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Abstract

Electrification of aviation is driving new aircraft configurations consisting in slender, lighter wings with sev-
eral propellers spread across the wing span, including the wing tips. Thinner wings with high aspect ratios
tend to be more flexible, and thus, more susceptible to wing flutter, a dynamic aeroelastic instability charac-
terised by diverging oscillatory motions of the wing. As propellers are flexibly attached to the wing, another
aeroelastic instability, called precession or whirl flutter, can occur. The nature of this phenomena lies in the
additional forces and moments created by rotating blades as the propeller hub describes a “whirling” motion
about the static thrust axis due to gyroscopic effects. These dynamic instabilities can happen independently
or coupled together causing severe structural damage on the aircraft and when occurred during flight, lead
to fatal accidents. Hence, it becomes essential to analyse any new propeller-driven aircraft configuration
regarding wing flutter and whirl flutter.

Present research project focuses on the analysis of the aeroelastic behaviour of a flexible cantilever wing
with flexibly attached tractor propeller/s. Attention is given to wingtip-mounted propeller-wings. For this
purpose, three mathematical models have been derived to analyse the dynamic behaviour of an isolated pro-
peller, a flexible cantilever wing, and a flexible cantilever wing with flexibly attached propeller/s. The isolated
propeller model represent the classical propeller whirl flutter solution using Houbolt-Reed propeller aero-
dynamic derivatives. The wing model analyses the classical wing bending-torsion flutter and divergence;
the structural model is a linear dynamic Euler-Bernoulli beam model and the aerodynamic model is repre-
sented by a combination of strip theory and two-dimensional Theodorsen’s unsteady aerodynamic theory
formulated in time domain using a two-finite state approximation. The propeller-wing model combines the
previous two with the addition of appropriate structural and aerodynamic coupling terms. Following the
validation/verification of the models, case studies have been performed on an isolated propeller, a flexible
cantilever wing, a flexible cantilever wing with an inboard propeller, a flexible cantilever wing with a wingtip-
mounted propeller, and a flexible cantilever wing with an inboard and a wingtip-mounted propeller. More-
over, parametric studies have been carried out on the wingtip-mounted propeller-wing model with respect
to nacelle stiffness, nacelle structural damping, propeller mass, propeller pivoting length, mass moment of
inertia about the axis of rotation, and propeller advance ratio. In all analyses, the propeller is a fixed-pitch
propeller assumed to be operating in windmilling conditions. Propeller-wing aerodynamic interference ef-
fects have been ignored.

The aeroelastic behaviour of a wing with flexibly mounted propeller/s may be very different from that of
a wing with rigidly mounted propeller/s. Reasons lie in the interaction between the additional whirl modes
and the wing modes due to gyroscopic coupling. Whereas propeller and wing aerodynamics may drive the
(coupled) backward whirl mode unstable, wing aerodynamics alone may drive the (coupled) forward whirl
mode unstable. As the propeller is moved from an inboard position to the wing tip, there is further coupling
between the propeller whirl modes and the wing modes; in turn, instabilities driven by the coupled whirl
modes may dominate the aeroelastic stability of the propeller-wing model.

Parametric studies on the wingtip-mounted propeller-wing model show that: if the average nacelle stiff-
ness is increased/decreased, having higher stiffness in pitch than in yaw is more stabilising until certain limit-
ing conditions determined the stability of other propeller-wing modes; small changes in the nacelle structural
damping barely influences the critical speed; changes in propeller mass or propeller pivoting length increase
the system critical speed if the changes result in higher propeller-wing inertia parameters, except the pro-
peller mass moment of inertia about the axis of rotation, whose effects on whirl flutter stability is destabilis-
ing; with a fixed-pitch windmilling propeller, the effects of propeller advance ratio is barely appreciable.
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1
Introduction

Environmental concerns drive a growing interest in new aircraft configurations based on electric propulsion.
This interest is also motivated by quick advances in high performance electrical machines [82]. Patterson
et al. [83] remarks that in the near term, even without radical breakthroughs in electrical machines, small,
general aviation aircraft can be electrically powered by means of increasing the aircraft aerodynamic effi-
ciency and lowering the aircraft empty weight fractions. One way to achieve this is through higher aspect
ratio and thinner wings with wingtip-mounted and/or distributed propellers where several tractor propellers
are placed along the wing span, including the wing tips [103](see Figure 1.1). Such configurations demand
special care with regards to airframe-propulsion system integration and wing structural design not only to
achieve higher aerodynamic efficiency and noise reduction but also to lessen potential negative effects of
propeller/s on the aircraft dynamic behaviour.

(a) NASA X-57 Maxwell [67].

(b) EcoPulse [2].

Figure 1.1: Examples of distributed propulsion aircraft.

Thinner wings with high aspect ratios tend to be more flexible. And as propellers are positioned closer to
the wing tip, the flexible wing becomes more susceptible to some aeroelastic problems such as the classical
wing flutter, a dynamic aeroelastic instability characterised by unstable vibrations of the wing [71]; by plac-
ing the propeller towards the wing tip, it changes the wing torsional moment of inertia and there is further
interaction between the bending and torsional modes of wing vibration [102].

On the other hand, as propellers are flexibly mounted on the aircraft, another dynamic aeroelastic in-
stability, called precession or whirl flutter, can occur. The nature of this phenomena lies in the additional
forces and moments created by rotating blades as the propeller hub describes a “whirling” motion about the
static thrust axis due to gyroscopic effects [86]. As in the case of classical wing flutter, whirl flutter on a pro-
peller aircraft is not an isolated phenomenon and is also susceptible to interactions with wing elasticity, wing
aerodynamics [90], and aircraft flight dynamics [38].
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4 1. Introduction

Both classical wing flutter and propeller whirl flutter have a critical forward velocity at which the system is
neutrally stable. When the system meets a disturbance such as a gust and/or the forward velocity exceeds the
critical forward velocity, in the case of classical wing flutter the wing describes a diverging oscillatory motion,
and in the case of whirl flutter the propeller hub describes a diverging spiral motion. These dynamic insta-
bilities can happen independently or coupled together causing severe structural damage on the aircraft and
when occurred during flight, lead to fatal accidents [16][58]. The most notorious instances are the accidents
of two Lockheed L-188C Electra airliners in 1959 and 1960 which occurred due to "failure of the port wing due
to the forces coming from the undamped propeller whirl mode" and "failure of the starboard wing due to the
flutter caused by the vibration of the outboard engine", respectively [16]. Because of this, it becomes essential
to analyse any new propeller-driven aircraft configuration with respect to wing flutter and whirl flutter.

Nowadays, aeroelastic analysis regarding wing flutter and whirl flutter can be modelled via Finite Element
Methods, Multi-Body Simulations or CFD-based simulations. Experimental work include wind tunnel tests
on aeroelastic models [16], Ground Vibration Testing [18][22], and flight flutter testing [58]. The use of FEM or
other software tools typically require high computational time and high level of detailed knowledge regarding
the new aircraft design. Experimental tests require actual models to be built which is both time-consuming
and costly. Neither are suitable to be used during the early design stages of a new aircraft configuration
where usually no detailed geometric, structural, and aerodynamic knowledge is available and it is necessary
to analyse multiple aircraft designs in a short amount of time. A compromise is found on quasi-analytical
models which represent advanced low/high fidelity models that can potentially be used in Multidisciplinary
Design Optimisation (MDO) applications [3].

The classical wing flutter has been widely studied [28] and analytical methods for its prediction are well
covered in conventional aeroelasticity books such as Bisplinghoff et al. [10], Dowell [23], Fung [27] and Hodges
and Pierce [36]. The phenomenon of propeller whirl flutter, although also broadly researched, is less well-
known due to the shift in interest from propeller- to turbofan-powered aircraft. However, the relevance of
whirl flutter has prevailed in the development of tilt-rotors.

Present graduation project focuses on the analysis of the aeroelastic behaviour of a cantilever wing with
flexibly attached tractor propeller/s. The main goal to develop an analytical model that is capable of pre-
dicting wing flutter and whirl flutter characteristics. The choice of an analytical model has been made upon
the interest of having a flexible tool to be used during the conceptual-preliminary design phase of propeller-
driven aircraft configurations; to provide design guidelines with respect to wing/whirl flutter and to shed new
insights on how wing/whirl flutter develop on wingtip-mounted-propeller and distributed-propeller wing
configurations.

Within this framework, a literature study has been carried out; the main findings are summarised in Chap-
ter 2. Following the literature study, a series of research questions have been formulated and the appropriate
research work has been planned; this is presented in Chapter 3.



2
State of the Art

Current chapter presents the state of the art on propeller whirl flutter and reviews several aspects of propeller-
wing systems from an aeroelastic standpoint.

Section 2.1 introduces the topic of whirl flutter. Section 2.2 explains the mechanism that drives propeller
whirl flutter. Section 2.3 describes the development of propeller aerodynamics due to gyroscopic motions.
Section 2.4 reviews analytical and numerical modelling methods developed to analyse propeller whirl flutter.
Some notions of whirl flutter in tiltrotors are introduced in Section 2.5. Section 2.6 presents the effects of
several parameters that influence propeller whirl flutter. General aspects of wing flutter are described in
Section 2.7. Finally, Section 2.8 explains briefly the aerodynamic benefits of wingtip-mounted propellers, the
basics of propeller-wing aerodynamic interference effects, and the effects of wingtip-mounted propellers on
wing dynamics.

2.1. Introduction to Whirl Flutter
Whirl flutter is an aeroelastic dynamic instability caused by the interaction between gyroscopic effects1 and
unsteady aerodynamic forces and moments acting on elastically supported rotating propeller/rotor systems.
The instability is characterized by a spiral motion described by the propeller/rotor hub which induces un-
stable vibrations and potential failures in the structure where the propeller/rotor-engine system is mounted.
Whirl flutter can appear in propeller-driven aircraft as propeller whirl flutter, in V/STOL aircraft (i.e. tilt-
rotors) as proprotor whirl flutter, in wind turbines [48], and in helicopters [60].

The occurrence of whirl flutter was first recognised by Taylor and Browne in 1938 when studying methods
to isolate vibrations in aircraft power plants. Several years later, Scanlan and Truman [96] investigated further
this phenomenon and showed that "the whirling of a rigid propeller may materially affect wing normal mode
shapes and frequencies". Whirl flutter was taken into account by some aircraft designers but such practice
was later discouraged because large safety margins were usually met [85]. The real incentive to investigate
whirl flutter in depth was triggered by the accidents of two Lockheed L-188C Electra airliners in 1959 and 1960,
where whirl flutter and its coupling with wing flutter were recognised as the main causes of the accidents.
Following the accidents, a 1/8-scale aeroelastic model of the Lockheed L-188C was tested in the NASA Langley
Transonic Dynamics Tunnel; it was shown that a reduction in stiffness on the outboad engine supports would
cause propeller whirl flutter to occur [1]. Figure 2.1 illustrates the model before and after a destructive flutter
testing.

During the 60s and 70s, numerous analytical and experimental research aimed at understanding propeller
and proprotor whirl flutter were carried out by NASA [1, 6, 7, 45, 62, 85, 88, 97]. In 1966-1967 Reed III [86, 87]
presented a comprehensive state of the art on propeller-rotor whirl flutter.

1In this case, gyroscopic effects are caused by the upstream location of the propeller centre of gravity with respect to the propeller pivot
point. The nature of gyroscopic motion is explained in more detail in Appendix A.
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Figure 2.1: Photos of a scaled model of the Lockheed L-188C Electra being tested in the NASA Langley Transonic Dynamics Tunnel
[1][24].

Despite the knowledge gained in whirl flutter and the added regulations so as to prevent the occurrence of
this instability, several other fatal accidents in which whirl flutter was either the main cause or a contributing
factor occurred. In 1992, a Beechcraft 1900C crashed into the ocean during a training mission. Investigations
of the accidents showed that, although the aircraft had enough safety margins with respect to whirl flutter,
the appearance of fatigue cracks in the engine bed structure reduced its stiffness and led to whirl flutter. In
2005, a twin-engine amphibious aircraft Grumman Turbo Mallard GF73T crashed shortly after taking off; the
cause was suspected to be the propagation of wing fatigue cracks due to whirl mode vibrations. These acci-
dents highlight the importance of considering failure modes in the analysis of wing/whirl flutter. More details
regarding these accidents are given by Jiri Cecrdle in his book "Whirl flutter of turboprop aircraft structures
(2015)" [16]. The book also includes a complete overview of propeller whirl flutter and some notions of whirl
flutter in tilt-rotors.

Tiltrotors and helicopters feature much more complex rotor designs i.e. a swashplate or gimballed rotor
systems with large, flexible blades. In consequence, the nature of proprotor whirl flutter is quite different
from that of propeller whirl flutter in many aspects; these are covered in Johnson [54] and Bielawa [8], and
later explained in Section 2.5.

At present, airworthiness regulations such as FAR/CS 23 and FAR/CS 25 require any turboprop powered
aircraft to be certified with respect to whirl flutter [16].

2.2. Mechanism of Whirl Flutter
The mechanism of propeller whirl flutter is well explained in Reed III [86, 87], Försching [26], and Cecrdle
[16]. The approach taken is the idealisation of the propeller-engine-nacelle system as a propeller with rigid
blades and rigid nacelle attached to elastic mounts (Figure 4.1). The dynamic behaviour of the idealised
propeller-engine-nacelle system is illustrated in Figure 2.2, Figure 2.3, and Figure 2.4.

When ignoring propeller rotation, as well as the aerodynamic and damping forces, the system has two
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uncoupled natural vibration modes (i.e. pitch and yaw) each with their respective angular frequencies (see
Figure 2.2).
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(a) (b)

Figure 2.2: Natural vibration modes (adapted from [16][26]).

By considering propeller rotation but still ignoring the aerodynamic and damping forces, gyroscopic ef-
fects couple the natural mode shapes and cause the propeller hub to describe a whirl or precession motion
around the static thrust axis. Two coupled mode shapes emerge (see Figure 2.3): a backward whirl mode and
a forward whirl mode. The former has lower frequency and rotates in the opposite direction to the propeller
rotation whereas the latter has higher frequency and its direction is the same as the propeller rotation. The
gap between the frequencies increases as the propeller rotational speed increases.
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Figure 2.3: Backward (a) and forward (b) modes (adapted from [16][26]).

The system described so far is always stable. However, when taking into account the aerodynamic ef-
fects, the gyroscopic induced whirl modes change the propeller blades’ angle of attack, thus, creating un-
steady aerodynamic forces and moments which provide the mechanism for whirl instability. Such instability
is characterized by a spiral motion of the propeller hub. If the blades are rigid, only the backward whirl mode
can occur; the forward whirl mode becomes possible when the propeller blades are very flexible or have flap
hinges [86].
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Figure 2.4: Stable (a) and unstable (b) state of gyroscopic vibrations for backward flutter mode (adapted from [16][26]).

As in classical wing flutter, there is a limit speed (flutter speed) at which there is no damping and the
system is neutrally stable: if the forward speed of the system is below this flutter speed, the motion is damped
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and the system is stable (Figure 2.4 (a)); if the forward speed is above this flutter speed the system becomes
unstable and the spiral motion of the hub diverges (Figure 2.4 (b)). Gyroscopic divergence occurs when one
of the mode frequencies is zero and the system moves in one-directional character.

2.3. Propeller Aerodynamics
The main difficulty in developing analytical methods to model whirl flutter lies in the determination of the
propeller aerodynamic forces induced by gyroscopic motions. The origin of such forces can be qualitatively
described using quasi-steady aerodynamic principles [87][26][16]. This is illustrated in Figure 2.5-Figure 2.7.
Since the pitching and yawing motions are symmetrical, the figures only show the explanations by using a
propeller pitching in the X-Z plane. Forces and moments due to yawing motions are analogous.

Figure 2.5 shows the propeller forces arising from a pitch displacement. This is equivalent to a propeller
at an angle of attack θ. The blades that are going up (retreating blade) face a smaller in-plane rotational
speed than the blades going down (advancing blade). Retreating blades generate less lift than advancing
blades, when projected onto the rotor plane, a vertical force emerges in the negative Z-axis, Pz (θ), and a
yawing motion appears about the negative Z-axis, Mz (θ). Pz (θ) increases the pithing angle and is the source
of static divergence instability of the propeller; the yawing moment due to pitch Mz (θ), and its analogous,
pitch moment due to yaw, My (ψ), are the main drivers of propeller whirl flutter; they are to be balanced with
aerodynamic and/or structural damping terms.

Figure 2.6 shows the propeller forces arising from a transverse linear vertical velocity ż. In this case, the
blades that are going up are the advancing blades because ż increases their in-plane rotational speed. There-
fore, a vertical force emerges in the positive Z-axis, Pz (ż), and a yawing motion appears about the positive
Z-axis, Mz (ż). These forces and moments oppose the propeller disc motion and damp it.

Figure 2.7 shows the propeller forces arising from the pitching angular velocity θ̇. The blades in the upper
half of the rotor plane see smaller incoming flow speed than the blades in the lower half section. This results
in a force in the positive Y-axis, Py (θ̇), and a pitching moment about the positive Y-axis, My (θ̇). The lateral
force Py (θ̇) couples the movements around both vertical and lateral axis while the pitching moment My (θ̇)
opposes the propeller disc motion, hence, damping it.

Apart from the forces and moments explained above, unsteady aerodynamics lead to additional forces
and moments. Rotating blades give rise to shed vortices which cause the quasi-steady lift to be reduced in
magnitude and to lag the instantaneous angle of attack by a phase angle defined by the frequency of the shed
vortices [45].
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Figure 2.5: Aerodynamic forces due to pitching deflection θ (adapted from [16][26]).
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The case of gyroscopic induced propeller aerodynamics is analogous to that of a propeller immersed in
non-homogeneous flow. When a propeller is immersed in a non-homogeneous flow, cyclically (azimuthally)
varying propeller loads develop; the in-plane resultant of these loads are called 1P loads or in-plane airloads.
Under certain circumstances, especially at high speed, 1P loads may represent a significant portion of the
propeller thrust [79][78][30]. 1P loads can be decomposed into a vertical component and a horizontal com-
ponent.

The origin of vertical 1P loads can be explained via quasi-steady aerodynamics. Consider a propeller that
is at an angle of attack with respect to the incoming flow. One half of the propeller (the advancing side) sees
greater angle of attack and speeds than the other half (the retreating side). In consequence, the advancing
blade generates more lift and drag, and thus more thrust; when projected vertically onto the rotation plane
the advancing half of the propeller gives rise to vertical forces higher in magnitude and opposite in sign than
those from the retreating half. As a result, there is a net force over the entire propeller that is directing up-
wards. This is equivalent to what it is illustrated in Figure 2.5.

On the other hand, horizontal 1P loads have their origin in complex unsteady aerodynamic effects caused
by the variations in induced velocity across the propeller disc. As the advancing half of the propeller gen-
erates more thrust, this region sheds wakes with more circulation which induces greater velocities than the
retreating half. This causes the region that is closer to the wake shed by the blades in the advancing side to
have larger induced velocities. As a result, blades neighbouring this region operates at a smaller angle of at-
tack and hence, lower airloads are generated. In consequence, a net horizontal force appears in the propeller
plane [79].

Methods to predict propeller aerodynamics

Whirl flutter analyses require the prediction of in-plane propeller aerodynamic forces and moments that
arise due to gyroscopic motions. Traditionally, in the investigation of propeller whirl flutter, these forces are
expressed in terms of aerodynamic derivatives with respect to pitch/yaw deflections and pitch/yaw deflection
rates. The aerodynamic derivatives may be measured from wind tunnel tests [6] or computed analytically.
Well-known analytical methods are those developed by Ribner [91, 92] and Houbolt and Reed [45]. Both
methods are based on quasi-steady aerodynamics and may be supplemented by corrections for wake effects.
Ribner’s method is more refined than that of Houbolt and Reed’s but the latter appears to give similar results
and is easier to implement, therefore, it has been widely adopted in various whirl flutter studies [93][89][15].

Higher fidelity methods that account for unsteady (wake) effects directly exist, such as the Unsteady Vor-
tex Lattice Method [109] and the Unsteady Lifting Surface Theory [35][94][95][110].

For tiltrotor whirl flutter analyses, well-known propeller aerodynamic models are found in Johnson [52]
and in Kvaternik [61]. Kim et al. [59] compares Johnson’s method to that of Greenberg[31]’s unsteady aero-
dynamic method. Similarly, Gennaretti and Greco [29] compares Theodorsen[106]’s unsteady aerodynamic
method with the boundary integral equation of three-dimensional potential, unsteady flows, solved with the
Boundary Element Method (BEM).

2.4. Modelling of Propeller Whirl Flutter
Propeller whirl flutter has been investigated analytically, numerically, and experimentally. Present section
reviews the former two.

2.4.1. Analytical Modelling
Analytical models on propeller whirl flutter may be classified according to whether wing flexibility and blade
flexibility are included.

Early analytical investigations on propeller whirl flutter excludes both wing and blade flexibility. The clas-
sical whirl flutter solution is derived under these assumptions; this is presented in Chapter 6. Related work
are found in Reed III and Bland [88], Sewall [97], Houbolt and Reed [45], and Bennett and Bland [6]. Inves-
tigations show that propeller whirl flutter only occur in the backward whirl mode and the parameters that
influence whirl flutter stability the most are the nacelle-engine stiffness, nacelle-engine structural damping,
the propeller pivoting length, and the propeller advance ratio. The effects of these parameters are explained
in Section 2.6.
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Influence of blade flexibility

The inclusion of flexible blades or blades with flapping hinges into the analytical models lead to whirl flut-
ter developing in the forward whirl mode [86][87]. Whirl flutter with flexible blades has mostly been studied
with the development of tiltrotors. Johnson [52][53] presents a mathematical model to study the stability of a
rotor with flexible blades in forward flight. Kvaternik [61] presents a comprehensive mathematical model to
study aeroelasticity in tiltrotors. An energy balance equation is derived by Young and Lytwyn [113] to high-
light the fact that whirl flutter solely occurs in the backward whirl mode if only the pylon/nacelle pitch and
yaw degrees of freedom are considered.

More recently, Kunz [60] presents a unified mathematical model to analyse whirl flutter in propellers,
tiltrotors and helicopters. Wing flexibility is ignored but the additional degrees of freedom introduced by
tiltrotor and helicopter rotors are included. Results show that thrust has a destabilizing effect on propeller
whirl flutter and helicopter rotor in forward flight but has a stabilizing effect on tiltrotors.

Influence of wing flexibility

The influence of wing flexibility on whirl flutter can be stabilizing or destabilising depending on system
parameters [86, 87]. The main findings are illustrated in Figure 2.8.
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Figure 2.8: Influence of wing flexibility on whirl flutter (adapted from [86]).

Figure 2.8 shows whirl flutter boundaries of a propeller in three configurations: propeller on a rigid struc-
ture, propeller on a wing with bending motions, and propeller on a wing with bending and torsional motions.

• When the wing is assumed to be rigid, the most critical point is found on equal pitch and yaw stiff-
ness (point A). The curve terminates in two extremes which correspond to the boundaries for static
divergence.

• For the case of a propeller on a wing with bending motions or vertical translations, the influence of
the wing on whirl flutter is always stabilizing and the effect is most pronounced when whirl flutter
frequency (ω) coincide with the wing bending frequency (ωh); these are the points B in Figure 2.8. It is
suggested that the stabilising effects of the wing is caused by wing aerodynamic damping forces.

• Lastly, when wing bending and torsion motions are considered, the effects of the wing on whirl flutter
is not always stabilising. If the wing fundamental coupled frequency (ω1) equals the nacelle yaw fre-
quency (ωψ) the effects of the wing become destabilising. A general conclusion is that when the nacelle
yaw frequency is close to the wing torsion frequency the wing has a destabilizing effect.
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Analytical models of a propeller with rigid blades attached to a flexible wing are presented in Bennett and
Bland [7], Smith [101], and Yang et al. [111].

The propeller-wing model derived in present work (Chapter 8) is largely based on the mathematical model
of Bennett and Bland [7].

Other models

Two-bladed rotors create a polar asymmetry which introduce periodic coefficients in the equations of
motion. This has been treated in studies on proprotors such as Gennaretti and Greco [29] and Singh and
Chopra [98].

There is limited published material concerning propellers in a pusher configuration, there is the work of
Nitzsche [73, 74, 75] and Nitzsche and Rodrigues [76] who analysed the whirl-flutter problem of an advanced
turboprop configuration with two pusher propellers positioned at the aircraft fuselage cone.

A non-linear version of the classical propeller whirl flutter model of Houbolt and Reed [45] is presented
by Mair et al. [65].

2.4.2. Numerical Modelling
Analytical models, although very suitable for gaining physical insights, deal with limited degrees of freedom,
simple geometries and many simplifying assumptions regarding propeller and wing aerodynamics. With the
growing interest on tiltrotors, wingtip-mounted propellers and distributed-propeller configurations, recent
studies employ more comprehensive numerical tools to account for the more complex configurations and to
obtain higher fidelity solutions.

Numerical modelling of whirl flutter may be conducted with Finite Element Methods, Multibody Dynam-
ics, and CFD/CSM codes.

Analyses carried out using Finite Element Method software rely on additional preprocessor tools to com-
pute propeller aerodynamics, i.e. MSC/NASTRAN with PROPF-REV2 [93] or PROPFM [14][15], and ZAERO
with ZUV and ZWHIRL [90][109]. PROPF-REV2 and PROPFM are based on the method developed by Houbolt
and Reed [45].

Many whirl flutter studies have been carried out with Multibody Dynamic tools. The software packages
used by various authors are: SIMPACK aided by PROPPY for propeller aerodynamics [90], Dymore [38–44][69],
CAMRAD II [38–44][69], and Modelica [89].

2.5. Whirl Flutter on Tiltrotors
Whirl flutter on tiltrotors is characterised by the coupling of wing elastic motions with flexible proprotors
[54]. Early findings on tiltrotor whirl flutter are presented in Reed and Bennett [85], Kvaternik [61], Johnson
[52], and Kvaternik and Kohn [62]. Tiltrotor whirl flutter is more difficult to predict and analyse by means of
simple analytical methods. From the aeroelastic point of view, the main differences between propeller whirl
flutter and proprotor whirl flutter lie in the rotor design and the position and orientation of the rotor in the
airframe.

Tiltrotors have complex rotor designs that usually include a swashplate, a gimbal, blade underslung, and
blade preconing, amongst others. These features result in additional degrees of freedom that might couple
together and lead to whirl flutter. Hence, proprotor whirl flutter and propeller whirl flutter may differ in
nature.

What’s more, tiltrotors have long-flexible blades which add two extra vibration modes (blade flapping and
lead-lag motions) to its structural-dynamic analysis. However, when modelling turboprop propellers, the
condition of rigid blades is usually assumed, as in most cases, the natural frequencies of propeller blades are
much higher than the frequencies of the propeller-engine mount. Blade deformations are only considered
in large propellers such as those found in military turboprop transport aircraft. Including blade flexibility
adds additional degrees of freedom into the mathematical models and, in turn, more complex equations
of motion. Physically, blade flexibility influences the inertial and aerodynamic characteristics of the rotor
system.

Moreover, proprotors are positioned at the wing tips of tiltrotors where they experience strong aerody-
namic interactions with the wing tip vortices. In addition, proprotors are usually rigidly attached to the wing
via pylon, which means that the rotor follows wing deformations/rotations and face high inflow angles, es-
pecially in the transition from helicopter to forward flight regime. The rotors experience stall and complex
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unsteady aerodynamic effects and the determination of aerodynamic derivatives must rely on complicated
numerical simulations or experimental data.

Aircraft with wingtip-mounted propellers may seem comparable to tiltrotors. However, the propeller
blades are not as flexible so the assumption of rigid blades is generally still valid. Furthermore, the wing
in tiltrotors are generally thicker and shorter and thus, has higher torsional stiffness than current wings with
distributed propulsion and wingtip-mounted propellers which tend to have higher aspect ratio and thinner
airfoils [38].

Suffice to say that whirl flutter on tiltrotors is a much more complex phenomenon than that of propellers;
because whirl flutter may come to limit the cruise speed of the tilt-rotors in airplane mode [29] it has triggered
extensive investigations in this area and remains an active topic of research. Substantial literature is available
and it deserves a study of its own, therefore, it will not be further explored in this report.

2.6. Parameters that influence Whirl Flutter
This section presents trend studies of parameters that influence whirl flutter stability on an isolated propeller
with rigid blades. These are found in Reed III and Bland [88], Sewall [97], Houbolt and Reed [45], Kvaternik
and Kohn [62], and are compiled in Reed III [86, 87], Försching [26], Cecrdle [16], and Bielawa [8].

The most influencing parameters are: nacelle stiffness in pitch and yaw (Kθ, Kψ), pitch-yaw stiffness ratio
(Kθ/Kψ), nacelle structural damping (gθ, gψ), pivot location (a), propeller rotational speed Ω, airspeed V∞,

and propeller advance ratio (J = V∞
ΩR ) [16]. Trend studies of these parameters are illustrated in Figure 2.9-

Figure 2.16.
Influence of the propeller advance ratio on whirl flutter stability is shown in Figure 2.9. The stability

boundaries correspond to a constant speed propeller. Increasing propeller advance ratio is destabilizing.
The system is most prone to whirl flutter when there is the same pitch and yaw stiffness. Higher stiffness is
stabilizing. For each advance ratio, there is a minimum stiffness level below which the system will diverge.
If the stiffness in one direction is high enough, then the system will not experience whirl flutter even if the
stiffness level in the other direction is zero. This may be explained by the gyroscopic coupling action: the
system wants to go unstable in the direction of least stiffness but it is restrained from going by gyroscopic
coupling with the maximum stiffness [45]. Houbolt and Reed [45] points out that structural damping changes
the shape of these stiffness boundaries.

Influences of structural damping and propeller-hub-pivot-point distance are shown in Figure 2.10. In-
cluding small amounts of structural damping from nil greatly increases the calculated stable region. Moving
forward the pivot location (lower values of a) causes an increase in the required stiffness (Kθ ∼ ωθ) to avoid
whirl flutter.
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Figure 2.11 shows whirl flutter stability in terms of the root-mean-square stiffness (KRMS =
√

K 2
θ
+K 2

ψ

2 ) and

the forward velocity for various pylon pitch and yaw stiffness ratio. For small values of KRMS , the influence of
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stiffness asymmetry on whirl flutter stability is very small. For higher values of KRMS , the influence of stiffness
asymmetry is higher. Nevertheless, the assessment of whirl flutter using equal pitch and yaw stiffness is more
conservative as observed in Figure 2.9.

Figure 2.12 shows the effect of pylon pitch and yaw structural damping ratio. For a symmetrical system in

pylon stiffness (
Kψ

Kθ
= 1), structural damping ratio (

gψ
gθ

) has barely any influence on the whirl flutter stability.
As the pitch-yaw stiffness becomes more unequal, more damping is needed in the direction of lower stiffness.
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Figure 2.13-Figure 2.15 illustrate examples of whirl flutter boundaries of three distinct cases: constant
rotational speed, constant advance ratio, and constant pitch and yaw stiffness, respectively.

Stability boundaries with constant propeller rotational speed are shown in Figure 2.13. The lower the air
velocity the lower the stiffness required to avoid flutter or divergence. At low air speeds, flutter is the limiting
factor while at high air speeds, divergence becomes the limiting factor.

Figure 2.14 shows stability boundaries for a propeller with fixed blade angle — in windmilling mode, such
propellers are found in most wind tunnel tests. The required stiffness is proportional to the square of the
airspeed. Divergence occurs after the onset of whirl flutter.

Stability boundaries with constant pitch and yaw stiffness are shown in Figure 2.15. For high propeller
revolutions, whirl flutter is the limiting factor and the flutter speed is not sensitive to the rotational speed; for
lower propeller rotations, flutter speed becomes sensitive to the rotational speed; and for very low propeller
revolutions, divergence becomes the limiting factor.
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Finally, Figure 2.16 shows the effect of thrust. For high advance ratios, the stiffness required to avoid
whirl flutter is very similar to that of a windmilling propeller. Hence, as first approach, it seems acceptable to
analyse whirl flutter on windmilling propellers. For small advance ratios, the assumption no longer holds.
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2.7. Wing Flutter
Flutter is a dynamic instability of lifting surfaces associated with the interaction of aerodynamic, elastic, and
inertial forces. It is a type of self-excited vibration characterised by oscillations with increasing amplitude;
it has the potential to cause structural damage or failure. The phenomenon arises from fluid structure in-
teractions through which energy is extracted from the air stream. Flutter speed is the minimum airspeed at
which the oscillations have constant amplitude, right before they become divergent. The frequency of the
oscillations at this critical speed is designated as the flutter frequency.

Most wings have much higher chordwise stiffness than spanwise stiffness. Hence, for a wing without any
control surfaces, it is sufficient to define the elastic deformation of any wing cross section by the vertical
displacement of the cross sectional elastic centre and the angle of rotation (torsion) about this centre. The
spanwise distribution of the vertical displacements is approximately in phase, so is the spanwise torsional
distribution. However, the vertical displacement is out of phase from the torsional movement and both may
be out of phase from the applied aerodynamic loads. This phase difference is responsible for the wing to
extract energy from the airstream and result in flutter [27]. This kind of flutter is caused by bending-torsion
coupling and it is the type of flutter treated in present work (Chapter 7).

The effect structural parameters of the wing on the flutter critical speed depends on the specific combi-
nation of structural parameters. Some examples of flutter analysis show that flutter speed is more sensitive
to the individual change in torsional stiffness than in bending stiffness. Increasing bending stiffness alone
will initially reduce flutter speed until a minimum, when the (uncoupled) bending frequency equals the (un-
coupled) torsional frequency because of mode coupling between bending and torsion; further increase in
bending stiffness from this point will then, increase the flutter speed. Usually, having the inertia and elastic
axes close to the line of aerodynamic centres increases the critical flutter speed as it would break the inertia
and aerodynamic couplings. It is beneficial to arrange the mass and stiffness parameters so that the nodal
lines of the lower free vibration modes are not close to the three-quarter chord line [9]. The critical flutter
frequency usually lies between the two lowest free vibration frequencies [27].

2.8. Wingtip-mounted Propellers
Recent developments in electric propulsion have sparked a renewed interest in wingtip-mounted propellers.
The use of wingtip-mounted propellers have often been relegated to the background due to aeroelastic prob-
lems and difficulties to meet one-engine-out requirements. However, scaling down the propeller and/or us-
ing distributed electric propulsion seem to resolve these issues.

2.8.1. Aerodynamic benefits of wingtip-mounted Propellers
For a finite length wing, when lift is produced the region above the wing has lower pressure than the re-
gion below the wing. Near the tip of the wing, air is forced from the region of high pressure to the region
of low pressure forming a flow that curl around the wingtip which are called wingtip vortices. Such vortices
have a circulatory motion and trail inboard and downwards carrying the surrounding air along with them
(see Figure 2.17). The presence of these wingtip vortices induce a small downward velocity component or
"downwash" near the wing. This downwash decreases the effective angle of attack which in turn decreases
the total lift produced by the wing and creates additional drag known as induced drag. One interpretation
of induced drag states that the wingtip vortices contain large amounts of translational and rotational kinetic
energy which must be provided by extra power from the engine. If this kinetic energy is not utilized the extra
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power provided by the engine is essentially lost [5].

Figure 2.17: Schematic of wing-tip vortices on a finite wing [4].

The idea of placing a propeller at the wing tip is to somehow utilize the translational and rotational kinetic
energy from the wingtip vortices that is otherwise lost. Snyder Jr. and Zumwalt [102] showed that placing a
tractor propeller at the wingtip and turning the rotor in the opposite direction to that of the wing’s trailing
vortex decreases the wing drag coefficient while increasing the wing’s maximum lift coefficient and effective
aspect ratio. Other authors have proven that a pusher propeller experiences similar beneficial interactions
such as reduction of the wing induced drag and reduction of the required engine shaft power [84][49]. Major
drawbacks of a wingtip mounted propeller configuration stem from aeroelastic problems, high wing mass
required by higher inertia loads, and difficulty of controlling the aircraft for one-engine-out operation [100].
Such drawbacks can be lessened and even prevented by employing smaller propellers and distributed propul-
sion aided by electrification of the power plant.

2.8.2. Propeller-Wing Aerodynamic Interference Effects
Propeller-wing aerodynamic interference effects are not restricted to the wing tip. Regardless of the span-
wise location of the propeller, due to aerodynamic interference, an installed tractor propeller experiences
upstream effects from the wing; whilst the wing experiences downstream effects from the tractor propeller. In
the former, the wing changes the flow field upstream the propeller by introducing an upwash. As a result,
the propeller blades perceive periodic variations in angle of attack which leads to the generation of unsteady
aerodynamic loading. In the latter, the propeller yields a slipstream of increased dynamic pressure, turbu-
lence and swirl. This increases the dynamic pressure of the air around the wing, changes the angle of attack
perceived by the wing and the boundary layer properties on the wing. As a consequence, the spanwise lift
distribution over the wing is modified. Figure 2.18 illustrates three spanwise lift distributions: without any
propeller (prop off), with a tractor propeller rotating inboard up (prop on-inboard up), and with a tractor
propeller rotating outboard up (prop on-outboard up). As it can be seen, modifications are not restricted
to wing regions submerged within the propeller slipstream. With respect to the "prop off" setting, the lift is
increased in the up-going blade side (W-II/W-III) and decreased in the down-going blade side (W-III/W-II)
[20].

Figure 2.18: Schematic of the modified spanwise lift distribution due to propeller-wing aerodynamic interference effects [107].
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Further details of propeller-wing aerodynamic interaction and the physics behind are reported by John-
son et al. [50][51][55] and more recently, by Veldhuis [107] and Sinnige [99]. Investigation on the aerodynamic
interaction between distributed propellers and wings is treated in Fischer [25].

2.8.3. Effects of wingtip-mounted Propellers on Wing Dynamics
Most investigations on the aeroelastic characterization of wintip-mounted propeller-wing configurations fo-
cus on the dynamic behaviour of the wing per se, assuming rigidly attached propellers. In fact, propeller whirl
flutter does not happen if the propeller with rigid blades is rigidly attached to the wing, i.e. the stiffness of
the engine mount is much higher than the wing’s lowest bending/torsion stiffness. In this case, interest lies
mainly towards determining the effects caused by the presence of a propeller acting as an added inert mass
and the effects of the propeller loads transmitted to the aircraft.

Omitting the propeller loads the presence of a tip-propeller on the wing can be regarded as an additional
inert mass positioned at the wing tip. This configuration can be treated analogously to that of a wing with tip
stores. Tip stores are placed on aircraft wings as tip tanks or weapons [34]. Another analogy is found on wings
with tip-tanks, only that in this case, the tip-tank weight decreases as fuel is transmitted to the main fuel tank
[17].

