
signals measured at the first element 𝑚 = 1. These removes the absolute phase component
and leaves only the relative amplitude and phase relations between the elements.

If the first element is used as a reference, we get the ideal signal model:

𝑠 = 𝑥(𝑟, 1)[1𝑒፣Ꭻ(ኼ,᎕ᑥ,ᑡ)…𝑒፣Ꭻ(ፌ,᎕ᑥ,ᑡ)]ፓ (4.8)

In presence of amplitude instabilities between the elements the performance of this algo-
rithm depends a lot on the magnitude of the calibration coefficient of the first element. This
method gives an (in theory) perfect estimation when the distortion consists of only phase
errors. It does not however give a good estimation for when there are also amplitude errors
occurring.

When the first element is a largely distorted channel compared to the other elements, the
algorithm does not give a good estimate. However there are 𝑀 options for channels that can
be chosen as a reference. One way to address this problem is to perform pre-processing to
decide which channel would be best as a reference channel. A similar approach has been
studied in [14].

In Figures 4.1 and 4.2 every of the antenna elements have been taken as a reference
element. This shows that there is a best option for the reference element and that there can
be a rather large gap in performance depending on which reference element is chosen.

The question now is what kind of metric will give a good estimate to determine which
channel to use. This will all depend on the type of amplitude error that is degrading the
performance of the array. For now there are two types of amplitude errors that are considered:
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Figure 4.1: All possible reference elements with degrading
error Figure 4.2: All possible reference elements with centred error

either the amplitude is always degrading or amplitude is centred around the true value. These
are also the options shown in Figure 4.1 and 4.2.

If the amplitude is always degrading it means that every element |𝐶።፣| < 1. In this case the
best channel will be the one that has the maximum mean power of all of them as this will be
the one where the power is closest to the ’true’ value of the amplitude.

To show how the estimation recreates the beam pattern Figure 4.3 and 4.4 show 100
realisations of the recreated antenna pattern. These antenna patterns have been normalised
to their maximum value to be able to compare them. The degradation in this case was chosen
to be normally distributed 𝐶።፣ ∼ 𝒩(0.6, 0.1) so that all values are degrading.

Figure 4.3: Antenna pattern with degrading error at SNR 20
dB

Figure 4.4: Antenna pattern with degrading error at SNR 30
dB

When the amplitude is centred around the true value the best option will either be the
channel closest to the mean or median of the channel. In this case the values 𝐶።፣ are chosen
to be centred around 1 so that 𝐶 ∈ 𝒰[0.5, 1.5].

Both of these metrics actually perform comparably; it depends on the individual case
which one of these will give the better results. These can be found in Figures 4.5 until 4.8.

It will be difficult to predict what type of error will actually be encountered in real mea-
surements as usually not a lot is known about the production error.

Factors influencing the estimation
There are several factors that influence the quality of the estimation: SNR, 𝑀 number of
antenna elements, 𝑃 the number of measurements used and the accuracy of the target’s
angular locations.
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Figure 4.5: Antenna pattern with centred error and mean es-
timator at SNR 20 dB

Figure 4.6: Antenna pattern with centred error and mean es-
timator at SNR 30 dB

Figure 4.7: Antenna pattern with centred error and median
estimator at SNR 20 dB

Figure 4.8: Antenna pattern with centred error and median
estimator at SNR 30 dB

The impact of target SNR on the estimation performance can be seen in the images above.
With higher SNR the antenna pattern will always be closer to the ideal antenna pattern and
there is not much variation between them. The SNR at which a target is picked up and used
for the estimation should not be lower than 15 dB. There will be distortions in the antenna
pattern below this threshold.

Another factor that has an effect is how close the targets are located over the observed
angles. The effect of this is very small, only when they are exactly the same the estimation
will diverge. The target location has larger impact when the SNR of target is low. However
when the SNR ≥ 15 dB this will not pose a problem.

The performance of the estimation depends on the relative number of measurements
(𝑃/𝑀), which implies that calibration of a larger array will require more measurements to
converge.

When the number of antenna elements 𝑀 is higher the number of elements that need to
be estimated is also higher and this negatively affects the estimation. That means that when
the number of antenna elements is higher that the estimation will be worse if none of the
other factors are changed.

For the fixed antenna size, the number of measurements plays a crucial role. The algo-
rithm requires 𝑃 > 𝑀. The accuracy of the estimation improves with increasing 𝑃. This is an
easy way to increase the quality as it is possible to keep on growing the list of measurements
that are used as the radar encounters more targets.

The estimation algorithm needs to know the angles beforehand to be able to construct
the ideal signal model. Figure 4.9 and 4.10 show however that it can operate well with a
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Figure 4.9: Antenna pattern with accurate angle Figure 4.10: Antenna pattern with inaccurate angle

moderate angular errors. In Figure 4.10 the angle is distorted by ∼ 𝒩(0∘, 10∘). This is quite
a large distortion and the distortion of the antenna pattern is not that noticeably larger than
before. This shows that accurate target positioning plays a role in the estimation accuracy,
hence this is not detrimental for the overall calibration performance.

To sum up, calibration with the coupling is sensitive to the number of observed target,
has moderate stability with respect to angular locations of the targets and requires targets
an 𝑆𝑁𝑅 > 15𝑑𝐵 and the number of measurements 𝑃 > 𝑀 to perform reliable calibration.

4.2. Estimation algorithm without mutual coupling
If no mutual coupling is present, the calibration matrix in equation 4.1 is a diagonal matrix
and the estimation procedure can be simplified. Negligible mutual coupling is often assumed
for MIMO arrays due to large spacing between transmitted antennas [4]. This method works
when this is the case and it allows us to divide the problem in smaller parts and calculate
every coefficient separately. In this way the estimation does no longer need full matrices that
need to be inverted. This is a good improvement as this creates a stable solution with less
measurements.

Recall from equation 4.1 the relation between measured signals and ideal signals. Now if
the matrix 𝑇𝑇𝑇 consists of only a diagonal matrix it can be written as:

[𝑡ኻ 0
0 𝑡ኼ] [

𝑥ኻኻ 𝑥ኻኼ 𝑥ኻኽ
𝑥ኼኻ 𝑥ኼኼ 𝑥ኼኽ] = [

𝑠ኻኻ 𝑠ኻኼ 𝑠ኻኽ
𝑠ኼኻ 𝑠ኼኼ 𝑠ኼኽ] (4.9)

Here there are two antenna elements in 𝑇 and no mutual coupling terms between them.
There are three measurements in the matrix. These equations can be taken out of the matrix
because there is no mutual coupling. Taking a look at the equation for the i-th calibration
coefficient gives:

𝑡። [𝑥።ኻ 𝑥።ኼ … 𝑥።፣] = [𝑠።ኻ 𝑠።ኼ … 𝑠።፣] (4.10)

𝑡።𝑥።𝑥።𝑥። = 𝑠።𝑠።𝑠። (4.11)

Solving 4.12 for 𝑡። gives:

𝑡። =
𝑠።𝑥።𝑠።𝑥።𝑠።𝑥።ፇ
𝑥።𝑥።𝑥።𝑥።𝑥።𝑥።ፇ

(4.12)

By doing this it is possible to calculate all of the calibration coefficients separately. Com-
pared to the estimation 4.1, this requires to estimate only M unknown coefficients compared
to 𝑀ኼ of 4.1, which makes this solution more stable in presence of limited number of obser-
vations. This calibration can work with as few observations as one.
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Figure 4.11: Calibration matrix as calculated by measurement with a MIMO radar. Figure taken from [5]

The large disadvantage this method has is that it is not able to work with mutual coupling
factors between the antenna elements. As MIMO radar often uses a virtual array that is
much larger than the actual amount of available arrays the effect of the mutual coupling
is not that severe. This effect can be seen in Figure 4.11. In these figures the calibration
matrix for a MIMO radar is represented and the largest contributions to this matrix are on
the main diagonal. Therefore the method without mutual coupling might be sufficient for
the application, especially when enough steps are taken to shield the antennas as much as
possible [14].

4.3. Moving radar
The estimation algorithms needs 𝑃measurements of targets, but not of 𝑃 targets. This makes
it possible to use multiple measurements of the same target that has moved in the radar’s
field of vision as is described in Figure 4.12.

The reflection of the target will remain roughly the same but the SNR increases when
the target approaches. The SNR increases by a power 𝑅ኾ as is described by the radar range
equation.

Looking at the radar range equation in [30] it relates the relationship between the trans-
mitted and received signal power, gain of both the transmit and receive antennas,

𝑃፫ =
𝑃፭𝜆ኼ𝐺ኼ𝜎
(4𝜋)ኽ𝑅ኾ (4.13)

The radar system is known beforehand and can be viewed as a constant 𝐶ኼኺ in this deriva-
tion. Doing this the radar equation tells us that the received signal can be calculated if the
distance to the target 𝑅, the angle 𝜃 at which the target is located and the radar cross section
𝜎 of the target is known.

𝑃፫ = 𝐶ኼኺ𝑓(𝜃, 𝑅)𝜎 (4.14)

where the radar cross section 𝜎 = |𝛼|ኼ
The function 𝑓(𝜃, 𝑅) consists of the range 𝑅 to the target which decrease the received

signal by a power of four and the 𝜃 comes into this factor by the gain 𝐺. In this case both the
transmit and receive antennas are equivalent so this factor can be represented as 𝐺 = 𝑐𝑜𝑠(𝜃).
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Figure 4.12: Sketch of the situation with two targets

𝑓(𝜃, 𝑅) = 𝑐𝑜𝑠ኼ(𝜃)
𝑅ኾ = 𝐺ኼ(𝜃)

𝑅ኾ (4.15)

If target has constant RCS (Swerling 0), its SNR increase will only depend on the distance
between two measurements. Using this distance the new SNR can be calculated.

𝑆𝑁𝑅 = 𝑃፬
𝑃፧
= 𝜆ኼ𝐺ኼ𝜎
(4𝜋)ኽ𝑅ኾ ∼

1
𝑅ኾ (4.16)

As the range will decrease as a target is moving closer within the range of the radar the SNR
of the target will increase. A higher SNR target will produce a better calibration estimation.

4.4. Conclusion
In this chapter two algorithms for collocated MIMO antenna array have been analysed. The
algorithms uses real measurement data, but requires the angles of the measured targets to
be known beforehand. From these angles an ideal signal model can be created and used to
solve for the calibration coefficients in a least squares sense. The angles should be known
within a few degrees to provide reliable calibration.

The two algorithms are based on the same principle, but the difference between them
is that first one tries to estimate the full calibration matrix with all of its mutual coupling
coefficients and the second one estimates only the diagonal of the calibration matrix. Using
just the diagonal appears to still give a good estimation and it adds stability to the estimation
and requires less observations to obtain a stable solution. It allows us to separate the problem
and look at each antenna element individually. This property will be used to track these
variables in a Kalman filter in one of the following chapters.





5
Phase error distribution

In this chapter the relation between calibration error and beam-pointing error is investigated.
First the normal and complex normal distribution will be defined and then the dependency of
beam-pointing error of linear phased array on the calibration error is studied. The analysis
evaluates for which calibration errors, the approximation [6] is valid and related this to the
distortion of the main beam.