A summary of the propeller loads transmitted to aircraft are shown schematically in Figure 2.19. The
loads are grouped into aerodynamic loads and inertial loads. The former is comprised of the total forces and
moments acting on the propeller hub and propeller slipstream effects that modify the lift distribution over
the surface behind the propeller. The latter consists of inertial forces/moments due to motions of propeller
centre of gravity and gyroscopic effects due to the motion of blades around the propeller centre of gravity
[105].

Loads 
transmitted 
to aircraft 
due to propellers

Aerodynamic
loads

Inertial 
loads

• Thrust and tangential forces

• Torque and yaw/pitching 
moment (P-factor)

Aerodynamic
loads at hub

Propeller 
slipstream

• Influence on axial and swirl 
velocities

• Moments/forces due to motion of propeller CG

• Gyroscopic moments due to motion of blades 
around the propeller CG

Ω

Figure 2.19: Summary of propeller loads transmitted to aircraft (adapted from [105]).

Cravana et al. [19] conducted numerical and experimental investigations of a flexible wing with dis-
tributed electric propulsion system, focusing on the effects of the spanwise location and the number of pro-
pellers on the modal frequencies of the wing. Adding propellers essentially changes the mass and loads dis-
tribution of the wing. The study demonstrates that edgewise and torsional frequencies are the most affected
and there is a stronger coupling between torsional and bending modes when inertial loads are increased near
wing tip.

Early studies on whirl flutter shows that thrust may be negligible, however, its influence on the dynamic
behaviour of a flexible wing is of significance. The effect of thrust on high aspect ratio wings has been inves-
tigated by Hodges et al. [37] who focused mainly on the effects of thrust on bending-torsion flutter. Results
suggest that thrust can have stabilising or destabilising effects on wing dynamics depending on the ratio
between wing bending stiffness to torsional stiffness. Also, an increase of flutter speed of 11% has been de-
termined when including thrust; this highlights the importance of considering thrust in the analysis of the
dynamic behaviour of a flexible wing. However, due to time constraints, this is not explored in present work.

Aeroelastic characteristics of wings with rigidly attached tip-propellers have been studied analytically and
numerically by Zhang et al. [114], numerically by Guruswamy [33], and experimentally by Chajec et al. [18].



20 2. State of the Art

2.9. Concluding Remarks
Following the literature study, it can be concluded that:

1. Recent studies on whirl flutter employ numerical methods such as Finite Element Methods, Multibody
Dynamics, and CSD/CSM codes. There exist mathematical models that predict good wing/whirl flutter
speeds but they are all limited to the analysis of isolated propellers (propellers on a rigid back-up struc-
ture) or a wing with propeller/s in the conventional lay out (i.e. wings with inboard propeller/s). In-
vestigations specifically targeting wing/whirl flutter in wingtip-mounted propellers and/or distributed
propellers have been carried out with Finite Element Method and Multibody Dynamics codes.

2. For the analysis of a wing with distributed propellers during the early stages of aircraft design, it is
advantageous to have an analytical model that allows adding multiple propellers systematically.

3. For whirl flutter calculations in small/mid-size propellers, the assumption of rigid blades is acceptable.
This is generally not the case in tiltrotor whirl flutter.

4. Several analytical methods for predicting the aerodynamics of a propeller undergoing gyroscopic mo-
tions are available. The method presented by Houbolt and Reed [45] has been widely used in propeller
whirl flutter analyses. A good understanding of Houbolt and Reed’s method is necessary to determine
its range of applicability.

5. The influence of flexibly mounted propellers on wing flutter is inconclusive. The influence of wing
flexibility on whirl flutter can be further explored. An investigation on how whirl flutter develops in a
propeller-wing configuration seems necessary.

6. In practice, whirl flutter may onset with increasing airspeed, increasing propeller rotational speed, or
reducing nacelle-engine stiffness. The main parameters that affect whirl flutter are nacelle-engine stiff-
ness, nacelle-engine structural damping, propeller pivoting length, rotational speed, airspeed and ad-
vance ratio. Their influence on an isolated propeller is well studied, however, their effects on wing/whirl
flutter when the propeller is attached to a flexible wing is unclear.

7. Most investigations on propeller whirl flutter have ignored propeller-wing aerodynamic interference
effects. In the case of wingtip-mounted propeller-wing configurations, this assumption may be too
simplistic.

8. In early studies, thrust has proved to be negligible in propeller whirl flutter analyses. However, as wings
become more flexible, the influence of thrust on wing/whirl flutter may no longer be negligible and
should be further explored.

Due to time constraints, present work targets the points (1)-(6). Points (7) and (8) are recommended for
future work.
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Project Definition

3.1. Research Question, Aims and Objectives
The project goal is to develop an analytical model to be used to predict the onset of wing/whirl flutter in
wingtip-mounted propeller and distributed-propeller wing configurations.

The research objective is to improve the understanding of the aeroelastic behaviour of a cantilever wing with
flexibly attached tractor propeller/s by predicting wing/whirl flutter behaviours using an analytical method.

Following the research objective, two main aspects are to be investigated in present thesis project: the
interaction between propeller/s and a cantilever wing from an aeroelastic standpoint and the influence of
general propeller-wing structural design parameters on wing/whirl flutter stability. These parameters are:
nacelle stiffness, nacelle structural damping, propeller mass, propeller pivoting length, mass moment of in-
ertia about the axis of rotation, and propeller advance ratio.

The research questions and sub-questions are:

1. What are the aeroelastic effects of propeller/s on a catilever wing?

(a) How does propeller gyroscopic effects influence the aeroelastic behaviour of the wing?

(b) What is the influence of propeller aerodynamics?

2. What are the effects of a cantilever flexible wing on propeller whirl flutter?

(a) How does wing flexibility influence propeller whirl flutter?

(b) What is the influence of wing aerodynamics?

3. What are the aeroelastic effects of placing a propeller on the wing tip?

(a) How does the spanwise location of the propeller influence wing/whirl flutter?

(b) What are the effects of the main propeller-wing structural design parameters on wing/whirl flutter
stability?

Present research is constrained to:

• Tractor propeller/s with ≥ 3 rigid blades.

• Propeller/s operating in windmilling conditions → there is no propeller thrust.

• Propeller-wing aerodynamic interference effects are ignored.

21
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3.2. Project Outline
Two main areas of work are defined:

• Derivation and validation/verification of a method to predict propeller aerodynamics and three aeroe-
lastic models for the prediction of wing/whirl flutter.

• Analysis of propeller-wing configurations using the derived aeroelastic models.

Methodology

First, a method to model the aerodynamics of a propeller undergoing pitching and yawing motions is
derived anew, this is the Houbolt-Reed method [45].

Subsequently, three aeroelastic models are derived:

• Isolated propeller or propeller flexibly attached to a rigid wing → classical propeller whirl flutter solu-
tion.

The model only includes the pitch and yaw degrees of freedom of the propeller.

• Flexible cantilever wing → classical wing bending-torsion flutter and divergence.

The structural model is a linear dynamic Euler-Bernoulli beam model and the aerodynamic model
is represented by a combination of strip theory and two-dimensional Theodorsen’s unsteady aerody-
namic theory formulated in time domain using a two-finite state approximation.

• Propeller/s flexibly mounted on a flexible cantilever wing → whirl/wing flutter and divergence.

It combines the previous two models.

The first two aeroelastic models are well-known models widely available in literature. The novelty in
present work lies largely in the last model.

Analysis

Once the aeroelastic models have been correctly implemented, appropriate case studies and paramet-
ric studies are performed for simplified models defined from two light aircraft, namely Tecnam P2006T and
NASA X-57 Maxwell.

• The case studies include three baseline models, these are: an isolated propeller, a flexible cantilever
wing, and a flexible cantilever wing with an inboard propeller. Two additional propeller-wing models
are analysed, these are: a flexible cantilever wing with a wingtip-mounted propeller, and a flexible
cantilever wing with an inboard and a wingtip-mounted propeller.

• The parametric studies are performed on the wingtip-mounted propeller model with respect to: nacelle
stiffness, nacelle structural damping, propeller mass, propeller pivoting length, mass moment of inertia
about the axis of rotation, and propeller advance ratio.

Outline diagram

The outline of present report is illustrated in Figure 3.1. Chapter 1 introduces the graduation project.
Chapter 2 presents the state of the art of propeller wing/whirl flutter. Propeller aerodynamics is treated in
Chapter 4. The aeroelastic models are derived in Chapter 5-Chapter 8. Chapter 9-Chapter 10 explain the case
study results. Chapter 11 presents the parametric studies performed on the wingtip-mounted propeller-wing
model. Finally, conclusions and recommendations are given in Chapter 12.



3.2. Project Outline 23

INTRODUCTION TO 
AEROELASTIC MODELS

(Chapter 5)

METHODOLOGY
(Part II)

ANALYSIS
(Part III)

PROPELLER AERODYNAMICS
(Chapter 4)

PROPELLER ON RIGID WING
(Chapter 6)

PROPELLER/S ON A 
FLEXIBLE CANTILVER WING

(Chapter 8)

FLEXIBLE CANTILEVER WING
(Chapter 7)

AEROELASTIC 
MODELS

BASELINE PROPELLER
(Chapter 9)

BASELINE PROPELLER-WING:
an inboard propeller

(Chapter 9)

BASELINE WING
(Chapter 9)

PROPELLER-WING: 
a wingtip-mounted propeller

(Chapter 10)

PROPELLER-WING: 
an inboard and a wingtip-

mounted propeller
(Chapter 10)

CASE STUDIES
(Chapter 9-10)

PARAMETRIC STUDIES
on the wingtip-mounted 

propeller-wing model
(Chapter 11)

• NACELLE STIFFNESS
• NACELLE STRUCTURAL DAMPING
• PROPELLER MASS
• PROPELLER PIVOTING LENGTH
• MASS MOMENT OF INERTIA 

ABOUT THE AXIS OF ROTATION
• PROPELLER ADVANCE RATIO

CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE 

WORK
(Chapter 12)

HOUBOLT-
REED MODEL

BACKGROUND
(Part I)

STATE OF THE ART
(Chapter 2)

INTRODUCTION
(Chapter 1)

PROJECT DEFINITION
(Chapter 3)

Figure 3.1: Outline of the thesis.





II
METHODOLOGY

25





4
Propeller Aerodynamics

A propeller under rotating and precessional motions faces non-uniform flow which create azimuthally vary-
ing aerodynamic loads. These loads result in in-plane vertical and horizontal forces and moments acting on
the rotor hub. They can be expressed in terms of propeller aerodynamic derivatives.

Previous work has shown that measured propeller aerodynamic derivatives lead to adequate predictions
of propeller whirl flutter boundaries [6]. The use of analytically predicted propeller aerodynamic deriva-
tives leads to more conservative whirl flutter boundaries of similar trends but with appreciable differences in
magnitude in some instances [6]. Good prediction of propeller aerodynamic derivatives is essential towards
obtaining reliable whirl flutter boundaries.

Several methods have been developed in literature to analytically compute these propeller aerodynamic
derivatives [91][45][109]. This chapter derives anew the method of Houbolt and Reed [45] as it has been widely
used in literature for propeller whirl flutter studies; the method is also explained in Bielawa [8][Chapter 11.2.2]
and in Cecrdle [16][Chapter 5.4]. A full understanding of the method is required so as to define its range of
applicability. For the remaining of present report the method is designated as Houbolt-Reed’s method.

Section 4.1 derives the Houbolt-Reed’s method. Section 4.2 presents the validation and verification re-
sults.

4.1. Houbolt-Reed’s Method
Houbolt and Reed [45] presents an analytical method to calculate the aerodynamics of a propeller in pitch
and yaw by means of strip theory and quasi-steady aerodynamics. Corrections for compressibility effects,
finite blade-length effects and unsteady aerodynamic effects are also presented.

In strip theory aerodynamics the wing (or blade in this case) is sub-divided into a set of small span-wise
sections or strips. On each strip two-dimensional quasi-steady aerodynamics applies. The aerodynamic
forces and moments acting on each strip are integrated along the wing span assuming no aerodynamic inter-
action between strips.

In order to take into account the aerodynamic perturbations caused by the propeller pitching and yawing
motions three principal quantities are introduced. These are: the local geometric angle of attack change (α̇),
the perturbation velocity in the propeller plane (ṡ), and the perturbation velocity out of the propeller plane
(ẇ).

The derivation of Houbolt-Reed’s method is explained as follows:

Consider a propeller with a rotor with radius R and a pivot point at a distance aR from the rotor hub as
illustrated in Figure 4.1. The propeller is restricted in pitch and yaw motions at its pivot point by appro-
priate springs and dampers (Kθ ,Kψ,Cθ,Cψ,). At an arbitrary instance, the propeller is pitched at an angle θ
and yawed at an angle ψ. Assuming small angle deflections, the distance travelled by the propeller hub in
accordance to Figure 4.2 is

a1 = eψψ

b1 = eθθ
(4.1)

27
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Figure 4.1: Schematic of a deflected propeller with flexible engine
mounts (adapted from [8]).
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Figure 4.2: Front view geometry of deflected propeller (adapted
from [8]).

where eθ and eψ are the distance between the rotor hub and the elastic centres in pitch and yaw, respec-
tively.

The coordinates of a point P at a distance r from the rotor hub in blade 1 is given by:

y = a1 + r cosΩt

z = b1 + r sinΩt

x = w =−ψr cosΩt −θr sinΩt

(4.2)

The geometric angle of attack change due to pitch and yaw is:

α1 =ψsinΩt −θcosΩt (4.3)

The perturbation velocities are:

ṡ =−ẏ sinΩt + ż cosΩt −Ωr =−ȧ1 cosΩt + ḃ1 sinΩt

ẇ =−ψ̇r cosΩt − θ̇r sinΩt +ψrΩsinΩt −θrΩcosΩt
(4.4)

There is also a perturbation velocity pointing radially outwards (ṙ = ẏ cosΩt + ż sinΩt ) but this compo-
nent is eliminated by rotor hub reaction forces. Note that as it is defined, ṡ and ẇ are the velocity components
of a point P in the propeller blade. The air velocity components due to perturbation are directed in the oppo-
site direction; this is reflected in Figure 4.3.
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Figure 4.3: Blade section and air velocity components at point P.

The perturbation velocities, ṡ and ẇ , have components that are in the same direction as the resultant
velocity U and perpendicular to the resultant velocity U. The components that act in the direction of U have
a magnitude of:

ẇ
V

U
+ ṡ
Ωr

U
(4.5)

The perturbation velocities that are normal to U have a magnitude of:

− ẇ
Ωr

U
+ ṡ

V

U
(4.6)

This normal component changes the effective angle of attack seen by the blade. The effective angle of
attack becomes:

α=α0 +α1 + tan−1
(
− ẇ

Ωr

U 2 + ṡ
V

U 2

)
≈

≈α0 +α1 − ẇ
Ωr

U 2 + ṡ
V

U 2

(4.7)

where α0 is the steady lift angle of attack expressed as the difference between the blade twist angle β and
the inflow angle φ. Note that the term −ẇ Ωr

U 2 + ṡ V
U 2 is a first order approximation of the actual angle of attack

change introduced by the perturbation velocities since sinφ≈ V
U and cosφ≈ Ωr

U (see Figure 4.3).
The perturbation velocities also change the effective velocity sensed by the blade section. The final effec-

tive velocity becomes:

Ue =
√(

U + ẇ
V

U
+ ṡ
Ωr

U

)2 +
(
− ẇ

Ωr

U
+ ṡ

V

U

)2 ≈

≈U + ẇ
V

U
+ ṡ
Ωr

U

(4.8)

The lift that develops on a section of blade 1 is therefore:
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l = 1

2
ρU 2

e caα=

≈ 1

2
ρca

(
U + ẇ

V

U
+ ṡ
Ωr

U

)2

·
(
α0 +α1 − ẇ

Ωr

U 2 + ṡ
V

U 2

) (4.9)

where c is the section blade chord and a is the section lift-curve slope.
Ignoring the higher order terms, the lift becomes:

l ≈ 1

2
ρca

(
U 2 +2ẇV +2ṡΩr

)
·
(
α0 +α1 − ẇ

Ωr

U 2 + ṡ
V

U 2

)
≈

≈ 1

2
ρcaU 2

[
α0 +α1 − Ωr

U 2

(
1− 2V

Ωr
α0

)
ẇ + V

U 2

(
1+ 2Ωr

V
α0

)
ṡ

]
=

= 1

2
ρcaU 2α0︸ ︷︷ ︸

steady-state lift

+ 1

2
ρcaU 2

[
α1 − Ωr

U 2

(
1− 2V

Ωr
α0

)
ẇ + V

U 2

(
1+ 2Ωr

V
α0

)
ṡ

]
︸ ︷︷ ︸

non-steady lift

(4.10)

The non-steady lift terms also depend on the steady-state angle of attack α0. However, 2V
Ωr α0 and 2Ωr

Ωr α0

are generally small compared to the unit term shown in the same parenthesis. Their contribution is small and
therefore, can be ignored in the computation of section lift. In fact, for a non-thrusting propeller α0 = 0.

Setting α0 = 0 means that in the absence of pitching and yawing motions, the propeller rotates at a speed
Ω that forms an inflow angle φ with the incoming airspeed V such that φ = β, where β is the blade angle
measured from the rotor plane to the airfoil zero lift line. Therefore, aerodynamic forces are only generated
when the propeller performs pitching and yawing motions, which in turn creates a geometric angle of attack
α1, an in-plane perturbation velocity ṡ, and an out-of-plane perturbation velocity ẇ . If this assumption is to
be applied to every blade section, it implies that the propeller has constant pitch — that is, the blade angle β
decreases towards the tip to account for the increasing rotational speedΩr . Note that induced velocities are
not considered.

Essentially, assuming α0 = 0 implies that only the lift generated by propeller blade motions are consid-
ered. For the remaining of the derivation, the terms multiplying the steady angle of attack α0 will be ne-
glected.

Substituting Equation 4.3 and Equation 4.4 in Equation 4.10, the non-steady lift that acts on a section of
blade 1 is:

l1 = 1

2
ρca

(
U 2α1 − ẇΩr + ṡV

)
=

=−1

2
ρca

(
V 2θ−V ḃ1 −Ωr 2ψ̇

)
cosΩt + 1

2
ρca

(
V 2ψ−V ȧ1 +Ωr 2θ̇

)
sinΩt =

=− f1 cosΩt + f2 sinΩt

(4.11)

The lift that develops on the other blades can be derived from Equation 4.11 by replacing:

blade 2: Ωt by Ωt +π
blade 3: Ωt by Ωt + π

2

blade 4: Ωt by Ωt + 3π

2

Using trigonometric relations, it is found that:

l2 =−l1

l3 = f1 sinΩt + f2 cosΩt

l4 =−l3

(4.12)
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4.1.1. Propeller Side Forces and Moments
The section lift can be further decomposed into thrust and torque components. The lift vector is approxi-
mated to be perpendicular to the direction of U as illustrated in Figure 4.3.

The section lift in blade 1 is decomposed into the directions of thrust and torque with the following values:

thrust: l1 cosψ≈ l1
Ωr

U

torque: l1 sinψ≈ l1
V

U

(4.13)

The direction of these lift components are illustrated by blue arrows in Figure 4.4. The thrust component
of the section lift is in the direction of the X-axis, it leads to the moment ∆M1 which can be further decom-
posed into ∆MY and ∆MZ . The torque component of the section lift can be decomposed into the side forces
lY and lz . The direction of these forces and moments are as indicated in Figure 4.4.

For simplicity, drag is ignored in the calculation of the present aerodynamic loads.
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Figure 4.4: Thrust and torque components of the section lift. "¯" vector that goes out of the plane of the page.

Summing the lift contributions of all four blades, the propeller side forces and moments are:

lY = 2
V

U
(l1 sinΩt + l3 cosΩt )

lZ = 2
V

U
(−l1 cosΩt + l3 sinΩt )

∆MY =−r
Ωr

V
lY

∆MZ = r
Ωr

V
lZ

(4.14)

Substituting Equation 4.11 and Equation 4.12 in Equation 4.14, the expressions for section side forces and
moments from all four blades become:
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Ωr 2

U

(
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)= Ωr 2

V
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(4.15)

Equation 4.15 are to be integrated from blade root radius r0 to blade tip radius R to establish the formulas
for the total aerodynamic forces and moments at the propeller hub. Assuming theoretical lift curve slope
(a = 2π), these are:
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(4.16)

where S′ =πR2 is the rotor area. The factors Ai are integrals along the blade whose expressions are:

A1 =
∫ 1

η0

c

c0

µ2√
µ2 +η2

dη

A2 =
∫ 1

η0

c

c0

µη2√
µ2 +η2

dη

A3 =
∫ 1

η0

c

c0

η4√
µ2 +η2

dη

(4.17)

where µ= J
π = V

ΩR is the advance ratio, η= r
R , η0 = r0

R , and c0 is the reference chord.

4.1.2. Compressibility and Finite-Length Blade Corrections
The method described so far makes use of incompressible flow and a theoretical lift-curve slope of 2π. Modifi-
cations to the expressions in Equation 4.17 are necessary to account for the compressibility and the induction
effects of a blade with finite length. One approach often used in straight wings of finite aspect ratio is to mul-
tiply the lift-curve slope by two factors: the Grauert-Prandtl Mach number correction and the compressible-
flow aspect ratio correction.

Note that a major difference between a straight wing and a propeller blade is that the wake shed by a
rotating blade is helical in nature. This has further consequences which will be treated in subsection 4.1.4.

The Grauert-Prandtl Mach number correction factor is:

1√
1−M 2

r

(4.18)

The compressible-flow aspect ratio correction factor is1:

A′

A′+2
with A′ = A

√
1−M 2

r (4.19)

1The lift curve slope with downwash effects is defined by
dCl
dα = a0

1+ a0
πA

.
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Multiplying both factors yields:

A

2+ A
√

1−M 2
r

= A

2+ A
√

1−M 2[1+η2/µ2]
(4.20)

where Mr is the resultant Mach number at each blade section, A is the aspect ratio, and M is the forward-
flight Mach number. The resultant Mach number Mr is defined from the blade resultant velocity

√
V 2 + (Ωr )2

whereas the forward-flight Mach number M is defined from the incoming airspeed V.
The aspect ratio is defined as:

A = R(1−η0)2

c0
∫ 1
η0

c
c0

dη
(4.21)

The expression in Equation 4.20 can be inserted under the integrals in Equation 4.17. Thus, Equation 4.17
becomes:

A1 =
∫ 1

η0

c

c0

µ2 A√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

A2 =
∫ 1

η0

c

c0

µη2 A√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

A3 =
∫ 1

η0

c

c0

η4 A√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

(4.22)

These expressions assumes a theoretical lift-curve slope of 2π and include the Glauert-Prandtl Mach num-
ber correction factor and finite-length blade correction.

When the propeller operates at over speed, the propeller blade tip speed can become supersonic. As a
consequence, the square-root of the Mach number correction turns negative. To avoid this problem, Rodden
and Rose [93] proposes a cut-off-value of compressible lift-curve slope, am = 4π. If

M 2
(
1+ η2

µ2

)
> 1−

(
a0

am

)2

(4.23)

the following correction is applied:

M 2
(
1+ η2

µ2

)
= 1−

(
a0

am

)2

(4.24)

a0 is the theoretical lift curve slope (a0 = 2π).

4.1.3. Introducing Propeller aerodynamic Derivatives
The aerodynamic forces and moments that act on a propeller under whirling motions are traditionally ex-
pressed in terms of propeller aerodynamic derivatives with respect to a pitch angle θ, a yaw angle ψ, a pitch

rate θ̇R
V , and a yaw rate ψ̇R

V . The orientation of the rotations and the direction of the forces and moments are
in line with the system defined in Figure 6.1b. The expressions for these forces and moments are:

FZ = 1

2
ρV 2S′

(
CZθθ+CZψψ+CZq

θ̇R

V
+CZr

ψ̇R

V

)
MY ,p = ρV 2S′R

(
Cmθ

θ+Cmψψ+Cmq

θ̇R

V
+Cmr

ψ̇R

V

)
FY = 1

2
ρV 2S′

(
CYθθ+CYψψ+CYq

θ̇R

V
+CYr

ψ̇R

V

)
MZ ,p = ρV 2S′R

(
Cnθθ+Cnψψ+Cnq

θ̇R

V
+Cnr

ψ̇R

V

)
(4.25)
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where θ and ψ are the effective pitch and yaw angles, respectively:

θ = θ− eθθ̇

V

ψ=ψ− eψψ̇

V

(4.26)

There are in total sixteen propeller aerodynamic derivatives. Because of symmetry between the pitching
and yawing motions and assuming no aerodynamic interference between the wing and the propeller, the
following relations are found (The reasoning is explained in Appendix B):

CZψ =CYθ

Cmψ =−Cnθ

CYψ =−CZθ

Cnψ =Cmθ

CZr =CYq

Cmr =−Cnq

CYr =−CZq

Cnr =Cmq

(4.27)

Ignoring the second time derivatives of the angles θ and ψ, equating Equation 4.25 with Equation 4.162,3

the following results are found:

CY ψ =−CZθ =
4Ωc0

V
A1

CY q =CZ r =−4Ωc0

V
A2

Cmψ =−Cnθ =
2Ωc0

V
A2

Cmq =Cnr =−2Ωc0

V
A3

(4.28)

Note that the expressions in Equation 4.16 only lead to eight propeller aerodynamic derivatives. These
are: CY ψ = −CZθ, CY q = CZ r , Cmψ = −Cnθ, and Cmq = Cnr . The remaining of the aerodynamic derivatives
that appear in Equation 4.25 represent aerodynamic loads caused by wake effects. The theoretical derivation
of these terms will be explained in subsection 4.1.4.

4.1.4. Wake Effects
The expressions derived so far are based on quasi-steady aerodynamics. A rotating-precessing propeller
blade has a similar behaviour to that of oscillating wings. The propeller blade develops an oscillatory lift
and the oscillatory lift generates shed vortices which induce a lift lag. This lift lag consists of a change in
magnitude and orientation of the lift predicted by quasi-steady theory. The problem is further complicated
by several reasons: first, the propeller treated here has four blades and thus, four wakes which can cause in-
duced effects; second, with the blades rotating the wakes are helical; and third, with the propeller rotating
and precessing at different frequencies, the wake experiences two frequency components.

In this section, a greatly simplified approach is taken so as to include basic notions of wake effects. The
following treatment is not exactly rigorous but it corroborates the existence of other aerodynamic terms that
can not be predicted by quasi-steady aerodynamics.

Consider the lift expression given by Equation 4.11. Assuming oscillatory motions with θ = θ0e iωt and
ψ=ψ0e iωt . The motion of the propeller blades can be represented by:

2Comparing Figure 6.1b to the system in Figure 4.1, the orientation of the pitching motion and MY has the opposite direction. When
establishing the equivalence between Equation 4.25 and Equation 4.16, in the expressions of Equation 4.16, θ needs to be changed by
−θ and MY by −MY .

3Note that from Equation 4.1: a1 = eψψ and b1 = eθθ



4.1. Houbolt-Reed’s Method 35

f1 = 1

2
ρca

(
V 2θ−V ḃ1 −Ωr 2ψ̇

)=
= 1

2
ρca

(
V 2θ0 −V eθθ0ωi −Ωr 2ψ0ωi

)
︸ ︷︷ ︸

f10

e iωt =

= f10e iωt

f2 = 1

2
ρca

(
V 2ψ−V ȧ1 +Ωr 2θ̇

)=
= 1

2
ρca

(
V 2ψ0 −V eψψ0ωi +Ωr 2θ0ωi

)
︸ ︷︷ ︸

f20

e iωt =

= f20e iωt

(4.29)

The lift in Equation 4.11 can be expressed as:

l1 =− f10e iωt e iΩt +e−iΩt

2
+ f20e iωt e iΩt −e−iΩt

2i
=

=−1

2
( f10 + i f20)e i (Ω+ω)t − 1

2
( f10 − i f20)e−i (Ω−ω)t

(4.30)

This expression shows that the lift and consequently its wake, has two frequency components as previ-
ously mentioned: Ω+ω andΩ−ω. This lift is analogous to the circulatory lift that appears in oscillating wings.
To account for the wake effects or lift lag effects, the expression needs to be multiplied by the Theodorsen
function C (k) = F (k)+ iG(k)4:

l ′1 =−F1 + iG1

2

(
f10 + i f20

)
e iΩ+ωt − F2 − iG2

2

(
f10 − i f20

)
e−i (Ω−ω)t (4.32)

(F1 + iG1) and (F2 − iG2) are to be defined by the reduced frequencies k1 and k2, respectively.

k1 = (Ω+ω)c

2
√

(Ωr )2 +V 2
, k2 = (Ω−ω)c

2
√

(Ωr )2 +V 2
(4.33)

Note the negative sign in (F2−iG2). (F1+iG1) is associated to a motion proportional to e iωt whereas (F2−
iG2) is associated to a motion proportional to e−iωt provided thatΩ is greater than ω (negative frequencies).

Reducing Equation 4.32 backwards and considering i f1 = ḟ1
ω and i f2 = ḟ2

ω , the lift including lift lag effects
in a section in blade 1 is given by:

l ′1 =
F1 +F2

2

(− f1 cosΩt + f2 sinΩt
)+ G1 +G2

2

(
f1 sinΩt + f2 cosΩt

)+
+G1 −G2

2ω

(− ḟ1 cosΩt + ḟ2 sinΩt
)− F1 −F2

2ω

(
ḟ1 sinΩt + ḟ2 cosΩt

)=
=F1 +F2

2
l1 + G1 +G2

2
l3 + G1 −G2

2ω
l̂1 − F1 −F2

2ω
l̂3

(4.34)

where

l̂1 =− ḟ1 cosΩt + ḟ2 sinΩt , l̂3 = ḟ1 sinΩt + ḟ2 cosΩt

4The Theodorsen function, or the lift-deficiency function, C (k), is defined by:

C (K ) = F (k)+ iG(k) = H (2)
1 (k)

H (2)
1 (k)+ i H (2)

0 (k)
(4.31)

where H (2)
n (k) are the nth order Hankel functions of the second kind, which are, in turn, composed of Bessel functions of the first and

second kinds[8].
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Analogously, similar expressions for the other blades can also be derived:

l ′2 =− l ′1

l ′3 =
F1 +F2

2

(
f1 sinΩt + f2 cosΩt

)− G1 +G2

2

(− f1 cosΩt + f2 sinΩt
)+

+G1 −G2

2ω

(
ḟ1 sinΩt + ḟ2 cosΩt

)+ F1 −F2

2ω

(− ḟ1 cosΩt + ḟ2 sinΩt
)=

=F1 +F2

2
l3 − G1 +G2

2
l1 + G1 −G2

2ω
l̂3 + F1 −F2

2ω
l̂1

l ′4 =− l ′3

(4.35)

The propeller side forces and moments are given as in Equation 4.14. Now including lift lag effects:

l ′Y = F1 +F2

2
lY + G1 +G2

2
lZ + G1 −G2

2ω
l̂Y − F1 −F2

2ω
l̂Z

l ′Z = F1 +F2

2
lZ − G1 +G2

2
lY + G1 −G2

2ω
l̂Z + F1 −F2

2ω
l̂Y

∆M ′
Y =−r

Ωr

V
l ′Y

∆M ′
Z = r

Ωr

V
l ′Z

(4.36)

Lift lag effects reduce the magnitude of the quasi-steady lift lY and lZ and also turns the quasi-steady lift
in the direction of rotation by an angle γ = tan−1 |G1+G2|

F1+F2
. In general, ω is small compared with Ω. Also, the

first two terms in the lift expressions in Equation 4.36 include the average values of F’s and G’s. This indicates
that the F’s and G’s can be approximated by using the reduced frequency k = Ωc

2U which means that the last

two terms in the lift expressions, l̂Y and l̂Z , can be dropped. Therefore, Equation 4.36 becomes:

l ′Y ≈F lY +GlZ

l ′Z ≈F lZ −GlY

∆M ′
Y ≈− r

Ωr

V
(F lY +GlZ ) = F∆MY −G∆MZ

∆M ′
Z ≈r

Ωr

V
(F lZ −GlY ) = F∆MZ +G∆MY

(4.37)

The total resultant aerodynamic forces and moments at the propeller hub are obtained by integrating
Equation 4.37 from blade root radius r0 to blade tip radius R:

LY = 1

2
ρV 2S′

{
F

[(
4Ωc0

V
A1

)(
ψ− ȧ1

V

)
+

(
4Ωc0

V
A2

)(
θ̇R

V

)]
+G

[(
4Ωc0

V
A1

)(
θ− ḃ1

V

)
+

(
− 4Ωc0

V
A2

)(
ψ̇R

V

)]}
LZ = 1

2
ρV 2S′

{
F

[(
4Ωc0

V
A1

)(
θ− ḃ1

V

)
+

(
− 4Ωc0

V
A2

)(
ψ̇R

V

)]
−G

[(
4Ωc0

V
A1

)(
ψ− ȧ1

V

)
+

(
4Ωc0

V
A2

)(
θ̇R

V

)]}
MY =−1

2
ρV 2S′R

{
F

[(
4Ωc0

V
A2

)(
ψ− ȧ1

V

)
+

(
4Ωc0

V
A3

)(
θ̇R

V

)]
+G

[(
4Ωc0

V
A2

)(
θ− ḃ1

V

)
+

(
− 4Ωc0

V
A3

)(
ψ̇R

V

)]}
MZ = 1

2
ρV 2S′R

{
F

[(
4Ωc0

V
A2

)(
θ− ḃ1

V

)
+

(
− 4Ωc0

V
A3

)(
ψ̇R

V

)]
−G

[(
4Ωc0

V
A2

)(
ψ− ȧ1

V

)
+

(
4Ωc0

V
A3

)(
θ̇R

V

)]}
(4.38)
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Ignoring the second time derivatives of the angles θ and ψ, comparing Equation 4.38 with Equation 4.25
it is possible to calculate all the propeller aerodynamic derivatives5,6:

CY ψ =−CZθ =
4Ωc0

V
I1

CY q =CZ r =−4Ωc0

V
I2

Cmψ =−Cnθ =
2Ωc0

V
I2

Cmq =Cnr =−2Ωc0

V
I3

CY θ =CZψ =−4Ωc0

V
J1

CY r =−CZ q =−4Ωc0

V
J2

Cmθ =Cnψ =−2Ωc0

V
J2

Cmr =−Cnq =−2Ωc0

V
J3

(4.39)

with the blade integrals given by:

I1 = µ2 A

c0

∫ 1

η0

c(η)F (k)√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

I2 = µA

c0

∫ 1

η0

η2c(η)F (k)√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

I3 = A

c0

∫ 1

η0

η4c(η)F (k)√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

J1 = µ2 A

c0

∫ 1

η0

c(η)G(k)√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

J2 = µA

c0

∫ 1

η0

η2c(η)G(k)√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

J3 = A

c0

∫ 1

η0

η4c(η)G(k)√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

(4.40)

These blade integrals also include compressibility and finite blade-length corrections mentioned earlier.
Note that these expressions are only valid for a propeller with four blades and a incompressible lift-curve
slope of a = 2π. To account for a different number of blades Nb (Nb > 2), Equation 4.40 is modified as:

5As mentioned earlier, the expressions in Equation 4.25 are in accordance to the system defined in Figure 6.1b. Comparing it to the
system in Figure 4.1, the orientation of the pitching motion and MY has the opposite direction. When establishing the equivalence
between Equation 4.25 and Equation 4.38, in the expressions of Equation 4.38, θ needs to be changed by −θ and MY by −MY .

6Note that from Equation 4.1: a1 = eψψ and b1 = eθθ
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I1 = Nb

4

µ2 A

c0

∫ 1

η0

c(η)F (k)√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

I2 = Nb

4

µA

c0
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η0

η2c(η)F (k)√
µ2 +η2

[
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√
1−M 2

(
1+η2/µ2

)]dη

I3 = Nb
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A

c0
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η0

η4c(η)F (k)√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

J1 = Nb

4

µ2 A

c0

∫ 1

η0

c(η)G(k)√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

J2 = Nb

4

µA

c0

∫ 1

η0

η2c(η)G(k)√
µ2 +η2
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√
1−M 2

(
1+η2/µ2

)]dη

J3 = Nb

4

A

c0

∫ 1

η0

η4c(η)G(k)√
µ2 +η2

[
2+ A

√
1−M 2

(
1+η2/µ2

)]dη

(4.41)

To account for a different number of blades Nb (Nb > 2) and the real lift-curve slope distribution a(η),
Equation 4.40 is modified as:

I1 = Nb

4

1

2π

µ2

c0

∫ 1

η0

a(η)c(η)F (k)√
µ2 +η2

dη

I2 = Nb

4

1

2π

µ

c0
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η0

a(η)η2c(η)F (k)√
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dη

I3 = Nb

4

1

2π

1
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η0

a(η)η4c(η)F (k)√
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dη

J1 = Nb

4

1

2π
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c0
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η0

a(η)c(η)G(k)√
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dη
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1

2π
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∫ 1
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a(η)η2c(η)G(k)√
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1
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∫ 1

η0

a(η)η4c(η)G(k)√
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dη

(4.42)

It is shown in Cecrdle [15] that the use of the real lift-curve slope distributions yields conservative pro-
peller aerodynamic derivatives (smaller absolute values) and therewith, more conservative whirl flutter pre-
dictions.

The aerodynamic derivatives Cmr = −Cnq and CY r = −CZ q are set to zero in Rodden and Rose [93] due
to their small values and lack of correlation with experimental data. However, in this report, they will be
included in all analysis for completeness.

Note that CY ψ = −CZθ , CY q = CZ r , Cmψ = −Cnθ , and Cmq = Cnr arise from steady aerodynamics; while
CY θ = CZψ, CY r = −CZ q , Cmθ = Cnψ, and Cmr = −Cnq arise from unsteady aerodynamics. It is shown in
Reed III and Bland [88] that for very large advance ratios, including the extra derivatives that arise from un-
steady aerodynamics has a stabilizing effect on the propeller backward whirl mode.

Applying Theodorsen’s function to the lift formula in Equation 4.30 introduces a phase lag to the steady
lift. In Theodorsen’s theory, a flat wake is assumed. For very large advance ratios, applying Theodorsen’s
function to account for wake effects is a good approximation. However, for low advance ratios, the phase
lag predicted by Theodorsen’s function tends to be too small. For low advance ratios, the modified version of
Theodorsen’s function derived by Loewy [64] seems more suitable; as instead of a flat wake it assumes a helical
wake, which approximates better that of a propeller. Low advance ratios are more common in helicopters or
tiltrotors operating in vertical or tilted mode. Propellers usually operate at higher advance ratios.
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4.1.5. Final Expressions for Propeller Aerodynamics
In spite of the arduous derivations, implementation of the Houbolt-Reed’s method is rather simple.