5.1. Complex normal distribution
The measurements are always the subject of noise. In most cases the noise that will be
added can be described by the normal distribution [17]. A random variable 𝑥 with mean 𝜇፱
and variance 𝜎ኼ፱ is normal distributed when the pdf is given by:

𝑝(𝑥) = 1
√2𝜋𝜎ኼ፱

𝑒𝑥𝑝[− 1
2𝜎ኼ፱

(𝑥 − 𝜇፱)ኼ] (5.1)

This can also be written 𝑥 ∼ 𝒩(0, 𝜎ኼ፱ )
Radar signal processing is often performed with the complex signal representation. The

complex random variable �̃� consists of a real 𝑢 and imaginary part 𝑣 that are assumed to be
independent of each other: �̃� = 𝑢 + 𝑗𝑣. The standard definition also assumes that the real
and imaginary parts both are Gaussian distributed so that:

𝑢 ∼ 𝒩(𝜇፮ , 𝜎ኼ፮/2) 𝑣 ∼ 𝒩(𝜇፯ , 𝜎ኼ፯ /2) (5.2)

For the definition of the Complex Gaussian distribution it is assumed that the parts have
the same variance, but not the same mean. The joint distribution of these variables and thus
the complex Gaussian pdf can be described as follows:

𝑝(𝑢, 𝑣) = 1
𝜋𝜎ኼ 𝑒𝑥𝑝 [−

1
𝜎ኼ ((𝑢 − 𝜇፮)

ኼ + (𝑣 − 𝜇፯)ኼ)] (5.3)

This can be simplified by writing �̃� = 𝐸(�̃�) = 𝜇፮ + 𝑗𝜇፯. The complex Gaussian pdf can then
be simplified in this way:

𝑝(�̃�) = 1
𝜋𝜎ኼ 𝑒𝑥𝑝[−

1
𝜎ኼ |�̃� − �̃�|

ኼ] (5.4)

5.2. Phase error distribution
These transformation will be useful for the stability of the algorithm in the next chapter. In
total there are two transformations which are used to achieve this:

𝜎ኼፑ/ፈ ⟶ 𝜎ኼᎥ ⟶ 𝜎ኼᎫ̂ (5.5)

29
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Instead of describing the complex random variable �̃� through its real and imaginary parts
it can also be described through its magnitude and phase components �̃� = 𝑢 + 𝑗𝑣 = 𝑅𝑒፣Ꭵ.
First, we need relate the variance of the real part 𝜎ኼ፮ to the variance of its phase equivalent
𝜎ኼᎥ. According to [33], for high SNR the pdf of the phase can be described as:

𝑊(𝜃) = 𝑎
√2𝜋

𝑒ዅ
Ꮃ
Ꮄፚ

Ꮄ᎕Ꮄ (5.6)

This is a Gaussian distribution and 𝑎 is defined as:

𝑎 = 𝐴
𝜎ፑ

(5.7)

Here A is the term for the SNR of the target while 𝜎ፑ represents the standard deviation of
the real part of the random variable.

Turns out that there is actually a linear relation between the phase part and the real part
in terms of variance.

Figure 5.1: Estimation compared to simulated standard deviation

How well this estimation performs can be found in Figure 5.1 and 5.2, where it is assumed
that A=1 (the average calibration coefficient on each antenna element). The estimation works
near perfect for the low variances and starts to diverge for when the variance is over 0.4. This
is the variance of one part of the random variable.

5.3. Beam-pointing error analysis
The paper [6] relates the beam pointing error to the phase distribution that was acquired
above. The beam pointing error is the error that describes the error induces to target angle
estimation by non-perfect array calibration. It has been shown in [6] that amplitude errors
for the first order do not affect the beam pointing accuracy.

It also assumes that the beam-pointing error is just a small fraction of the beamwidth.
The beamwidth of a MIMO system with 𝑀 = 8 elements has a beamwidth of roughly 0.89∗2/𝑀
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Figure 5.2: Estimation of variance compared to simulated variance

which is approximately 0.22 for the full beam and half of that 0.11 to compare it to the shift
in angle.

The beampointing error is related to the phase error by the following expression:

Δ𝜃፫፦፬ =
23ኻ/ኼ𝜎Ꭵ

𝑘𝑑𝑐𝑜𝑠𝜃ኺ𝐹ኻ/ኼ
(5.8)

Here 𝑘 = 2𝜋/𝜆 stands for the wavenumber, 𝑑 the distance between the antenna elements
and 𝜃ኺ the direction in which the beam is pointed. For a linear array:

𝐹 = (𝑀 − 1)𝑀(𝑀 + 1) (5.9)
and F can be approximated to 𝑀ኽ/ኼ for a large array. It can be seen that approximation

already holds for 𝑀 = 8 elements:

√((𝑀 − 1)𝑀(𝑀 + 1))
𝑀ኽ/ኼ = 0.9922 (5.10)

In theory there should be a difference of less than 1% between this approximation and
the real elements, even for only 8 antenna elements. This will be more accurate for an array
with more elements.

Taking this approximation and assuming that the phase errors are normally distributed
with a small variance, gives the general equation to one for a linear array:

Δ𝜃፫፦፬ =
2(3)ኻ/ኼ𝜎Ꭵ

𝑘𝑑𝑐𝑜𝑠𝜃ኺ(𝑀 − 1)ኽ/ኼ
(5.11)

The application of this linear relation 5.3 needs two questions to be addressed:

• How accurate this approximation is

• Up to which phase (or complex magnitude) error it is applicable

These questions are investigated through numerical simulations.
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Numerical simulations
To be able to compare this approximation to simulated values it is necessary to find how
large the shift is that is introduced when there are phase errors in the calibration coefficients.
This shift can be found by finding the peak of the ideal antenna pattern and comparing it to
the peak of the distorted pattern. To avoid discretisation of the beam-pointing error by the
angular sampling, this shift is found using interpolation.

It is possible to find the maximum of the function by taking its largest sample and the two
adjacent ones and interpolating the space between the grid point with a parabola. This is
a lot less computationally expensive than taking a large Fourier transform and will usually
produce an estimation with a better resolution that can usually only be achieved by taking
a larger Fourier transform.

Figure 5.3: Interpolation of DFT variables; Figure from [16]

This technique uses only three samples: 𝑋፤, 𝑋፤ዅኻ and 𝑋፤ዄኻ: peak sample and the adjacent
ones (the technique also works with some oversampling involved).

The paper in [16] proposes several solutions, but the expression that was chosen has no
statistical bias and a good accuracy when the data is unwindowed. The expressions uses the
complex DFT values rather than the magnitude as follows:

𝛿 = −𝑅𝑒 [ 𝑋፤ዄኻ − 𝑋፤ዅኻ
2𝑋፤ − 𝑋፤ዅኻ − 𝑋፤ዄኻ

] (5.12)

5.4. Combined analytical expression
Combining equations 5.2 and 5.3 gives us an expression that links the variance of the real
and imaginary part to the variance of the phase error:

𝜎ኼᎫ =
2(3)ኻ/ኼ𝜎ኼፑ

𝑘𝑑𝑐𝑜𝑠𝜃ኺ(𝑀 − 1)ኽ/ኼ
(5.13)

In Figure 5.4 it can be seen that the estimation of the variance from [6] for just 8 antenna
elements has a similar shape to the simulated variance. However the estimation varies more
than the 1% that was predicted by the paper that describes the estimation.

The estimation works fine up to a point, but it diverges quickly for larger variances. This
would mean that the estimation is valid for standard deviation of the real part of 𝜎ፑ ≤ 0.7;
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which is equal to a variance 𝜎ኼፑ ≤ 0.5. It implies that equation 5.4 can be used to predict the
beam-pointing error only when 𝜎ፑ < 0.7.

When the variance is larger than the cut off point this will show in a distortion of the
main lobe and its location. This needs to be avoided and that is why it is important to stay
in the operating region where the estimation overlaps with the simulated variance. It would
be safe to assume that after the initial calibration in the garage that the radar should be in
the operating region on the left of the cutoff point where there is no distortion in the main
beam. The radar can then continue on from this point and start calibrating from the current
estimation.

Larger number of antenna elements
Now going back the paper [6] mentions that the equation is only valid for small variances.
The equation is not as accurate as was predicted, only for very small variances the estimation
is identical to the simulated value. It diverges quickly away from the estimation.

The estimation was made for larger antenna patterns. Comparing Figure 5.5 where 64
antenna elements were simulated to Figure 5.4 where only 8 antenna elements were simu-
lated it can be seen that the estimation performs better and stays valid longer for a larger
amount of antenna elements. However, modern automotive radars have MIMO arrays with
8 - 12 virtual elements and thus it might be better to create a new estimator that could work
better with a small array.

5.5. Conclusion
This chapter shows that it is possible to relate the variance of the real part of a complex
variable to the phase of the same complex variable directly. The phase variance can be
estimated to the beam pointing error; the error that describes how large the shift is in location
of the peak of the main beam. The estimation is only valid for small variances in phase errors
and for a large number of antenna elements. Finding the peak of the main beam is done by
looking at the antenna pattern and to avoid a large computation there will be a fast and
unbiased interpolation to find the location of the peak.

The analytical expression and the cutoff point can be used to make the decision about the
array permanence: for small calibration error, the beam-pointing can be assumed Gaussian,
while for large calibration error, the main beam is distorted and has non-liner dependency
on the calibration error.
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Figure 5.4: Estimation of std Ꭻ versus simulated standard deviation

Figure 5.5: Estimation of larger number of antenna elements



6
Joint SLAM and calibration

This chapter will introduce the concepts of SLAM and the Extended Kalman Filter as they
are described in literature and go into how this is usually applied for robotics. It will then
extend from this technical framework and see how this might be used to jointly estimate the
phase array calibration as well.

To perform the radar calibration the method without mutual coupling from chapter 4 will
be included. The calibration techniques requires relative location of the targets and the radar
to be known. In absence of calibration error, this problem is solved with SLAM techniques.

In this chapter, the framework of joint simultaneous localisation, mapping and calibration
is introduced. The EKF SLAM modification for simultaneous calibration is proposed and its
performance is assessed via numerical simulations.

6.1. Theory of SLAM
Simultaneous Localisation And Mapping (SLAM) techniques are useful to keep track of both
the location of the radar and the objects of opportunity (or landmarks) at the same time.
These two problems are linked and it is impossible to solve them independently from each
other. Therefore this is often called a chicken and egg problem. It is technique that is often
used in probabilistic robotics [32] [29] and is described by many papers [12], [3]. This is a
statistical approach where the beliefs about the robot pose are represented as probability
density functions.

The observations of the robot and the robot’s controls are known and from this the robot
tries to estimate the map of the environment and the path that the robot itself is taken. As
the location of the radar and of the landmarks are dependent on each other there will be more
uncertainty added to the system with each timestep. This uncertainty can only be resolved
by an external calibration of one of the locations.

There are two steps that need to be taken to update both the radar’s location and the
environment. During the prediction step the radar tries to estimate it’s predicted next location
through his patter of predicted motion. In this step the uncertainty increases as the radar can
only estimate where it will go. The predicted location is based on the previous measurement
and radar pose and the control inputs. The uncertainty perpendicular to the movement
grows much faster than in the direction of movement. This stems from the integration of the
uncertainty about the radar’s orientation.

The second step is the measurement or correction step, because the radar’s location is
updated after this step. The correction is based on the measurements it has received in this
timestep. The radar uses the information from the landmarks in its environment to verify the
location it has predicted in the previous step. The radar uses the information from the target
landmarks in range to shrink the uncertainty that it has about its own predicted position.

The EKF allows for the transitions to be nonlinear functions. It linearises the nonlinear
function around the estimate of the current mean and covariance of the system. That means

35
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that the system is only viable in this linearisation point and this point needs to be recalculated
at every timestep.

6.1.1. Probabilistic model for SLAM
The probabilistic model of standard SLAM problem (e.g. [12]) can be described in the following
way.

The pdf that needs to be computed at every timestep 𝑡 describes the joint distribution of
all of the variables in the following way:

𝑃(𝑥𝑥𝑥፭ ,𝑚𝑚𝑚|𝑍𝑍𝑍ኺ∶፭ ,𝑈𝑈𝑈ኺ∶፭ , 𝑥𝑥𝑥ኺ) (6.1)

Here 𝑍𝑍𝑍ኺ∶፭ is the set of all measurements, 𝑈𝑈𝑈ኺ∶፭ all the control inputs to the radar that are
used for prediction of its movement and 𝑥𝑥𝑥ኺ which is the initial position of the radar. These are
all used to create the joint distribution of the current observation 𝑥𝑥𝑥፭ and set of all landmarks
𝑚𝑚𝑚.

This means that the calibrationmatrix that needs to be estimated is just a diagonal matrix.
There are 𝑀 antenna elements and thus as many calibration coefficients to be estimated.
In presence of calibration error, the observed data depends on the relative positions of the
landmarks and the radar, as well as the calibration coefficients.

Observation model
𝑃(𝑧𝑧𝑧፭|𝑥𝑥𝑥፭ ,𝑚𝑚𝑚) (6.2)

Motion model
𝑃(𝑥𝑥𝑥፭|𝑥𝑥𝑥፭ዅኻ, 𝑢𝑢𝑢፭) (6.3)

Given probabilities 6.3.1 and 6.3.1, the joint probability 6.3.1 can be computed in a
standard two-step recursive (sequential) prediction (time-update) correction (measurement-
update) form

Prediction step

𝑃(𝑥𝑥𝑥፭ ,𝑚𝑚𝑚|𝑍𝑍𝑍ኺ∶፭ዅኻ,𝑈𝑈𝑈ኺ∶፭ , 𝑥𝑥𝑥ኺ) = ∫𝑃(𝑥𝑥𝑥፭|𝑥𝑥𝑥፭ዅኻ, 𝑢𝑢𝑢፭)𝑥𝑃(𝑥𝑥𝑥፭ዅኻ,𝑚𝑚𝑚|𝑍𝑍𝑍ኺ∶፭ዅኻ,𝑈𝑈𝑈ኺ∶፭ዅኻ, 𝑥𝑥𝑥ኺ)𝑑𝑥𝑥𝑥፭ዅኻ (6.4)

Correction step

𝑃(𝑥𝑥𝑥፭ ,𝑚𝑚𝑚|𝑍𝑍𝑍ኺ∶፭ ,𝑈𝑈𝑈ኺ∶፭ , 𝑥𝑥𝑥ኺ) =
𝑃(𝑧𝑧𝑧፭|𝑥𝑥𝑥፭ ,𝑚𝑚𝑚, 𝑃(𝑥𝑥𝑥፭ ,𝑚𝑚𝑚|𝑍𝑍𝑍ኺ∶፭ዅኻ,𝑈𝑈𝑈ኺ∶፭ , 𝑥𝑥𝑥ኺ)

𝑃(𝑧𝑧𝑧፭|𝑍𝑍𝑍ኺ∶፭ዅኻ,𝑈𝑈𝑈ኺ∶፭)
(6.5)

6.2. Theory of Extended Kalman Filter
There are several ways in which this SLAM problem can be solved. In our case the algorithm
that was chosen to solve the SLAM problem is the Extended Kalman Filter (EKF); the non-
linear version of the Kalman filter [32]. The Kalman filter uses all previous measurements to
estimate the next step of the system. All probability functions that are used to update the
car’s configuration are assumed to be Gaussian in the Kalman filter. This is appropriate in
our case as all of the relevant factors are assumed to follow Gaussian distributions.

According to chapter 13 of [17] the extended Kalman filter can be used when the state
equation and or observation equation is nonlinear. It linearises the system around a lineari-
sation point in the system and then applies a Kalman filter. This makes it so that the system
is only valid in this linearisation point. When the radar moves the system will need to be
relinearised around the new radar pose. This makes it an iterative process.

The update equations for both the state and observation equations of the EKF are de-
scribed in the book of Kay [17] as such:

𝑠𝑠𝑠[𝑛] = 𝑎𝑎𝑎(𝑠𝑠𝑠[𝑛 − 1]) +𝐵𝑢𝐵𝑢𝐵𝑢[𝑛] (6.6)
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𝑥𝑥𝑥[𝑛] = ℎℎℎ(𝑠𝑠𝑠[𝑛 − 1]) +𝑤𝑤𝑤[𝑛] (6.7)

Here 𝑠𝑠𝑠 is the vector which describes the state equations of size 𝑝𝑥1 and where 𝑥 is the
vector which describes the measurement or observations equations. Looking at the sizes of
the parts it can be seen that 𝑎𝑎𝑎 is a 𝑝-dimensional and time-varying function and 𝐵𝐵𝐵 is a known
𝑝 × 𝑟 matrix. The vector 𝑢𝑢𝑢 accounts for things like modelling errors and unforeseen inputs.
It consists of zero mean white Gaussian noise with covariance matrix 𝑄𝑄𝑄. In the observation
equation ℎ is an 𝑀-dimensional function and 𝑤𝑤𝑤 is the observation noise which consists of
zero mean Gaussian noise with a variance of 𝜎ኼ፧. The matrices 𝐴𝐴𝐴 and 𝐻𝐻𝐻 are the Jacobians of
𝑎𝑎𝑎 and ℎ.ℎ.ℎ.

Both the state equation and the observation equations are nonlinear and therefore it is
necessary to linearise both the 𝑎𝑎𝑎 and ℎℎℎ functions through using a first-order Taylor expansion.
What is different from the normal Kalman filter equations is that the matrix 𝐴𝐴𝐴 is now time-
varying and both equations have known terms added to them.

Prediction:
�̂̂��̂�𝑠[𝑛|𝑛 − 1] = 𝑎𝑎𝑎(�̂̂��̂�𝑠[𝑛 − 1|𝑛 − 1]) (6.8)

Minimum prediction MSE matrix 𝑝 × 𝑝:

𝑀𝑀𝑀[𝑛|𝑛 − 1] = 𝐴𝐴𝐴[𝑛 − 1]𝑀𝑀𝑀[𝑛 − 1|𝑛 − 1]𝐴𝐴𝐴ፓ[𝑛 − 1] +𝐵𝑄𝐵𝐵𝑄𝐵𝐵𝑄𝐵ፓ (6.9)

Kalman Gain matrix 𝑝𝑥𝑀:

𝐾𝐾𝐾[𝑛] = 𝑀𝑀𝑀[𝑛|𝑛 − 1]𝐻𝐻𝐻ፓ[𝑛](𝐶𝐶𝐶[𝑛] +𝐻𝐻𝐻[𝑛]𝑀𝑀𝑀[𝑛|𝑛 − 1]𝐻𝐻𝐻ፓ)ዅኻ (6.10)

Correction:
�̂̂��̂�𝑠[𝑛|𝑛] = �̂̂��̂�𝑠[𝑛|𝑛 − 1] +𝐾𝐾𝐾[𝑛](𝑥𝑥𝑥[𝑛] − ℎℎℎ(�̂̂��̂�𝑠[𝑛|𝑛 − 1])) (6.11)

Minimum MSE matrix 𝑝𝑥𝑝:

𝑀𝑀𝑀[𝑛|𝑛] = (𝐼𝐼𝐼 −𝐾𝐾𝐾[𝑛]𝐻𝐻𝐻[𝑛])𝑀𝑀𝑀[𝑛|𝑛 − 1] (6.12)

where the 𝐴𝐴𝐴[𝑛 − 1] and 𝐻𝐻𝐻[𝑛] can be linearised through the Taylor expansion:

𝐴𝐴𝐴[𝑛 − 1] = 𝜕𝑎𝑎𝑎
𝜕𝑠𝑠𝑠[𝑛 − 1]|፬፬፬[፧ዅኻ]፬̂̂፬̂፬[፧ዅኻ|፧ዅኻ]

(6.13)

𝐻𝐻𝐻[𝑛] = 𝜕ℎℎℎ
𝜕𝑠𝑠𝑠[𝑛] |፬፬፬[፧]፬̂̂፬̂፬[፧|፧ዅኻ]

(6.14)

The performance of the filter will rely on the accuracy of the linearisation. It is not possible
to determine the performance beforehand as it is a dynamic estimation and there is a lot of
unpredictability.

6.3. Including calibration estimation in EKF-SLAM
This section will include the modification of the EKF SLAM for radar calibration. Starting
out with the probabilistic model and then moving on to some necessary modifications for the
algorithm.

6.3.1. Probabilistic model used for joint calibration and SLAM
The probabilistic model of standard SLAM problem (e.g. [12]) has to be modified in presence
of calibration error, which directly affect the measurement model.

The pdf that needs to be computed at every timestep 𝑡 describes the joint distribution of
all of the variables in the following way:

𝑃(𝑥𝑥𝑥፭ ,𝑚𝑚𝑚,𝛾𝛾𝛾|𝑍𝑍𝑍ኺ∶፭ ,𝑈𝑈𝑈ኺ∶፭ , 𝑥𝑥𝑥ኺ) (6.15)
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Here 𝑍𝑍𝑍ኺ∶፭ is the set of all measurements, 𝑈𝑈𝑈ኺ∶፭ all the control inputs to the radar that are
used for prediction of its movement and 𝑥𝑥𝑥ኺ which is the initial position of the radar. These
are all used to create the joint distribution of the current observation 𝑥𝑥𝑥፭, set of all landmarks
𝑚𝑚𝑚 and set of all calibration coefficients 𝛾𝛾𝛾.

This means that the calibrationmatrix that needs to be estimated is just a diagonal matrix.
There are 𝑀 antenna elements and thus as many calibration coefficients to be estimated.
In presence of calibration error, the observed data depends on the relative positions of the
landmarks and the radar, as well as the calibration coefficients.