The complete set of aerodynamic forces and moments due to propeller pitching and yawing motions
are determined by the combination of Equation 4.25, Equation 4.26, Equation 4.39, and Equation 4.41 or
Equation 4.42.

Note that the inclusion of wing flexibility and aerodynamic interference effects may change the effective
pitch and yaw angles defined in Equation 4.26.

FZ = 1

2
ρV 2S′

(
CZθθ+CZψψ+CZq

θ̇R

V
+CZr

ψ̇R

V

)
MY ,p = ρV 2S′R
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θ+Cmψψ+Cmq

θ̇R

V
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ψ̇R

V

)
FY = 1

2
ρV 2S′

(
CYθθ+CYψψ+CYq
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V
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V

)
MZ ,p = ρV 2S′R

(
Cnθθ+Cnψψ+Cnq

θ̇R

V
+Cnr

ψ̇R

V

)
(4.25)

θ = θ− eθθ̇

V

ψ=ψ− eψψ̇

V

(4.26)

CY ψ =−CZθ =
4Ωc0

V
I1

CY q =CZ r =−4Ωc0

V
I2

Cmψ =−Cnθ =
2Ωc0

V
I2

Cmq =Cnr =−2Ωc0

V
I3

CY θ =CZψ =−4Ωc0

V
J1

CY r =−CZ q =−4Ωc0

V
J2

Cmθ =Cnψ =−2Ωc0

V
J2

Cmr =−Cnq =−2Ωc0

V
J3

(4.39)

4.1.6. Comments
Propeller aerodynamics in Houbolt-Reed’s method is based on strip theory and 2D quasi steady aerodynam-
ics. Drag forces are neglected. Compressibility and blade finite-length effects are included via correction
factors. Induced velocities at the rotor disk are ignored. Wake effects are added by means of modifying the
lift magnitude and lift orientation via Theodorsen function. Windmilling conditions are assumed; therefore
the propeller does not generate thrust. It is also assumed that propeller blade twist distribution is lineal (con-
stant pitch) — the inflow angle without considering the perturbed values (α̇1, ṡ, ẇ) is constant along the blade
radius.

Differences with the expressions found in literature

Comparing the propeller aerodynamic derivatives derived in this report with the expressions given in
Rodden and Rose [93], there is a difference in sign in the aerodynamic derivative Cnq (and thus Cmr ).

The expression derived in this report is:

Cnq =−Cmr = 2Ωc0

V
J3

whereas the expression given in Rodden and Rose [93] is:

Cnq =−Cmr =−2Ωc0

V
J3

Rodden and Rose [93] set this derivative to zero for it having very small values, therefore, a qualitative
comparison is not possible.
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4.2. Validation and Verification
The expressions derived in Section 4.1 to predict the propeller aerodynamic derivatives are implemented in
Matlab. The validation and verification of the implementation is carried out by replicating some propeller
aerodynamic derivative values found in literature, namely those obtained by Bennett and Bland [6] (fixed-
pitch propeller) and Rodden and Rose [93] (constant speed propeller).

Bennett and Bland [6] conducted an experimental campaign in which they measured five propeller aero-
dynamic derivatives from a windmilling propeller and compared their experimental results with two sets of
theoretical derivatives, namely Ribner [91] and Houbolt and Reed [45]. The propeller was a 1/8-scale model
of a typical turboprop aircraft propeller treated in Reed III and Bland [88]; it has four aluminium blades with
a radius of 0.8438 ft and a blade semichord of 0.1823 ft at three-quarter radius, therefore, a solidity at three-
quarter radius of 0.1834. The measured derivatives were: CZθ, Cmθ, CY θ, Cmψ, Cmq , and CY q .

As mentioned, the theoretical derivatives were calculated by employing two methods: Houbolt-Reed’s
method, which is explained in Section 4.1 and Ribner’s method [91]. Both methods give direct expressions
to calculate four propeller aerodynamic derivatives, these are: CZθ, Cmψ, Cmq , CY q (or their counterparts:
CY ψ, Cnθ, Cnr , CZ r ). Ribner’s method [91] does not include expressions to calculate propeller aerodynamic
derivatives that arise due to wake effects. On the other hand, as explained in Section 4.1, Houbolt-Reed’s
method [45] includes expressions to calculate the complete set of the propeller aerodynamic derivatives by
including wake effects (Equation (4.39) ) but these are not used in Bennett and Bland [6]. Instead, a slightly
simpler approach is taken and explained below.

Bennett and Bland [6] only uses the expressions that do not include wake effects nor compressibility ef-
fects (M = 0) but includes the finite blade-length corrections factor (Equation (4.22) and Equation (4.28)).
These expressions only allow to determine four derivatives (CZθ , Cmψ, Cmq , and CY q ). The derivatives Cmθ

and CY θ are obtained by using the theoretical expressions given in Reed III and Bland [88]. The method intro-
duced in Reed III and Bland [88] is analogous to Houbolt-Reed’s method and it is as follows: CZψ appears be-
cause of phase-lags of aerodynamic forces acting on the propeller. When the propeller is at a yawed position
with respect to the free stream direction, the propeller blades perceive angle of attack oscillations. As a con-
sequence, the side force due to yaw (CY ψ = −CZθ) undergoes a phase lag δ and a vertical force (CZψ = CY θ)
arises. The vertical force is given by:

CZψ =CY ψ tanδ (4.43)

where the phase lag δ can be estimated using the Theodorsen’s function for oscillatory flow (C (k) = F (k)+
iG(k)). The expression for the phase lag δ is given by:

δ= tan−1
[−G(k)

F (k)

]
(4.44)

C (k) is a function of the reduced frequency k = Ωb
2U which depends on the propeller rotational velocityΩ,

the blade element chord b, and the free stream velocity U. k can be approximated by the reduced frequency
of a blade element at the quarter chord section:

k0.75R = b0.75R

2R

√(
3
4

)2 +
(

J
π

)2
(4.45)

Analogously, Cmθ =Cnψ is given by:

Cmθ =Cmψ tanδ (4.46)

The geometrical and operational features of the propeller tested by Bennett and Bland [6] is found in
[[6],Figure 4, Figure 5 and Table I]. Results obtained with present analysis is compared with those obtained
by Bennett and Bland [6] in Figure 4.5. As it can be seen, present analysis calculates the exact same values
for all the propeller aerodynamic derivatives as in Bennett and Bland [6] except for Cmθ and Cmψ. Cmθ de-
pends on Cmψ according to Equation (4.46). Therefore, the discrepancy lies in the values of Cmψ. The reason
for this discrepancy is unknown but present implementation predicts values which are slightly closer to the
experimental data.

With Figure 4.5, present implementation of propeller aerodynamic derivatives is verified and validated for
the case of including finite blade-length aspect ratio corrections, and excluding wake effects and compress-
ibility effects (M = 0).
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Figure 4.5: Propeller aerodynamic derivatives using Houbolt-Reed’s method excluding wake effects. Comparison with data from Bennett
and Bland [6].

The validation for the case of including compressibility effects with operational Mach number M 6= 0, fi-
nite blade-length aspect ratio correction, and wake effects (Equation (4.39) and Equation (4.41)) is conducted
by comparing results from present calculations with those found in Rodden and Rose [93]. The propeller anal-
ysed by Rodden and Rose [93] is the same as the one in Bennett and Bland [6] but with twice the amount of
the propeller blade chord. Also, a typical propeller rotational speed Ω of 1800 RPM and a speed of sound of
1116 ft/s are assumed in order to calculate the operational Mach number. Results are shown in Table 4.1 and
the relative errors in Table 4.2. As it can be seen, the results are very approximate, minor differences can be
attributed to numerical truncation and/or a different numerical scheme employed to solve the blade inte-
grals. These findings are expected since the propeller aerodynamic expressions derived and used in Rodden
and Rose [93] are exactly the same as the ones used in the present analysis, with the exception of Cnq =−Cmr .
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Note that Table 4.1 and Table 4.2 only show five out of the eight distinct propeller aerodynamic derivatives.
Validation of the other derivatives is not possible since they are not reported in Rodden and Rose [93].

β0.75R 25 35 46 52 58 β0.75R 25 35 46 52 58
Reference [93] Present Analysis

CZθ -0.3310 -0.4180 -0.5120 -0.5660 -0.6190 CZθ -0.328 -0.420 -0.516 -0.575 -0.622
Cmθ 0.0400 0.0362 0.0304 0.0264 0.0221 Cmθ 0.040 0.036 0.030 0.026 0.022
Cmq -0.2160 -0.1391 -0.0833 -0.0603 -0.0422 Cmq -0.219 -0.138 -0.082 -0.057 -0.042
CZψ 0.0877 0.1106 0.1320 0.1408 0.1461 CZψ 0.087 0.111 0.133 0.143 0.147
Cmψ 0.1506 0.1373 0.1188 0.1067 0.0937 Cmψ 0.152 0.138 0.119 0.105 0.094

Table 4.1: Comparison of the propeller aerodynamic derivatives with Rodden and Rose [93].

β0.75R [deg] 25 35 46 52 58
Error [%]

CZθ -0.93 0.50 0.88 1.55 0.54
Cmθ 0.79 0.27 0.00 -1.42 0.13
Cmq 1.59 -1.08 -2.00 -4.96 -1.33
CZψ -0.94 0.69 0.86 1.23 0.66
Cmψ 0.72 0.16 -0.15 -1.28 0.03

Table 4.2: Comparison of the propeller aerodynamic derivatives with Rodden and Rose [93].

For completeness, the values of all the aerodynamic derivatives calculated for the case of excluding com-
pressibility effects (Mach = 0), but including finite blade-length aspect ratio correction, and wake effects
(Equation (4.39) and Equation (4.41)) are shown in Figure 4.6. The propeller analysed is the one used in
Bennett and Bland [6]. The results obtained by Bennett and Bland [6] are also shown. The propeller aerody-
namic derivatives calculated by present analysis follow the same trend as the experimental values and in some
cases, their values are fairly approximate. In all cases, present analysis predicts aerodynamic derivatives with
smaller absolute values than the experimental derivatives. Therefore, present method predicts conservative
propeller aerodynamic loads.

Figure 4.7 presents the influence of compressibility effects on propeller aerodynamic derivatives when
the theoretical lift curve slope of 2π is assumed. Increasing the Mach number increases the absolute value
of the propeller aerodynamic derivatives. For Mach values below 0.2 the change in value of the propeller
aerodynamic derivatives are small. When the Mach number approximates to 1, the change in the derivatives
becomes barely noticeable. This is because the propeller blade tip speed becomes supersonic and a cut-off-
value of compressible lift-curve slope is applied in the correction of compressibility effects (Equation (4.24)).
Including compressibility effects, present method do not calculate conservative values at high Mach num-
bers; further validation/verification is required.

Final comments

For a complete verification of the Houbolt-Reed’s method, it is necessary to obtain experimental values of
the complete set of propeller aerodynamic derivatives, especially the derivatives that have not been verified
in present work. This is proposed for future work.

Furthermore, note that these derivatives have been validated for a propeller in windmilling condition.
Unless otherwise specified, present work employs propeller aerodynamic derivatives evaluated by the

method of Houbolt and Reed including compressibility and aspect ratio correction factors, and wake effects.
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Figure 4.6: Propeller aerodynamic derivatives using Houbolt-Reed’s method including wake effects. Mach = 0. Comparison with data
from Bennett and Bland [6].
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Figure 4.7: Propeller aerodynamic derivatives using Houbolt-Reed’s method including wake effects. Mach changes from 0 to 1. Compar-
ison with experimental data from Bennett and Bland [6].



5
Aeroelastic Models: Introduction

This chapter introduces the common tools that will be used in the following chapters to derive the aeroelastic
models and analyse their aeroelastic behaviour.

5.1. Derivation of Equations of Motion
The equations of motion of the aeroelastic systems to be analysed in present report are to be derived via
Lagrange’s equations.

The Lagrange’s equations are represented by:

d

d t

( ∂T

∂q̇i

)
− ∂T

∂qi
+ ∂U

∂qi
+ ∂D

∂q̇i
=Qi (5.1)

where qi is the generalized degrees of freedom and Qi the generalized forces in the system. T is the kinetic
energy, U is the potential energy, and D is the dissipation/damping function.

The structural model determines the generalized coordinates that define the motion of the specific system
under analysis. The principle of virtual work is then applied to determine the generalized forces and moments
that act upon these generalized degrees of freedom. Such forces and moments are to be represented by the
appropriate aerodynamic models.

The aeroelastic analyses in present work investigate the dynamic responses of a cantilever wing and pro-
peller/s after a small deviation from an equilibrium state. Therefore, the generalized degrees of freedom are
displacements from the equilibrium state.

5.2. State-Space System: the Eigenvalue Analysis
The equations of motion for the aeroelastic systems to be derived in present report has the following form

Mq̈+Cq̇+Kq = 0 (5.2)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and q is the vector of N
degrees of freedom of the aeroelastic system.

Equation (5.2) is a set of second-order differential equations which can be reduced to a set of first-order
differential equations by being written in a state-space form such as:[

q̇
q̈

]
=

[
0 I

−M−1K −M−1C

][
q
q̇

]
(5.3)

where 0 and I are zero and identity matrices, respectively.
The stability of the aeroelastic system can be analysed by obtaining the eigenvalues and eigenvectors of

the state matrix J

J =
[

0 I
−M−1K −M−1C

]
(5.4)

45
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J is a 2N×2N matrix, if all matrix elements are real numbers there will be N pairs of eigenvalues with each
pair being real values or forming a complex conjugate pair. Each of these pairs have associated a distinct
mode shape. The eigenvalues of J provide information of the frequency and damping rate of the aeroelas-
tic system’s vibrational modes, and the corresponding eigenvectors represent the mode shapes. For a given
mode, the undamped natural frequency ω and damping ratio ζ are calculated from the real and imaginary
parts of the eigenvalue λ [47]:

ω=
√

ℜ(λ)2 +ℑ(λ)2

ζ=−ℜ(λ)

ω

(5.5)

Thus, the eigenvalues can also be expressed as

λ=−ζω± jω
√

1−ζ2 (5.6)

where j =p−1.
The system is unstable when the damping ratio ζ becomes negative or when the real part of the eigenvalue

λ becomes positive. The undamped natural frequencies ω determine which modes are coupling to cause an
instability: instability can happen when the frequencies of two different modes come close to each other.

The eigenvectors z of the state matrix J are the mode shapes of the aeroelastic system and have the fol-
lowing form

zi =
[

x̂i

λi x̂i

]
(5.7)

where x̂i are the first N elements of the eigenvector related to the i th mode, these are the displacement
components of the mode shapes. In this case, they are the first N elements of the eigenvectors because matrix

J is arranged according to

[
q
q̇

]
.

The general solution to Equation (5.3) is given by

q =
2N∑
i=1

ci x̂i eλi t =
2N∑
i=1

ci x̂i e−ζiωi t e
jωi

√
1−ζ2

i t
(5.8)

where ci are constants to be determined by the initial conditions. The physical time response is simply
the real part of q.

Complex mode shapes

If the eigenvalues are complex values, the associated eigenvectors will also constitute of complex num-
bers. One way of visualizing these complex mode shapes is to plot them in time.

Let x̂ be the displacement components of a complex mode shape

x̂ =ℜ(x̂)+ jℑ(x̂) (5.9)

By definition, the physical displacement in time defined by the complex mode shape, x(t ), is given by

x(t ) =ℜ
(
x̂e−ζiωi t e jωd t

)
(5.10)

where ωd is the damped natural frequency of the mode shape defined as ωd = ω
√

1−ζ2 and t the time.
Introducing Euler’s formula

x(t ) = e−ζiωi t ·ℜ
[(
ℜ(x̂)+ jℑ(x̂)

)
·
(

cosωd t + j sinωd t
)]

=
= e−ζiωi t ·

[
ℜ(x̂)cosωd t −ℑ(x̂)sinωd t

] (5.11)
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Note that flutter is a particular case in which the value of damping ζ becomes zero going from positive to
negative. Therefore, the expression for plotting a mode shape in flutter would be:

x(t ) =ℜ
(
x̂e jωt

)
=ℜ(x̂)cosωt −ℑ(x̂)sinωt (5.12)

5.2.1. Identifying the Instabilities
To identify the instabilities of the aeroelastic system a velocity interval is specified. The velocity starts from
an initial velocity, usually zero, and is increased by ∆V . At each velocity V , the matrix J is determined and its
eigenvalues and eigenvectors (mode shapes) are calculated.

After the calculations are made for all the velocities in the set interval, it is possible to plot V-g and V-f
curves, these are inflow airspeeds versus damping ratio curves and inflow airspeeds versus frequency curves,
respectively. The first velocity at which the damping ratio of a mode becomes zero is defined as the criti-
cal speed and marks the start of an instability. System instabilities (i.e. wing/whirl flutter and wing/whirl
divergence) are identified by having negative damping ratios:

• Wing/whirl flutter is an instability with diverging oscillatory/spiral motions. The eigenvalues are com-
plex numbers with a positive real part and a non-zero imaginary part. Therefore, the motion will have
a non-zero natural frequency and a negative damping ratio. Flutter velocity is defined as the velocity at
which the damping ratio becomes zero.

• Wing/whirl divergence is an instability with diverging static motions. The eigenvalues are real positive
numbers. Therefore, the motion will have a zero or non-zero natural frequency and a damping ratio of
value minus one. Zero natural frequency takes place when the imaginary part first becomes zero.

V-g and V-f diagrams can also be represented by the real part and imaginary part of the eigenvalues. In
this case, V-g curves show the inflow airspeeds versus the real part of the eigenvalues and V-f curves show
the inflow airspeeds versus the imaginary part of the eigenvalues. Another useful diagram is the root locus
plot: the imaginary parts are plotted against the real parts. Then, the instabilities are identified by detecting
the velocities at which the real part of the eigenvalues becomes positive. Null imaginary parts are peculiar to
wing/whirl divergence.

5.2.2. Benignity of Flutter
There are different types of flutter behaviours depending on how damping changes with increasing airspeed
(see Figure 5.1). Soft flutter is characterised by a gradual decrease in damping with increasing airspeed,
whereas hard flutter occurs when this decrease is abrupt and violent. In hump mode, damping decreases
to soon increase again returning to stability, this may result in much lower flutter speed [57].

V

g Hard flutter

Soft flutter

Hump mode

Figure 5.1: V-g diagram showing different flutter behaviours (adapted from [57]). Here, ’g’ may be the real part of the eigenvalues or the
negative of damping ’−ζ’.

Benignity of flutter is a concept that can be employed to evaluate flutter behaviours. For a chosen veloc-
ity interval around the flutter velocity (∆V ) the corresponding interval of damping ratio (∆ζ) is determined.
Benignity is defined as
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Benignity =
( ∆ζ
∆V

)−1
(5.13)

High benignity values indicate that flutter can be avoided by adding small amounts of structural damping.
Low values of benignity values indicate that large amount of structural damping is required to avoid the onset
of flutter.

Flutter benignity may also be gauged intuitively by looking at the V-g diagram. Small slope around the
flutter velocity indicate high benignity and acute slope around the flutter velocity indicate low benignity.

5.2.3. Ordering the Mode Shapes
It can happen that at each velocity iteration, depending on the criterion used to order the eigenvalues, the
order of mode shapes (eigenvectors) can switch from the previous velocity iteration. For example, if the
eigenvalues are ordered in ascending order of their real part, at the velocity iteration where the real part of
one mode becomes smaller than the real part of another mode, the eigenvalues switch their order in the
vector and so do their corresponding mode shapes. If a switch occurs, the modes must be re-ordered. To
track the mode shapes at each velocity iteration, the cross-orthogonality correlation analysis of modes before
and after each iteration is performed.

The correlation analysis is performed using the Modal Assurance Criterion (MAC), which is expressed as

MAC(φ1,φ2) =
(
φ1

T ·φ2

)2

(
φ1

T ·φ1

)(
φ2

T ·φ2

) (5.14)

where φ1 and φ2 are the correlated modes. If φ1 and φ2 are identical, MAC will have a value of one; if φ1

and φ2 are very different, the MAC value will be close to zero.
At each velocity iteration, the modes of current iteration is compared to the modes of the previous itera-

tion by calculating the matrix of MAC values. The modes of current iteration are reordered accordingly so the
order of modes remain the same at each velocity iteration.
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Propeller on a Rigid Wing

This chapter deals with the dynamic behaviour of an isolated propeller under pitching and yawing motions
(propeller flexibly attached to a rigid wing). The nacelle-pylon is simplified as a massless rigid rod with two
elastic centres for pitch and yaw deflections. Small-angle approximation is applied to both. The propeller
rotor is simplified as a rotor with Nb > 2 blades. There are no aerodynamic interference effects induced by
the wing or adjacent structural elements. The kinetic energy of the rotating parts are ignored.

The kinematic scheme of an isolated propeller with pitching and yawing motions is visualized in Fig-
ure 6.1. The propeller pitches an angle θ about the YI−axis and yaws an angle ψ about the Z−axis. The
propeller aerodynamic loads are composed of a side-force FY in the Y −axis, vertical force FZ in the Z−axis
and moments MY ,P and MZ ,P about the Y − and Z−axis, respectively. If the propeller is windmilling, there
is no thrust force. If the propeller is not windmilling, there will be a thrust force acting on the X -axis. Thrust
has very little effect on the dynamic system of an isolated propeller or a propeller on rigid wing and it is often
neglected [85]. X I , YI , and ZI are the space fixed axes and X, Y, and Z are the body fixed axes that do not rotate
with the propeller.

6.1. Derivation of the Equations of Motion
The system shown in Figure 6.1 is modelled into a dynamic system with two degrees of freedom. The equa-
tions of motion of such a system is formulated via Lagrange’s equations.

The Lagrange’s equations are represented by:

d

d t

( ∂T

∂q̇i

)
− ∂T

∂qi
+ ∂U

∂qi
+ ∂D

∂q̇i
=Qi (5.1)

where qi is the generalized degrees of freedom and Qi the generalized forces in the system. T is the kinetic
energy, U is the potential energy, and D is the dissipation/damping function.

The generalized degrees of freedom are the pitch θ and yaw ψ angles and the generalized forces are given
by the aerodynamic forces and moments acting on the pitching and yawing propeller.

The angular velocities of the system are the pitch rate θ̇, the yaw rate ψ̇, and the propeller rotational speed
Ω. These vectors can be grouped into the components along the X, Y, and Z axes:

ωX =Ω+ θ̇ sinψ≈Ω+ θ̇ψ
ωY = θ̇cosψ≈ θ̇
ωZ = ψ̇

(6.1)

The total kinetic energy of the system is:

T = 1

2
IXω

2
X + 1

2
IY ω

2
Y + 1

2
IZω

2
Z ≈

≈ 1

2
IX

(
Ω2 +2Ωθ̇ψ

)
+ 1

2
IY θ̇

2 + 1

2
IZ ψ̇

2
(6.2)
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Figure 6.1: Kinematic scheme of the idealized propeller-engine-nacelle system (adapted from [88]).
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where IX is propeller mass moment of inertia about the axis of rotation, and IY and IZ are the propeller
mass moments of inertia about Y and Z axes, respectively.

The potential energy of the system is:

U = 1

2
Kθθ

2 + 1

2
Kψψ

2 (6.3)

where Kθ stiffness of the propeller attachment in pitch and Kψ is the stiffness of the propeller attachment
in yaw.

The structural damping of the system is modelled as ’hysteretic’ damping (or also known as simply ’struc-
tural damping’) commonly employed in flutter analysis 1:

D = 1

2

Kθgθ
ω

θ̇2 + 1

2

Kψgψ
ω

ψ̇2 (6.7)

whereω is damped natural pitching/yawing frequency and gθ and gψ are the damping coefficients for the
uncoupled pitch and yaw modes, respectively.

Applying the Lagrange’s equations, the differential equations of motion are:

IY θ̈︸︷︷︸
Inertia

+ IXΩψ̇︸ ︷︷ ︸
Gyroscopic

+ Kθθ︸︷︷︸
Elastic

+ Kθgθ
ω

θ̇︸ ︷︷ ︸
Structural damping

= MY︸︷︷︸
Aerodynamic

IZ ψ̈︸︷︷︸
Inertia

− IXΩθ̇︸ ︷︷ ︸
Gyroscopic

+Kψψ︸ ︷︷ ︸
Elastic

+ Kψgψ
ω

ψ̇︸ ︷︷ ︸
Structural damping

= MZ︸︷︷︸
Aerodynamic

(6.8)

where IXΩψ̇ and −IXΩθ̇ are the gyroscopic terms that couple pitching and yawing motions; MY and MZ

are the aerodynamic forces. From Equation (6.8), the nature of the various forces and moments that act on
the system can be identified; the inertia, damping, and elastic components are typical of dynamic systems
but the gyroscopic and aerodynamic forces are induced by the rotating propeller.

MY is the total pitching moment about the pitching pivot point and MZ is the total yawing moment about
the yawing pivot point. These moments are obtained from the in-plane aerodynamic forces and moments
that act on the propeller hub (see Equation (4.25)). When the propeller axis is deflected in pitch or yaw with
respect to the free stream, aerodynamic forces and moments are generated and are proportional to the angle

1There are two types of structural damping model often used in Aeroelasticity: ’Hysteretic’ or (misleadingly called) structural damping
and viscous damping. In structural (hysteretic) damping, the damping force is proportional to the elastic restoring force and it is in
phase with the oscillation velocity. In viscous damping, the damping force is proportional to the oscillation velocity.

Let’s consider the motion in pitch, θ. It is possible to establish an equivalence between structural damping and viscous damping for the
same amount of damping energy dissipated. At a given oscillation amplitude and for a sinusoidal pithing motion of frequency ω:

gθ = 2ζθ
ω

ωθ
(6.4)

ζθ =
cθ

2IY ωθ
(6.5)

where ζθ is the viscous damping coefficient relative to critical damping,ωθ is the undamped natural pitching frequency of a nonrotating
propeller, and cθ is the damping coefficient. If the propeller is not spinning, ω ≈ ωθ , therefore, gθ ≈ 2ζθ . If the propeller is spinning,
gyroscopic effects cause the values of ω to be different from that of ωθ , in such cases, the calculated damping forces will depend on
whether the system is modelled with the ’hysteretic’ type or viscous type of structural damping [70][88].

In current work, if structural or ’hysteretic’ damping is to be substituted by viscous damping, assuming equal dissipated energy between

both models and ωθ =
√

Kθ
IY

, the following is applied:

Kθgθ
ω

= 2ζθωθ IY (6.6)

this is known as the viscous equivalent of the structural damping model.

η= Kθgθ
ω is also called loss factor and Kθ

(
1+η j

)
the complex stiffness model or the Kelvin–Voigt model which is often found describing

the internal damping in viscoelastic materials [47].
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deflected and its rate of change (assuming small deflections). Therefore, the aerodynamic forces and mo-
ments can be expressed as function of aerodynamic derivatives with respect to the pitch and yaw deflections
and their respective rate of change.

FZ = 1

2
ρV 2S′

(
CZθθ+CZψψ+CZq

θ̇R

V
+CZr

ψ̇R

V

)
MY ,P = ρV 2S′R

(
Cmθ

θ+Cmψψ+Cmq

θ̇R

V
+Cmr

ψ̇R

V

)
FY = 1

2
ρV 2S′

(
CYθθ+CYψψ+CYq

θ̇R

V
+CYr

ψ̇R

V

)
MZ ,P = ρV 2S′R

(
Cnθθ+Cnψψ+Cnq

θ̇R

V
+Cnr

ψ̇R

V

)
(4.25)

where ρ is the air density, V the free stream velocity, S’ the propeller disk area (S′ = πR2), R the propeller
radius, θ and ψ the effective pitch and yaw angles between the propeller axis and the relative wind.

θ = θ− eθθ̇

V

ψ=ψ− eψψ̇

V

(4.26)

where eθ is the pitch rotational axis to the propeller plane and eψ is the yaw rotational axis to the propeller
plane. eθ and eψ are positive.

The moments around the pivot points are:

MY = MY ,P −eθFZ

MZ = MZ ,P +eψFY
(6.9)

Because of symmetry between the pitching and yawing motions and assuming no aerodynamic interfer-
ence between the wing and the propeller:

CZψ =CYθ

Cmψ =−Cnθ

CYψ =−CZθ

Cnψ =Cmθ

CZr =CYq

Cmr =−Cnq

CYr =−CZq

Cnr =Cmq

(4.27)

Substituting Equation 4.25, Equation 4.26, Equation 4.27, and Equation 6.9 in Equation 6.8 yields the
following:

Msq̈+Csq̇+Ksq = Maq̈+Caq̇+Kaq (6.10)

where q is the vector of generalised coordinates, Ms is the propeller structural mass matrix, Cs is the
propeller damping mass matrix, Ks is the propeller stiffness mass matrix, Ma is the propeller aerodynamic
mass matrix, Ca is the propeller aerodynamic damping matrix, and Ka is the propeller aerodynamic stiffness
matrix.

The generalised coordinate vector is

q =
[
θ

ψ

]
(6.11)

The propeller structural mass matrix is given by

Ms =
[

IY 0
0 IZ

]
(6.12)

The propeller structural damping matrix is given by
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Cs =
[

Kθgθ
ω IXΩ

−IXΩ
Kψgψ
ω

]
(6.13)

The propeller structural stiffness matrix is given by

Ks =
[

Kθ 0
0 Kψ

]
(6.14)

The propeller aerodynamic mass matrix is given by

Ma =
−k2Cmq

R
V

eθ
V +eθk1CZ q

R
V

eθ
V −k2Cmr

R
V

eψ
V +eθk1CZ r

R
V

eψ
V

−k2Cnq
R
V

eθ
V −eψk1CY q

R
V

eθ
V −k2Cnr

R
V

eψ
V −eψk1CY r

R
V

eψ
V

 (6.15)

The propeller aerodynamic damping matrix is given by

Ca =
−k2Cmθ

eθ
V +k2Cmq

R
V +eθk1CZθ

eθ
V −eθk1CZ q

R
V −k2Cmψ

eψ
V +k2Cmr

R
V +eθk1CZψ

eψ
V −eθk1CZ r

R
V

−k2Cnθ
eθ
V +k2Cnq

R
V −eψk1CY θ

eθ
V +eψk1CY q

R
V −k2Cnψ

eψ
V +k2Cnr

R
V −eψk1CY ψ

eψ
V +eψk1CY r

R
V


(6.16)

The propeller aerodynamic stiffness matrix is given by

Ka =
k2Cmθ−eθk1CZθ k2Cmψ−eθk1CZψ

k2Cnθ+eψk1CY θ k2Cnψ+eψk1CY ψ

 (6.17)

where k1 = 1
2ρV 2S′, k2 = ρV 2S′R, S′ =πR2 is the area swept by the propeller blades and R is the propeller

radius.

In state-space form Equation (6.10) becomes:[
q̇
q̈

]
=

[
0 I

−(Ms −Ma)−1(Ks −Ka) −(Ms −Ma)−1(Cs −Ca)

][
q
q̇

]
(6.18)

where 0 and I are 2×2 zero and identity matrices, respectively.

J =
[

0 I
−(Ms −Ma)−1(Ks −Ka) −(Ms −Ma)−1(Cs −Ca)

]
(6.19)

The eigenvalue analysis as explained in Section 5.2 is performed on J. In this system, there are two mode
shapes, backward whirl mode (lower frequency) and forward whirl mode (higher frequency). The critical
velocity or whirl flutter speed is the value of the inflow velocity at which the damping ratio ζ is zero. For
inflow velocities below the critical value, the damping ratio ζ of the system is positive; for inflow velocities
above the critical value, the damping ratio ζ is negative (see Figure 6.2).

6.2. Verification and Validation
The expressions derived in Section 6.1 to predict possible occurrence of whirl flutter are implemented in
Matlab. The validation and verification of the implementation is carried out by modelling the propellers
analysed in Bennett and Bland [6]2 by comparing whirl flutter velocities and whirl flutter frequencies with
their measured values.

Bennett and Bland [6] conducted an experimental campaign in which they measured whirl flutter veloci-
ties and whirl flutter frequencies of an isolated windmilling propeller with four blades. Two configurations of
propeller were tested. They differ in the position of their elastic centre (the pivot point of the nacelle-pylon
system). The elastic centre in Configuration (A) is positioned 0.346R from the rotor plane and the elastic cen-
tre in Configuration (B) is positioned 0.691R from the rotor plane. The change in elastic axis position also
changes the moment of inertia with respect to Y − and Z−axis.

2This is the same work used to validate the methodology for propeller aerodynamics, Section 4.2.
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Data needed to model the propeller are extracted from [[6], Table I, Table II, Figure 4, Figure 5]. Six cases
are selected for configuration (A) and seven cases for configuration (B). Each of these cases differ in the pro-
peller blade angle at three-quarter chord β0.75R , the pitch and yaw undamped frequency of the system ( fθ,
fψ ), the viscous damping parameter (ζθ, ζψ), and the air density ρ. The input data extracted from literature
are presented in Table 6.1 and Table 6.2. Note that the structural damping of the system is represented by its
viscous equivalent.

case ID β0.75R [deg] fθ [Hz] fψ [Hz] 2ζθ 2ζψ ρ [slug/ft3]

1 35 9.20 9.12 0.0060 0.0090 0.00211
2 35 10.96 10.96 0.0150 0.0238 0.00217
3 46 10.96 10.96 0.0150 0.0238 0.00218
4 52 10.96 10.96 0.0150 0.0238 0.00209
5 58 10.96 10.96 0.0150 0.0238 0.00209
6 58 10.71 10.28 0.0300 0.0393 0.00220

Table 6.1: Configuration (A). eψ = eθ = 0.346R, IY = IZ = 0.0634 slug-ft2 [6]

case ID β0.75R [deg] fθ [Hz] fψ [Hz] 2ζθ 2ζψ ρ [slug/ft3]
7 35 7.60 7.60 0.0056 0.0053 0.00227
8 46 7.60 7.60 0.0056 0.0053 0.00226
9 52 7.60 7.60 0.0056 0.0053 0.00226

10 27.5 7.64 7.68 0.0060 0.0074 0.00226
11 35 7.64 7.68 0.0060 0.0074 0.00220
12 46 7.64 7.68 0.0060 0.0074 0.00220
13 58 7.64 7.68 0.0060 0.0062 0.00220

Table 6.2: Configuration (B). eψ = eθ = 0.691R, IY = IZ = 0.0937 slug-ft2 [6]

An example of modal frequency and modal damping with increasing inflow velocity is illustrated in Fig-
ure 6.2. As mentioned, there are two modes that represent the system dynamics. Forward whirl mode occurs
at higher frequencies than backward whirl mode. The frequency gap between these two modes increases with
increasing inflow velocity. It can be seen that forward whirl mode never goes unstable, this is the case when
propeller blades are rigid, which is one of the assumptions taken in the present model. Whirl flutter velocity
is represented by the inflow velocity that causes the system backward whirl mode to have zero damping.
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Figure 6.2: Configuration (A) case (1). Calculated modal frequency and damping values of an isolated propeller with two degrees-of-
freedom. Propeller aerodynamic derivatives from Houbolt-Reed’s method are used. Whirl flutter occurs at 95 ft/s.

Whirl flutter velocities and frequencies corresponding to each of the cases described in Table 6.1 and
Table 6.2 are illustrated in Figure 6.3. Apart from recording whirl flutter speeds, Bennett and Bland [6] also
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measured propeller aerodynamic derivatives, i.e. CZθ, Cmθ, CY θ , Cmψ, Cmq , and CY q .
Experimental whirl flutter speeds and frequencies extracted from Bennett and Bland [6] (blue markers)

are compared with the calculated values from present model using measured propeller aerodynamic deriva-
tives from Bennett and Bland [6] (black markers) and the calculated values from present model using pro-
peller aerodynamic derivatives obtained with Houbolt-Reed’s method (red markers). Note that only five pro-
peller aerodynamic derivatives were measured by Bennett and Bland [6] and thus used in the present anal-
ysis. When using Houbolt-Reed’s method, all sixteen propeller aerodynamic derivatives were calculated and
included in the present analysis.
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(c) Whirl flutter velocity. Configuration B.
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(d) Whirl flutter frequency. Configuration B.

Figure 6.3: Whirl flutter velocities and frequencies. Comparison with data from Bennett and Bland [6].

In general, analytical results are conservative. Present model predicts lower whirl flutter velocities and
higher whirl flutter frequencies. In configuration (A), using calculated propeller aerodynamic derivatives
can better predict flutter velocities than using measured propeller aerodynamic derivatives. In terms of fre-
quency, the differences are small. The fact that using calculated propeller aerodynamic derivatives predicts
values closer to experimental results can be attributed to the fact that all aerodynamic derivatives were in-
cluded in the calculations whereas when using measured propeller aerodynamic derivatives, only five were
available.

However, in configuration (B) the contrary happens. Using calculated propeller aerodynamic derivatives
yields worse results in comparison with experimental data. This may be attributed to the fact that config-
uration (B) has the elastic axis further away from the propeller plane. The assumption of the nacelle-pylon
behaving like a rigid rod is less correct; a flexible nacelle-pylon creates additional (unsteady) aerodynamic
effects which are not accounted for in the present model.

In conclusion, the method presented in this section predicts satisfactorily whirl flutter velocities and fre-
quencies of an isolated propeller with rigid blades. More accurate results can be obtained if more realistic
propeller aerodynamic derivatives can be predicted.





7
Flexible Cantilever Wing

In this chapter, an aeroelastic model to characterise a flexible cantilever wing is presented. The structural
model is a linear dynamic Euler beam model and the aerodynamic model employs Theodorsen strip unsteady
aerodynamics formulated in time domain. Two methodologies to convert the frequency domain terms into
the time domain are presented. The coupling between the structural model and the aerodynamic model is
such that the aerodynamic loads are only applied on the beam nodes and the transfer to the nodal vertical
displacements and nodal torsion is direct.

7.1. Wing structural Model
The wing is idealised as an unswept tapered beam. Figure 7.1 shows a cross section of the wing. The motion
of the wing is defined by the vertical displacement of its elastic axis, h (positive downwards), and the rotation
or twist of the airfoils about the elastic axis, α. The displacement of a point on the airfoil is defined by zW

zW (x, y, t ) = h +
(
x −ab

)
α (7.1)

𝑥

𝑧

ab

α

airstream

h

b

𝑧𝑤(𝑥, 𝑦)

𝑥αb

Figure 7.1: Wing cross section (adapted from [7]).

The kinetic energy of the wing is

TW = 1

2

∫
mW ż2

W d y (7.2)

where mW is the wing mass per unit length. Substituting for zW , this becomes

TW = 1

2

∫
mW ḣ2d y + 1

2

∫
mW (x −ab)2α̇2d y +

∫
mW (x −ab)ḣα̇d y (7.3)
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The potential energy of the wing is

UW = 1

2

∫
G J

(∂α
∂y

)2
d y + 1

2

∫
E I

(∂2h

∂y2

)2
d y (7.4)

where EI is the bending stiffness and GJ the torsional stiffness.