Observation model
𝑃(𝑧𝑧𝑧፭|𝑥𝑥𝑥፭ ,𝑚𝑚𝑚,𝛾𝛾𝛾) (6.16)

Motion model is similar to conventional SLAM problem

𝑃(𝑥𝑥𝑥፭|𝑥𝑥𝑥፭ዅኻ, 𝑢𝑢𝑢፭) (6.17)

Given probabilities 6.3.1 and 6.3.1, the joint probability 6.3.1 can be computed in a
standard two-step recursive (sequential) prediction (time-update) correction (measurement-
update) form

Prediction step

𝑃(𝑥𝑥𝑥፭ ,𝑚𝑚𝑚,𝛾𝛾𝛾|𝑍𝑍𝑍ኺ∶፭ዅኻ,𝑈𝑈𝑈ኺ∶፭ , 𝑥𝑥𝑥ኺ) = ∫𝑃(𝑥𝑥𝑥፭|𝑥𝑥𝑥፭ዅኻ, 𝑢𝑢𝑢፭)𝑥𝑃(𝑥𝑥𝑥፭ዅኻ,𝑚𝑚𝑚,𝛾𝛾𝛾|𝑍𝑍𝑍ኺ∶፭ዅኻ,𝑈𝑈𝑈ኺ∶፭ዅኻ, 𝑥𝑥𝑥ኺ)𝑑𝑥𝑥𝑥፭ዅኻ (6.18)

Correction step

𝑃(𝑥𝑥𝑥፭ ,𝑚𝑚𝑚,𝛾𝛾𝛾|𝑍𝑍𝑍ኺ∶፭ ,𝑈𝑈𝑈ኺ∶፭ , 𝑥𝑥𝑥ኺ) =
𝑃(𝑧𝑧𝑧፭|𝑥𝑥𝑥፭ ,𝑚𝑚𝑚,𝛾𝛾𝛾)𝑃(𝑥𝑥𝑥፭ ,𝑚𝑚𝑚,𝛾𝛾𝛾|𝑍𝑍𝑍ኺ∶፭ዅኻ,𝑈𝑈𝑈ኺ∶፭ , 𝑥𝑥𝑥ኺ)

𝑃(𝑧𝑧𝑧፭|𝑍𝑍𝑍ኺ∶፭ዅኻ,𝑈𝑈𝑈ኺ∶፭)
(6.19)

6.3.2. Necessary modifications
Now this theory will be used in an implementation for the Extended Kalman Filter that tracks
both the calibration coefficients and the SLAM localisation. It is not possible to directly
estimate the calibration coefficients as there are a few problems that prevent from doing this.

The Extended Kalman filter assumes all values have an error that can be represented with
a Gaussian distribution. However when estimating complex values the noise can only be
represented by a complex Gaussian distribution. The simple solution to estimate calibration
coefficient is to introduce two variables to be tracked separately: the real part and imaginary
part of the calibration coefficients. This is a Complex Kalman Filter [11]. This will cause
us to have need for 2𝑀 coefficients to be tracked in the state vector. The real and complex
components now have noise parts that can be represented with just a Gaussian distribution.

The second problem that there is is that in our case the measurement data for the estima-
tion for the calibration coefficients will depend on the calibration coefficients themselves. This
makes it so that the measurement depends on the measurement and the standard Kalman
filter does not account for this. The way to overcome this limitation is to perform relative
calibration as in (see chapter 4) by assuming the reference element to be calibrated. Without
loss of generality consider the 0-th element the reference, thus its calibration coefficient is
always 1. This is why this does not need to be tracked in the state vector and only 2(𝑀 − 1)
values have to be dynamically estimated.

In the conventional SLAM, the radar measured the target bearing angles 𝜙 and uses that
in the measurement update. However the data that is gathered for the estimation of the
calibration coefficients also includes the bearing 𝜙:

𝑋፦ = 𝛾፦𝛼𝑒፣ኼ
ᑕ
ᒐ ፬።፧(Ꭻ)፦ , 𝑚 = 1…𝑀 (6.20)

Because the exact dependency of 𝜙 and the calibration coefficients is unknown; it will
be necessary to remove the equation of 𝜙 from the Kalman filter. It will remain important
to estimate this variable in some way and therefore a new way will have to be found to
circumvent this.
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6.4. EKF for joint SLAM and calibration
In robotics the robot’s controls and inputs are known and represented in the matrix 𝑢. In
the radar case this information is usually not available and thus no such estimation can be
made. This is why the variable 𝑣 has been added to the radar pose. It is possible to make
a prediction of the next location of the radar by knowing the radar’s location, velocity and
angle at which is travelling. This will replace the information about the robot controls in the
matrix 𝑢.

1 ∶ Extended Kalman Filter(𝜇𝜇𝜇፭ዅኻ, ΣΣΣ፭ዅኻ, 𝑢𝑢𝑢፭ , 𝑧𝑧𝑧፭)

2 ∶ �̄�𝜇𝜇፭ = 𝑔(𝑢𝑢𝑢፭ , 𝜇𝜇𝜇፭ዅኻ)
3 ∶ Σ̄ΣΣ፭ = 𝐺𝐺𝐺፭ΣΣΣ፭ዅኻ𝐺𝐺𝐺ፓ፭ +𝑅𝑅𝑅፭

4 ∶ 𝐾𝐾𝐾፭ = ΣΣΣ፭𝐻𝐻𝐻ፓ፭ (𝐻𝐻𝐻፭ ̄ΣΣΣ፭𝐻𝐻𝐻ፓ፭ +𝑄𝑄𝑄፭)ዅኻ
5 ∶ 𝜇𝜇𝜇፭ = �̄�𝜇𝜇፭ +𝐾𝐾𝐾፭(𝑧𝑧𝑧፭ − ℎ(�̄�𝜇𝜇፭))
6 ∶ ΣΣΣ፭ = (𝐼𝐼𝐼 −𝐾𝐾𝐾፭𝐻𝐻𝐻፭) ̄ΣΣΣ፭

7 ∶ 𝑟𝑒𝑡𝑢𝑟𝑛𝜇𝜇𝜇፭ , ΣΣΣ፭

Where the state vector 𝜇𝜇𝜇 and covariance matrix ΣΣΣ are updated every iteration. Here 𝑢𝑢𝑢 and
𝑧𝑧𝑧 are the process and observation noise which are assumed to be Gaussian distributed with
zero mean and covariance 𝑄𝑄𝑄 and 𝑅𝑅𝑅. The variable 𝐾𝐾𝐾 is the Kalman gain and 𝐺𝐺𝐺 and 𝐻𝐻𝐻 are the
Jacobians of 𝑔 and ℎ; the nonlinear transition functions.

Here the algorithm is divided into two steps:

• Prediction step: line 2-3

• Correction step: line 4-6

These steps will be explained in the following sections.

6.4.1. State vector
The state vector 𝜇 consists of all variables that are estimated in the Kalman filter.

The first values of the state vector consists of the radar pose. This is described by four
variables: [𝑥𝑦𝑣𝜃]ፓ. That is the location of the radar in 2D Cartesian coordinates (𝑥, 𝑦), the
radial velocity of the radar 𝑣፫ and the angle 𝜃 between the radar and the direction in which
the radar is driving. As an illustration there is Figure 6.1 which describes the geometry.

There are also 𝑀−1 real antenna calibration coefficients 𝛾ፑ and 𝑀−1 imaginary antenna
calibration coefficients 𝛾ፈ to be estimated and the 2𝑁 other variables represent the landmark
locations [𝑥፧𝑦፧]. For now data association is assumed to be resolved. That means that it
is known beforehand which measurement belongs to which landmark and the number of
landmarks is also known beforehand. The state vector always has a fixed length because of
this. The total length of the state vector is of length 4 + 2(𝑀 − 1) + 2𝑁.
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Figure 6.1: Illustration of used variables

𝜇[𝑡] =
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⎥
⎥
⎦

(6.21)

The covariance matrix Σ corresponding to the state vector is of size (4+2(𝑀−1)+2𝑁)𝑥(4+
2(𝑀 − 1) + 2𝑁). When there are for example eight antenna coefficients and ten landmarks to
be estimated the state vector will be of length 38.

If the data association is not resolved and the number of landmarks are not known before-
hand the state vector will be of unknown length. It is then possible to grow the state vector
by extending it when a measurement from a new landmark is found.

6.4.2. Prediction step
In this step a prediction will be made and it will predict the next pose of the radar. The radar
will move using the motion model g which is a constant velocity model.
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𝑔 =
⎡
⎢
⎢
⎣

𝑥 + 𝑣𝑇𝑐𝑜𝑠(𝜃)
𝑦 + 𝑣𝑇𝑠𝑖𝑛(𝜃)

𝑣
𝜃

⎤
⎥
⎥
⎦

(6.22)

From the motion model it is possible to find the Jacobian 𝐺𝐺𝐺 of the motion model that
will be needed to update the covariance matrix ΣΣΣ. The Jacobian can be found by taking the
first-order partial derivatives of all of the included variables:

𝐺𝐺𝐺ኻዅኾ =
⎡
⎢
⎢
⎢
⎣

Ꭷ፠Ꮃ
Ꭷ፱

Ꭷ፠Ꮃ
Ꭷ፲

Ꭷ፠Ꮃ
Ꭷ፯

Ꭷ፠Ꮃ
Ꭷ᎕

Ꭷ፠Ꮄ
Ꭷ፱

Ꭷ፠Ꮄ
Ꭷ፲

Ꭷ፠Ꮄ
Ꭷ፯

Ꭷ፠Ꮄ
Ꭷ᎕

Ꭷ፠Ꮅ
Ꭷ፱

Ꭷ፠Ꮅ
Ꭷ፲

Ꭷ፠Ꮅ
Ꭷ፯

Ꭷ፠Ꮅ
Ꭷ᎕

⎤
⎥
⎥
⎥
⎦

(6.23)

Which results in the motion model:

⎡
⎢
⎢
⎣

𝑥፭
𝑦፭
𝜃፭
𝑣፤

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

1 0 𝑇𝑐𝑜𝑠(𝜃) −𝑣𝑇𝑠𝑖𝑛(𝜃)
0 1 𝑇𝑠𝑖𝑛(𝜃) 𝑣𝑇𝑐𝑜𝑠(𝜃)
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎦

(6.24)

There is no prediction made for the change of the other variables and thus the Jacobian
will just be the identity matrix for these variables. This causes the full Jacobian 𝐺𝐺𝐺 to have
the form:

𝐺 = [𝐺𝐺𝐺ኻዅኾ 0
0 𝐼𝐼𝐼ኼ(ፌዅኻ)ዄኼፍ] (6.25)

6.4.3. Correction step
In this step the prediction that was made is compared to the actual measurements and then
updated in such a way that the smallest error is achieved.

The method for calculating the calibration coefficients 𝛾 were explained in the previous
chapter 4. There are 𝑀 calibration coefficients to be estimated, one for each antenna ele-
ment, but as the data is normalised to the zeroth antenna element; there will be only 𝑀 − 1
coefficients that need to be tracked in the Kalman filter. As the real and imaginary parts of
the coefficients are tracked separately this amount to 2(𝑀 − 1) variables.

Recall from chapter 4 that in absence of coupling the ideal calibration coefficients 𝛾 can
be calculated through this equation:

𝛾፦ =
𝑠𝑥ፇ፫
𝑥፫𝑥ፇ፫

(6.26)

The coefficients are gathered in the matrix Γ = 𝑑𝑖𝑎𝑔(𝛾). This will be just a diagonal matrix
as there are no mutual coupling coefficients.

The data that is gathered for the estimation of the calibration coefficients is:

𝑋፦ = 𝛾፦𝛼𝑒፣ኼ
ᑕ
ᒐ ፬።፧(Ꭻ)፦ , 𝑚 = 0…𝑀 − 1 (6.27)

Here 𝛼 is the variable which relates to the SNR. The distance between the antenna ele-
ments 𝑑 and the operating wavelength 𝜆 = 𝑐/𝑓 and the angle 𝜙 which is the difference between
the direction in which the radar is travelling and the landmark (see Figure 6.1). To reduce the
dependency on the target magnitude, the normalised calibration coefficient is considered:

𝑃፦ =
𝑋፦
𝑋ኺ

= 𝛾፦𝛼𝑒፣ኼ
ᑕ
ᒐ ፬።፧(Ꭻ)፦

𝛾ኺ𝛼𝑒፣ኼ
ᑕ
ᒐ ፬።፧(Ꭻ)ኺ

, 𝑚 = 1…𝑀 − 1 (6.28)

𝑃፦ =
𝑋፦
𝑋ኺ

= 𝛾፦
𝛾ኺ
𝑒፣ኼ

ᑕ
ᒐ ፬።፧(Ꭻ)፦ , 𝑚 = 1…𝑀 − 1 (6.29)
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This shows us that this function has now the following dependencies:

𝑃 = 𝑓(𝑥, 𝑦, 𝜃, 𝛾, 𝑥ፍ , 𝑦ፍ) (6.30)

The equation for the normalised data can be simplified to just 𝑀− 1 terms. Now the data
will be split up in their real and imaginary parts to come to 2(𝑀 − 1) elements that need to
be tracked in the Kalman Filter.

There are several equations that are used to describe the Jacobian of the correction step.
Now some auxiliary variables will be introduced to simplify the derivations:

Difference between current location of the radar and current location of the landmark

𝛿 = [𝛿፱𝛿፲] = [
�̄�፫,፱ − �̄�ፋፌ,፱
�̄�፫,፲ − �̄�ፋፌ,፲] (6.31)

From this the squared Euclidean distance 𝑞 between can be calculated

𝑞 = 𝛿ፓ𝛿 (6.32)

Directly following from this is the range 𝑟 to the target

𝑟 = √𝑞 (6.33)

The radar measures the radial velocity of the target via Doppler processing (assume no
Doppler ambiguities are present). The radial velocity 𝑣፫ which describes the velocity vector
that connects the radar and the current landmark.

𝑣፫ = 𝑣𝑐𝑜𝑠𝜙 (6.34)

This description uses the bearing 𝜙 which is the angle between the direction the radar is
travelling and the location of the landmark:

𝜙 = 𝑎𝑡𝑎𝑛2(𝛿፲ , 𝛿፱) − �̄�ፑ᎕ (6.35)

Observation set
The algorithm looks at each detected target separately and for every target it will be possible
to create a set of variables that describes the current observation. The predicted observation
𝑧 consists of the range 𝑟 to the target, the radial velocity 𝑣፫ and the update to the calibration
coefficients.

𝑧 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑟
𝑣፫
𝑃ፑኻ
⋮

𝑃ፑፌዅኻ
𝑃ፈኻ
⋮

𝑃ፈፌዅኻ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.36)

6.4.4. Jacobian H
All of these factors are used in creating the Jacobian H, which is the matrix used to create
the Kalman gain which will compare the observation 𝑧 and the prediction ℎ(�̄�፭).

The matrix H can be split up into three distinct parts:

• 𝐻𝐻𝐻፩፨፬፞ relating to the position, angle and speed of the radar

• 𝐻𝐻𝐻፠ፚ፦፦ፚ relating to the calibration coefficients

• 𝐻𝐻𝐻፥ፚ፧፝፦ፚ፫፤ relating to the observed landmarks
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𝐻𝐻𝐻 = [𝐻𝐻𝐻፩፨፬፞ 𝐻𝐻𝐻፠ፚ፦፦ፚ 𝐻𝐻𝐻፥ፚ፧፝፦ፚ፫፤] (6.37)

For readability 𝐻፥ፚ፧፝፦ፚ፫፤ is given for just one target. It should be repeated 𝑁 times to
include all landmarks.

𝜓 = 𝑗2𝜋𝑑𝜆 𝑠𝑖𝑛𝜙 (6.38)

𝐻፩፨፬፞ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ꭷ፫
Ꭷ፱

Ꭷ፫
Ꭷ፲

Ꭷ፫
Ꭷ፯

Ꭷ፫
Ꭷ᎕

Ꭷ፯ᑣ
Ꭷ፱

Ꭷ፯ᑣ
Ꭷ፲

Ꭷ፯ᑣ
Ꭷ፯

Ꭷ፯ᑣ
Ꭷ᎕

ᎧፏᑉᎳ
Ꭷ፱

ᎧፏᑉᎳ
Ꭷ፲

ᎧፏᑉᎳ
Ꭷ፯

ᎧፏᑉᎳ
Ꭷ᎕

⋮ ⋮ ⋮ ⋮
ᎧፏᑉᑄᎽᎳ
Ꭷ፱

ᎧፏᑉᑄᎽᎳ
Ꭷ፲

ᎧፏᑉᑄᎽᎳ
Ꭷ፯

ᎧፏᑉᑄᎽᎳ
Ꭷ᎕

ᎧፏᑀᎳ
Ꭷ፱

ᎧፏᑀᎳ
Ꭷ፲

ᎧፏᑀᎳ
Ꭷ፯

ᎧፏᑀᎳ
Ꭷ᎕

⋮ ⋮ ⋮ ⋮
ᎧፏᑀᑄᎽᎳ
Ꭷ፱

ᎧፏᑀᑄᎽᎳ
Ꭷ፲

ᎧፏᑀᑄᎽᎳ
Ꭷ፯

ᎧፏᑀᑄᎽᎳ
Ꭷ᎕

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ዅ√፪᎑ᑩ
፪

ዅ√፪᎑ᑪ
፪ 0 0

᎑ᑪ
፪

ዅ᎑ᑩ
፪ 0 −1

𝛾ፑኻ 𝑒ኻᎥ𝑗2𝜋
፝
᎘1

᎑ᑪ
፪ 𝛾ፑኻ 𝑒ኻᎥ𝑗2𝜋

፝
᎘1

᎑ᑩ
፪ 0 𝛾ፑኻ 𝑒ኻᎥ𝑗2𝜋

፝
᎘1(−1)

⋮ ⋮ ⋮ ⋮
𝛾ፑፌዅኻ𝑒ፌᎥ𝑗2𝜋

፝
᎘ (𝑀 − 1)

᎑ᑪ
፪ 𝛾ፑፌዅኻ𝑒ኻᎥ𝑗2𝜋

፝
᎘ (𝑀 − 1)

᎑ᑩ
፪ 0 𝛾ፑፌዅኻ𝑒(ፌዅኻ)Ꭵ𝑗2𝜋

፝
᎘1(−1)

𝛾ፈኻ𝑒ኻᎥ𝑗2𝜋
፝
᎘1

᎑ᑪ
፪ 𝛾ፈኻ𝑒ኻᎥ𝑗2𝜋

፝
᎘1

᎑ᑩ
፪ 0 𝛾ፈኻ𝑒ኻᎥ𝑗2𝜋

፝
᎘1(−1)

⋮ ⋮ ⋮ ⋮
𝛾ፈፌዅኻ𝑒ፌᎥ𝑗2𝜋

፝
᎘ (𝑀 − 1)

᎑ᑪ
፪ 𝛾ፈፌዅኻ𝑒ኻᎥ𝑗2𝜋

፝
᎘ (𝑀 − 1)

᎑ᑩ
፪ 0 𝛾ፈፌዅኻ𝑒(ፌዅኻ)Ꭵ𝑗2𝜋

፝
᎘1(−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

H፠ፚ፦፦ፚ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ꭷ፫
Ꭷ᎐ᑉᎳ

… Ꭷ፫
Ꭷ᎐ᑉᑄᎽᎳ

Ꭷ፫
Ꭷ᎐ᑀᎳ

… Ꭷ፫
Ꭷ᎐ᑀᑄᎽᎳᎧ፯ᑣ

Ꭷ᎐ᑉᎳ
… Ꭷ፯ᑣ

Ꭷ᎐ᑉᑄᎽᎳ
Ꭷ፯ᑣ
Ꭷ᎐ᑀᎳ

… Ꭷ፯ᑣ
Ꭷ᎐ᑀᑄᎽᎳ

ᎧፏᑉᎳ
Ꭷ᎐ᑉᎳ

… ᎧፏᑉᎳ
Ꭷ᎐ᑉᑄᎽᎳ

ᎧፏᑉᎳ
Ꭷ᎐ᑉᎳ

… ᎧፏᑉᎳ
Ꭷ᎐ᑉᑄᎽᎳ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ᎧፏᑉᑄᎽᎳ
Ꭷ᎐ᑉᎳ

… ᎧፏᑉᑄᎽᎳ
Ꭷ᎐ᑋᑄᎽᎳ

ᎧፏᑉᑄᎽᎳ
Ꭷ᎐ᑀᎳ

… ᎧፏᑉᑄᎽᎳ
Ꭷ᎐ᑀᑄᎽᎳ

ᎧፏᑀᎳ
Ꭷ᎐ᑉᎳ

… ᎧፏᑀᎳ
Ꭷ᎐ᑉᑄᎽᎳ

ᎧፏᑀᎳ
Ꭷ᎐ᑉᎳ

… ᎧፏᑀᎳ
Ꭷ᎐ᑉᑄᎽᎳ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ᎧፏᑀᑄᎽᎳ
Ꭷ᎐ᑉᎳ

… ᎧፏᑀᑄᎽᎳ
Ꭷ᎐ᑉᑄᎽᎳ

ᎧፏᑀᑄᎽᎳ
Ꭷ᎐ᑀᎳ

… ᎧፏᑀᑄᎽᎳ
Ꭷ᎐ᑀᑄᎽᎳ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 … … … … 0
0 … … … … 0

𝑐𝑜𝑠𝜓1 0 0 −𝑠𝑖𝑛𝜓1 0 0
0 ⋱ 0 0 ⋱ 0
0 0 𝑐𝑜𝑠𝜓(𝑀 − 1) 0 0 −𝑠𝑖𝑛𝜓(𝑀 − 1)

𝑠𝑖𝑛𝜓1 0 0 𝑐𝑜𝑠𝜓1 0 0
0 ⋱ 0 0 ⋱ 0
0 0 𝑠𝑖𝑛𝜓(𝑀 − 1) 0 0 𝑐𝑜𝑠𝜓(𝑀 − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

H፥ፚ፧፝፦ፚ፫፤ᑚ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ꭷ፫
Ꭷ፱ᑚ

Ꭷ፫
Ꭷ፲ᑚᎧ፯ᑣ

Ꭷ፱ᑚ
Ꭷ፯ᑣ
Ꭷ፲ᑚ

ᎧፏᑉᎳ
Ꭷ፱ᑚ

ᎧፏᑉᎳ
Ꭷ፲ᑚ

⋮ ⋮
ᎧፏᑉᑄᎽᎳ
Ꭷ፱ᑚ

ᎧፏᑉᑄᎽᎳ
Ꭷ፲ᑚ

ᎧፏᑀᎳ
Ꭷ፱ᑚ

ᎧፏᑀᎳ
Ꭷ፲ᑚ

⋮ ⋮
ᎧፏᑀᑄᎽᎳ
Ꭷ፱ᑚ

ᎧፏᑀᑄᎽᎳ
Ꭷ፲ᑚ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√፪᎑ᑩ
፪

√፪᎑ᑪ
፪

ዅ᎑ᑪ
፪

᎑ᑩ
፪

𝛾ፑኻ 𝑒ኻᎥ𝑗2𝜋
፝
᎘1

ዅ᎑ᑪ
፪ 𝛾ፑኻ 𝑒ኻᎥ𝑗2𝜋

፝
᎘1

᎑ᑩ
፪

⋮ ⋮
𝛾ፑፌዅኻ𝑒ፌᎥ𝑗2𝜋

፝
᎘ (𝑀 − 1)

ዅ᎑ᑪ
፪ 𝛾ፑፌዅኻ𝑒ኻᎥ𝑗2𝜋

፝
᎘ (𝑀 − 1)

᎑ᑩ
፪

𝛾ፑኻ 𝑒ኻᎥ𝑗2𝜋
፝
᎘1

ዅ᎑ᑪ
፪ 𝛾ፑኻ 𝑒ኻᎥ𝑗2𝜋

፝
᎘1

᎑ᑩ
፪

⋮ ⋮
𝛾ፑፌዅኻ𝑒ፌᎥ𝑗2𝜋

፝
᎘ (𝑀 − 1)

ዅ᎑ᑪ
፪ 𝛾ፑፌዅኻ𝑒ኻᎥ𝑗2𝜋

፝
᎘ (𝑀 − 1)

᎑ᑩ
፪

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Combining these matrices gives the transition matrix H which is of size (3+𝑀)𝑥(4+2𝑁+𝑀)
= 11𝑥14 when one target is observed.