The finite element formulation (FEM) is introduced by the spacial discretization of the wing as shown
in Figure 7.2. Each beam is a linear Euler Bernoulli beam which has transverse displacement, an out-of-
plane bending moment, and a torsion moment. Hence, each node has three degrees of freedom: a nodal
displacement hi , a nodal bending rotation φi , and a nodal torsion αi .

The total out-of-plane deflection of a beam element h, is defined by the nodal displacements hi , and the
nodal bending rotation1 φi of its nodes such that

h = hi N1 +φi N2 +hi+1N3 +φi+1N4 = N ·hT (7.5)

where Ni are the Hermite shape functions to ensure C 1 continuity

N1 = 1

4

(
1−ξ

)2(
2+ξ

)
N2 = 1

4

(
1+ξ

)2(
2−ξ

)
N3 = le

8

(
1−ξ

)2(
1+ξ

)
N4 = le

8

(
1+ξ

)2(
1−ξ

)
(7.6)

le is the beam length and ξ= 2y
le

−1 is a nondimentional axial beam coordinate defined from -1 to 1.

Similarly, the torsion of the beam, α, is defined by the nodal torsion, αi , such as

α=αi T1 +αi+1T2 = T ·αT (7.7)

where Ti are the shape functions defined as

T1 = 1− 1

2

(
ξ+1

)
T2 = 1

2

(
ξ+1

) (7.8)

In the case of a wing discretized into only one beam element, the wing kinetic and potential energy can be
expressed in terms of the nodal degrees of freedom by inserting the expressions for h and α (Equation (7.7)
and Equation (7.5)) into Equation (7.3) and Equation (7.4)

TW = 1

2
ḣMbḣT + 1

2
α̇Mtα̇

T +Mtbḣα̇

UW = 1

2
hKbhT + 1

2
αKtα

T
(7.9)

where Mb is the bending mass matrix, Mt is the torsion mass matrix, Mtb is the torsion-bending mass
coupling matrix, Kb is the bending stiffness matrix, and Kt is the torsion stiffness matrix.

1The bending rotation is defined as φ= ∂h(y,t )
∂y
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Mb = mW le

2

∫ 1

−1
NT Ndξ

Mt =
ρIp le

2

∫ 1

−1
TT Tdξ

Mtb = mW le xαb

2

∫ 1

−1
TT Ndξ

Kb = 8E I

l 3
e

∫ 1

−1

∂2N

∂ξ2

T
∂2N

∂ξ2 dξ

Kt = 2G J

le

∫ 1

−1

∂N

∂ξ

T ∂N

∂ξ
dξ

(7.10)

where ρIp is the mass polar moment of inertia per unit length of the wing, xαb is the dimensional distance
between the wing elastic axis to the centre of gravity, E I is the wing bending stiffness, and G J is the wing
torsional stiffness.
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Figure 7.2: Geometry of a clamped wing.

Conducting the integrals in Equation (7.10), the bending mass matrix is given by

Mb =



13
35 le mW

11
210 l 2

e mW
9

70 le mW − 13
420 l 2

e mW

11
210 l 2

e mW
1

105 l 3
e mW

13
430 l 2

e mW − 1
140 l 3

e mW

9
70 le mW

13
420 l 2

e mW
13
35 le mW − 11

210 l 2
e mW

− 13
420 l 2

e mW − 1
140 l 3

e mW − 11
210 l 2

e mW
1

105 l 3
e mW


(7.11)
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The torsion mass matrix is given by

Mt =


ρIp le

3
ρIp le

6

ρIp le

6
ρIp le

3

 (7.12)

The torsion-bending inertial coupling mass matrix is given by

Mtb =
 7

20 mW le xαb 1
20 mW l 2

e xαb 3
20 mW le xαb − 1

30 mW l 2
e xαb

3
20 mW le xαb 1

30 mW l 2
e xαb 7

20 mW le xαb − 1
20 mW l 2

e xαb

 (7.13)

The bending stiffness matrix is given by

Kb = E I



12E I
l 3

e

6E I
l 2

e
− 12E I

l 3
e
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e

6E I
l 2

e

4E I
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− 6E I
l 2

e

2E I
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− 12E I
l 3

e
− 6E I

l 2
e

12E I
l 3

e
− 6E I

l 2
e

6E I
l 2

e

2E I
le

− 6E I
l 2

e

4E I
le


(7.14)

The torsion stiffness matrix is given by

Kt =


G J
le

−G J
le

−G J
le

G J
le

 (7.15)

Defining a global displacement vector as

qW = [
h1 φ1 α1 h2 φ2 α2

]T
(7.16)

and then applying Lagrange’s equations to the wing kinetic and potential energy expressions. The equa-
tions of motion of the wing may be expressed as

Ms,gq̈W +Ks,gqW = QW (7.17)

where Ms,g is the global mass matrix obtained by assembling together the bending mass matrix, the tor-
sion mass matrix, and the torsion-bending inertial coupling mass matrix according to the order of the degrees
of freedom in the global displacement vector. Analogously, the global stiffness matrix Ks,g is assembled with
the bending stiffness matrix and the torsion stiffness matrix. Note that there is no stiffness coupling between
beam bending and beam torsion. QW is the global vector that represent the wing aerodynamic loads acting
on the nodes of the beam model.

The wing aerodynamic loads that act on each node are

QWi =
Qh,W

0
Qα,W

 (7.18)

where Qh,W is the lift and Qα,W is the aerodynamic pitching moment acting on an specific node.
The global wing aerodynamic load vector QW is

QW = [
Qh,W1 0 Qα,W1 Qh,W2 0 Qα,W2

]T
(7.19)

where Qh,Wi is the wing lift force and Qα,Wi is the wing pitching moment acting on node i .

If the wing is discretized into n beam elements (n > 1), the global displacement vector becomes

qW = [
h1 φ1 α1 h2 φ2 α2 ... hn+1 φn+1 αn+1

]T
(7.20)
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Equation (7.17) still applies with the difference that the global mass matrix Ms,g and the global stiffness
matrix Ks,g are now composed of the mass and stiffness matrices of all the beams and are assembled by
standard FEM approaches (see Appendix C).

Similarly, the global wing aerodynamic load vector QW becomes

QW = [
Qh,W1 0 Qα,W1 Qh,W2 0 Qα,W2 ... Qh,Wn+1 0 Qα,Wn+1

]T
(7.21)

7.1.1. Wing Damping
If damping characteristics of the wing are known, Equation (7.17) may be modified to account for wing damp-
ing by including a damping matrix Cs,g.

Internal structural damping is generally modelled with a Rayleigh damping model. Rayleigh damping is a
viscous damping in which the damping matrix is a linear combination of the structural mass matrix and the
structural stiffness matrix

Cs,g =µMs,g +λKs,g (7.22)

where µ and λ are real scalars with 1/s and s units respectively and are to be obtained from either predic-
tions or measurements of the damping level of the structure of the wing.

Including the damping matrix, the equations of motion of the wing becomes

Ms,gq̈W +Cs,gq̇W +Ks,gqW = QW (7.23)

7.2. Wing aerodynamic Model
Wing aerodynamics are approximated by the strip theory approach: the wing is divided into several sections
and the aerodynamic loads on each section are calculated as if the section belonged to a infinite wing. This
means that the loads on each section may be calculated by assuming each section to be a two dimensional
airfoil. The total lift and moment acting on the wing will be the addition of the loads acting on each section
from the wing root to the wing tip, assuming no aerodynamic interference effects between strips.

There are several aerodynamic theories available to evaluate the aerodynamic loads that act on a two di-
mensional airfoil. The choice of any specific aerodynamic model relies on the degree of fidelity of the load
predictions and the numerical method that one wants to use to solve their final equations. Present work will
use the unsteady aerodynamic theory developed by Theodorsen [106]. Theodorsen’s theory determines the
unsteady aerodynamic force and moment acting on a thin airfoil in harmonic motion in a two-dimensional
incompressible fluid. Because Theodorsen’s expressions are given in the hybrid time-frequency domain,
frequency dependent terms are converted into the time domain employing Wagner’s indicial function ap-
proximation [108]. Two methodologies are presented and are hereby designated as Wagner’s method and
Leishman-Nguyen’s method.

7.2.1. Theodorsen’s Theory
Theodorsen’s theory models the unsteady lift on a two-dimensional flat-plate airfoil with simple harmonic
motions. Ideal, attached flow conditions are assumed and the effect of wake history is modelled by a planar
wake (the wake moves with freestream) that changes the induced circulation around the airfoil. The section
lift force and section pitching moment about the elastic axis is given by Theodorsen as

L =πρb2
(
ḧ +V α̇−baα̈

)
︸ ︷︷ ︸

non-circulatory lift

+2πρV bC (k)w︸ ︷︷ ︸
circulatory lift

(7.24)

M =πρb2
[

abḧ −V b
(1

2
−a

)
α̇−b2

(1

8
+a2

)
α̈

]
︸ ︷︷ ︸

non-circulatory moment

+2πρV b2
(
a + 1

2

)
C (k)w︸ ︷︷ ︸

circulatory moment

(7.25)

where V is the airstream velocity, ρ is the air density, b is the airfoil semichord, h is vertical displacement
of the airfoil elastic axis, α is the airfoil rotation about the elastic axis, a is the location of the elastic axis as
fraction of the semichord, and w is the total aerodynamic downwash at the three-quarter chord position in
the airfoil defined as
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w = ḣ +Vα+b
(1

2
−a

)
α̇ (7.26)

The function C (k), called the lift-deficiency function or Theodorsen function, represents the effect of the
unsteadiness introduced by the wake history. k is the reduced frequency k = ωb

V where ω is the frequency of
motion of the flat plate airfoil. C (k) is defined by Equation (4.31) in Section 4.1.4.

The non-circulatory lift and non-circulatory moment are results of added mass effects, whilst the circula-
tory lift and circulatory moment include the wake history effects. The circulatory moment is the circulatory

lift times b
(
a + 1

2

)
, which is the distance between the airfoil’s three-quarter chord to the elastic axis.

Because the generalised coordinate h is positive downward and the lift given by Theodorsen’s expression
is positive upward

Qh,W =−L

Qα,W = M
(7.27)

Substituting Equation (7.24) and Equation (7.25) in Equation (7.18) and later in Equation (7.17) completes
the equations of motion that model the dynamics of the flexible wing. However, because of the introduction
of the Theodorsen function the final equations are a set of aeroelastic equations in time and frequency do-
main. There are several methods for solving them [21], current work aims to solve them in the pure time
domain. Therefore, it is necessary to transform the frequency-dependent components, i.e. circulatory lift
and circulatory moment, into their time-dependent counterparts. For this, two methodologies are described
in present work: Wagner’s method and Leishman-Nguyen’s method.

7.2.2. Wagner’s Method
Wagner’s theory models the unsteady lift on a two-dimensional flat-plate airfoil with arbitrary pithing mo-
tions. Under ideal attached flow assumptions, Wagner introduces a function called Wagner function, Φ(t ),
which allows to compute analytically the change in circulatory lift in response to a step in angle of attack.
Then, the arbitrary motion response can be determined by convolution with this indicial response. Wagner
function is related to Theodorsen function in that they constitute a Fourier Transform pair. This allows to
establish an equivalence between Theodorsen’s circulatory lift expression with that of Wagner’s. This relation
can be expressed as2

C (k)w =Φ(0)w(t )−
∫ t

0

dΦ(t − t0)

d t0
w(t0)d t0 (7.28)

Jones [56] introduced a two-pole exponential approximation to the Wagner function, i.e.,

Φ(t ) = 1−Ψ1e−ε1
V
b t −Ψ2e−ε2

V
b t (7.29)

whereΨ1 = 0.165,Ψ2 = 0.335, ε1 = 0.0455, and ε2 = 0.3.
Substituting Equation (7.28) and Equation (7.29) in Equation (7.24) and Equation (7.25) transforms the

hybrid time and frequency domain equations into pure time domain. The integrals from the Wagner’s lift
expression can be eliminated by introducing aerodynamic states which in turn allows to rewrite the final
equations as Ordinary Differential Equations and be solved in the state-space form.

The aerodynamic states are defined as

w1(t ) =
∫ t

0
e−ε1

V (t−t0)
b h(t0)d t0

w2(t ) =
∫ t

0
e−ε2

V (t−t0)
b h(t0)d t0

w3(t ) =
∫ t

0
e−ε1

V (t−t0)
b α(t0)d t0

w4(t ) =
∫ t

0
e−ε2

V (t−t0)
b α(t0)d t0

(7.30)

2This equivalence is obtained by combining the indicial response method with the superposition principle via DuHamel integral. The
full derivation of the Wagner’s method can be found in Dimitriadis [21][Appendix A.2].
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Substituting Equation (7.26) and Equation (7.29) in Equation (7.28) and performing integration by parts
shows that

C (k)w =Φ(0)w(t )−
∫ t

0

dΦ(t − t0)

d t0
w(t0)d t0 =Φ(0)w(t )−

(
h(0)+b

(
1

2
−a

)
α(0)

)
Φ̇(t )

+
(
h(t )+b

(
1

2
−a

)
α(t )

)
Φ̇(0)

−Ψ1

(
ε1V

b

)2

w1(t )−Ψ2

(
ε2V

b

)2

w2(t )

+Ψ1
ε1V 2

b

(
1−ε1

(
1

2
−a

))
w3(t )

+Ψ2
ε2V 2

b

(
1−ε2

(
1

2
−a

))
w4(t )

(7.31)

whereΦ(0) = 1−Ψ1 −Ψ2, Φ̇(t ) =Ψ1ε1
V
b eε1

V
b t +Ψ2ε2

V
b eε2

V
b t , and Φ̇(0) =Ψ1ε1

V
b +Ψ2ε2

V
b .

Equation (7.31) can be substituted into the Theodorsen’s lift and moment expressions in Equation (7.24)
and Equation (7.25). There will be two equations of motion with six unknowns, namely h, α, w1, w2, w3, and
w4. Four additional equations can be obtained from the aerodynamic states by applying Leibniz’s rule for
integrals with variable limits. Leibniz’s rule states that [21]

d

d t

∫ b(t )

a(t )
f (t0, t )d t0 = db(t0)

d t
f (b(t ), t )− d a(t )

d t
f (a(t ), t )+

∫ b(t )

a(t )

∂ f (t0, t )

∂t
d t0 (7.32)

where a(t ) and b(t ) are continuous and differentiable functions of t and f (t0, t ) is a continuous and dif-
ferentiable function of both t0 and t . Applying this rule to the first expression in Equation (7.30) by setting

a(t ) = 0, b(t ) = t and f (t0, t ) = e−ε1
V (t−t0)

b h(t0) gives

ẇ1(t ) = h(t )− ε1V

b

∫ t

0
e−ε1

U (t−t0)
b h(t0)d t0 = h(t )− ε1V

b
w1(t ) (7.33)

Applying the same to all the aerodynamic states in Equation (7.30) gives four new equations

ẇ1(t ) = h(t )− ε1V

b
w1(t )

ẇ2(t ) = h(t )− ε2V

b
w2(t )

ẇ3(t ) =α(t )− ε1V

b
w3(t )

ẇ4(t ) =α(t )− ε2V

b
w4(t )

(7.34)

Wing aerodynamics in matrix form - Wagner

The set of equations composed by Theodorsen’s formulas (Equation (7.24) and Equation (7.25)), Wagner’s
expression for lift (Equation (7.31)), and Leibniz’s expression for the aerodynamic states ( Equation (7.34))
allows to calculate two dimensional airfoil aerodynamics in a closed-form manner. The aerodynamic loads
may be expressed in matrix form as

[
Qh,W

Qα,W

]
=

[−L
M

]
= MaW

[
ḧ
α̈

]
+CaW

[
ḣ
α̇

]
+KaW

[
h
α

]
+W0w+gφ̇(t )

ẇ = W1

[
h
α

]
+W2w

(7.35)
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where MaW is the airfoil aerodynamic mass matrix, CaW is the airfoil aerodynamic damping matrix, KaW is
the airfoil aerodynamic stiffness matrix, W0 is the airfoil aerodynamic states influence matrix, g is the initial
condition excitation vector, W1 and W2 are the aerodynamic states equation matrices, and w is the vector of
aerodynamic states.

w =


w1

w2

w3

w4

 (7.36)

The wing aerodynamic mass matrix is given by

MaW =
−πρb2 πρb3a

πρb3a −πρb4
(

1
8 +a2

) (7.37)

The wing aerodynamic damping matrix is given by

CaW =

 −2πρbVΦ(0) −πρb2V −2πρb2V

(
1
2 −a

)
Φ(0)

2πρbVΦ(0)b

(
a + 1

2

)
−πρb3V

(
1
2 −a

)
+2πρb2V

(
1
2 −a

)
Φ(0)b

(
a + 1

2

)
 (7.38)

The wing aerodynamic stiffness matrix is given by

KaW =

 −2πρbV Φ̇(0) −2πρbV 2Φ(0)−2πρb2V

(
1
2 −a

)
Φ̇(0)

2πρbV Φ̇(0)b

(
a + 1

2

)
2πρbV 2Φ(0)b

(
a + 1

2

)
+2πρb2V

(
1
2 −a

)
Φ̇(0)b

(
a + 1

2

)
 (7.39)

The wing aerodynamic state influence matrix is given by W0 = 2πρbV W′
0, where W′

0 is

W′
0 =


Ψ1

(
ε1

V
b

)2

Ψ2

(
ε2

V
b

)2

−Ψ1ε1
V 2

b

(
1−ε1

(
1
2 −a

))
−Ψ2ε2

V 2

b

(
1−ε2

(
1
2 −a

))
−Ψ1

(
ε1

V
b

)2

b

(
a + 1

2

)
−Ψ2

(
ε2

V
b

)2

b

(
a + 1

2

)
Ψ1ε1

V 2

b

(
1−ε1

(
1
2 −a

))
b

(
a + 1

2

)
Ψ2ε2

V 2

b

(
1−ε2

(
1
2 −a

))
b

(
a + 1

2

)


(7.40)
The initial condition excitation vector is given by

g = 2πρbV

[
h(0)+b

(
1

2
−a

)
α(0)

] 1

−b

(
a + 1

2

) (7.41)

Finally, the aerodynamic state equation matrices are given by

W1 =


1 0
1 0
0 1
0 1

 (7.42)

W2 =


− ε1V

b 0 0 0
0 − ε2V

b 0 0
0 0 − ε1V

b 0
0 0 0 − ε2V

b

 (7.43)

The matrices MaW, CaW, KaW, W0, gg, W1, and W2 need to be introduced into Equation (7.21) to assemble
the final global matrices by standard FEM approaches (see Appendix C). The global version of these matrices
will be named Ma,g, Ca,g, Ka,g, W0,g, gg, W1,g, and W2,g, respectively.

Analogously, the global vector of the aerodynamic states becomes:
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wg =
[
w (1)

1 w (1)
2 w (1)

3 w (1)
4 . . . w (n+1)

1 w (n+1)
2 w (n+1)

3 w (n+1)
4

]T
(7.44)

7.2.3. Leishman and Nguyen’s Method
Wagner’s theory introduces four aerodynamic states. In the finite element beam model, this means that
there will be four additional eigenvalues and modeshapes per beam node associated with these aerodynamic
states. If the number of beam elements are large, the calculations and the later analysis become lengthier and
more cumbersome. Leishman and Nguyen [63] introduced another state-space representation of unsteady
lift and pitching moment in which only two additional aerodynamic states. Their method is also based on
Theodorsen function and Jone’s two-pole exponential approximation to the Wagner function.

The Theodorsen’s circulatory lift expression may be expressed as

C (k)α3/4 =
[(
Ψ1 +Ψ2

)
ε1ε2

(
V
b

)2 (
Ψ1ε1 +Ψ2ε2

)(
V
b

)][
w1

w2

]
+ 1

2
α3/4 (7.45)

where α3/4 = w
V is the angle of attack at the airfoil three quarter chord:

α3/4 = ḣ

V
+α+b

(1

2
−a

) α̇
V

(7.46)

The two additional equations required are

[
ẇ1

ẇ2

]
=

[
0 1

−ε1ε2

(
V
b

)2 −(ε1 +ε2)
(

V
b

)][
w1

w2

]
+

[
0
1

]
α3/4 (7.47)

Wing aerodynamics in matrix form - Leishman and Nguyen

The set of equations composed by Theodorsen’s formulas (Equation (7.24) and Equation (7.25)), Leish-
man and Nguyen’s for lift (Equation (7.45)), and the additional aerodynamic states equations ( Equation (7.47))
allows to calculate two dimensional airfoil aerodynamics in a closed-form manner by introducing two aero-
dynamic lag states. The aerodynamic loads may be expressed in matrix form as

[
Qh,W

Qα,W

]
=

[−L
M

]
= MaW

[
ḧ
α̈

]
+CaW

[
ḣ
α̇

]
+KaW

[
h
α

]
+W0w

ẇ = W1w+W2

[
ḣ
α̇

]
+W3

[
h
α

] (7.48)

where MaW is the airfoil aerodynamic mass matrix, CaW is the airfoil aerodynamic damping matrix, KaW

is the airfoil aerodynamic stiffness matrix, W0 is the airfoil aerodynamic state influence matrix, W1, W2, and
W3 are the aerodynamic state equation matrices, and w is the vector of aerodynamic states.

w =
[

w1

w2

]
(7.49)

The wing aerodynamic mass matrix is given by3

MaW =
−πρb2 πρb3a

πρb3a −πρb4
(

1
8 +a2

) (7.50)

The wing aerodynamic damping matrix is given by

3Note that this matrix is exactly the same as that of Equation (7.37). This is because the terms of the matrix come from the non-circulatory
terms of the Theodorsen’s lift expression.
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CaW =

 −πρbV −πρb2V −πρb2V

(
1
2 −a

)
πρbV b

(
a + 1

2

)
−πρb3V

(
1
2 −a

)
+πρb2V

(
1
2 −a

)
b

(
a + 1

2

)
 (7.51)

The wing aerodynamic stiffness matrix is given by

KaW =
0 −πρbV 2

0 πρV 2b2
(

a + 1
2

) (7.52)

The wing aerodynamic state influence matrix is given by W0 = 2πρbV 2W′
0, where W′

0 is

W′
0 =

 −
(
Ψ1 +Ψ2

)
ε1ε2

(
V
b

)2 −
(
Ψ1ε1 +Ψ2ε2

)(
V
b

)
(
Ψ1 +Ψ2

)
ε1ε2

(
V
b

)2
b

(
a + 1

2

) (
Ψ1ε1 +Ψ2ε2

)(
V
b

)
b

(
a + 1

2

)
 (7.53)

Finally, the aerodynamic state equation matrices are given by

W1 =
[

0 1

−ε1ε2

(
V
b

)2 −(ε1 +ε2)
(

V
b

)] (7.54)

W2 =
 0 0

1
V

b
V

(
1
2 −a

) (7.55)

W3 =
[

0 0
0 1

]
(7.56)

The matrices MaW, CaW, KaW, W0, W1, W2, and W3 need to be introduced into Equation (7.21) to assemble
the final global matrices by standard FEM approaches (see Appendix D). The global version of these matrices
will be named Ma,g, Ca,g, Ka,g, W0,g, W1,g, W2,g, and W3,g, respectively.

Analogously, the global vector of the aerodynamic states becomes:

wg =
[
w (1)

1 w (1)
2 . . . w (n+1)

1 w (n+1)
2

]T
(7.57)

7.3. Aeroelastic Equations of the Cantilever Wing
The equations of motion that describe the aeroelastic behaviour of a flexible cantilever wing are Equation (7.23).

Ms,gq̈W +Cs,gq̇W +Ks,gqW = QW (7.23)

The global wing aerodynamic load vector QW may be obtained either by the aerodynamic matrices de-
fined via Wagner’s method or by those defined via Leishman and Nguyen’s method. Results are equivalent
since they are essentially different implementations of the same principle.

Employing Leishan and Nguyen’s method, for example, Equation (7.23) becomes:

Ms,gq̈W +Cs,gq̇W +Ks,gqW = Ma,gq̈W +Ca,gq̇W +Ka,gqW +W0,gwg

ẇg = W1,gw+W2,gq̇W +W3,gqW
(7.58)

Equation (7.58) can be rearranged into a state-space form (see Section 5.1):

q̇W

q̈W

ẇg

=

 0 I 0

−
(
Ms,g −Ma,g

)−1(
Ks,g −Ka,g

)
−

(
Ms,g −Ma,g

)−1(
Cs,g −Ca,g

) (
Ms,g −Ma,g

)−1
W0g

W3,g W2g W1g


qW

q̇W

wg

 (7.59)
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where 0 and I are zero and identity matrices, respectively.
The degrees of freedom at wing root are always null because the wing is cantilevered at its root. Therefore,

the state matrix must be reduced, meaning that the rows and columns corresponding to the fixed degrees of
freedom must be eliminated. The eigenvalues and the eigenvectors are calculated from the reduced state
matrix. From the eigenvalues, one can extract the undamped natural frequencies and the damping ratios;
the mode shapes are the eigenvectors themselves. V-g and V-f diagrams may be plotted to analyse the insta-
bilities.

7.4. Verification and Validation
The validation and verification of the wing aeroelastic model is carried out by analysing the wing structural
model and the wing aeroelastic behaviour.

The structural model is verified by comparing the free vibration modes with their analytical results; whereas
the wing aeroelastic behaviour is analysed by comparing flutter and divergence speeds with data available in
literature. For this purpose, the wing analysed in Patil et al. [81] is modelled using present methodology. The
wing description is tabulated in Table 7.1.

Parameter Value Units
Half span 16 m
Chord 1 m
Mass per unit length 0.75 kg/m
Polar mass moment of inertia (50% chord) 0.1 kg·m
Spanwise elastic axis 50% chord [-]
Centre of gravity 50% chord [-]
Bending rigidity (EI) 2×104 N·m2

Torsional rigidity (GJ) 1×104 N·m2

Flight condition

Altitude 20 km
Density of air 0.0889 kg/m3

Table 7.1: Wing model data [81]

7.4.1. Wing free Vibration Modes
Wing free vibration modes from the finite element beam model are compared with analytical solutions from
uniform beam bending dynamics and uniform beam torsional dynamics. The analytical expressions are ex-
tracted from Hodges and Pierce [36].

The analytical formulas for the first three wing bending frequencies are

ωb1 = 1.87512

√
E I

ml 4 ωb2 = 4.694092

√
E I

ml 4 ωb3 = 7.854762

√
E I

ml 4
(7.60)

where m is the beam mass per unit length, l is the beam length, and E I is the beam bending rigidity.
The analytical formulas for the corresponding bending mode shapes φi are given by

φb1 (x) = cosh

(
1.8751

l
x

)
−cos

(
1.8751

l
x

)
−0.734096

[
sinh

(
1.8751

l
x

)
− sin

(
1.8751

l
x

)]
φb2 (x) = cosh

(
4.69409

l
x

)
−cos

(
4.69409

l
x

)
−1.01847

[
sinh

(
4.69409

l
x

)
− sin

(
4.69409

l
x

)]
φb3 (x) = cosh

(
7.85476

l
x

)
−cos

(
7.85476

l
x

)
−0.999224

[
sinh

(
7.85476

l
x

)
− sin

(
7.85476

l
x

)] (7.61)

where x is the distance along the beam length.
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The analytical formula for the first torsion frequency ωt is given by

ωt = π

2L

√
G J

ρIp
(7.62)

where G J is the beam torsional rigidity and ρIp is the beam mass polar moment of inertia.
The analytical formula for the first torsion mode shape φt is given by

φt (x) = sin

(
π

2l
x

)
(7.63)

A comparison of the wing natural frequencies obtained from the finite element beam model and the an-
alytical expressions are shown in Table 7.2.

Mode Present analysis Exact Error [%]
First flatwise bending 2.2431 2.2428 +0.01
Second flatwise bending 14.102 14.056 +0.33
Third flatwise bending 39.846 39.356 +1.25
First torsion 31.401 31.046 +1.15

Table 7.2: Comparison of wing natural frequencies (rad/s). Present analysis used 3 beam elements.

Figure 7.3a shows the convergence of the natural frequencies with increasing number of elements and
comparison with the analytical values (blue line). Figure 7.3b shows the comparison between mode shapes
from the finite element beam model and the mode shapes from the analytical expressions (blue line).
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Figure 7.3: Wing beam free vibration frequencies and modes. Blue lines indicate analytical solutions.

In general almost identical results are obtained by using only three beam elements. Note the slightly
slower convergence for higher bending frequencies.

The structural model derived from Euler-Bernoulli beam elements is correctly implemented.

7.4.2. Aeroelastic Analysis
The aeroelastic behaviour of the wing is obtained by solving Equation (7.59). Verification is carried out by
comparing flutter speed, flutter frequency and divergence speed.

Figure 7.4 shows the results of the eigenvalue analysis of Equation (7.59). The system goes unstable when
the damping ratio becomes negative or when the real part of the eigenvalues becomes positive.
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Figure 7.4: Damping plots and eigenvalue plots. Red markers indicate flutter and green markers indicate divergence.

Figure 7.5 shows the convergence of the aeroelastic results with the number of beam elements.

Table 7.3 compares the aeroelastic results with those extracted from Patil et al. [81]. Patil et al. [81] uses
the theory of Patil [80] which employs the Rayleigh-Ritz method with uncoupled beam mode shapes and
Theodorsen’s two-dimensional thin-airfoil theory for unsteady aerodynamics. Comparisons show almost
identical results with the present analyses yielding slightly higher flutter speed, flutter frequency, and diver-
gence speed.

Note that the aeroelastic results from present analysis also depend on the increase in velocity ∆V within
the velocity interval used to determine the onset of flutter and divergence, smaller increase in velocities may
lead to closer values to the "real" calculated instability speeds; this comes at a computational cost.
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Figure 7.5: Convergence of flutter speed, flutter frequency, and divergence speed with the number of beam elements.

Parameter Present analysis Analysis of Ref.[81] Difference [%]
using the theory of Patil [80]

Flutter speed [m/s] 32.86 32.51 +1.1
Flutter frequency [rad/s] 22.64 22.37 +1.2
Divergence speed [m/s] 38.37 37.15 +3.3

Table 7.3: Comparison of flutter and divergence speeds with results from Patil et al. [81]. Present analysis uses 20 beam elements.
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7.5. Modified Strip Analysis: Wing of finite Span
One of the main assumptions in the wing aerodynamic model explained in Section 7.2 is that the wing is
divided into several sections and the aerodynamic loads on each section are calculated as if the section be-
longed to a infinite wing. This assumption is valid for high aspect ratio wings where each aerodynamic section
can be treated as a two dimensional airfoil. However, in reality, air is a compressible fluid and as explained
in Section 2.8.1, wings have finite span and therefore, three dimensional aerodynamic effects such as wingtip
vortices take place; this leads to induced downwash effects which in turn decrease the total lift produced by
the wing and change the lift distribution over the wing. Subsequently, flutter and divergence speeds can be
altered.

Yates Jr. [112] addresses finite span, taper, sweep, and compressibility effects by modelling wing unsteady
aerodynamics with the modified strip analysis method; aeroelastic analysis is carried out in the frequency
domain using Rayleigh type analysis with uncoupled vibration modes (coupled vibration modes may also be
used). In this method, spanwise distributions of steady flow section lift-curve slope and local aerodynamic
centre for the undeformed wing are used. These steady aerodynamic parameters may be obtained from any
suitable aerodynamic theory or experiment; Bland and Yates Jr. [11] suggests to use the one that yields the
most accurate steady-state load distributions over the undeformed wing.

Essentially, the method developed in Yates Jr. [112] consists in modifying Theodorsen’s lift and pitching
moment expressions (Equation (7.24) and Equation (7.25)) to include variable lift-curve slope and variable
aerodynamic center: the value 2π for section lift curve slope is replaced by the variable Clα , the quarter-chord
aerodynamic-center position (ac = − 1

2 ) is replaced by the variable ac , and the distance from the elastic axis

to the point of application of the downwash condition b
(

1
2 −a

)
is replaced by b

(
Clα
2π +ac −a

)
.

Including these modifications, the expressions for section lift L and section pitching moment M have the
following form

L =πρb2
(
ḧ +V α̇−baα̈

)
︸ ︷︷ ︸

non-circulatory lift

+ClαρV bC (k)w︸ ︷︷ ︸
circulatory lift

(7.64)

M =πρb2
[

abḧ −V b
(Clα

2π
+ac −a

)
α̇−b2

(1

8
+a2

)
α̈

]
︸ ︷︷ ︸

non-circulatory moment

+ClαρV b2
(
a −ac

)
C (k)w︸ ︷︷ ︸

circulatory moment

(7.65)

w = ḣ +Vα+b
(Clα

2π
+ac −a

)
α̇ (7.66)

7.5.1. Inclusion into the aeroelastic Equations of a Cantilever Wing
Equation (7.64), Equation (7.65), and Equation (7.66) are to be transformed into the time domain. This can
be realised by employing either Wagner’s method or Leishman-Nguyen’s method.

Wagner’s method in matrix form

Using Wagner’s method, the aerodynamic loads may be expressed in matrix form as

[
Qh,W

Qα,W

]
=

[−L
M

]
= MaW

[
ḧ
α̈

]
+CaW

[
ḣ
α̇

]
+KaW

[
h
α

]
+W0w+gφ̇(t )

ẇ = W1

[
h
α

]
+W2w

(7.35)

The wing aerodynamic mass matrix is given by

MaW =
−πρb2 πρb3a

πρb3a −πρb4
(

1
8 +a2

) (7.67)
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The wing aerodynamic damping matrix is given by

CaW =

 −ClαρbVΦ(0) −πρb2V −Clαρb2V

(
Clα
2π +ac −a

)
Φ(0)

ClαρbVΦ(0)b

(
a −ac

)
−πρb3V

(
Clα
2π +ac −a

)
+Clαρb2V

(
Clα
2π +ac −a

)
Φ(0)b

(
a −ac

)
 (7.68)

The wing aerodynamic stiffness matrix is given by

KaW =

 −ClαρbV Φ̇(0) −ClαρbV 2Φ(0)−Clαρb2V

(
Clα
2π +ac −a

)
Φ̇(0)

ClαρbV Φ̇(0)b

(
a −ac

)
ClαρbV 2Φ(0)b

(
a −ac

)
+Clαρb2V

(
Clα
2π +ac −a

)
Φ̇(0)b

(
a −ac

)
 (7.69)

The wing aerodynamic state influence matrix is given by W0 =ClαρbV W′
0, where W′

0 is

W′
0 =

 Ψ1

(
ε1

V
b

)2
Ψ2

(
ε2

V
b

)2
−Ψ1ε1

V 2
b

(
1−ε1

(
Clα
2π +ac −a

))
−Ψ2ε2

V 2
b

(
1−ε2

(
Clα
2π +ac −a

))
−Ψ1

(
ε1

V
b

)2
b

(
a −ac

)
−Ψ2

(
ε2

V
b

)2
b

(
a −ac

)
Ψ1ε1

V 2
b

(
1−ε1

(
Clα
2π +ac −a

))
b

(
a −ac

)
Ψ2ε2

V 2
b

(
1−ε2

(
Clα
2π +ac −a

))
b

(
a −ac

)


(7.70)
The initial condition excitation vector is given by

g =ClαρbV

[
h(0)+b

(
Clα

2π
+ac −a

)
α(0)

] 1

−b

(
a −ac

) (7.71)

Finally, the aerodynamic state equation matrices are given by

W1 =


1 0
1 0
0 1
0 1

 (7.72)

W2 =


− ε1V

b 0 0 0
0 − ε2V

b 0 0
0 0 − ε1V

b 0
0 0 0 − ε2V

b

 (7.73)

Leishman-Nguyen’s method in matrix form

Using Leishman-Nguyen’s method, the aerodynamic loads may be expressed in matrix form as

[
Qh,W

Qα,W

]
=

[−L
M

]
= MaW

[
ḧ
α̈

]
+CaW

[
ḣ
α̇

]
+KaW

[
h
α

]
+W0w

ẇ = W1w+W2

[
ḣ
α̇

]
+W3

[
h
α

] (7.48)

The wing aerodynamic mass matrix is given by

MaW =
−πρb2 πρb3a

πρb3a −πρb4
(

1
8 +a2

) (7.74)

The wing aerodynamic damping matrix is given by



72 7. Flexible Cantilever Wing

CaW =

 −Clα
ρ
2 bV −πρb2V −Clα

ρ
2 b2V

(
Clα
2π +ac −a

)
Clα

ρ
2 bV b

(
a −ac

)
−πρb3V

(
Clα
2π +ac −a

)
+Clα

ρ
2 b2V

(
Clα
2π +ac −a

)
b

(
a −ac

)
 (7.75)

The wing aerodynamic stiffness matrix is given by

KaW =
0 −Clα

ρ
2 bV 2

0 Clα
ρ
2 V 2b2

(
a −ac

) (7.76)

The wing aerodynamic state influence matrix is given by W0 =ClαρbV 2W′
0, where W′

0 is

W′
0 =

 −
(
Ψ1 +Ψ2

)
ε1ε2

(
V
b

)2 −
(
Ψ1ε1 +Ψ2ε2

)(
V
b

)
(
Ψ1 +Ψ2

)
ε1ε2

(
V
b

)2
b

(
a −ac

) (
Ψ1ε1 +Ψ2ε2

)(
V
b

)
b

(
a −ac

)
 (7.77)

Finally, the aerodynamic state equation matrices are given by

W1 =
[

0 1

−ε1ε2

(
V
b

)2 −(ε1 +ε2)
(

V
b

)] (7.78)

W2 =
 0 0

1
V

b
V

(
Clα
2π +ac −a

) (7.79)

W3 =
[

0 0
0 1

]
(7.80)

Verification and Validation

The method presented in this section is verified and validated in Yates Jr. [112] in the frequency domain.
To see the impact of changing the lift curve slope distribution, the wing analysed in Patil et al. [81] is

again analysed in present analyses to calculate flutter and divergence speeds with an elliptical lift curve slope
distribution Clα . The elliptical lift curve slope distribution is calculated from

Clα = 2π
√

1−x2 (7.81)

where x is the non-dimensional spanwise distance from wing root.
Aeroelastic results are shown in Table 7.4. As expected, using an elliptical lift curve slope distribution, lift

decreases towards the wing tip, hence, flutter and divergence speeds are increased. It is recommended to use
the most accurate steady-state lift distribution over the undeformed wing for more reliable results.

Parameter Present analysis Analysis of Ref.[81] Difference [%]
with elliptical Clα using the theory of Patil [80]

Flutter speed [m/s] 37.14 32.51 +14.3
Flutter frequency [rad/s] 24.46 22.37 +9.3
Divergence speed [m/s] 47.55 37.15 +28.0

Table 7.4: Comparison of flutter and divergence speeds with results from Patil et al. [81]. Present analysis uses 20 beam elements and an
elliptical lift curve slope distribution.

This method will be implemented for the validation and verification of the propeller-wing system treated
in Chapter 8.

As explained in Section 2.8.2, propeller slipstream effects change the steady lift distribution over the wing,
in turn, wing aeroelastic behaviour is modified. The method presented in this section allows to perform an
aeroelastic analysis of the wing including the lift distribution change caused by propeller slipstream effects.
This is proposed to be further addressed in future work.



8
Propeller on a Flexible Cantilever Wing

Chapter 6 modelled the case of a propeller flexibly mounted on a rigid wing whereas Chapter 7 modelled a
cantilever flexible wing without any propeller. Both models were built to analyse the aeroelastic behaviour
of a propeller and a wing separately. In practice, wing flexibility can induce changes in the whirl flutter be-
haviour. Conversely, interactions with a propeller can also induce changes in the dynamic behaviour of a
flexible wing. In order to arrive at better whirl flutter and wing flutter predictions it is desirable to model the
flexible wing and the propeller together so the dynamic coupling of both systems can be introduced.

This chapter deals with the analysis of the dynamic behaviour of a propeller attached to a cantilever flex-
ible wing. The analytical model is devised following that of Bennett and Bland [7] with the main difference
that the model in Bennett and Bland [7] uses uncoupled vibration modes as generalized coordinates whereas
present model will use the nodal degrees of freedom of the system as generalized coordinates. The cantilever
flexible wing is represented by an Euler-Bernoulli beam model as described in Chapter 7. The inclusion of
a rotating propeller into the wing adds extra mass and inertia terms into the wing structural model due to
propeller mass and gyroscopic effects. The aerodynamic influence of the propeller on the wing is accounted
for by adding propeller aerodynamic loads as nodal forces and moments that act on the nodal degrees of free-
dom of the wing. On the other hand, the motion of the propeller pivot point due to wing flexibility also adds
additional inertial and gyroscopic terms into the propeller structural model. What’s more, the motion of the
pivot point changes the effective pitch and yaw angles encountered by the propeller blades, thus, modifying
propeller aerodynamics. Aerodynamic interference effects are ignored.

Figure 8.1 illustrates the geometry of a cantilever wing with a propeller and Figure 8.2 shows the kinematic
scheme of such a model.

8.1. Derivation of the Equations of Motion
The wing is discretized into several beam elements and the propeller is attached to the wing through a nodal
point. Structural and aerodynamic interactions between the propeller and the wing can be analysed by ob-
serving the wing section (beam node) on which the propeller is attached (Figure 8.1a). The structural model
of such a configuration can be obtained by applying Lagrange’s equations (Equation (5.1)) to a propeller with
a moving pivot point. In the present model, the propeller pitches and yaws around the pivot point whilst the
pivot point moves according to the bending and twisting of the wing nodal point to which the propeller is
attached.

The problem can be treated by considering only propeller pitch θ, propeller yaw ψ, propeller-wing nodal
displacement hP , and propeller-wing nodal twist αP .

The formulation of the equations of motion of the system begins with the kinetic energy, the potential
energy and the dissipation function prior applying Lagrange’s equations.

Kinetic energy

The kinetic energy can be separated into two parts: the contribution of the flexibly mounted non-rotating
propeller engine system TP and the energy of the rotating propeller TΩ which includes the kinetic energy of

73
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the gyroscopic precession.

T = TP +TΩ (8.1)

The kinetic energy of the non-rotating propeller engine system is given by

TP = 1

2

∫
mP (x)

(
ż2

P + ẏ2
P

)
d x (8.2)

where mP is the mass per unit length of the propeller engine system and

zP (x, t ) = hP + (x −aP bP )αP + (x − lθ)θ

yP (x, t ) =−(x − lψ)ψ
(8.3)

This kinetic energy is integrated over the axial length of the propeller engine system.
Substituting Equation (8.3) into Equation (8.2) results in 1

TP = 1

2
MP ḣ2

P + 1

2
Iα,P α̇

2
P + 1

2
Iθ,P θ̇

2 +Sα,P ḣP α̇P +Sθ,P ḣP θ̇+ Iθα,P α̇P θ̇+ 1

2
Iψ,P ψ̇

2 (8.4)

where

MP =
∫

mP (x)d x

Sα,P =
∫

mP (x)[(x − lθ)+ (lθ−aP bP )]d x = Sθ,P + (lθ−aP bP )MP

Iα,P =
∫

mP (x)(x −aP bP )2d x = Iθ,P + (lθ−aP bP )2MP +2(lθ−aP bP )Sθ,P

(8.5)

with

Sθ,P =
∫

mP (x)(x − lθ)d x

Iθ,P =
∫

mP (x)(x − lθ)2d x

Iψ,P =
∫

mP (x)(x − lψ)2d x

Iθα,P =
∫

mP (x)(x −aP bP )(x − lθ)d x = Iθ,P + (lθ−aP bP )Sθ,P

(8.6)

The mass of the propeller is assumed to be distributed along the rotor rotational axis and the integrations
are to be taken over the pivoting system.

The propeller angular velocity in the X-axis isωX =Ω+(
θ̇+α̇P

)
sinψ≈Ω+(

θ̇+α̇P
)
ψ. Therefore the kinetic

energy of the rotating propeller is given by

TΩ = 1

2
IΩω

2
X ≈ 1

2
IΩ

[
Ω2 +2Ω

(
θ̇+ α̇P

)
ψ

]= 1

2
IΩΩ

2 + IΩΩθ̇ψ+ IΩΩα̇Pψ (8.7)

The expression for the total kinetic energy is

T = 1

2
MP ḣ2

P + 1

2
Iα,P α̇

2
P +Sα,P ḣP α̇P + 1

2
Iθ,P θ̇

2 +Sθ,P ḣP θ̇

+ Iθα,P α̇P θ̇+ 1

2
Iψ,P ψ̇

2 + 1

2
IΩΩ

2 + IΩΩθ̇ψ+ IΩΩα̇Pψ

(8.8)

1Note that Iθ,P = IY and Iψ,P = IZ , from Chapter 6.
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Potential energy

The potential energy of the propeller due to flexible engine mounts is

UP = 1

2
Kθθ

2 + 1

2
Kψψ

2 (8.9)

where the stiffness terms Ki may be expressed in terms of uncoupled frequencies and inertia (ωθ =
√

Kθ

Iθ,P

and ωψ =
√

Kψ

Iψ,P
)

UP = 1

2
Iθ,Pω

2
θθ

2 + 1

2
Iψ,Pω

2
ψψ

2 (8.10)

Dissipation energy

The dissipation function can be expressed in terms of the hysteretic type of structural damping. In this
case, the dissipative force is proportional to displacement.

D = 1

2

Kθgθ
ω

θ̇2 + 1

2

Kψgψ
ω

ψ̇2 (8.11)

where ω is the frequency of vibration of the system and gi are the structural damping coefficients.
Expressing the stiffness terms Ki may be expressed in terms of uncoupled frequencies and mass/inertia

D = 1

2
Iθ,Pω

2
θ

gθ
ω
θ̇2 + 1

2
Iψ,Pω

2
ψ

gψ
ω
ψ̇2 (8.12)

Equations of motion

Applying Lagrange’s equations, the final equations of motion of the system are

Iθ,P θ̈+Kθθ+
Kθgθ
ω

θ̇+ IΩΩψ̇+Sθ,P ḧP + Iθα,P α̈P =Qθ

−IΩΩθ̇+ Iψ,P ψ̈+Kψψ+ Kψgψ
ω

ψ̇− IΩΩα̇P =Qψ

· · ·+Sθ,P θ̈+MP ḧP +Sα,P α̈P =Qh,W +Qh,P

· · ·+ Iθα,P θ̈+ IΩΩψ̇+Sα,P ḧP + Iα,P α̈P =Qα,W +Qα,P

(8.13)

The ". . ." represent the terms that originate from wing kinetic energy and wing potential energy when
deriving with respect to the propeller-wing nodal degrees of freedom (hP ,αP ). These terms are already given
in the wing beam model explained in Chapter 7. Qθ and Qψ are the propeller aerodynamic loads that act on
the propeller, Qh,P and Qα,P are the propeller aerodynamic loads that act on the propeller-wing node, and
Qh,W and Qα,W are the wing aerodynamic loads that act on the propeller-wing node; they are obtained from
Theodorsen’s theory as explained in Section 7.2.

Comparing the first two equations in Equation (8.13) with the equations of motion of the propeller on a
rigid wing (Equation (6.8)), one can observe that the influence of wing flexibility on the propeller is repre-
sented by a static unbalance term (Sθ,P ḧP ), a inertial term (Iθα,P α̈P ), and a gyroscopic term (−IΩΩα̇P ). The
gyroscopic effects that couple propeller pitching and yawing motions are represented by the terms IΩΩθ̇ and
−IΩΩψ̇, this influence is enhanced by the twisting motions of the wing through −IΩΩα̇P .

The last two equations in Equation (8.13) represent the extra terms that need to be added to the wing beam
model due to the influence of the propeller. The influence of the propeller on the wing is represented by a
mass term (MP ḧP ), static unbalance terms (Sθ,P θ̈, Sα,P α̈P , Sα,P ḧP ), inertial terms (Iθα,P θ̈ and Iα,P α̈P ), and a
gyroscopic term (IΩΩψ̇). Due to gyroscopic effects, propeller yawing motions may influence wing pitching
motions.
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8.1.1. Structural Model in Matrix Form

Propeller

The first two equations in Equation (8.13) may be expressed in matrix form as

Asq̈P +Bsq̈WP +Csq̇P +Dsq̇WP +EsqP =
[

Qθ

Qψ

]
(8.14)

where As and Bs are the structural mass matrices, Cs and Ds are the structural damping matrices, Es is
the structural stiffness matrices, Qθ and Qψ are the propeller aerodynamic loads that act on the propeller,

qP =
[
θ

ψ

]
are the propeller pitch and yaw, and qWP =

[
hP

αP

]
are the wing nodal displacement and nodal twist

at the section where the propeller is positioned.
The structural mass matrices are given by

As =
[

Iθ,P 0
0 Iψ,P

]
(8.15)

Bs =
[

Sθ,P Iθα,P

0 0

]
(8.16)

The structural damping matrices are given by

Cs =
[

Kθgθ
ω IΩΩ

−IΩΩ
Kψgψ
ω

]
(8.17)

Ds =
[

0 0
0 −IΩΩ

]
(8.18)

The structural stiffness matrices are given by

Es =
[

Kθ 0
0 Kψ

]
(8.19)

Wing

The terms that appear in the last two equations in Equation (8.13) can also be arranged in matrix form as

· · ·+Fsq̈P +Gsq̈WP +Hsq̇P =
[

Qh,W +Qh,P

Qα,W +Qα,P

]
(8.20)

where

Fs =
[

Sθ,P 0
Iθα,P 0

]
(8.21)

Gs =
[

MP Sα,P

Sα,P Iα,P

]
(8.22)

Hs =
[

0 0
0 IΩΩ

]
(8.23)
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8.2. Propeller Aerodynamics
The propeller aerodynamic loads that appear in Equation (8.13) are to be defined from the virtual work prin-
ciple. The virtual work done by a propeller with moving pivot point is given by

δW =Qθ,Pδθ+Qψ,Pδψ+Qh,PδhP +Qα,PδαP (8.24)

where Qθ,P , Qψ,P , Qh,P , and Qα,P are derived from propeller aerodynamics.
Qθ,P and Qψ,P are the propeller aerodynamic moments about the pivot points. Qh,P , and Qα,P are the

propeller aerodynamic loads acting on the propeller-wing nodal degrees of freedom.

8.2.1. Propeller aerodynamic Loads on the Propeller
The propeller aerodynamic moments about the pivot point are2

Qθ,P = MY ,P +eθFZ ,P

Qψ,P = MZ ,P −eψFY ,P
(8.25)

where FY ,P , MY ,P ,FZ ,P , and MZ ,P are the propeller aerodynamic forces and moments generated by the
propeller as defined in Chapter 6 by Equation (4.25)

FZ = 1

2
ρV 2S′

(
CZθθ+CZψψ+CZq

θ̇R

V
+CZr

ψ̇R

V

)
MY ,p = ρV 2S′R

(
Cmθ

θ+Cmψψ+Cmq

θ̇R

V
+Cmr

ψ̇R

V

)
FY = 1

2
ρV 2S′

(
CYθθ+CYψψ+CYq

θ̇R

V
+CYr

ψ̇R

V

)
MZ ,p = ρV 2S′R

(
Cnθθ+Cnψψ+Cnq

θ̇R

V
+Cnr

ψ̇R

V

)
(4.25)

With the difference that now, the influence of the flexible wing will change the propeller effective pitch
and yaw angles

θ = θ+αP + eθ
V
θ̇+ eα

V
α̇P + 1

V
ḣP

ψ=ψ+ eψ
V
ψ̇

(8.26)

where hP andαP are the wing nodal displacement and wing nodal twist at the section where the propeller
is positioned.

In matrix form

Combining the expressions in Equation (8.25), Equation (4.25), and Equation (8.26) the complete set of
propeller aerodynamic forces and moments may be expressed in matrix form as[

Qθ,P

Qψ,P

]
= Aaq̈P +Baq̈WP +Caq̇P +Daq̇WP +EaqP +FaqWP (8.27)

where Aa and Ba are the aerodynamic mass matrices, Ca and Da are the aerodynamic damping matrices,

Ea and Fa are the aerodynamic stiffness matrices, qP =
[
θ

ψ

]
are the propeller pitch and yaw, and qWP =

[
hP

αP

]
are the wing nodal displacement and nodal twist at the section where the propeller is positioned.

The propeller aerodynamic mass matrices are given by

2Again, note that eθ and eψ are negative in this model, hence the change in sign with respect to Equation (6.9).
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Aa =
k2Cmq

R
V

eθ
V +eθk1CZ q

R
V

eθ
V k2Cmr

R
V

eψ
V +eθk1CZ r

R
V

eψ
V

k2Cnq
R
V

eθ
V −eψk1CY q

R
V

eθ
V k2Cnr

R
V

eψ
V −eψk1CY r

R
V

eψ
V

 (8.28)

Ba =
k2Cmq

R
V

1
V +eθk1CZ q

R
V

1
V k2Cmq

R
V

eα
V +eθk1CZ q

R
V

eα
V

k2Cnq
R
V

1
V −eψk1CY q

R
V

1
V k2Cnq

R
V

eα
V −eψk1CY q

R
V

eα
V

 (8.29)

The propeller aerodynamic damping matrices are given by

Ca =
k2Cmθ

eθ
V +k2Cmq

R
V +eθk1CZθ

eθ
V +eθk1CZ q

R
V k2Cmψ

eψ
V +k2Cmr

R
V +eθk1CZψ

eψ
V +eθk1CZ r

R
V

k2Cnθ
eθ
V +k2Cnq

R
V −eψk1CY θ

eθ
V −eψk1CY q

R
V k2Cnψ

eψ
V +k2Cnr

R
V −eψk1CY ψ

eψ
V −eψk1CY r

R
V


(8.30)

Da =
k2Cmθ

1
V +eθk1CZθ

1
V k2Cmθ

eα
V +k2Cmq

R
V +eθk1CZθ

eα
V +eθk1CZ q

R
V

k2Cnθ
1
V −eψk1CY θ

1
V k2Cnθ

eα
V +k2Cnq

R
V −eψk1CY θ

eα
V −eψk1CY q

R
V

 (8.31)

The propeller aerodynamic stiffness matrices are given by

Ea =
k2Cmθ+eθk1CZθ k2Cmψ+eθk1CZψ

k2Cnθ−eψk1CY θ k2Cnψ−eψk1CY ψ

 (8.32)

Fa =
0 k2Cmθ+eθk1CZθ

0 k2Cnθ−eψk1CY θ

 (8.33)

where k1 = 1
2ρV 2S′, k2 = ρV 2S′R, S′ =πR2 is the area swept by the propeller blades and R is the propeller

radius.

8.2.2. Propeller aerodynamic Loads on the Wing
The propeller aerodynamic loads that act on the propeller-wing nodal degrees of freedom contribute to the
wing nodal lift force and wing nodal pitching moment (see Figure 8.2). These are the propeller vertical force
FZ ,P and the propeller pitching moment MY ,P as defined in Chapter 6 by Equation (4.25). Therefore, the
propeller nodal loads are

Qh,P = FZ ,P

Qα,P = MY ,P +eαFZ ,P
(8.34)

where

eα = eθ+ lθ−aP bP (8.35)

According to Figure 8.2, eα, eθ and lθ are negative whilst aP bP is positive. Hence the negative sign.
FZ ,P and MY ,P are evaluated using the propeller effective pitch and yaw angles as defined earlier in Equa-

tion (8.26)

θ = θ+αP + eθ
V
θ̇+ eα

V
α̇P + 1

V
ḣP

ψ=ψ+ eψ
V
ψ̇

(8.26)
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In matrix form

Equation (8.34) may be expressed in the following matrix form[
Qh,P

Qα,P

]
= P1q̈P +P2q̈WP +P3q̇P +P4q̇WP +P5qP +P6qWP (8.36)

where qP =
[
θ

ψ

]
are the propeller pitch and yaw, and qWP =

[
hP

αP

]
are the wing nodal displacement and

nodal twist at the section where the propeller is positioned. The matrices P1, P2, P3, P4, P5, and P6 are the
aerodynamic influence matrices of the propeller on the wing and have the following expressions:

P1 =
 k1CZ q

R
V

eθ
V k1CZ r

R
V

eψ
V

k2Cmq
R
V

eθ
V +eαk1CZ q

R
V

eθ
V k2Cmr

R
V

eψ
V +eαk1CZ r

R
V

eψ
V

 (8.37)

P2 =
 k1CZ q

R
V

1
V k1CZ q

R
V

eα
V

k2Cmq
R
V

1
V +eαk1CZ q

R
V

1
V k2Cmq

R
V

eα
V +eαk1CZ q

R
V

eα
V

 (8.38)

P3 =
 k1CZθ

eθ
V +k1CZ q

R
V k1CZψ

eψ
V +k1CZ r

R
V

k2Cmθ
eθ
V +k2Cmq

R
V +eαk1CZθ

eθ
V +eαk1CZ q

R
V k2Cmψ

eψ
V +k2Cmr

R
V +eαk1CZψ

eψ
V +eαk1CZ r

R
V


(8.39)

P4 =
 k1CZθ

1
V k1CZθ

eα
V +k1CZ q

R
V

k2Cmθ
1
V +eαk1CZθ

1
V k2Cmθ

eα
V +k2Cmq

R
V +eαk1CZθ

eα
V +eαk1CZ q

R
V

 (8.40)

P5 =
 k1CZθ k1CZψ

k2Cmθ+eαk1CZθ k2Cmψ+eαk1CZψ

 (8.41)

P6 =
0 k1CZθ

0 k2Cmθ+eαk1CZθ

 (8.42)

where k1 = 1
2ρV 2S′, k2 = ρV 2S′R, S′ =πR2 is the area swept by the propeller blades and R is the propeller

radius.

Inclusion into the wing beam model

The expressions for Qh,P and Qα,P are to be assembled into a global vector QP and be included into the
equations of motion of the wing beam model (Equation (7.17)). Essentially, QP is the global vector that rep-
resent the propeller aerodynamic loads acting on the propeller-wing nodal point.

For the nodes where there is a propeller positioned, the propeller aerodynamic loads that act on these
nodes are

QP
(i ) =

Qh,P

0
Qα,P

 (8.43)

For the nodes where there is no propeller positioned, QP
(i ) becomes a 3-by-1 null vector. Therefore the

global propeller aerodynamic load vector QP is

QP =
[

QP
(1)T

QP
(2)T

... QP
(n+1)T

]T
(8.44)
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8.3. Aeroelastic Equations of the Propeller-flexible-Wing System
8.3.1. Propeller
Combining the expressions in Equation (8.14) and Equation (8.27) the complete equations of motion of a
propeller on flexible wing can be formulated in matrix form as follows(

As −Aa

)
q̈P +

(
Bs −Ba

)
q̈WP +

(
Cs −Ca

)
q̇P +

(
Ds −Da

)
q̇WP +

(
Es −Ea

)
qP +

(
−Fa

)
qWP = 0 (8.45)

8.3.2. Wing
The equations of motion of the wing beam model including the influence of the propeller is obtained by
combining Equation (7.23), Equation (8.20), Equation (8.27), and Equation (8.36)

Ms,gq̈W +Cs,gq̇W +Ks,gqW +Fsq̈P +Gsq̈WP +Hsq̇P = QW +QP (8.46)

8.3.3. Propeller - Wing
Equation (8.45) and Equation (8.46) define the aeroelastic behaviour of a propeller-flexible-wing system and
need to be solved simultaneously. Present work reorganizes them into state space form and solves them using
eigenvalue analysis. An example using two beam elements to model the wing is formulated in Appendix C
and Appendix D. Note that the propeller must be attached to a wing nodal point.

Although only one propeller was employed to explain the methodology, the inclusion of two or more
propellers is also possible. In this case there will be two more equations (Equation (8.45)) and two more
unknowns (θ and ψ) per extra propeller installed onto the wing — this is explained in Appendix D.

8.4. Verification and Validation
Verification and validation of the methodology presented in this chapter is carried out by modelling the
propeller-wing system analysed in Bennett and Bland [7]. Bennett and Bland [7] conducted an experimental
and analytical investigation of propeller whirl flutter of a cantilever flexible wing with a fixed-pitch wind-
milling propeller. A sketch of this system is shown in Figure 8.3. It consists of a single propeller mounted with
spring-restrained gimbals to a flexible wing in a conventional layout: the propeller is positioned between the
wing root and the wing tip.

Bennett and Bland [7] tested the propeller in four different configurations. In present analysis, Configura-
tion (A) and Configuration (C) will be analysed; Configuration (A) is the same propeller configuration tested in
Bennett and Bland [6], also named as Configuration (A). Therefore, it is the same propeller already analysed in
Section 4.2 to verify the propeller aerodynamic model and in Section 6.2 to verify the propeller-on-rigid-wing
model. Configuration (C) differs from Configuration (A) in its mass parameters, namely, pitch mass moment
of inertia Iθ,P , yaw mass moment of inertia Iψ,P , and pitch mass unbalance Sθ,P .

The wing consists of an aluminium spar for stiffness and balsa pods for airfoil contour, see Figure 8.4. It
has an aspect ratio of 6.97 and a taper ratio of 0.430. The elastic axis coincides with the wing spar centre line
and it is swept forward 4.9°, however, the pods are formed as streamwise strips.

Data needed to model the propeller-wing system are extracted from [[7], Table I, Table II, Table III, Figure
2, Figure 4-Figure 7, Figure 9]. Model test data of the selected propeller configurations are shown in Table 8.1
and Table 8.2.

In the analyses of Bennett and Bland [7], five propeller aerodynamic derivatives were used, i.e. CZθ, Cmθ ,
CY θ, Cmψ, and Cmq . The first four are measured values extracted from Bennett and Bland [6] and the last
one is calculated using Ribner’s method [91]. Present analysis will calculate flutter speeds by using these five
propeller aerodynamic derivatives and compare the results with those obtained by employing the full set of
propeller aerodynamic derivatives computed with Houbolt-Reed’s method.
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Figure 8.3: Sketch of the layout of the propeller-wing model [7].

Figure 8.4: Schematic of the wing [7].

β0.75R [deg] fθ [Hz] fψ [Hz] 2ςθ 2ςψ ρ [slug/ft3] eθ or eψ [-]

35 11.6 11.7 0.029 0.0324 0.00231 -0.31781
46 11.6 11.7 0.029 0.0324 0.00230 -0.32446
52 11.6 11.7 0.029 0.0324 0.00228 -0.32758
58 11.6 11.7 0.029 0.0324 0.00233 -0.33031

Table 8.1: Propeller Configuration (A): MP = 0.2388 slug, Iθ,P = Iψ,P = 0.0634 slug-ft2, IΩ = 0.00858 slug-ft2, and Sθ,P = 0.03801 slug-ft
[7].
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β0.75R [deg] fθ [Hz] fψ [Hz] 2ςθ 2ςψ ρ [slug/ft3] eθ or eψ [-]

25 19.4 20 0.0289 0.0266 0.00233 -0.31092
30 19.4 20 0.0289 0.0266 0.00233 -0.31437
35 19.4 20 0.0289 0.0266 0.00233 -0.31781
46 19.4 20 0.0289 0.0266 0.00233 -0.32446
52 19.4 20 0.0289 0.0266 0.00233 -0.32758

Table 8.2: Propeller Configuration (C): MP = 0.1379 slug, Iθ,P = Iψ,P = 0.01772 slug-ft2, IΩ = 0.00858 slug-ft2, and Sθ,P =−0.02849 slug-ft
[7].

Verification and validation are conducted via a free vibration analysis to check the structural model and
an aeroelastic analysis to check propeller and wing aerodynamics and the structural-aerodynamic coupling.

8.4.1. Free Vibration Analysis
Table 8.3 presents the first three natural frequencies of the bare spar with pods (wing without propeller-
engine). The modes are coupled by wing static unbalance. Present analysis yields very approximate fre-
quency values to those obtained from measurements and from a Rayleigh-Ritz type analysis conducted in
Bennett and Bland [7].

Mode Present analysis Measured Ref.[7] Rayleigh-Ritz analysis Ref.[7]
First bending 10.9 10.6 11.2
Second bending 42.2 39 43.1
First torsion 52.7 47 53.4

Table 8.3: Coupled natural frequencies (in Hz) of the wing spar with pods. Propeller-engine omitted.

Table 8.4 presents propeller pitch and propeller yaw natural frequencies. Exact frequency values are ob-
tained since pitch stiffness Kθ and yaw stiffness Kθ are defined from measured uncoupled pitch and yaw

frequencies and by definition, ωθ =
√

Kθ

Iθ,P
and ωψ =

√
Kψ

Iψ,P
.

Mode Present analysis Measured Ref.[7]
Propeller pitch 9.21 9.21
Propeller yaw 9.34 9.34

Table 8.4: Uncoupled natural frequencies (in Hz) of the propeller.

When the propeller-engine is installed onto the wing, it increases the nodal mass and the nodal inertia at
the spanwise location where the propeller is positioned. The added nodal mass is the propeller-engine mass
MP and the added nodal inertia is the mass moment of inertia of the propeller-engine about the wing elastic
axis Iα,P (see Equation (8.5)). Iα,P depends on the distance between wing midchord and the propeller pivot
point, lθ, the higher this distance, the higher the value of Iα,P ; the distance lθ is not specified in Bennett and
Bland [7] so its value is guessed from Figure 8.3. Two values of lθ are tested: lθ = −2.2bP and lθ = −2.7bP .
The change in wing mass and, especially, in wing inertia lowers the frequency of the first torsion mode and
changes its mode shape. Figure 8.5 shows the first two uncoupled mode shapes, namely, the first bending
mode and the first torsion mode of the wing with propeller installed. Blue line indicate the same uncoupled
mode shapes calculated in Bennett and Bland [7]. With lθ = −2.2bP , first torsion mode shape approximates
better to the calculated mode shape found in Bennett and Bland [7]. First bending mode shape is not altered
by the change in lθ.
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(a) First bending.
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(b) First torsion.

Figure 8.5: Comparison of uncoupled mode shapes of the wing with propeller installed. Blue lines indicate calculated mode shapes from
Bennett and Bland [7].

Table 8.5 presents the coupled frequencies of the entire propeller-wing model. The propeller is not rotat-
ing. The wing modes are coupled by static unbalance and the propeller pitch mode. There is good agreement
in all mode shapes except for the first torsion and second bending modes. With lθ =−2.2bP present analysis
approximate to the calculated values from reference [7] and with lθ = −2.7bP present analysis approximate
better to the measured values from reference [7].

Mode Present analysis Present analysis Measured Rayleigh-Ritz
lθ =−2.2bP lθ =−2.7bP Ref.[7] analysis Ref.[7]

Propeller pitch (Backward whirl) 9.3 9.2 9.3 9.2
Propeller yaw (Forward whirl) 9.3 9.3 9.3 9.3
First bending 10.8 10.8 10.4 10.1
First torsion 17.3 14.4 14.3 17.4
Second bending 42.9 42.7 39.1 –

Table 8.5: Coupled natural frequencies (in Hz) of the wing spar with pods and propeller-engine installed. The propeller is not rotating.

When the propeller rotates, gyroscopic effects change the frequency of the free vibration modes. Fig-
ure 8.6 and Figure 8.7 show the influence of propeller rotational speed on the natural frequencies of vibration
in two cases, when the propeller frequency (pitch and yaw) has a value of fθ = fψ = 11.65 Hz and fθ = fψ = 9.27
Hz, respectively. Figures correspond to the propeller in Configuration (A). The main discrepancies with the
results from Rayleigh-Ritz analysis are found in wing frequencies. As expected, with lθ = −2.2bP present
analysis predicts higher first bending frequencies; whilst with lθ = −2.7bP present analysis predicts higher
first bending frequencies and much lower first torsional frequencies. This can be due to the Rayleigh-Ritz
analysis in Bennett and Bland [7] using only two uncoupled mode shapes.

The frequencies of propeller modes change with propeller rotational speed: the frequency of the back-
ward whirl mode decreases while the frequency of the forward whirl mode increases. When the frequency of
a propeller mode comes close to the frequency of a wing mode, they do not cross, instead, they split following
an asymptote. Therefore, the way in which gyroscopic effects influence wing vibration modes depends on
the value of propeller frequencies relative to the value of wing frequencies, both evaluated at zero propeller
rotational speed.
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(a) Propeller pitch frequency fθ = 11.65 Hz ( fθ = fψ).
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(b) Propeller pitch frequency fθ = 9.27 Hz ( fθ = fψ).

Figure 8.6: Configuration (A): The effect of propeller rotational speed on natural frequencies of vibration with lθ =−2.2bP . Dashed lines
indicate calculated results from Bennett and Bland [7] using Rayleigh-Ritz type analysis.
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(a) Propeller pitch frequency fθ = 11.65 Hz.
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(b) Propeller pitch frequency fθ = 9.27 Hz.

Figure 8.7: Configuration (A): The effect of propeller rotational speed on natural frequencies of vibration with lθ =−2.7bP . Dashed lines
indicate calculated results from Bennett and Bland [7] using Rayleigh-Ritz type analysis.

To sum up, installing a propeller on the wing changes the natural frequencies of vibration of the wing due
to change in wing mass and wing inertia, but also due to gyroscopic effects. The influence of these gyroscopic
effects depend upon the parameters of the propeller-wing system, i.e. the distribution of natural frequencies
of vibration of the coupled propeller-wing system.

In general, present structural model is in good agreement with verification and validation data. Confi-
dence in the results of present analysis can be increased if the exact value of lθ is known.

8.4.2. Aeroelastic Analysis
In this section verification and validation of the aeroelastic results are presented.

The parameters to be compared with measured and calculated data extracted from reference are propeller
whirl flutter speed and propeller whirl flutter frequency.

Bennett and Bland [7] do not present quantitative results of their analysis of wing aeroelastic charac-
teristics. Nevertheless, aeroelastic analysis of the propeller-wing system using present model are presented
and described for completeness. The values of wing flutter speed, wing flutter frequency, and wing diver-
gence speed from the complete propeller-wing model is compared with those from the flexible cantilever
wing without any propellers.
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Whirl flutter

Whirl flutter speeds and whirl flutter frequencies are calculated for the propeller in Configuration (A) and
in Configuration (C) without wing flexibility and with wing flexibility effects.

In all cases, measured whirl flutter data extracted from reference include wing flexibility.

Without wing flexibility

Figure 8.8 and Figure 8.9 present whirl flutter speeds and whirl flutter frequencies of propeller in Con-
figuration (A) and in Configuration (C), respectively. In each case, present analysis calculated whirl flutter
speeds and whirl flutter frequencies employing (1) measured propeller aerodynamic derivatives extracted
from Bennett and Bland [7], (2) calculated propeller aerodynamic derivatives using Houbolt-Reed’s method
with compressibility effects (M 6= 0), and (3) calculated propeller aerodynamic derivatives using Houbolt-
Reed’s method without compressibility effects (M = 0). Note that the experimental data presented include
wing flexibility effects.

In Configuration (A) (Figure 8.8), calculated whirl flutter speeds and whirl flutter frequencies are very close
to their measured counterparts. Using the calculated propeller aerodynamic derivatives from Houbolt-Reed’s
method, whirl flutter speeds follow the measured trend more closely .

In Configuration (C) (Figure 8.9), calculated whirl flutter speeds and whirl flutter frequencies are more
conservative than their measured counterparts: whirl flutter speeds are underpredicted and whirl flutter fre-
quencies are overpredicted. Using the measured propeller aerodynamic derivatives from Bennett and Bland
[7], whirl flutter speeds and whirl flutter frequencies are slightly closer to the measured values. Discrepancies
with measured data are bigger at higher propeller blade angles at three-quarter propeller radius. It seems that
propeller in Configuration (C) is more affected by wing flexibility.

As expected, in both configurations, compressibility effects barely affect the whirl flutter results. This is
because for Mach numbers below 0.3 the values of the propeller aerodynamic derivatives calculated using
Houbolt-Reed’s method hardly change (see Figure 4.7).
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(b) Whirl flutter frequency.

Figure 8.8: Configuration (A): Comparison of whirl flutter speeds and whirl flutter frequencies with measured data from Bennett and
Bland [7].
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(b) Whirl flutter frequency.

Figure 8.9: Configuration (C): Comparison of whirl flutter speeds and whirl flutter frequencies with measured data from Bennett and
Bland [7].

With wing flexibility

In this section, whirl flutter speeds and whirl flutter frequencies are calculated including wing flexibil-
ity. Figure 8.10 and Figure 8.123compare whirl flutter results calculated using measured propeller aerody-
namic derivatives extracted from Bennett and Bland [7], and Figure 8.11 and Figure 8.13 compare whirl flut-
ter results calculated using propeller aerodynamic derivatives obtained from Houbolt-Reed’s method without
compressibility effects (M = 0). There is slightly better agreement with measured data in Configuration (A)
when using propeller aerodynamic derivatives calculated from Houbolt-Reed’s method; whereas in Configu-
ration (C) slightly better agreement is found when using the measured propeller aerodynamic derivatives.

As the distance between wing midchord and the propeller pivot point lθ is unknown, two different values
are tested: lθ = −2.2bP and lθ = −2.7bP . In general, calculated whirl flutter results are more approximate
to measured whirl flutter results when lθ = −2.7bP . This is corroborated by the fact that with lθ = −2.7bP ,
calculated coupled natural frequencies are closer to their measured values (see Table 8.5).

In Configuration (A) (Figure 8.10 and Figure 8.11), calculated whirl flutter results with and without wing
flexibility are almost aligned, it seems that whirl flutter results are barely influenced by wing flexibility; in
Configuration (C) (Figure 8.12 and Figure 8.13), calculated whirl flutter results agree better with measured
data when wing flexibility is included. Bennett and Bland [7] also calculated whirl flutter speeds and whirl
flutter frequencies including wing flexibility (represented by the red line in the figures). Their approach is
based on a Rayleigh-Ritz type of analysis using only the first two wing uncoupled modes (first torsional and
first bending modes) and a structural damping of gh = gα = 0.005 was assumed. In general, calculated results
from Bennett and Bland [7] seem to obtain better agreement with measured data but results from present
analysis, which do not include any type of wing damping, are not far-off.

3In the figures, whirl flutter speed V f and whirl flutter frequencyω f are non-dimensioned with the average frequencyω and the propeller

radius R. ω is the average frequency of the uncoupled modes of propeller pitch and yaw expressed in rad/s
(
ω= ωθ+ωψ

2

)
. The propeller

radius is R = 0.8438 ft.
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Figure 8.10: Configuration (A): Comparison of whirl flutter velocity and whirl flutter frequency. With measured propeller aerodynamic
derivatives from Bennett and Bland [7]. Without wing structural damping.
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Figure 8.11: Configuration (A): Comparison of whirl flutter velocity and whirl flutter frequency. With Houbolt-Reed propeller aerody-
namic derivatives. Without wing structural damping.
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Figure 8.12: Configuration (C): Comparison of whirl flutter velocity and whirl flutter frequency. With measured propeller aerodynamic
derivatives from Bennett and Bland [7]. Without wing structural damping.
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(a) Whirl flutter velocity

25 30 35 40 45 50 55 60

0.75R
 [deg]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
With wing flexibility Ref.

Experiment Ref.

Without wing flexibility

With wing flexibility l  = -2.2b
P

With wing flexibility l  = -2.7b
P

(b) Whirl flutter frequency.

Figure 8.13: Configuration (C): Comparison of whirl flutter velocity and whirl flutter frequency. With Houbolt-Reed propeller aerody-
namic derivatives. Without wing structural damping.

To check the influence of wing structural damping in the present model, a Rayleigh damping model is
used in which the constants of proportionality are µ = λ = 0.001. Figure 8.14 - Figure 8.17 are the exact
same graphs as Figure 8.10 - Figure 8.13 but including wing structural damping. As it can be seen, whirl
flutter characteristics of the propeller in Configuration (A) (Figure 8.14 and Figure 8.15) have barely changed
whereas whirl flutter characteristics of the propeller in Configuration (C) (Figure 8.16 and Figure 8.17) see
better agreement between calculated results from present model and measurements.

It is also worth mentioning that for very high or very low values of β0.75R calculated results do not match
well with measurements, this can be due to the fact that at very high or very low values of β0.75R three di-
mensional effects such as flow separation can occur at the propeller blades which in turn affect propeller
aerodynamics.

Overall, neglecting wing structural damping, computed results in present analysis are conservative with
respect to experimental data.
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Figure 8.14: Configuration (A): Comparison of whirl flutter velocity and whirl flutter frequency. With measured propeller aerodynamic
derivatives from Bennett and Bland [7]. With wing structural damping using Rayleigh damping model: µ=λ= 0.001.
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Figure 8.15: Configuration (A): Comparison of whirl flutter velocity and whirl flutter frequency. With Houbolt-Reed propeller aerody-
namic derivatives. With wing structural damping using Rayleigh damping model: µ=λ= 0.001.
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Figure 8.16: Configuration (C): Comparison of whirl flutter velocity and whirl flutter frequency. With measured propeller aerodynamic
derivatives from Bennett and Bland [7]. With wing structural damping using Rayleigh damping model: µ=λ= 0.001.
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Figure 8.17: Configuration (C): Comparison of whirl flutter velocity and whirl flutter frequency. With Houbolt-Reed propeller aerody-
namic derivatives. With wing structural damping using Rayleigh damping model: µ=λ= 0.001.
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Wing flutter

Bennett and Bland [7] performed a wing flutter analysis using Rayleigh-Ritz method with the first tor-
sional and bending modes of the wing. The propeller-engine mounting in pitch and yaw were assumed to be
completely rigid. Analysis indicated no occurrence of wing flutter with or without propeller aerodynamics in
the range of velocities considered in the study (below 300 ft/s). However, no specific quantitative value of the
wing flutter speed is presented in Bennett and Bland [7].