The derivations of the matrix H are described in Appendix A.

6.4.5. Problem with implementation for uncalibrated array
This implementation for SLAM will work when the array is properly calibrated.

�̂�ፂፀፋ ∼ 𝒩(𝜙ኺ, 𝜎ኼᎫ) (6.42)

When this is the case the maximum of the antenna pattern will point in the right direction.
However when there is an error in beam-pointing, as was described in chapter 5, it will no
longer be possible to accurately predict the bearing 𝜙. This error occurs when the antenna
pattern is not properly calibrated.

This beam-pointing error causes a problem with this implementation of the Extended
Kalman Filter as now this parameter will not be able to be represented by a Gaussian distri-
bution:
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�̂�ፔፍፂፀፋ ≁ 𝒩(𝜙ኺ, 𝜎ኼᎫ) (6.43)

As was mentioned earlier in the chapter this Gaussian assumption is a requirement for
the Kalman Filter. This equation for 𝜙 is used when initialising a target and this will be
explained in depth in the next section.

6.5. Target initialisation
When the target is observed for the first time, its location should be initialised. If the array
is poorly calibrated at this moment, the wrong initialisation can significantly degrade the
overall SLAM performance.

The bearing 𝜙 that is used during target initialisation can no longer be assumed Gaussian
distributed in all cases. To circumvent this there are multiple equations that can describe
the bearing 𝜙 by using variables that will still be tracked in the filter. The equations will be
used when adding information about a new landmark to the state vector and as an auxiliary
variable when calculating the Jacobian 𝐻𝐻𝐻.

There are two estimators for 𝜙: one based on the (calibrated) antenna pattern and one on
the estimate for Doppler velocity. It will also be possible to combine both into new estimator
that is a weighted combination of both. To implement this estimator it will be necessary to
make an estimate of the variance for both of these estimators.

Figure 6.2: Estimation of variance Ꭻᑒᑟᑥᑖᑟᑟᑒ for different timesteps

6.5.1. Phase array estimation
The first estimator 𝜙ፚ፧፭ is based on the antenna pattern and the current estimate of the
calibration coefficients. The spike of the calibrated antenna pattern should be in the direction
of the main beam.

�̂�ፚ፧፭፞፧፧ፚ = argmax
Ꭻ

(𝑎
𝑎𝑎ፇ𝑃𝑃𝑃፦
𝑎𝑎𝑎𝑎𝑎𝑎ፇ ) (6.44)
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Here 𝑎𝑎𝑎 is the ideal steering vector for every angle 𝜙 of the target and 𝑃፦ is the normalised
calibration data; this time however the normalised first element is of course still used to
recreate the antenna pattern:

𝑃 = [1𝑃ኻ…𝑃ፌዅኻ]ፓ (6.45)

Chapter 5 mentions that in presence of calibration errors the estimator for 𝜙ፚ፧፭ will only
be valid when the variance is in the operating region. It will be best to assign a very large
variance outside the operating region.

�̂�ፚ፧፭ = {
�̂�ፚ፧፭ 𝜎ኼፑ < 𝛼
+∞ 𝜎ኼፑ > 𝛼

(6.46)

Variance phase array estimation
As was discussed in chapter 5 it will be possible to use the estimation that relates the variance
of the real part of a complex random variable to the phase error distribution.

Taking the combined equation from this chapter:

𝜎ኼᎫᑒᑟᑥ =
2(3)ኻ/ኼ𝜎ኼፑ

𝑘𝑑𝑐𝑜𝑠𝜃ኺ(𝑀 − 1)ኽ/ኼ
(6.47)

This estimation can be used only when the variance of the calibration coefficients 𝜎ኼፑ will
be smaller than the cut off point 𝛼. For a larger calibration error, the main beam is distorted
and angular measurements with the array do not bring useful information.

Figure 6.2 shows the estimation of the variance 𝜙ፚ፧፭፞፧፧ፚ at different timesteps in the
algorithm and it is visible that the variance decreases as time goes on.

6.5.2. Doppler beam sharpening
Looking at 𝜙፝፨፩ it is based on the geometry of the current estimation for velocity 𝑣 that will
be given by the radar and Doppler radial velocity 𝑣፫:

𝜙፝፨፩፩፥፞፫ = ±𝑎𝑐𝑜𝑠 (
𝑣፫
𝑣 ) (6.48)

Using this equations brings two problems with it that need to be solved.
Firstly the acos has a range of angles between [0, 𝜋] radian. The problem in this imple-

mentation is that it adds angle ambiguity as there are two angles that give the same result.
So even if the algorithm is capable of determining at which angle the new landmark is located
it cannot determine whether the target will be located on the left or the right side of the radar.

This problem can be be circumvented by using another equation for 𝜙 to solely determine
the sign 𝜔 that the angle should be assigned to when initialising a new target. This equation
is based on the current estimation of the calibration coefficients Γ:

𝜔 = 𝑠𝑖𝑔𝑛(argmax
Ꭻ

ℱ{Γዅኻ𝑃}) (6.49)

This relies on the fact that antenna pattern is able to distinguish between the targets on
the right an on the left, and the targets are stationary. This initialisation will ensure that
the correct side of the radar is chosen very accurately for landmarks that are initialised after
this.

The second problem with the formula for 𝜙፝፨፩ arises when the angle is located close to the
direction of the radar movement. In this case it might happen that the ratio of the estimated
radial velocity 𝑣፫ and the estimated radar velocity 𝑣 is larger than one. The acos again does
not account for this as the results of outputs outside of the range of [−1, 1] will produce an
imaginary result.

This problem will be avoided in two ways: by trying to choose the targets of opportunity
to not appear too close the direction the radar is travelling and by assigning a very large
variance to the estimator 𝜙፝፨፩ when the ratio is larger than one.
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�̂�፝፨፩ = {
�̂�፝፨፩

፯ᑣ
፯ < 1

+∞ ፯ᑣ
፯ > 1

(6.50)

Figure 6.3: Estimation of variance Ꭻᑕᑠᑡᑡᑝᑖᑣ for different timesteps

Variance Doppler beam sharpening
Since 𝜙፝፨፩ is the transformation of the other measured variables - 𝑣፫ and 𝑣 in equation
6.5.2, its variance can be found using the rule of variables transformation [17]. 𝜙፝፨፩፩ can be
expressed as a function 𝑔 of 𝑣፫:

𝜙፝፨፩፩ = 𝑔(𝑣፫) (6.51)

However the book states that ”the efficiency of an estimator is destroyed by a nonlinear
transformation” and as this relation is described by a nonlinear function the estimator will
not be efficient. It is however ”approximately maintained over nonlinear transformations if
the data record is large enough”.

It is possible to find the variance for 𝜙፝፨፩ in this way:

𝜎ኼᎫᑕᑠᑡᑡᑝᑖᑣ ≥
( Ꭷ፠Ꭷ፯ᑣ )

ኼ

−𝐸 [Ꭷ
Ꮄ፥፧፩(፱;Ꭻ)
ᎧᎴᎫᎴ ]

(6.52)

Here the denominator is described as the Fisher information matrix 𝐼(𝜙).
If the velocity of the radar is known explicitly, and CRB of the Doppler measurement is

known this can be found by using the following derivations:

𝜕𝜎ኼᎫᑕᑠᑡᑡᑝᑖᑣ
𝜕𝑣፫

= −1

√1 − (፯ᑣ፯ )
ኼ𝑣ኼ

(6.53)
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Figure 6.4: Estimation of variance Ꭻᑕᑠᑡᑡᑝᑖᑣ with the CRB included

( 𝜕𝑔𝜕𝑣፫
)
ኼ
= 1
𝑣ኼ(1 − (፯ᑣ፯ )

ኼ)
(6.54)

To sum it up the variance can be described in the following way:

𝜎ኼᎫᑕᑠᑡᑡᑝᑖᑣ ≥
𝜎ኼፑ

𝑣ኼ(1 − (፯ᑣ፯ )
ኼ)

(6.55)

Figure 6.3 shows the variance at different time instances. The y-axis is shown on a log-
arithmic scale. The variance decreases as time goes on. In this example the variance is
explicitly chosen small so the algorithm never goes out of the operating region.

In reality, the exact velocity of the radar is unknown, but rather estimated in the SLAM
with the variance 𝜎ኼ፯ . Taking this into account, the accuracy of angular measurements with
Doppler beam-sharpening is:

𝜎ኼᎫ =
𝜕𝑔(𝜙)
𝜕𝜙 𝐼ዅኻ(𝜙)𝜕𝑔(𝜙)

ፓ

𝜕𝜙 (6.56)

𝐼ዅኻ(𝜙) = [𝜎፯ᑣ 0
0 𝜎፯] (6.57)

Jacobian matrix g:

𝜕𝑔
𝜕𝜙 = [

Ꭷ፠Ꮃ
Ꭷ፯ᑣᎧ፠Ꮄ
Ꭷ፯
] (6.58)

𝜕𝑔ኻ
𝜕𝑣፫

= −1

√1 − (፯ᑣ፯ )
ኼ𝑣

(6.59)
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𝜕𝑔ኼ
𝜕𝑣 = 𝑣፫

√1 − (፯ᑣ፯ )
ኼ𝑣ኼ

(6.60)

This allows us to make a combined analytical expression:

𝜎ኼᎫᑕᑠᑡᑡᑝᑖᑣ = ⎛

⎝

−1

√1 − (፯ᑣ፯ )
ኼ𝑣
+ 𝑣፫
√1 − (፯ᑣ፯ )

ኼ𝑣ኼ
⎞

⎠

⎛

⎝

𝜎፯ᑣ
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√1 − (፯ᑣ፯ )
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+ 𝜎፯

𝑣፫
√1 − (፯ᑣ፯ )

ኼ𝑣ኼ
⎞

⎠
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Figure 6.4 shows the estimator for 𝜙፝፨፩፩፥፞፫ together with the CRB. The y-axis of the figure
is shown in logaritmic scale. It can be seen that the estimated variance has a shape similar
to the CRB, but it remains always larger.

6.5.3. Combined estimator
Currently there are two estimators for 𝜙; as both of them have their own advantages and
disadvantages a weighted least squares (WLS) estimator will be used to combine them both
to create a better estimator. The weighted least squares error (WLS) [17] that will be used
can be described as follows:

�̂�ፖፋፒ =

Ꭻ̂ᑕᑠᑡ
Ꮄᒣ̂ᑕᑠᑡ

+ Ꭻ̂ᑒᑟᑥ
Ꮄᒣᑒᑟᑥ

ኻ
Ꮄᒣᑕᑠᑡ

+ ኻ
Ꮄᒣᑒᑟᑥ

(6.62)

To summarise the total estimator for 𝜙 can be used in these cases:

�̂� =
⎧
⎪
⎨
⎪
⎩

�̂�ፚ፧፭፞፧፧ፚ 𝜎ኼፑ < 𝛼,
፯ᑣ
፯ > 1

�̂�ፖፋፒ 𝜎ኼፑ < 𝛼,
፯ᑣ
፯ < 1

�̂�፝፨፩፩፥፞፫ 𝜎ኼፑ > 𝛼,
፯ᑣ
፯ < 1

0 𝜎ኼፑ > 𝛼,
፯ᑣ
፯ > 1

(6.63)

The problem here is that there is one case for which there is no estimator. This case will
be very unlikely as we assume that the radar will be in the operating region (𝜎ኼፑ < 𝛼) when it
is initially calibrated. If this is not the case and a target does appear close to the radar where
፯ᑣ
፯ > 1 it would be best to skip over such a target and wait until the target is detected at a
different angle by the radar.

6.6. Images from algorithm
This section will provide some snapshots that show how the joint SLAM and calibration
works. Table 6.1 describes the variables that were used to create these images.

In the rest of this chapter there are images that show how the algorithm estimates the
calibration coefficients.

In Figure 6.5 the algorithm is initialised. The radar starts at (0,0) and is represented by
the blue circle. The red shape shows at what range the radar detects the landmarks. The
landmarks are shown by black crosses and when a landmark is detected by the radar a
black line is shown towards the prediction. The black circles show where the radar predicts
that the landmark is located. The blue ellipse that is shown represents the uncertainty that
surrounds this landmark.

In Figure 6.6 the antenna pattern is initialised. The first estimated red pattern will start
at the blue distorted pattern. The ideal antenna pattern is given in black. The calibration
coefficients are randomly generated, but are assumed to always be degrading: |𝐶| < 1

In the following Figures 6.7 until 6.18 the algorithm will converge to an estimation for the
calibration pattern that is comparable to the ones given in chapter 4. The algorithm converges
quickly and even a landmark that is not correctly placed will not degrade the pattern that
badly.
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M 8
N 10
f 77 GHz
d 𝜆/2
Radar range 50 m
Radar view [𝜋/3, 𝜋/3]
Velocity v 10 m/s
Refresh rate T 10 Hz
Target SNR 30 dB
Calibration coefficients Degrading 𝐶።፣ ∼ 𝒩(0.6, 0.1)
𝜎፱ 10ዅኾ
𝜎፲ 10ዅኾ
𝜎፯ 0.1
𝜎᎕ 10ዅዀ
𝜎᎐ 0.1
𝜎ፑ 0.15

Table 6.1: Table that includes the variables used in the EKF

Figure 6.5: Initialisation radar map Figure 6.6: Initialisation pattern estimation

Figure 6.7: T=10 radar map Figure 6.8: T=10 pattern estimation

6.6.1. Wrong angle
Figures 6.19 until 6.22 show what the effects of choosing the wrong side for the angle can be.
In the initialisation there are only two landmarks in range and this appears to not have been
enough to make a good decision on whether or not the landmark needs to be initialised on
the left or on the right. The wrong angle was chosen and there are a lot of errors introduced
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Figure 6.9: T=20 radar map Figure 6.10: T=20 pattern estimation

Figure 6.11: T=30 radar map Figure 6.12: T=30 pattern estimation

Figure 6.13: T=40 radar map Figure 6.14: T=40 pattern estimation

in the pattern that will (most likely) not be recovered.

6.7. Verification of the combined estimation
To look at how good the estimation of the calibration coefficients is performing the covariance
matrix Σ will be analysed. The matrix keeps track of the uncertainty of all of the coefficients,
but what is most important in this case is how well the calibration coefficients are performing.
That is why the variance of the coefficients will be an important metric. This is done by
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Figure 6.15: T=50 radar map Figure 6.16: T=50 pattern estimation

Figure 6.17: T=60 radar map Figure 6.18: T=60 pattern estimation

Figure 6.19: Initialisation radar map Figure 6.20: Initialisation pattern estimation

taking the sum of all of the elements on the diagonal matrix that pertain to the calibration
coefficients:

𝜎ኼ᎐ =
1
𝑀𝑡𝑟𝑎𝑐𝑒[Σ᎐] (6.64)

This is the combination of the variances of the real and imaginary parts of the calibration
coefficients, but how these parts can be combined is described in a previous chapter.
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Figure 6.21: T=10 radar map Figure 6.22: T=10 pattern estimation

Now looking at the variance and the number of antenna elements in Figure 6.23 there is a
clear relation. The more antenna elements there are the larger the variance of the calibration
coefficients. This is because the larger the number of antenna elements the larger the number
of coefficients that need to be estimated and the more mistakes can be made in calibration.

Figure 6.23: Variance against number of antenna elements M

It is also possible to look at the effect of the number of targets to the variance in Figure
6.24. For this the number of targets has been varied by lowering the distance between targets
each time; effectively increasing the target density. It is clear the the variance decreases when
the number of targets increases. Using more data will give a better pattern shape, even when
the landmark is estimated in the wrong location.

The algorithm does not converge when we are not in the working region of calibration and
the observed targets are in front of the radar.

6.8. Conclusion
This chapter discusses the implementation of the modification of SLAM to the joint problem
of SLAM + calibration.

It is necessary to track the real and imaginary part of the calibration coefficients separately
in the Kalman filter as the filter assumes that all the distributions that are used are Gaussian.
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Figure 6.24: Variance against number of targets N

The dependency on the absolute target magnitude is solved by normalising the calibration
coefficients first to the first element. This also allows use to skip the estimation of the first
calibration coefficients; lowering the number of elements that need to be tracked in the filter.
The measured angle of the target in the standard slam is substituted with measurements
of the full array response to perform calibration. This was necessary because the equation
for the calibration coefficients depends on the calibration coefficients themselves and this is
another situation that is not described by the Kalman filter.

The biggest problem that was solved relates to the bearing that was removed from the
standard SLAM movement filter. The variable is however still necessary when adding new
landmarks to the filter and thus it needs to be estimated using other variables that are still
tracked in the filter.

The framework that was introduced works for a well calibrated array, but causes problems
with an uncalibrated array. Therefore there are two different equations introduced that can
estimate the bearing. Both of the estimators can be used under different conditions and
they can even be combined into a weighted least squares estimator. To implement this an
estimation was made of the variance of both estimators.

The algorithm needs reasonable estimation of calibration coefficients during the initiali-
sation, otherwise the uncertainty in the calibration can lead to divergence of the whole SLAM
+ localisation. The algorithm has been shown to work when these operating conditions are
met.



7
Conclusion

7.1. Conclusion
The goal of this thesis was to look at several situations and parameters that might influence
the performance of the radar. The study within this thesis project has been divided into two
main topics:

• to study the effects of adverse weather conditions on the statistics of observed radar
targets characteristics

• to use objects of opportunity to estimate the calibration coefficients of a MIMO radar
system

Adverse weather conditions
A statistical analysis was performed on datasets of stationary objects that were loosely divided
into different weather conditions. A distinction was made between three weather conditions:
normal weather, light rain and heavy rain. As the objects were stationary it was sufficient to
use a nearest neighbour algorithm for data association.

There was a large variation to be detected during heavy rainfall within the course of the
measurement. For a cylindrical target there was an increase in average RCS of about 0.7
dBsm2 within one heavy rain measurement. This shift is likely caused because of the location
where the measurements were performed. During heavy rainfall puddles were formed on the
concrete floor that might have increased the backscatter towards the radar and thus the RCS
of the target.

There also was a light difference to be detected within the light rain measurement, but as
the labels were very loose it was difficult to draw definite conclusions from this. Data from
the light rain set either showed: no change at all, or a smaller change than in the heavy
weather case. It was difficult to tell exactly what the difference was between these two cases.

Calibration coefficients estimation
At first two versions of estimation algorithms were introduced: one that estimates the full
calibration matrix and one that estimates just the diagonal elements. They both operate on
the same principle and require the angles of the targets to be known beforehand to create an
ideal signal model. These angles do not need to be very precise to get an adequate estimation
for the calibration coefficients. The algorithm finds the phase errors by finding the difference
between the ideal signal model and real measurement data in a least-squares sense. It relates
to the amplitude through the best performing antenna element.

Estimating the full set of calibration coefficients has the advantage that all mutual cou-
pling terms are taken into account in the estimation, but perhaps this is not necessary for
MIMO radar. Most of the errors are shown to be on the diagonal of the calibration matrix.
Estimating only the diagonal elements is easier and adds stability to the estimation. Such
an estimator also converges faster because it allows us to separate the problem and look at
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each antenna element individually. This is why this algorithm is chosen be tracked in the
Extended Kalman Filter.

The implementation of the Kalman filter shows that it is possible to track the calibration
coefficients while driving. When the method converges it converges pretty quickly. It does not
need a lot of measurements from targets to give a good estimation. This makes it useful for
calibration on the go. The issues with stability have been avoided as much as possible, but
this will still need some work before it will be fully functional. The algorithm is now ready to
be used for radar purposes instead of for the application in robotics that it was mostly used
for.

This was mainly achieved by removing the bearing from the state vector. To be able to do
this it was necessary to make an estimator for the bearing that was related to the variables
that are still being tracked in the algorithm. This was done using a weighted least squares
estimator and it was needed to find an analytical expression that relates the variance of the
real part of a random variable to the beam pointing error. This also gave an insight in the
effect that phase errors have on the system and how the errors are distributed.

7.2. Future research
Adverse weather conditions
It will be important for future research to see if the observed effects were just because of a
one-off scenario or show what can actually be observed in all types of scenarios. It might be
that the observed effects were just because of the scenario on the roof in combination with
the used radar and it would be useful to see if this can be seen other conditions.

If the effect can be seen in other scenarios and if there can be more data collected with
accurate rainfall measurements it will be possible to create a new distribution model that
describes the RCS shift of the target when it is raining. Studying the effect of the reflections
on the detection of the target will improve the reliability of the radar in all weather conditions
and road surfaces. To do this however more accurate rainfall rate data will be needed.

Calibration coefficients estimation
The goal is to constantly monitor how the radar is performing while driving and keep updating
the calibration coefficients changes using objects of opportunity next to the road. The method
that has been presented has shown that this is a possibility and that the proposed algorithm
can be used for this purpose, but there is still room for improvement and for other research.

The initialisation of the calibration coefficients is especially important for the proposed
technique: if the initialisation is entirely random then there is a chance that the algorithm
will not converge to the right coefficients. Therefore it needs to be some kind of previous
estimate of the calibration coefficients to go on. This might just be the estimate that came
from the initial calibration when the radar comes out of the factory or estimations made in
the previous set of measurements.

It might be useful to see how the algorithm performs when the data association is not
perfect. The algorithm does not work well when targets are located too close together and
this is why an imperfect data association might cause some errors.