Since the aeroelastic model of a flexible wing without flexibly mounted propellers (therefore neither pro-
peller aerodynamics) was already verified in Chapter 7, the wing flutter speed obtained from this aeroelastic
model may serve as a reference for the aeroelastic analysis of the flexible wing with a flexibly mounted pro-
peller (with propeller aerodynamics).

Table 8.6 presents the wing flutter speed, wing flutter frequency, and wing divergence speed of the wing
spar (with no propeller installed). Indeed, wing flutter occurs beyond 300 ft/s. The addition of propeller-
engine mass, inertia, and static unbalance (wing spar with pods and propeller) increases wing flutter speed
and wing flutter frequency. The increase in flutter speed is slightly higher with the propeller in Configuration
(C) than with the propeller in Configuration (A). Divergence speed is not changed with Configuration (A) and
it is slightly decreased in Configuration (C). These results are in line with the findings in Wang and Chen
[109] and Rodden and Rose [93] where the wing with a propeller installed has higher flutter speed and lower
divergence speed with respect to the wing without any propeller installed. In both configurations, higher
flutter speeds are obtained with lθ =−2.2bP .

Parameters Wing spar Wing spar with pods Config. A Wing spar with pods Config. C
lθ =−2.2bP lθ =−2.7bP lθ =−2.2bP lθ =−2.7bP

Flutter speed [ft/s] 548.0 617.0 611.0 626.0 616.0
Flutter frequency [Hz] 27.0 32.3 31.9 32.7 32.3
Divergence speed [ft/s] 583.0 583.0 583.0 580.0 580.0

Table 8.6: Flutter speed, flutter frequency, and divergence speed of the wing spar and wing spar with pods and a non-rotating propeller.
The propeller is rigid, therefore, there is no coupling with the propeller pitch and yaw degrees of freedom and gyroscopic effects are not
included.

Table 8.7 and Table 8.8 present wing flutter speeds V f , wing flutter frequencies f f , and wing divergence
speeds Vd of the wing with a rotating propeller installed in Configuration (A) and in Configuration (C), re-
spectively. In both configurations, coupling the wing with a rotating propeller slightly decreases wing flutter
speed and wing divergence speed with respect to their analogous cases with a non-rotating propeller.

With the propeller windmilling, higher propeller blade angle at three-quarter propeller radius (β0.75R ) can
be translated into lower propeller rotational speeds. In both configurations, flutter speeds and divergence
speeds decrease very slightly with increasing β0.75R (decreasing propeller rotational speeds).

Gyroscopic effects increase those modes whose frequencies are higher than the propeller yaw mode (for-
ward whirl) frequency and decrease those modes whose frequencies are lower than the propeller pitch mode
(backward whirl) frequency [93]. In both propeller-wing configurations, flutter occurs in a mode whose fre-
quency is above the whirl modes, therefore gyroscopic effects increase wing flutter frequency. Although in
this case, only for a very small amount.

lθ =−2.2bP lθ =−2.7bP

β0.75R [deg] V f [ft/s] f f [Hz] Vd [ft/s] V f [ft/s] f f [Hz] Vd [ft/s]
35 615.0 30.9 578.0 611.0 31.3 577.0
46 613.0 33.3 577.0 607.0 33.0 576.0
52 612.0 33.4 576.0 607.0 33.0 575.0
58 612.0 33.2 576.0 607.0 33.0 574.0

Table 8.7: Configuration (A): Flutter speed, flutter frequency, and divergence speed of the wing with rotating flexible propeller. There is
coupling with the propeller pitch and yaw degrees of freedom and gyroscopic effects are included. With propeller aerodynamic deriva-
tives from Houbolt-Reed’s method.
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lθ =−2.2bP lθ =−2.7bP

β0.75R [deg] V f [ft/s] f f [Hz] Vd [ft/s] V f [ft/s] f f [Hz] Vd [ft/s]
25 626.0 34.1 577.0 613.0 33.6 576.0
30 626.0 33.9 576.0 613.0 33.5 575.0
35 625.0 33.9 575.0 613.0 33.5 574.0
46 623.0 33.7 574.0 612.0 33.2 572.0
52 621.0 33.4 573.0 610.0 33.1 571.0

Table 8.8: Configuration (C): Flutter speed, flutter frequency, and divergence speed of the wing with rotating flexible propeller. There is
coupling with the propeller pitch and yaw degrees of freedom and gyroscopic effects are included. With propeller aerodynamic deriva-
tives from Houbolt-Reed’s method.

Comments on validation and verification

Whirl flutter predictions using the method derived in this chapter have been well validated and verified.
The set of only five propeller aerodynamic derivatives obtained from measurements seem to be able to cap-
ture whirl flutter characteristics rather well. However, in the absence of these measurements, Houbolt-Reed’s
method produce reasonable estimates of the propeller aerodynamic derivatives and the resulting whirl flutter
characteristics match well with experimental data.

Wing flutter predictions have been analysed; qualitative trends are in line with findings in literature. A
qualitative validation/verification is still required. This has not been possible due to lack of literature data;
further validation against numerical/higher fidelity models is recommended. Nevertheless, the good agree-
ment found in the free vibration analyses reassures the validity of present method.
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9
Case Studies: Baseline Models

Following the validation/verification of the aeroelastic models, Part III apply them into case studies and para-
metric studies. Results from case studies are presented in Chapter 9 and Chapter 10 and results from para-
metric studies are presented in Chapter 11.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Chapter 9, three baseline models are described, these are a baseline wing, a baseline propeller, and a
baseline propeller-wing model with conventional layout — the propeller is attached to the inboard part of the
wing. Aeroelastic analyses of each of these models are performed and explained following the methodology
described in Part II.

The structural and geometric characteristics of the baseline models are estimated based on the light air-
craft Tecnam P2006T [72] and the experimental aircraft NASA X-57 Maxwell [68][46][38]. Both aircraft are
illustrated in Figure 9.1 and Figure 9.2, respectively1.

Figure 9.1: Three view drawing of Tecnam P2006T Aircraft [72].

1NASA X-57 Maxwell is an experimental aircraft derived from Tecnam P2006T, which is a conventional four-seater light aircraft. The
main difference between the two is that X-57 Maxwell features a thinner, higher aspect ratio wing with Distributed Electric Propulsion
(DEP) to increase its high-speed cruise efficiency. The wing contains a total of fourteen electrically driven tractor propellers mounted
in front of the wing’s leading edge: two large wingtip-mounted propellers and twelve small inboard propellers. The wingtip mounted
propellers are used during all flight phases whereas the smaller inboard propellers are only used for lift augmentation for take-off and
landing; in fact, when the inboard propellers are no longer needed, their blades are folded back so as to reduce drag [68][46][38].

95
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Figure 9.2: Multiple view of X-57 Maxwell. Generated with OpenVSP [77].

9.1. Baseline Wing Description and Analysis
The baseline wing (Figure 9.3) is based on the wing from Tecnam P2006T aircraft [72]. It consists of a tapered
wing with constant mass and stiffness characteristics along the span. It has no sweep, twist, dihedral or con-
trol surfaces. The main parameters are tabulated in Table 9.1. The wing has an aspect ratio of ≈ 11 and a taper
ratio of 0.64. The wing mid-chord axis coincides with the elastic axis and the centre of gravity distribution.

X

𝑌

Figure 9.3: Baseline wing: simple schematic, top view. Relative dimensions are approximate.

Parameter Value Units
Aircraft weight 1200 kg
Cruise speed 150 (77) knots (m/s)
Altitude 8000 (2438.4) ft (m)
Density of air 0.962870 kg/m3

(a) Flight condition.

Parameter Value Units
Wing span 11.4 m
Root chord 1.25 m
Tip chord 0.8 m
Thickness-to-chord 15% [-]
Mass per unit length 25 kg/m
Radius of gyration (about CG) 25% chord [-]
Spanwise elastic axis (from LE) 50% chord [-]
Centre of gravity (from LE) 50% chord [-]
Bending rigidity (EI) 7×105 N·m2

Torsional rigidity (GJ) 2×105 N·m2

Aerodynamic centre ac (from LE) 25% chord [-]
Lift curve slope Clα 2π [-]

(b) Wing parameters.

Table 9.1: Definition of baseline wing.

Aeroelastic analysis of the baseline wing is carried out using the methodology presented in Chapter 7. The
structural wing model has 20 beam elements, the natural frequencies of the wing are tabulated in Table 9.2a.
Flutter and divergence speeds are shown in Table 9.2b and the velocity-damping-frequency (V-g-f) plots are
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shown in Figure 9.4. Both flutter and divergence speeds are much higher than the proposed cruise speed (77
m/s). Flutter mode is a torsion mode that goes unstable due to interaction between the first torsion mode and
the first bending mode. Divergence is caused by an aerodynamic lag state going unstable due to interaction
with the first bending mode. Flutter and divergence mode shapes are shown in Figure 9.5 and Figure 9.6.

Mode Frequency [Hz]
First bending 2.88
First torsion 16.68
Second bending 18.06
Second torsion 46.59
Third bending 50.57

(a) Natural frequencies

Parameter Value Units
Flutter speed 152 [m/s]
Flutter frequency 8.08 [Hz]
Divergence speed 154 [m/s]

(b) Aeroelastic results.

Table 9.2: Analysis of baseline wing.
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Figure 9.4: Baseline wing: V-g-f plots.

Figure 9.5: Baseline wing: flutter mode shape at time = 0 s. Figure 9.6: Baseline wing: divergence mode shape.
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9.2. Baseline Propeller Description and Analysis
The baseline propeller is based on the wingtip-mounted propeller (cruise propeller) from NASA X-57 Maxwell
[68][46][38]. It consists of a tractor propeller mounted on the wing’s leading edge. The propeller is composed
of a spinner, three blades, a motor, and a nacelle (Figure 9.7). For simplicity, the following assumptions are
taken:

(a) The propeller is positioned at 1.6 m distance from wing root. The wing chord at this position is 1.13 m.

(b) The mass of blades-spinner is treated as a concentrated mass located at the centre of rotor plane, 0.6 m
in front of the wing leading edge (-1.16 m from wing mid-chord axis).

(c) The motor-nacelle is treated as a concentrated mass located at 0.3 m in front of the wing leading edge
(-0.86 m from wing mid-chord axis).

(d) The pivot points in pitch and yaw are both located on the wing mid-chord axis.

(e) The blades have constant chord and linear varying twist (constant pitch propeller).

(f) Whirl flutter is analysed with propeller in windmilling conditions.

(g) The propeller is a fixed-pitch propeller. The relation between the advance ratio and the geometric
collective pitch angle β0.75R for the propeller windmilling is given by:

J = tan(β0.75R −3°)π (9.1)

where -3° is the zero lift angle of attack of the airfoil at the three-quarter-radius station.

(h) The propeller mass moment of inertia about the axis of rotation IΩ may be estimated by idealizing the
blades as thin rods with a uniform cross-sectional area [32]. Hence, a simple formula to estimate IΩ is:

IΩ = Mr ·R2

3
(9.2)

where Mr is the rotor mass and R the rotor radius.

(i) The propeller-wing inertia parameters (Iθ,P , Iψ,P , Sθ,P , Iα,P , Sα,P , and Iθα,P ) are to be calculated ac-
cording to Equation (8.5) and Equation (8.6). These parameters are function of the pivoting mass and
its inertia, hence, they depend on the location of the pivot axes and the mass distribution of the pivoting
structure.

The second condition of assumption (e) and assumption (f) are necessary to employ Houbolt-Reed’s
method to compute the propeller aerodynamic derivatives.

Blades

Motor + Nacelle CG

Wing mid-chord axis
(pivot point)

X

Z
Spinner

Rotor CG

Figure 9.7: Baseline propeller: side view. Generated with OpenVSP [77].

The main parameters defining the baseline propeller are tabulated in Table 9.3 and Table 9.4.
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Parameter Value Units
Number of blades 3 [-]
Rotor diameter 5 (1.524) ft (m)
Hub diameter 0.824 (0.25) ft (m)
Motor diameter 14 (0.3556) in (m)
Blade chord 0.308 (0.094) ft (m)
Cruise RPM 2250 rev/min
Airfoil MH117 [-]
Geometric collective pitch angle, β0.75R 35 [°]
Advance ratio, J 1.96 [-]

Table 9.3: General propeller parameters.

Parameter Value Units
Rotor mass 8 kg
Motor-nacelle mass 35 kg
Position of rotor CG −1.16 m
Position of motor CG −0.86 m
Pitch axis = yaw axis

lθ = lψ 0 m
eθ = eψ −1.16 m

Pitch stiffness, fθ 7 [Hz]
Yaw stiffness, fψ 7 [Hz]
Pitch damping, gθ 0.005 [-]
Yaw damping, gψ 0.005 [-]

Parameter Value Units
IΩ 1.55 kg·m2

Iθ,P 36.65 kg·m2

Iψ,P 36.65 kg·m2

Sθ,P -39.38 kg·m
Iθα,P 36.65 kg·m2

Iα,P 36.65 kg·m2

Sα,P -39.38 kg·m

Table 9.4: Structural parameters. Distances are measured from wing mid-chord, positive rearward.

Whirl flutter analysis of the baseline propeller on a rigid wing is carried out by employing the methodology
presented in Chapter 6. Results are shown as V-g-f plots in Figure 9.8. The motion of the propeller is defined
by two mode shapes, a backward whirl mode and a forward whirl mode; the former has lower frequencies
than the latter. With the assumption of rigid blades and rigid wings, forward whirl mode never goes unsta-
ble, in fact, in this case, it becomes more stable with increasing airspeeds. Whirl flutter only occurs in the
backward whirl mode. Note the high benignity in this flutter mode; it means that the instability has a "soft"
behaviour, hence, it can be avoided by adding small amounts of structural damping. This is in accordance
with findings in literature, which state that whirl flutter is rather sensitive to structural damping.

Another peculiarity is that the gap between the frequencies of forward whirl mode and backward whirl
mode is widened with increasing incoming airspeed, until a certain airspeed. This has to do with the as-
sumption of fixed-pitch propeller operating in windmilling conditions: given a fixed collective pitch angle,
the advance ratio is constant, therefore, higher incoming airspeeds lead to higher propeller rotational speeds.
As the propeller rotational speed increases, the forward whirl mode frequency increases and the backward
whirl mode frequency decreases. This behaviour stems from the difference in sign of the gyroscopic term in
Equation (6.8). For much higher airspeeds, the forward whirl mode frequency is limited by propeller aerody-
namics.

Whirl flutter speed is much higher than the proposed cruise speed (77 m/s).

Parameter Value Units
Whirl flutter speed 221.0 [m/s]
Whirl flutter frequency 5.0 Hz
Rotational speed at flutter 4433 RPM

Table 9.5: Baseline propeller: aeroelastic results
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Figure 9.8: Baseline propeller (fixed-pitch propeller): V-g-f plots.

Whirl flutter mode shapes

Figure 9.9 shows the backward whirl flutter mode shape. The mode shape reflects the relative amplitude
and phase lag between pitching and yawing motions. It can be observed that ψ and θ̇ are in phase with each
other, and θ and ψ̇ are out of phase 180°; these are conditions for a clockwise rotation if ψ is plotted in the
Y-axis and θ in the X-axis. This indicates that the mode that goes unstable is indeed a backward whirl mode
since the blade rotation is counter-clockwise (see Figure 6.1). Pitch θ and yaw ψ have a phase lag of 90°
because of symmetry in pitch-yaw characteristics, hence, the circular path in Figure 9.9b.
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(a) Pitch and yaw displacements and their rates.
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Figure 9.9: Baseline propeller with symmetric pitch-yaw characteristics ( fθ = 7 Hz and fψ = 7 Hz): whirl flutter mode shape.

If pitch-yaw characteristics are no longer symmetric, such as unequal pitch and yaw stiffness or unequal
pitch and yaw pivot points, the path described by the pitch-yaw displacements will become an ellipse, this
means that θ and ψ will have a phase lag different than 90°. Figure 9.10 shows the backward whirl flutter
mode shape of the baseline propeller modified to have unequal pitch-yaw stiffness, it can be observed that
the path described by θ-ψ motions is an ellipse. The orientation of the whirl is indicated by the pitch-yaw
rates; due to the applied asymmetry in pitch-yaw stiffness, ψ and θ̇ are slightly out of phase.

Note that the unsymmetrical propeller has a whirl flutter speed of 242 m/s which is higher than the whirl
flutter speed of the symmetrical propeller in spite of having less stiffness in the yaw direction. This result
matches the findings in literature which state that isolated propellers with rigid blades are more prone to
whirl flutter when they have equal pylon-nacelle-stiffness [45].
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Figure 9.10: Baseline propeller with unequal pitch-yaw stiffness ( fθ = 7 Hz and fψ = 4 Hz): whirl flutter mode shape.

Time simulations

It is also possible to illustrate the behaviour of propeller whirl flutter by solving the aeroelastic equations
of the propeller in time domain (Equation (6.18)). Present analysis employs MATLAB ode45 function. Fig-
ure 9.11 shows variations of pitch and yaw deflections in time given an initial pitch deflection of 1°. When
the disturbance is introduced at an incoming airspeed smaller than the whirl flutter speed (V = 77 m/s), the
motion caused by the disturbance is damped and the propeller returns to a stable position. When the distur-
bance is introduced close to the whirl flutter speed (V = 222 m/s), the propeller attains a neutral motion, it
does not go stable nor does it go unstable. When the disturbance is introduced at airspeeds higher than the
whirl flutter speed (V = 250 m/s), the propeller follows a spiral diverging motion. In all three cases, the motion
develops in the backward whirl mode: the motion occurs in the clockwise direction while the blade rotation
is in the counter-clockwise direction (see Figure 6.1). Forward whirl mode is also excited by the initial distur-
bance, this is evidenced by the sharp corners illustrated in Figure 9.11. As the forward whirl mode is under
much higher damping than the backward whirl mode, the former is quickly damped out at the beginning
of the transient response. This matches the findings published in Reed III and Bland [88] and Houbolt and
Reed [45]. Analogous results are illustrated in Figure 9.12 for the unsymmetrical propeller. Here, the elliptical
pattern is visible.
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(c) Unstable: V = 250 m/s

Figure 9.11: Baseline propeller with symmetric pitch-yaw characteristics ( fθ = 7 Hz and fψ = 7 Hz): time simulations run for 10 s with an
initial pitch deflection of 1°.
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(b) Neutral: V = 242 m/s
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(c) Unstable: V = 250 m/s

Figure 9.12: Baseline propeller with unequal pitch-yaw stiffness ( fθ = 7 Hz and fψ = 4 Hz): time simulations run for 10 s with an initial
pitch deflection of 1°.

Another method for windmilling: Constant-speed propellers

As mentioned, the baseline propeller is assumed to be windmilling in fixed-pitch — the advance ratio
remains constant and the propeller rotational speed is increased with increasing incoming airspeed. Another
type of propeller is that of constant speed propeller. In this case, the propeller rotational speed remains
constant and the collective blade pitch is increased with increasing airspeed so as to maintain the propeller
in windmilling conditions. This leads to very different whirl flutter behaviours.

Figure 9.13 shows the V-g-f plots of the baseline propeller with such configuration. Note that only the pro-
peller rotational speed is set to a constant value of 2250 RPM (cruise RPM) and the advance ratio is allowed
to be varied, all the other parameters defining the baseline propeller remain unchanged. Three aspects are
observed: first, the backward whirl mode starts from being unstable at very low airspeeds, this is due to the
fact that at very low airspeeds, very small advance ratio is present which leads to some propeller aerody-
namic derivatives having very high values. In practice, this can be avoided by simply not setting the advance
ratio to windmilling conditions at small incoming airspeeds. Second, the backward whirl mode encounters
whirl flutter at a much higher airspeed than in the case of fixed-pitch propeller2, about 427 m/s. Third, the
frequency of both backward and forward whirl modes decrease with increasing airspeed, and then, increase
again after whirl flutter onset; in this case, aerodynamic effects decrease or increase the stiffness of both whirl
modes together. Again, flutter also only occurs in the backward whirl mode. In this case, the flutter mode has
very low benignity and but becomes divergent soon after flutter onset.

Apart from the instability at small incoming airspeeds, the constant-speed propeller is less prompt to
whirl flutter than the fixed-pitch propeller. Note that the analyses are conducted in windmilling conditions,
generalisation to thrusting propellers is questionable. For the remaining of the report, present analysis will
restrict whirl flutter studies to the case of fixed-pitch propellers3 as for distributed electric propulsion aircraft,
it seems likely that fixed-pitch propellers will be employed — such propellers have simpler mechanism which
reduces weight and favours maintainability [12]. Analysis of constant-speed propellers and general whirl
flutter studies in thrusting conditions is proposed for future work.

2At this high airspeed, the flow is supersonic. The calculations obtained in this case have very little physical sense as compressibil-
ity effects are not considered in any of the models treated in present work, apart from the compressibility effect correction factor in
Houbolt-Reed’s method. The only realistic interpretation is that whirl flutter occurs at a very high airspeed.

For the remaining analyses shown in present report, flutter speeds close to or above the speed of sound are only to be considered for
trend characterization.

3Additional results of propeller-wing models using a constant speed propeller are reported in Appendix E.
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Figure 9.13: Baseline propeller (constant speed propeller): V-g-f plots.

9.3. Baseline Propeller-Wing Description and Analysis
The baseline propeller-wing model is defined by combining the baseline wing and baseline propeller de-
scribed in Section 9.1 and Section 9.2, respectively. The plan view is illustrated in Figure 9.14.

X

𝑌

Figure 9.14: Baseline propeller-wing simple schematic, top view. Relative dimensions are approximate.

Wing flutter and whirl flutter analysis of the baseline propeller-wing model is carried out employing the
methodology presented in Chapter 8. The structural wing model has 25 beam elements and the propeller is
positioned on node number 8th (1.6 m from wing root). Results are presented in this section.

Ignoring aerodynamic interference effects, the interaction between a flexible wing and a flexible mounted
propeller can be summarised as follows:

• The influence of installing a propeller on the wing is threefold: first, the added propeller mass changes
the wing mass and inertial properties; second, a rotating propeller induces gyroscopic effects that
change the wing natural vibration frequencies; and third, propeller aerodynamic forces and moments
are additional sources of excitation loads on the flexible wing.

• The propeller is attached to the flexible wing through a pivot point. As the wing undergoes heaving and
pitching motions, it carries the propeller with it. Consequently, the propeller experiences additional in-
ertial and gyroscopic effects. Furthermore, the blades perceive modified effective pitch and yaw angles
— this alters the propeller aerodynamic forces and moments.

9.3.1. Wing with a non-rotating Propeller rigidly attached
First, let’s analyse the case of adding a non-rotating baseline propeller to the baseline wing. The propeller
mounts are assumed to be rigid, hence, the added propeller may be treated as an additional inert mass that
changes the mass and inertial distributions of the wing. Table 9.6 shows the frequency distribution of a wing
with such configuration.

The added propeller mass couples the wing bending and torsional modes due to the rotor and motor CG
being in front of the wing’s leading edge. Because of the additional static unbalance, the frequency of the
wing torsional modes is reduced by half, approximately; the frequency of the wing bending modes is reduced
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slightly. This is reflected in the wing flutter speed and flutter frequency which are decreased to 142 m/s and
6.30 Hz, as the flutter mode of the clean wing is a torsional mode; divergence speed is barely changed, as
divergence is caused by the coupling of the lowest wing bending mode and an aerodynamic lag state, and
their frequencies are barely affected by the added propeller mass. The V-g-f plots in Figure 9.15 show that the
flutter mode that goes unstable is still the wing torsional mode (here, second wing mode). At much higher
speeds, the second wing bending mode (here, third wing mode) also goes unstable due to interaction with an
aerodynamic lag state.

Mode Frequency Frequency Units
(with propeller) (clean wing)

First wing mode 2.85 2.88 [Hz]
Second wing mode 8.19 16.68 [Hz]
Third wing mode 17.84 18.06 [Hz]
Fourth wing mode 26.23 46.59 [Hz]
Fifth wing mode 49.98 50.57 [Hz]

Table 9.6: Baseline wing with a non-rotating baseline propeller, rigidly mounted: natural frequencies
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Figure 9.15: Baseline wing with a non-rotating baseline propeller, rigidly mounted: V-g-f plots.

Parameter With one propeller Clean wing Units
Flutter speed 142 152 [m/s]
Flutter frequency 6.30 8.08 [Hz]
Divergence speed 153 154 [m/s]

Table 9.7: Baseline wing with a non-rotating baseline propeller, rigidly mounted: aeroelastic results.

9.3.2. Wing with a rotating Propeller flexibly attached
Now, assume that the propeller is flexibly mounted on the wing and let the propeller rotate.

On the one hand, the natural modes of the flexible mounts, i.e. pitch and yaw, will couple with wing
bending and torsional modes. In consequence, the natural vibrations of the wing and the propeller are mod-
ified. The value of these frequencies are tabulated in Table 9.8. The propeller pitch mode is reduced due
to structural coupling with wing torsion. Since there is no in-plane motions of the wing, the propeller yaw
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mode remains unchanged. Adding a flexibly mounted propeller with pitching and yawing motions appears
to increase the natural frequencies of the clean wing for a small amount, with the exception of the first wing
mode. However, comparing the natural frequencies with those of the equivalent wing with a rigidly mounted
non-rotating propeller, it can be seen that the frequency of the second wing mode is approximately doubled
because of the introduction of flexible mounts; the frequency of all the other wing modes is also increased.

The propeller-wing structural coupling is reflected in the coupling terms in Equation (8.13).

Frequency Frequency Frequency
Mode (flexible (clean wing and (rigid mounts Units

mounts) isolated propeller) and non-rotating)
First wing mode 2.85 2.88 2.85 [Hz]
Propeller pitch mode 5.48 7 - [Hz]
Propeller yaw mode 7 7 - [Hz]
Second wing mode 17.75 16.68 8.19 [Hz]
Third wing mode 19.48 18.06 17.84 [Hz]
Fourth wing mode 49.25 46.59 26.23 [Hz]
Fifth wing mode 51.37 50.57 49.98 [Hz]

Table 9.8: Baseline wing with a rotating propeller, flexibly mounted: natural frequencies withΩ= 0 RPM (First column).

On the other hand, a rotating propeller gives rise to gyroscopic effects. Propeller rotational speed Ω in-
fluences the propeller structural damping matrices and the propeller-wing coupling structural matrices (see
Section 8.1.1); in essence, gyroscopic effects are introduced to the wing because of the existence of flexible
mounts. Figure 9.16 shows the effects of increasing propeller rotational speed on propeller-wing natural fre-
quencies. As observed earlier, the forward whirl mode frequency increases and the backward whirl mode
decreases with increasing propeller rotational speed. The natural frequencies of the wing are also changed
so as to avoid crossing with propeller natural frequencies. This interaction is weaker the more spaced the
propeller-wing natural frequency distribution is.
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Figure 9.16: Influence of gyroscopic effects on propeller-wing natural frequencies.

Aeroelastic results of the baseline propeller-wing model with a flexibly mounted propeller are tabulated
in Table 9.9. Figure 9.17 shows the V-g-f plots in which only wing aerodynamics are included in the propeller-
wing aeroelastic equations, and Figure 9.18 shows the V-g-f plots in which both wing and propeller aerody-
namics are included. The wing flutter speed, caused by the second wing mode going unstable, is increased
with respect to the equivalent wing with a non-rotating propeller, this is because propeller-wing coupling has
risen the frequency of the second wing mode; wing divergence speed remains almost unchanged.

Including or excluding propeller aerodynamics does not modify wing flutter or wing divergence speeds
and their frequencies are barely changed. This suggests that in this particular model, propeller aerodynamics
has little effect on the propeller-wing aeroelastic behaviour.
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A very peculiar aspect is that while the backward whirl mode is stabilized, whirl flutter occurs in the for-
ward whirl mode in form of a hump flutter. Forward whirl flutter arises from the interaction between the
forward whirl mode and the second wing mode (see the V-f plots in Figure 9.17 and Figure 9.18). This in-
stability has very little negative damping, which suggests that it would be damped with small amounts of
structural damping. Including propeller aerodynamics appears to dampen both propeller whirl modes.

Figure 9.19 presents the V-g-f plots without wing aerodynamics but with propeller aerodynamics. In this
case, backward whirl flutter becomes the critical mode at 213 m/s at a frequency of 4.19 Hz. The first wing
mode is also driven unstable due to interaction with the backward whirl mode at 285 m/s with 2.83 Hz. Back-
ward whirl flutter speed of the propeller-wing model is lower than that of the isolated propeller (221 m/s).
However, neither of these two modes go unstable when wing aerodynamics is included in the calculations.
Wing aerodynamics stabilises the backward whirl mode.

The fact that forward whirl flutter still appears even without propeller aerodynamics indicates that the
instability is caused by propeller-wing structural coupling and wing aerodynamics. It has generally been
assumed in literature that forward whirl flutter does not take place in propellers with rigid blades; this con-
clusion stems from studies of propellers on rigid wings. Results from present analysis show that forward whirl
flutter may still occur to propeller with rigid blades due to interaction with wing modes and wing aerodynam-
ics. In this example, forward whirl flutter is not a pure whirl flutter, instead, it is a combination of wing flutter
and whirl flutter and it is driven unstable by wing aerodynamics.

Instability Without propeller With propeller Units
type aerodynamics aerodynamics
Wing flutter speed 173 174 [m/s]
Wing flutter frequency 9.69 9.48 [Hz]
Wing divergence speed 152 152 [m/s]
Propeller whirl flutter speed 167 181 [m/s]
(forward whirl mode)
Propeller whirl flutter frequency 7.40 7.17 [Hz]
(forward whirl mode)

Table 9.9: Baseline wing with a rotating baseline propeller, flexibly mounted: aeroelastic results.
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Figure 9.17: Baseline propeller-wing with wing aerodynamics and without propeller aerodynamics: V-g-f plots.
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Figure 9.18: Baseline propeller-wing with wing aerodynamics and propeller aerodynamics: V-g-f plots.
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Figure 9.19: Baseline propeller-wing without wing aerodynamics but with propeller aerodynamics: V-g-f plots.

Strictly speaking, due to structural coupling between the degrees of freedom of the wing and the propeller,
the modes of the propeller-wing model are coupled modes. In theory, they should be named first coupled
propeller-wing mode (first wing mode), second coupled propeller-wing mode (backward whirl mode), third
coupled propeller-wing mode (forward whirl mode), etc. However, for explanatory purposes, it has been
decided by the author to name them as nth wing modes and backward/forward whirl modes; this will be the
nomenclature for the remaining of the report.

Figure 9.20 and Figure 9.21 illustrate the wing flutter and whirl flutter mode shapes, respectively. The
corresponding propeller pitch and yaw deflections are also shown. The wing flutter mode is a coupled first
bending-first torsion mode; the forward whirl flutter mode also carries a coupled first bending-first torsion
mode. In both cases, due to propeller-wing coupling, θ and ψ no longer have a 90° phase lag, hence, the
elliptical shape in the pitch-yaw deflection plots, despite having a symmetrical propeller.
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(a) Mode in 3D at time = 0 s.
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(b) Propeller pitch and yaw deflections.

Figure 9.20: Baseline propeller-wing: wing flutter mode shape.

(a) Mode in 3D at time = 0 s.
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(b) Propeller pitch and yaw deflections.

Figure 9.21: Baseline propeller-wing: whirl flutter mode shape.
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Case Studies: Other Propeller-Wing Models

Following the aeroelastic analyses of the propeller-wing model in Chapter 9, it is interesting to see the influ-
ence of the spanwise location of a propeller on the wing in terms of aeroelastic interactions. For this purpose,
the baseline propeller-wing model is modified such that the propeller is moved to the wing tip.

On the other hand, it is also interesting to investigate the aeroelastic interaction of a flexible wing with
multiple propellers. For this purpose, the baseline propeller-wing model is modified such that an additional
propeller of the same characteristics is positioned on the wing tip.

For both models, aeroelastic analyses analogous to those performed in Chapter 9 are repeated and com-
pared employing the methodology explained in Chapter 8 and supplemented by Appendix D.

10.1. Wing with a wingtip-mounted Propeller
In this section, aeroelastic analysis of a wingtip-mounted propeller-wing model is presented. The plan view
of the model is illustrated in Figure 10.1.

It is well-known that wingtip-mounted propellers are under the influence of wing tip vortices and it is
expected that this interference would influence the overall propeller-wing aeroelastic behaviour. However,
the methodology presented in present work ignores the aerodynamic interference effects. Higher fidelity
analysis to include propeller-wing aerodynamic interference effects is recommended and proposed for future
work.

X

𝑌

Figure 10.1: Wingtip-mounted propeller-wing simple schematic, top view. Relative dimensions are approximate.

10.1.1. Wing with a non-rotating Propeller rigidly attached
Let’s consider a non-rotating baseline propeller attached to the baseline wing. The propeller mounts are
assumed to be rigid, hence, the added propeller may be treated as an additional inert mass that changes the
mass and inertial distributions of the wing. Table 10.1 shows the frequency distribution of the baseline wing
with the baseline propeller mounted on the wing tip.

Adding the non-rotating propeller at the wing tip reduces the natural frequencies of the wing, specially
the first bending and torsional modes. Figure 10.2 shows the V-g-f plots from the aeroelastic analysis. In
contrast to the clean wing configuration and the baseline propeller-wing model, wing flutter occurs at higher
airspeeds; the flutter mode consists of the second wing mode going unstable due to interactions with the
third wing mode. Divergence does not occur in the velocity interval analysed (0-350 m/s).

109
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Mode Frequency Frequency Units
(with propeller) (clean wing)

First wing mode 1.85 2.88 [Hz]
Second wing mode 6.79 16.68 [Hz]
Third wing mode 17.75 18.06 [Hz]
Fourth wing mode 32.13 46.59 [Hz]
Fifth wing mode 49.74 50.57 [Hz]

Table 10.1: Wing with a wingtip-mounted non-rotating propeller, rigidly mounted: natural frequencies
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Figure 10.2: Wing with a wingtip-mounted non-rotating propeller, rigidly mounted: V-g-f plots.

Parameter With one propeller Clean wing Units
Flutter speed 185 152 [m/s]
Flutter frequency 10.90 8.08 [Hz]
Divergence speed - 154 [m/s]

Table 10.2: Wing with a wingtip-mounted non-rotating propeller, rigidly mounted: aeroelastic results.

10.1.2. Wing with a rotating Propeller flexibly attached
Table 10.3 presents the distribution of natural frequencies of the wing with a flexibly mounted propeller on
the wing tip. Again, including flexible mounts has more than doubled the frequency of the second wing mode
with respect to the equivalent model with rigid mounts.

Figure 10.3 shows the effects of increasing propeller rotational speed on the propeller-wing natural fre-
quencies. The frequencies of the first wing mode and the backward whirl mode are reduced. Increasing
propeller rotational speed increases the frequencies of the forward whirl mode and those wing modes whose
frequencies are above the forward whirl mode, whereas the frequencies of the backward whirl mode and
those wing modes below the backward whirl mode (the first wing mode) are decreased. Therefore, gyro-
scopic effects change the propeller whirl modes, and in turn, the natural frequencies of the wing are varied
due to interaction with the whirl modes to avoid crossing.
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Frequency Frequency Frequency
Mode (flexible (clean wing and (rigid mounts Units

mounts) isolated propeller) and non-rotating)
First wing mode 1.81 2.88 1.85 [Hz]
Backward mode 5.95 7 - [Hz]
Forward mode 7 7 - [Hz]
Second wing mode 17.74 16.68 6.79 [Hz]
Third wing mode 24.89 18.06 17.75 [Hz]
Fourth wing mode 49.36 46.59 32.13 [Hz]
Fifth wing mode 52.19 50.57 49.74 [Hz]

Table 10.3: Wing with a wingtip-mounted rotating propeller, flexibly mounted: natural frequencies withΩ= 0 RPM (first column).
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Figure 10.3: Influence of gyroscopic effects on propeller-wing natural frequencies (Wingtip-mounted configuration).

Table 10.4 presents the aeroelastic results. Figure 10.4 shows the V-g-f plots in which only wing aero-
dynamics are included in the propeller-wing aeroelastic equations, and Figure 10.5 shows the V-g-f plots in
which both wing and propeller aerodynamics are included. In the velocity interval examined (0-350 m/s),
there is no onset of wing flutter/divergence as such — the frequency of the second wing mode has been in-
creased with respect to the equivalent model with rigid mounts. However, two modes become unstable: a
forward whirl flutter mode and a backward whirl flutter mode. The first mode to go unstable is the forward
whirl mode due to interaction with the second wing mode. Backward whirl mode becomes unstable due to
interaction with the first wing mode.

Both forward and backward flutter modes are present when propeller aerodynamics are not included
in the calculations, this suggests that they go unstable due to propeller-wing structural coupling and wing
aerodynamics. Again, in this case, forward/backward whirl flutter do not represent pure whirl flutter. Instead,
they are a combination of wing flutter and whirl flutter. Including propeller aerodynamics in the analysis,
forward whirl mode is slightly stabilised and backward whirl mode is strongly stabilised, thus, the effect of
propeller aerodynamics on both instabilities is stabilising.

At very high incoming airspeeds, forward whirl mode diverges. This is not predicted when propeller aero-
dynamics are not included, which indicates that this divergent behaviour is driven by propeller aerodynam-
ics.

Figure 10.6 illustrates the V-g-f plots without wing aerodynamics but with propeller aerodynamics. It can
be observed that whirl flutter occurs only in the backward whirl mode at 126 m/s with a frequency of 5.19 Hz.
This indicates that backward whirl mode is also excited by propeller aerodynamics and it is stabilised by wing
aerodynamics, although, not entirely eliminated. Forward whirl mode is only driven by wing aerodynamics.

Note the higher benignity in the backward whirl mode instability in all three cases.
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Instability Without propeller With propeller Units
type aerodynamics aerodynamics
Propeller whirl flutter speed 160 163 [m/s]
(forward whirl mode)
Propeller whirl flutter frequency 11.44 11.50 [Hz]
(forward whirl mode)
Propeller divergence speed - 326 [m/s]
(forward whirl mode)
Propeller whirl flutter speed 197 302 [m/s]
(backward whirl mode)
Propeller whirl flutter frequency 6.73 6.54 [Hz]
(backward whirl mode)

Table 10.4: Wing with a wingtip-mounted rotating propeller, flexibly mounted: aeroelastic results.
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Figure 10.4: Wingtip-mounted propeller-wing with wing aerodynamics and without propeller aerodynamics: V-g-f plots.
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Figure 10.5: Wingtip-mounted propeller-wing with wing aerodynamics and propeller aerodynamics: V-g-f plots.

0 50 100 150 200 250 300 350

Velocity [m/s]

-8

-6

-4

-2

0

2

R
e

(
)

First wing mode Backward whirl mode Forward whirl mode

Second wing mode Third wing mode

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Re( )

0

50

100

150

Im
(

)

0 50 100 150 200 250 300 350

Velocity [m/s]

0

5

10

15

20

25

30

F
re

q
u

e
n

c
y
 [

H
z
]

0 50 100 150 200 250 300 350

Velocity [m/s]

-0.2

0

0.2

0.4

0.6

0.8

1

D
a

m
p

in
g

 r
a

ti
o

 [
-]

Figure 10.6: Wingtip-mounted propeller-wing without wing aerodynamics but with propeller aerodynamics: V-g-f plots.

Figure 10.7 and Figure 10.8 illustrate the forward whirl flutter and backward whirl flutter mode shapes,
respectively. In both mode shapes, the wing carries second wing bending motions due to higher bending-
torsion coupling caused by moving the propeller to the wing tip. Again, note the elliptical shape of the pitch-
yaw deflections due to propeller-wing coupling.
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(a) Mode in 3D at time = 0 s.
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(b) Propeller pitch and yaw deflections.

Figure 10.7: Wingtip-mounted propeller-wing: forward whirl flutter mode shape.

(a) Mode in 3D at time = 0 s.
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(b) Propeller pitch and yaw deflections.

Figure 10.8: Wingtip-mounted propeller-wing: backward whirl flutter mode shape.

10.2. Wing with two Propellers
In this section, aeroelastic analysis of the baseline wing with two propellers is presented: one is positioned at
1.60 m from wing root and the other one is positioned at the wing tip. The propellers have the same character-
istics as the baseline propeller and the clean wing is the baseline wing. This configuration is a superposition
of the previous two propeller-wing models. The plan view of the configuration is illustrated in Figure 10.1.

Aeroelastic analysis is performed as in previous sections.

X

𝑌

Figure 10.9: Two-propeller-wing simple schematic, top view. Relative dimensions are approximate.

10.2.1. Wing with a non-rotating Propeller rigidly attached
If both propeller mounts are assumed to be rigid, the added propellers may be treated as additional inert
masses that change the mass and inertial distributions of the wing. Table 10.5 shows the frequency distribu-
tion.

In this case, adding the non-rotating propellers reduces the natural frequencies of the wing, specially the
lower modes. Figure 10.10 shows the V-g-f plots from the aeroelastic analysis. In contrast to the clean wing
and wingtip-mounted propeller-wing configuration, wing flutter occurs at much higher airspeeds; the flutter
mode consists of the fourth wing mode which interacts with the second wing mode and then goes unstable.
Divergence does not occur in the velocity interval analysed. Note that the second wing mode interacts with
the third wing mode and the third wing mode is destabilised (at V ≈ 175 m/s), however, it does not go unstable
and with higher incoming airspeeds it is highly stabilised.
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Mode Frequency Frequency Units
(with two propellers) (clean wing)

First wing mode 1.84 2.88 [Hz]
Second wing mode 6.48 16.68 [Hz]
Third wing mode 9.67 18.06 [Hz]
Fourth wing mode 20.85 46.59 [Hz]
Fifth wing mode 41.62 50.57 [Hz]

Table 10.5: Wing with two non-rotating propeller, rigidly mounted: natural frequencies
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Figure 10.10: Wing with two non-rotating propeller, rigidly mounted: V-g-f plots.

Parameter With two propellers Clean wing Units
Flutter speed 311 152 [m/s]
Flutter frequency 17.75 8.08 [Hz]
Divergence speed - 154 [m/s]

Table 10.6: Wing with two non-rotating propeller, rigidly mounted: aeroelastic results.

10.2.2. Wing with a rotating Propeller flexibly attached

Table 10.7 presents the distribution of natural frequencies of the wing with flexibly mounted propellers. Con-
sidering flexible mounts has risen the natural frequencies of the wing with respect to the equivalent model
with rigid mounts.

Figure 10.11 shows the effects of increasing propeller rotational speed on propeller-wing natural frequen-
cies. Both propellers have the same rotational speed. Increasing propeller rotational speed increases the
frequencies of the forward whirl modes and decreases the frequencies of the backward whirl modes. The fre-
quencies of the whirl modes interact with each other and with those from the wing modes to avoid crossing,
therefore, wing natural frequencies also change with varying propeller rotational speed.
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Frequency Frequency Frequency
Mode (flexible (clean wing and (rigid mounts Units

mounts) isolated propeller) and non-rotating)
First wing mode 1.80 2.88 1.84 [Hz]
First backward mode 5.39 7 - [Hz]
Second backward mode 6.21 7 - [Hz]
First forward mode 7 7 - [Hz]
Second forward mode 7 7 - [Hz]
Second wing mode 18.64 16.68 6.48 [Hz]
Third wing mode 26.71 18.06 9.67 [Hz]
Fourth wing mode 50.59 46.59 20.85 [Hz]
Fifth wing mode 54.12 50.57 41.62 [Hz]

Table 10.7: Wing with two rotating propeller, flexibly mounted: natural frequencies withΩ= 0 RPM (first columns).
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Figure 10.11: Influence of gyroscopic effects on propeller-wing natural frequencies (two-propeller-wing model).

Table 10.8 presents the aeroelastic results. Figure 10.12 shows the V-g-f plots in which only wing aero-
dynamics are included in the propeller-wing aeroelastic equations, and Figure 10.13 shows the V-g-f plots in
which both wing and propeller aerodynamics are included. In the velocity interval examined (0-350 m/s),
there is no onset of wing flutter/divergence as such. However, two instabilities appear: forward whirl flut-
ter and backward whirl flutter. Forward whirl flutter arises from the interaction between the second forward
whirl mode and the second wing mode, the mode that goes unstable is the second forward whirl mode. Back-
ward whirl flutter arises from the second backward whirl mode due to interaction with the first backward
whirl mode and the first wing mode. It appears that the second forward and second backward whirl modes
are mostly related to the wingtip-mounted (outboard) propeller as the forward whirl and backward whirl
modes go unstable in a similar fashion as in the wingtip-mounted propeller model.

Including propeller aerodynamics in the analysis, forward whirl flutter is destabilized for a very small
amount and backward whirl flutter is stabilised. As in the case of wingtip-mounted propeller-wing model,
these two instabilities are still present when propeller aerodynamics are excluded. This suggests that the
onset of whirl flutter stems from the propeller-wing structural coupling and wing aerodynamics. The whirl
flutter modes are not pure whirl modes, rather, they are a combination of wing flutter and whirl flutter.

Figure 10.14 presents the V-g-f plots without wing aerodynamics but with propeller aerodynamics. With-
out wing aerodynamics, only the backward whirl modes go unstable. The critical speed is determined by the
first backward whirl mode at 199 m/s with a frequency of 4.17 Hz, followed by the second backward whirl
mode at 220 m/s with a frequency of 4.56 Hz. Wing aerodynamics fully stabilises the first backward whirl
mode and stabilises — increases the flutter speed of — the second backward whirl mode. Forward whirl
modes do not go unstable when wing aerodynamics is excluded. Therefore, backward whirl flutter is driven
by both wing and propeller aerodynamics and wing aerodynamics whereas the forward whirl flutter is only
driven by wing aerodynamics.
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In comparison with the wingtip-mounted propeller-wing configuration, the addition of an inboard pro-
peller has increased the forward whirl flutter speed (the critical speed) and decreased the backward whirl
flutter speed. On the other hand, in comparison with the baseline propeller-wing model in which the pro-
peller is positioned inboard, the wing modes of the two-propeller-wing model no longer go unstable nor does
the first forward whirl mode. Therefore, it appears that in present model, the critical state is determined by
the outboard (wingtip-mounted) propeller.

Instability Without propeller With propeller Units
type aerodynamics aerodynamics
Propeller whirl flutter speed 185 184 [m/s]
(second forward whirl mode)
Propeller whirl flutter frequency 12.90 12.62 [Hz]
(second forward whirl mode)
Propeller whirl flutter speed 231 251 [m/s]
(second backward whirl mode)
Propeller whirl flutter frequency 6.81 6.28 [Hz]
(second backward whirl mode)

Table 10.8: Wing with two rotating propeller, flexibly mounted: aeroelastic results.
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Figure 10.12: Two-propeller-wing with wing aerodynamics and without propeller aerodynamics: V-g-f plots.
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Figure 10.13: Two-propeller-wing with wing aerodynamics and propeller aerodynamics: V-g-f plots.
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Figure 10.14: Two-propeller-wing without wing aerodynamics but with propeller aerodynamics: V-g-f plots.

Figure 10.15 and Figure 10.16 illustrate the forward whirl flutter and backward whirl flutter mode shapes,
respectively. The corresponding propeller pitch and yaw deflections are also shown, in both cases, θ and ψ

are out of phase due to propeller-wing coupling.
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(a) Mode in 3D at time = 0 s.
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(b) Inboard propeller: pitch and yaw deflections.
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(c) Outboard propeller: pitch and yaw deflections.

Figure 10.15: Two-propeller-wing model: forward whirl flutter mode shape.

(a) Mode in 3D at time = 0 s.
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(b) Inboard propeller: pitch and yaw deflections.
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(c) Outboard propeller: pitch and yaw deflections.

Figure 10.16: Two-propeller-wing model: backward whirl flutter mode shape.

10.3. Summary
Table 10.9 summarises the critical instability that drives each model unstable. The critical instability is the
instability that onsets at the lowest airspeed. Note that all the critical speeds are much above the proposed
cruise speed of 77 m/s.

Let’s first consider the cases of non-rotating propeller/s and rigid mounts. In the baseline propeller-wing
configuration, adding an inboard propeller as an inert mass with inertia and static unbalance has reduced
the critical speed with respect to the baseline wing. However, moving the propeller to the wing tip increases
the critical speed, and the increase is even more pronounced when an additional propeller of equal charac-
teristics is added to the wing tip.

Let’s now consider the cases of rotating propeller/s and flexible mounts. In the baseline propeller-wing
model, wing flutter is increased with respect to the baseline wing. However, divergence speed remains al-
most unchanged and becomes the critical speed. In the wingtip-mounted propeller-wing model, moving the
propeller to the wing tip eliminates wing flutter and wing divergence in the range of speed analysed (0-350
m/s). Nevertheless, the propeller whirl modes become unstable with the forward whirl mode leading to a
critical speed; compared to the baseline (isolated) propeller, backward whirl mode is greatly stabilised, but
the forward whirl mode, which is always stable in the isolated propeller case, goes unstable at much lower air-
speeds than the backward whirl flutter. In the two-propeller-wing model, similar trends are observed as the
whirl modes of the wingtip-mounted propeller dominate the aeroelastic stability of the two-propeller-wing;
however, the critical speed is higher.

In all the propeller-wing models with flexible mounts, the wing modes that flutter in the rigid mount
models (second wing mode and fourth wing mode) are stabilised because including flexible mounts has risen
the frequency of these wing modes, thus, making them less susceptible to flutter. However, with the exception
of the baseline propeller-wing model, including rotating propellers and flexible mounts leads to lower critical
speeds than their counterparts with rigid mounts and non-rotating propellers. This is because the propeller
whirl modes couple with the wing modes, and the resulting coupled mode become the critical mode. Such
results underline that propeller whirl modes are not to be ignored in the aeroelastic analysis of propeller-wing
systems.

In the baseline propeller-wing model, backward whirl mode is fully stabilised by wing aerodynamics. In
the wingtip-mounted propeller and two-propeller wing models, however, the backward whirl mode (second
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backward whirl mode) is stabilised, although it still goes unstable at higher air speeds. The backward whirl
mode is driven unstable by propeller and wing aerodynamics. In all three propeller-wing models, forward
whirl mode (second forward whirl mode) is driven unstable by wing aerodynamics alone.

With the specific combination of structural and aerodynamic parameters employed to define the propeller-
wing models in present analyses, the aeroelastic stability of the propeller-wing systems appears to be more
dependent on the whirl modes of the wingtip-mounted propeller. This motivates further investigation re-
garding the effects of several parameters that might affect whirl flutter on the wingtip-mounted propeller-
wing configuration (Chapter 11).

Model Instability type Mode shape Speed Frequency
[m/s] [Hz]

Baseline wing Wing flutter First torsion 152 8.08
(second wing mode)

Baseline propeller Whirl flutter Backward whirl 221 5.0

With non-rotating propeller/s and rigid mounts

Baseline propeller-wing Wing flutter Second wing mode 142 6.30
Wingtip-mounted propeller-wing Wing flutter Second wing mode 185 10.90
Two-propeller-wing Wing flutter Fourth wing mode 311 17.75

With rotating propeller/s and flexible mounts

Baseline propeller-wing Wing divergence Lag state 152 0
Wingtip-mounted propeller-wing Whirl flutter Forward whirl 163 11.50
Two-propeller-wing Whirl flutter Second forward whirl mode 184 12.62

Table 10.9: Critical instabilities of all the models.



11
Parametric Studies on the

wingtip-mounted Propeller-Wing Model

In present chapter, the effects of various structural parameters on the aeroelastic behaviour of the wingtip-
mounted propeller-wing model will be explored and compared to the isolated propeller case. The parameters
are: nacelle stiffness, nacelle structural damping, propeller mass, propeller pivoting length, the propeller
mass moment of inertia about the axis of rotation, and propeller advance ratio.

11.1. Nacelle Stiffness
Propeller nacelle stiffness in pitch and yaw are directly related to the natural frequencies of the propeller in
pitch and yaw modes, and in turn, the backward whirl and forward whirl mode frequencies. Higher stiffness
values lead to higher natural frequencies. The reduction of nacelle stiffness may be triggered by the develop-
ment of fatigue cracks or other types of structural failures. To study the influence of nacelle stiffness on the
wingtip-mounted propeller-wing model, the following cases are analysed:

1. The natural frequency in pitch is set constant to fθ = 7 Hz. Then, the natural frequency in yaw is modi-
fied from fψ = 1 Hz to fψ = 12 Hz.

2. The natural frequency in yaw is set constant to fψ = 7 Hz. Then, the natural frequency in pitch is
modified from fθ = 1 Hz to fθ = 12 Hz.

3. The natural frequency in pitch is set equal to the natural frequency in yaw. Then, both natural frequen-
cies are modified together from fθ = fψ = 1 Hz to fθ = fψ = 12 Hz.

For each of the above cases, the aeroelastic equations for the wingtip-mounted propeller-wing are solved
to obtain the critical speed, that is the speed at which the first instability occurs and the system becomes
unstable. The same calculations are also computed for the propeller on rigid wing (isolated propeller) for
comparison. Figure 11.1 and Figure 11.2 plots the critical speeds against the average natural frequencies
fθ+ fψ

2 .
Figure 11.1a shows the critical speeds for the isolated propeller. The isolated propeller has symmetrical

characteristics, this means that changing the stiffness in yaw has the same effects as changing the stiffness
in pitch; this is why the dashed blue line coincides with the dashed black line. (1)-(2) In the asymmetrical
stiffness cases fθ 6= fψ, for very small values of pitch/yaw natural frequencies, the propeller diverges in the
backward whirl mode; the smaller the stiffness, the sooner the propeller becomes unstable. As the pitch/yaw
stiffness is further increased the critical speed becomes smaller, this is because the system is approaching
symmetrical stiffness; for an isolated propeller, equal stiffness in pitch and yaw yields the most critical state.
As the pitch/yaw stiffness increases again, so does the critical speed and the propeller becomes more stable.
(3) In the symmetrical stiffness case fθ = fψ, the critical speed grows monotonically with the nacelle stiffness.
Note that divergence occurs only if one of the stiffness becomes too small. With exception of the annotated
markers, the critical speeds in this model are caused by the backward whirl mode going unstable.

121
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Figure 11.1b shows the critical speeds for the wingtip-mounted propeller-wing. In this case, despite
having a propeller with symmetrical characteristics, changing the stiffness in yaw has different effects than
changing the stiffness in pitch due to propeller-wing coupling. It was mentioned in Section 10.1.2 that the
pitch/yaw natural frequencies are between the lowest two wing mode natural frequencies; the system goes
unstable due to coupling of the propeller whirl modes with these two wing modes. In fact, with the exception
of the annotated markers, the markers represent critical speeds of the system due to the forward whirl mode
going unstable. (1) Changing the stiffness in yaw while maintaining the stiffness in pitch constant barely
changes the critical speed, this is because the propeller is mainly coupled with the wing in pitch. With very
low stiffness in yaw, the backward whirl mode acquires very low frequencies and thus, diverges; with higher
stiffness in yaw, the instability is driven by the forward whirl mode; as the stiffness in yaw increases further,
the backward whirl mode acquires higher frequencies and couples with the forward whirl mode causing the
latter to go unstable slightly sooner. (2) Analogously, with very small values of stiffness in pitch, the interac-
tion between the whirl modes and the wing modes is such that drives the second wing mode to flutter. As
the stiffness in pitch is increased, the forward whirl mode becomes again the mode that drives the system
unstable and the critical speed is initially decreased (due to the change in critical mode shape) and then in-
creased with increasing stiffness in pitch. (3) Finally, with very small values of equal stiffness in pitch and yaw,
the system flutters in the backward whirl mode at a very low airspeed. As the stiffness in pitch and yaw are
increased the forward whirl mode becomes again the mode that drives the system unstable and the critical
speed first decreases, and then increases as the stiffness in pitch and yaw increase.

It appears that if the average nacelle stiffness is increased, having higher stiffness in pitch than in yaw is
more stabilizing. If the average nacelle stiffness is decreased, having higher stiffness in pitch than in yaw is
also more stabilizing but until certain limiting conditions determined by other propeller-wing modes going
unstable.

(a) Propeller on rigid wing model. (b) Wingtip-mounted propeller-wing model.

Figure 11.1: Comparison of critical speeds: effects of asymmetric pitch-yaw stiffness.

Figure 11.2 shows the same plots of Figure 11.1 but regrouped into three different graphs to illustrate
the influence of wing flexibility. Each graph represents the critical speeds obtained by modifying nacelle
stiffness in yaw, nacelle stiffness in pitch, and equal nacelle stiffness in pitch and yaw, respectively. In each
graph, results from the propeller on rigid wing are compared to those from the wingtip-mounted propeller
on flexible wing.

In this model, the influence of wing flexibility is generally destabilizing, except for very small average
stiffness values. Note that the critical instability is the forward whirl mode and not the backward whirl mode
(unless otherwise indicated in the plots). The effects of varying nacelle stiffness are not very stark; this is
because the critical instability of the wingtip-mounted propeller-wing model is caused by the forward whirl
mode, whose instability is more dependent on wing aerodynamics.

Note that all critical speeds are much above the proposed cruise speed of 77 m/s. A dangerous situation
is when the nacelle stiffness in pitch and yaw drop equally to natural frequencies ≈1 Hz or below. In this case,
backward whirl flutter emerges.
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(a) Modifying nacelle yaw stiffness.

4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

450

Baseline case

Divergence

(Backward whirl)

Flutter

(Second wing mode)

(b) Modifying nacelle pitch stiffness.
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(c) Modifying equal nacelle pitch-yaw stiffness.

Figure 11.2: Effects of nacelle stiffness. Comparison of critical speeds: influence of wing flexibility.

A particular case is when the nacelle is so stiff in pitch and yaw that the frequency of forward and backward
whirl modes becomes much higher than the frequency of the wing modes that go unstable. Figure 11.3 shows
the V-g-f plots of the wingtip-mounted propeller-wing with a nacelle stiffness changed to fθ = fψ = 50 Hz,
ceteris paribus. The plots are very similar to those shown in Figure 10.2, which illustrate the V-g-f plots of
the same wing but with a wingtip-mounted non-rotating propeller, rigidly attached. The main difference is
found in the additional forward and backward whirl modes introduced by flexible mounts. As the whirl mode
frequencies are much higher, there is very little interaction between the whirl modes and the lowest two wing
modes. Hence, the mode that goes unstable is the second wing mode, which is the same wing mode that goes
unstable when the propeller is non-rotating and rigidly mounted, as shown in Section 10.1.1. The critical
(flutter) speed is 188 m/s and the corresponding flutter frequency is 11.79 Hz. These values are very close to
the values of the wing with a nonrotating, rigidly mounted propeller (compare with Table 10.2). Moreover,
with such high nacelle stiffness, the propeller does not experience whirl flutter, not even in the isolated case,
for the range of velocity of 0-350 m/s.
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Figure 11.3: Wingtip-mounted propeller-wing with fθ = fψ = 50 Hz: V-g-f plots.

11.2. Nacelle structural Damping
It is underscored in literature that nacelle structural damping strongly affects whirl flutter characteristics of
the isolated propeller, especially at small damping values [45]. To investigate the effects of nacelle structural
damping on the wingtip-mounted propeller-wing model, parametric sweeps have been performed:

1. The structural damping in pitch is set constant to ζθ = 0.005. Then, the structural damping in yaw is
modified from ζψ = 0 to ζψ = 1.
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2. The structural damping in yaw is set constant to ζψ = 0.005. Then, the structural damping in pitch is
modified from ζθ = 0 to ζθ = 1.

3. The structural damping in pitch is set equal to the structural damping in yaw. Then, both structural
damping values are modified together from ζθ = ζψ = 0 to ζθ = ζψ = 1.

Figure 11.4 and Figure 11.5 plot the critical speeds against the average structural damping values
ζθ+ζψ

2 .
In each figure, the upper plot illustrates the results of the parametric sweep of structural damping values
between 0 and 1; the lower plot is a closer look of the upper plot for smaller structural damping values.

Note that in the isolated propeller model (propeller on rigid wing), all critical speeds are driven by the
backward whirl mode. In the wingtip-mounted propeller-wing model, with the exception of the annotated
markers, all the critical speeds are driven by the forward whirl mode.

Figure 11.4a shows the critical speeds for the isolated propeller. Since the propeller is symmetrical, chang-
ing structural damping in yaw has the same effect as changing structural damping in pitch. When the nacelle
has little structural damping, adding small amounts of it greatly increases the critical speed. Increasing struc-
tural damping in pitch/yaw independently or both equally leads to very similar critical speed gains; this is
because of symmetrical nacelle stiffness in pitch and yaw. Reed III and Bland [88] shows that as the pitch-
yaw stiffness becomes more unequal, more damping is needed in the direction of lower stiffness. The case of
unequal pitch-yaw stiffness with varying structural damping is not investigated in present analysis.

Figure 11.4b shows the critical speeds for the wingtip-mounted propeller wing. For small amounts of
damping, there is no change in the critical speeds. For very large amounts of structural damping values,
increasing structural damping in the pitch direction is the most stabilizing; the addition of wing flexibility
reduces the stiffness in the pitch direction, therefore, adding structural damping in this direction has more
significant effects on the flutter speed. Increasing structural damping in the yaw direction mainly stabilises
the forward whirl mode; hence, as forward whirl mode is stabilized, backward whirl mode becomes unstable.

Figure 11.5 reorganises the plots shown in Figure 11.4 to compare the effects of structural damping on the
isolated propeller to the effects of structural damping on the wingtip-mounted propeller-wing. Adding struc-
tural damping in the propeller-wing model is not as effective as adding structural damping to the isolated
propeller. This is because the critical speeds in the propeller-wing model are mainly driven by propeller-wing
coupling and wing aerodynamics.
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Figure 11.4: Comparison of critical speeds: effects of asymmetric pitch-yaw structural damping.
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Figure 11.5: Effects of nacelle structural damping. Comparison of critical speeds: influence of wing flexibility.

11.3. Propeller Mass
As illustrated in Figure 9.7, the propeller mass has been simplified into two concentrated masses: a rotor mass
(blades and spinner) of 8 kg and a motor-nacelle mass of 35 kg (Table 9.4). These are relatively small values
that are often difficult to meet in practice, especially the motor-nacelle mass, since additional hardware will
also need to be installed inside the nacelle. For this purpose, the motor-nacelle mass will be varied to inves-
tigate its effects on the aeroelastic behaviour of the wingtip-mounted propeller-wing. The effects of varying
rotor mass is discussed in Section 11.5.

Increasing the motor-nacelle mass also increases the propeller-wing inertia parameters (i.e. Iθ,P , Iψ,P ,
Sθ,P , Iα,P , Sα,P , and Iθα,P ). The mass moment of inertia about the axis of rotation IΩ remains constant since
IΩ only depends on the rotor mass and the rotor radius in our simplification (Equation (9.2)). Note that in
this section, only the motor-nacelle mass is varied; it is supposed that its CG location remains the same.

Figure 11.6 shows the critical speed against motor mass for the wingtip-mounted propeller-wing with
flexible mounts and with rigid mounts, and the isolated propeller. Increasing the motor mass increases the
mass moment of inertia of the propeller about the pitch/yaw axis. As a result, in the isolated propeller case,
the system is stabilised; the instability is driven by the backward whirl mode. In the case of propeller-wing
with flexible mounts, the instability is of the forward whirl type which is caused mainly by propeller-wing
coupling and wing aerodynamics. The stabilising effects introduced by higher inertia parameters are not as
substantial as in the isolated propeller case. Finally, in the case of propeller-wing with rigid mounts, whirl
modes are non-existent; the system flutters due to the second wing mode going unstable, increasing the wing
tip mass lowers the critical speed. On the other hand, if the wing tip mass is lowered by half, the wing diverges.

Note that the propeller-wing with flexible mounts yields the lowest critical speeds, with the exception of
the wing divergence case.
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11.4. Propeller pivoting Length
The propeller pivoting length is the distance between the propeller pivot point and the rotor centre. Houbolt
and Reed [45] states that a shorter pivot length requires higher nacelle stiffness — leads to lower whirl flut-
ter speeds. This statement is based on the analysis of an isolated propeller with constant rotational speed.
Present section analyses the effect of changing the propeller pivoting length in the wingtip-mounted propeller-
wing model with a fixed-pitch propeller (non-constant rotational speed but constant pitch angle). Equal
pivoting length in pitch and yaw is assumed eθ = eψ and lθ = lψ.

Changes in the pivoting length also changes the propeller-wing inertia parameters (Iθ,P , Iψ,P , Sθ,P , Iα,P ,
Sα,P , and Iθα,P ). The propeller pivoting length may be changed by:

• Moving the rotor CG and the motor-nacelle CG: the distance between the two remains constant, so
does the location of the pivot point. It changes the values of Iθ,P , Iψ,P , Sθ,P , Iα,P , Sα,P , and Iθα,P .

• Moving the propeller pivot point: the location of the propeller CG remain constant. It changes the
values of Iθ,P , Iψ,P , Sθ,P , and Iθα,P .

• Moving the propeller CG and the pivot point whilst maintaining the distance between them constant:
this does not change the propeller pivoting length, but as the propeller is mounted on the wing, some
of the inertial parameters (i.e. Iα,P , Sα,P , and Iθα,P ) are changed by this modification as the distance
between the pivot point and the wing midchord-axis, (lθ − aP bP ), is varied (see Equation (8.5) and
Equation (8.6)).

Figure 11.7 illustrates the position of the propeller CG and pivot point in the wingtip-mounted propeller-
wing configuration.
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Figure 11.7: Diagram of the propeller CG and pivot point in the wingtip-mounted propeller-wing configuration.

11.4.1. Moving the Propeller CG
The shift in propeller CG is as shown in Figure 11.8.
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Figure 11.8: Diagram of moving the propeller CG.

Three cases are analysed, the value of the propeller CG and the corresponding inertia parameters are
tabulated in Table 11.1. Case (1) moves the propeller CG forward the wing’s leading edge. Case (2) moves
the propeller’s CG towards the wing’s leading edge. Case (3) only moves the motor-nacelle CG to the wing’s
leading edge. This does not change the propeller pivoting length with respect to the baseline configuration,
but it changes the inertia parameters.

Case ID Rotor CG Motor-Nacelle CG eθ = eψ Iθ,P = Iψ,P Sθ,P Iθα,P Iα,P Sα,P

[m] [m] [m] [kg·m2] [kg·m] [kg·m2] [kg·m2] [kg·m]

Baseline -1.16 -0.86 -1.16 36.65 -39.38 36.65 36.65 -39.38
1 -1.56 -1.26 -1.56 75.03 -56.58 75.03 75.03 -56.58
2 -0.70 -0.40 -0.70 9.52 -19.60 9.52 9.52 -19.60
3 -1.16 -0.40 -1.16 12.16 -16.28 12.16 12.16 -16.28

Table 11.1: Moving the propeller CG: description of the cases analysed.
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Table 11.2 tabulates the results of the aeroelastic analyses of the proposed cases. Figure 11.9, Figure 11.10,
and Figure 11.11 show the V-g-f plots.

(1) Moving the propeller CG forward the wing’s leading edge increases the pivoting length and the inertia
parameters, the effect is stabilising. (2) On the contrary, moving the propeller’s CG closer to the wing’s leading
edge decreases the pivoting length and the inertia parameters, the effect is destabilising; as it can be seen
in Figure 11.10, the second wing mode goes unstable, followed by the backward whirl mode and the first
wing mode. (3) Finally, maintaining the pivoting length but moving the motor-nacelle CG towards the wing’s
leading edge also decreases the inertia parameters; the effect is destabilising. Figure 11.11 shows that forward
whirl mode still determines the critical speed but other coupled modes also become unstable with higher
airspeeds.

Case ID Critical speed Critical frequency Instability type Critical mode
[m/s] [Hz]

Baseline 163 11.49 Flutter Forward whirl mode
1 183 10.95 Flutter Forward whirl mode
2 125 13.62 Flutter Second wing mode
3 146 11.73 Flutter Forward whirl mode

Table 11.2: Moving propeller CG: Aeroelastic results
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Figure 11.9: Case (1): V-g-f plots.
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Figure 11.10: Case (2): V-g-f plots.
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Figure 11.11: Case (3): V-g-f plots.

11.4.2. Moving the Propeller pivot Point
The shift in the propeller pivot point is as shown in Figure 11.12.
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Figure 11.12: Diagram of moving the propeller pivot point.

The pivoting length is shortened as the pivot point is moved forward, towards the rotor. Consequently, the
inertia parameters, Iθ,P , Iψ,P , Sθ,P , and Iθα,P , are decreased. Table 11.3 tabulates the values of the concerning
parameters that are changed due to the shift of the pivot point. Aeroelastic results are shown in Table 11.4.
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As suspected, moving the pivot point forward (shorter pivoting length) has a destabilising effect. Flutter
speeds are lowered, although not significantly. Moreover, as the pivot point is moved forward, the backward
whirl mode is destabilised; in fact, it goes unstable prior the forward whirl mode in case (4).

Case ID lθ = lψ eθ = eψ Iθ,P = Iψ,P Sθ,P Iθα,P Iα,P Sα,P

[m] [m] [kg·m2] [kg·m] [kg·m2] [kg·m2] [kg·m]

Baseline 0.00 -1.16 36.65 -39.38 36.65 36.65 -39.38
1 0.20 -1.36 54.12 -47.98 44.53 36.65 -39.39
2 -0.20 -0.96 22.62 -30.78 28.77 36.65 -39.38
3 -0.40 -0.76 12.03 -22.18 20.90 36.65 -39.38
4 -0.60 -0.56 4.87 -13.58 13.02 36.65 -39.38

Table 11.3: Moving the pivot point: description of the cases analysed.

Case ID Critical speed Critical frequency Instability type Critical mode
[m/s] [Hz]

Baseline 163 11.49 Flutter Forward whirl mode
1 163 11.24 Flutter Forward whirl mode
2 161 11.9 Flutter Forward whirl mode
3 158 12.67 Flutter Forward whirl mode
4 149 2.63 Flutter Backward whirl mode

Table 11.4: Moving the pivot point: aeroelastic results.

11.4.3. Moving Propeller CG and pivot Point
The shift in propeller CG and the pivot point is as shown in Figure 11.13.
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Figure 11.13: Diagram of moving propeller CG and the pivot point.

In this section, the propeller CG and the pivot points are shifted whilst maintaining constant their relative
distance. This does not change the propeller pivoting length, but as the propeller is mounted on the wing,
the inertia parameters Iα,P , Sα,P , and Iθα,P are changed.

Table 11.5 tabulates the values of the parameters changed due to the shift of the propeller CG and the
pivot point. It can be observed that moving them forward (to the left) increases the inertia parameters Iα,P ,
Sα,P , and Iθα,P . As a result, the critical speed is increased. Table 11.6 shows the aeroelastic results.

Case ID lθ = lψ eθ = eψ Iθ,P = Iψ,P Sθ,P Iθα,P Iα,P Sα,P

[m] [m] [kg·m2] [kg·m] [kg·m2] [kg·m2] [kg·m]

Baseline 0.00 -1.16 36.65 -39.38 36.65 36.65 -39.38
1.00 0.20 -1.16 36.65 -39.38 28.77 22.62 -30.78
2.00 -0.20 -1.16 36.65 -39.38 44.53 54.12 -47.98
3.00 -0.40 -1.16 36.65 -39.38 52.40 75.03 -56.58
4.00 -0.60 -1.16 36.65 -39.38 60.28 99.39 -65.18

Table 11.5: Moving propeller CG and pivot point: description of the cases analysed.
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Case ID Critical speed Critical frequency Instability type Critical mode
[m/s] [Hz]

Baseline 163 11.49 Flutter Forward whirl mode
1 151 11.60 Flutter Forward whirl mode
2 173 11.34 Flutter Forward whirl mode
3 182 11.21 Flutter Forward whirl mode
4 190 11.10 Flutter Forward whirl mode

Table 11.6: Moving propeller CG and pivot point: aeroelastic results.

11.5. Propeller Mass Moment of Inertia about the axis of Rotation
The propeller mass moment of inertia about the axis of rotation IΩ depends on the rotating masses that com-
pose the propeller about the axis of rotation. Present work simplifies the calculation of this inertia parameter
by applying Equation (9.2). The value of IΩ depends on the rotor mass and the rotor radius, the contribution
of the motor rotor is ignored. To analyse the impact of IΩ on the aeroelastic stability of the wingtip-mounted
propeller-wing model, the rotor mass is changed whilst maintaining constant the rotor radius. Such modifi-
cation may be introduced when changing the material type of the rotor blades.

Increasing the value of IΩ leads to higher gyroscopic coupling. This is represented by the terms containing
IΩ in Equation (8.13). Because of the increment of the rotor mass, the other inertia parameters (i.e. Iθ,P , Iψ,P ,
Sθ,P , Iα,P , Sα,P , and Iθα,P ) are increased; as observed, this stabilises the propeller against whirl flutter.

Figure 11.14 shows the flutter speeds of the isolated propeller against the flutter speeds of the wingtip-
mounted propeller wing model. The isolated propeller flutters in the backward whirl mode; flutter speed
decreases with increasing IΩ until it is counteracted by the increase of the other inertia parameters. The
propeller-wing model experiences both backward whirl and forward whirl, with the latter defining the critical
speed. Increasing IΩ destabilises the backward whirl mode; it approximates to the backward whirl speed of
the isolated propeller. Nevertheless, forward whirl mode is slightly stabilised, possibly because of the effects
of increasing the other inertia parameters.
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Figure 11.14: Effect of mass moment of inertia about the axis of rotation IΩ (equivalent to effect of rotor mass).

11.6. Propeller Advance Ratio
Present work deals with fixed-pitch propellers, meaning that in windmilling conditions, the propeller rota-
tional speed varies with the incoming airspeed so as to maintain the advance ratio set by the collective pitch
angle, here defined by the blade angle at the three-quarter radius β0.75R . The relationship between β0.75R and
the advance ratio is determined by Equation (9.1).

Figure 11.15 plots critical speed against advance ratio (β0.75R ) for the wingtip-mounted propeller-wing
model and the isolated propeller.

For a fixed-pitch isolated propeller, Reed III and Bland [88] show in their results that higher advance ratios
requires less nacelle structural damping, in other words, higher advance ratios lead to higher flutter speeds
in the backward whirl mode — increasing the advance ratio is stabilising. Such a trend is be observed in
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Figure 11.15 for the isolated propeller. For a constant speed isolated propeller, windmilling conditions is
achieved by allowing the propeller blades to pitch freely; the advance ratio is determined by the incoming
airspeed and the propeller rotational speed. In this case, the effect of increasing advance ratio is destabilis-
ing; higher advance ratios requires higher nacelle stiffness [45] (this is not treated in present work). Note that
at much higher β0.75R values, the critical speed becomes supersonic, hence, these analytical results lose their
physical meaning. What’s more, the curve reaches a maximum because the propeller aerodynamic deriva-
tives are limited by compressibility effects in Houbolt-Reed’s method: when the propeller blade tip speed
becomes supersonic, a cut-off-value of compressible lift-curve slope is applied in the compressibility effect
correction (Equation (4.24)).

On the other hand, for the wingtip-mounted propeller-wing model, increasing the pitch angle barely
changes the resulting critical speed. Changing the advance ratio mainly changes propeller aerodynamics
and the gyroscopic coupling; as the forward whirl mode is mainly driven by wing aerodynamics, changes of
advance ratio are barely noticeable. However, as β0.75R reaches 74°, the forward whirl mode stabilizes and
the backward whirl mode becomes unstable. This switch in critical mode is observed when analysing the
V-g-f plots shown in Figure 11.16 and Figure 11.17. With β0.75R > 73° the backward whirl mode determines
the critical speed.
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Figure 11.16: Wingtip-mounted propeller-wing with β0.75R = 73°: V-g-f plots.
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Figure 11.17: Wingtip-mounted propeller-wing with β0.75R = 74°: V-g-f plots.



12
Conclusions and Recommendations

Conclusions are given in Section 12.1 and recommendations for future work in Section 12.2.

12.1. Conclusions
The project goal to develop an analytical model to be used to predict the onset of wing/whirl flutter in
wingtip-mounted propeller and distributed-propeller wing configurations has been successfully achieved.
Nevertheless, further quantitative validation/verification of wing flutter predictions using the propeller-wing
model is still necessary to gain higher confidence in the predicted results.

The research objective is to improve the understanding of the aeroelastic behaviour of a cantilever wing with
flexibly attached tractor propeller/s by predicting wing/whirl flutter behaviours using an analytical method.

For this purpose, three analytical aeroelastic models have been developed and then applied onto several
case studies and parametric studies. The main findings are summarised below by answering the proposed
research questions and sub-questions from Chapter 3.

1. What are the aeroelastic effects of propeller/s on a catilever wing? If a propeller is flexibly attached to
the wing, two extra degrees of freedom are to be added in the aeroelastic analyses, namely propeller pitch
and propeller yaw. These degrees of freedom are translated into a backward whirl mode and a forward whirl
mode if the propeller is set to rotate. The propeller whirl modes also couple with the wing modes resulting in
coupled propeller-wing modes.