Right now it is possible to calibrate the radar from objects of opportunity, but the method
is not very robust right now. It is very reliant on the accuracy of the target measurements.
When the deviations in the locations of the landmarks are too large then the the algorithm
will draw the wrong conclusions and will not converge to the right coefficients.

One of the adjustments that still need to be made is to change the initialisation of new
landmarks. Right now the algorithm is told on which side of the radar the landmarks will be
and this is not ideal. To circumvent this it might be feasible to track all options at the same
time and then decide which of the tracks is valid based on a hypothesis decision tree. The
tracks would be assigned a probability and the amount of variance would be a good metric
to see which track will be the right track.

The choice was made to only estimate the diagonal of the calibration matrix. It will be
interesting to see if there is a solution to be found to include the whole calibration matrix
with all mutual coupling coefficients. Perhaps there is a way to be found to track these
coefficients in the Kalman filter or another implementation.
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The next step for the calibration algorithm study can to apply it to real measurement data
and see if it still will be able to perform a good calibration.





A
Equations for Extended Kalman Filter

A.1. Partial derivatives of Jacobian H
A.1.1. r

𝑟 = √𝑞 (A.1)

𝜕𝑟
𝜕𝑥 =

−√𝑞𝛿፱
𝑞 (A.2)

𝜕𝑟
𝜕𝑦 =

−√𝑞𝛿፲
𝑞 (A.3)

𝜕𝑟
𝜕𝑣 = 0 (A.4)

𝜕𝑟
𝜕𝜃 = 0 (A.5)

𝜕𝑟
𝜕𝛾ፑ፦

= 0 (A.6)

𝜕𝑟
𝜕𝛾ፈ፦

= 0 (A.7)

𝜕𝑟
𝜕𝑥፦

= √𝑞𝛿፱
𝑞 (A.8)

𝜕𝑟
𝜕𝑦፦

= √𝑞𝛿፲
𝑞 (A.9)

A.1.2. v
𝑣ፑ = 𝑣𝑐𝑜𝑠𝜙 (A.10)

𝜙 = 𝑎𝑡𝑎𝑛2(𝛿፲ , 𝛿፱) − �̄�ፑ᎕ (A.11)

𝜕𝑣ፑ
𝜕𝑥 = −𝑣𝑠𝑖𝑛𝜙

𝛿፲
𝑞 (A.12)

𝜕𝑣ፑ
𝜕𝑦 = −𝑣𝑠𝑖𝑛𝜙𝛿፱𝑞 (A.13)
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𝜕𝑣ፑ
𝜕𝑣 = 𝑐𝑜𝑠𝜙 (A.14)

𝜕𝑣ፑ
𝜕𝜃 = 𝑣𝑠𝑖𝑛𝜙 (A.15)

𝜕𝑣ፑ
𝜕𝛾ፑ፦

= 0 (A.16)

𝜕𝑣ፑ
𝜕𝛾ፈ፦

= 0 (A.17)

𝜕𝑣ፑ
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= 𝑣𝑠𝑖𝑛𝜙
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𝑞 (A.18)

𝜕𝑣ፑ
𝜕𝑦፦

= −𝑣𝑠𝑖𝑛𝜙𝛿፱𝑞 (A.19)

A.1.3. gamma
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𝑋፦
𝑋ኺ
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𝛾ኺ
𝑒፣ኼ

ᑕ
ᒐ ፬።፧(Ꭻ)፦ , 𝑚 = 1…𝑀 − 1 (A.20)

𝛾፦ =
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(A.21)

𝜓 = 2𝜋𝑑𝜆 𝑠𝑖𝑛𝜙𝑀 (A.22)

𝑃፦ = 𝛾፦𝑒፣Ꭵᑞ = 𝛾፦(𝑐𝑜𝑠𝜓፦ + 𝑗𝑠𝑖𝑛𝜓፦) (A.23)
This is now split up in the real and imaginary parts: 𝑃ፑ፦ and 𝑃ፈ፦.

𝑃ፑ፦ = 𝑅𝑒(𝛾፦)𝑐𝑜𝑠𝜓 − 𝐼𝑚(𝛾፦)𝑠𝑖𝑛𝜓 (A.24)
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Imaginary parts
𝜕𝑃ፈ፦
𝜕𝑥 = 𝐼𝑚(𝛾፦)𝑠𝑖𝑛𝜓2𝜋

𝑑
𝜆 𝑐𝑜𝑠𝜙

𝛿፲
𝑞 (A.34)

𝜕𝑃ፈ፦
𝜕𝑦 = −𝐼𝑚(𝛾፦)𝑠𝑖𝑛𝜓2𝜋

𝑑
𝜆 𝑐𝑜𝑠𝜙

𝛿፱
𝑞 (A.35)

𝜕𝑃ፈ፦
𝜕𝑣 = 0 (A.36)

𝜕𝑃ፈ፦
𝜕𝜃 = −𝐼𝑚(𝛾፦)𝑠𝑖𝑛𝜓2𝜋

𝑑
𝜆 𝑐𝑜𝑠𝜙 (A.37)

𝜕𝑃ፈ፦
𝜕𝛾ፑ፦

= 𝑠𝑖𝑛𝜓 (A.38)

𝜕𝑃ፈ፦
𝜕𝛾ፈ፦

= 𝑐𝑜𝑠𝜓 (A.39)

𝜕𝑃ፈ፦
𝜕𝑥፦

= −𝐼𝑚(𝛾፦)𝑠𝑖𝑛𝜓2𝜋
𝑑
𝜆 𝑐𝑜𝑠𝜙

𝛿፲
𝑞 (A.40)

𝜕𝑃ፈ፦
𝜕𝑦፦

= 𝐼𝑚(𝛾፦)𝑠𝑖𝑛𝜓2𝜋
𝑑
𝜆 𝑐𝑜𝑠𝜙

𝛿፱
𝑞 (A.41)





Bibliography
[1] Akram Al-Hourani, Robin J Evans, Peter M Farrell, Bill Moran, Marco Martorella,

Sithamparanathan Kandeepan, Stan Skafidas, and Udaya Parampalli. Millimeter-wave
integrated radar systems and techniques. In Academic Press Library in Signal Process-
ing, Volume 7, pages 317–363. Elsevier, 2018.

[2] Benjamin T Arnold and Michael A Jensen. The effect of antenna mutual coupling on
mimo radar system performance. IEEE Transactions on Antennas and Propagation, 67
(3):1410–1416, 2018.

[3] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and mapping (slam):
Part ii. IEEE robotics & automation magazine, 13(3):108–117, 2006.

[4] Francesco Belfiori, Wim van Rossum, and Peter Hoogeboom. Array calibration technique
for a coherent mimo radar. In 2012 13th International Radar Symposium, pages 122–
125. IEEE, 2012.

[5] Kostadin G. Biserkov. Calibration procedure for mutual coupling of mimo radars. Extra
student project, .

[6] K Carver, W Cooper, and W Stutzman. Beam-pointing errors of planar-phased arrays.
IEEE Transactions on Antennas and Propagation, 21(2):199–202, 1973.

[7] Jonathon Y.C. Cheah. Wet antenna effect on vsat rain margin. IEEE Transactions on
Communications, 41(8):1238–1244, 1993.

[8] N. Chen et al. The influence of the water-covered dielectric radome on 77ghz automotive
radar signals. In 2017 European Radar Conference (EURAD), pages 139–142. IEEE,
2017.

[9] Continental. Continental standardized ars interface technical documentation ars 308.
, Continental Engineering, 2011.

[10] Continental. Ars 30x/-2/-2c/-2t/-21 long range radar datasheet. , Continental Coor-
poration, 2012.

[11] Dahir H Dini and Danilo P Mandic. Class of widely linear complex kalman filters. IEEE
Transactions on Neural Networks and Learning Systems, 23(5):775–786, 2012.

[12] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i.
IEEE robotics & automation magazine, 13(2):99–110, 2006.

[13] Michael Giallorenzo, Xiuzhang Cai, Adib Nashashibi, and Kamal Sarabandi. Radar
backscatter measurements of road surfaces at 77 ghz. In 2018 IEEE International Sympo-
sium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pages
2421–2422. IEEE, 2018.

[14] M. Harter, J. Hildebrandt, A. Ziroff, and T. Zwick. Self-calibration of a 3-d-digital beam-
forming radar system for automotive applications with installation behind automotive
covers. IEEE Transactions on Microwave Theory and Techniques, 64(9):2994–3000, Sep.
2016.

[15] A.A. Hassen. Indicators for the signal degradation and optimization of automotive radar
sensors under adverse weather conditions. Shaker Verlag, 2007.

63



64 Bibliography

[16] Eric Jacobsen and Peter Kootsookos. Fast, accurate frequency estimators [dsp tips &
tricks]. IEEE Signal Processing Magazine, 24(3):123–125, 2007.

[17] Steven M Kay. Fundamentals of statistical signal processing. Prentice Hall PTR, 1993.

[18] Chevalier François Le. Principles of radar and sonar signal processing. Artech House,
2002.

[19] Eric S Li and Kamal Sarabandi. Low grazing incidence millimeter-wave scattering mod-
els and measurements for various road surfaces. IEEE Transactions on Antennas and
Propagation, 47(5):851–861, 1999.

[20] Jian Li and Petre Stoica. MIMO radar signal processing, volume 7. Wiley Online Library,
2009.

[21] Robert J Mailloux. Phased array antenna handbook. Artech house, 2017.

[22] Marc Mowlér, Björn Lindmark, Erik G Larsson, and Björn Ottersten. Joint estimation of
mutual coupling, element factor, and phase center in antenna arrays. EURASIP Journal
on Wireless Communications and Networking, 2007(1):030684, 2007.

[23] V.W. Richard, J.E. Kammerer, and H.B. Wallace. Rain backscatter measurements at
millimeter wavelengths. IEEE transactions on geoscience and remote sensing, 26(3):244–
252, 1988.

[24] M.A. Richards et al. Principles of modern radar. Citeseer, 2010.

[25] F. Rosique, P.J. Navarro, C. Fernández, and A. Padilla. A systematic review of perception
system and simulators for autonomous vehicles research. Sensors, 19(3):648, 2019.

[26] SandeepRao. Mimo radar application report. Technical report, Texas Instruments, 2018.

[27] Kamal Sarabandi, Eric S Li, and Abid Nashashibi. Modeling and measurements of scat-
tering from road surfaces at millimeter-wave frequencies. IEEE Transactions on Antennas
and Propagation, 45(11):1679–1688, 1997.

[28] C.M. Schmid et al. An fmcw mimo radar calibration and mutual coupling compensation
approach. In 2013 European Radar Conference, pages 13–16. IEEE, 2013.

[29] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to au-
tonomous mobile robots. MIT press, 2011.

[30] M.I. Skolnik. The Radar handbook. New York, McGraw-Hill, 1970.

[31] Hans Steyskal and Jeffrey S Herd. Mutual coupling compensation in small array anten-
nas. IEEE Transactions on Antennas and Propagation, 38(12):1971–1975, 1990.

[32] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press,
2005.

[33] VI Tikhonov. Statistical radiotechnics. , 1966. Book written in Russian.

[34] International Telecommunication Union. Recommendation itu-r p.838-3: Specific at-
tenuation model for rain for use in prediction methods, 2005.