The influence of installing a propeller on the wing is threefold: first, the added propeller mass changes
the wing mass and inertial properties; second, a rotating propeller induces gyroscopic effects that change
the wing natural vibration frequencies; and third, propeller aerodynamic forces and moments are additional
sources of excitation loads on the flexible wing.

(a) How does propeller gyroscopic effects influence the aeroelastic behaviour of the wing? Gyroscopic
effects exist because the propeller pivots due to low nacelle stiffness and the propeller CG is positioned
in front of the pitch/yaw pivot point (towards the wing’s leading edge). The influence of gyroscopic
effects on the wing are twofold:

• First, gyroscopic effects further couple the propeller whirl modes with the wing modes: propeller
yaw is not only coupled with propeller pitch but also with wing twist. When the propeller is set
to rotate, increasing the propeller rotational speed increases the forward whirl mode frequency
and decreases the backward whirl mode frequency. In turn, the natural vibrations of the wing are
altered so as to avoid crossing with the whirl mode frequencies. If the whirl mode frequencies are
close to the frequencies of the wing modes that go unstable, the instability of the propeller-wing
system may be altered.

In the models analysed in present work, the forward whirl mode interacts with the wing modes
and the (coupled) forward whirl mode goes unstable; the instability is driven by wing aerodynam-
ics alone. On the other hand, the backward whirl mode also interacts with the wing modes and
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the (coupled) backward whirl mode goes unstable; the instability is driven unstable by both wing
and propeller aerodynamics.

• Second, gyroscopic motions immerse the propeller blades in a non-uniform flow field. As a result,
propeller in-plane forces and moments develop.

(b) What is the influence of propeller aerodynamics? Ignoring the propeller-wing aerodynamic interfer-
ence effects, propeller aerodynamics may be represented by a vertical and a horizontal force acting on
the propeller hub, a moment about the propeller pitch axis and a moment about the propeller yaw axis.

In the propeller-wing models analysed in present work, propeller aerodynamics is partially responsible
for driving the backward whirl mode unstable. If propeller aerodynamics is excluded from the aeroelas-
tic calculations, less conservative backward whirl flutter speeds are predicted. Since the critical speeds
of present propeller-wing models are driven by either wing modes or forward whirl modes, propeller
aerodynamics barely influence the critical speeds. In general, propeller aerodynamics has a stabilising
effect on the whirl modes when wing aerodynamics is also included in the calculations. In some cases,
it may drive the whirl modes divergent after flutter onset.

2. What are the effects of a cantilever flexible wing on propeller whirl flutter?

(a) How does wing flexibility influence propeller whirl flutter? As the wing undergoes heaving and pitch-
ing motions, it carries the propeller with it. Consequently, the propeller experiences additional inertial
and gyroscopic effects. Moreover, the blades perceive modified effective pitch and yaw angles — this
alters the propeller aerodynamic forces and moments.

In the propeller-wing models analysed, wing flexibility stabilises the backward whirl mode. However,
forward whirl mode is triggered and dominates the critical speed. This contrasts with the isolated pro-
peller (propeller flexibly attached to a rigid wing) where the forward whirl mode is always stable.

Wing flexibility introduces structural asymmetric characteristics on the propeller whirl mode behaviour;
the coupled pitch mode (backward whirl) has lower stiffness than the coupled yaw mode (forward
whirl). Hence, the mode shapes of the whirl modes describe an elliptical path despite the propeller
having symmetric structural characteristics; changing nacelle stiffness/structural damping in pitch has
different effects than changing nacelle stiffness/structural damping in yaw.

(b) What is the influence of wing aerodynamics? Wing aerodynamics is responsible for wing flutter. In
the propeller-wing models analysed, wing aerodynamics also drives the forward whirl mode unstable
and stabilises the backward whirl mode.

3. What are the aeroelastic effects of placing a propeller on the wing tip?

(a) How does the spanwise location of the propeller influence wing/whirl flutter? As the propeller is
moved from an inboard position to the wing tip, there is further coupling between the propeller whirl
modes and the wing modes.

In the wingtip-mounted propeller wing model, the wing modes no longer go unstable within the ve-
locity interval analysed (0-350 m/s). The critical speed is determined by the forward whirl mode. The
critical speed of the baseline propeller-wing model is lower than that of the wingtip-mounted propeller
wing model; in the former case, the critical speed is driven by a wing aerodynamic lag state.

(b) What are the effects of the main propeller-wing structural design parameters on wing/whirl flutter
stability? The propeller-wing design parameters analysed are:

• Nacelle stiffness: changing nacelle stiffness in pitch has different effects than changing nacelle
stiffness in yaw. If the average nacelle stiffness is increased/decreased, having higher stiffness in
pitch than in yaw is more stabilising until certain limiting conditions determined the stability of
other propeller-wing modes. When the nacelle is very stiff in pitch and yaw, there is less interac-
tion between the propeller whirl modes and the lower wing modes. Therefore, the mode that goes
unstable becomes the wing mode that also goes unstable when the propeller is non-rotating and
rigidly attached to the wing.

• Nacelle structural damping: small changes in the nacelle structural damping barely influences the
critical speed. For very large values of average structural damping, higher structural damping in
pitch is the most stabilizing. With very high structural damping in yaw, the forward whirl mode is
damped and the backward whirl mode goes unstable.
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• Propeller mass: higher propeller mass, namely, higher motor-nacelle mass results in higher propeller-
wing inertia parameters. Hence, the system goes unstable at higher airspeeds. The affected iner-
tia parameters do not include the propeller mass moment of inertia about the axis of rotation, IΩ,
which in present work, only depends on the rotor mass and the rotor radius.

• Propeller pivoting length: changes in the pivoting length may be achieved by shifting the propeller
CG or/and the propeller pivot point. These changes result in changes in the propeller-wing inertia
parameters (except IΩ). Higher inertia parameter values lead to higher critical speeds, whilst lower
inertia parameters lead to lower critical speeds.

• Propeller mass moment of inertia about the axis of rotation, IΩ: an increase in the rotor mass in-
creases IΩ; it also increases the rest of the propeller-wing inertia parameters because the overall
propeller mass is increased. Increasing IΩ is destabilising due to higher gyroscopic couplings, but
increasing the rest of the inertia parameters is stabilising. Increasing IΩ, the critical mode (forward
whirl mode) is slightly stabilised because of the effects of increasing the other inertia parameters
are higher.

• Propeller advance ratio: in a fixed-pitch windmilling propeller, the propeller advance ratio is de-
termined by the collective pitch angle, here, represented by the blade angle at the three-quarter-
radiusβ0.75R . The advance ratio increases withβ0.75R . Increasingβ0.75R barely changes the critical
speed. At β0.75R > 73° the critical mode switches from the forward whirl mode to the backward
whirl mode.

The aeroelastic behaviour of a wing with flexibly mounted propeller/s may be very different from that of
a wing with rigidly mounted propeller/s. Reasons lie in the interaction between the additional whirl modes
and the wing modes due to gyroscopic coupling. Whereas propeller and wing aerodynamics may drive the
backward whirl mode unstable, wing aerodynamics alone may drive the forward whirl mode unstable.

12.2. Recommendations for Future Work
As mentioned, further quantitative validation/verification of wing flutter predictions using the propeller-
wing model developed in present work is still necessary to gain higher confidence in the predicted results.

Present work may be extended by relaxing some of the assumptions taken when deriving the aeroelastic
models. These are:

• Present analyses have focused on fixed-pitch propellers. Constant speed propellers are also commonly
used in propeller driven aircraft and should be further addressed in future analyses.

• Present results are restricted to propellers operating in windmilling conditions. It is recommended
to investigate propeller whirl flutter in thrusting conditions. As first approach, thrust effects may be
included by employing the aerodynamic derivatives of a thrusting propeller.

• The propeller model may be modified to include blade flexibility and blade inertia effects.

• The wing model may be extended to account for wing sweep, compressibility effects, and wing in-plane
motions.

• In the case of wingtip-mounted propeller-wing configurations, the interaction with wing tip vortices is
non-negligible. Future work should explore the relevance of the aerodynamic interference effects on
propeller whirl flutter.

Other recommendations for future work are:

• Present work deals with stability of propeller-wing systems. Future work may explore the response of
propeller-wing systems to random turbulence.

• Explore other analytical and numerical methods to predict propeller aerodynamic derivatives in thrust-
ing conditions.

• Carry out experimental campaigns for verification of the theoretical methods.

• Investigate whirl flutter on propeller-wing models in pusher configurations.

• Analyse the influence of some structural and aerodynamic nonlinear effects on propeller-wing whirl
flutter.
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A
Gyroscopic Motion

The nature of gyroscopic motion is explained in Butikov [13] and MIT-OpenCourseWare [66].
Consider a pivoted rod with a solid disk attached to its free end as illustrated in Figure A.1. The rod is

assumed to be rigid and massless so the centre of gravity of the system is located away from the pivot point.
When released from a horizontal position parallel to the ground, the rod will fall and turn about the pivot
point because of the action of gravity. Now, if the same rod is released again but with the disk rotating about
its horizontal axis, the rod-disk system will remain in its horizontal position and the centre of mass of the
system will follow a circular motion about the vertical axis that passes through the pivot point. This motion
is called precession and the system that is carrying out this motion is called gyroscope.

Ω

ω

d

mg

x

z

N

𝐿𝑥

𝐿𝑧

(a) Side view

x

y

𝐿𝑥

ΔL

(b) Top view

Figure A.1: Schematics of the gyroscope

The total angular momentum of the system is given by the spinning motion of the disk, Lspin, and the
translational motion of the centre of gravity about the vertical axis through the pivot point, Ltrans.

Lspin = I1ωî + I2Ωk̂

Ltrans = mΩd 2k̂

L = Lspin +Ltrans

= I1ωî + (I2Ω+mΩd 2)k̂

= Lx î +Lz k̂

(A.1)

where I1 and I2 are the moment of inertia about the axis perpendicular and parallel to the disk plane,
respectively; ω is the spinning angular velocity, Ω is the precessional angular velocity, m is the mass of the
disk, and d is the length of the rod.

In the presence of gravity the weight of the disk, mg, induces a reaction force, N, at the pivot point. This
pair of forces creates a torque whose magnitude and direction is:
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τ= mg d ĵ (A.2)

Assuming that the total angular momentum is much bigger than the torque (also ω >> Ω), the torque
only changes the direction of the total angular momentum but not its magnitude. This means that the k̂-
component of the total angular momentum is constant and the î -component of the total angular momentum
rotates about the pivot point in circular motion.

∆L = τ∆t (A.3)

From kinematics (see Figure A.2):

‖dLx

d t
‖ = Lx · dθ

d t
= LxΩ (A.4)

Δθ

𝐿𝑥 (t)

Δ𝐿𝑥

Ω

x

y

Figure A.2: Rotation of the Lx vector
𝐿𝑥

Ω

Figure A.3: Nutation of the gyroscope whenΩ= 0

From Equation A.1-Equation A.4, the precessional angular velocityΩ is:

Ω= mg d

I1ω
(A.5)

In practice, when the gyroscope is released with a spinning disk the spin axis bounces up and down as it
precesses. This motion is called nutation and it is caused by the deviation of the total angular momentum
vector from the spin axis. Friction causes these bouncing movements to decrease in amplitude until steady
uniform precession is achieved. Ignoring precessional motions, nutation would consist on a circular motion
of the spin axis about the Lx direction as illustrated in Figure A.3.



B
Propeller Aerodynamic Derivatives

For a thrusting propeller with pitching and yawing motions the total forces and moments acting on the pro-
peller are: thrust FX , torque MX , vertical side force FZ , horizontal side force FY , pitching moment MY , and
yawing moment MZ .

The side forces and moments can be represented by sixteen propeller aerodynamic derivatives as given by
the expressions in Equation (4.25). Considering the kinematic schematic of Figure 6.1 the following relations
are found:

CZψ =CYθ

Cmψ =−Cnθ

CYψ =−CZθ

Cnψ =Cmθ

CZr =CYq

Cmr =−Cnq

CYr =−CZq

Cnr =Cmq

(4.27)

Such relations are only valid when assuming no aerodynamic interference between the propeller and
adjacent surfaces [7].

The change in signs of the derivatives can be reasoned by the illustrations in Figure B.1-Figure B.4. By
definition, pitch and yaw angles rotate in the opposite direction. Therefore, when two analogous propeller
aerodynamic derivatives follow the opposite direction, they must have equal signs (Figure B.1 and Figure B.3);
whereas when two analogous propeller aerodynamic derivatives follow the same direction, they must have
opposite signs (Figure B.2 and Figure B.4).

"¯ " represents a vector that goes out of the plane of the page and "⊗ " represents a vector that goes into
the plane of the page.
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Figure B.1: Cmθ
=Cnψ and Cmq =Cnr .
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C
Propeller-wing Aeroelastic State-Space

System: with Wagner’s Method

This section presents the derivation of the aeroelastic equations of motion of the propeller-flexible-wing sys-
tem in a state-space form. The wing structural model will have two beam elements and the propeller is
located on the second node. Extrapolation to more than two beam elements and the addition of more pro-
pellers follows systematically from the procedure explained below. Also, this example implements the aero-
dynamic model of the wing using Wagner’s method. Implementation with the Leishman-Nguyen’s method is
analogous and it is described in Appendix D.

The unknowns of the system are grouped into the vectors qW, qP, and w.
The global displacement vector for a wing composed of two beam elements is expressed as

qW = [
h1 φ1 α1 h2 φ2 α2 h3 φ3 α3

]T
(C.1)

where the subscript is the node number to which the variable is associated with.
The degrees of freedom of the propeller are grouped in

qP = [
θ ψ

]T
(C.2)

And the global vector of aerodynamic states from Wagner’s method are represented by

wg =
[
w (1)

1 w (1)
2 w (1)

3 w (1)
4 w (2)

1 w (2)
2 w (2)

3 w (2)
4 w (3)

1 w (3)
2 w (3)

3 w (3)
4

]T
(C.3)

where the superscript within parenthesis is the node number to which the variable is associated with.
Note that there are four aerodynamic states per node.

C.1. Propeller aeroelastic Equations
The structural matrices are as given in Equation (8.14) with the difference that the vector qWP is substituted
by qW. Because of this, the matrices Bs and Ds need to be restructured accordingly depending on which node
the propeller is located. In this example, the propeller is located on the second node of the beam model. The
matrices As, Cs, and Es are as defined in Equation (8.15), Equation (8.17), and Equation (8.19), respectively.

Asq̈P +Bs,gq̈W +Csq̇P +Ds,gq̇W +EsqP =
[

Qθ

Qψ

]
(C.4)

Bs,g =
[
02x3 Bs,e 02x3

]
(C.5)

Bs,e =
[

Sθ,P 0 Iθα,P

0 0 0

]
(C.6)

Ds,g =
[
02x3 Ds,e 02x3

]
(C.7)
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Ds,e =
[

0 0 0
0 0 −IΩΩ

]
(C.8)

Similarly, the aerodynamic matrices are as given in Equation (8.27) with the difference that the vector
qWP is substituted by qW. Because of this, the matrices Ba, Da, and Fa need to be restructured accordingly
depending on which node the propeller is located. In this example, the propeller is located on the second
node of the beam model. The matrices Aa, Ca, and Ea are as defined in Equation (8.28), Equation (8.30), and
Equation (8.32), respectively.

[
Qθ,P

Qψ,P

]
= Aaq̈P +Bagq̈W +Caq̇P +Dagq̇W +EaqP +FagqW (C.9)

Ba,g =
[
02x3 Ba,e 02x3

]
(C.10)

Ba,e =
k2Cmq

R
V

1
V +eθk1CZ q

R
V

1
V 0 k2Cmq

R
V

eα
V +eθk1CZ q

R
V

eα
V

k2Cnq
R
V

1
V −eψk1CY q

R
V

1
V 0 k2Cnq

R
V

eα
V −eψk1CY q

R
V

eα
V

 (C.11)

Da,g =
[
02x3 Da,e 02x3

]
(C.12)

Da,e =
k2Cmθ

1
V +eθk1CZθ

1
V 0 k2Cmθ

eα
V +k2Cmq

R
V +eθk1CZθ

eα
V +eθk1CZ q

R
V

k2Cnθ
1
V −eψk1CY θ

1
V 0 k2Cnθ

eα
V +k2Cnq

R
V −eψk1CY θ

eα
V −eψk1CY q

R
V

 (C.13)

Fa,g =
[
02x3 Fae 02x3

]
(C.14)

Fae =
0 0 k2Cmθ+eθk1CZθ

0 0 k2Cnθ−eψk1CY θ

 (C.15)

Final expression

The final expression in matrix form can be expressed as

(
As −Aa

)
q̈P +

(
Bsg −Bag

)
q̈W +

(
Cs −Ca

)
q̇P +

(
Dsg −Dag

)
q̇W +

(
Es −Ea

)
qP +

(
−Fag

)
qW = 0 (C.16)

C.2. Wing aeroelastic Equations
This section shows the assembly of the global equations of motion of the wing structural model employing
two beam elements (three nodes) with one propeller mounted on the second node. The equations of motion
are given by Equation (8.46). To solve this set of equations, the vector qWP is substituted by qW and the
matrices Fs, Gs, and Hs need to be restructured into their global counterparts.

Ms,gq̈W +Cs,gq̇W +Ks,gqW +Fsq̈P +Gsq̈WP +Hsq̇P = QW +QP (8.46)

C.2.1. Structural matrices of the beam model
The global stiffness Ks,g and mass matrix Ms,g for a wing composed of two beam elements have the form
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Ks,g =


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C.2.2. Coupling structural Wing Matrices
The matrices Fs,g, Gs,g, and Hs,g are introduced due to the presence of a rotating propeller.

Fs,g =
03x2

Fs,e

03x2

 (C.19)

Fs,e =
 Sθ,P 0

0 0
Iθα,P 0

 (C.20)

Gs,g =
03x3 03x3 03x3

03x3 Gs,e 03x3

03x3 03x3 03x3

 (C.21)

Gs,e =
 mP 0 Sα,P

0 0 0
Sα,P 0 Iα,P

 (C.22)

Hs,g =
03x2

Hs,e

03x2

 (C.23)

Hs,e =
0 0

0 0
0 IΩΩ

 (C.24)

C.2.3. Propeller Effects on the Wing in global Matrix Form
The propeller effects on the wing are accounted for by the propeller aerodynamic loads acting on the direction
of wing vertical displacement and wing twist. These effects are represented by QP.

QP =



0
0
0

Qh,P

0
Qα,P

0
0
0


= P1,gq̈P +P2,gq̈W +P3,gq̇P +P4,gq̇W +P5,gqP +P6,gqW (C.25)

where the matrices P1,g, P2,g, P3,g, P4,g, P5,g, and P6,g are restructured from the matrices P1, P2, P3, P4,
P5, and P6 to account for the change from the vector qWP into qW and the addition of the force that act on the
bending rotation of the beam node, which is null in this case. If the propeller imposed a torque on the wing,
the value of this torque should be introduced here.

P1,g =
03x2

P1,e

03x2

 (C.26)

P1,e =


k1CZ q

R
V

eθ
V k1CZ r

R
V

eψ
V

0 0

k2Cmq
R
V

eθ
V +eαk1CZ q

R
V

eθ
V k2Cmr

R
V

eψ
V +eαk1CZ r

R
V

eψ
V

 (C.27)

P2,g =
03x3 03x3 03x3

03x3 P1,e 03x3

03x3 03x3 03x3

 (C.28)
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 (C.29)

P3,g =
03x2

P3,e

03x2

 (C.30)

P3,e =


k1CZθ

eθ
V +k1CZ q

R
V k1CZψ

eψ
V +k1CZ r

R
V

0 0

k2Cmθ
eθ
V +k2Cmq

R
V +eαk1CZθ

eθ
V +eαk1CZ q

R
V k2Cmψ

eψ
V +k2Cmr

R
V +eαk1CZψ

eψ
V +eαk1CZ r

R
V


(C.31)

P4,g =
03x3 03x3 03x3

03x3 P4,e 03x3

03x3 03x3 03x3

 (C.32)

P4,e =
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 (C.33)

P5,g =
03x2

P5,e

03x2

 (C.34)

P5,e =


k1CZθ k1CZψ

0 0

k2Cmθ+eαk1CZθ k2Cmψ+eαk1CZψ

 (C.35)

P6,g =
03x3 03x3 03x3

03x3 P6,e 03x3

03x3 03x3 03x3

 (C.36)

P6,e =


0 0 k1CZθ

0 0 0

0 0 k2Cmθ+eαk1CZθ

 (C.37)

where k1 = 1
2ρV 2S′, k2 = ρV 2S′R, S′ =πR2 is the area swept by the propeller blades and R is the propeller

radius.

C.2.4. Wing Aerodynamics in global Matrix Form
Wing aerodynamics are composed of lift and pitching moment acting on each node. These terms are repre-
sented by QW.
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QW =


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M (3)


= Ma,gq̈W +Ca,gq̇W +Ka,gqW +W0,gwg +ggφ̇(t )

ẇg = W1,gqW +W2,gwg

(C.38)

The wing aerodynamic mass matrix is given by

Ma,e =


−πρb2 0 πρb3a

0 0 0

πρb3a 0 −πρb4
(

1
8 +a2

)
 (C.39)

Ma,g =

M(1)
a,e 03x3 03x3

03x3 M(2)
a,e 03x3

03x3 03x3 M(3)
a,e

 (C.40)

The wing aerodynamic damping matrix is given by

Ca,e =


−2πρbVΦ(0) 0 −πρb2V −2πρb2V
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 (C.41)

Ca,g =

C(1)
a,e 03x3 03x3

03x3 C(2)
a,e 03x3

03x3 03x3 C(3)
a,e

 (C.42)

The wing aerodynamic stiffness matrix is given by

Ka,e =


−2πρbV Φ̇(0) 0 −2πρbV 2Φ(0)−2πρb2V
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)
 (C.43)

Ka,g =

K(1)
a,e 03x3 03x3

03x3 K(2)
a,e 03x3

03x3 03x3 K(3)
a,e

 (C.44)

The wing aerodynamic state influence matrix is given by W0,e = 2πρbV W′
0,e, where W′

0,e is

W′
0,e =
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

(C.45)
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W0,g =

W(1)
0,e 03x4 03x4

03x4 W(2)
0,e 03x4

03x4 03x4 W(3)
0,e

 (C.46)

The initial condition excitation vector is given by

ge = 2πρbV

[
h(0)+b

(
1

2
−a

)
α(0)

]
1
0

−b

(
a + 1

2

)
 (C.47)

gg =
ge

(1)

ge
(2)

ge
(3)

 (C.48)

Finally, the aerodynamic state equation matrices are given by

W1,e =


1 0 0
1 0 0
0 0 1
0 0 1

 (C.49)

W1,g =

W(1)
1,e 04x3 04x3

04x3 W(2)
1,e 04x3

04x3 04x3 W(3)
1,e

 (C.50)

W2,e =


− ε1V

b 0 0 0
0 − ε2V

b 0 0
0 0 − ε1V

b 0
0 0 0 − ε2V

b

 (C.51)

W2,g =

W(1)
2,e 04x4 04x4

04x4 W(2)
2,e 04x4

04x4 04x4 W(3)
2,e

 (C.52)

Final expression

The final expression in matrix form can be expressed as

Ms,gq̈W +Cs,gq̇W +Ks,gqW +Fs,gq̈P +Gs,gq̈W +Hs,gq̇P = Ma,gq̈W +Ca,gq̇W +Ka,gqW +W0,gwg +ggφ̇(t )+ ...

+P1,gq̈P +P2,gq̈W +P3,gq̇P +P4,gq̇W +P5,gqP +P6,gqW

ẇg = W1,gqW +W2,gwg

(C.53)

C.3. Propeller-Wing aeroelastic Equations
Combining Equation (C.16) with Equation (C.53), the following expression is obtained
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Ms,g +Gs,g −Ma,g −P2,g Fs,g −P1,g

Bs,g −Ba,g As −Aa

[
q̈W

q̈P

]
+

Cs,g −Ca,g −P4,g Hs,g −P3,g

Ds,g −Da,g Cs −Ca

[
q̇W

q̇P

]
+

+
Ks,g −Ka,g −P6,g −P5,g

−Fa,g Es −Ea

[
qW

qP

]
=

W0,g

02x12

wg +
 gg

02x1

 φ̇(t )

ẇg =
[
W1,g 012x2

][
qW

qP

]
+W2,gwg

(C.54)

Defining q =
[

qW

qP

]
, Equation (C.54) becomes

S1q̈+S2q̇+S3q = S4wg +S5φ̇(t )

ẇg = S6q+W2gwg
(C.55)

where

S1 =
Ms,g +Gs,g −Ma,g −P2,g Fs,g −P1,g

Bs,g −Ba,g As −Aa

 (C.56)

S2 =
Cs,g −Ca,g −P4,g Hs,g −P3,g

Ds,g −Da,g Cs −Ca

 (C.57)

S3 =
Ks,g −Ka,g −P6,g −P5,g

−Fa,g Es −Ea

 (C.58)

S4 =
W0,g

02x12

 (C.59)

S5 =
 gg

02x1

 (C.60)

S6 = [
W1g 012x2

]
(C.61)

In state-space form

q̈ =−S1
−1S2q̇−S1

−1S3q+S1
−1S4wg +S1

−1S5φ̇(t )

ẇg = S6q+W2,gwg
(C.62)

 q̇
q̈

ẇg

=
 011x11 I11x11 011x12

−S1
−1S3 −S1

−1S2 S1
−1S4

S6 012x11 W2,g


︸ ︷︷ ︸

Z

 q
q̇

wg

+
 011x1

S1
−1S5

012x1

 φ̇(t ) (C.63)

Note that the degrees of freedom at wing root are always null since the wing is cantilevered at its root.
Matrix Z must be reduced, meaning that the rows and columns associated with the degrees of freedom at
the wing root are crossed out; these degrees of freedom are h1, φ1, α1, ḣ1, φ̇1, α̇1, w (1)

1 , w (1)
2 , w (1)

3 , and w (1)
4 .

Therefore, the stability of the propeller-flexible-wing aeroelastic system is assessed by analysing the eigen-
values and eigenvectors of the reduced state matrix. Four types of instability can occur in this aeroelastic
system: whirl flutter, whirl divergence, wing flutter, and wing divergence.





D
Prop.-Wing Aeroelastic State-Space System:

with Leishman-Nguyen’s Method and
Multiple propellers

This section implements the aerodynamic model of the wing using Leishman-Nguyen’s method. Moreover,
the methodology for including multiple propellers is described.

D.1. Wing Aerodynamics in global Matrix Form
Wing aerodynamics are composed of lift and pitching moment acting on each node. These terms are repre-
sented by QW.

QW =



Q(1)
h,P
0

Q(1)
α,P

Q(2)
h,P
0

Q(2)
α,P

Q(3)
h,P
0

Q(3)
α,P


=



−L(1)

0
M (1)

−L(2)

0
M (2)

−L(3)

0
M (3)


= Ma,gq̈W +Ca,gq̇W +Ka,gqW +W0,gwg

ẇg = W1,gwg +W2,gq̇W +W3,gqW

(D.1)

The vector of aerodynamic states is

wg =
[
w (1)

1 w (1)
2 w (2)

1 w (2)
2 w (3)

1 w (3)
2

]T
(D.2)

The wing aerodynamic mass matrix is given by

Ma,e =


−πρb2 0 πρb3a

0 0 0

πρb3a 0 −πρb4
(

1
8 +a2

)
 (D.3)

Ma,g =

M(1)
a,e 03x3 03x3

03x3 M(2)
a,e 03x3

03x3 03x3 M(3)
a,e

 (D.4)

The wing aerodynamic damping matrix is given by
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Ca,e =


−πρbV 0 −πρb2V −πρb2V

(
1
2 −a

)
0 0 0

πρbV b

(
a + 1

2

)
0 −πρb3V

(
1
2 −a

)
+πρb2V

(
1
2 −a

)
b

(
a + 1

2

)
 (D.5)

Ca,g =

C(1)
a,e 03x3 03x3

03x3 C(2)
a,e 03x3

03x3 03x3 C(3)
a,e

 (D.6)

The wing aerodynamic stiffness matrix is given by

Ka,e =


0 0 −πρbV 2

0 0 0

0 0 πρbV 2b2
(

a + 1
2

)
 (D.7)

Ka,g =

K(1)
a,e 03x3 03x3

03x3 K(2)
a,e 03x3

03x3 03x3 K(3)
a,e

 (D.8)

The wing aerodynamic state influence matrix is given by W0,e = 2πρbV 2W′
0,e, where W′

0,e is

W′
0,e =


−

(
Ψ1 +Ψ2

)
ε1ε2

(
V
b

)2 −
(
Ψ1ε1 +Ψ2ε2

)(
V
b

)
0 0(

Ψ1 +Ψ2

)
ε1ε2

(
V
b

)2
b

(
a + 1

2

) (
Ψ1ε1 +Ψ2ε2

)(
V
b

)
b

(
a + 1

2

)
 (D.9)

W0,g =

W(1)
0,e 03x2 03x2

03x2 W(2)
0,e 03x2

03x2 03x2 W(3)
0,e

 (D.10)

Finally, the aerodynamic state equation matrices are given by

W1,e =
[

0 1

−ε1ε2

(
V
b

)2 −(ε1 +ε2)
(

V
b

)] (D.11)

W1,g =

W(1)
1,e 02x2 02x2

02x2 W(2)
1,e 02x2

02x2 02x2 W(3)
1,e

 (D.12)

W2,e =
 0 0 0

1
V 0 b

V

(
1
2 −a

) (D.13)

W2,g =

W(1)
2,e 02x3 02x3

02x3 W(2)
2,e 02x3

02x3 02x3 W(3)
2,e

 (D.14)

W3,e =
[

0 0 0
0 0 1

]
(D.15)

W3,g =

W(1)
3,e 02x3 02x3

02x3 W(2)
3,e 02x3

02x3 02x3 W(3)
3,e

 (D.16)
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Final expression

The final expression for the wing aeroelastic equation in matrix form can be expressed as

Ms,gq̈W +Cs,gq̇W +Ks,gqW +Fs,gq̈P +Gs,gq̈W +Hs,gq̇P = Ma,gq̈W +Ca,gq̇W +Ka,gqW +W0,gwg + ...

+P1,gq̈P +P2,gq̈W +P3,gq̇P +P4,gq̇W +P5,gqP +P6,gqW

ẇg = W1,gwg +W2,gq̇W +W3,gqW

(D.17)

D.2. Propeller-Wing aeroelastic Equations
Combining Equation (C.16) with Equation (D.17), the following expression is obtained

Ms,g +Gs,g −Ma,g −P2,g Fs,g −P1,g

Bs,g −Ba,g As −Aa

[
q̈W

q̈P

]
+

Cs,g −Ca,g −P4,g Hs,g −P3,g

Ds,g −Da,g Cs −Ca

[
q̇W

q̇P

]
+

+
Ks,g −Ka,g −P6,g −P5,g

−Fa,g Es −Ea

[
qW

qP

]
=

W0,g

02x6

wg

ẇg = W1,gwg +
[
W2,g 06x2

][
q̇W

q̇P

]
+ [

W3,g 06x2
][

qW

qP

]
(D.18)

Defining q =
[

qW

qP

]
, Equation (C.54) becomes

S1q̈+S2q̇+S3q = S4wg

ẇg = W1,gwg +S5q̇+S6q
(D.19)

where

S1 =
Ms,g +Gs,g −Ma,g −P2,g Fs,g −P1,g

Bs,g −Ba,g As −Aa

 (D.20)

S2 =
Cs,g −Ca,g −P4,g Hs,g −P3,g

Ds,g −Da,g Cs −Ca

 (D.21)

S3 =
Ks,g −Ka,g −P6,g −P5,g

−Fa,g Es −Ea

 (D.22)

S4 =
W0,g

02x6

 (D.23)

S5 = [
W2,g 06x2

]
(D.24)

S6 = [
W3,g 06x2

]
(D.25)

In state-space form

q̈ =−S1
−1S2q̇−S1

−1S3q+S1
−1S4wg

ẇg = W1,gwg +S5q̇+S6q
(D.26)



156 D. Prop.-Wing Aeroelastic State-Space System: with Leishman-Nguyen’s Method and Multiple propellers

 q̇
q̈

ẇg

=
 011x11 I11x11 011x6

−S1
−1S3 −S1

−1S2 S1
−1S4

S6 S5 W1,g


︸ ︷︷ ︸

Z

 q
q̇

wg

 (D.27)

Note that the degrees of freedom at wing root are always null since the wing is cantilevered at its root.
Matrix Z must be reduced, meaning that the rows and columns associated with the degrees of freedom at
the wing root are crossed out; these degrees of freedom are h1, φ1, α1, ḣ1, φ̇1, α̇1, w (1)

1 , and w (1)
2 . Therefore,

the stability of the propeller-flexible-wing aeroelastic system is assessed by analysing the eigenvalues and
eigenvectors of the reduced state matrix. Four types of instability can occur in this aeroelastic system: whirl
flutter, whirl divergence, wing flutter, and wing divergence.

D.3. Inclusion of multiple Propellers
Let N be the number of propellers.

The degrees of freedom of the propellers are grouped in

qP = [
θ1 ψ1 · · · θN ψN

]T
(D.28)

where the subscript is the propeller to which the variable is associated with.
Letting the superscripts "(1) · · · (N )" reference the propeller to which the matrix is associated with and

letting the superscript "∗" reference the corresponding matrix accounting for all the propellers, the propeller-
wing aeroelastic equations using Leishman-Nguyen’s method for wing aerodynamics1 are

Ms,g +G∗
s,g −Ma,g −P∗

2,g F∗
s,g −P∗

1,g(
Bs,g −Ba,g

)∗ (
As −Aa

)∗
[

q̈W

q̈P

]
+

Cs,g −Ca,g −P∗
4,g H∗

s,g −P∗
3,g(

Ds,g −Da,g

)∗ (
Cs −Ca

)∗
[

q̇W

q̇P

]
+

+

Ks,g −Ka,g −P∗
6,g −P∗

5,g(
−Fa,g

)∗ (
Es −Ea

)∗
[

qW

qP

]
=

 W0,g

02Nx6

wg

ẇg = W1,gw+ [
W2,g 06x2N

][
q̇W

q̇P

]
+ [

W3,g 06x2N
][

qW

qP

]
(D.29)

where

F∗
s,g =

[
F(1)

s,g · · · F(N)
s,g

]
(D.30)

H∗
s,g =

[
H(1)

s,g · · · H(N)
s,g

]
(D.31)

G∗
s,g =

N∑
j=1

Gj
s,g (D.32)

P∗
1,g =

[
P(1)

1,g · · · P(N)
1,g

]
(D.33)

P∗
3,g =

[
P(1)

3,g · · · P(N)
3,g

]
(D.34)

P∗
5,g =

[
P(1)

5,g · · · P(N)
5,g

]
(D.35)

P∗
2,g =

N∑
j=1

P(j)
2,g (D.36)

1Implementation using Wagner’s method for wing aerodynamics is analogous.
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P∗
4,g =

N∑
j=1

P(j)
4,g (D.37)

P∗
6,g =

N∑
j=1

P(j)
6,g (D.38)

(
As,g −Aa,g

)∗ =


A(1)

s,g −A(1)
a,g · · · 0

...
. . .

...
0 · · · A(N)

s,g −A(N)
a,g

 (D.39)

(
Cs,g −Ca,g

)∗ =


C(1)

s,g −C(1)
a,g · · · 0

...
. . .

...
0 · · · C(N)

s,g −C(N)
a,g

 (D.40)

(
Es,g −Ea,g

)∗ =


E(1)

s,g −E(1)
a,g · · · 0

...
. . .

...
0 · · · E(N)

s,g −E(N)
a,g

 (D.41)

(
Bs,g −Ba,g

)∗ =


B(1)

s,g −B(1)
a,g

...
B(N)

s,g −B(N)
a,g

 (D.42)

(
Ds,g −Da,g

)∗ =


D(1)

s,g −D(1)
a,g

...
D(N)

s,g −D(N)
a,g

 (D.43)

(
−Fa,g

)∗ =


−F(1)

a,g
...

−F(N)
a,g

 (D.44)

Equation (D.29) may be rearranged into a state-space form and solved using eigenvalue analysis.





E
Additional aeroelastic Results: Constant

Speed Propeller

Propeller-wing models with constant speed propeller/s. Propeller rotational speed set at 2250 RPM.

E.1. Baseline Propeller-Wing Model

Critical instability Value Units
Wing divergence speed 153 [m/s]

Table E.1: Baseline wing (constant speed propeller): aeroelastic results.

0 50 100 150 200 250 300 350

Velocity [m/s]

-200

-100

0

100

200

R
e

(
)

Lag state First wing mode Backward whirl mode

Forward whirl mode Second wing mode Third wing mode

-250 -200 -150 -100 -50 0 50 100 150

Re( )

0

20

40

60

80

100

120

140

Im
(

)

0 50 100 150 200 250 300 350

Velocity [m/s]

0

10

20

30

40

F
re

q
u

e
n

c
y
 [

H
z
]

0 50 100 150 200 250 300 350

Velocity [m/s]

-1

-0.5

0

0.5

1

D
a

m
p

in
g

 r
a

ti
o

 [
-]

Figure E.1: Baseline propeller-wing (constant speed propeller): V-g-f plots.
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E.2. Wingtip-mounted Propeller-Wing Model

Critical instability Value Units
Propeller whirl flutter speed 163 [m/s]
(forward whirl mode)
Propeller whirl flutter frequency 11.13 [Hz]
(forward whirl mode)

Table E.2: Wingtip-mounted propeller-wing (constant speed propeller): aeroelastic results.
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Figure E.2: Wingtip-mounted propeller-wing (constant speed propeller): V-g-f plots.
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E.3. Two-Propeller-Wing Model

Critical instability Value Units
Propeller whirl flutter speed 186 [m/s]
(second forward whirl mode)
Propeller whirl flutter frequency 12.51 [Hz]
(second forward whirl mode)

Table E.3: Two-propeller-wing (constant speed propeller): aeroelastic results.
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Figure E.3: Two-propeller-wing (constant speed propeller): V-g-f plots.

Comparing the critical speeds and frequencies of each model to those of their counterparts with fixed-pitch
propeller/s (see Table 10.9), it can be observed that very approximate results are obtained. The critical speeds
are determined by either wing modes and the forward whirl mode, whose behaviour are largely dominated
by propeller-wing coupling and wing aerodynamics. Hence, the effect of changing the propeller to a constant
speed propeller, barely changes the critical aeroelastic behaviour of the propeller-wing models. On the other
hand, when comparing the V-g-f plots, it can be observed that the backward whirl mode does not go unstable
in the velocity interval considered (0-350 m/s); as explained in Figure 9.13, the baseline propeller at constant
speed conditions have much higher (backward) whirl flutter speeds.
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